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ABSTRACT
We address the task of fusing ranked lists of documents that are
retrieved in response to a query. Past work on this task of rank
aggregation often assumes that documents in the lists being fused
are independent and that only the documents that are ranked high
in many lists are likely to be relevant to a given topic. We propose
manifold learning aggregation approaches, ManX and v-ManX, that
build on the cluster hypothesis and exploit inter-document simi-
larity information. ManX regularizes document fusion scores, so
that documents that appear to be similar within a manifold, receive
similar scores, whereas v-ManX first generates virtual adversarial
documents and then regularizes the fusion scores of both origi-
nal and virtual adversarial documents. Since aggregation methods
built on the cluster hypothesis are computationally expensive, we
adopt an optimization method that uses the top-k documents as
anchors and considerably reduces the computational complexity
of manifold-based methods, resulting in two efficient aggregation
approaches, a-ManX and a-v-ManX. We assess the proposed ap-
proaches experimentally and show that they significantly outper-
form the state-of-the-art aggregation approaches, while a-ManX
and a-v-ManX run faster than ManX, v-ManX, respectively.

CCS CONCEPTS
• Information systems → Rank aggregation; • Computing
methodologies → Dimensionality reduction and manifold
learning;

KEYWORDS
Ad hoc retrieval; rank aggregation; manifold learning

1 INTRODUCTION
Rank aggregation, also known as data fusion [17, 18, 30], is an im-
portant technique in information retrieval. Rank aggregation com-
bines multiple ranked lists of documents retrieved from a corpus in
response to a query by multiple retrieval algorithms. The ranked
lists can be produced by any retrieval approach, using different
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ranking functions and multiple query and/or document represen-
tations [4, 17]. The combination of several retrieval approaches is
assumed to improve retrieval effectiveness of the final fused ranked
list of documents.

Past work on data fusion mostly assumes that documents in the
lists being combined are independent and that only documents
that are ranked high in many lists, are likely to be relevant to a
given query [17, 30, 31]. However, the cluster hypothesis states that
documents in the same intrinsic structure, i.e., cluster or manifold, are
likely to have a similar degree of relevance to the same information
need underlying a given query [17, 38]. This idea has been success-
fully applied to many ranking problems in information retrieval
and data mining [4, 7, 36, 39]. In data fusion the cluster hypothesis
has only been used to a limited extent [16] and with a negative
impact on efficiency.

We propose a novelManifold-based data fusion approach, ManX,
which (1) builds on a generic data fusion method X, and (2) lets
similar documents provide support to each other by using inter-
document similarities within a global manifold of documents being
fused. Our manifold-based data fusion technique, ManX, is com-
putationally demanding at two stages: in graph construction and
in fusion score regularization. Therefore, we adopt an efficient de-
sign of the adjacency matrix for graph construction [24, 36], which
supports document fusion for large datasets. Using this adjacency
matrix, we propose a more efficient version of ManX, a-ManX,
where the top-k documents from the ranking produced by an un-
derlying fusion method X are assumed to be relevant and are used
as anchors to represent fusion scores of other documents.

Many machine learning models are vulnerable to adversarial
data [33]. To further improve the performance of rank aggrega-
tion, we propose a virtual adversarial manifold learning algorithm,
v-ManX, and an efficient version that utilizes anchor documents,
a-v-ManX. Our proposed virtual adversarial manifold learning al-
gorithms first generate a virtual adversarial document for each
original document, then regularize the model so that given a docu-
ment, the models will produce the same output distribution as they
produce on an adversarial perturbation of that document. They
improve the robustness to virtual adversarial documents and the
generalization performance for original documents, thus enhancing
the performance of manifold learning for rank aggregation.

To evaluate the effectiveness and efficiency ofManX and a-ManX,
we conduct experiments using retrieval runs (at the Text REtrieval
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Conference (TREC),1 a ranked list of documents is also called a run)
submitted to TREC-3 [12], TREC-10 [13] and TREC-12 [34]. Experi-
mental results confirm the theoretical findings, the effectiveness
and efficiency of the proposed methods.

Our contributions in this paper are:
(1) We propose novel rank aggregation approaches, ManX, a-

ManX, v-ManX and a-v-ManX, that exploit the manifold structure
of documents being fused.

(2) We propose two virtual adversarial learning algorithms, v-
ManX and a-v-ManX for rank aggregation.

(3) We propose a new virtual adversarial construction algorithm
in our v-ManX and a-v-ManX algorithms.

(4) We propose an efficient design of the adjacency matrix and
the anchor-based method to reduce the computational complexity
of a-ManX and a-v-ManX.

(5) Through extensive experiments we show that the proposed
ManX method outperforms the state-of-the-art data fusion tech-
niques in terms of effectiveness, while a-ManX also considerably
improves data fusion efficiency.

The remainder of the paper is organized as: § 2 reviews existing
data fusion techniques and manifold-based algorithms. § 3 lists
preliminaries. § 4 presents our manifold-based data fusion methods,
ManX and a-ManX. § 5 describes the experimental setup, while § 6
discusses our experimental results. We conclude in § 7.

2 RELATEDWORK
Three types of research relate to ourwork: rank aggregation, manifold-
based algorithms and adversarial learning algorithms.

2.1 Rank aggregation
A large number of rank aggregation algorithms have been pro-
posed. Well-known examples include the CombSUM data fusion
family [30], Borda data fusion [1], supervised rank aggregation [27],
λ-Merge [31], cluster-based data fusion [16], fusion for diversifica-
tion [18], and, more recently, an aggregation algorithm that learns
joint models on both lists and object features [2] and rule-based
aggregation [3].

The state-of-the-art fusion method that we use for comparison is
the cluster-based approach, ClustFuse, proposed in [16]. ClustFuse
uses a combination of a fusion method, like CombSUM, and cluster-
based retrieval, thus building on the cluster hypothesis. However,
ClustFuse utilizes the nearest-neighbor clustering approach, which
considers only the local similarity between documents [32, 38].
We argue that considering the global similarity within a document
manifold will allow us to use the full power of the cluster hypothesis,
which will further improve the performance of data fusion. To
validate this intuition, we propose a number of manifold-based
aggregation methods. To the best of our knowledge, ours is the first
attempt to utilize manifolds in rank aggregation.

2.2 Manifold-based algorithms
Many manifold-based algorithms have been proposed, for a range
of problems in applications. Recent ones include neural networks-
based manifold learning [8]. In [38], manifold-based algorithms
are used for document classification. In [10, 40], the authors use

1http://trec.nist.gov.

manifold-based algorithms for recognizing handwritten digits. In
[26]manifold-based algorithms are used for video prediction, in [35]
for detecting collective motion, and in [8] for face recognition.

We propose to use manifolds to regularize document scores in
data fusion. Our manifold algorithms differ from previous ones [7,
24, 36, 39] by introducing virtual perturbation to documents, which
allows us to significantly improve the performance. Since the com-
putation of regularized scores is expensive we also propose an
efficient version of manifold-based data fusion that uses the top-k
documents as anchors. To the best of our knowledge, we are the first
to utilize top-k ranked documents for efficient manifold learning.

2.3 Virtual adversarial learning algorithms
Adversarial learning is the process of training a model to correctly
label both unmodified data and adversarial data [9, 11, 33]. It im-
proves not only robustness to adversarial data, but also generaliza-
tion performance for original data.

Virtual adversarial learning [28, 29] extends the idea of adver-
sarial learning to the semi-supervised regime and unlabeled data.
This is done by regularizing the model so that given an example,
the model will produce the same output distribution as it produces
on an adversarial perturbation of that example. One key to the
success of virtual adversarial learning is the way proper virtual
adversarial data is generated. Miyato et al. [28, 29] resort to an
iteration method and finite difference method to approximately
generate local virtual adversarial data, where “local” indicates that
each virtual adversarial example is generated by considering its
own original example only but not other data. Unlike previous
adversarial learning algorithms where each adversarial example
of the data is generated locally, our virtual adversarial algorithms
generate each virtual adversarial document globally by considering
not only the original itself but all the documents for adversarial
perturbation construction. In addition, our two virtual adversarial
manifold learning algorithms are unsupervised, compared to any
of the existing adversarial learning algorithms that are either super-
vised or semi-supervised [9, 28, 29]. See [11] for a more thorough
review of adversarial learning methods. To the best of our knowl-
edge, we are the first to globally generate virtual adversarial data
in adversarial learning, and the first to utilize virtual adversarial
perturbation with manifolds for rank aggregation.

3 PRELIMINARIES
We detail the task we address and recall standard fusion algorithms
that most state-of-the-art fusion methods, including ours, build on.

3.1 Problem formulation
We begin by defining the data fusion task that we address. The
task is: given a query q and a set of ranked lists of documents
L1, . . . ,Lm , produced in response to a query q bym different re-
trieval systems, combine documents contained in the given lists by
a data fusionmethodX into a single ranked listLf . The aggregation
algorithm X is essentially a function fX that satisfies:

q,L1,L2, . . . ,Lm
fX
−→ Lf .

The goal of the task is to improve the performance of the final fused
list Lf over the expected performance of the input lists.

http://trec.nist.gov
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Figure 1: Illustration of manifold-based fusion model. (a)
Ranking generated by a nearest-neighbor-based technique.
(b) Ideal ranking generated by a manifold-base technique.

3.2 Standard data fusion
The CombSUM family is a set of simple unsupervised standard
methods for data fusion [30]. They assume that documents that are
ranked high in many input result lists should also be ranked high in
the final fused list. The methods of the CombSUM family are among
the best performing unsupervised data fusion techniques, reaching
performance levels of sophisticated supervised approaches [17, 18].

Given a document d and a query q, CombSUM [17, 30] calcu-
lates the fusion score fX(d ;q) based on the retrieval score (or rank
if no retrieval score is available) of d in given lists L1, . . . ,Lm .
CombSUM sums list-specific document scores:

fCombSUM(d ;q) :=
∑
Li

scoreLi (d), (1)

where scoreLi (d) is the retrieval score of d produced by list Li
and scoreLi (d) = 0 if d < Li . In addition to summing scores,
CombMNZ rewards documents that are ranked high in many lists:

fCombMNZ(d ;q) := |{Li : d ∈ Li }| · fCombSUM(d ;q),

where |{Li : d ∈ Li }| is the number of input lists in which docu-
ment d appears.

4 PROPOSED METHODS
The cluster hypothesis states that similar documents should have a
similar degree of relevance to a given information need. A common
approach to exploring this hypothesis in its full power is to consider
a document manifold and regularize scores based on global inter-
document similarities within this manifold [7, 36, 39].

Consider the example in Fig. 1. Here, relevant documents are
shown in the lower moon and non-relevant documents in the upper
moon. The top-ranked relevant documents are indicated by red
markers ‘+’, while other documents are marked with blue circles
‘o’, where the size of a circle is proportional to the rank of the
corresponding document (larger size denotes higher rank). As we
see in Fig. 1(a), if we rank documents based on local similarities
such as Euclidean distances, many non-relevant documents in the
upper moon that are close to the red crosses will be ranked higher
than relevant documents in the lower moon that are further away.
However, as we see in Fig. 1(b), if we rank documents using global
similarities within the document manifold, all relevant documents
can be ranked higher than all of the non-relevant documents.

4.1 Manifold-based fusion
In this subsection, we propose our manifold-based data fusion al-
gorithm, ManX, which integrates with a standard unsupervised
data fusion method X such as CombSUM. Recall that we are given
a set of ranked lists L1, . . . ,Lm , returned in response to a query
q by m retrieval systems. Our aim is to calculate a fusion score
f (d ;q) for each document d ∈ CL , where CL :=

⋃m
i=1 Li is a set

of documents appearing in the input result lists to be fused, and
then rank these documents by their fusion scores to form a single
fused result list Lf .

Our first goal is to consider inter-document similarities of all
documents in CL for regularizing fusion scores fX = [fX(d1;q), . . . ,
fX(dn ;q)], produced by an unsupervised data fusion method X, like
CombSUM (see (1)). Here, we let n denote the number of documents
appearing in the input lists being fused, i.e., n = |CL |. We define a
adjacency matrix:

W ∈ Rn×n (2)
of inter-document similarities, whereWi j = sim(di ,dj ) for all pairs
of documents in CL for i , j andWii = 0 (required by all manifold
models [7, 24, 39]). We compute sim(di ,dj ) as:

Wi j = sim(di ,dj ) = exp
{
−
1
2

(
KL(di ∥dj ) + KL(dj ∥di )

)}
, (3)

where di = [θdi1 ,θdi2 , . . . ,θdis ] is a vector representation for docu-
mentdi with θdi j being the j-th wordvj ’s probability ind computed
by an unsupervised language model [4], s is the size of the vocabu-
lary, and KL(·∥·) is the Kullback-Leibler divergence. We obtain θdi j ,
the element in the vector di of document d , by an unsupervised
language model with Dirichlet smoothing as:

θdi j =
c(vj ;d) + δ · p(vj | C)∑

v c(v ;d) + δ
, (4)

where c(v ;d) is the total number of times the word v appearing in
document d , p(v | C) is the probability of the word v appearing
in the whole corpus, and δ is the smoothing parameter that is set
to the average length of the documents in the corpus [37]. Then,
according to [25, 38], we can compute regularized scores fManX
of our manifold-based fusion method, ManX, by minimizing the
following objective function:

f∗ManX = argmin
fManX

Q(fManX)

= argmin
fManX

1
2

n∑
i, j=1

Wi j

 fManX i
√
Dii

−
fManX j√

D j j

2
+
1
2
µ

n∑
i=1

∥fManX − fX∥2 , (5)

where µ is a regularization parameter, Dii is an element in the
diagonal matrixD = diag(D11, . . . ,Dnn ) defined asDii =

∑n
j=1Wi j

(note thatWi j is an element in W computed by (3)), and ∥ · ∥ is
the 2-norm. The first component in the middle line in (5) smoothes
the fusion score vector fManX by assigning similar scores to similar
documents. The second component | |fManX− fX | |2 forces the ManX
fusion scores to be close to the original scores fX obtained by an
unsupervised fusion method such as CombSUM. The amount of
regularization is controlled by the parameter µ. The final fused



list Lf is constructed by ranking documents d ∈ CL according
to their regularized fusion scores f ∗ManX(d ;q). The solution of the
optimization problem (5) can be found either iteratively or in closed
form [38]. The iterative solution is the following:

fManX(t + 1) = αSfManX(t) + (1 − α)fX, (6)

where fManX(t) is the vector of regularized fusion scores at iteration
t , α = 1/(1 + µ) and S = D−1/2WD−1/2. This can be rewritten as:

fManX(t + 1) = (αS)t fX + (1 − α)
∑t
i=0(αS)

i fX. (7)

The time complexity of this iterative process is equal to the complex-
ity of matrix multiplication, i.e., O(n3). The closed form solution
of (5) can be written as follows:

f∗ManX = (1 − α)(In − αS)−1fX, (8)

where In is an n × n identity matrix. This means that in order
to calculate regularized fusion scores in closed form, one needs to
inverse the matrix I−αS, which also requiresO(n3) time. Thus, both
the iterative and closed form approaches to computing regularized
scores fManX have cubic complexity. To make our ManX technique
applicable in practice, we develop an efficient version below.

4.2 Efficient manifold-based fusion
We propose a-ManX, a revised ManX aggregation method that uti-
lizes anchors for efficient improvement, to reduce the complexity of
ManX. It differs from previous manifold-based algorithms [24, 36]
in the way we design the adjacency matrix used in manifolds, the
anchor definition and how we reduce the computational time. We
first discuss the way anchor-documents can be chosen and used to
represent all documents. We then show how the optimization prob-
lem (5) and its optimal solution (8) should be adjusted to anchors.

4.2.1 Defining anchors. In a variety of real world information
retrieval applications, including web search, users mainly pay at-
tention to the top-k documents and ignore documents that are
ranked low [6, 14, 36]. Following this idea, a-ManX assumes the
top-k documents (k ≪ n) produced by a basic unsupervised data
fusion method X to be relevant and considers them as anchors. We
denote the (unknown) regularized fusion scores of these documents
as aa-ManX = [fa-ManX(a1;q), . . . , fa-ManX(ak ;q)].

Then, we represent regularized fusion score fa-ManX(di ;q) for
document di as a linear combination of scores in aa-ManX:

fa-ManX(di ;q) =
∑k
j=1 Zi j fa-ManX(aj ;q), (9)

where k is the total number of top-k documents acting as anchors,
and Zi j are the weights discussed below. In matrix form for all
documents this can be written as follows:

fa-ManX = Zaa-ManX, (10)

where a good design principle for the weight matrix Z is to have∑k
j=1 Zi j = 1 and Zi j ≥ 0. Therefore, we define Zi j as:

Zi j =
sim(di ,aj )∑k
l=1 sim(di ,al )

. (11)

Hence, the more similar document di and anchor aj are, the higher
the weightZi j . Thus, documents similar to anchors will have higher
regularized scores, which is a desired property as we assume anchor
documents to be relevant.

We need to redefine the similarity matrix W and propose a new
design based on the anchors for graph construction:

W = ZZ⊤. (12)

According to this definition, two documents di and dj have positive
similarityWi j > 0 if they share at least one anchor-document dl :
Zil , 0 & Z jl , 0. The more anchors are shared, the more similar
the documents are. Compared to the original adjacency matrix
defined in (2), where an n×n matrixW needs to be kept in memory,
the adjacency matrixW in (12) is scalable for ranking large datasets,
as it only needs to save the n × k matrix Z.

4.2.2 Efficient optimal solution. Instead of solving the optimiza-
tion problem (5) for all regularized scores fa-ManX, we need to solve
it only for aa-ManX:

a∗a-ManX = argmin
aa-ManX

Q(aa-ManX)

= argmin
aa-ManX

1
2

n∑
i, j=1

Wi j

Zaa-ManX i
√
Dii

−
Zaa-ManX j√

D j j

2
+
1
2
µ

n∑
i=1

∥Zaa-ManX − fX∥2 , (13)

whereDii =
∑n
j=1Wi j andZaa-ManX i is the i-th element inZaa-ManX =

fa-ManX, i.e., (10). Then, optimal regularized scores can be obtained
as follows:

f∗a-ManX = Za∗a-ManX. (14)

Then, the optimal regularized fusion scores for anchor-documents
can be calculated in closed form as follows:

f∗a-ManX = Za∗a-ManX = (In − αS)−1fX, (15)

where S = D−1/2WD−1/2 = D−1/2ZZ⊤D−1/2. Note that here we
drop the constant (1−α), because it does not affect the final ranking
of documents (see (8)).

The matrix In −αS still has dimensions n ×n. However, if we set
P = Z⊤D− 1

2 , then we can rewrite (15) as follows:

f∗a-ManX = (In − P⊤(PP⊤ −
1
α
Ik )

−1P)fX, (16)

where matrix PP⊤ − 1
α Ik has dimensions k × k and, thus, requires

only O(k3) rather than O(n3) to calculate the inverse. (15) and (16)
are equivalent, as when we multiply matrix In − αS (not inverse)
from (15) by the matrix from (16), we get the identity matrix In . The
proof that (15) and (16) are equivalent is included in Appendix A.
In fact, in (16) for efficient computations, we do not need to save
the newly designed adjacency matrixW in memory but only the
matrix Z. For the diagonal matrix D with Dii =

∑n
j=1Wi j used

in (16), we obtain D without using W as well, as W = Z⊤Z and
Dii =

∑n
j=1 z

⊤
i zj , where zi is the i-th column vector of matrix Z.

4.3 Virtual manifold learning
The manifold-based fusion model proposed in §4.1 lacks the abil-
ity to rank adversarial examples correctly. In this subsection, we
propose a virtual manifold learning algorithm, v-ManX, that trains
manifolds to correctly rank both unmodified (original) and virtual



adversarial documents. It improves not only robustness to adver-
sarial documents, but also generalization performance of original
documents.

For each original document di ∈ CL , we find its virtual adver-
sarial document dvi . Let’s denote the vector representation of dvi as
dvi and let dvi = di + ri , which is built based on original document
d’s vector representation di and its virtual adversarial perturbation
ri . Here ri is the virtual adversarial perturbation making to the
original document di . We propose to obtain ri as:

r∗i = argmin
ri , ∥ri ∥2≤ϵ

n∑
j=1

sim(di + ri , dj ) (17)

= argmin
ri , ∥ri ∥2≤ϵ

n∑
j=1

exp
{
−
1
2

(
KL(di + ri ∥dj ) + KL(dj ∥di + ri )

)}
,

where ϵ > 0 is a constant parameter that controls the amount of
the perturbation. The motivation behind (17) is that the virtual
adversarial document needs to be as far as possible from any of the
original documents while making the perturbation such that it can
significantly increase the loss incurred by our manifold learning
model (see below), and thus improves the robustness of the model.
Given a set of original documents CL = {dj }

n
j=1 being fused, we

can obtain the optimal r∗i for each document di so as to obtain dvi
by globally considering all other documents as:

r∗i = ϵ × ndi −
n∑
j=1

dj , (18)

where x denotes an operator acting on an arbitrary non-zero vector
x that returns a unit vector in the direction of x. The time complex-
ity of computing r∗i isO(n) for each document, which is faster than
any of the state-of-the-art algorithms [28, 29]: their time complex-
ity is at least O(n2) and they approximately generate local virtual
adversarial data, i.e., obtaining the perturbation by considering the
example itself but not the others. See Appendix B for our derivation
of getting r∗i .

After obtaining a virtual adversarial perturbation for each origi-
nal document, in total we double the number of documents for man-
ifold learning. Thus, we have more documents and, hence, more in-
formation to regularize fusion scores in our virtual manifold model.
The document set inmanifold learning becomes {d1, . . . ,dn ,dv1 , . . . ,
dvn }. Let fv-ManX be the regularized score for both original docu-
ments and virtual adversarial documents with fv-ManX i being the
regularized score shared by both di and its virtual adversarial docu-
ment dvi . Note that the size of fv-ManX is still n, as each “virtual and
original document pair” needs to share the same regularized score.
Compared to (2), the adjacency matrix (in R2n×2n ) becomes:

W =



d1 · · · dn dv
1 · · · dv

n

d1 W11 · · · W1n W1n+1 · · · W1 2n
.
.
.

.

.

.
. . .

.

.

.
.
.
. · · ·

.

.

.

dn Wn1 · · · Wnn Wn n+1 · · · Wn 2n
dv
1 Wn+1 1 · · · Wn+1n Wn+1n+1 · · · Wn+1 2n

.

.

.
.
.
.

. . .
.
.
.

.

.

. · · ·
.
.
.

dv
n W2n 1 · · · W2n n W2n n+1 · · · W2n 2n


. (19)

To simplify the discussion, we write W =

[
W11 W12
W21 W22

]
, where

W11,W12,W21 andW22 are the corresponding n × n sub-matrixes

in W. We write D for the diagonal matrix for W: D =
[
D1
D2

]
, where

D1 = diag(D11,D22, . . . ,Dnn ) and D2 = diag(Dn+1n+1, Dn+2n+2,
. . . , D2n 2n ). In our proposed virtual adversarial manifold learning
based aggregation method, v-ManX, we obtain the optimal f∗v-ManX
for aggregation by minimizing the following objective function:

f∗v-ManX = argmin
fv-ManX

Q(fv-ManX) = (20)

1
4

2n∑
i, j=1

Wi j

 cv-ManX i
√
Dii

−
cv-ManX j√

D j j

2 + µ

4

2n∑
i=1

∥cv-ManX i − hX i ∥
2,

where cv-ManX = fv-ManX ⊕ fv-ManX and hX = fX ⊕ fX (hX can be
obtained in an unsupervised way, as fX can be obtained by an unsu-
pervised fusion method like CombSUM), and ⊕ is the concatenation
operator for two vectors; cv-ManX i and hX i are the i-th element in
cv-ManX and hX, respectively. Unlike (5), which smoothes original
documents only, (20) smoothes both original and virtual adversarial
ones – between original documents themselves (W11), between
virtual adversarial documents themselves (W22), between original
and virtual adversarial documents (W12 andW21), by the first term
on the right-hand side of (20), while still forcing the v-Manx fusion
scores to be close to the original scores fX by the last term in (20).
The closed form solution of (20) is f∗v-ManX =

(1 − α)

(
I − α

(
1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22

))−1
fX, (21)

where S11 = D−1/2
1 W11D

−1/2
1 , S12 = D−1/2

1 W12D
−1/2
1 , S21 = D−1/2

2
W21D

−1/2
2 , S22 = D−1/2

2 W22D
−1/2
2 , and again α =

µ
1+µ . The deriva-

tion of the closed form solution in (21) is included in Appendix C.
The iterative solution of (20) is fv-ManX(t + 1) =

α

(
1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22

)
fv-ManX(t) + (1 − α)fX, (22)

where fv-ManX(t) is the vector of regularized fusion scores at itera-
tion t . After t → +∞ iterations, the optimal f∗v-ManX can be set to
be fv-ManX(+∞) and is the closed form solution, i.e., (21). See Ap-
pendix D for the proof that (22) is equivalent to (21) when t → +∞.
The time complexity of both (21) and (22) is O(n3).

4.4 Efficient virtual manifold learning
Similar to §4.2, we boost the efficiency of our virtual manifold
learning algorithm proposed in §4.3 to arrive at a method called
a-v-ManX, a revised v-ManX utilizing anchors for efficiency. As be-
fore, we denote the (unknown) regularized fusion scores of the top-k
documents as aa-v-ManX = [fa-v-ManX(a1;q), . . . , fa-v-ManX(ak ;q)].
Then, we represent the regularized fusion score fa-v-ManX(di ;q) for
both document di and its virtual document dvi as a linear combina-
tion of scores in aa-v-ManX:

fa-v-ManX(di ;q) =
∑k
j=1 Zi j fa-v-ManX(aj ;q), (23)

where Zi j is the weight computed by (11).



Instead of solving the optimization problem (20) for all regular-
ized scores fa-v-ManX, we need to solve it only for aa-v-ManX:

a∗a-v-ManX = argmin
aa-v-ManX

Q(aa-v-ManX)

= argmin
aa-v-ManX

1
4

n∑
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i=1

∥ca-v-ManX i − hX i ∥
2 . (24)

Here, ca-v-ManX = fa-v-ManX ⊕ fa-v-ManX, Z =
[
Z11 Z12
Z21 Z22

]
with

each sub-matrix of size n ×n and the element Zi j computed by (11),

andW =
[
W11 W12
W21 W22

]
=

[
Z11Z⊤11 Z12Z⊤12
Z21Z⊤21 Z22Z⊤22

]
.

Similar to (21), the closed form solution of (24) is f∗a-v-ManX =

(1 − α)

(
I − α

(
1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22

))−1
fX, (25)

where S11 = D−1/2
1 Z11Z⊤11D

−1/2
1 , S12 = D−1/2

1 Z12Z⊤12D
−1/2
1 , S21 =

D−1/2
2 Z21Z⊤21D

−1/2
2 , S22 = D−1/2
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2 . Again, if we set P11 =

Z⊤11D
− 1

2
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− 1
2

1 , P21 = Z⊤21D
− 1

2
2 , and P22 = Z⊤22D

− 1
2

2 , the
time complexity of (25) will reduce from O(n3) to O(k3) (k ≪ n),
which makes a-v-ManX more efficient than v-ManX.

5 EXPERIMENTAL SETUP
5.1 Research questions
The main research questions guiding the paper are:

RQ1 Do manifold-based fusion methods outperform state-of-
the-art methods?

RQ2 Does adding virtual adversarial perturbation into manifold
learning methods improve performance?

RQ3 Does our way of globally generating virtual adversarial
perturbation outperform the local ways in rank aggregation?

RQ4 Do efficient manifold-based fusion methods, a-ManX and a-
v-ManX, run faster? Does our way of generating virtual adversarial
documents run faster than the state-of-the-art?

RQ5What is the impact of the number of anchors used in effi-
cient manifold-based methods?

RQ6 What is the effect of the number of lists to be fused on
manifold-based methods compared to state-of-the-art methods?

5.2 Datasets
In order to evaluate the proposed manifold-based data fusion meth-
ods and answer the research questions stated in § 5.1, we need a

Table 1: Summary of the datasets used for our experiments.

Track dataset #queries #documents #runs p@20

TREC-3 ad hoc 50 741,856 40 0.062–0.674
TREC-10 web 50 1,692,096 97 0.001–0.473
TREC-12 robust retrieval 50 528,155 78 0.090–0.393

set of queries and a number of ranked lists of documents for each
query. To this end, We work with three publicly available large
document datasets from the Text REtrieval Conference (TREC).2
We use the titles of TREC topics as queries (150 queries in total)
and the runs submitted by participants as ranked lists of documents
to be fused. We focus on the ad hoc track at TREC-3 [12], web
track at TREC-10 [13] and robust retrieval track at TREC-12 [34].
Table 1 summarizes the key statistics of the datasets. Participants
produced 40, 97 and 78 runs for the tracks of TREC-3, TREC-10
and TREC-12, respectively. The precision at rank 20 (p@20) is the
official evaluation metric of these three tracks. The precision at
rank 20 of the submitted runs varies dramatically; see Table 1.

5.3 Baselines and evaluation measures
We include comparisons among the following algorithms:
Standard unsupervised fusionmethods: CombSUM and Comb-
MNZ [30].
Learning-to-rank method: λ-Merge [31] – a supervised, state-
of-the-art learning-to-rank-based rank aggregation method.
Clustering-based fusion methods: ClustX [16] and a-ClustX
that build on a standard fusion method, i.e., either X = CombSUM or
X = CombMNZ. Here, ClustX is the original supervised clustering-
based fusion method that creates clusters for each document, and
a-ClustX is an efficient version of ClustX applying our efficiency
framework from §4.2.
Virtual adversarial learning methods: v-LDSX [28, 29] (Local
Distributional Smoothness), a-v-LDSX and our v-ManX (§4.3) and
a-v-ManX (§4.4). The only difference between v-LDSX and our
v-ManX (§4.3) is the way they generate the virtual adversarial per-
turbation. LDSX and a-v-LDSX use an iteration and finite difference
method to generate local virtual adversarial perturbations.
Efficient fusion methods: a-ClustX, our a-ManX (§4.2) and a-
v-ManX (§4.4). a-ClustX is an efficient version that utilizes our
proposed efficient fusion framework in §4.2.
Manifold-based fusion methods: ManX (§4.1), a-ManX (§4.2),
v-ManX (§4.3), a-v-ManX (§4.4), v-LDSX, and a-v-LDSX.
For convenience, we write MSUM for MCombSUM, and MMNZ
forMCombSUM, respectively, whereM = {Man, a-Man, v-Man, a-
v-Man, Clust, a-Clust}. For instance, a-ManSUM is the abbreviation
for a-ManCombSUM whenM = a-Man. To measure performance,
we use MAP [4], p@k (precision@k) and nDCG@k [15], k = {5, 10,
20}, all of which are the official metrics in these three TREC tracks.

5.4 Parameters and settings
For fusion methods λ-Merge, ManX, a-ManX, v-ManX, a-v-ManX,
LDSX, a-LDSX, ClustX, and a-ClustX, we randomly split queries
into three parts: 70% queries are used to train a fusion model, 20%
queries are used to validate the model during training, and 10%

2Publicly available from http://trec.nist.gov.

http://trec.nist.gov


Table 2: Performance of themethods and the best run on the
TREC-3 dataset. The best performance per metric is given
in bold. Statistically significant differences between ManX
and ClustX, between ManX and a-ManX are marked in the
upper and lower right hand corner of ManX’s score, respec-
tively. Statistically significant differences between any vir-
tual adversarial learning method and ManX are marked in
the upper right hand corner of the virtual adversarial learn-
ing method. Statistically significant differences between v-
LDSX and a-v-LDSX, between v-ManX and a-v-ManX, are
marked in the lower right hand corner of v-LDSX and v-
ManX, respectively.

p@ nDCG@

MAP 5 10 20 5 10 20

TR
EC

-3

inq102 .1039 .7440 .7220 .6740 .7423 .7275 .6925
CombSUM .1073 .8040 .7620 .6960 .8009 .7736 .7245
λ-Merge .1081 .8052 .7701 .7120 .8031 .7765 .7321
a-ClustSUM .1093 .8075 .7741 .7257 .8102 .7815 .7421
ClustSUM .1199 .8200 .8020 .7430 .8136 .8038 .7638
a-ManSUM .1312 .8440 .8120 .7840 .8313 .8136 .7958
ManSUM .1317▲ .8480▲ .8260△▲ .7960△▲ .8336▲ .8238▲ .8054▲

a-v-LDSSUM .1421△ .8513 .8345 .8139△ .8423△ .8328△ .8247△
v-LDSSUM .1453▲ .8645▲ .8458▲ .8267▲ .8535▲ .8439▲ .8432▲
a-v-ManSUM .1470▲ .8683▲▲ .8537▲▲ .8364▲▲ .8621▲▲ .8543▲▲ .8532▲▲
v-ManSUM .1571△▲ .8857▲▲ .8639▲▲ .8437▲▲ .8756▲▲ .8673▲▲ .8660▲▲

CombMNZ .1065 .8080 .7700 .6970 .8021 .7781 .7254
a-ClustMNZ .1107 .8113 .7834 .7251 .8056 .7821 .7534
ClustMNZ .1236 .8240 .8040 .7630 .8127 .8031 .7766
a-ManMNZ .1305 .8310 .8200 .7910 .8120 .8173 .8001
ManMNZ .1324 .8334 .8240 .7930▲ .8148 .8183△ .8004▲

a-v-LDSSUM .1434△ .8538△ .8362△ .8140△ .8451△ .8334△ .8252△
v-LDSSUM .1454▲ .8656▲ .8463▲ .8279▲ .8552▲ .8447▲ .8442▲
a-v-ManSUM .1482▲ .8673△▲ .8548▲ .8375▲▲ .8642△▲ .8552▲▲ .8530▲▲
v-ManSUM .1572▲▲ .8862▲▲ .8642△▲ .8448▲▲ .8767▲▲ .8679▲▲ .8658▲▲

queries are used for testing the model. We train a fusion model
by varying the values of its parameters and then choose the best
values during validation. The training, validation, test splits are per-
muted until all queries were chosen once for the test set. Statistical
significance of observed differences between two results is tested
using a two-tailed paired t-test and is denoted using ▲ (or ▼) for
significant differences for α = .01, or △ (and ▽) for α = .05.

6 RESULTS AND ANALYSIS
6.1 Effectiveness of proposed methods
RQ1: We compare the ranking performance of all of our manifold
learning algorithms to that of the baselines.We use these algorithms
to aggregate the top-5 best retrieval runs in each TREC dataset.

Tables 2, 3 and 4 show the results; we also show the performance
of the best run in each TREC dataset, i.e., runs inq102, iit01m, and
pricRBa2, respectively.3

There are several trends worth noting. (1) Fusion vs. best single
run: All data fusion methods statistically significantly outperform
the best single run, which underlines the value of data fusion for

3In Tables 3 and 4, we only report the results for CombSUM as a basic fusion
method as the results for CombMNZ are similar.

Table 3: Performance on the TREC-10 dataset. Notational
conventions for statistical significant test results are as in
Table 2.

p@ nDCG@

MAP 5 10 20 5 10 20

TR
EC

-1
0

iit01m .2145 .6320 .5880 .4730 .5650 .5707 .5369
CombSUM .1988 .6480 .5620 .4650 .5870 .5679 .5409
λ-Merge .2052 .6480 .5731 .4721 .5824 .5731 .5435
a-ClustSUM .1902 .6483 .5738 .4842 .5810 .5764 .5543
ClustSUM .2351 .6500 .5980 .5370 .5821 .5945 .5955
a-ManSUM .2732 .6880 .6500 .6004 .6018 .6210 .6293
ManSUM .2734▲ .7040▲ .6580▲ .6020▲ .6293△▲ .6369▲ .6447▲

a-v-LDSSUM .2814△ .7124△ .6625△ .6247△ .6275△ .6347△ .6545△
v-LDSSUM .2924▲ .7232▲ .6741▲ .6345▲ .6357▲ .6472▲ .6759▲
a-v-ManSUM .2941▲▲ .7263▲▲ .6941▲▲ .6455▲▲ .6478▲▲ .6567▲▲ .6836▲▲
v-ManSUM .3110△▲ .7451▲▲ .7040▲▲ .6537▲▲ .6548△▲ .6653▲▲ .6945▲▲

Table 4: Performance on the TREC-12 dataset. Notational
conventions for statistical significant test results are as in
Table 2.

p@ nDCG@

MAP 5 10 20 5 10 20
TR

EC
-1
2

pircRBa2 .1849 .5280 .4880 .3930 .5004 .4892 .4580
CombSUM .1899 .5480 .4870 .3980 .5082 .4866 .4632
λ-Merge .1899 .5485 .4870 .4025 .5082 .4873 .4657
a-ClustSUM .1903 .5488 .4907 .4113 .5082 .4883 .4724
ClustSUM .2213 .5720 .5420 .4655 .5225 .5258 .5197
a-ManSUM .2445 .6102 .6000 .5045 .5452 .5603 .5507
ManSUM .2498▲ .6140△▲ .5910▲ .5085▲ .5527▲ .5637▲ .5611▲

a-v-LDSSUM .2571△ .6245△ .6037△ .5342△ .5589△ .5674△ .5678△
v-LDSSUM .2610▲ .6342▲ .6152▲ .5541▲ .5672▲ .5867▲ .5782▲
a-v-ManSUM .2654△▲ .6413▲▲ .6262▲▲ .5821▲▲ .5747▲▲ .5894▲▲ .5849▲▲
v-ManSUM .2724▲▲ .6435△▲ .6347▲▲ .6054▲▲ .5841▲▲ .5973△▲ .6052▲▲

improving the performance of document ranking. (2) Manifold-
based fusion methods (ManX, v-LDSX, v-ManX and their efficient
versions) vs. all other fusion methods: Compared to other state-of-
the-art fusion methods (CombSUM, CombMNZ, λ-Merge, ClustX),
manifold-based methods are among the best performing fusion
methods in terms of all metrics, and the performance differences
are usually statistically significant. Thus, fusing documents via
manifold algorithms can enhance the performance of data fusion.
(3) Manifold-based vs. clustering-based (ClustX and a-ClustX): Ta-
bles 2, 3 and 4 show that both manifold-based methods outperform
cluster-based methods on all datasets and most improvements are
statistically significant. Thus exploiting global inter-document sim-
ilarities in manifolds helps to enhance performance. (4) Efficient
method vs. its original aggregationmethod, such as a-ManX vs. ManX :
The efficient method does not perform significantly worse than the
original method, although it considers only the top-20 documents
as anchors. Thus, our anchor-based approach maintains the effec-
tiveness of manifold-based data fusion while considerably reducing
its computational cost (see §6.3).



Table 5: Running time (in sec.) comparisons among the
methods.

Number of runs

3 5 9 15 23

CombSUM 3.98e–4 8.07e–4 1.69e–3 2.86e–3 3.96e–3
a-ManSUM 1.46e–1 5.09e–1 1.79 4.48 11.17
a-v-ManSUM 2.30e–1 1.21 3.32 7.58 18.52
a-v-LDSSUM 2.55e–1 1.47 3.75 8.14 21.39
a-ClustSUM 6.83e–1 1.86 7.30 18.15 43.12

ManSUM 3.08 8.18 33.29 73.47 170.40
v-ManSUM 5.83 16.30 61.72 130.59 317.23
v-LDSSUM 6.21 17.52 65.42 134.23 325.38
ClustSUM 3.59 11.27 42.91 117.45 267.36

6.2 Contribution of virtual adversarial
perturbation to manifold learning

RQ2: According to Tables 2, 3 and 4, all virtual adversarial learning
methods statistically significantly outperform methods without
virtual adversarial documents. E.g., v-LDSSUM outperforms all non-
virtual adversarial learning methods, and v-ManSUM outperforms
ManX. Thus, adding virtual adversarial perturbation into manifold
learning methods improves the performance of aggregation.
RQ3: Tables 2, 3 and 4 show that our virtual adversarial manifold
learning methods statistically significantly outperform other vir-
tual adversarial manifold methods that use local information for
generating virtual adversarial perturbation. E.g., v-ManSUM out-
performs v-LDSSUM, and a-v-ManSUM outperforms a-v-LDSSUM.
This highlights another merit of our virtual adversarial perturba-
tion construction method: it globally generates virtual adversarial
perturbation for each original document by considering not only
the original document itself but all other documents to be fused, and
thus makes a positive contribution to the performance of manifold
learning. Due to space limitations we only discuss CombSUM as a
basic data fusion method below; results for CombMNZ are similar.

6.3 Efficiency of proposed methods
RQ4: To show the efficiency of our proposed efficient manifold
learning methods, we randomly choosem = {3, 5, 9, 15, 23} runs
from the ad hoc track of TREC-3. We combine these runs using the
rank aggregation techniques and measure the running time. We
repeat the experiment 20 times for each fusion method and report
the average running time in seconds.

As can be seen in Table 5, all the efficient aggregation meth-
ods significantly run faster than the corresponding non-efficient
methods. For instance, a-ManSUM runs faster than ManSUM. This
demonstrates the merit of the proposed efficient manifold learning
methods: they have lower computational costs and run faster, while
still achieving a comparable performance to original non-efficient
methods. Also, a-v-ManSUM runs faster than a-v-LDSSUM, and
v-ManSUM runs faster than v-LDSSUM. The only differences be-
tween a-v-ManSUM and a-v-LDSSUM, and between v-ManSUM
and v-LDSSUM, are the ways of obtaining the virtual documents.
This demonstrates another merit of our way of generating virtual
adversarial documents: our virtual adversarial document generation
method runs faster than that of LDS method.
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Figure 2: Performance on MAP and p@20 for varying num-
ber of anchor documents. The top-5 runs from TREC-3
dataset are fused.
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Figure 3: Performance on MAP and p@20 for varying num-
ber of anchor documents. The runs are sampled from the
TREC-3 dataset.

6.4 Number of anchor documents
RQ5: Next, we examine the effect of the number of anchors on
the performance of the proposed manifold learning algorithms
that utilize anchors for efficiency. We use the efficient manifold
methods, a-v-ManX, a-ManX and a-ClustX, as representatives, as
the corresponding non-efficient methods perform better.

Fig. 2 depicts the MAP and p@20 performance for the aggre-
gation methods when fusing the top-5 runs from the TREC-3 ad
hoc track. The performance of all efficient methods increases with
the number of anchor documents: with more anchor documents
come more information to regularize scores of other documents. In
contrast, the performance of a-ClustSUM also increases with the
number of anchor documents, but cannot top that of ClustSUM.

a-ManSUM usually outperforms ClustSUM when the top-k (k ≥

15) documents are used as anchors. This shows that considering
only a small number of the top-k documents can still improve data
fusion performance in manifold-based approach. Still, a-v-ManSUM
always significantly outperforms a-ManSUM. This, again, illustrates
that adding virtual adversarial documents into efficient manifold
learning improves the performance. Also, the performance of a-v-
ManSUM and a-ManSUM seems to level off when more than 20
anchors are used. We conjecture that this is because the more top
documents are considered, there is less room to make improvement.

6.5 Number of fused lists
RQ6: Finally, we explore the effect of the number of lists being ag-
gregated on the performance. We use a-v-ManSUM and a-ManSUM
as representatives, as their non-efficient versions work better. We
randomly choosem ∈ {3, 5, . . . , 25} runs from the TREC-3 dataset
and fuse them. For eachm, we repeat the experiment 20 times and
report the average performance and the standard deviations.

Fig. 3 shows the performance for varying m, using MAP and
p@20. The plots also show the best-performing single run (“Maxi-
mum”) and the average performance of input runs (“Average”). Data



fusion performance usually increases form ≤ 15 and then stays
almost flat, while the average performance of input runs fluctuates
around the same value. This result is in line with other studies on
data fusion, showing that the more individual lists are fused the
better the performance. Fig. 3 also shows that a-v-ManSUM and
a-ManSUM always outperform ClustSUM (here we use ClustSUM
only, as ClustSUM outperforms a-ClustSUM). This confirms that
utilizing manifolds does boost the performance of data fusion. Here,
again, the manifold method, a-v-ManSUM, that utilizes virtual ad-
versarial documents, always outperforms the manifold method,
a-ManSUM, that does not integrate virtual adversarial documents.
Clearly, most fusion methods beat the average performance and
the best input run in most cases.

7 CONCLUSIONS
We have studied the problem of rank aggregation. To enhance the
performance of aggregation, we have proposed manifold-based
aggregation methods. In our manifold learning methods, we let
similar documents across the lists being fused provide support to
each other by using inter-document similarities, and let documents
in the same intrinsic structure enhance each other’s relevance score
by considering manifolds of the documents being fused. Since the
manifold-based technique that we introduce first, ManX, suffers
from high computational costs, we propose an efficient version that
can handle large-scale datasets for data fusion, reduce the running
time and achieve comparable performance. To improve performance
and robustness, we propose a virtual adversarial manifold learn-
ing method where we generate virtual adversarial documents by
adding perturbation to the original documents. We have conducted
experiments on three datasets; the results show the effectiveness
and efficiency of the proposed manifold learning methods and our
way of generating virtual adversarial documents for manifolds.

There are many unexplored avenues. For instance, can we ap-
ply the proposed manifold learning to other information retrieval
applications, such as clustering documents in streams [20–22] and
diversifying search results [18, 19, 23]? Are there other virtual ad-
versarial perturbation generation methods for manifold learning?
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A PROOF OF THE EQUALITY
All notations below are defined in the body of the paper. Analogous proof
is found in [36]. We multiply matrix In − αS (not inverse) from (15) by the
matrix from (16) and should get the identity matrix In if they are equivalent,
as a result:

(In − αS) × (In − P⊤(PP⊤ −
1
α
Ik )−1P)

= (In − αP⊤P) × (In − P⊤(PP⊤ −
1
α
Ik )−1P)

= In − P⊤(PP⊤ −
1
α
Ik )−1P − αP⊤P + αP⊤PP⊤(PP⊤ −

1
α
)−1P

= In − (P⊤ − αP⊤PP⊤)(PP⊤ −
1
α
Ik )−1P − αP⊤P

= In − αP⊤(
1
α
Ik − PP⊤)(PP⊤ −

1
α
Ik )−1P − αP⊤P

= In + αP⊤P − αP⊤P = In

B DERIVATION OF THE PERTURBATION r∗i
The derivation of the optimal perturbation ri is as follows:

r∗i = argmin
ri , ∥ri ∥2≤ϵ

n∑
j=1

sim(di + ri , dj )

= argmin
ri , ∥ri ∥2≤ϵ

n∑
j=1

exp
{
−
1
2

(
KL(di + ri ∥dj ) + KL(dj ∥di + ri )

)}
.

As
∑n
j=1 exp{−x j } ≥ n exp{−

∑n
j=1 x j } ≥ exp{−

∑n
j=1 x j } when x j ≥ 0

and KL(· ∥ ·) ≥ 0, the above becomes:

= argmin
ri , ∥ri ∥2≤ϵ

exp

{
−
1
2

n∑
j=1

(
KL(di + ri ∥dj ) + KL(dj ∥di + ri )

)}
= arg max

ri , ∥ri ∥2≤ϵ
exp

{
n∑
j=1

(
KL(di + ri ∥dj ) + KL(dj ∥di + ri )

)}
.

According to Pinsker’s inequality [5] KL(x∥y) ≥ 1
2 ln 2 ∥x− y∥21 =

1
2 ln 2 ∥y−

x∥21 , where x and y are two distributions and ∥ · ∥1 is the 1-norm, the above
becomes:

= arg max
ri , ∥ri ∥2≤ϵ

exp

{
n∑
j=1

1
2 ln 2

∥di + ri − dj ∥21 +
1

2 ln 2
∥dj − (ri + di ) ∥21

}
= arg max

ri , ∥ri ∥2≤ϵ
exp

{
n∑
j=1

2
2 ln 2

∥di + ri − dj ∥21

}
= arg max

ri , ∥ri ∥2≤ϵ
exp

{
n∑
j=1

∥di + ri − dj ∥21

}
= argri exp

{
max

∥ri ∥2≤ϵ

n∑
j=1

∥di + ri − dj ∥21

}
. (26)

In the above equation (26), max∥ri ∥2≤ϵ
∑n
j=1 ∥di + ri − dj ∥21 is derived as:

max
∥ri ∥2≤ϵ

n∑
j=1

∥di + ri − dj ∥21 = max
∥ri ∥2≤ϵ

n∑
j=1

∥ri ∥21 + 2∥ri (di − dj ) ∥1 + ∥di − dj ∥21

= max
∥ri ∥2≤ϵ

{
n ∥ri ∥2 + 2∥ri ∥1

n∑
j=1

∥di − dj ∥ +
n∑
j=1

∥di − dj ∥2
}

≤ nϵ +
n∑
j=1

∥di − dj ∥21 + max
∥ri ∥2≤ϵ

2∥ri ∥1
n∑
j=1

∥di − dj ∥1

≤ nϵ +
n∑
j=1

∥di − dj ∥21 +

(
n∑
j=1

∥di − dj ∥1

)2
+ max

∥ri ∥2≤ϵ
∥ri ∥21

≤ nϵ +
n∑
j=1

∥di − dj ∥21 +

(
n∑
j=1

∥di − dj ∥1

)2
+ ϵ = constant. (27)

If we let ri = ϵ×
∑n
j=1(di − dj ) = ϵ×ndi −

∑n
j=1 dj ,max∥ri ∥2≤ϵ

∑n
j=1 ∥di+

ri − dj ∥21 , i.e., (27), reaches its maximum. Thus, by combining (26) and (27),
we have the final virtual adversarial perturbation r∗i = ϵ × ndi −

∑n
j=1 dj .

C DERIVATION OF THE CLOSED FORM f∗v-manx

Writing ∆ for ∥ fv-ManX i√
Dii

−
fv-ManX j√

Dj j
∥2, the cost function in (20) is:

Q(fv-ManX) =
1
4

n∑
i, j=1

Wi j∆ +
1
4

n∑
i=1

2n∑
j=n+1

Wi j∆

+
1
4

2n∑
i, j=n+1

Wi j∆ +
1
4

2n∑
i=n+1

n∑
j=1

Wi j∆ +
µ
2

n∑
i=1

∥fv-ManX i − fX i ∥2 .

We differentiate Q(fv-ManX) with respect to fv-ManX and have:
∂Q(fv-ManX)

∂fv-ManX
= fv-ManX −

1
2
D−1/2
1 W11D

−1/2
1 fv-ManX −

1
2
D−1/2
1 W12D

−1/2
1 fv-ManX

−
1
2
D−1/2
2 W21D

−1/2
2 fv-ManX −

1
2
D−1/2
2 W22D

−1/2
2 fv-ManX + µ(fv-ManX − fX).

To obtain the closed form solution f∗v-ManX, we set
∂Q(fv-ManX)
∂fv-ManX

= 0 and have:

(1 + µ)f∗v-ManX −

(
1
2
D−1/2
1 W11D

−1/2
1 +

1
2
D−1/2
1 W12D

−1/2
1 +

1
2
D−1/2
2 W21D

−1/2
2 +

1
2
D−1/2
2 W22D

−1/2
2

)
f∗v-ManX − µfX = 0,

which results in the following closed form solution:

f∗v-ManX = (1 − α )
(
I − α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)−1
fX, (28)

where α = µ
1+µ , S11 = D−1/2

1 W11D
−1/2
1 , S12 = D−1/2

1 W12D
−1/2
1 , S21 =

D−1/2
2 W21D

−1/2
2 , and S22 = D−1/2

2 W22D
−1/2
2 .

D DERIVATION OF THE ITERATION FORM
Without loss of generalization, we suppose fv-ManX(0) = fX. According to the
iteration fv-ManX(t +1) = α ( 12 S11+

1
2 S12+

1
2 S21+

1
2 S22)fv-ManX(t )+(1−α )fX,

we have:

fv-ManX(t ) =
(
α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)t−1
fX+

(1 − α )
t−1∑
i=0

(
α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)i
fX . (29)

Because 0 < α < 1 and the eigenvalues of α ( 12 S11 +
1
2 S12 +

1
2 S21 +

1
2 S22) is

within [−1, 1], the the optimal solution f∗v-ManX is:

f∗v-ManX = lim
t→+∞

fv-ManX(t ) = lim
t→+∞

(
α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)t−1
fX

+ lim
t→+∞

(1 − α )
t−1∑
i=0

(
α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)i
fX

= 0 + (1 − α )fX
I −

(
α ( 12 S11 +

1
2 S12 +

1
2 S21 +

1
2 S22)

)+∞
I − α ( 12 S11 +

1
2 S12 +

1
2 S21 +

1
2 S22)

=(1 − α )
(
I − α (

1
2
S11 +

1
2
S12 +

1
2
S21 +

1
2
S22)

)−1
fX, (30)

which is the same as that in (28). Thus, the iteration form holds.
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