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a b s t r a c t

The task of finding groups or teams has recently received increased attention, as a natural

and challenging extension of search tasks aimed at retrieving individual entities. We intro-

duce a new group finding task: given a query topic, we try to find knowledgeable groups

that have expertise on that topic. We present five general strategies for this group finding

task, given a heterogenous document repository. The models are formalized using genera-

tive language models. Two of the models aggregate expertise scores of the experts in the

same group for the task, one locates documents associated with experts in the group and

then determines how closely the documents are associated with the topic, whilst the re-

maining two models directly estimate the degree to which a group is a knowledgeable

group for a given topic. For evaluation purposes we construct a test collection based on

the TREC 2005 and 2006 Enterprise collections, and define three types of ground truth

for our task. Experimental results show that our five knowledgeable group finding models

achieve high absolute scores. We also find significant differences between different ways

of estimating the association between a topic and a group.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A major challenge within any organization is managing the expertise of formal or informal groups of people within the

organization such that groups with expertise in a particular area can be identified (Balog, Azzopardi, & de Rijke, 2006; Juang,

Huang, & Huang, 2013). Rather than finding knowledgeable individuals, sometimes locating a group with appropriate skills

and knowledge in an organization is of great importance to the success of a project being undertaken (Lappas, Liu, & Terzi,

2009; Li, Shan, & Lin, 2013; Neshati, Beigy, & Hiemstra, 2014). For instance, an engineering organization may want to find

a group of scientists who have expertise for dealing with technical problems when constructing a long high-speed railway

without having to trawl through descriptions of individuals or groups (if there are any). A group of doctors in a hospital

may have to be found immediately so as to perform an operation for a seriously-ill patient. Identifying the right groups of

experts with specific knowledge for a task at hand may reduce costs and save the lives of people.

Finding a group or a team that harbors expertise is different from first finding an expert and then sorting out to which

team the expert belongs. Conceptually, the difference is that finding a group mainly focuses on how to collect evidence so
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as to make a decision on whether the group is knowledgeable on the topic, whilst the approach of first locating an expert

is mainly focused on collecting evidence to make a decision on whether the expert has expertise on the topic. Technically,

there are important differences too. For instance, as we will see below, a group finding model that finds knowledgeable

groups via documents directly is significantly outperformed by models that decompose the problem differently.

Traditional approaches to finding knowledge, whether in individuals or in groups within an organization, usually include

two main steps. For a given task the expertise of the experts in a group is recorded and then the expertise of a group is

computed by aggregating the expertise values of all group members. Both steps are traditionally done manually and require

considerable effort to set up and maintain. In addition, this approach is usually restricted to a fixed set of expertise areas,

making it hard to find knowledgeable groups in areas not explicitly coded (Pryor, Myles, Williams, & Anand, 1988).

To reduce the effort of recording and evaluating the expertise of people from their representations, many automatic

approaches have been proposed. There has been an increasing move to automatically extract such representations for eval-

uating expertise from heterogeneous document collections, such as conference papers, corporate intranets and community

question answering collections (Balog, Fang, de Rijke, Serdyukov, & Si, 2012).

To compute the expertise values of a group, in principle, many aggregation operators are available, such as maximum,

sum, or average. These can simply be employed to combine the expertise values of each expert within a given group. There

are at least 90 families of aggregation operators (Zhou, Chiclana, John, & Garibaldi, 2011); they have been put to use in a

range of applications, e.g., in clustering (Beliakov, James, & Li, 2011), image segmentation (Ghosh, Kothari, Halder, & Ghosh,

2009), and control (Senge & Hullermeier, 2011). However, a solution to the problem of how to aggregate expertise values of

all experts within a group so that the expertise scores of different groups can easily be compared and ranked by using a

suitable aggregation operator, is still unknown.

We treat the problem of finding a knowledgeable group differently. Five distinct models are proposed. Our models are

based on probabilistic language modeling techniques, which have been successfully applied in a range of related Information

Retrieval (IR) tasks, such as ad hoc retrieval (Ponte & Croft, 1998; Zhai & Lafferty, 2004), expert finding (Balog et al., 2006;

2009; Balog et al., 2012; Fang, Si, & Mathur, 2010), similar people finding (Weerkamp et al., 2011), and republished article

finding (Tsagkias, de Rijke, & Weerkamp, 2011). Language models are attractive because of their foundations in statistical

theory, the great deal of complementary work on language modeling in speech recognition and natural language processing,

and the fact that very simple language modeling applied to retrieval problems tends to perform very well empirically (Balog,

Azzopardi, & de Rijke, 2009). Each group finding model that we consider ranks groups according to the probability of a group

being a knowledgeable group given the query topic, but the models differ in how this is performed. Three types of variables

play a key role in our estimations: groups (G), queries (Q) and documents (D). The order in which we estimate these is

reflected in our naming conventions. E.g., the model named GDQ proceeds by first collecting evidence of whether a group

is knowledgeable about the topic via the experts in the group (G), and then determining whether each expert in the group

has expertise on the topic via documents (D), and finally whether a document is talking about the given query (Q) topic.

In our Group-Query-Document (GQD) model and Group-Document-Query (GDQ) model, the expertise scores of each expert

in a group are computed first and then aggregated into an overall score. These two models differ in the way in which they

compute expertise scores for individual experts; in both cases, the experts in a group act as a latent variable between the

group and the query. In our Document-Group-Query (DGQ) model, documents are ranked according to the query, and then

we determine how likely a group is a knowledgeable group by considering the set of documents associated with them. Here,

the documents act as a latent variable between the query and the group. Our last two models, the Query-Group-Document

(QGD) model and the Query-Document-Group (QDG) model, rank groups according to the query, and then we determine

how likely a person in the group is a knowledgeable expert by considering the set of documents associated with the expert;

in these two models, it is the query that acts as a latent variable between the group and the experts in the group; we find

that the QGD model actually yields the same ranking as the GQD model. Unlike early automatic group finding systems that

tended to focus on specific document genres only, such as email (Campbell, Maglio, Cozzi, & Dom, 2003) or software and

software documentation (Mockus & Herbsleb, 2002) to build profiles and find the entities, e.g., experts, our group finding

algorithms can work on heterogeneous document genres and the profiles of groups and experts are not required to be given

in advance.

For evaluation purposes, we use data from both the TREC 2005 and 2006 Enterprise tracks to create our test sets. As

the data sets were created for expert finding (as opposed to knowledgeable group finding), some additional work is needed

to turn them into a test set for group finding. We define three types of ground truth for our knowledgeable group finding

task, implementing three readings of what makes a group a knowledgeable group. Familiar retrieval metrics such as NDCG,

NDCG@k, MAP, and p@k are applied as evaluation metrics in our experiments. We perform a range of experiments to analyze

our proposed knowledgeable group finding models, and find that some of our models perform similarly according to one

metric but not according to another. E.g., GDQ and DGQ models are not statistically significantly different when using NDCG

as a performance metric on our datasets; but when using MAP as our metric, the observed differences are statistically

significant. Our main research goals in experimentation are to understand how the five models listed above compare.

In summary, the contributions of this paper are the following:

(i) We introduce a new information retrieval task: given a topic, find knowledgeable groups that have expertise on the

topic.

(ii) We propose five language modeling approaches to tackle the challenge of automatically finding knowledge groups in

heterogeneous document collections.
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(iii) For the purpose of providing evaluation resources for the group finding task, a data set is created based on a publicly

available corpus used in the TREC Enterprise tracks2 and three types of ground truth are defined.

(iv) We provide a detailed analysis of the performance of the proposed knowledgeable group finding models.

The remainder of the paper is organized as follows. Related work is discussed in Section 2. Then, in Section 3 we describe

five ways of modeling the group finding task. Section 4 is devoted to smoothing strategies for our five models and to

computing associations between experts and documents and between experts and groups. Next, we describe our ground

truth for the task and present experimental evaluations of our group finding methods in Sections 5 and 6. We conclude in

Section 7.

2. Related work

We distinguish between three directions of related work in this paper: group finding, expert finding and language models.

2.1. Group finding

In recent years, significant research efforts have been invested in locating a group of individuals in an organization, work

that is usually called group finding or team finding. Yang, Chen, Lee, and Chen (2011) define their group finding problem as

follows. The authors try to find a group of attendees familiar with a given activity initiator, and ensure each attendee in the

group to have tight social relations with most of the members in the group (as determined using a social graph). Sozio and

Gionis (2010) study a query-dependent variant of the community-detection problem, which they call the community-search

problem: given a graph G, and a set of nodes in the graph as their input query, find a subgraph of G that contains the input

query nodes and is densely connected. Other group finding problems have also been studied. Lappas et al. (2009) study the

problem of given a task, a pool of individuals χ with different skills and a social network that captures the compatibility

among these individuals, finding χ ′, a subset of χ , whose members together have all of the required skills to complete a

given specific task and also have minimal communication costs among them. Kargar and An (2011) continue to study this

problem by designing two communication cost functions for two types of communication structures. Neshati et al. (2014)

and Li et al. (2013) tackle the problem of expert group formation (i.e., expert matching) to optimally assign a set of available

experts to a project. Juang et al. (2013) propose two algorithms for the problem of finding an expertise team with a leader

that has the required skills and minimal communication cost, where they make the strong assumption that a set of skills of

each experts, the skills the project requires and the communication cost between each expert pairs are known in advance.

Chen, Zeng, and Yuan (2013) present a matrix factorization based unified framework that recommends groups of users in

a single system by examining their mutual contributions. Garcia and Sebastia (2014) address the group recommendation

problem for a group of users where each user has special preferences and expectations about the resulting group profile.

What we do in this paper is about group finding, but the problem we deal with is different. We introduce a new group

finding task: given a topic query, determine a list of knowledgeable groups within which the experts have expertise on the

topic. Our group finding problem includes two sub-problems. The first sub-problem is to answer questions such as “Which

groups are knowledgeable groups on topic T?” whilst the second sub-problem is to answer the question “What does group

G know?” In this paper we focus exclusively on the first sub-problem, for which we cannot simply apply existing group

finding algorithms.

2.2. Expert finding

Entity retrieval problems have been widely studied in the literature. For instance, given a topic query, search for specific

entities such as people, products, or locations (Balog, Bron, & de Rijke, 2011). A specific instance of this task, one that

is especially relevant to us, is to retrieve a list of people who have expertise on a given topic. Balog et al. (2006, 2009)

present two general strategies to expert searching that are formalized using generative probabilistic models. In their first

model, they compute scores of an expert’s expertise based on the documents that the expert is associated with, whilst in

their second model, they locate documents that are related to the query and then find the associated experts. Building on

this, Fang et al. (2010) use some documents as training data in their relevance-based discriminative learning framework

and derive specific discriminative models for expert retrieval. Tung et al. (2010) develop an expert retrieval system based

on reasoning approaches and incorporate domain expertise into their methods with a role-based access control model to

suggest appropriate experts for problem solving. However, the roles for reasoning are expensive to establish. To return a list

of experts sorted by their level of expertise regarding the user query, Moreira and Wichert (2013) introduce an approach for

combining multiple estimators of expertise based on a multi-sensor framework together with the Dempster–Shafer theory

of evidence and Shannon’s entropy. They define three sensors that detect heterogeneous information derived from textual

content, from the graph structure of the citation patterns for the community of experts, and from profile information about

academic experts. In practice, however, only the textual content is available in many scenarios, not the graph structure of

each group or the profile information of the experts.
2 http://www.ins.cwi.nl/projects/trec-ent.
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Initial manual approaches of finding knowledgeable groups first compute the scores of experts for a given topic and

then aggregate the scores into an overall score for each group. Subsequently, groups are ranked and retrieved according to

the scores of the groups (Pryor et al., 1988). Inspired by these approaches, we can tackle our knowledgeable group finding

problem by aggregating the experts’ scores of each group and then ranking the groups based on the aggregated scores.

Today, more than 90 families of aggregation operators have been proposed (Zhou et al., 2011). Most aggregation algorithms

excel in a very specific area only (Zhou et al., 2011), leaving the problem of how to aggregate expertise scores of experts in

the same group to be tackled. In the IR literature, many models exist for aggregating ranked lists, with or without scores,

so as to produce a new ranked list; however, obtaining an effective and robust setting for different aggregation ranking

tasks is still quite difficult to achieve (Macdonald & Ounis, 2011). So, adapting existing aggregation algorithms to address

our knowledgeable group finding task is not an easy way out.

2.3. Language models

In recent years, variants of language modeling approaches to information retrieval that deal with more variables than just

queries and documents, or even queries, entities and documents, have attracted considerable attention (Cimiano, Schultz,

Sizov, Sorg, & Staab, 2009; Gerani, Carman, & Crestani, 2010; Ko, Si, Nyberg, & Mitamura, 2010; Lv & Zhai, 2009; Sun, Wang,

Sun, & Lin, 2011; Wang, Li, & Gao, 2010; Zhao & Yun, 2009). A novel positional language model (PLM) is proposed by Lv and

Zhai (2009) for ad hoc document retrieval, the idea of which is to define a model for each so-called position of a document,

and then score a document based on the scores of its PLMs. Zhao and Yun (2009) study the integration of term proximity

information into the unigram language model. They propose a new proximity language model that views proximity cen-

trality of query terms as the Dirichlet hyper-parameter that weights the parameters of the unigram document language

model. Wang et al. (2010) propose a language modeling approach to Web document retrieval in which each document is

characterized by a mixture model with components corresponding to the various text streams associated with the docu-

ment (such as the body, the title and the URL of the document). To retrieve documents with opinions, Gerani et al. (2010)

use a general opinion lexicon and propose an opinion propagation language model to calculate the opinion density at each

point in a document. Sun et al. (2011) propose a language model based approach for tag recommendation that recommends

tags by ranking them with their similarity to the given document and leverages the content information from both tag and

document for ranking. Ko et al. (2010) present two probabilistic language models for answer ranking in the multilingual

question-answering task, which finds exact answers to a natural language question written in different language.

Even though a large number of effective language models have been proposed that aggregate scores of smaller units

(positions, paragraphs, …) into scores of larger units, almost all of them are aimed at dealing with a specific IR problem of

aggregating evidence obtained from specific textual units. To the best of our knowledge, specific language models for our

knowledgeable group finding task have not been introduced yet.

3. Modeling group finding

In this section, we describe our approaches to modeling the group finding task in detail. We first provide some back-

ground to language modeling applied to entity retrieval and then introduce and analyze our group retrieval task. We pay

considerable attention to modeling our task in five distinct ways.

During the past decade, research on entity retrieval and entity profiling has generated considerable interested from the

IR community (Balog et al., 2011; Fang et al., 2010; Lv & Zhai, 2009). Relatively simple and transparent language modeling-

based approaches have performed well on the tasks for which they were defined. In these approaches, one usually ranks

entities based on the estimated language models, which are either estimated from the documents or the queries. In our

modeling of the knowledgeable group finding task, multiple kinds of documents in a heterogeneous collection are used to

collect evidence for expertise of each group. Groups, documents and queries are considered in different orders to estimate

our language models. Groups are ranked according to how likely the groups have expertise on the given query according to

the estimated language model.

3.1. Problem definition and context

We address the following ranking problem: given a query topic, identify knowledgeable groups that have expertise on

that topic. We formulate the problem as follows: what is the probability of a group g being a knowledgeable group given

query topic q? That is, we have to estimate the probability of a group g given a query q and then rank groups according

to their probabilities. The top k groups will be considered to be the most knowledgeable groups for the given query topic.

Instead of computing this probability directly, we apply Bayes’ Theorem, and obtain

p(g|q) = p(q|g)p(g)

p(q)
,

where p(q) is the probability of a query and p(g) is the probability of a group. The priori probability p(q) is the same when

searching knowledgeable groups with the same query; thus, we can set p(q) to be a constant. The same choice can be made
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for the priori probability p(g), i.e., p(g) is a constant. Hence, ranking groups according to the probability of a group given a

query topic p(g|q) boils down to ranking a query topic given a group p(q|g), i.e.,

p(g|q)
rank= p(q|g).

In the remainder of this section, we detail our proposed five knowledgeable group finding language models. To determine

p(g|q) or p(q|g) we consider experts, groups, documents and queries in different orders, and adapt generative probabilistic

language modeling techniques, so as to arrive at five distinct models. Two of these models (the GQD and GDQ models; see

Section 3.2) aggregate expertise scores of each expert in the same group to an overall expertise score for the group to which

they belong. In the DGQ model (see Section 3.3) we collect evidence of how likely a group of people has expertise on the

given query topic via heterogeneous documents in the repository. Two remaining models, the QDG and QGD models (see

Section 3.4), directly estimate the degree to which a group is a knowledgeable group for a given topic.

3.2. Two aggregation models: GQD and GDQ

We have two types of aggregation model: the Group-Query-Document (GQD) model and the Group-Document-Query

(GDQ) model. The order of the key terms in these names signifies the following: GQD indicates that the evidence of whether

a group is a knowledgeable group on the topic is collected via the experts in the group (G), then how likely each expert in

the group has expertise on the query (Q) is computed via the documents (D). GDQ indicates that the evidence of whether

a group is a knowledgeable group on the topic is collected via the experts in the group (G), then via each document (D)

the expertise of each expert in the group on the query (Q) topic is computed directly via the documents. In both models,

experts in the same group g are conditionally independent given the group, such that

p(g|q) =
∏
ex∈g

p(ex|q)as(ex,g),

where ex is an expert belonging to group g, p(ex|q) is the probability of an expert ex given a query q, and as(ex, g) is the

association between an expert ex and the group g. Instead of computing p(ex|g) directly, we apply Bayes’ Theorem, and

obtain

p(ex|q) = p(q|ex)p(ex)

p(q)
,

where p(q|ex) is the probability of a query given an expert, p(ex) is the probability of an expert, and p(q) is the probability

of the query. As each expert is a common member in a group, p(ex) can be set to be constant. Additionally, for each query

topic, p(q) is the same, hence, p(ex|q) is proportional to p(q|ex). So, p(g|q) can be represented as follows

p(g|q)
rank=

∏
ex∈g

p(q|ex)as(ex,g).

The GQD model. To obtain p(q|ex), we assume that each term t in the query q is conditionally independent given expert ex,

such that

p(q|ex) =
∏
t∈q

p(t|ex)n(t,q),

where p(t|ex) is the probability of a term given an expert and n(t, q) is the number of occurrences of term t in query q.

Putting things together, we can rewrite p(g|q) as follows

p(g|q)
rank=

∏
ex∈g

{∏
t∈q

p(t|ex)n(t,q)

}as(ex,g)

.

To obtain p(t|ex), we take the sum over all documents d in the collection. Formally, this can be expressed as

p(t|ex) =
∑

d

p(t|d)p(d|ex),

where p(t|d) is the probability of term t given document d, and p(d|ex) is the probability of document d given expert ex.

Now we can obtain the probability of a group given a query

p(g|q)
rank=

∏
ex∈g

⎧⎨
⎩∏

t∈q

{∑
d

p(t|d)p(d|ex)

}n(t,q)
⎫⎬
⎭

as(ex,g)

(1)

This is our GQD model. In brief, it first tries to aggregate expertise scores of each expert in the same group for a certain

query. Then the expertise of an expert is computed based on how likely this expert would produce the given query, which

can be interpreted as the probability of this expert talking about this topic. Finally, the evidence of how much an expert
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t d ex

D

|q|
|g|

Fig. 1. Graphical representation of the Group-Query-Document model.

t d ex

|q|
D

|g|

Fig. 2. Graphical representation of the Group-Document-Query model.
knows about the topic is collected from all the documents in the collection. The model in (1) first considers experts in

a group, then terms in the given query, and finally the documents; this is why we call it the GQD model. The following

group finding language models have similar naming conventions. The construction of the GQD model can be viewed as

the following generative process: the group g is generated by query q by first generating a set of documents associated

with each expert in the group, then generating each term in q from these documents, and finally generating the group by

considering each expert in the group. A graphical representation of the GQD model is shown in Fig. 1.

The GDQ model. We can compute the probability of a query q given an expert ex in a different way from what we did

previously. By taking the sum over all documents d, p(q|ex) can be obtained. Formally, this can be expressed as

p(q|ex) =
∑

d

p(q|d)p(d|ex),

where p(q|d) and p(d|ex) are the probability of query q given document d and the probability of document d given expert

ex, respectively. Therefore, p(g|q) can be rewritten as

p(g|q)
rank=

∏
ex∈g

{∑
d

p(q|d)p(d|ex)

}as(ex,g)

.

To obtain p(q|d), we assume again that each term t in the given query q is conditionally independent given a document d,

such that

p(q|d) =
∏
t∈q

p(t|d)n(t,q).

Based on this, we obtain our second aggregation model

p(g|q)
rank=

∏
ex∈g

{∑
d

{∏
t∈q

p(t|d)n(t,q)

}
p(d|ex)

}as(ex,g)

. (2)

This is our GDQ model. It first tries to aggregate expertise scores of each expert in the same group for a certain query, but

the way of aggregating expertise scores is different from that in the GQD model. To aggregate scores, the GDQ model collects

the evidence of how likely it is that an expert knows about the given topic via all documents in the collection, and then

computes how likely the documents are relative to the given query. The construction of the GDQ model can be understood

as the following generative process: the group g is generated by query q by first generating a set of documents associated

with each expert in the group, and for each of these documents generating the query q from the document and considering

the probability of how likely the expert can generate the document. A graphical representation of the GDQ model is shown

in Fig. 2.

3.3. A document model: DGQ

Instead of thinking about aggregating expertise scores of all the experts within a group as in our aggregation models, the

probability g(g|q) can also be computed directly via the documents (D), as the order of the key terms in the model DGQ’s
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t d ex

|q| |g|
D

Fig. 3. Graphical representation of the Document-Group-Query model.
name indicates. For each document we then compute how likely the group (G) is associated with it, and how likely it is

talking about the given query (Q) topic, such that

p(g|q) =
∑

d

p(g|d)p(d|q),

where p(g|d) and p(d|q) are the probability of group g given document d and the probability of d given query q, respectively.

We assume that all experts in the same group g are conditionally independent given document d. So p(g|q) can be rewritten

as follows.

p(g|d) =
∏
ex∈g

p(ex|d)as(ex,g),

where p(ex|d) is the probability of an expert belonging to group g given document d. In order to compute p(d|q), we apply

Bayes’ Theorem, and obtain

p(d|q) = p(q|d)p(d)

p(q)
,

where p(d) is the probability of document d, which is set to be uniform. As p(q) is a constant for a given query q, the

term p(d|q) is proportional to p(q|d) and can be expressed as: p(d|q)∝p(q|d). So p(g|q) can be represented in the following

manner

p(g|q)
rank=

∑
d

p(g|d)p(q|d),

which indicates that ranking according to p(g|q) means we have to collect the evidence of how a document can generate

the given query, and how likely the group is associated with the document, via all documents in the collections. To obtain

the probability of query q given document d, we again assume that each term in the query is conditionally independent,

such that

p(q|d) =
∏
t∈q

p(t|d)n(t,q).

Again, for a given document, each expert ex in the same group g is conditionally independent, and p(ex|d) is proportional to

p(d|ex) when applying Bayes’ Theorem, resulting in p(g|d) being expressed as

p(g|d) =
∏
ex∈g

p(ex|d)as(ex,g),

where p(ex|d) is the probability of an expert given a document, which measures how likely the document belongs to the

expert. We apply Bayes’ theorem, and obtain p(ex|d) = p(d|ex)p(ex)p(d)−1, where both p(ex) and p(d) are fixed for each

expert ex and each document d in the collection, respectively. So p(ex|d) is proportional to p(d|ex), and then p(g|d) can be

represented as

p(g|d)
rank=

∏
ex∈g

p(d|ex)as(ex,g).

This, then, is how p(g|q) can be represented

p(g|q)
rank=

∑
d

{∏
ex∈g

p(d|ex)as(ex,g)

}{∏
t∈q

p(t|d)n(t,q)

}
. (3)

This is our DGQ model. For each document, we compute p(g|d) and p(q|d) at the same time. It assumes that all documents in

the collection are not only associated with each expert in the same group but also with the given query. So this model tries

to collect evidence of the probability of an expert to “own” the document and how likely the document talks about the given

query. The construction of the DGQ model can be viewed as the following generative process: the group g is generated by

query q by first generating the query from each document in the collection and at the same time the document is generated

by each expert in the group. A graphical representation of the DGQ model is shown in Fig. 3.
Please cite this article as: S. Liang, M. de Rijke, Formal language models for finding groups of experts, Information Pro-

cessing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2015.11.005

http://dx.doi.org/10.1016/j.ipm.2015.11.005


8 S. Liang, M. de Rijke / Information Processing and Management 000 (2016) 1–21

ARTICLE IN PRESS
JID: IPM [m3Gsc;February 2, 2016;18:22]
3.4. Two query models: QDG and QGD

Next, we present two query models for the knowledgeable group finding task. Before we start, two comments are in

order. First, we actually define two models – QGD and QDG – , but one of them (QGD) will be shown to coincide with one of

the aggregation models (GQD). Second, we use “query model” not in the sense of building rich representations of the query

but to indicate that our estimations of a group finding model start with the query. As the names QGD and QDG indicate,

both consider how likely a group knows about a query (Q) topic first. The order QGD signifies that this can be computed by

first determining how likely it is that each expert in the group (G) has expertise on the topic via the documents (D), whilst

QDG computes this via documents (D) and then determines how likely each expert in the group (G) is associated with each

document. For both models, we first apply Bayes’ Theorem, so that ranking according to the probability p(g|q) is equivalent

to ranking according to p(q|g):

p(g|q)
rank= p(q|g),

where p(q|g) is the target to be computed. We assume that terms in the given query q are conditionally independent given

a group g, such that

p(q|g) =
∏
t∈q

p(t|g)n(t,q),

where p(t|g) is the probability of a term t given a group g. We compute p(t|g) in two ways.

The QGD model. Instead of computing p(t|g) directly, we apply Bayes’ Theorem, and obtain p(t|g) = p(g|t)p(t)p(g)−1, where

p(g|t) is the probability of group g given term t. As p(t) is a constant once term t in query q is selected and p(g) is assumed

constant for each group, p(t|g) is proportional to p(g|t):

p(t|g) rank= p(g|t).
Each expert ex in the same group is conditionally independent for a given term t, we can obtain

p(g|t) =
∏
ex∈g

p(ex|t)as(ex,g),

where p(ex|t) is the probability of an expert given term t. In sum, we can rewrite p(g|q) as follows:

p(g|q)
rank=

∏
t∈q

{∏
ex∈g

p(ex|t)as(ex,g)

}n(t,q)

.

To compute p(ex|t), we collect evidence of how likely expert ex is talking about a topic associated with the term t via all

the documents in the collection, such that

p(ex|t) =
∑

d

p(ex|d)p(d|t),

where p(ex|d) is the probability of expert ex given document d and p(d|t) is the probability of document d given term

t. Instead of computing p(d|t), we apply Bayes’ Theorem again, and obtain p(d|t) = p(t|d)p(d)p(t)−1, where p(d) is the

probability of document d, which is assumed to be uniform. In addition, p(t) is fixed once the query is given, so we obtain

the following formula

p(d|t) rank= p(t|d)

Now, the final version of p(g|q) can be represented as

p(g|q)
rank=

∏
t∈q

⎧⎨
⎩∏

ex∈g

{∑
d

p(d|ex)p(t|d)

}as(ex,g)
⎫⎬
⎭

n(t,q)

. (4)

This is our QGD model. It first computes the probability how likely a group is talking about a given query topic. Then in

each group, for each expert we consider how likely he or she is talking about the query topic. Finally, the expertise of each

expert within a group is collected via all documents in the collection. The construction of the QGD model can be viewed as

the following generative process: the group g is generated by query q by first considering each document in the collection,

generating a term from the document and how likely an expert in the group generates the document, and finally generating

the query by the group. A graphical representation of the QGD model is shown in Fig. 4.

It is worth pointing out that QGD and GQD are the same models, although the ways of finding knowledgeable groups

are different, as both (4) (the QGD model) and (1) (the GQD model) can be represented as, and rank groups equivalently

to

p(g|q)
rank= log p(g|q) =

∑
t∈q

∑
ex∈g

n(t, q) · as(ex, g) · log
∑

d

p(d|ex)p(t|d).

Hence, in our experimental evaluation in Section 6, we only consider GQD; the results for QGD are exactly the same.
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Fig. 4. Graphical representation of the Query-Group-Document model.
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Fig. 5. Graphical representation of the Query-Document-Group model.
The QDG model. Instead of computing how likely an expert is talking about the given topic, we compute p(t|g) in an alter-

native way. We collect the evidence of how group g being a knowledgeable group via all documents in the collection, and

obtain

p(t|g) =
∑

d

p(t|d)p(d|g),

where p(d|g) is the probability of document d given group g. Again, instead of computing p(d|g) directly, we apply Bayes’

Theorem, and obtain p(d|g) = p(g|d)p(d)p(g)−1, where both p(d) and p(g) are fixed values for each document and each

group. So p(g|q) can be represented as follows

p(g|q)
rank=

∏
t∈q

{∑
d

p(t|d)p(g|d)

}n(t,q)

,

where p(g|d) is the probability of group g given document d. Each expert ex in the same group is conditionally independent

for a given document d, we can represent p(g|d) as

p(g|d) =
∏
ex∈g

p(ex|d)as(ex,g),

where p(ex|d) is the probability of an expert ex given a document d, which is proportional to p(d|ex).

Now, the final version of p(g|q) can be represented as

p(g|q)
rank=

∏
t∈q

{∑
d

p(t|d)
∏
ex∈g

p(d|ex)as(ex,g)

}n(t,q)

. (5)

And this is our QDG model. It first computes the probability of how likely a group is talking about a given query topic just

as in QGD model, but the way of computing this is different. The QDG model collects evidence of how likely the group is a

knowledgeable group for a given query via all documents in the collection. For each expert within a group, we determine

how likely the expert is associated with the documents. The construction of the QDG model can be viewed as the following

generative process: the group g is generated by query q by first generating a document from each expert in the group,

generating a term in the query by a set of the document associated with the group, and finically generating the query. A

graphical representation of the QDG model is shown in Fig. 5.

This concludes the introduction of our group finding models. Before we can turn to an experimental comparison, we

need to settle two things: estimating associations and smoothing.

4. Associations and smoothing

In this section, we detail how we estimate the probability that an expert ex in a group g is associated with a document

d and the probability of an expert ex being associated with the group he/she belongs to. In addition, we devise strategies

for smoothing our five knowledgeable group finding models.
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4.1. Expert-document associations

For all models described in the previous section, we need to be able to estimate the probability of an expert ex in

group g being associated with document d. In recent years, this problem has attracted considerable attention (Balog et al.,

2006; Balog, Bogers, Azzopardi, de Rijke, & van den Bosch, 2007; Balog et al., 2011; Balog & de Rijke, 2008; Fang et al.,

2010). Following Balog et al. (2006), to define this probability, we assume that associations a(d, ex) between experts ex and

documents d have been calculated and define

p(d|ex) = a(d, ex)∑
d′∈D a(d′, ex)

, (6)

where D is the set of documents in the collection, and a(d, ex) can simply be defined as

a(d, ex) =
{

1 rel(ex, d) = 1

0 otherwise,
(7)

where rel(ex, d) = 1 if the full name or email address of expert ex (exactly) appears in document d, otherwise rel(ex, d) = 0.

Research by Balog et al. (2006); Balog et al. (2007) on the task of finding experts shows that using more sophisticated ways

of recognizing expert information to compute a(d, ex) may boost the effectiveness of identifying an expert given a query

topic. As our focus in this paper is on modeling group finding, we do not define a(d, ex) as in (Balog et al., 2006) and just

use the simple but effective definition given above.

4.2. Group-expert associations

For all of the group finding models described in the previous section, we also need to be able to estimate the strength

of the association between an expert ex and the group g to which the expert belongs. We define the following group expert

association

as(ex, g) = 1

|g| , (8)

where |g| is the total number of experts within the group g to which they belong. This is a baseline way to obtain an

association score between group and expert, which simply indicates that each expert is an equal member of the group to

which they belong.

4.3. Smoothing strategies

In our five knowledgeable group finding models, the term p(g|q) may contain zero probabilities due to data sparsity. For

instance, in our aggregation models, GQD and GDQ, p(g|q) will contain zero probabilities if there exist experts who have no

expertise on the given query, i.e., if for ex in g we have that p(q|ex) = 0 is true, then p(g|q) = 0. Therefore, we have to infer

a group model θ g, such that the probability of a group given a query model is p(θ g|q). Many smoothing methods have been

proposed and used in language modeling (Zhai & Lafferty, 2004). We employ Jelinek–Mercer smoothing method (Jelinek &

Mercer, 1980) to estimate p(θ g|q); we consider two types.

Two-parameter smoothing. To facilitate comparisons and for the sake of uniformity, in all of the five models, instead of

estimating p(g|q) directly, we can easily infer a document model θd such that the probability of a term t given a document

d model is p(t|θd), and infer an expert model θ ex such that the probability of a document d given an expert ex is p(d|θ ex).

The document model is then constructed as a linear interpolation of the background model p(t) and the smoothed estimate

p(t|θd) = (1 − α)p(t|d) + αp(t),

where α is a smoothing parameter (0 < α < 1). The expert model is also constructed as a linear interpolation of the

background model p(d) and the smoothed estimate

p(d|θex) = (1 − β)p(d|ex) + βp(d),

where β is a smoothing parameter (0 < β < 1). Let θ (α, t, d) be short for p(t|θd) = (1 − α)p(t|d) + αp(t), and ϑ(β , d, ex)

be short for p(d|θex) = (1 − β)p(d|ex) + βp(d). Then, the group finding model GQD (and model QGD) can be smoothed and

estimated as

p(g|q)
rank=

∏
ex∈g

⎧⎨
⎩∏

t∈q

{∑
d

θ (α, t, d) · ϑ(β, d, ex)

}n(t,q)
⎫⎬
⎭

as(ex,g)

. (9)

Similarly, the GDQ model can be smoothed and estimated as

p(g|q)
rank=

∏
ex∈g

{∑
d

{∏
t∈q

θ (α, t, d)n(t,q)

}
ϑ(β, d, ex)

}as(ex,g)

. (10)
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The DGQ model can be smoothed and estimated as

p(g|q)
rank=

∑
d

{∏
ex∈g

ϑ(β, d, ex)as(ex,g)
∏
t∈q

θ (α, t, d)n(t,q)

}
. (11)

Finally, the QDG model can be smoothed and estimated as

p(g|q)
rank=

∏
t∈q

{∑
d

θ (α, t, d)
∏
ex∈g

ϑ(β, d, ex)as(ex,g)

}n(t,q)

. (12)

One-parameter smoothing. It is worth pointing out that for the GQD model (see (1)), p(g|q) can be smoothed and estimated

in a different way, so that a single smoothing parameter suffices. Instead of smoothing both p(t|d) and p(d|ex), we can infer

another expert model �ex such that the probability of a term t given an expert ex is p(t|�ex). This expert model is then

constructed as a linear interpolation of the background model p(t), and the smoothed estimate: p(t|�ex) = (1 − λ)p(t|ex) +
λp(t), where λ is a smoothing parameter (0 < λ < 1). When we use p(t|�ex), the GQD model (QGD model) can be smoothed

and estimated as

p(g|q)
rank=

∏
ex∈g

⎧⎨
⎩∏

t∈q

{
(1 − λ)

∑
d

p(t|d)p(d|ex) + λp(t)

}n(t,q)
⎫⎬
⎭

as(ex,g)

. (13)

5. Experimental setup

In this section, we describe the experimental setup for testing our knowledgeable group finding methods. We describe

our dataset, detail the different types of ground truth that we consider, and specify our research questions.

5.1. Experimental collection

For evaluation purposes we use data made available for the expert finding task at the TREC 2005 and 2006 Enterprise

tracks (Balog et al., 2009; Craswell, de Vries, & Soboroff, 2005; Soboroff, de Vries, & Craswell, 2006). For these tracks, the

document collections used are the same: a crawl of the World Wide Web Consortium (W3C), a heterogenous document

repository containing a mixture of document types.3 The six types of pages in the crawl are lists (email forum; 198,394

documents), dev (code; 62,509 documents), www (web; 45,975 documents), esw (wiki; 19,605 documents), other (miscel-

laneous; 3,538 documents), and people (personal home pages; 1,016 documents). In total, the W3C corpus contains 331,037

documents, adding up to 5.7GB.

We use the test topics and the ground truth made available by the TREC Enterprise 2005 track to build knowledgeable

groups, where the names of groups are the test topics (50 test topics) in the TREC Enterprise 2005 track, resulting in 50

knowledgeable groups, and the expert-group pairs are generated based on the ground truth of the TREC 2005 track, resulting

in 1509 expert-group pairs, with between 2 and 391 experts in the same group and approximately 30 experts per group on

average. In other words, if an expert is related to a test topic, then this expert is one of the members in the group with

the name of the test topic. In addition, after building the knowledgeable groups’ information based on TREC Enterprise 2005

track data, we use the TREC Enterprise 2006 track to test the performance of our five proposed knowledgeable group finding

models. For the TREC Enterprise 2006 track, 55 queries were created, but only 49 are provided with expert finding ground

truth. The 2006 expert finding queries will be used to evaluate our group finding task and the ground truth for the group

finding task is created based on the TREC Enterprise 2006 track; see below.

5.2. Three types of ground truth

So far, different ways to construct specific ground truths for the evaluation of the group finding have been considered.

Lappas et al. (2009) and Kargar and An (2011) use the authorship information in academic papers to construct groups and

use information about communication cost (see Lappas et al., 2009 for details) to evaluate their experimental results. In our

dataset not all of the information used in Lappas et al. (2009), e.g., authorship information in each group, the skill infor-

mation of each expert, communication costs between experts, is present. Hence, we cannot follow their way of construct

our ground truth. Neshati et al. (2014) suppose that each expert’s expertise is clear and they prefer a group of experts that

can cover as many different areas of expertise as possible. We cannot follow this way to construct our group finding ground

truth either because experts’ expertise is unknown in our dataset. Thus, we construct our ground truth in a different way,

viz. by using the ground truth of the TREC 2006 expert finding task. We propose three types of ground truth for our group

finding task: binary, graded and number.
3 http://www.w3c.org.
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Binary. A group g is considered relevant for topic q if there is at least one expert ex who is a member of g (according

to the TREC 2005 expert finding ground truth) and has expertise on the topic q (according to the TREC 2006 expert finding

ground truth). This is a weak notion of group relevance.

Graded. A slightly more evolved definition of group relevance uses grades: the level of relevance of group g for query q

is defined based on the fraction of the experts in the group. We distinguish between |L| different levels of relevance, i.e., {0,

1, 2, . . . , |L − 1|}. The relevance grade l ∈ {0, 1, 2, . . . , |L − 1|} of group g for topic q is defined as follows. Let

f (g, q) = |{ex ∈ g : rel(ex, q) = 1}|
|g| ,

where {ex ∈ g : rel(ex, q) = 1} is the set of experts in g with expertise on topic q according to the TREC 2006 expert finding

ground truth and |g| is the total number of experts in group g. If 1
|L| · l ≤ f (g, q) < 1

|L| · (l + 1), the grade level for this group

is l. In this paper, we set |L| = 10.

Number. Here, the level of relevance of group g for query q is defined based on the number of experts in the group. For

instance, if there are 15 experts who have expertise on the given query topic, then the level of the relevance for this group

is 15. The level of relevance ranges from 0 to 30 with a majority smaller than 4.

These three types of ground truth allow for different uses in the evaluation of the knowledgeable group finding task: the

binary ground truth only allows us to determine whether there is at least one member in a group having expertise on a

given topics; the graded ground truth considers not only whether there are experts in the group about a topic but also how

many of them have expertise on the topic. In contrast, the number ground truth may favor larger knowledgeable groups

because a larger group probably will have a larger number of experts than a very small group.

5.3. Runs

We run our experiments with all of the documents in the collection for our five knowledgeable group finding models.

We perform a grid search to find optimal settings of the smoothing parameters (with 0.1 increments).

In addition to using the full collection for retrieval and estimation, we also generate runs for our group finding task

based on a subset of documents defined by taking the top n documents returned by a standard document retrieval language

model (Zhai & Lafferty, 2004) when using the topic as query, and then compare the performance results of the proposed

group finding models.

5.4. Evaluation metrics

The evaluation metrics used for the group finding task are normalized discounted cumulative gain (NDCG) and NDCG@5,

10 (Clarke et al., 2008), mean average precision (MAP) (Manning, Raghavan, & Schütze, 2008), and precision@5, 10 (Manning

et al., 2008) against our three types of group finding ground truth. MAP scores are of special interest to us: we hypothesize

that the models have both a precision and recall-enhancing effect and we use MAP to measure this. We adopt precision@5,

10 as they are the official evaluation metrics used to assess expert finding in the TREC 2005 and 2006 Enterprise tracks that

our dataset is built on. NDCG and NDCG@5, 10 are also of special interest to us: we want to know whether more relevant

knowledgeable groups can be ranked higher than less relevant groups by the models we consider. Evaluation scores were

computed done using the trec_eval program.4

NDCG. Given a ranked result set of documents (in our setting, groups) S and an ideal ordering of the same set of

documents R, the discounted cumulative gain (DCG) (Clarke et al., 2008) at a particular rank threshold k is defined as

DCG(S, k) =
k∑

j=1

2r( j) − 1

log(1 + j)
,

where r(j) is the judgment (0 = Bad, 1 = Fair, 2 = Good, 3 = Excellent, etc.) at rank j in set S . The ideally ordered set R
contains all documents rated for the given query sorted descending by the judgment value. Then the normalized discounted

cumulative gain (NDCG) (Clarke et al., 2008) at a particular rank threshold k is defined as

NDCG(S, k) = DCG(S, k)

DCG(R, k)
.

NDCG discounts the contribution of a document to the overall score as its rank increases. NDCG value at rank threshold k

when the set S is clear from the context is often written as NDCG@k.

MAP. The mean average precision (MAP) (Manning et al., 2008) of a test query set is the mean of the average precision

(AP) values of all queries in the query set. The average precision of a ranked result set in response to a given query is

defined as

AP =
∑k

j=1 P( j) ∗ Relevance( j)∑k
j=1 Relevance( j)

,

4 The trec_eval program is available from the TREC web site http://trec.nist.gov.
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where j is the position of the document (in our case, group), Relevance(j) denotes the relevance of the document (in our

case, group) in position j, and P( j) = ∑ j
i=1

Relevance(i)/ j. Typically, a binary value for Relevance(j) is used by setting it to 1

if the document (group) in position j has a human judgment of Fair or better and 0 otherwise.

Precision. Precision at k (Manning et al., 2008) only considers the total number of relevant documents ranked within the

top k positions and can be simply computed as

p@k = #relevant documents among the top k

k
,

where “relevant documents” are those that have human judgments of Fair or better.

5.5. Research questions

Our experiments are meant to address the following groups of questions:

(i) How do different optimal group finding models with two smoothing parameters perform when compared against each

other? Do relative differences between models change depending on the type of group finding ground truth used or

when using different evaluation metrics? And what are the optimal settings of the two smoothing parameters? (See

Section 6.1.)

(ii) How sensitive are the group finding models that use two smoothing parameters to the settings of those parameters?

(See Section 6.2.)

(iii) How does the GQD model behave with only one smoothing parameter compared with two parameters and what are

the optimal parameters? (See Section 6.3.)

(iv) How does the performance per query vary, for a given model? (See Section 6.4.)

(v). What is the effect of using a topically focused subset of documents on the performance on the group finding task?

(See Section 6.5.)

(vi) And finally, given that the models all use the same basic components, are they really different from each other and

what are the effect sizes for the models’ comparisons? (See Section 6.6)

6. Results and analysis

In this section, we present and analyze our experimental results. We start by comparing the results of the optimized

models and follow with an analysis of smoothing with two parameters vs. with a single parameter. Next, we examine

performance differences across queries and present the results of using a topically focused set of documents. Finally, we test

whether the models are statistically significantly different and provide the effect sizes for comparison.

6.1. Model comparison

How do our knowledgeable group finding models perform compared to each other? In the following set of experiments,

for each specific performance evaluation metric, we compare the models using optimal smoothing parameters. We use two

parameters α and β to smooth the proposed five knowledgeable group finding models, i.e., GQD, GDQ, DGQ and QDG, which

were formalized in (9)–(12), respectively. Below, we do not report experimental results for the QGD model, as its results are

the same as those of the GQD model; see Section 3.4.

Table 1 lists the scores for the various metrics. Clearly, DGQ outperforms the other models on all metrics using the

binary and graded ground truth, but GDQ outperforms DGQ on all metrics using the number ground truth. (We further

show whether the observed differences between any two group finding models are statistically different via a two-tailed

paired t-test later in Section 6.6.) The QDG model is the worst performing model for all the metrics and against all types

of ground truth. The table also shows that GQD, GDQ and DGQ have a similar performance for all the metrics against all

types of ground truth. (The MAP and p@N scores against the number ground truth are the same as those against the binary

ground truth, which is why we do not report them in the table.) Of course, they are built on similar language modeling

components and the experimental outcomes suggest that but the differences in computing order are mostly immaterial.

To further illustrate the performance of our proposed group finding models, we also use a 5-fold validation strategy to do

the experiments, i.e., we use a 4/1 split for our training and test sets, respectively. We train the models using values of the

two smoothing parameters α and β that vary from 0.1 to 0.9. The best smoothing parameters are then chosen on the test

set, and evaluated on the test queries. The train/test splits are permuted until all the queries have been chosen once for the

test set. We repeat the experiments 10 times. Table 2 show the NDCG, NDCG@5, 10, MAP, p@5, and 10 evaluation results.

As is shown in the table, the performance is similar to that in Table 1, which demonstrates that the proposed models are

robust.

6.2. Smoothing with two parameters

Next we turn to smoothing with two parameters. To understand how the two smoothing parameters influence the per-

formance of our models, we first change the smoothing parameter α from 0.1 to 0.9 with 0.1 steps and report the best
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Table 1

Evaluation results using data from the TREC Enterprise 2006 track for all optimal models with two smoothing param-

eters, using the binary, graded as well as number ground truths. For each metric, we report the evaluation results,

followed by the two optimal smoothing parameters α and β . We do not report the evaluation results for MAP and

p@5, 10 when using the number ground truth, as they are the same as when using the binary ground truth.

NDCG@

Ground truth Model NDCG α β 5 α β 10 α β

Binary GQD .8861 .1 .2 .8165 .1 .2 .7850 .1 .3

GDQ .9009 .1 .9 .8291 .3 .5 .7936 .2 .5

DGQ .9133 .1 .9 .8680 .1 .9 .8420 .1 .9

QDG .7623 .1 .2 .5604 .1 .1 .5568 .1 .2

Graded GQD .8245 .2 .3 .7237 .2 .3 .7595 .1 .2

GDQ .8457 .1 .4 .7675 .2 .3 .7945 .1 .4

DGQ .8631 .2 .9 .7991 .5 .9 .8160 .7 .8

QDG .3916 .1 .8 .1012 .1 .1 .1282 .1 .2

number GQD .7964 .1 .9 .6210 .1 .8 .6730 .6 .8

GDQ .8160 .1 .9 .6496 .1 .9 .6905 .1 .9

DGQ .7907 .1 .9 .6062 .1 .9 .6758 .1 .9

QDG .6222 .1 .2 .3328 .1 .1 .4258 .1 .1

p@

Ground truth Model MAP α β 5 α β 10 α β

binary GQD .7127 .1 .7 .8041 .1 .9 .7306 .1 .3

GDQ .7552 .1 .9 .8122 .1 .6 .7408 .2 .8

DGQ .7772 .1 .9 .8571 .1 .9 .7918 .1 .9

QDG .4882 .1 .4 .5592 .1 .1 .5265 .1 .2

Graded GQD .7403 .1 .3 .6367 .1 .1 .5224 .1 .2

GDQ .7673 .1 .4 .6776 .1 .3 .5510 .1 .4

DGQ .8092 .6 .8 .7102 .5 .6 .5531 .7 .9

QDG .2182 .1 .4 .1714 .1 .1 .1673 .1 .1

Table 2

Evaluation results using data from the TREC Enterprise 2006 track for models with 5-fold cross validation, using the

binary, graded as well as number ground truths. For all the models, the evaluation results for MAP and p@5, 10 against

the number ground truth are the same as those against the binary ground truth.

NDCG@ p@

Ground truth Model NDCG 5 10 MAP 5 10

Binary GQD .8826 .8078 .7743 .7045 .7918 .7184

GDQ .8940 .8123 .7912 .7307 .7878 .7367

DGQ .8949 .8479 .8177 .7383 .8122 .7327

QDG .7613 .5579 .5513 .4521 .5133 .4974

Graded GQD .7981 .6799 .7216 .7046 .6408 .5245

GDQ .8365 .7412 .7836 .7597 .6816 .5755

DGQ .8594 .7805 .8056 .8065 .7020 .5429

QDG .3824 .0936 .1176 .2047 .1635 .1547

Number GQD .7903 .6115 .6730

GDQ .8045 .6275 .6823

DGQ .7804 .5791 .6511

QDG .6054 .3135 .4057
performance on the metrics with optimal values of the smoothing parameter β . We then repeat this with the roles of α and

β swapped. The results are shown in Figs. 6 and 8. The optimal values of β when changing α and the optimal values of α
when changing β are listed in the captions in the figures.

A quick scan of Figs. 6 and 8 shows that QDG performs almost the same no matter how α and β change; it is always

the worst performing model against every type of ground truth. No model is very sensitive to changes to the α and β
parameters, no matter which type of ground truth and which metric (NDCG or MAP) we use. Fig. 6(a), 6(c) and 8(a) show

that with α changing from 0.1 to 0.9, the performance of GQD and of GDQ decreases slightly. The performance of all of

the models seems to level off in Figs. 6(b) and 8(b), and this is also true in Figs.6(e) and 8(d), which demonstrates that

our models are not very sensitive to the changes of the two smoothing parameters in terms of NDCG and MAP against

the graded ground truth. There are slight increases in performance in terms of NDCG and MAP against the binary and

number ground truth in GQD, GDQ and DGQ models in Figs. 6(d), 6(f) and 8(c). To show the trend of the performance of

our proposed models with two smoothing parameter more clearly, we also plot 3-D figures for the DGQ model; see Fig. 7.

Other models have similar figures.
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Fig. 6. NDCG performance of five models (GQD is the same as QGD), using two smoothing parameters against three types of ground truth: from Fig. 6(a)–

6(c): smoothing parameter α changes from 0.1 to 0.9 with 0.1 step, and report metrics with optimal models. From Fig. 6(d)–(f): smoothing parameter β

changes from 0.1 to 0.9 with 0.1 step, and report metrics with optimal models. Fig. 6(a) and (d) use NDCG against the binary ground truth, Fig. 6(b) and (e)

use NDCG against the graded ground truth, Fig. 6(c) and (f) use NDCG against the number ground truth. For GQD/QGD, GDQ, DGQ and QDG models, the

optimal β in Fig. 6(a) are 0.2, 0.9, 0.9, 0.2, respectively; optimal β in Fig. 6(c) are 0.3, 0.4, 0.9, 0.8, respectively; the optimal β in Fig. 6(b) are 0.9, 0.9,

0.9, 0.2, respectively. For these models, all optimal α in Fig. 6(d) are 0.1; the optimal α in Fig. 6(f) are 0.2, 0.1, 0.2, 0.1, respectively; and all optimal α in

Fig. 6(e) are 0.1. (Best viewed in color).

Fig. 7. NDCG performance of DGQ model in 3-D graphs. Fig. 7(a) is for DGQ model against the binary ground truth; Fig. 7(b) is for DGQ model against the

graded ground truth; and Fig. 7(c) is for DGQ model against the number ground truth. (Best viewed in color).
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Fig. 8. NDCG and MAP of five models (GQD is the same as QGD), using two smoothing parameters against three types of ground truth: Fig. 8(a) and

(b): smoothing parameter α changes from 0.1 to 0.9 with 0.1 step, and report metrics with optimal models. Fig. 8(c) and (d): smoothing parameter β

changes from 0.1 to 0.9 with 0.1 step, and report metrics with optimal models. Fig. 8(a) and (c) use MAP against the binary/number ground truth, while

Fig. 8(b) and (d) use MAP against the graded ground truth. For GQD/QGD, GDQ, DGQ and QDG models, the optimal β in Fig. 8(a) are 0.7, 0.9, 0.9 and 0.4,

respectively; the optimal β in Fig. 8(b) are 0.3, 0.4, 0.8 and 0.4, respectively; all the optimal α in Fig. 8(c) are 0.1; and the optimal α in Fig. 8(d) are 0.1,

0.1, 0.6, 0.1, respectively. (Best viewed in color).

Fig. 9. NDCG and MAP scores of GQD, using one smoothing parameter against three types of ground truth. (Left): NDCG performance with changes in the

smoothing parameter against the ground truths. (Right): MAP performance with changes in the smoothing parameter against the ground truths.
6.3. Smoothing with one parameter

If we smooth the GQD model (QGD model) with only one parameter (see (13)), how does it behave? Can it be better

than smoothing using two parameters (see (9))? We change the smoothing parameter λ in (13) from 0.1 to 0.9 and observe

its performance using NDCG and MAP against the binary, graded and number ground truths. It is clear from Fig. 9(a) that

the performance of NDCG against the binary ground truth seems to level off with changes of λ (almost the same as when

using two smoothing parameters, see Table 1), which means that the model is not sensitive to the smoothing parameter

when using the binary ground truth. Fig. 9(a) also shows that the performance in terms of NDCG against the graded ground

truth reaches its peak at λ = 0.4 with 0.8287 (almost the same as when using two smoothing parameters) and then de-

creases gradually to 0.7932 at λ = 0.9. In contrast, the performance in terms of NDCG against the number ground truth

increases slowly and peaks at λ = 0.8 with 0.7956 (again, almost the same as when using two smoothing parameters) and
Please cite this article as: S. Liang, M. de Rijke, Formal language models for finding groups of experts, Information Pro-

cessing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2015.11.005

http://dx.doi.org/10.1016/j.ipm.2015.11.005


S. Liang, M. de Rijke / Information Processing and Management 000 (2016) 1–21 17

ARTICLE IN PRESS
JID: IPM [m3Gsc;February 2, 2016;18:22]

Table 3

Results of using a subset of top ranking documents.

Model n = NDCG NDCG@5 MAP p@5 p@10

GQD |D| .8826 .8025 .7003 .7755 .7204

10000 .8070 .6210 .6062 .6367 .5980

5000 .8027 .6057 .5989 .6204 .6082

1000 .7875 .5801 .5726 .5959 .5755

500 .7674 .5666 .5496 .6122 .5571

100 7870 .6068 .5575 .6122 .5741

GDQ |D| .8949 .8195 .7365 .8000 .7286

10000 .8408 .7050 .6563 .7143 .6388

5000 .8354 .6710 .6464 .6653 .6408

1000 .8076 .6123 .6068 .6163 .6143

500 .7803 .5793 .5696 .6041 .5776

100 .7894 .6090 .5668 .6163 .5857

DGQ |D| .8949 .8195 .7365 .8000 .7286

10000 .8488 .7146 .6727 .7143 .6714

5000 .8435 .6965 .6670 .6980 .6673

1000 .8225 .6503 .6263 .6449 .6469

500 .8040 .6301 .5947 .6245 .6082

100 .8066 .6440 .5889 .6367 .6061

QDG |D| .7609 .5604 .4848 .5592 .5041

10000 .7609 .5604 .4848 .5592 .5041

5000 .7609 .5604 .4848 .5592 .5041

1000 .7609 .5604 .4848 .5592 .5041

500 .7609 .5604 .4848 .5592 .5041

100 .7609 .5604 .4848 .5592 .5041
then decreases to 0.7931 at λ = 0.9. In addition, Fig. 9(b) shows that there is a downward trend in the performance of

MAP against the graded ground truth, with a little decrease from 0.7431 (almost the same as when using two smoothing

parameters) at λ = 0.1 to 0.7007 at λ = 0.9, while there is an upwards trend in the performance of MAP against the binary

and number ground truth, with a minor increase from 0.7005 at λ = 0.1 to 0.7136 (almost the same as when using two

smoothing parameters) at λ = 0.8.

6.4. Query-level analysis

Our aim here is to find out whether some queries are harder than others for the same model, using different metrics. We

turn to a query-level analysis of the MAP performance for each model against the binary, number, and graded ground truth.

We plot the differences in performance (per query) between the average AP score and the AP score per topic, sorted by per-

formance difference. Fig. 10(a), (c), (e) and (g) show the plots for GQD, GDQ, DGQ and QDG when using the binary/number

ground truth, respectively, whilst Fig. 10(b), (d), (f) and (h) show the plots for GQD, GDQ, DGQ and QDG when using the

graded ground truth, respectively. From Fig. 10(a), (c), (e) and (g), it is clear that the performance in MAP does not differ

dramatically in all of the models when against the binary or number ground truths. In comparison, for some queries the

performance in terms of MAP is dramatically worse than the mean for GQD, GDQ and DGQ when using the graded ground

truth. Fig. 10(h) shows that the performance of QDG is stable across queries in terms of AP.

6.5. Topicality

Next we consider how the topicality of documents used to build the representations influences the performance on

the knowledgeable group finding task. To answer this question, we use the full collection of the documents, as well as a

subset of documents defined by taking the top n documents returned by a standard document retrieval run in response

to the query. Table 3 shows the performance against the binary ground truth, achieved by using different values for n, the

document cut-off. (We omit results against the other ground truths, as they are qualitatively similar to the results against

the binary ground truth). In the table, |D| indicates that the models are built on the full document set. According to Table 3,

it is clear that there is no improvement in performance when the size of the subset documents is reduced. For GQD, GDQ

and DGQ, generally the use of a restricted subset of documents is not beneficial. Interestingly, the performance at n = 100

is slightly better than at n = 500. The absolute performance gains in moving from n = 100 to n = 5000 tend to be smaller

than those obtained in moving from n = 5000 to n = |D|.
6.6. Statistical significance and effect size

The aim of our final set of experiments is to determine whether the observed differences between our group finding

approaches with two smoothing parameters strategy are statistically significant and what the effect sizes of the compared
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Fig. 10. Per query differences from the mean scores for different group finding models against the binary/number and graded ground truths.
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Table 4

p values of the two-tailed paired t-test between different models on NDCG and MAP metrics. Italics indicates that the

two models are not statistically significantly different.

Metric Ground truth GQD GQD GQD GDQ GDQ DGQ

vs. vs. vs. vs. vs. vs.

GDQ DGQ QDG DGQ QDG QDG

NDCG Binary .0107 .0005 .0000 .0496 .0000 .0000

Graded .2349 .0616 .0000 .2282 .0000 .0000

Number .0086 .4107 .0000 .0570 .0000 .0000

MAP Binary/number .0013 .0000 .0000 .0198 .0000 .0000

Graded .2647 .0140 .0000 .0221 .0000 .0000

Table 5

Effect size between different models on NDCG and MAP metrics against the binary, graded and number ground truths.

Metric Ground truth GQD GQD GQD GDQ GDQ DGQ

vs. vs. vs. vs. vs. vs.

GDQ DGQ QDG DGQ QDG QDG

NDCG Binary 0.119 0.121 0.699 0.009 1.111 0.802

Graded 0.193 0.321 2.716 0.121 3.007 3.353

Number 0.733 0.098 1.956 0.213 1.099 0.915

MAP Binary/number 0.162 0.201 0.957 0.044 0.845 1.108

Graded 0.234 0.451 2.706 0.214 3.145 3.663
models are. We use a two-tailed paired t-test between two different models on NDCG and MAP data and test for statistically

significant differences at the 0.95 confidence level. Table 4 shows the result with p value of the two-tailed paired t-test

between different models on NDCG and MAP metrics. Table 4 indicates that when using NDCG as a performance metric the

differences between the GQD and GDQ models against the graded ground truth are not statistically significant. This is also

true for the differences between GQD and DGQ, and between GDQ and DGQ against the graded and number ground truths.

When using MAP as the metric, the differences between all models are statistically significant except for those between

GQD and GDQ. We also test the differences between the optimal GQD model with smoothing with two parameters and the

GQD model with smoothing with a single smoothing parameter based on NDCG and MAP against three ground truths, and

find that there are no statistically significant differences at the 0.95 confidence level except based on NDCG against binary

ground truth where the p value is 0.0270. This demonstrates that GQD with smoothing with two parameters and GQD with

smoothing with a single parameter are almost the same models in our experiments.

Finally, we report on the effect sizes of the comparisons among different models to see whether the differences are really

obvious. We use Cohen’s d (Cohen, 1988) to compute the effect sizes. As can be seen in Table 5, the effect sizes between

many different models are quite large, especially for those compared with QDG model. For some comparisons, e.g., the GQD

vs. GDQ models against the graded ground truth, the effect sizes are small and the corresponding p values are large (i.e.,

the differences are not statistically significant).

In sum, our group finding models manage to achieve high absolute scores. Also, some of our models perform similarly.

Specifically, GQD and GDQ models are not statistically significantly different when using NDCG as a performance metric and

against the binary and graded ground truths. This is also true for the differences between GQD and DGQ, and between GDQ

and DGQ against the graded and number truths. But when using MAP as our metric, the differences between all models are

statistically significant except for those between the GQD and GDQ models. The differences between the optimal GQD with

smoothing with two parameters and GQD with a single smoothing parameter against all metrics are not statistically signif-

icant. In addition, our query-level analysis shows that the performance of all proposed models does not differ dramatically

when using the binary or number ground truths. In terms of the topicality of documents used to build the representations

influencing the performance on our group finding task, for the GQD, GDQ and DGQ models the use of a restricted subset of

documents is not obviously beneficial for the performance.

7. Conclusions

We have introduced a new group finding task: given a query, find knowledgeable groups that have expertise on the

topic of the query. We have proposed to model the task in three ways, which has given rise to five distinct models, GQD,

GDQ, DGQ, QDG and QGD. We have also constructed an experimental collection by using the TREC 2005 and 2006 Enterprise

collections. We have introduced three kinds of ground truth and explored and evaluated our models along many dimensions.

We have conducted a large number of experiments and found that directly collecting expertise evidence from the docu-

ments is the most effective way to find knowledgeable groups when using the binary or graded ground truth, and aggregat-

ing the expertise of each experts in the same group can also a good way to find the groups. QDG appears to be the worst

performing model. We have also found that only few of the models are sensitive to changes of parameters when using a
Please cite this article as: S. Liang, M. de Rijke, Formal language models for finding groups of experts, Information Pro-

cessing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2015.11.005

http://dx.doi.org/10.1016/j.ipm.2015.11.005


20 S. Liang, M. de Rijke / Information Processing and Management 000 (2016) 1–21

ARTICLE IN PRESS
JID: IPM [m3Gsc;February 2, 2016;18:22]
two parameter smoothing strategy. There is an overall trend that the more documents are used, the better the performance

will be. But using a small subset of documents can also yield quite good knowledgeable group finding performance. We

have found statistically significant differences between the models when using MAP against multiple types of ground truth

in most cases.

Our five knowledgeable group finding language models may be interesting for those working on entity retrieval, e.g.,

expert finding, rank aggregation, and language modeling, as our group finding models contain these three core ingredients.

As to future work, there are several possibilities to extend this research. Experts’ profiles change from time to time (Rybak,

Balog, & Nørvåg, 2014) and new expertise may emerge in individuals or their groups (van Dijk, Tsagkias, & de Rijke, 2015).

Identifying the skills and knowledge of a group and tracking how they emerge and change over time is an important next

research direction for group finding. Beside using full names of the experts, considering other information to capture the

associations between documents and experts, such as the topics they can be linked with and share (Meij, Bron, Hollink,

Huurnink, & de Rijke, 2011), is also an interesting research topic in the next step. We have so far tackled our knowledge-

able group finding task by using unsupervised methods that focused on directly inferring information from heterogeneous

documents. In the future, we plan to adopt learning to rank approaches for the group finding task.
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