
Fusion and Diversification
in Information Retrieval

Shangsong Liang

Fusion and Diversification
in Information Retrieval

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op maandag 15 december 2014, te 14:00 uur

door

Shangsong Liang

geboren te Guangxi, China

Promotiecommissie

Promotor:
Prof. dr. M. de Rijke

Overige leden:
Prof. dr. X. Cheng
Prof. dr. C. de Laat
Prof. dr. A. P. de Vries
Dr. C. Monz

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2014-47
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

This research was supported by the China Scholarship Council and the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nr
288024 (LiMoSINe).

Copyright c© 2014 Shangsong Liang, Amsterdam, The Netherlands
Cover by David Graus
Printed by Off Page, Amsterdam

ISBN: 978-94-6182-522-3

To the unseen heroes,
including you.

I have been studying at the University of Amsterdam as a Ph.D. student since September
8, 2011. Without the help of many people around me, the thesis definitely would not
have come about. Here, I would like to say Thank You! to everyone who was somehow
involved, especially to the following people:

Maarten,
for supervising me on the way to obtaining my Ph.D. degree.

The committee members,
for their valuable input and comments.

Bouke, Edgar, Ilya, Jiyin, Katja, Manos, Marc, and Wouter,
for sharing their research experience.

Aleksandr, Alexey, Anne, Artem, Daan, Damien, David, Fei, Hendra, Hendrike, Mas-
rour, Richard, Ridho, Tom, Xinyi, Yaser, and Zhaochun,
for discussing ideas.

All other current and former ILPSers,
for working together and sharing daily life.

Finally, my parents,
for their love and support for all these years.

Shangsong Liang
Amsterdam, September 15, 2014

Contents

1 Introduction 1
1.1 Research Outline and Questions . 3
1.2 Main Contributions . 5
1.3 Thesis Overview . 6
1.4 Origins . 8

2 Background 11
2.1 Information Retrieval . 11
2.2 Tasks . 13

2.2.1 Ad hoc search . 13
2.2.2 Microblog search . 13
2.2.3 Search result diversification 14

2.3 Methods . 14
2.3.1 Data fusion . 15
2.3.2 Microblog retrieval . 19
2.3.3 Latent factor modeling . 20
2.3.4 Manifold-based algorithms . 21
2.3.5 Search result diversification 22
2.3.6 Topic modeling . 24
2.3.7 Structured learning . 26

3 Experimental Methodology 27
3.1 Introduction . 27
3.2 Test Collections Used in the Thesis . 28

3.2.1 Ad hoc search collection . 28
3.2.2 Microblog search collection 28
3.2.3 Web track collections . 30
3.2.4 Personalized diversification collection 30

3.3 Evaluation Metrics . 31
3.3.1 Metrics for ad hoc search . 31
3.3.2 Metrics for microblog search 32
3.3.3 Metrics for search result diversification 32

3.4 Significance Testing . 33

4 Burst-Aware Data Fusion 35
4.1 Fusion Approach . 37

4.1.1 Standard fusion methods . 38
4.1.2 Bursts and burst detection . 39
4.1.3 Burst-aware fusion . 41

4.2 Experimental Setup . 44
4.2.1 Detailed research questions . 45
4.2.2 Baselines . 45
4.2.3 Training and optimization . 46
4.2.4 Experiments . 46

v

CONTENTS

4.3 Results and Analysis . 47
4.3.1 Fusing the sample lists . 48
4.3.2 The use of burst information 49
4.3.3 Effect of the number of lists to be merged 51
4.3.4 Topic-level analysis . 53
4.3.5 Run-time analysis . 53
4.3.6 Effect of fusing time-sensitive result lists 55
4.3.7 Further analysis of using burst information 56
4.3.8 Performance on single result list 57

4.4 Conclusion . 58
4.A Detailing λ-Merge . 61

5 Time-Aware Data Fusion 63
5.1 Time-Aware Data Fusion . 64

5.1.1 The fusion method . 65
5.1.2 Analysis of time-aware data fusion 69

5.2 Experimental Setup . 69
5.2.1 Detailed research questions . 69
5.2.2 Baselines and evaluation . 70
5.2.3 Experiments . 70

5.3 Results and Analysis . 71
5.3.1 Fusing the sample lists . 71
5.3.2 Contributions of the main ingredients 72
5.3.3 The use of burst information 72
5.3.4 Effect of the number of lists being merged 74
5.3.5 Query-level analysis . 75
5.3.6 Run time comparisons . 76
5.3.7 Effect of fusing time-sensitive result lists 77

5.4 Conclusion . 78
5.A Derivation of The Models . 80

6 Manifold-based Data Fusion 81
6.1 Analysis of Cluster-Based Fusion . 83
6.2 Manifold-Based Data Fusion . 85

6.2.1 Optimization problem . 85
6.2.2 Optimal solution . 86
6.2.3 Efficient ManX . 86
6.2.4 Analysis of efficient ManX . 88

6.3 Experimental Setup . 89
6.3.1 Detailed research questions . 89
6.3.2 Baselines and evaluation . 90
6.3.3 Experiments . 90

6.4 Results and Analysis . 91
6.4.1 Fusing the top component runs 91
6.4.2 Effect of the number of lists being merged 92
6.4.3 Effect of anchor documents 92

vi

CONTENTS

6.4.4 Run time comparisons . 95
6.4.5 Topic-level analysis . 95
6.4.6 Document similarity . 97

6.5 Conclusion . 97

7 Fusion Helps Diversification 101
7.1 Diversified Data Fusion . 102
7.2 Experimental Setup . 108

7.2.1 Detailed research questions . 108
7.2.2 Evaluation metrics and baselines 109
7.2.3 Experiments . 110

7.3 Results . 110
7.3.1 Performance of baseline fusion methods 111
7.3.2 The performance of DDF . 111
7.3.3 Effect of the number of component lists 113
7.3.4 Query-level analysis . 113
7.3.5 Zooming in on Prec-IA@k . 114
7.3.6 Effect of the number of topics 116

7.4 Conclusion . 117
7.A Gibbs Sampling Derivation for DDF Model 119

8 Personalized Diversification 121
8.1 The Learning Problem . 122
8.2 Structured Learning for Personalized Diversification 123

8.2.1 Additional constraints . 123
8.2.2 Our optimization problem . 124
8.2.3 The learning algorithm . 124
8.2.4 Prediction . 125

8.3 User-Interest Topic Model and Feature Space 125
8.3.1 Notation and terminology . 126
8.3.2 User-interest topic model . 126
8.3.3 Feature space . 128

8.4 Experimental Setup . 130
8.4.1 Detailed research questions . 130
8.4.2 Dataset . 131
8.4.3 Baselines . 131
8.4.4 Evaluation . 132
8.4.5 Experiments . 132

8.5 Results and Analysis . 132
8.5.1 Supervised vs. unsupervised 132
8.5.2 Effect of the proposed UIT model 133
8.5.3 Effect of the proposed constraints 133
8.5.4 Query-level analysis . 134
8.5.5 Subtopic-level analysis . 136
8.5.6 Performance of parameter tuning 137

8.6 Conclusion . 137

vii

CONTENTS

8.A Gibbs Sampling Derivation for UIT Model 141

9 Conclusions 143
9.1 Main Findings . 143
9.2 Future Work . 146

Bibliography 149

Summary 157

Samenvatting 159

viii

1
Introduction

Information retrieval (IR) is about finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large collec-
tions (usually stored on computers). Originally, information retrieval was an activity that
only a few people engaged in: reference librarians, paralegals, and similar professional
searchers (Manning et al., 2008). Now the world has changed, and hundreds of millions
of people engage in information retrieval every day when they use a web search engine,
search their email, or go online to make a purchase. Information retrieval is fast be-
coming the dominant form of information access, overtaking traditional database-style
searching (Manning et al., 2008). As information retrieval technology has been playing
a more and more important role in people’s daily lives, a large number of effective in-
formation retrieval algorithms has been proposed to assist people to find their underlying
information need. For instance, Balog et al. (2006) proposed generative probabilistic
models for expert searching given an organization’s document repositories.

In many scenarios that employ IR technology, a query consists of a set of words that
is submitted by users to express their underlying information need, and a result list is
a ranking of a set of documents that try to respond to the query. Here, a result list can
be generated by a wide range of current IR approaches, which can be based on various
search models such as Boolean (Joyce and Needham, 1958), Vector Space (Salton and
Lesk, 1968), Probabilistic Retrieval (Maron and Kuhns, 1960) models. The result lists
produced by these approaches depend on the exact definition of the underlying concept
of relevance. Some IR approaches may perform well in a specific setting, that is, retrieve
relevant documents in response to a user request for that specific IR applications, but may
perform poor if the setting of the applications changes. In the past decades, researchers
in IR strive to improve the retrieval performance for a range of different settings and ap-
plications, and one way of doing so is to generate multiple alternative result lists so as to
generate a better ranking in response to a query. Data fusion approaches, also called rank
aggregation approaches, consist in combining result lists produced by different retrieval
algorithms in order to generate a new and hopefully better ranking. Fig. 1.1 illustrates
the role of data fusion in IR.

Research carried out in the area of data fusion in the past years has argued that data
fusion has the potential of combining effectively all the various sources of evidence con-
sidered in various input methods (Fox and Shaw, 1994; He and Wu, 2008; Kozorovitsky
and Kurland, 2011; Shaw and Fox, 1993; Sheldon et al., 2011; Tsai et al., 2008). As

1

1. Introduction

L1

d1

d2

d4

d8

L2

d2

d1

d3

d6

Lm

d1

d2

d3

d5

data fusion

Lf

d1

d2

d3

d8

Figure 1.1: Data fusion strategies in IR. The input of a data fusion method is a set of
result lists generated by different retrieval methods in response to a query, i.e., L1, L2,
. . ., Lm, and the output is a fused list Lf generated by a data fusion method.

shown by previous work on data fusion, documents are more likely to be relevant if they
appear in the result lists of the majority of the retrieval algorithms (Beitzel et al., 2003;
Dong and Srivastava, 2013; Montague and Aslam, 2002; Shokouhi and Si, 2011; Wu,
2012). Previous work has also shown that different retrieval algorithms often return very
different irrelevant documents, but many of the same relevant documents. Moreover, re-
searchers found that data fusion approaches improve the performance over the individual
approaches that they fuse, even when some of these have a weak retrieval performance.
Previous data fusion approaches also tend to smooth out biases of the individual retrieval
approaches.

In this thesis we continue the research on data fusion. When data fusion is employed
in new scenarios, for instance searching posts on microblogging platforms, such as Twit-
ter,1 new issues arise. On microblogging platforms, people tend to talk about a topic
mostly during very specific short time intervals (Zhao and Rosson, 2009). We investigate
the principle that data fusion may help to enhance the retrieval performance of searching
posts by using the characteristics of microblog environments, and translate our insights
into new time-aware data fusion algorithms for effective microblog search. Also, we re-
visit some basic principles behind data fusion, resulting in a new data fusion algorithm
that first constructs manifolds (Thurston and Milnor, 1979) for documents based on their
inter-document similarities and then lets highly ranked documents boost the fusion scores
of documents that are ranked low in the same manifolds.

A second main line of work in the thesis is based on the observation that a query
does not always form an unambiguous reflection of a user’s information need. Recently,
search result diversification is widely being studied as a way of tackling query ambigu-
ity (Agrawal et al., 2009). Instead of trying to identify the “correct” interpretation behind
an ambiguous query, the idea is to make the search results diversified so that users with
different backgrounds and different intents will find at least one of these results to be rel-
evant to their information need. In contrast to the traditional assumption of independent
document relevance (Robertson, 1977), search result diversification approaches typically

1http://www.twitter.com

2

http://www.twitter.com

1.1. Research Outline and Questions

consider the relevance of a document in light of other retrieved documents. Diversifi-
cation algorithms try to identify the probable aspects of the query and attempt to return
documents for each aspect, thereby making the result list more diverse. In this thesis, we
examine the hypothesis that data fusion can improve retrieval performance in terms of
diversity metrics by promoting aspects that are found in disparate ranked lists to the top
of the fused list, which results in a new diversified data fusion method.

Unlike search result diversification, personalized web search strives to enhance the
retrieval system’s knowledge about users’ information needs (Vallet et al., 2010). Rather
than aiming to satisfy as many users as possible, personalization aims to build a sense of
who the user is, and maximize the satisfaction of a specific user (Bennett et al., 2012).
Although different, diversification and personalization are not incompatible and do not
have mutually exclusive goals (Vallet and Castells, 2012). Indeed, search results gener-
ated by diversification techniques should be more diverse when a user’s preferences are
unknown to the search engine. Likewise, personalization can improve the effectiveness
of aspect weighting in diversification, by favoring query interpretations that are predicted
to be more related to each specific user. This thesis investigates the problem of person-
alized diversification of search results, and translates our insights on this research topic
into a new approach for enhancing both diversification and personalization performance.

1.1 Research Outline and Questions

The broad question that motivates the research in the thesis is: How can we improve
the performance of data fusion and diversification in information retrieval? Individual
components for solving this problem already exist (see Chapter 2 for an overview), but
other aspects, such as the relationship between data fusion and diversification, have not
yet been investigated. This thesis aims to close some of these gaps, contributing new data
fusion and search result diversification solutions to the field of IR.

We start our investigation by focusing on employing data fusion approaches for
searching posts in a microblogging environment, as previous research has found that
data fusion can enhance the retrieval performance in many cases (Dong and Srivastava,
2013; Fox and Shaw, 1994; Wu, 2012). Microblogging platforms, such as Twitter, have
become indispensable communication channels through which hundreds of millions of
users around the world witness breaking news events. The characteristics of the posts,
such as their limited length, along with easy access on many platforms, lead to regu-
lar status updates by large numbers of people (Zhao and Rosson, 2009). Microblog-
ging platforms display fast paced dynamics as reflected by rapidly evolving topics (Yang
and Leskovec, 2011). Searching posts in such rapidly changing environments is a chal-
lenge (Lin et al., 2012). To tackle this problem, much previous work has focused on
a range of content-based criteria for ranking posts in response to a query, in combina-
tion with a broad range of other ranking criteria, including, e.g., existence of hyperlinks,
hashtags and retweets.

Data fusion is a popular method for generating result lists based on multiple ranking
criteria. This thesis looks at the problem of searching microblog posts as a data fusion
task, and answers the following questions:

RQ 1 Can data fusion help microblog search?

3

1. Introduction

In answering this question, we first directly use existing data fusion approaches for
searching posts. After analyzing previously developed data fusion approaches in micro-
blog search, we find that the assumptions made in previous fusion approaches do not
work well in the microblog environments. In particular, previous work has assumed
that only documents ranked high in many of the input result lists can be ranked high in
the final fused list (Fox and Shaw, 1994; He and Wu, 2008; Shaw and Fox, 1993; Tsai
et al., 2008). To address this shortcoming of existing data fusion approaches in micro-
blog environments, we develop a novel probabilistic data fusion model, BurstFuseX, that
is burst-aware and not only utilizes information traditionally used when merging ranked
lists, such as ranks of documents, but also exploits temporal information, i.e., the publi-
cation timestamps of microblog posts.

In previous data fusion approaches, documents in the fused list are ranked in decreas-
ing order of their fusion scores. The fusion score of a document is usually the sum of
rank scores from the individual input lists. Previous work on data fusion often assumes,
either implicitly or explicitly, that the rank score of a document is set to zero if the doc-
ument does not appear in the input list. We challenge this assumption. An extension of
BurstFuseX is derived to infer scores of so-called missing documents during aggregation
for microblog search. Here, a missing document for a result list L is a document that
does not appear in the list L but it does appear in other result lists that we aim to fuse.
We propose a method based on matrix factorization to infer scores of missing documents
and ask the following questions:

RQ 2 How to infer scores of so-called missing documents in data fusion?

We then turn to issues of using data fusion in a generic document search setting. Much
of the past work on data fusion assumes that documents in the lists to be fused are in-
dependent and that only documents that are ranked high in many of the lists are likely
to be relevant in response to a given query (Das-Gupta and Katzer, 1983; Griffiths et al.,
1986; Shaw and Fox, 1993; Wu, 2012). As a consequence, a relevant document that is
ranked low in a list, and appears only in this single list, will be ranked low in the final
fused list. This may be a problem because a low ranked document in a result list does not
necessarily mean that it is not relevant. Recent work has become aware of this problem
and tries to tackle it based on clustering: documents appearing in the lists to be fused
are clustered and the score of a document that appears low in a single list can be boosted
if it is similar to other relevant documents in the same cluster (Kozorovitsky and Kur-
land, 2011). While intuitive, such a fusion strategy can fall short in some cases. For
instance, a non-relevant document should not be “promoted” even if it is in a cluster that
contains a large number of relevant documents. What is worse, cluster-based data fusion
may be a bottleneck in some applications. For instance, it is computationally prohibitive
in the situation that a large number of documents need to be fused. We investigate a
known cluster-based data fusion method analytically and experimentally, and introduce
an alternative based on manifolds. We ask the following questions:

RQ 3 Can manifolds be used to improve data fusion performance for ad hoc search?

As we will see in Chapter 6, manifolds allow us to capture a richer inter-document struc-
ture than mere clustering. Next, we turn to the application of data fusion in the area of

4

1.2. Main Contributions

search result diversification. As we will see in Chapters 4, 5, and 6, data fusion methods
can improve retrieval performance in terms of traditional relevance-oriented metrics like
MAP and precision@k over the methods used to generate the individual result lists being
fused (Fox and Shaw, 1994; Lee, 1995, 1997; Wu, 2012). One reason is that retrieval
approaches often return very different irrelevant documents, but many of the same rel-
evant documents (Wu, 2012). We examine the hypothesis that data fusion can improve
performance in terms of diversity metrics by promoting aspects that are found in dis-
parate ranked lists to the top of the fused list. Specifically, we propose a fusion-based
diversification method, diversified data fusion, which infers latent topics from ranked
lists of documents produced by standard fusion methods, and combines this with a state-
of-the-art result diversification model. Based on traditional and novel fusion methods,
we provide an answer to the following:

RQ 4 Can data fusion help search result diversification?

In our last step in studying search result diversification, we turn to the problem of per-
sonalized diversification of search results, with the goal of enhancing the performance
of both plain search result diversification and plain personalization algorithms. In both
search result diversification and personalized web search, an issued query is often viewed
as an incomplete expression of a user’s underlying need (Shen et al., 2005). Unlike search
result diversification, where the system accepts and adapts its behavior to a situation of
uncertainty, personalized web search strives to change this situation by enhancing the
system’s knowledge about users’ information needs. Rather than aiming to satisfy as
many users as possible, personalization aims to build a sense of who the user is, and
maximize the satisfaction of a specific user (Vallet and Castells, 2012). We propose a
personalized diversification method based on structured learning. The research questions
addressed by our subsequent research are:

RQ 5 How to enhance both diversification and personalization performance at the same
time in a supervised way?

In each of the research chapters (Chapters 4–8) we seek answers to the research ques-
tions listed above. The answers are given in the conclusions of each chapter and are
summarized in Chapter 9 of this thesis.

In the next sections we list the contributions that this thesis makes to the field and we
give an overview of the thesis and of the origins of the material.

1.2 Main Contributions

The main contributions of this thesis are listed below.

• Burst-aware data fusion algorithm for microblog search – We frame the micro-
blog post search problem as a data fusion problem. We propose a burst-aware
data fusion algorithm, BurstFuseX, that not only utilizes a microblog post’s rank-
ing information but also exploits its publication time. The proposed framework,
BurstFuseX, builds on an existing fusion method and rewards posts that are ranked

5

1. Introduction

highly in many of the result lists being aggregated. An empirical evaluation of
our burst-aware data fusion algorithm is carried out using datasets made available
by the TREC (Text REtrieval Conference)2 microblog tracks. This contribution
provides an answer to RQ 1.

• Time-aware rank aggregation algorithm for microblog search – We propose a
second rank aggregation algorithm for searching microblog posts, called TimeRA,
that is both time-aware and able to infer the rank scores of missing documents via
latent factor modeling. We examine the relative contributions of the main ingredi-
ents of TimeRA, i.e., burst detection and latent factor-based score inference. We
provide a detailed analysis of the performance of TimeRA and offer a number of
examples where we observe the effect hypothesized in microblogging environment
that posts in bursts having their rank score boosted. Together with the previous
contribution, this one helps answer RQ 2.

• Effective and efficient data fusion algorithm for ad hoc search – We revisit
the problem of data fusion for ad hoc search. We propose an efficient manifold-
based data fusion algorithm, ManX, that not only utilizes the ranks of documents
in the result lists but also produces an additional source of rich inter-document
similarity information. We experimentally verify the retrieval effectiveness of this
algorithm and also show it runs faster than state-of-the-art cluster-based data fusion
algorithms. This contribution provides an answer to RQ 3.

• Diversified data fusion algorithm for search result diversification – We adopt
a new perspective on the problem of search result diversification, based on data
fusion. Starting from the hypothesis that data fusion can improve performance in
terms of diversity metrics, we examine the impact of standard data fusion methods
on search result diversification. We also introduce a new data fusion algorithm,
called diversified data fusion, that infers latent topics of a query using topic mod-
eling. We analyze the effectiveness of existing data fusion and our diversified data
fusion algorithms for search result diversification. This contribution helps us to
answer the research question asked by RQ 4.

• Structured learning algorithm for personalized diversification – To further en-
hance the performance of personalized search result diversification, we set up a
structured learning framework for conducting supervised personalized diversifica-
tion, in which we add effective features. We define two additional constraints in our
structured learning framework to ensure that search results are both diversified and
consistent with a user’s interest. We conduct experiments on an open personalized
diversification dataset to analyze the effectiveness of our proposed personalized
diversification learning algorithm. This is our final contribution of the thesis, and
it helps answer the research question asked by RQ 5.

1.3 Thesis Overview

Besides the current chapter, the thesis consists of two chapters covering the experimental
prerequisites and methodology, five research chapters containing our core contributions

2http://trec.nist.gov

6

http://trec.nist.gov

1.3. Thesis Overview

plus a concluding chapter:

Chapter 2 – Background: Here, we present the background for all subsequent chap-
ters. We mainly focus on data fusion and search result diversification in Informa-
tion Retrieval.

Chapter 3 – Experimental methodology: We provide details on experimental settings
that recur in various chapters of this thesis. Amongst others, we discuss document
collections, topic sets, and evaluation metrics. We provide details on our baseline
retrieval models, i.e., data fusion and search result diversification models for IR,
which recur in Chapters 4–8.

Chapter 4 – Burst-aware data fusion form microblog search: We consider the prob-
lem of searching posts in microblog environments. We frame this microblog post
search problem as a data fusion problem. We propose BurstFuseX, a fusion model
that not only utilizes a microblog post’s ranking information but also exploits its
publication time. We experimentally verify the effectiveness of the proposed late
data fusion algorithm, and demonstrate that in terms of mean average precision it
significantly outperforms the standard, state-of-the-art fusion approaches as well
as burst or time-sensitive retrieval methods.

Chapter 5 – Time-aware data fusion for microblog search: Similar to Chapter 4, we
frame the problem of microblog search as a data fusion problem, but in a different
way. We propose a rank aggregation method, TimeRA, that is able to infer the rank
scores of documents via latent factor modeling. It is time-aware and rewards posts
that are published in or near a burst of posts that are ranked highly in many of the
lists being aggregated. Our experimental results show that it significantly outper-
forms state-of-the-art data fusion and time-sensitive microblog search algorithms.

Chapter 6 – Manifold-based data fusion of ranked lists: We address the task of merg-
ing ranked lists that are retrieved in response to a query in an ad hoc search set-
ting. We propose an efficient manifold-based data fusion approach, ManX, that
not only utilizes the ranks of documents in the lists but also an additional source of
rich inter-document similarity information. We experimentally verify the retrieval
effectiveness of our ManX algorithm, and demonstrate that it significantly outper-
forms the standard fusion approaches that it integrates as well as state-of-the-art
cluster-based methods and runs faster than cluster-based methods.

Chapter 7 – Fusion helps diversification: Starting from the hypothesis that data fusion
can improve retrieval performance in terms of diversity metrics, we examine the
impact of standard data fusion methods on search result diversification. We also
introduce a new data fusion method, called diversified data fusion, which infers
latent topics of a query using topic modeling, without leveraging outside informa-
tion. Our experiments show that data fusion methods can enhance the performance
of state-of-the-art diversification algorithms and our diversified data fusion signif-
icantly outperforms existing data fusion methods in terms of diversity metrics.

Chapter 8 – Personalized search result diversification via structured learning: We
set up a structured learning framework for conducting supervised personalized
diversification, in which we add features extracted directly from documents and

7

1. Introduction

existing diversification algorithms, and, importantly, those generated from topic
models. We also define two constraints to ensure that search results are both di-
versified and consistent with a user’s interest. We conduct experiments on an open
personalized diversification dataset and find that our supervised learning strategy
outperforms unsupervised personalized diversification methods as well as other
plain personalization and plain diversification methods.

Chapter 9 – Conclusions: We go back to the research questions introduced in this chap-
ter and provide answers. Finally, we discuss future directions of research.

Chapter 2 serves as background to the research in the technical chapters and can be read
if additional insight in the field is required. Chapter 3 provides necessary information on
the test collections and evaluation metrics that are used in the technical chapters and gives
additional details on the baseline data fusion and search result diversification models.
Each of the research chapters, Chapters 4 to 8, can be read individually, as the contents
of these chapters is not dependent on other research chapters. Finally, reading only this
introduction chapter and the conclusion in Chapter 9 gives a dense summary of the whole
thesis, and provides answers to the research questions.

1.4 Origins

The following publications form the basis of chapters in this thesis:

• Chapter 4 is based on Liang and de Rijke (To appear): Burst-aware data fusion for
microblog search, Information Processing & Management, To appear.

• Chapter 5 is based on Liang et al. (2014d): Time-aware rank aggregation for micro-
blog search. CIKM 2014.

• Chapter 6 is based on Liang et al. (Submitted): Efficient Manifold-based fusion of
ranked lists, Submitted to a journal.

• Chapter 7 is based on Liang et al. (2014a): Fusion helps diversification, SIGIR
2014.

• Chapter 8 is based on Liang et al. (2014b): Personalized search result diversifica-
tion via structured learning, KDD 2014.

Finally, this thesis draws from insights and experiences gained in:

• Cai et al. (2014b): Time-sensitive personalized query auto-completion, CIKM
2014.

• Cai et al. (2014a): Personalized document re-ranking based on bayesian proba-
bilistic matrix factorization, SIGIR 2014.

• Liang and de Rijke (Submitted): Formal language models for finding groups of
experts, Submitted to a journal.

8

1.4. Origins

• Liang et al. (2014c): The impact of semantic document expansion on cluster-based
fusion for microblog search, ECIR 2014.

• Liang and de Rijke (2013): Finding knowledgeable groups in enterprise corpora,
SIGIR 2013.

• Liang et al. (2013): Late data fusion for microblog search, ECIR 2013.

• Ren et al. (2014): Hierarchical multi-label classification of social text streams,
SIGIR 2014.

• Ren et al. (2013): Personalized time-aware tweets summarization, SIGIR 2013.

9

2
Background

In this chapter, we provide background material for later chapters in this thesis. We start
with an introduction to information retrieval in Section 2.1, where we discuss main re-
trieval models in IR. In Section 2.2 we detail the ad hoc, microblog search and search
result diversification tasks that we will deal with in the following research chapters, i.e.,
Chapters 4–8. In 2.3 we provide background methods that will be used to deal with
our tasks. Specifically, in 2.3.1 we detail data fusion methods. Because our proposed
data fusion algorithms rely on some lists produced by microblog retrieval algorithms, we
briefly describe related background on microblog retrieval in Section 2.3.2. Our proposed
data fusion algorithms utilize latent factor modeling and manifold-based algorithms, and
methods that are briefly described in Section 2.3.3 and Section 2.3.4, respectively. We
give a brief background of previous methods on search result diversification as well as
personalized diversification in Section 2.3.5. Our proposed diversified data fusion and
personalized diversification algorithms proposed in Chapter 7 and Chapter 8, respec-
tively, work with latent topic modeling; thus we also briefly recall methods for latent
topic modeling in Section 2.3.6. Finally, we detail background of structured learning
methods in Section 2.3.7 for our proposed personalized diversification algorithm.

2.1 Information Retrieval

Information retrieval (IR) is about finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large collections
(usually stored on computers) (Manning et al., 2008). IR deals with the representation,
storage, organization of, and access to information items (Baeza-Yates and Ribeiro-Neto,
2011). After the term IR had been coined in 1950 (Mooers, 1960), a large number of
retrieval algorithms have been proposed. These retrieval algorithms can be simply cate-
gorized into at least the following retrieval models: Boolean retrieval models (Joyce and
Needham, 1958), vector space models (Salton and Lesk, 1968), probabilistic retrieval
models (Maron and Kuhns, 1960), language retrieval models (Ponte and Croft, 1998)
and learning to rank retrieval models (Liu, 2009).

Among the models just listed, Boolean retrieval models are the simplest retrieval
ones, where the input query is in the form of a Boolean expression of terms, and com-
bined with operators, such as AND, OR, and NOT. The operator NOT indicates, for
instance, that the terms should not be included in relevant documents. Documents to be

11

2. Background

returned in response to the query are also viewed as a set of terms. The decision about
the relevancy of a document is a binary one, a document is either relevant and therefore
included in the set of retrieved documents, or it is not relevant and is thus ignored. The
advantages of Boolean retrieval models are obvious. Terms in the query all need to be
exactly matched, which usually results in returning too few or too many documents. For
the retrieval systems, it is difficult to rank the output documents as the documents are
considered as relevant or not only. Sometimes for a user, it is hard to translate his infor-
mation need into an input query with Boolean expression (Chang et al., 1999). All terms
are considered to have the same weights in the retrieval systems.

Because of many disadvantages in Boolean retrieval models, researchers in IR then
proposed the second generation models, which is vector space models (Salton and Lesk,
1968). In these retrieval models, documents and queries are represented as “bag-of-
words.” Each term in a candidate document has its own weight, and documents are
ranked by decreasing cosine value between documents and the query. The well-known
tf-idf weighting scheme plays an important role in vector space models. The weighting
scheme makes these two assumptions: (i) a term that appears in many documents should
not be regarded as more important than one that appears in few documents; (ii) a doc-
ument with many occurrences of a term should not be regarded as less important than
a document with few occurrences of the term. The advantages of vector space models
are that documents can be ranked in the output set, terms are weighted by their impor-
tance and the matching between document and a input query can be partial. In contrast,
the disadvantages of the models are that terms are assumed to be independent from each
other and weighting of terms or documents is intuitive but not quite formal.

One of the most effective retrieval models in many IR applications are probabilistic
models. The probabilistic approach to retrieval was first presented in (Maron and Kuhns,
1960), and the Probability Ranking Principle (PRP) (Maron and Kuhns, 1960) that repre-
sents the theoretical justification of probabilistic IR models was proposed in (Robertson
and Jones, 1976). In these models the probability of a document being relevant to a users
underlying information need presented by a query needs to be estimated. As the initial
probabilistic model explicitly contains the probability of a document being relevant and
the probability of the same document not being relevant (Robertson, 1977; Robertson
and Jones, 1976), it is often referred to as independence retrieval model. The success
of this retrieval model depends on the availability of the distributions of terms over rel-
evant and non-relevant documents and these distributions are usually unknown. At the
very beginning of the development of probabilistic models, the initial models use binary
weights for query terms in documents; later they were changed to include term frequen-
cies (Robertson et al., 1980).

Instead of directly computing the probability of a document relevant to a given query
as in probabilistic models, language models tackle the problem of retrieving documents
in a different way. Inspired by the fact that users tend to think of words that may ap-
pear in a relevant document when they try to come up with words for the input query,
language models are directly motivated by this idea. A document is a good match to a
query if the document model is likely to generate the query, which will in turn happen
if the document contains the query words often. Well-known existing language mod-
els are Jelinek-Mercer language model and Dirichlet language model (Ponte and Croft,
1998). In recent years, with the development of technology in machine learning, many

12

2.2. Tasks

supervised learning algorithms have been proposed for retrieving documents, which can
be called learning to rank models (Liu, 2009). Many existing ranking models contain
parameters. In order to get a reasonably good ranking performance, learning to rank
algorithms need to tune these parameters using a validation set (Liu, 2009). Often as-
sumptions are made in learning to rank models. For instance, it is supposed that there is
labelled data for training a retrieval model.However, in some cases the labelled data are
not available as manually labeling data is expensive.

In this thesis, we do not try to propose a new retrieval model but instead we try to
combine the search result lists generated by these retrieval models into a final ranked list,
so that the performance of the fused list is better than that of the individual lists. This is
the so-called data fusion problem, for which we will give background in the Section 2.3.
Befor continuing our literature review with work related to data fusion and search result
diversification, we first describe the retrieval tasks that we will address.

2.2 Tasks

To answer the research question listed in Chapter 1, we need to address three main tasks
in this thesis: (i) ad hoc search; (ii) microblog search; (iii) search result diversification.
We briefly describe the tasks in the following sections.

2.2.1 Ad hoc search
Given a query q = 〈q1, q2, . . . , q|q|〉 that captures a user’s underlying information need
and a set of documents C = {d1, d2, . . . , d|C|}, the task of ad hoc search is to define a
ranking function f(d|q) that assigns a rank score to each document d ∈ C with regard to
the input query q and then the retrieval model will rank the documents with decreasing
scores of the documents. Here qi is a token in query q, di is a document in C, |q| is the
total number of tokens in q and |C| is the total number of documents in C. The definition
of the ad hoc search task in IR can be formulated as:

q = 〈q1, q2, . . . , q|q|〉, C
f(d|q)−→ L,

where L is a result list generated by the ad hoc retrieval system. We will give our solution
for the ad hoc search task in Chapter 6.

2.2.2 Microblog search
In TREC, the microblog tracks (Clarke and Craswell, 2011; Soboroff et al., 2012) ad-
dressed a single pilot task, entitled microblog search task, where the user wishes to see
the most recent yet relevant information to the input query. The microblog search task
can be summarized as: at time t, find tweets about an input query q. This task is akin to
ad hoc search on Twitter, where a user’s information need is represented by a query at
a specific time. Participants were asked to rank the relevant tweets by time (Clarke and
Craswell, 2011). The definition of the microblog search task can be formulated as:

q = 〈q1, q2, . . . , q|q|〉, t, C
f(d|q)−→ L,

13

2. Background

where C is a set of documents, i.e., a set of posts in the microblog search task, and d is a
document, i.e., a post in the collection. One possible interpretation of the task is to rank
all tweets up to time t by ad hoc search algorithm, and then discard irrelevant tweets. We
will discuss our solutions for microblog search task in Chapters 4 and 5.

2.2.3 Search result diversification

In both ad hoc search and microblog search tasks, the search algorithms mainly focus
on the relevance of the documents and ignore the novelty of the returned documents.
In recent years, the task of search result diversification has gained much attention, and
many algorithms have been proposed to tackle the challenges within the task. The search
result diversification task is akin to ad hoc search, but differs in that one tries to address
as many different intents as possible. Here we formally give the definition of the task.
Let Cq denote the ranking produced in response to the input query q by a relevance-
oriented ranking approach. In addition, letNq andNd denote the sets of intents (aspects)
for which the query q and each document d ∈ Cq are relevant, respectively. The task
of search result diversification is to find a result list L ∈ 2Cq such that the documents
in L cover as many intents (aspects) as possible. The definition of the search result
diversification task can be formulated as:

q = 〈q1, q2, . . . , q|q|〉, C
f(d|q)−→ L = arg max

L′∈2Cq

∣∣∣∣∣ ⋃
d∈L′
Nq ∩Nd

∣∣∣∣∣ , s.t.|L′| ≤ k,

where k > 0 is the diversification cutoff, denoting the number of top documents from Cq
to be diversified, and 2Cq is the power set of Cq .The subset with the maximum number of
covered aspects of the query up to the cutoff k is chosen as the optimal diversified result
ranking L.

2.3 Methods

The previous section has introduced the tasks that we address in this thesis. In this sec-
tion, we provide overviews of previous methods tackling these three tasks. As we utilize
data fusion and latent factor modeling approaches to tackle the task of microblog search
in Chapters 4 and 5, we provide a brief overview of data fusion (in Section 2.3.1), micro-
blog search (in Section 2.3.2) and latent factor modeling (in Section 2.3.3) methods. As
we utilize manifold-based and data fusion approaches to tackle the task of ad hoc search
in Chapter 6, we provide a background overview of manifold-based methods (in Sec-
tion 2.3.4). Finally, as we also utilize topic modeling and structured learning approaches
to tackle the task of search result diversification in Chapters 7 and 8, respectively, we
provide an overview of search result diversification (in Section 2.3.5), topic modeling (in
Section 2.3.6), and structured learning (in Section 2.3.7) methods.

Before we move on to the methods, we summarize the main notation used in the
thesis in Table 2.1.

14

2.3. Methods

Table 2.1: Main notation used in the thesis.

Notation Gloss

C corpus of microblog posts
q query
d document
L ranked list of documents
|Li| length of list Li
L set of ranked lists
CL a set of documents appearing in component lists to be fused
|CL| number of documents in CL
X standard fusion method
fX(d; q) score of post d for query q according to standard fusion method X
RLi(d) rank-based score of d in list Li
rank(d, Li) rank of d in list Li
R m× |CL| list-post rank score matrix
S matrix used for inferring latent topics for L
V matrix used for inferring latent topics for CL
Si a column vector in S used for aspects of Li
Vj a column vector in V used for aspects of dj
ti timestamp
dti document with timestamp ti
b a burst of documents
B set of all bursts in CL
Iij indicate whether dj ∈ Li
W weight matrix for d ∈ CL
D diagonal matrix produced by W
I identity matrix
w a token
Nd number of tokens in d
m number of ranked list to be fused, i.e., m = |L|
T number of topics
V number of unique tokens in CL
θd multinomial distribution of topics specific to d
z topic denoted in latent topic literature
φz multinomial distribution of tokens specific to topic z

2.3.1 Data fusion

The task of fusing document lists that have been retrieved in response to a given query so
as to compile a single more effective result list has been widely studied in the informa-
tion retrieval literature (Beitzel et al., 2003; Dong and Srivastava, 2013; Fox and Shaw,
1994; He and Wu, 2008; Kozorovitsky and Kurland, 2011; Montague and Aslam, 2002;
Shaw and Fox, 1993; Sheldon et al., 2011; Shokouhi and Si, 2011; Tsai et al., 2008; Wu,
2012). Data fusion has a long history with the CombSUM family of fusion methods be-
ing the oldest and one of the most successful ones in many IR tasks (Liang et al., 2013;
Shaw and Fox, 1993). The lists are often produced by multiple ranking functions, e.g.,
query representations or document representations (Croft, 2000). Data fusion has a large

15

2. Background

number of applications, e.g., in multilingual information retrieval (Sheldon et al., 2011;
Si et al., 2008), federated search (He et al., 2011; Hong and Si, 2012; Shokouhi and Si,
2011) also known as distributed retrieval (Crestani and Markov, 2013), resource selec-
tion (Hong and Si, 2013; Markov and Crestani, 2014; Markov et al., 2013b), etc. We
divide the existing data fusion approaches into supervised and unsupervised methods.

Supervised data fusion approaches first extract a large number of features, either
from documents or lists, and then utilize a machine learning algorithm to train the fu-
sion model (Croft, 2000; Efron, 2011; Sheldon et al., 2011; Tsai et al., 2008; Wu, 2012).
Liu et al. (2007) set up a general framework for conducting supervised data fusion, in
which learning is formalized as an optimization problem in which one minimizes dis-
agreements between ranking results and the labeled data. Tsai et al. (2008) propose a
learning approach for the merging process in multilingual information retrieval. For their
learning data fusion approach, the authors extract a number of features from the given
query, the documents to be retrieved and the translation, and then use an existing learn-
ing to rank algorithm to construct a merge model from a large amount of labeled data.
Qin et al. (2010) propose a supervised probabilistic data fusion model, which is based
on coset-permutation distance and defined in a stage-wise manner. To fuse result lists
generated by different query reformulations, the state-of-the-art data fusion method λ-
Merge proposed by Sheldon et al. (2011) first extracts features from both the lists and the
documents appearing in the lists, and then uses a learning to rank method to optimize a
given metric, like NDCG, MAP, to fuse the lists into a final merged list in response to a
given query. We use λ-Merge as a representative example of supervised fusion methods.
Recently, Hong and Si (2012) propose a novel supervised fusion model for result merg-
ing by utilizing multiple centralized retrieval algorithms. However, the fact that a large
amount of labeled data has to be available, together with other supervised problems (for
instance over-fitting noted above in λ-Merge), makes supervised data fusion less useful
when labeled data is hard to come by. Our experimental results in Chapters 4 and 5 show
that in many cases, even traditional unsupervised data fusion methods are able to beat
state-of-the-art supervised data fusion methods.

In contrast, unsupervised data fusion methods mainly utilize either retrieval scores or
ranks of documents in the lists to be merged (Bruno and Marchand-Maillet, 2009; Croft,
2000; Fox and Shaw, 1994; Khalaman and Kurland, 2012; Shaw and Fox, 1993; Wu,
2012). Methods utilizing retrieval scores take score information from the result lists to
be fused as input, while those utilizing rank information only use order information of
the documents appearing in any of the lists to be fused as input. Data fusion methods
utilizing rank information have many uses and applications in information retrieval, in-
cluding, e.g., meta-search (Aslam and Montague, 2001; Fox and Shaw, 1994) where only
order information from the result lists tends to be available. Our data fusion algorithms
proposed in Chapters 4 and 5 only use rank information of the posts in the result lists,
which makes it usable in cases where only order information is available.

Unsupervised data fusion has a long history with the CombSUM family of fusion
methods being the oldest and one of the most successful ones in many information re-
trieval tasks (Croft, 2000; Kozorovitsky and Kurland, 2011; Lee, 1995; Shaw and Fox,
1993; Tsagkias et al., 2011). Other unsupervised data fusion approaches include, for
instance, Borda Count (Aslam and Montague, 2001; Dwork et al., 2001; van Erp and
Schomaker, 2000), median data fusion (Fagin et al., 2003), genetic algorithm (Beg,

16

2.3. Methods

2004), fuzzy logic-based data fusion (Ahmad and Beg, 2002), Markov Chain-based data
fusion (Dwork et al., 2001), the outranking model for fusion (Farah and Vanderpooten,
2007) and a distance-based model (Klementiev et al., 2008). In addition, Markov and
Crestani (2014); Markov et al. (2012, 2013a) provide theoretical arguments on why some
traditional unsupervised fusion methods work, and based on the insights gained, they
propose other unsupervised fusion methods.

Khalaman and Kurland (2012) utilize the content of documents appearing in the re-
sult lists to be fused to get an additional source of rich information, i.e., document sim-
ilarities, and then integrate information induced from the clusters of similar documents
created across the result lists to be merged with the output of a fusion method that relies
on retrieval scores. This fusion model makes strong assumptions: the content of docu-
ments is assumed to be available and it is easy to compute document similarities and get
clusters for documents. However, in the case of microblog retrieval, which we consider
in Chapters 4 and 5, some of these assumptions are somewhat unrealistic. For instance,
some posts with only links but without any words are still labeled as relevant in response
to the query, and creating clusters of similar posts may be very challenging as the length
of posts is at most 140 characters, while many posts are ambiguous (Zhao and Rosson,
2009). In addition, many effective fusion methods are based on the assumption that only
documents that are highly ranked in many of the lists are likely to be relevant (Aslam and
Montague, 2001; Croft, 2000; Dwork et al., 2001; Fox and Shaw, 1994; Kozorovitsky
and Kurland, 2011; Lee, 1995; Montague and Aslam, 2002; Tsagkias et al., 2011). As a
consequence, a relevant document will be ranked low in the final fused list if it appears
only in a single list and is ranked low in this list.

In Chapters 4–6, three data fusion baselines, CombSUM, CombMNZ and Cluster-
based data fusion methods, are frequently used to see the improvements of our proposed
data fusion algorithms. Thus, we detail these data fusion baseline methods in this sub-
section.

CombSUM and CombMNZ. Let Rid denote the score of document d based on the rank
of d in list Li; in the literature on data fusion, one often finds Rid = 0 if d /∈ Li (d still
in the combined set of documents CL :=

⋃m
i=1 Li). In both CombSUM and CombMNZ,

Rid is often defined as:

Rid =

{
(1+|Li|)−rank(d,Li)

|Li| d ∈ Li
0 d /∈ Li,

(2.1)

where |Li| is the length of Li and rank(d, Li) ∈ {1, . . . , |Li|} is the rank of d in Li. The
well-known CombSUM fusion method (Fox and Shaw, 1994; Wu, 2012), for instance,
scores d by the sum of its rank scores in the lists:

fCombSUM(d; q) :=
∑
Li
Rid,

while CombMNZ (Fox and Shaw, 1994; Wu, 2012) rewards a document d that ranks
high in many lists:

fCombMNZ(d; q) := |{Li : d ∈ Li}| · fCombSUM(d; q),

where |{Li : d ∈ Li}| is the number of lists in which d appears.

17

2. Background

Cluster-based data fusion. To improve performance of unsupervised data fusion ap-
proaches, Kozorovitsky and Kurland (2011) considered the cluster hypothesis and pro-
posed a cluster-based fusion method, ClustFuse, where documents in the same cluster
provide relevance-status support to each other. Their ClustFuse algorithm can be formu-
lated as follows:

fClustFuse(d; q) := (1− λ)p(d|q) + λ
∑

c∈Cl(CL)

p(c|q)p(d|c), (2.2)

where p(d|q) is the probability that a document d is relevant to a query q, Cl(CL) is a
set of clusters generated from documents in CL, p(c|q) is the probability that a cluster c
is relevant to q, p(d|c) is the probability that a document d is associated with a cluster c
and λ is a parameter.

Three key components need to be estimated in (2.2): p(d|q), p(c|q) and p(d|c). Us-
ing Bayes’ rule, p(d|q) can be rewritten as p(d|q) = p(q|d)p(d)

p(q) . The probability of a
query p(q) can be represented as p(q) =

∑
d′∈CL p(q|d

′)p(d′). The prior distribution
of documents in CL is assumed to be uniform, i.e., p(d) is a constant. Then, p(d|q) can
be rewritten as p(d|q) = p(q|d)∑

d′∈CL
p(q|d′) . If p(q|d) is considered to be proportional to a

fusion score fX(d; q), then p(d|q) can be finally estimated as follows:

p(d|q) :=
fX(d; q)∑

d′∈CL fX(d′; q)
. (2.3)

Similarly, assuming a uniform prior for clusters, p(c|q) can be rewritten as p(c|q) =
p(q|c)∑

c′∈Cl(CL) p(q|c′)
. Here, p(q|c) can be approximated by a product-based representation,

i.e., p(q|c) =
∏
d∈c fX(d; q). So the final estimation of p(c|q) is the following:

p(c|q) :=

∏
d∈c fX(d; q)∑

c′∈Cl(CL)

∏
d′∈c′ fX(d′; q)

. (2.4)

Assuming a uniform prior for documents in CL, the last component in (2.2), i.e., p(d|c),
can be represented as p(d|c) = p(c|d)∑

d′′∈CL
p(c|d′′) . ClustFuse assumes p(c|d) to be propor-

tional to 1
|c|
∑
d′∈c sim(d′, d), where |c| is the number of documents in a cluster c, which

is chosen to be constant for all clusters: |c| = δ. Also, sim(d′, d) is the similarity score
between d′ and d. So p(d|c) can be represented as follows:

p(d|c) :=

∑
d′∈c sim(d′, d)∑

d′′∈CL
∑
d′∈c sim(d′, d′′)

, (2.5)

Here, sim(d1, d2) is defined as:

sim(d1, d2) = exp

{
−1

2
(KL(θd1 ||θd2) + KL(θd2 ||θd1))

}
, (2.6)

where θd is a language model of a document d, and KL(θd1 ||θd2) the Kullback-Leibler
divergence between θd1 and θd2 .

The following sections will briefly review relevant literature with work related to
our specific proposed data fusion and search result diversification methods in Chap-
ters 4, 5, 6, 7 and 8.

18

2.3. Methods

2.3.2 Microblog retrieval

Microblog retrieval has become an active research topic in IR, especially following the
launch of the Microblog track at TREC in 2011 (Lin et al., 2012). Earlier work, however,
already explored the task of retrieving microblog posts. O’Connor et al. (2010) present
TweetMotif, an exploratory search application for Twitter. Unlike traditional approaches
to information retrieval, which present a simple list of messages, TweetMotif groups mes-
sages by frequent significant terms, a result set’s subtopics, which facilitate navigation
and drilldown through a faceted microblog search interface. Efron (2010) proposes a
language model for hashtag retrieval in a microblog environment, where retrieved hash-
tags on a topic of interest for query expansion are utilized to improve the performance
of microblog search. Duan et al. (2010) show that learning to rank methods work well
on the task of microblog retrieval and that account authority and URL presence are very
strong features.

Following the launch of the Microblog track at TREC in 2011, many approaches have
been proposed. Some (Amati et al., 2011; Cao et al., 2011; Horn et al., 2011; Metzler
and Cai, 2011; Wei et al., 2011) exploit the idea that microblog queries are distinguished
from web queries with many unique characteristics, and utilize the temporal information
to help searching posts. The method proposed by Metzler and Cai (2011) combines a
Markov random field model with a learning to rank model for searching posts, which
achieved the best p@30 performance at TREC in 2011. A combination strategy is also
used by Zhang et al. (2011) to search posts, where they combine a field-based model
that takes the frequency of a query term in different document fields into account with
query expansion. In contrast, work present in (Bandyopadhyay et al., 2011) uses query
expansion only for searching posts, but the way their query expansion method works is
different; they use the Google Search API to retrieve pages from the web, and use the
titles to expand the queries.

At the TREC 2012 Microblog track, Luo et al. (2012) consider a microblog post
to be a structured document, consisting not only of the text, but also of other blocks,
like hashtags, links, and mentions. Using these blocks as features in a learning to rank
method, they show good retrieval performance. At TREC 2012, the best performing
run also uses a learning to rank model (Han et al., 2012). Wei et al. (2012) propose
a ranking algorithm with temporal information based on a language model. Kim et al.
(2012) present two approaches to address the problem of the limited vocabulary of each
post due to their short length. The first is query expansion through pseudo-relevance
feedback and the other is document expansion of tweets using web documents linked
from the body of a tweet. Jabeur et al. (2012) experiment with a Bayesian network
retrieval model for post search and a feature learning model for relevance classification.

Beside the approaches presented at TREC 2011 and 2012, many microblog post re-
trieval approaches have been proposed outside TREC since the launch of the TREC 2011
Microblog track. For instance, Massoudi et al. (2011); Miyanishi et al. (2013a) propose
a method for query expansion in the microblog domain and find that this is highly ef-
fective. Naveed et al. (2011) explore the impact of document length normalization on
retrieval performance and find that this has a negative effect. They also introduce inter-
estingness as a measure for microblog posts and show that using this measure leads to
better retrieval effectiveness. Choi et al. (2012) suggest a quality model using surrogate

19

2. Background

judgments based on retweets that can be collected automatically to train a microblog
search model. Chang et al. (2013) propose a method to utilize Twitter TinyURLs (short-
ened URL links) to detect fresh and high-quality documents, and leverage Twitter data
to generate novel and effective features for ranking documents. The work by Miyanishi
et al. (2013b), Dakka et al. (2012), Choi and Croft (2012) and Massoudi et al. (2011)
utilizes burst (time) information to boost the performance of searching posts, where the
bursts are detected based on the terms in the documents.

2.3.3 Latent factor modeling
Latent factor models are often used in collaborative filtering (CF) (Goldberg et al., 1992)
and recommender systems (Kurucz et al., 2007; Salakhutdinov and Mnih, 2008a,b). Ma-
trix factorization methods form a group of well-known latent factor models, that include,
for instance, singular value decomposition (SVD) (Kurucz et al., 2007; Salakhutdinov
and Mnih, 2008b), probabilistic matrix factorization (Salakhutdinov and Mnih, 2008b),
social regularization (Ma et al., 2011a) and bayesian approaches (Salakhutdinov and
Mnih, 2008a). These methods first model users with latent interests and the products
with latent features by matrix factorization, and then try to predict the rating of products
for the given users with the observations of the existing users’ rating data (Kurucz et al.,
2007; Ma et al., 2011a; Salakhutdinov and Mnih, 2008a,b).

To help better understand the proposed algorithms in Chapter 5, we provide details
of singular value decomposition (Kurucz et al., 2007; Salakhutdinov and Mnih, 2008b)
which is one of the most popular latent factor modeling algorithms in collaborative fil-
tering (Ma et al., 2011a). The SVD method is utilized to approximate a rating matrix R
by minimizing:

1

2
||R−U>V||2F , (2.7)

where R ∈ Rm×n is an m× n matrix describing m users’ numerical ratings on n items,
U ∈ Rl×m is the factorized user-specific matrix, V ∈ Rl×n is item-specific matrix and
|| · ||2F denotes the Frobenius norm. Both U and V serve for making further missing
rating data prediction. In collaborative filtering, the matrix R contains a large number
of missing rating data. Hence, we only need to factorize the observed ratings in R, such
that (2.7) can be changed to:

min
U,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij −U>i Vj)
2, (2.8)

where Iij is the indicator function and Iij = 1 if the rating for item j from user i can be
observed in R, otherwise Iij = 0. Two regularization terms are added into (2.8) to avoid
overfitting, such that (2.8) can be changed to:

min
U,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij −U>i Vj)
2 +

λ1

2
||U||2F +

λ2

2
||V||2F , (2.9)

where λ1, λ2 > 0. Gradient-based approaches can be utilized to get the optimized U and
V in (2.9). Salakhutdinov and Mnih (2008b) provided a nice probabilistic interpretation
with Gaussian observation noise in (2.9).

20

2.3. Methods

−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

−1

−0.5

0

0.5

1

Figure 2.1: A one-dimensional manifold embedded in three dimensions.

2.3.4 Manifold-based algorithms

A Manifold is a topological space that resembles Euclidean space near each point (Thurston
and Milnor, 1979). Here, we give an example in Fig 2.1 to illustration the concept. Con-
sider the curve which is in R3. In the figure, the number of dimensions of the curve
is somewhat misleading since it seems that the curve can be represented with less than
three dimensions. One way of formalizing this intuition is via the idea of manifold: the
curve is a manifold because it locally “looks like” a copy of less than three dimensions.
Many manifold-based algorithms have been proposed to deal with problems in differ-
ent applications. For instance, in the work of (Griffiths et al., 2012; Zhou et al., 2004;
Zhu et al., 2003), they used manifold-based algorithms to address classification tasks of
recognizing handwritten digits. In (Griffiths et al., 2012; Wang et al., 2008), manifold-
based algorithms were used to tackle the problem of face recognition in an image set,
while in (Griffiths et al., 2012) a manifold-based algorithm is used to process a speech
signal. One of the most interesting previous publication to us is that in (Diaz, 2005).
Based on manifolds, this work assumes that closely related documents tend to be rele-
vant to the same query, and exploits the cluster hypothesis directly by adjusting ad hoc
retrieval scores from an initial retrieval so that topically related documents receive sim-
ilar scores. The previous work in (Diaz, 2005) utilizing query-specific manifolds has
focused on reranking a single retrieved list using information induced from manifolds
of documents within the list. Manifold-based algorithms were shown to outperforme
cluster-based ones. Usually, this is the case because a more complex distance function is
needed for the problem at hand than afforded by clustering methods.

To help better understand our proposed method in Chapter 6, here we briefly illus-
trate how manifold-based algorithm works in IR. Let {d1, . . . , dl, dl+1, . . . , dn} be given,
where the relevance values of documents d1, . . . , dl are known and the relevance of the
remaining documents dl+1, . . . , dn are unknown. The goal of a manifold-based algo-
rithm is to predict the relevance values of the unknown documents. A manifold-based
algorithm can work with the following steps to make predictions for the unknown docu-

21

2. Background

ments:

i. From the affinity matrix W with its (i, j)-element defined aswij = exp{− ||di−dj ||
2

2σ2 }
if i 6= j and wii = 0. Here ||di − dj || is the distance between documents di and
dj .

ii. Construct the matrix S = D−
1
2 WD−

1
2 in which D is a diagonal matrix with its

(i, i)-element equal to the sum of the i-th row of W.

iii. Iterate f(t + 1) = αSf(t) + (1 − α)y until convergence, where α is a parameter
in (0, 1). Here, f corresponds to the relevance values of documents {d1, . . . , dl,
dl+1, . . . , dn}, and y corresponds to the original relevance values of the docu-
ments. f(0) = y.

After the iteration converges in step iii, the documents {d1, . . . , dl, dl+1, . . . , dn} can be
reranked according to their relevance values indicated in the final f . More details about
manifold-based algorithms can be found in (Zhou et al., 2004).

2.3.5 Search result diversification
Search result diversification is similar to ad hoc search, but differs in its judging criteria
and evaluation measures (Clarke and Craswell, 2011; Clarke et al., 2012). The basic
premise in search result diversification is that the relevance of a set of documents depends
not only on the individual relevance of its members, but also on how they relate to one
another (Agrawal et al., 2009). Ideally, users can find at least one relevant document to
the underlying information need. Most previous work on search result diversification can
be classified as either implicit or explicit (Santos et al., 2010a,b).

Implicit approaches to result diversification promote diversity by selecting a docu-
ment that differs from the documents appearing before it in terms of vocabulary, as cap-
tured by a notion of document similarity, such as cosine similarity or Kullback-Leibler
divergence. Carbonell and Goldstein (1998) propose the maximal marginal relevance
(MMR) method, which reduces redundancy while maintaining query relevance when se-
lecting a document. Chen and Karger (2006) describe a retrieval method incorporating
negative feedback in which documents are assumed to be non-relevant once they are in-
cluded in the result list, with the goal of maximizing diversity. Zhai et al. (2003) present
a subtopic retrieval model where the utility of a document in a ranking is dependent on
other documents in the ranking and documents that cover many different subtopics of
a query topic are found. Other implicit work includes, e.g., (Abbar et al., 2013) where
set-based recommendation of diverse articles is proposed. In Chapter 7 below, we also
tackle the problem of search result diversification implicitly, but in a different way, i.e.,
by data fusion.

Explicit approaches to diversification assume that a set of query aspects is available
and return documents for each of them. Past work has shown that explicit approaches
are usually somewhat superior to implicit diversification techniques (Vargas et al., 2012).
Well-known examples include xQuAD (Santos et al., 2010a), RxQuAD (Vargas et al.,
2012), IA-select (Agrawal et al., 2009), PM-2 (Dang and Croft, 2012), and, more re-
cently, DSPApprox (Dang and Croft, 2013), text-based measures (Bache et al., 2013),
term-level (Dang and Croft, 2013), learning for diversification (Zhu et al., 2014), and

22

2.3. Methods

fusion-based (Liang et al., 2014a). Instead of modeling a set of aspects implicitly, these
algorithms obtain the set of aspects either manually, e.g., from aspect descriptions (Clarke
and Craswell, 2011; Clarke et al., 2012), or they create them directly from, e.g., sug-
gested queries generated by commercial search engines (Dang and Croft, 2012; Santos
et al., 2010a) or predefined aspect categories (Szpektor et al., 2013). In Chapter 7, we
propose an implicit fusion-based diversification model where we do not assume that the
aspects of the query are available but do assume that we can infer the underlying topics
and the prior relevance of each topic for search result diversification.

Two main components, viz., personalized web search and search result diversifica-
tion, play important roles in tackling the problem of personalized search result diversifi-
cation. The task of personalized web search aims at identifying the most relevant search
results for an individual by leveraging their information. Many personalized web search
methods have been proposed, such as the one based on social tagging profiles (Vallet
et al., 2010), ranking model adaption for personalized search (Wang et al., 2013), search
personalization by modeling the impact of users’ behavior (Bennett et al., 2012), and
personalized search using interaction behaviors in search sessions (Liu et al., 2012a). In
contrast, diversification aims to make the search results diversified given an ambiguous
query so that users can find at least one of these results to be relevant to their underlying
information need (Agrawal et al., 2009).

Radlinski and Dumais (2006) and Vallet and Castells (2012) have studied the prob-
lem of combining both personalization and diversification. Radlinski and Dumais (2006)
analyze a large sample of individual users’ query logs from a web search engine such
that individual users’ query reformulations can be obtained. Then they personalize web
search by reranking some top results using query reformulations to introduce diversity
into those results. Their evaluation suggests that using diversification is a promising
method to improve personalized reranking of search results. Vallet and Castells (2012)
present a number of approaches that combine personalization and diversification com-
ponents. They investigate the introduction of the user as an explicit variable in state-of-
the-art diversification models. Their personalized search result diversification algorithms
achieve competitive performance and improve over plain personalization and plain diver-
sification baselines.

All of the previous personalized diversification models are unsupervised. However,
we argue that to enhance the performance, it is better to employ a supervised learning
approach, and our experiments in Chapter 8 show that supervised learning can indeed
improve the performance of unsupervised approaches.

Our proposed diversified data fusion method introduced in Chapter 7 is built on a
well-known search result diversification, i.e., PM-2 (proportionality model for search
result diversification) (Dang and Croft, 2012). Thus, we detail the PM-2 algorithm in
this section.

The main search result diversification baseline used in Chapter 7 is the proportionality-
based model, which we abbreviate as PM-2 (Dang and Croft, 2012). Inspired by the
scheme of the Sainte-Laguë method for assigning seats to members of competing po-
litical parties, PM-2 regards positions in the ranked list as seats, aspects of ambiguous
query as competing political parties, and the weights of the aspects as the weights of
votes received by the parties. The target of PM-2 is to fill in k empty positions one by
one with candidate documents and then returns as ranked list Lf . To decide which doc-

23

2. Background

ument should occupy the top empty position in the list Lf , PM-2 first recomputes the
current quotient qt[z|q] for each topic z given q by:

qt[z|q] =
vz|q

2sz|q + 1
, (2.10)

where vz|q is the probability of topic z given q, i.e., the weight of topic z. According to
the Sainte-Laguë method, the position under consideration at this step should be awarded
to the topic with the largest quotient in order to best maintain the proportionality of the
list. Therefore, PM-2 assigns the current position to the topic z∗ with the largest quotient.
The document to fill this position is the one that is not only relevant to z∗ but to other
topics as well:

d∗ = arg max
d∈R

(
λ× qt[z∗|q]× P (d|z∗, q) + (2.11)

(1− λ)
∑
z 6=z∗qt[z|q]× P (d|z, q)

)
,

where P (d|z, q) is the probability of d talking about topic z for a given q. After document
d∗ is selected as diversification result, it cannot be considered again in the next process
and PM-2 increases the “portion” of positions occupied by each of the topics z by its
normalized relevance to d∗:

sz|q ← sz|q +
P (d∗|z, q)∑
z′ P (d∗|z′, q)

.

The above process repeats until k documents have been appended and occupied in Lf or
there are no candidate documents available for the next process. The order in which a
document is appended to Lf determines its ranking, and then PM-2 returns documents
with this order as the diversification results for the input ambiguous query. More details
about PM-2 can be found in (Dang and Croft, 2012, 2013).

In addition, a natural and direct way of diversifying a result list in the setting of
data fusion is this: first rank the documents in the component lists by their estimated
relevance to the query through a standard data fusion method, such as CombSUM, and
then diversify the ranking through effective search result diversification models, such as
MMR (Carbonell and Goldstein, 1998) and PM-2 (Dang and Croft, 2012). In our ex-
periments in Chapter 7, we implement two more baselines, called CombSUMMMR and
CombSUMPM-2. They first use CombSUM to obtain a fused list and then use MMR and
PM-2, respectively, to diversify the list. We also directly utilize other plain data fusion,
e.g., CombSUM and CombMNZ, to make search result diversification as data fusion
methods can improve retrieval performance in terms of traditional relevance-oriented
metrics like MAP and precision@k over the methods used to generate the individual
result lists being fused.

2.3.6 Topic modeling
Topic models have been proposed for reducing the high dimensionality of words ap-
pearing in documents into low-dimensional “latent topics.” From the first work on topic
models (Hofmann, 1999), the Probablistic LSI model, topic models have received sig-
nificant attention (Blei et al., 2003; Griffiths and Steyvers, 2004; Jin et al., 2011) and

24

2.3. Methods

φ wβ

z

θα

Nd |C|
T

Figure 2.2: The graphical model representation of the LDA model.

have proved to be effective in many information retrieval tasks (Kurashima et al., 2013;
Wei and Croft, 2006; Xu et al., 2012). Latent Dirichlet allocation (LDA) (Blei et al.,
2003) represents each document as a finite mixture over “latent” topics where each topic
is represented as a finite mixture over words occurring in that document. Based on LDA,
many extensions have been proposed, e.g., to handle users’ connections with particular
documents and topics (Rosen-Zvi et al., 2004), to learn relations among different topics
(Lafferty and Blei, 2005; Li and McCallum, 2006), for topic over time (Wang and McCal-
lum, 2006), for dynamic mixture model (Wei et al., 2007), or tweet summarization (Ren
et al., 2013). LDA has also been extended to sentiment analysis (Li et al., 2010).

Our proposed topic models used in Chapters 7 and 8 are based on LDA. To help
understand our proposed topic models easily, here we provide the basic idea of LDA.
A graphical model representation of the LDA model is shown in Fig. 2.2. In LDA,
documents in the collection are represented as random mixtures over latent topics, and
each topic is characterized by a multi-normal distribution over tokens appearing in the
collection. The LDA can be viewed as a generative process, which can be described as
follows.

i. Draw T multinomials φz from a Dirichlet prior β, one for each topic z;

ii. For each document d ∈ C in the collection with Nd tokens, draw a multinomial θd
from a Dirichlet prior α; then for each toke wdi in document d:

(a) Draw a topic zdi from multinomial θd;
(b) Draw a token wdi from multinomial φzdi ;

As shown in the above process, the posterior distribution of topics depends on the infor-
mation from the text. The parameterization of the LDA model is as follows:

θd|α ∼ Dirichlet(α)

φz|β ∼ Dirichlet(β)

zdi|θd ∼ Multinomial(θd)
wdi|φzdi ∼ Multinomial(φzdi)

25

2. Background

The parameters in the LDA model can be estimated using variational inference with
the expectation-maximization algorithm (Blei et al., 2003); or an alternative inference
technique uses Gibbs sampling (Griffiths and Steyvers, 2004).

2.3.7 Structured learning
Structured learning has provided principled techniques for learning structured-output
models, with structured support vector machines (SSVMs) being one of the most im-
portant ones (Tsochantaridis et al., 2005). In structured learning, a set of N training
pairs, {(x(i),y(i)) ∈ X × Y : i = 1, . . . , N}, is assumed to be available to the learning
algorithm, and the goal is to learn a mapping f : X → Y from the input space X to the
output space Y , such that a regularized task-dependent loss function ∆ : Y × Y → R+

can be minimized, where ∆(y(i),y) denotes the cost of predicting output y when the
correct prediction is y(i). We will use SSVMs to tackle the challenge of personalized
diversification in Chapter 8. The optimization problem in structured learning can be
formulated as:
Optimization Problem. (Standard structured SVMs)

min
w,ξ≥0

1

2
||w||2 +

C

N

N∑
i=1

ξi (2.12)

subject to ∀i,∀y ∈ Y\y(i), ξi ≥ 0,

wTΨ(x(i),y(i)) ≥ wTΨ(x(i),y) + ∆(y(i),y)− ξi.
In the objective function (2.12), the parameter C is a tradeoff between model complexity,
||w||2, and a hinge loss relaxation of the training loss for each training example,

∑
ξi.

The constraints enforce the requirement that the ground-truth y(i) should have a greater
function value than other alternative y ∈ Y , and y 6= y(i). The optimization problem
defined in (2.12) can be solved by employing the cutting plane algorithm (Tsochantaridis
et al., 2005).

In the past few years, Structured SVMs (SSVMs) have been studied and applied in
many areas, such as speech recognition (Zhang and Gales, 2013), optimizing average
precision of a ranking (Yue et al., 2007), and diversification (Yue and Joachims, 2008).
For us, the most interesting prior application of SSVMs is the one for predicting diverse
subsets (Yue and Joachims, 2008). However, our personalized search result diversifica-
tion method differs from that proposed in (Yue and Joachims, 2008): we work on per-
sonalized diversification where we propose a user-interest LDA-style model in Chapter 8
to capture a user’s interest distribution over topics, whereas they directly apply existing
SSVMs algorithm to tackle the problem of search result diversification but not person-
alized diversification; our model explicitly makes results diverse and consistent to the
user’s interest by enforcing both diversity and interest constraints, whereas their model
only implicitly diversifies the results by adopting standard SSVMs. Prior work on diver-
sification (Dang and Croft, 2012; Santos et al., 2010a; Vargas et al., 2012), however, has
shown that explicit approaches outperform implicit ones in most cases.

This chapter has described the tasks and corresponding methods. In the next chapter we
will describe our experimental methodology and setup.

26

3
Experimental Methodology

In previous chapter we have introduced the background for our two main research top-
ics, data fusion and search result diversification. We now move on to the experimental
methodology that is shared by the research chapters (Chapters 4–8). To begin with, we
first give an introduction of test collections and retrieval evaluation in IR in Section 3.1.
Then, we describe the test collections used in the research chapters (Chapters 4–8) in Sec-
tion 3.2. We detail the retrieval evaluation metrics used to evaluate the search results in
Section 3.3. Finally, we detail significance testing techniques used to make comparisons
between our proposed methods and the baselines in Section 3.4.

3.1 Introduction

The availability of test collections plays a critical role in successful experimental re-
search in IR. There are a number of academic communities providing test collections
to evaluate the performance of retrieval algorithms. Among these, the best known ones
include the Text REtrieval Conference (TREC),1 the Cross-Language Evaluation Forum
(CLEF),2 the NII Test Collection for IR systems project (NTCIR),3 and the Forum for In-
formation Retrieval Evaluation (FIRE).4 In this thesis, we mainly use datasets provided
by TREC as well as runs submitted to TREC to perform our experiments to evaluate
our proposed data fusion models and the baseline models in Chapters 4–6. There are a
couple of reasons that we use the publicly available data in the TREC: the input lists to
evaluate our proposed model can also be reused by other models, which indeed allows
other researchers to make comparisons as the evaluation can be performed with the exact
same datasets as well as the same input result lists. Also, in Chapter 8 for the purpose
of making comparisons between our proposed personalized diversification algorithm and
other existing algorithms, we prefer to use a publicly downloadable dataset.

Additionally, the availability of retrieval evaluation metrics also plays a critical role
in the evaluation of retrieval systems in IR. Retrieval evaluation is a process of systemati-
cally associating quantitative metrics to the results produced by an IR system in response

1http://trec.nist.gov
2http://hmi.ewi.utwente.nl/Projects/clef.html
3http://research.nii.ac.jp/ntcir
4http://www.isical.ac.in/˜clia/

27

http://trec.nist.gov
http://hmi.ewi.utwente.nl/Projects/clef.html
http://research.nii.ac.jp/ntcir
http://www.isical.ac.in/~clia/

3. Experimental Methodology

to a set of user queries (Baeza-Yates and Ribeiro-Neto, 2011). Retrieval evaluation met-
rics should be directly associated with the relevance of the results to the users. A common
approach to compute scores of metrics is to compare the results produced by the search
system with results suggested by humans for the same set of queries. Here, the retrieval
evaluation metrics concern the quality of the results, not the performance of the system,
such as how fast it processes queries.

In the next section (Section 3.2) we provide details of the test collections used in the
research chapters (Chapters 4–8).

3.2 Test Collections Used in the Thesis

3.2.1 Ad hoc search collection

In order to answer our research questions about how to utilize manifold-based algorithm
for ad hoc search in Chapter 6, we work with three text collections provided by the ad hoc
track of TREC-3 (Harman, 1994), the web track of TREC-10 (Hawking and Craswell,
2002) and the robust retrieval track of TREC-12 (Voorhees, 2005), respectively. The
collection provided by the ad hoc track of TREC-3 is comprised of 50 queries (topics
151–200), and 741,856 documents (news and journal articles); the data for the web track
of TREC-10 is the 10 gigabyte WT10g (Hawking and Craswell, 2002) collection, with 50
queries (topics 501–550) and 1,692,096 documents; and the data for the robust retrieval
track of TREC-12 consists of 50 queries and 528,155 documents on TREC disks 4 and
5 minus the Congressional Record. The tasks studied at these three tracks were: new
questions (queries) were assumed to be asked against a set of data, and the system had
to retrieve relevant documents to the questions. Participants produced 40, 97 and 78
submitted runs at TREC-3, TREC-10 and TREC-12 for the tracks, respectively. The
p@20 performance of the runs varies from 0.0620 to 0.6740, from 0.0010 to 0.4730,
and from 0.0895 to 0.3930 in the TREC-3, TREC-10 and TREC-12, respectively. Some
details about the implementations of the runs in the tracks can be found in (Harman,
1994; Hawking and Craswell, 2002; Voorhees, 2005).

3.2.2 Microblog search collection

In order to answer our research questions about how to utilize data fusion for searching
posts in a microblogging environment in Chapters 4–5, we work with the Tweets 2011
corpus (Macdonald et al., 2011), called Tweet11, provided by the TREC 2011 Microblog
track. The collection is comprised of approximately 16 million tweets collected over a
period of 2 weeks (23th January until 8th February 2011, inclusive) sampled courtesy
of Twitter. Different types of tweets in this data set are present, including replies and
retweets. Each tweet has its own timestamp. Descriptive statistics about the collection
are provided in Table 3.1.

The task studied at the TREC 2011 Microblog track was: given a query with a time-
stamp, return relevant and interesting tweets in reverse chronological order. This task
is akin to ad hoc search on Twitter, where a user’s information need is represented by a
query at a specific time. For 2012, the setting of the track was almost the same as that in

28

3.2. Test Collections Used in the Thesis

Table 3.1: Description of the data set used in our experiments.

Number of tweets 15,137,399
Number of users 4,670,516
Median tweet length 8.66
Median English tweet length 10.76
Number of English tweets 9,318,772
Number of English retweets 1,069,006
Number of hyperlinks 1,135,720
Number of hashtags 1,005,343

2011 except that the topics were different and the result lists were required to be ordered
by relevance instead of chronologically (Soboroff et al., 2012). In our experiments, we
rank tweets by relevance.5

We use two sets of test topics (queries) in our experiments, the 2011 test set and the
2012 test set. In total, NIST (the National Institute of Standards and Technology) cre-
ated 50 test topics for the TREC 2011 Microblog track, each representing an information
need at a specific point in time when the topics were issued. 49 test topics were used
in the TREC and 2965 tweets were deemed relevant; some topics have just two relevant
tweets while some have more than 100 relevant tweets. Indeed, one of the 50 topics orig-
inally created, MB050, did not have any relevant tweets in the pool, and it was therefore
dropped from the evaluation. To assess the tweets, the assessors judged the relevance of
a tweet after reading it. Tweets in the Tweet11 corpus were judged on the basis of the
defined information need using a three-point scale: Not Relevant, Minimally Relevant
and Highly Relevant.

A total of 59 groups participated in the TREC 2011 Microblog track, with each team
submitting at most four runs, which resulted in 184 runs6 (Lin et al., 2012; Macdonald
et al., 2011). The official evaluation metric was precision at 30 (p@30) (Macdonald
et al., 2011). The p@30 scores of these 184 runs varied dramatically, with the best run
achieving a p@30 score of 0.4551 and the worst run achieving 0.000. In our experiments
below, we do not use any runs whose p@30 scores are below 0.10, leaving us with 174
runs from the TREC 2011 Microblog track. Details about the implementation of each
run from the TREC 2011 Microblog track can be found in (Lin et al., 2012; Macdonald
et al., 2011).

The Microblog search track continued in 2012 using the same corpus, Tweet11 (Sobo-
roff et al., 2012). NIST created 60 new test topics representing information needs at
specific points in time in TREC 2012 and labeled 6286 tweets as minimally or highly
relevant. The TREC 2012 Microblog track received 121 runs6 from 33 participating
groups. The best run in TREC 2012 Microblog track is hitURLrun3 (Han et al., 2012),
with its p@30 score being 0.4695. Once again, in our experiments, we only use the runs
whose p@30 scores are no less than 0.10, leaving us with 117 runs from the TREC 2012
Microblog track. For details about the implementation of the runs from the TREC 2012
Microblog track we refer to (Soboroff et al., 2012). The track continued in 2013, but

5We reorder all 2011 runs by retrieval score before fusing them.
6The 2011 and 2012 runs can be downloaded from http://trec.nist.gov.

29

http://trec.nist.gov

3. Experimental Methodology

with an incomparable setup.

3.2.3 Web track collections

In order to answer our research questions about how to enhance the retrieval performance
of diversification in Chapter 7 we work with the runs submitted to the TREC 2009, 2010,
2011 and 2012 Web tracks, and the billion-page ClueWeb09 collection.7 The ClueWeb09
dataset was created to support research in IR. It consists of about one billion web pages
in ten languages that were collected in January and February 2009. There are two tasks
in these tracks: an ad hoc search task and a search result diversification task (Clarke and
Craswell, 2011; Clarke et al., 2009, 2010, 2012). We only focus on the diversification
task, where the top-k documents returned should not only be relevant but also cover as
many aspects as possible in response to a given query. In total, we have 200 ambiguous
queries from the four years, with 2 queries (#95 and #100 in the 2010 edition) not having
any relevant documents. Typically, each query has 2 to 5 aspects, and some relevant
documents are relevant to more than 2 aspects of the query.

Many of the runs submitted to these four years of the Web track for the diversification
task were generated by state-of-the-art diversification methods. In total, we have 119, 88,
62 and 48 runs from the 2009, 2010, 2011 and 2012 editions, respectively.8

3.2.4 Personalized diversification collection

In order to answer our research questions about how to enhance retrieval performance
of personalized diversification in Chapter 8, we work with a publicly available person-
alized diversification dataset.9 This dataset contains private evaluation information from
35 users on 180 search queries. The queries are quite ambiguous, as the length of each
query is no more that two keywords. In total, there are 751 subtopics for the queries,
with most of the queries having more than 2 subtopics. Over 3,800 relevance judgements
are available, for at least the top 5 results for each query. Each relevance judgement in-
cludes 3 main assessments: a 4-grade scale assessment on how relevant the result is to
the user’s interests (resulting in the user relevance ground truth and the set of users’ inter-
esting documents being created); a 4-grade scale assessment on how relevant the result
is to the evaluated query (resulting in the topic relevance ground truth being created);
and a 2-grade assessment whether a specific subtopic is related to the evaluated query
(resulting in the subjective subtopics related to the search query being created). Details
of this dataset can be found in (Vallet and Castells, 2012). For pre-processing, we apply
Porter stemming, tokenization, and stopword removal (using the INQUERY list) to the
documents using the Lemur toolkit.10

Two well-known corpora, ClueWeb09 and ClueWeb12,11 have been proposed for the
search result diversification tasks in the TREC 2009–2013 Web tracks (Clarke et al.,

7Available from http://boston.lti.cs.cmu.edu/Data/clueweb09.
8All runs are available from http://trec.nist.gov.
9http://ir.ii.uam.es/˜david/persdivers/

10http://www.lemurproject.org
11http://boston.lti.cs.cmu.edu/clueweb12/

30

http://boston.lti.cs.cmu.edu/Data/clueweb09
http://trec.nist.gov
http://ir.ii.uam.es/~david/persdivers/
http://www.lemurproject.org
http://boston.lti.cs.cmu.edu/clueweb12/

3.3. Evaluation Metrics

2012). However, they do not contain any user information or relevance judgments pro-
vided by specific users, and thus do not fit our experiments in Chapter 8.

3.3 Evaluation Metrics

Evaluation is an import aspect of our methodology. In this section we first detail the
evaluation metrics that we use to assess the performance of our proposed retrieval mod-
els and the baselines. Then we briefly introduce the significance testing we perform to
compare retrieval results between different models.

To evaluate the effectiveness of both our data fusion and search result diversification
models in Chapters 4–8, we use a set of common IR evaluation metrics (Baeza-Yates and
Ribeiro-Neto, 2011; Manning et al., 2008), like p@k, and also those proposed in recent
years, like Prec-IA@k. We distinguish the evaluation metrics used in this thesis into
three types: (i) for the task of ad hoc search; (ii) for the task of microblog search task;
and (iii) for the task of search result diversification.

3.3.1 Metrics for ad hoc search

p@k. The precision at rank k (p@k) metric indicates the percentage of relevant doc-
uments within the top k returned documents. In web search related tasks this metric is
often considered important, as users usually only look at top k returned documents of a
ranked list. It can be easily calculated as:

p@k =

∑k
r=1 rel(r)

k
, (3.1)

where rel(r) is a binary function that indicates whether or not the document at rank r is
relevant:

rel(r) =

{
1 if r ∈ R
0 otherwise,

(3.2)

whereR is the set of relevant documents for a given query.

MAP. Mean average precision (MAP) is a metric that measures both precision and recall
of search results and is used most commonly in research in the field of IR. For each
relevant document in the returned document list we take the precision at the position of
that document. We sum over these precision values and divide it by the total number of
relevant documents. This gives us the average precision (AP) for a query:

AP =

∑N
k=1 p@k · rel(k)

|R|
, (3.3)

whereN is the number of returned documents (in most TREC tasks N=1,000). When we
take the mean of AP values over a set of test queries, we get the mean average precision
(MAP) for a system on that set of queries. In other words, the MAP score of a retrieval
system can be obtained by averaging the AP values of all the test queries.

31

3. Experimental Methodology

nDCG. Given a ranked result set of documents (in our setting, groups) S and an ideal or-
dering of the same set of documents O, the discounted cumulative gain (DCG) (Järvelin
and Kekäläinen, 2002) at a particular rank threshold k is defined as:

DCG(S, k) =
k∑
j=1

2r(j) − 1

log(1 + j)
, (3.4)

where r(j) is the judgment (0 = Bad, 1 = Fair, 2 = Good, 3 = Excellent, etc.) at rank
j in set S. The ideally ordered set O contains all documents rated for the given query
sorted descending by the judgment value. Then the normalized discounted cumulative
gain (nDCG) (Järvelin and Kekäläinen, 2002) at a particular rank threshold k is defined
as:

nDCG(S, k) =
DCG(S, k)

DCG(O, k)
. (3.5)

nDCG discounts the contribution of a document to the score as its rank increases. Higher
nDCG values correspond to better correlation with human judgments. nDCG value at
rank threshold k when the set S is clear from the context is often written as nDCG@k.

Diversity-oriented metrics used in this thesis includes α-nDCG@k, S-Recall@k,
Prec-IA@k and MAP-IA@k, all of which are official evaluation metrics in the search
result diversification of the TREC Web tracks (Clarke and Craswell, 2011; Clarke et al.,
2009, 2010, 2012).

3.3.2 Metrics for microblog search

Relevance-oriented metrics used in this thesis include p@k, MAP, nDCG. One of the
reasons we consider these metrics is to make our data fusion models comparable to pre-
vious models. For performance evaluation in our experiments of data fusion models in
Chapters 4–5 we consider both minimally relevant and highly relevant posts and use the
official metric, p@30. We also report on p@5, p@10, p@15 and MAP scores. We use
trec eval12 to compute the performance scores. We expect our proposed data fusion mod-
els to have a recall-enhancing effect. This may negatively impact very early precision,
which is why we include p@5. But we hypothesize that we will see an increase in preci-
sion scores at lower ranks because of the expected boost in recall and the limited length
of the lists being scored (only 30 items). For this reason we consider precision scores
at multiple cut-offs (5, 10, 15, 30) as well as MAP. As some documents are denoted as
relevant or highly relevant to the queries, we also consider nDCG (Clarke et al., 2008a)
to measure the performance if necessary.

3.3.3 Metrics for search result diversification

α-nDCG@k. A version of normalized discounted cumulative gain at k in which the
role of the parameter α is emphasized in computing the novelty of the top k documents.

12The evaluation script can be obtained from http://trec.nist.gov.

32

http://trec.nist.gov

3.4. Significance Testing

α-nDCG@k scores a ranking by rewarding newly-found subtopics and penalizing re-
dundant subtopics geometrically, discounting all rewards with a log-harmonic discount
function of rank. See (Clarke et al., 2008b) for details on how α-nDCG@k is computed.

S-Recall@k. Subtopic recall at k (Zhai et al., 2003) is computed at retrieval depth k
using the following procedure. Assume there are Q ambiguous queries. Let z be an
aspect of query q and Nq the number of aspects (subtopics) associated with q. Then,
the subtopic recall at rank k (Zhai et al., 2003) is defined as the percentage of subtopics
covered by one of the top k documents:

S-Recall@k = 1
Q

∑Q
q=1

|
⋃k

i=1 subtopics(di|q)|
Nq

, (3.6)

where subtopics(di|q) is the number of aspects covered by di in response to q.

ERR-IA@k. Intent-aware expected reciprocal rank at retrieval depth k, similarly, is
computed as:

ERR-IA@k = 1
Q

∑Q
q=1

1
Nq

∑Nq

z=1 ERR(k|z, q), (3.7)

where ERR(k|z, q) is the expected reciprocal rank score at k in terms of aspect z of query
q.

Prec-IA@k. Intent-aware precision at k (Agrawal et al., 2009) is defined as:

Prec-IA@k = 1
Q

∑Q
q=1

1
Nq

∑Nq

z=1 Prec(k|z, q), (3.8)

where Prec(k|z, q) is the precision at k in terms of the aspects z of q, and can be computed
as 1

k

∑k
j=1 jq(z, j). Here, jq(z, j) = 1 if the document returned for q at depth j is judged

relevant to aspect z of q; otherwise, jq(z, j) = 0.

MAP-IA@k. Intent-aware MAP at k (Agrawal et al., 2009) is computed as:

MAP-IA@k = 1
Q

∑Q
q=1

1
Nq

∑Nq

z=1 MAP(k|z, q), (3.9)

where MAP(k|z, q) is the MAP score for top k returned documents in terms of aspect z
of q.

3.4 Significance Testing

Researchers in IR commonly use three types of statistical significance test, i.e., Student’s
paired t-test (Gosset, 1904), the Wilcoxon signed rank test (Wilcoxon, 1945) and the sign
test (Karas and Savage, 1967). The reasons for using significance testing is that we want
to determine whether observed differences may be due to chance. Other reasons include,
for instance, there is inherent noise in an evaluation. Some topics are harder than others,
and the assessors hired to judge relevance of documents are human and thus open to
variability in their behavior (Smucker et al., 2007).

In Chapters 4–8 we introduce approaches that should improve performance on the
tasks in these chapters. To test if our proposed approaches really do show improvements

33

3. Experimental Methodology

we compare their scores to baseline scores. These baseline scores indicate how the sys-
tems developed by our proposed approaches perform. When comparing two runs, we
want to test for significant differences between them. To this end we commonly use
a two-tailed paired t-test. Gosset (1904) shows that in practice there is no difference
between the t-test and the randomization test, although the latter is a more principled
choice. In this thesis we opt for the t-test as we want to promote retrieval models that
truly are better than other models that by chance performed better given the set of topics,
judgments, and documents used in the evaluation.

Statistically significance of observed differences between the performance of two
runs for α = 0.01 and α = 0.05 is shown in the tables of this thesis when necessary and
appropriated, the former being stronger than the latter. Results marked by Nand Hreflect
statistically significant improvements or drops for α = 0.01 and Mand Odo the same for
α = 0.05.

Until now, we have introduced the background and experimental methodology of this
thesis. From next chapter, we will start our investigation on data fusion and search result
diversification.

34

4
Burst-Aware Data Fusion

In the previous two chapters, we have introduced the background material and the ex-
perimental methodology for this thesis. In this chapter, we begin our research and try
to answer the research questions listed in Chapter 1. In this chapter, we explore how to
improve the performance of microblog search in microblogging environments such as
Twitter1 via data fusion.

Microblogging platforms have become indispensable communication channels through
which hundreds of millions of users around the world witness breaking news events. The
characteristics of the posts, such as their limited length, along with easy access on many
platforms, lead to regular status updates by large numbers of people (Zhao and Rosson,
2009). Microblogging platforms display fast paced dynamics as reflected by rapidly
evolving topics (Yang and Leskovec, 2011). Searching posts in such rapidly changing
environments is a challenge (Lin et al., 2012). To tackle this problem, much previous
work has focused on content-based criteria for ranking posts in response to a query, in
combination with a broad range of other ranking criteria, including, e.g., the existence of
hyperlinks, hashtags and retweets.

As we explained in Chapter 2, fusion is a popular method for generating result lists
based on multiple ranking criteria. In this chapter, we look at the problem of searching
microblog posts as a late data fusion task (Shaw and Fox, 1993): we fuse ranked lists of
posts produced by a diverse set of microblog post rankers into a single final ranked list
of posts. In the following, we consider the case where only ranks and publication times
are available and no other additional information is provided such as the retrieval status
values or the contents of the posts. We focus on a particular microblog search scenario,
one that was studied at the Text REtrieval Conference (TREC) 2011 and 2012 Microblog
tracks (Lin et al., 2012; Soboroff et al., 2012). The task uses Twitter data and is defined
as follows: given a query with a timestamp, return relevant and interesting tweets.

In this chapter, we focus on how to improve the performance of searching posts in
microblogging environment. Specifically, we seek to answer the following main research
question:

RQ 1 Can data fusion help microblog search?

To answer this main research question, we first take a look at the characteristics of micro-
blog environments. In such environments people tend to talk about a topic mostly during

1http://www.twitter.com

35

http://www.twitter.com

4. Burst-Aware Data Fusion

L1

d7

d5

d4

d2

L2

d6

d5

d3

d1

Lm

d8

d6

d5

d3

d1 d8d2 d3

d4

d5 d6 d7

time

co
m

bi
ne

d
sc

or
e

windowd6 d4 d2
missing documents

Figure 4.1: Rewarding posts that are published in the same narrow time frame as a large
number of (supposedly) relevant posts. On the left, we display m ranked lists of posts
that were produced in response to a given query; these lists need to be fused. Post d2

only occurs in list L1 and it is ranked low in L2; d8 also occurs in a single list, Lm,
but it is ranked very high. On the right, we show the distribution of the publication
timestamps of the documents in the lists to be combined. The vertical axis indicates the
combined scores of posts with the same timestamps based on a baseline fusion method,
e.g., CombSUM. According to its publication timestamp, d2 was published in a “good”
period for the query: many posts published around the same time as d2 are highly ranked
in many lists; because of this, BurstFuseX will “reward” d2. In contrast, d8 does not
have a publication time around which many highly ranked posts were published, hence it
should not receive a reward. Documents marked in blue are “missing” documents; e.g.,
d6 is a missing document for L1, as it is not observed in L1 during the fusion process.
See Chapter 5 for more details on missing documents.

specific short time intervals (Chen et al., 2010; Hoonlor et al., 2012; Lappas et al., 2009;
Mathioudakis et al., 2010; Peetz et al., 2012; Vlachos et al., 2004). For instance, people
talked about the “2014 Eastern Synchronized Skating Sectional Championship” mainly
between January 30 and February 1, 2014, which is when the championship was held.
Posts created before the beginning or after the ending of the event are less likely to talk
about the championship competitions and, hence, are less likely to be relevant. This
observation leads to the following intuition about fusing ranked lists of microblog posts.

If a post d and (other) relevant posts d1, . . . , dk were published within the
same narrow time window, and the relevant posts d1, . . . , dk are ranked
highly in many of the lists to be merged, then post d should be “rewarded”
by boosting its rank, even if, in the extreme case, it appears in only one list
where it is ranked low.

Fig. 4.1 illustrates this intuition; there, post d2 is ranked low in list L1 but our intuition
suggests that it should be rewarded as it was published in the same narrow time window
in which a large number of posts occur that are ranked high in many lists; in contrast, d8,
while ranked high in Lm, receives no such bonus as it was published outside the narrow
window.

To answer the main research question and tackle the problem of microblog post

36

4.1. Fusion Approach

search, we propose BurstFuseX, a novel probabilistic model that not only utilizes in-
formation traditionally used when merging ranked lists, such as ranks, but also exploits
temporal information, i.e., the publication timestamps of microblog posts. In our fusion
model, we focus on the case where only ranks and publication timestamps are available
and no additional information is provided—such as the content of the posts, the post’s
RSVs (Relevance Status Values), the resources the posts link to, etc. In fact, accessing
the contents of posts may be inefficient and hence inappropriate in dynamic environ-
ments such as microblog search. In addition, the content may not be available in all
scenarios (Salakhutdinov and Mnih, 2008a). Briefly, BurstFuseX first calls a standard
document fusion method X to merge a set of ranked lists of microblog posts for a given
query. Subsequently, as illustrated in Fig. 4.1, based on the fused scores produced by
fusion method X, we detect windows of timestamps of high-scoring posts. These win-
dows give rise to bursts of posts. We then reward posts that are published in the temporal
vicinity of a burst that contains high-scoring posts.

In our experiments aimed at assessing the performance of BurstFuseX, we sample
runs that have been submitted to the TREC 2011 and 2012 Microblog tracks and fuse
them using BurstFuseX, respectively. For the underlying fusion method X (on top of
which BurstFuseX builds), we consider three alternatives: two unsupervised fusion meth-
ods, CombSUM (Shaw and Fox, 1993), CombMNZ (Lee, 1995), and one state-of-the-art
supervised fusion method: λ-Merge (Sheldon et al., 2011). For further comparisons, we
consider a number of burst or time-sensitive microblog retrieval baselines. As Burst-
FuseX detects bursts based on the output of a standard fusion method rather than on
the contents of microblogs, we also consider a baseline that detects bursts based on the
contents. As we will see below, BurstFuseX significantly outperforms most fusion ap-
proaches and burst or time-sensitive retrieval methods.

Our contributions in this chapter can be summarized as follows:

i. We propose a novel and effective probabilistic data fusion model to microblog post
search, BurstFuseX, which not only takes traditional information such as document
rank into account, but also exploits the temporal characteristics of microblog envi-
ronments.

ii. To the best of our knowledge, this is the first attempt to frame the problem of
searching microblog posts as a data fusion problem and also the first attempt to
integrate temporal characteristics of result sets into data fusion.

In Section 4.1 we detail BurstFuseX; we follow with a description of our experimental
setup in Section 4.2 and report on our experimental results and perform topic-level and
run-time analyses in Section 4.3. Finally, Section 4.4 concludes the chapter.

4.1 Fusion Approach

In this section, we first provide the task we address. Then we briefly describe standard
unsupervised and supervised data fusion methods that will be integrated in our proposed
data fusion methods and taken as baselines in our experiments in Section 4.1.1. We
define what bursts are and detail how to detect bursts in data fusion scenarios in Sec-

37

4. Burst-Aware Data Fusion

tion 4.1.2. After that, we detail our proposed data fusion methods for microblog search
in Section 4.1.3.

The task we address in this chapter is the following: Given a query and a set of
ranked lists of posts returned in response to the query, fuse the lists into a single ranked
list of posts to be returned in response to the query. Hence, the input of our burst-aware
data fusion method BurstFuseX consists of a query and a set of ranked lists of posts; the
output is a single fused list. Algorithm 1 gives a high level overview of BurstFuseX.

Algorithm 1: BurstFuseX: Burst-aware data fusion for microblog post search.
Input : A query q

A number of ranked lists of posts to be fused, L1, L2, . . . , Lm
The combined set of posts CL :=

⋃m
i=1 Li

A standard fusion method X .
Output: A final fused list of posts.

1 Calculate the (standard) fusion score FX(d; q) according to X for each post
d ∈ CL; see Section 4.1.1;

2 Detect bursts based on the timestamps and FX(d; q) scores; see Section 4.1.2;
3 Calculate the BurstFuseX fusion score for each d ∈ CL using the bursts and the

standard fusion score; see Section 4.1.3;
4 Construct the final fused list based on the BurstFuseX score of d ∈ CL obtained in

step 3.

In the remainder of this section we detail the steps that make up BurstFuseX. In
Table 4.1 we list the notation that we use. Other notation used in this chapter can be
found in Table 2.1 in Chapter 2.

The fusion methods we consider as building blocks for BurstFuseX all assign a non-
negative fusion score FX(d; q) to every post d ∈ CL. We set FX(d; q) := 0 for d /∈ CL,
following Bruno and Marchand-Maillet (2009); Fox and Shaw (1994); Kozorovitsky and
Kurland (2011); Lee (1995); Wu (2012). The higher FX(d; q) is, the more likely d is
assumed to be an appropriate response to q.

4.1.1 Standard fusion methods

To be able to define the final fusion score FBurstFuseX (d; q) we integrate and make use of
an existing standard fusion method (step 1 of Algorithm 1). BurstFuseX is independent of
the particular choice of the standard fusion method that it integrates: any fusion method
can be integrated into our model. Below, we briefly review a supervised method, λ-
Merge (Sheldon et al., 2011). An overview of two standard unsupervised fusion methods,
CombSUM and CombMNZ, can be found in Chapter 2.

Recently, several supervised methods for merging ranked lists have been proposed,
one of which is λ-Merge (Sheldon et al., 2011). In this chapter, we view λ-Merge as a
typical representative of the supervised standard fusion methods that are currently avail-
able.2

2To be able to define λ-Merge, we need to assume that we can access the content of posts.

38

4.1. Fusion Approach

Table 4.1: Additional notation used in this chapter (cf. Table 2.1).

Notation Gloss

kLi length of list Li
αm weight of a list; used in the definition of λ-Merge
g(d; q) scoring function used in the definition of λ-Merge
f(x;θ) linear scoring function used in the definition of λ-Merge
Sti(CL) burst-time score at time ti
tCL number of different timestamps of posts in CL
=(CL) sequence of burst-time scores
b(CL)[ti : tj] burst with start timestamp ti and end timestamp tj (given query q), abbreviated

by b
B(CL) set of all bursts in CL (given query q)
µ free parameter that governs burst information
σb standard deviation of timestamps belonging to the burst b

Given a query, λ-Merge can directly optimize a retrieval metric (e.g., MAP) to en-
hance retrieval effectiveness under the assumption that query reformulation candidates
are available. In particular, λ-Merge learns a scoring function to rank documents from
multiple reformulations of the given query by combining features that indicate document
quality (such as retrieval score) with features that indicate the quality of the reformula-
tion and its results lists (called gating features in (Sheldon et al., 2011)). In our setting,
we do not assume that query reformulation candidates are easily available, i.e., no fea-
tures about the quality of the reformulation (gating features) are used in our data fusion
method.

Our settings for λ-Merge are detailed in an appendix to the chapter (see Appendix 4.A).

4.1.2 Bursts and burst detection

To ground our intuitions about utilizing burst information to boost the performance of
microblog search, we choose four test queries as examples and examine plots of the
number of relevant documents distributed over their document ages (measured by days)
in Fig. 4.2.3 The figure confirms that people tend to talk about topics within specific time
windows. It is, therefore, worthwhile to detect such time windows (“bursts”) and to use
such burst information, which is what our proposed data fusion method for microblog
search aims to do.

Next, we move on to the next step (step 2) of Algorithm 1 and detail how we detect
bursts. Let ti be a timestamp. Let dti (∈ CL) denote a post d with timestamp ti. We
regard posts published during the same hour as having the same timestamp. Although
it is possible to define “the same timestamp” in many different ways, we found that this
is a suitable level of granularity for the fusion effectiveness of searching posts; the same
setting is also used in (Metzler et al., 2012). Now, before we detect bursts, we need to
define Sti(CL), the burst-time score at time ti of CL, the set of posts occurring in the lists
under consideration. Let fX(dti ; q) be the score of dti given q under the standard fusion

3The topics are selected from test collections detailed in Section 3.2.2.

39

4. Burst-Aware Data Fusion

0 5 10 15
0

10

20

30

40

Document age (days)

#
R

e
le

v
a
n
t
d
o
c
u
m

e
n
ts

MB001

(a)

0 5 10
0

20

40

60

Document age (days)

#
R

e
le

v
a
n
t
d
o
c
u
m

e
n
ts

MB017

(b)

0 5 10 15
0

10

20

30

40

50

Document age (days)

#
R

e
le

v
a
n
t
d
o
c
u
m

e
n
ts

MB024

(c)

0 5 10 15
0

5

10

15

20

Document age (days)

#
R

e
le

v
a
n
t
d
o
c
u
m

e
n
ts

MB042

(d)

Figure 4.2: Distribution of the number of relevant documents over days for four test
queries. In each subfigure, the x-axis indicates document ages from query time to the
document timestamps, and the y-axis indicates the number of relevant documents accord-
ing to the ground-truth in the Tweets 2011 dataset (detailed in Section 3.2.2). Subfigure
(a) plots the relevant documents over time for query MB001 – BBC World Service staff
cuts, (b) is for MB017 – White Stripes breakup, (c) is for MB024 – Super Bowl, seats,
and (d) is for MB042 – Holland Iran envoy recall.

method X . Then:

Sti(CL) =

∑
dti∈CL

fX(dti ; q)∑tCL
j=1

∑
dtj∈CL

fX(dtj ; q)
− 1

tCL
, 1 ≤ i ≤ tCL (4.1)

where 1 ≤ j ≤ tCL and tCL is the total number of different timestamps belonging to
posts in CL. Notice that the burst-time score Sti(CL) > 0 if it is above the average score
(i.e., 1/tCL), otherwise Sti(CL) ≤ 0.

We compute a burst-time score Sti(CL) at each time point ti ∈ {t1, t2, . . . , tCL} in
CL. In this manner we generate a burst-time score sequence=(CL) = {St1(CL), St2(CL),
. . . , StCL (CL)}.

40

4.1. Fusion Approach

Following (Ruzzo and Tompa, 1999), a segment=(CL)[ti : tj] = {Sti(CL), Sti+1(CL),
. . . , Stj (CL)}, where 1 ≤ i ≤ j ≤ tCL , is a maximal segment in =(CL) if:

i All proper subsequences of =(CL)[ti : tj] have a lower score.4

ii No proper super-segments of =(CL)[ti : tj] in =(CL) satisfy item i.

We adapt a linear-time algorithm proposed in (Ruzzo and Tompa, 1999) to find all max-
imal segments in the sequence =(CL). As an example, consider the input sequence
=(CL) = {2, −2, 4, 3, −3, −4, −1, −3, 5, −1, 3, −2}. The maximal segments in
this sequence are {2}, {4, 3} and {5, −1, 3}. The segment {2, −2, 4, 3} is not maximal,
since it has a nonempty zero-scoring prefix {2, −2} appending to the left of {4, 3}; {5}
is not a maximal segment, since {5, −1, 3} has a total higher score of 7. Each maximal
segment =(CL)[ti : tj] gives rise to a burst of posts b(CL)[ti : tj] with start timestamp ti
and end timestamp tj : it contains any post d ∈ CL whose timestamp is between ti and tj
within this segment. We write B(CL) =

⋃
b(CL)[ti : tj] to denote the set of all bursts in

response to q.
We let b be short for b(CL)[ti : tj] in the following. As it does not access the contents

of posts, the source of complexity in our burst detection method is in the problem of
finding all maximal segments: this problem can be solved in linear time (Ruzzo and
Tompa, 1999), so that the computational complexity of our burst detection method is
O(|CL|).

4.1.3 Burst-aware fusion

We turn to the key steps 3 and 4 of Algorithm 1 and define our burst-aware fusion algo-
rithm. Motivated by the fact that people tend to talk about a topic within specific short
time intervals (Lappas et al., 2009; Mathioudakis et al., 2010; Peetz et al., 2012), we
devise a method that allows posts in the same burst to boost the scores of other posts
such that posts that are ranked low in a small number of lists can be promoted by posts
in the same burst that are ranked highly in many lists. After detecting a set of bursts, we
integrate burst information with scores of posts in the lists, scores that were generated by
a standard fusion method X , to estimate P (d|q)—the final probability that d (∈ CL) is
relevant to query q.

The Model

We use a set of bursts B(CL) as proxies for d in estimating its relevance in response to q.
Specifically, we can rewrite the probability of a post d being about q, P (d|q), as:

P (d|q) =
∑

b∈B(CL)

p(d|b, q) · p(b|q), (4.2)

where the probability, p(b|q), indicates how likely a set of posts in b produced within the
same time interval are relevant to q, and p(d|b, q) indicates how likely d is talking about

4The score of a subsequence is the sum of the burst-time scores of the elements in the subsequence.

41

4. Burst-Aware Data Fusion

q and belongs to b. To estimate p(d|b, q), a linear mixture governed by a free parameter
µ is used (Kurland and Lee, 2004; Markovits et al., 2012) such that:

pθ(d|b, q) := (1− µ) · p(d|q) + µ · p(d|b), (4.3)

where p(d|q) measures the relevance of d to q and p(d|b) indicates how likely d belongs
to b. We substitute (4.3) into (4.2), and define our BurstFuseX model as:

fBurstFuseX (d; q) :=
∑

b∈B(CL)

{(1− µ) · p(d|q) + µ · p(d|b)} · p(b|q)

= (1− µ) · p(d|q) + µ ·
∑

b∈B(CL)

p(d|b) · p(b|q). (4.4)

That is, to obtain a score for post d in response to q, BurstFuseX uses three types of
probability. If posts in a burst are talking about q, b will be rewarded as p(b|q) indicates.
If d is strongly associated with b, then as indicated by p(d|b), d will be rewarded. Finally,
if each burst b in B(CL) talks about q, d itself discusses q and is strongly associated with
a burst, then d will be ranked high in the final fused list.

Notice how BurstFuseX can boost the score of posts: if post d ranks low in a single
list (i.e., p(d|q) is small) but is contained in a burst, as indicated by p(d|b), then the final
fused score of d, fBurstFuseX (d; q), may still be relatively high, which may boost the
final ranking of d.

Estimating the Key Components

Our next task is to derive estimates for the following key components in (4.4):

• p(d|q): post-level relevance—how likely d is talking about q.

• p(b|q): burst-level relevance—how likely a set of posts as a whole is talking about
q.

• p(d|b): post-burst association strength—how likely d belongs to b.

Post-level relevance. To obtain p(d|q) in (4.4), we apply Bayes’ Theorem, such that
p(d|q) = p(q|d)p(d)

p(q) , where we let p(q) ∝
∑
d′∈CL p(q|d

′)p(d′). A uniform prior distri-
bution is assumed for each post d′ ∈ CL. So p(d|q) can be rewritten as:

p(d|q) ∝ p(q|d)∑
d′∈CL p(q|d

′)
.

We use an estimate pθ(q|d) ∝ fX(d; q) (Khalaman and Kurland, 2012), where fX(d; q)
is the score of a standard fusion method X for d given q:

pθ(d|q) :=
fX(d; q)∑

d′∈CL fX(d′; q)
, (4.5)

which is the normalized standard fusion score reflecting d’s relevance to q. Notice that
our burst-aware fusion model will reduce to the standard fusion methodX if we let µ = 0

42

4.1. Fusion Approach

in (4.4), as fBurstFuseX (d; q) = (1−µ) · p(d|q) ∝ fX(d|q) in (4.4) in this case. In other
words, the effect of merging result lists according to fBurstFuseX (d; q) will then be the
same as that of merging result lists according to FX(d; q).

Burst-level relevance. Next, to obtain p(b|q) in (4.4), we apply Bayes’ Theorem again,
such that p(b|q) = p(q|b)p(b)

p(q) , where we use the probability rule, and have p(q) ∝∑
b′∈B(CL) p(q|b′)p(b′). Assuming a uniform prior for each burst in CL for a given q,

the probability that a burst b contains information pertaining to q can be represented as:

p(b|q) ∝ p(q|b)∑
b′∈B(CL) p(q|b′)

.

A burst may contain posts that have multiple appearances in the lists to be fused. Prior
work on representing sets of posts has shown that product-based representations some-
what outperform sum-based representations (Khalaman and Kurland, 2012; Liu and Croft,
2008; Seo and Croft, 2010). Accordingly, we let:

pθ(q|b) =
∏
d∈b

p(q|d)
1
|b| .

As we use an estimate pθ(q|d) ∝ fX(d; q) (see above), p(b|q) can be estimated as:

pθ(b|q) :=

∏
d∈b fX(d; q)

1
|b|∑

b′∈B(CL)

∏
d′∈b′ fX(d′; q)

1
|b′|

, (4.6)

where |b| and |b′| are the number of posts in b and b′, respectively.

Post-burst association strength. To obtain p(d|b) in (4.4), we apply Bayes’ Theorem
again, such that p(d|b) = p(b|d)p(d)

p(b) . We observe that p(b) ∝
∑
d′∈CL p(b|d

′)p(d′) and
assume a uniform prior for the probability of a post, so that p(d|b) can be represented as:

p(d|b) ∝ p(b|d)∑
d′∈CL p(b|d

′)
.

Here, p(b|d) is the probability of d belonging to b.
Next, we need to estimate p(b|d). Again, we use the product of scores of posts in a

burst with the index of 1/|b| rather than the average of the sum of the score.5 We set:

pθ(b|d) :=
∏
d′′∈b

p(d′′|d)
1
|b| , (4.7)

to estimate p(b|d), where d′′ ∈ CL is a post in b.
Three factors affect the association strength between d and b: the temporal relation-

ship between d and posts d′′ ∈ b, the relevance of d given q, and the relevance of d′′

given q. We estimate the time relationship between d and d′′ as:

pt(d
′′, d) = exp

{
− (td′′ − td)2

2σ2
b

}
.

5Experimental results show that using products is not statistically significantly different from using sums
with a two-tailed paired t-test at a 95% confidence level.

43

4. Burst-Aware Data Fusion

Here, td and td′′ are the timestamps of post d and d′′, respectively, σb is the standard
deviation of the timestamps in b:

σ2
b =

∑nb

k=1

{
k − nb+1

2

}2

nb

=

∑nb

k=1

{
k2 − k(nb + 1) +

n2
b + 2nb + 1

4

}
nb

=

n3
b + 2n2

b + nb
4 +

∑nb

k=1 k
2 − (nb + 1)

∑nb

k=1 k
nb

=

n3
b + 2n2

b + nb
4 +

nb(nb + 1)(2nb + 1)
6 − (nb + 1)

(nb + 1)nb
2

nb

=
n2
b − 1
12 ,

(4.8)

where nb = j − i + 1 is the number of different timestamps of posts in the burst b.6 If
j = i, we let σb = 0.5 to avoid σb = 0. The bigger the temporal distance between td and
td′′ is, the smaller pt(d′′, d) will be, which means that compared to other posts in burst b,
d is rewarded less by post d′′.

Now, to estimate p(d′′|d) ((4.7)) we build on the following intuition. If d′′ is ranked
highly, based on a relatively large value of p(d′′|q), and d′′ and d are produced at almost
the same point in time, based on a relatively high value of pt(d′′, d), then d′′ should be
able to boost d’s score. Hence, we estimate p(d′′|d) by putting pθ(d′′|d) := p(d′′|q) ·
pt(d

′′, d) := pθ(d
′′|q) · pt(d′′, d). When we substitute this term in (4.7) we obtain:

pθ(b|d) :=
∏
d′′∈b

{pθ(d′′|q) · pt(d′′, d)}
1
|b| .

Putting everything together, we can now estimate the post-burst association strength,
p(d|b), as:

pθ(d|b) =

∏
d′′∈b {pθ(d′′|q) · pt(d′′, d)}

1
|b|∑

d′∈CL
∏
d′′∈b {pθ(d′′|q) · pt(d′′, d′)}

1
|b|
. (4.9)

According to (4.9), if d is in b and the scores of posts surrounding d (including d itself)
in b are high, the association strength between d and b increases. In this case, d’s score
will be boosted. Note, by the way, that d (∈ CL) does not have to be in b; any d in CL can
have a non-zero association strength to any b in B(CL).

4.2 Experimental Setup

In this section, we describe our experimental setup, and Section 4.2.1 lists our specific re-
search questions, which together help answer the main research question for this chapter.
Finally, Section 4.2.3 and Section 4.2.4 detail how BurstFuseX is trained and optimized,
and the settings of the experiments, respectively.

6Alternative definitions of σb are possible, but we found that this has little effect on overall retrieval
performance.

44

4.2. Experimental Setup

4.2.1 Detailed research questions
We divide our main research question (RQ 1) into the following detailed research ques-
tions, and let these questions guide the remainder of the chapter:

RQ 1.1 Does BurstFuseX outperform the standard data fusion method that it integrates?
(See Section 4.3.1 for the answer.)

RQ 1.2 Does BurstFuseλ-Merge outperform BurstFuseCombSUM or BurstFuseComb-
MNZ? (See Section 4.3.1 for the answer.)

RQ 1.3 Does BurstFuseX outperform the best run to be fused? (See Section 4.3.1 for
the answer.)

RQ 1.4 What is the effect of using burst information in BurstFuseX? I.e., what is the
impact of the free parameter µ in Eq. 4.4? (See Section 4.3.2 for the answer.)

RQ 1.5 What is the effect of the number of lists to be fused in BurstFuseX? (See Sec-
tion 4.3.3 for the answer.)

RQ 1.6 Can we observe the hypothesized effect sketched in Fig. 4.1 (See Section 4.3.4
for the answer.)

RQ 1.7 How fast is BurstFuseX compared to other data fusion methods? (See Sec-
tion 4.3.5 for the answer.)

RQ 1.8 Can BurstFuseX beat burst or time-sensitive microblog search algorithms? (See
Section 4.3.6 and Section 4.3.7 for the answer.)

RQ 1.9 Can BurstFuseX aid a single run that does not take time into account? (See
Section 4.3.8)

4.2.2 Baselines
We compare BurstFuseX to 3 data fusion baselines: 2 traditional unsupervised meth-
ods, i.e., CombSectionUM, CombMNZ, and a start-of-the-art supervised method, λ-
Merge (Sheldon et al., 2011). As BurstFuseX utilizes burst information (temporal in-
formation) to boost the performance, we also compare BurstFuseX to 4 state-of-the-art
burst-sensitive microblog search algorithms: time-based language model (TBLM) (Li
and Croft, 2003), textual quality factor model with temporal query expansion (LM-
T(qe)) (Massoudi et al., 2011), direct time-sensitive BM25 retrieval model (DIRECT-
BM25 (mean)) (Dakka et al., 2012) and temporal tweet selection feedback method (TSec-
tionF+QDRM) (Miyanishi et al., 2013b). All of these burst-sensitive algorithms first de-
tect bursts (or time-spans) based on the content (words) of the posts and then utilize the
burst information to boost the retrieval performance. Our BurstFuseX detect bursts based
on the fusion scores of posts rather than directly based on the content of the posts.

To illustrate the merits of detecting bursts from fusion scores, we implement an al-
ternative algorithm, BurstFuseXposts (BurstFuseCombSUMposts and BurstFuseComb-
MNZposts), which detects bursts using the burst detection approach presented in (Lap-
pas et al., 2009), using the content of posts, and then fuses the input rank lists using
our fusion framework. In other words, the only difference between BurstFuseX and
BurstFuseXposts is in the way they detect bursts. To build the index of the dataset that
some of our baselines require, we apply Porter stemming, tokenization, and stopword

45

4. Burst-Aware Data Fusion

Table 4.2: Summary of sampled runs from the TREC 2011 Microblog track.

Class Sampled runs Performance

Class 1 clarity1, waterlooa3, FASectionILKOM02, isiFDL, DFReeKLIM30, PRISrun1 0.40≤ p@30
Class 2 KAUSTRerank, ciirRun1, gut, dutirMixFb, normal, UDMicroIDF 0.30≤ p@30< 0.40
Class 3 WESTfilext, LThresh, qRefLThresh, run3a, Nestor, uogTrLqea 0.20≤ p@30< 0.30
Class 4 FASILKOM02, waterlooa3, gut, UDMicroIDF, run3a, qRefLThresh 0.20≤ p@30

removal (using INQUERY lists) to posts using the Lemur toolkit.7 The features and
settings used for λ-Merge are briefly described in Appendix 4.A.

4.2.3 Training and optimization

Our BurstFuseX fusion method incorporates a single free parameter, µ in (4.4). The value
of µ (∈ {0, 0.1, . . . , 1}) is set using 10-fold cross validation performed over the entire
set of queries in the TREC 2011 Microblog track. In the learning phase, the performance
of BurstFuseX is optimized with respect to MAP. In other words, the set of 49 queries
is randomly partitioned into 10 equal size subsamples; the performance for a single test
subsample (5 queries) is that attained using a value of µ that maximizes MAP perfor-
mance over the remaining subsamples (44 queries). We repeat the experiment 10 times
and report the average scores on the metrics. In each time, the subsamples are permuted
until all the 49 queries were chosen once for the test set. The setting of BurstFuseX over
the entire set of queries in the TREC 2012 Microblog track is the same as that in TREC
2011 Microblog track. Our baseline fusion methods, i.e., CombSUM, CombMNZ and
λ-Merge, do not incorporate free parameters.

4.2.4 Experiments

We report on 8 main experiments in this chapter. The experiments are carried out on
the microblog search collection; details of the microblog search collection can be found
in Section 3.2.2. First, to understand the overall performance of BurstFuseX, we sample
about 10% from the ranked lists produced by the participants in the TREC 2011 and
2012 Microblog tracks based on the lists’ p@30 distribution, respectively: 18 out of
the 174 runs in TREC 2011 and 18 out of the 117 runs in TREC 2012, 6 each with
p@30 scores between 0.20 and 0.30 (Class 3), between 0.30 and 0.40 (Class 2), and
over 0.40 (Class 1). We also randomly choose two runs from each class to construct
Class 4. See Tables 4.2 and 4.3 for details of our sample runs from the TREC 2011 and
2012 Microblog tracks, respectively. Note that in our experiments, the runs in Class 1 in
Tables 4.2 and 4.3 are actually the six best ones in the TREC 2011 and 2012 Microblog
tracks, respectively. In every class, we use run1, run2, run3, run4, run5 and run6 to refer
to the runs in descending order of p@30 score.

To understand the influence of bursts and see whether burst information is helpful to
boost fusion performance and to which extent, we change the parameter µ in Eq. 4.4 from
0.0 to 1.0, which alters the degree to which burst-based and standard fusion information
are to be mixed. Then, to understand the effect of the number of lists to be merged,

7http://www.lemurproject.org

46

http://www.lemurproject.org

4.3. Results and Analysis

Table 4.3: Summary of sampled runs from the TREC 2012 Microblog track.

Class Sectionampled runs Performance

Class 1 hitURLrun3, kobeMHC2, kobeMHC, uwatgclrman, hitQryFBrun4, kobeL2R 0.40≤ p@30
Class 2 QEWebFB, indri, KLIMLL, UNCRQE, gucasGenReg, KLIMLPLL 0.30≤ p@30< 0.40
Class 3 FASectionILKOM01, IIEIR03, RUN2, expansion, IRSIISI, uwatgclrbase 0.20≤ p@30< 0.30
Class 4 hitQryFBrun4, kobeL2R, KLIMLL, UNCRQE, IIEIR03, IRSIISI 0.20≤ p@30

we randomly choose k (∈ {2, 4, 6, . . . , 38}) lists from the 174 TREC 2011 Microblog
lists and fuse them by BurstFuseX and the standard fusion methods. We repeat the ex-
periments 20 times and report the average results as well as the corresponding standard
deviation scores.

In order to understand the topic-level performance of BurstFuseX, we provide an
analysis of topic-level performance against the standard fusion method it cooperates.
Next, to determine how fast BurstFuseX can merge result lists, we again fuse k (∈ {2,
4, . . . , 30}) lists, and report and compare the average computing time required by Burst-
FuseX against that of the standard fusion methods. To understand whether BurstFuseX
can improve over microblog search approaches that already incorporate time-sensitive
search algorithms, we compare the performance of BurstFuseX, the standard fusion
method it builds on and 5 time-sensitive baselines of searching microblogs.

To understand whether detecting bursts based on standard fusion scores works better
than detecting based on the textual content of posts, we make a comparison between
our fusion methods and those detecting bursts based on the textual contents of posts.
We also compare burst-sensitive component lists to be fused and the fusion methods to
see whether fusion can help to boost the retrieval performance. Finally, to understand
whether BurstFuseX requires multiple result lists or if it can aid single runs that may
not have taken time into account, we fuse only a single result list using BurstFuseX and
compare the single result list and the output of BurstFuseX on that list.

As described in Section 4.1, in our experiments we use two unsupervised data fusion
methods, CombSUM and CombMNZ, and one supervised method, λ-Merge, as repre-
sentatives of the standard methods that can be integrated by BurstFuseX.

4.3 Results and Analysis

In this section, we present our experimental results and perform an analysis. We follow
the order of the research questions listed in Section 4.2.1. Particularly, in Section 4.3.1
we examine the effectiveness of BurstFuseX on fusing the sample lists; in Section 4.3.2
we study the effect of using burst information and in Section 4.3.3 the effect of the num-
ber of lists on the overall performance; Section 4.3.4 reports on a topic level analysis;
Section 4.3.5 is devoted to look at the runtime performance of BurstFuseX and in Sec-
tion 4.3.6 we examine whether BurstFuseX is able to add anything in terms of perfor-
mance on top of result lists produced by retrieval methods that already use temporal
information; Section 4.3.7 provides a further analysis of the use of burst information in
data fusion for microblog search; finally, Section 4.3.8 shows the performance of Burst-
FuseX on single result list.

47

4. Burst-Aware Data Fusion

4.3.1 Fusing the sample lists

The performance of BurstFuseX and of the standard fusion methods X that it incorporates
is detailed in Table 4.4, with scores based on the 10% sample runs from the TREC 2011
Microblog track, as mentioned in Section 4.2.4. It is clear from Table 4.4 that the perfor-
mance of unsupervised data fusion and the corresponding burst-aware fusion methods,
i.e., CombSUM, CombMNZ, BurstFuseCombSUM and BurstFuseCombMNZ, is better
than that of the best result list that is used in the merging process (run1) for all classes and
on almost all metrics. Many of these improvements are statistically significant. More im-
portantly, in class 1 all of these methods beat the best recorded run (isiFDL) in the TREC
2011 Microblog track (e.g., the p@30 score for BurstFuseCombSUM is 0.5578 while
that of the best run in the track is 0.4551), and even the standard fusion method it inte-
grates, i.e., CombSUM, outperforms the best recorded run. Meanwhile, in class 1, the
supervised data fusion methods λ-Merge and BurstFuseλ-Merge can also beat the best
recorded run in terms of the official metric p@30. All of these demonstrate that data
fusion strategies can help improve effectiveness in searching microblogs.

It is worth noting that in most cases BurstFuseX outperforms the standard fusion
method X that it incorporates for all classes and on nearly all metrics (MAP, p@10,
p@15, p@30). Almost all of these improvements are substantial and statistically sig-
nificant. For instance, when fusing the runs in class 4, the MAP and p@30 metrics of
BurstFuseCombMNZ are 0.2883 and 0.4387, respectively, compared to only 0.2794 and
0.4048, respectively, for CombMNZ. This finding attests to the merits of incorporating
burst information into data fusion and shows that using burst information can improve
the performance of existing data fusion methods in terms of MAP and p@30.

Interestingly, in Table 4.4 when we consider the p@5 scores, we see that BurstFuseX
always outperforms the best single run but that it loses the performance when against
the standard fusion method X on which it builds in most cases. One reason is that some
relevant posts ranked very high in the lists being merged but not near any of the bursts are
forced down the ranking. Another reason is that a very small number of irrelevant posts
in the bursts are promoted to slightly higher ranks in the fused list. In contrast, the gain
obtained from relevant posts that are ranked at the bottom of the runs but near bursts are
clearly observed at bigger cut-offs, resulting in the improvements of p@10, p@15 and
p@30 scores.

Additionally, from Table 4.4 we see that, in terms of MAP, BurstFuseCombSUM
outperforms BurstFuseCombMNZ, and both of them outperform BurstFuseλ-Merge in
Class 2 (0.2651, 0.2587, 0.2161, respectively). In other words, BurstFuseCombSUM
outperforms BurstFuseCombMNZ, followed by BurstFuseλ-Merge. This is quite obvi-
ous in Class 1, Class 2 and Class 4 for instance. In terms of the standard fusion methods,
CombSUM performs almost the same as CombMNZ with no statistically significant dif-
ferences. Both CombSUM and CombMNZ easily beat the supervised standard fusion
method λ-Merge; in same cases, λ-Merge becomes worse than the best result list (run1)
to be fused in the corresponding class. This may be due to over-fitting of λ-Merge.

As a sanity check, so as to confirm our observations about the performance of Burst-
FuseX, we also test BurstFuseX on the 10% sample runs from TREC 2012 Microblog
track. We present the experimental results of BurstFuseX and the standard fusion method
X it incorporates in Table 4.5. Clearly, our observations about the performance of Burst-

48

4.3. Results and Analysis

Table 4.4: Retrieval performance on the 10% sample lists from the TREC 2011 Micro-
blog track. Boldface marks the better performance between BurstFustX and the standard
fusion method X that it incorporates; a statistically significant difference between the
two is marked in the upper right hand corner as N (or H) for α = .01, or M (and O) for
α = .05; a statistically significant difference with run1 is marked in the upper left hand
corner using the same symbols; the best result per column is underlined.

Class 1 Class 2

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .2210 .5918 .5673 .5347 .4551 .1457 .4612 .4143 .3714 .3571
run2 .2690 .5959 .5796 .5442 .4537 .1886 .4776 .4347 .3878 .3463
run3 .2318 .5755 .5367 .5034 .4401 .1525 .4041 .4143 .3878 .3408
run4 .2058 .5714 .5367 .4939 .4211 .1376 .3959 .3939 .3796 .3218
run5 .2575 .5673 .4980 .4721 .4211 .1688 .3878 .3633 .3605 .3136
run6 .2098 .5469 .5102 .4694 .4095 .1820 .4122 .3796 .3619 .3027

CombSUM .3404 N.6245 .5816 .5524 N.4966 N.2625 N.5306 N.4531 N.4286 N.3735
BurstFuseCombSUM N.3563N N.6163 N.5959M N.5878N N.5578N N.2651N M.4898H N.4694N N.4553N N.4344N

CombMNZ N.3385 N.6245 .5755 .5524 N.5020 N.2581 N.5347 N.4592 N.4354 N.3789
BurstFuseCombMNZ N.3528N N.6286 N.5959N N.5918N N.5517N N.2587N N.5061H N.4735N N.4567M N.4242N

λ-Merge .2548 H.5641 H.5631 .5496 .4611 .1898 O.4641 N.4608 N.4307 N.3668
BurstFuseλ-Merge N.2920N H.5655 .5812N N.5701N N.5011N N.2161N H.4384H N.4651 N.4558N N.4195N

Class 3 Class 4

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .1661 .4041 .3408 .2898 .2122 .2058 .5714 .5367 .4939 .4211
run2 .0997 .3429 .3000 .2653 .2095 .2098 .5469 .5102 .4694 .4095
run3 .1636 .3959 .3122 .2571 .2041 .1376 .3959 .3939 .3796 .3218
run4 .0753 .3265 .2735 .2585 .2034 .1820 .4122 .3796 .3619 .3027
run5 .0571 .2980 .2551 .2408 .2020 .1636 .3959 .3122 .2571 .2041
run6 .0994 .3510 .2735 .2408 .2016 .0753 .3265 .2735 .2585 .2034

CombSUM N.2150 N.4857 N.4327 N.3837 N.2952 .2795 N.6122 N.5327 N.4721 H.3918
BurstFuseCombSUM N.2283 N.4408H N.4184O N.3973M N.3388N N.2863N N.5633H N.5449M N.5011N N.4380N

CombMNZ N.2187 N.4898 N.4327 N.3932 N.2973 .2794 N.6000 N.5449 M.4830 .4048
BurstFuseCombMNZ N.2313M N.4531H N.4327 N.4122 N.3442N N.2883N N.5796H N.5469 M.5043N .4387N

λ-Merge H.1450 H.3757 N.3709 N.3431 N.2801 O.1950 H.4816 H.4708 N.4628 .4038
BurstFuseλ-Merge H.1513N H.3547O N.3810M N.3572N N.3217N N.2212N H.4609H H.4811M N.4937N N.4303N

FuseX and the standard fusion methods when fusing the runs from TREC 2011 Micro-
blog track are confirmed by the 2012 data. For instance, in Table 4.5 we see that all data
fusion methods, both BurstFuseX and other ones, when fusing runs in Class 1, outper-
form the best result run of the TREC 2012 Microblog track, and almost all of these im-
provements are statistically significant in terms of the metrics listed in the table. Below,
we only report experimental results for the TREC 2011 Microblog track test collection:
the 2012 collection consistently yields the same overall results and trends.

4.3.2 The use of burst information

Next we examine the effect of using different amounts of burst information in our burst-
aware fusion method. Put differently, we examine the impact of the free parameter µ in

49

4. Burst-Aware Data Fusion

Table 4.5: Retrieval performance on the 10% sample lists from the TREC 2012 Micro-
blog track. Boldface marks the better performance between BurstFustX and the standard
fusion method X that it incorporates; a statistically significant difference between the
two is marked in the upper right hand corner as N (or H) for α = .01, or M (and O) for
α = .05; a statistically significant difference with run1 is marked in the upper left hand
corner using the same symbols; the best result per column is underlined.

Class 1 Class 2

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .1685 .6102 .5729 .5254 .4695 .1136 .4881 .4492 .4271 .3638
run2 .1582 .5898 .5627 .5424 .4684 .1095 .4576 .4017 .3842 .3463
run3 .1566 .5831 .5390 .4949 .4435 .1079 .4136 .3966 .3706 .3390
run4 .1563 .6000 .5763 .5480 .4571 .1078 .4508 .4475 .4305 .3655
run5 .1526 .5729 .5407 .5322 .4610 .1010 .4712 .4322 .4023 .3599
run6 .1385 .5525 .5237 .5028 .4429 .0744 .3898 .3678 .3605 .3209

CombSUM .1785 N.6271 .5814 N.5559 N.5028 N.1263 N.5322 N.4898 N.4520 M.3797
BurstFuseCombSUM N.2028N H.5797H .5763 N.5842N N.5797N N.1473N N.4983H N.4898 N.4734N N.4548N

CombMNZ .1776 N.6339 .5831 N.5582 N.5011 N.1319 N.5492 N.5085 N.4610 N.3944
BurstFuseCombMNZ N.2019N .6000H .5847 N.5887N N.5678N N.1516N N.5186H N.4949 N.4859N N.4651N

λ-Merge .1700 .6134 .5673 N.5462 .4718 .1131 N.5124 M.4583 .4367 .3698
BurstFuseλ-Merge N.1843M H.5734H .5730 N.5675N N.5184N N.1326N N.4878H N.4766N N.4638N N.4281N

Class 3 Class 4

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .0724 .3390 .3390 .3073 .2542 .1566 .5831 .5390 .4949 .4435
run2 .0694 .3322 .3102 .2983 .2712 .1385 .5525 .5237 .5028 .4429
run3 .0661 .3356 .3390 .3062 .2678 .1095 .4576 .4017 .3842 .3463
run4 .0658 .3017 .2864 .2938 .2480 .1010 .4712 .4322 .4023 .3599
run5 .0626 .2949 .2661 .2520 .2282 .0661 .3356 .3390 .3062 .2678
run6 .0343 .1831 .2068 .2147 .2367 .0343 .1831 .2068 .2147 .2367

CombSUM N.1082 N.5051 N.4576 N.4158 N.3249 H.1360 H.5559 O.5288 .4949 H.3955
BurstFuseCombSUM N.1228N N.4508H N.4424O N.4260M N.3904N .1584N H.5220H H.5102O .4938 N.4774N

CombMNZ N.1163 N.5186 N.4746 N.4362 N.3508 O.1456 H.5593 .5356 .5062 O.4260
BurstFuseCombMNZ N.1326N N.4780H N.4797 N.4554M N.4147N M.1661N H.5254H H.5300 N.5153 N.4842N

λ-Merge N.1075 N.4983 N.4458 N.4037 N.3352 H.1301 H.5416 H.5119 .4863 H.3847
BurstFuseλ-Merge N.1104H N.4684H N.4482 N.4267N N.3982N .1488N H.5362 H.5107 .4954 .4477N

(4.4). Fig. 4.3 depicts the MAP and p@30 performance curves for BurstFuseX and the
corresponding standard fusion methods it integrates when fusing result lists in Class 1,
Class 2, Class 3 and Class 4, respectively. For µ = 0, BurstFuseX amounts to the
standard fusion method X that it integrates; more weight is put on burst information with
higher values of µ; for 0 < µ < 1, the standard fusion scores of posts (according to
method X) as well as the burst information are utilized for fusing the lists.

It is worth noting in Fig. 4.3 that when fusing lists in different quality classes, the
official metric p@30 scores of BurstFuseX (µ > 0) are usually higher than those of the
standard fusion method X it incorporates (µ = 0), especially when µ = 0.6, 0.7. For
instance, in Class 4 the p@30 performance of BurstFuseCombSUM peaks at µ = 0.7
with the score of 0.4451, while that of the standard fusion method it integrates, Comb-
SUM achieves only 0.3918. As we observed before, BurstFuseX works better when it

50

4.3. Results and Analysis

0 0.2 0.4 0.6 0.8 1
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

µ

p
@

3
0

BurstFuseCombSUM

CombSUM

BurstFuseCombMNZ

CombMNZ

BurstFuseλ−Merge

λ−Merge

(a) Class 1

0 0.2 0.4 0.6 0.8 1
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

µ

p
@

3
0

(b) Class 2

0 0.2 0.4 0.6 0.8 1
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

µ

p
@

3
0

(c) Class 3

0 0.2 0.4 0.6 0.8 1
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

µ

p
@

3
0

(d) Class 4

Figure 4.3: Effect of varying the value of µ on the P@30 performance of BurstFuseX
when merging lists in (a) Class 1, (b) Class 2, (c) Class 3 and (d) Class 4. When µ = 0,
BurstFuseX amounts to the standard fusion method X that it integrates. More weight is
put on burst information with higher value of µ. Note: figures are not to the same scale.

integrates one of the unsupervised standard fusion methods than the supervised fusion
method λ-Merge.

In addition, it is clear from Fig. 4.3 that when the quality of the result lists as a whole
is higher, it will be more useful to utilize burst information. Fig. 4.3 shows that even
if µ = 1.0, BurstFuseX still outperforms the standard fusion method it incorporates in
high quality classes, like Class 1 and Class 2. But when the quality of the result lists as a
whole becomes lower, the positive impact of BurstFuseX is reduced. We provide a further
analysis of the use of burst information in data fusion and single retrieval microblog
search algorithms in Section 4.3.7.

4.3.3 Effect of the number of lists to be merged
We have already seen that BurstFuseX outperforms the standard fusion methods it in-
corporates when fusing 6 lists in different quality classes. We now explore the effect on
the performance of BurstFuseX of varying the number of lists being merged, in terms of
MAP, p@5, p@15 and p@30. In Fig. 4.4, we randomly choose k ∈ {2, 4, 6, . . . , 38} lists

51

4. Burst-Aware Data Fusion

0 10 20 30 40

0.2

0.25

0.3

0.35

Number of runs to be fused

M
A

P

BurstFuseCombSUM

CombSUM

(a) MAP

0 10 20 30 40

0.4

0.5

0.6

Number of runs to be fused

p
@

5

BurstFuseCombSUM

CombSUM

(b) p@5

0 10 20 30 40
0.3

0.4

0.5

0.6

Number of runs to be fused

p
@

1
5

BurstFuseCombSUM

CombSUM

(c) p@15

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

0.5

Number of runs to be fused

p
@

3
0

BurstFuseCombSUM

CombSUM

(d) p@30

Figure 4.4: Effect of the number of lists to be merged, k, on (a) MAP (b) p@5 (c) p@15
and (d) p@30. The scores of performance are with the corresponding standard deviation.
Note: figures are not to the same scale.

from the 174 lists made available by the TREC 2011 Microblog track and then fuse them.
For each k, we repeat the experiment 20 times and report on the average scores as well
as the standard deviation. We use CombSUM and BurstFuseCombSUM as a representa-
tive example; for the other combinations with a standard fusion method X qualitatively
similar results can be observed.

As can be seen in Fig. 4.4, with fewer than 12 lists to be merged by either BurstFuseX
or the standard fusion method it builds on, the addition of one more list tends to lead to
performance increases across all metrics. Beyond 12 lists, the performance gains of
additional lists tend to level off. This is because despite the fact that with more lists, on
average we may see more high quality lists, more low quality lists may show up as well.
Unlike the MAP, p@15 and p@30 performance of BurstFuseCombSUM where it always
enhances that of CombSUM, the early precision p@5 performance of BurstCombSUM is
worse than that of CombSUM especially when fewer lists are merged. This observation
is consistent with those in both Tables 4.4 and 4.5. Performance gains in terms of p@15
of BurstFuseCombSUM and CombSUM continue even when more than 16 lists are being
fused. In contrast, in terms of p@30, when the number of lists to be merged increases,
the gain of BurstFuseCombSUM over CombSUM decreases. As more lists are being
fused, there is no further gain in terms of burst-awareness.

52

4.3. Results and Analysis

4.3.4 Topic-level analysis

Next, we take a closer look at per query improvements of BurstFuseX over the under-
lying standard fusion method X. For brevity, we only consider BurstFuseCombSUM as
a representative to report all the queries (topics) performance differences against that of
the standard fusion method it incorporates, and we only consider runs in Class 1, Class 2,
Class 3 and Class 4, respectively. The results for other instances of BurstFuseX are
qualitatively similar.

Fig. 4.5 shows the per query performance differences in terms of AP, p@5, p@15
and p@30, respectively, between BurstFuseCombSUM and CombSUM. Overall, gains
by BurstFuseCombSUM over CombSUM outnumber losses for p@15 and p@30 as well
as MAP, but not for very early precision, i.e., p@5. Gains by BurstFuseCombSUM over
CombSUM are due mainly to topics that are discussed only in very specific time intervals.
Examples include topics MB010 (Egyptian protesters attack museum), MB011 (Kubica
crash) and MB015 (William and Kate fax save-the-date). Invariably, for such topics
we found evidence of the intuition depicted in Fig. 4.1: posts that are ranked low in
a small number of lists but that are pushed into the final merged list by BurstFuseX
because they are central to a burst. For instance, in response to topic MB010 (Egyptian
protesters attack museum), post #30354903104749568 is ranked near the bottom in only
two lists (at ranks 26 and 27 in runs clarity1 and DFReekLIM30, respectively). Because
many posts for the topic were generated around the same time interval (January 26–29,
2011, when the event happened) and are ranked highly in many lists to be fused, post
#30354903104749568 is rewarded and ranked as high as top 6 in the merged list.

Topics for which BurstFuseCombSUM cannot beat ComSUM tend to be quite gen-
eral and unrelated to any specific time windows. Examples include topics MB023 (Am-
trak train service) and MB027 (reduce energy consumption). For a very small number of
queries, BurstFuseCombSUM’s performance, in terms of MAP or p@30 is worse than
that of CombSUM. One reason that we observed for this phenomenon is that a very
small number of posts are not relevant to the topics even if they are central to the bursts
according to their timestamps, and hence they should not be rewarded. An example here
is topic MB031 (Special Olympics athletes). In response to this topic, result lists to be
fused ranked some irrelevant posts highly, but these posts are still in the bursts, which
results in promoting these posts to high ranks, which hurts the performance.

4.3.5 Run-time analysis

We now examine the run-times of BurstFuseX. In particular, we explore what the added
costs in terms of run-time of BurstFuseX is on top of the standard fusion methods that
it incorporates. Our implementation of BurstFuseX is developed in C++ and the experi-
ments are run on a 10.6.8 MacBook Pro computer with 4GB memory and a 2.3 GHz Intel
core i5 processor. In Table 4.6, we randomly choose k ∈ {2, 4, 6, 8, 12, 18, 24, 30} lists
from the 174 lists available from the TREC 2011 Microblog track. For each k, we repeat
the following experiment 20 times: sample a query from the TREC 2011 Microblog track
test set, run fuse k result lists for the query (using CombSUM, CombMNZ, λ-Merge as
well as BurstFuseCombSUM, BurstFuseCombMNZ and BurstFuseλ-Merge), record the
wall clock time. The results are recorded in Table 4.6 and plotted in Fig. 4.6.

53

4. Burst-Aware Data Fusion

-1 0 1

∆AP

to
p
ic

s

-1 0 1

∆p@5

to
p
ic

s

-1 0 1

∆p@15

to
p
ic

s

-1 0 1

∆p@30

to
p
ic

s

(a) class 1

-1 0 1

∆AP

to
p
ic

s

-1 0 1

∆p@5

to
p
ic

s

-1 0 1

∆p@15

to
p
ic

s

-1 0 1

∆p@30

to
p
ic

s

(b) class 2

-1 0 1

∆AP

to
p
ic

s

-1 0 1

∆p@5

to
p
ic

s

-1 0 1

∆p@15

to
p
ic

s

-1 0 1

∆p@30

to
p
ic

s

(c) class 3

-1 0 1

∆AP

to
p
ic

s

-1 0 1

∆p@5

to
p
ic

s

-1 0 1

∆p@15

to
p
ic

s

-1 0 1

∆p@30

to
p
ic

s

(d) class 4
Figure 4.5: Per topic performance differences of BurstFuseCombSUM against Comb-
SUM. The figures shown are for the 2011 Microblog track sampled runs in Class 1,
Class 2, Class 3 and Class 4, for AP, p@5, p@15 and p@30 difference. A bar extend-
ing to the right of the center of a plot indicates that BurstFuseCombSUM outperforms
CombSUM, and vice versa for bars extending to the left of the center.

54

4.3. Results and Analysis

Table 4.6: Time spent on fusing lists by different aggregation methods. Recorded in
seconds with standard deviations (std).

Number of lists

2 4 6 8 12 18 24 30

CombSUM 3.06e–4 5.01e–4 5.76e–4 9.33e–4 1.03e–3 1.98e–3 2.77e–3 3.37e–3
std 1.13e–5 1.27e–5 2.57e–5 3.61e–5 6.93e–5 6.49e–5 7.02e–5 7.50e–5

CombMNZ 3.06e–4 5.01e–4 5.76e–4 9.33e–4 1.03e–3 1.99e–3 2.79e–3 3.38e–3
std 1.13e–5 1.27e–5 2.57e–5 3.61e–5 6.93e–5 6.52e–5 6.98e–5 7.01e–5

λ-Merge 1.15 2.55 3.82 5.24 7.78 12.03 16.32 20.74
std 1.22e–1 2.3e–1 5.82e–1 6.74e-1 8.03e–1 1.09 1.13 1.18

BurstFuseCombSUM 9.12e–4 1.50e–3 1.84e–3 2.96e–3 3.43e–3 6.69e–3 9.52e–3 1.38e–2
std 3.42e–5 3.94e–5 7.91e–5 7.41e–5 8.72e–5 1.88e–4 2.66e–4 2.84e–4

BurstFuseCombMNZ 9.12e–4 1.50e–3 1.84e–3 2.96e–3 3.43e–3 6.69e–3 9.52e–3 1.38e–2
std 3.42e–5 3.94e–5 7.91e–5 7.41e–5 8.72e–5 1.88e–4 2.66e–4 2.84e–4

BurstFuseλ-Merge 1.16 2.56 3.85 5.25 7.79 12.04 16.34 20.77
std 1.37e–1 2.57e–1 5.11e–1 6.30e-1 7.78e-1 1.10 1.02 2.41

As can be seen in Table 4.6 and Fig. 4.6, the overhead of running BurstFuseX over
simply running the standard fusion method X is very limited, but increases with the
number of lists to be merged, especially when BurstFuseX incorporates with CombSUM
and CombMNZ. BurstFuseCombSUM and BurstFuseCombMNZ merge the lists within
0.01s when given 30 result lists and within 0.001s when fusing two lists. In contrast,
however, compared to any of the fusion methods, BurstFuseλ-Merge has to spend more
time, which is almost the same as that of the fusion method it builds on. In addition, it is
worth noting in Fig. 4.6 that in many cases, as the number of lists to be fused increases,
the time spent on fusing is almost linear for BurstFuseX and the standard fusion method
as well. For instance, the time needed to fuse 8 lists by BurstFuseCombSUM is nearly
double the time needed for fusing 4 lists (2.96e-3s and 1.50e-3s, respectively).

4.3.6 Effect of fusing time-sensitive result lists
BurstFuseX uses temporal information in an essential way. What happens when it fuses
result lists that have been generated using temporal information themselves? That is, is
there anything left to gain by using BurstFuseX? To answer this question, we explore
the performance of BurstFuseX using five result lists that themselves consider tempo-
ral information: isiFDRML (Metzler and Cai, 2011; Metzler et al., 2012), DFReeK-
LIM30 (Horn et al., 2011), Wise2ndRun (Wei et al., 2011), ICTNET11MBR3 (Cao et al.,
2011) and UDMicroIDFD (Amati et al., 2011). We use BurstFuseX as well as the stan-
dard fusion methods, CombSUM, CombMNZ and λ-Merge to fuse those result lists, and
report the comparison results.

Table 4.7 shows the result of the comparisons between BurstFuseX and the five time-
sensitive result lists. Obviously, CombSUM and CombMNZ perform on a par with the
best result list (isiFDRML). For all metrics but p@5, BurstFuseCombSUM and Burst-
FuseCombMNZ outperform the best result run as well as the standard fusion method
they incorporate; many of the improvements are statistically significant. This illustrates
that exploring time information in data fusion has a different effect than utilizing time

55

4. Burst-Aware Data Fusion

0 10 20 30
0

0.005

0.01

0.015

Number of runs to be fused

S
e

c
o

n
d

BurstFuseCombSUM
CombSUM

(a)

0 10 20 30
0

0.005

0.01

0.015

Number of runs to be fused

S
e

c
o

n
d

BurstFuseCombMNZ
CombMNZ

(b)

0 10 20 30
0

5

10

15

20

25

Number of runs to be fused

S
e

c
o

n
d

BurstFuseλ−Merge

λ−Merge

(c)

Figure 4.6: Run-times of BurstFuseX against the standard fusion method it builds on with
standard deviation. From left to right: (a) BurstFuseCombSUM against CombSUM, (b)
BurstFuseCombMNZ against CombMNZ, and (c) BurstFuseλ-Merge against λ-Merge.
Note: figures are not to the same scale.

information in an individual ranking function, an effect that can lead to performance
increases. One of the main reasons behind this is that posts within intervals in which
many relevant posts appear can only be confirmed to be relevant by gathering data from
multiple lists, time-sensitive or not. Finally, neither λ-Merge nor BurstFuseλ-Merge can
beat the best time-sensitive result list; as before, BurstFuseλ-Merge does improve over
λ-Merge.

4.3.7 Further analysis of using burst information

We provide a further analysis of the use of burst information in the setting of microblog
search. More specifically, the component lists that we consider next are generated using
a time-based language model for microblogs (TBLM) (Li and Croft, 2003), a textual
quality factor model with temporal query expansion (LM-T(qe)) (Massoudi et al., 2011),
a direct time-sensitive BM25 retrieval model (DIRECT-BM25 (mean)) (Dakka et al.,
2012) and a temporal tweet selection feedback method (TSF+QDRM) (Miyanishi et al.,

56

4.3. Results and Analysis

Table 4.7: Retrieval performance on 5 time-sensitive result lists. Boldface marks the
better performance between BurstFustX and the standard fusion method X that it incor-
porates; a statistically significant difference between the two is marked in the upper right
hand corner as N (or H) for α = .01, or M (and O) for α = .05; a statistically significant
difference with the best single run (isiFDRML) is marked in the upper left hand corner
using the same symbols; the best result per column is underlined.

MAP p@5 p@10 p@15 p@30

isiFDRML .2326 .6286 .5633 .5374 .4442
DFReeKLIM30 .2318 .5755 .5367 .5034 .4401
Wise2ndRun .1971 .4980 .4612 .4231 .3639
ICTNET11MBR3 .1863 .4490 .3735 .3619 .3054
UDMicroIDFD .1428 .3224 .3143 .3075 .2687

CombSUM .2397 .6280 .5673 .5401 .4469
BurstFuseCombSUM N.3053N H.5837H N.5714 N.5701N N.4966N

CombMNZ M.2421 .6284 .5780 H.5048 M.4578
BurstFuseCombMNZ N.3204N .6245 N.5878 N.5755N N.5116N

λ-Merge H.2148 H.5539 H.5144 H.4873 H.3894
BurstFuseλ-Merge H.2271N H.5501 H.5257M H.5187N O.4335N

2013b). To make λ-Merge be comparable, we also add the retrieval scores computed by
these 4 time-sensitive retrieval baselines into λ-Merge.

Table 4.8 shows a comparison between fusion methods and the component lists that
are burst-sensitive. As can be seen in the table, except for the performance of λ-Merge,
which is slightly worse than that of the best component list, all other fusion methods can
boost retrieval performance, especially for the fusion methods that we propose in this
chapter. This finding again underlines the merit of using fusion for searching microblog
posts and of using bursts information in the fusion step.

In Table 4.8 we also compare our BurstFuseX with CombSUM, CombMNZ, λ-
Merge, and BurstFuseXposts, where BurstFuseXposts is the fusion method that detects
bursts based on the content of posts by the detection approached in (Lappas et al., 2009)
and then integrates burst information into the fusion process. Clearly, BurstFuseX can
still significantly enhance the retrieval performance in all cases and outperforms all stan-
dard fusion methods and the best component run, in contrast with BurstFuseXposts. We
also see that detecting bursts based on one of the standard fusion methods, CombSUM
or CombMNZ, works better than detecting bursts based on the content of posts.

4.3.8 Performance on single result list

Finally, to address our final research question, ix, and understand whether BurstFuseX
requires multiple result lists or whether it can aid single runs that may not have taken
time into consideration, we feed BurstFuseX single result lists and compare the output
against the single input list.

57

4. Burst-Aware Data Fusion

Table 4.8: Performance on 4 burst-sensitive result lists. Boldface marks the best result
per metric; the best score of component lists per metric is underline; a statistically sig-
nificant difference between a fusion method and the best component list is marked in
the upper left hand corner of the fusion score; a statistically significant difference be-
tween BurstFuseXposts and BurstFuseX is marked in the upper right hand corner of the
BurstFuseX score.

MAP p@5 p@10 p@15 p@30

TSF+QDRM .2834 .6220 .6856 .6279 .5368
DIRECT-BM25 (mean) .2798 .6187 .6725 .6320 .5133
LM-T (qe) .2346 .5836 .5648 .5178 .4471
TBLM .2231 .5742 .5433 .5017 .4395

CombSUM M.2962 M.6395 N.6973 N.6482 N.5513
BurstFuseCombSUMposts

M.3027 M.6398 N.6979 N.6487 N.5557
BurstFuseCombSUM M.3047 M.6408 N.6983 N.6497 N.5613M

CombMNZ M.2948 M.6350 M.6918 M.6347 M.5420
BurstFuseCombMNZposts M.3015 M.6373 M.6950 M.6447 M.5433
BurstFuseCombMNZ M.3027 M.6398 N.6972 N.6443 N.5524N

λ-Merge .2847 .6275 .6876 6279 .5383
BurstFuseλ-Mergeposts .2881 .6297 .6876 .6313 .5413
BurstFuseλ-Merge .2942 .6387 .6894 .6326 M.5428

Table 4.9 shows the results on the result lists in class 1; results on other result lists are
qualitatively similar. As can be seen in the table, the retrieval performance of BurstFuseX
is almost the same as that of the input result list and the difference between them is
not statistically significant for any of the metrics. The main reason why BurstFuseX
cannot significantly beat the input result list is that detecting bursts within a small set of
documents (i.e., those contained in a single result list) is challenging.

4.4 Conclusion

Various features of microblog posts make searching such posts a real challenge: their
limited length, their dynamic nature, the creative language usage and their highly con-
textualized nature. However, the special nature of microblog posts also offers unique
opportunities. In this chapter, we have focused on utilizing one such special feature for
boosting the performance of search algorithms for microblog posts. We have proposed a
data fusion approach, BurstFuseX, that fuses result lists based in part on the bursty na-
ture of many discussions on microblog platforms. Our approach is based on integrating
information generated by a standard fusion method, such as CombSUM, CombMNZ or
λ-Merge, detecting bursts of posts across the lists being fused, and rewarding posts that
are published in or near a burst containing highly ranked posts. Our experiments provide
answers to the main research question raised at the beginning of this chapter:

58

4.4. Conclusion

Table 4.9: Performance of BurstFuseX on individual result lists in Class 1. None of the
differences between BurstFuseX and the corresponding single input result list is statisti-
cally significant.

MAP p@5 p@10 p@15 p@30

run1 .2590 .5959 .5796 .5442 .4537
BurstFuse applied to run1 .2593 .5959 .5837 .5442 .4537

run2 .2575 .5673 .4980 .4721 .4211
BurstFuse applied to run2 .2577 .5673 .5000 .4721 .4211

run3 .2318 .5755 .5367 .5034 .4401
BurstFuse applied to run3 .2319 .5755 .5367 .5048 .4401

run4 .2210 .5918 .5673 .5347 .4551
BurstFuse applied to run4 .2210 .5918 .5673 .5347 .4551

run5 .2098 .5469 .5102 .4694 .4095
BurstFuse applied to run5 .2098 .5469 .5102 .4707 .4095

run6 .2058 .5714 .5367 .4939 .4211
BurstFuse applied to run6 .2062 .5755 .5367 .4952 .4211

RQ 1 Can data fusion help microblog search?

To answer the question, we work with the TREC 2011 and 2012 Microblog tracks dataset
and fuse the result lists submitted to the TREC using our proposed methods and the
baseline methods. Our experimental results show that data fusion can indeed help to
improve the performance of searching posts in microblogging environment. The results
also show that detecting bursts and then using burst information as part of a standard
fusion method can enhance the retrieval performance compared to the standard fusion
method it integrates, in terms of mean average precision as well as precision-oriented
measures. Our new fusion method has a strong recall-enhancing effect; compared to the
standard fusion method it incorporates, this comes at a small price in terms of a small
drop in very early precision measures such as p@5. Our experimental results also show
that our BurstFuseX method can significantly outperform burst or time-sensitive retrieval
models and models that detect bursts based on the content of posts.

As to future work, we have only explored data fusion techniques in microblog search.
But data fusion can be, and has been, applied in a variety of areas in IR, like aggregat-
ing federated search (Crestani and Markov, 2013; Shokouhi and Si, 2011), cross-lingual
search (Si et al., 2008), and finding groups of knowledgeable experts (Liang and de Rijke,
2013). How to apply our burst-aware data fusion in these other areas is an open research
question. One avenue for future work is to integrate temporal information into web
search—for so-called fresh results. Besides, one of the standard fusion method used in
our experiments is λ-Merge, where we assume that labeled data is available. However,
this assumption is not always true. Therefore, another promising direction for future
work is to explore using pseudo test collections (Asadi et al., 2011; Berendsen et al.,
2013) to train a data fusion model so as to enhance the performance.

59

4. Burst-Aware Data Fusion

The proposed data fusion methods in this chapter ignore the rank scores of missing
documents (see Fig. 4.1 for what are missing documents). In the next chapter, we will
turn to inferring the fusion scores of missing documents while we still integrate temporal
information to boost retrieval performance of searching posts in data fusion strategies.

60

4.A. Detailing λ-Merge

4.A Detailing λ-Merge

In this appendix we detail one of the standard fusion methods we use, λ-Merge. To be
able to define the fusion score for document d in response to query q according to λ-
Merge, we need to consider the sum of weighting the individual document scores in each
list by the weight of the corresponding list:

g(d; q) =
∑
m

αm · f(xLm

d ;θ), (4.10)

where αm is the weight of list Lm, f(xLm

d ;θ) is the scoring function for d in Lm, with
parameters θ. We adapt a linear function for f(xLm

d ;θ), due to its widespread use (Atrey
et al., 2010), such that:

f(xLm

d ;θ) =
∑
n

θn · xnLm

d ,

where θn, the n-th dimension of vector θ, is the weight of the n-th feature, and xnLm

d ,
the n-th dimension of xLm

d , is the value of the n-th feature of d in Lm.
Now, writing C to denote the smoothed objective, according to λ-Merge the param-

eters αm and θn can be updated based on the gradients ∂C/∂αm =
∑
d(∂C/∂g(d; q)) ·

(∂g(d; q)/∂αm) and ∂C/∂θn =
∑
d(∂C/∂g(d; q))·(∂g(d; q)/∂θn), respectively. Then,

∂C/∂g(d; q) is defined as:

∂C/∂g(d; q) =
∑
e

|∆de|{Id�e − 1/(1 + exp(g(e; q)− g(d; q)))},

where |∆de| is the absolute change in the performance metric if document d and e were
swapped in the current ranking, and the indicator Id�e is 1 when d is judged more rele-
vant than e, 0 otherwise. As explained in the main text, MAP is the metric on which we
focus; hence, we optimize λ-Merge for MAP.

Let rd and re denote the rank positions of d and e in Lm. Assume that d and e are
misranked by current function g, i.e., rd > re but the relevance level of d, l(d), is larger
than that of e, l(e), then

|∆de| =
1

R

(
rd∑
k=re

l(k)P@k −
rd∑
k=re

l′(k)P ′@k

)
.

Here, R is the number of relevant documents for that query, l(k) is the relevance level
of the document at rank position k, P@k is the precision at rank k, and l′(k) is the
relevance value after the documents at positions rd and re being swapped. Mathemati-
cally, the remaining derivatives can be presented as: ∂g(d; q)/∂αm = f(xLm

d ;θ), and
∂g(d; q)/∂θn =

∑
m αm · xn

Lm

d . After training, the parameters θ and the weight αm of
each list are obtained. Then we employ max-min normalization to g(d; q), such that the
fusion score of d computed by λ-Merge can be obtained as:

fλ-Merge(d; q) :=
g(d; q)−min(gq)

max(gq)−min(gq)
, (4.11)

61

4. Burst-Aware Data Fusion

Table 4.10: Features used for λ-Merge

Feature Gloss

Query-post level

Rank Inverse of the rank of a post over the number of returned documents
Rankers Percentage of rankers a post appears in
IsTop-N If a post is within the top-N results

Post level

Link If a post has links
Hashtag If a post has hashtags
Retweet If a post has retweets
Density A post’s content quality
Capitalization A post’s textual quality
Length A post’s length deviation from the median length
Post-burstiness A post’s score associated with bursts (The definition of bursts can be

found in Section 4.1.2)

where min(gq) and max(gq) are the minimum and maximum value of g in response to
q. For further details about λ-Merge we refer to (Donmez et al., 2008; Sheldon et al.,
2011).

Before training λ-Merge, a number of features have to be extracted for d ∈ CL. Ta-
ble 4.10 lists the features used to construct our version of λ-Merge. We identify ten
features, extracted from two levels: query-post level and post level; all features are rep-
resented by either binary or real numbers. At the query-post level, following Tsai et al.
(2008), we use three features: Rank, Rankers and IsTop-N . Rank is defined in (2.1).
Rankers is the number of ranked lists in which the post appears divided by the total num-
ber of lists to be merged. IsTop-N is a binary feature to indicate if this document is
within the top-N results in the list. At the post level, we extract features capable of in-
dicating the quality of a post (Lin et al., 2012; Macdonald et al., 2011); the post features
include Link, Hashtag, Retweet to indicate if the document contains links, hashtags, and
retweets. The post-level features also consist of content quality indicators of a post (Den-
sity, Capitalization and Length) (Lee and et al., 2011; Weerkamp and de Rijke, 2012).
We also extract a feature that we call “post-burstiness” based on bursts. Density of a
post is defined as the sum of tf · idf values of non-stopwords, divided by the number of
stopwords they are apart, squared (Lee and et al., 2011). As in (4.11) we use max-min
normalization to normalize the scores. The Capitalization score of d is obtained by deter-
mining the fraction of sentences in d that have a leading capital, seeing to which degree
this deviates from the median and then applying max-min normalization (Weerkamp and
de Rijke, 2012). The Length score of d is obtained by considering the deviation from the
median length of posts in the collection. The Post-burstiness score of d is obtained by
utilizing burst information.

62

5
Time-Aware Data Fusion

We have introduced a new data fusion approach, BurstFuseX, for microblog search in
Chapter 4. As can be seen in Chapter 4, data fusion approaches can inherit the merits of
the individual search algorithms whose outputs are being fused. Also, they may boost
recall (Wu, 2012) and because they fuse the results of multiple strategies, they mitigate
risks associated with opting for a single strategy (Wu, 2012). In BurstFuseX as well as
previous work on data fusion, the fusion score of a document is the sum of rank scores
from individual input result lists. In addition, they often assume, either implicitly or ex-
plicitly, that the rank score of a document is set to zero if the document does not appear in
a component result list. In this chapter we challenge this assumption and try to infer the
rank scores of missing documents to improve the fusion performance. We are inspired
and motivated by the success of matrix factorization in collaborative filtering (CF) (Gold-
berg et al., 1992) for inferring the rating of unobserved products. Collaborative filtering
methods first model users with latent interests and the products with latent features by
matrix factorization, and then try to predict the rating of products for the given users with
the observations of the existing users’ rating data (Kurucz et al., 2007; Ma et al., 2011a;
Salakhutdinov and Mnih, 2008a,b). Thus, we are interested in answering the following
main research question:

RQ 2 How to infer scores of so-called missing documents in data fusion?

To answer this main research question, we propose a data fusion algorithm, TimeRA
(time-aware rank aggregation), where we apply matrix factorization to model both result
lists (called “users” in CF) and documents (“products” in CF) as a mixture of latent
factors (“interests” in CF), such that the rank scores of missing documents (“the rating of
unobserved products” in CF) in a result list for fusion can be inferred. In our data fusion
algorithm, we define a list-document rank score matrix, factorize this matrix, and utilize
the factorized list-specific and document-specific matrices to assign scores to missing
documents.

Our results show that TimeRA is able to effectively fuse result lists, subject to real-
time search requirements, running almost as fast as standard fusion methods such as
CombSUM (Fox and Shaw, 1994), and outperform both time-sensitive microblog search
methods and competing fusion algorithms.

Our contributions in this chapter can be summarized as follows:

63

5. Time-Aware Data Fusion

Table 5.1: Additional notation used in TimeRA (cf. Table 2.1).

Notation Gloss

R m× |CL| list-post rank score matrix
A number of latent factors
S matrix used for inferring latent topics for L
V matrix used for inferring latent topics for CL
Si a column vector in S used for aspects of Li
Vj a column vector in V used for aspects of dj
Rij inferred rank score of post dj ∈ CL \ Li
dkLidj dk ranks higher than dj in Li
Iij indicate whether dj ∈ Li
β relative weight of burst information in TimeRA

i. We propose a data fusion-based algorithm for microblog search, TimeRA, that out-
performs traditional and state-of-the-art unsupervised and supervised data fusion
methods as well as the best single result list that it aggregates.

ii. We examine the relative contributions of the main ingredients of TimeRA (burst
detection and score inference) and find that burst detection is effective in helping
data fusion and that inferring scores for missing documents during fusion boosts
performance as well.

iii. We provide a detailed analysis of the performance of TimeRA and offer a number
of examples where we observe the effect hypothesized in Fig. 4.1 in Chapter 4,
i.e., of posts in bursts having their rank score boosted.

iv. We show that the effect of TimeRA on ranking microblog posts is different from
the effect of existing time-sensitive microblog search models.

v. And, finally, we study the efficiency of TimeRA and show that it meets real-time
search requirements.

In the remainder of the chapter, we detail our approach in Section 5.1; Section 5.2 de-
scribes experimental setup; Section 5.3 presents the results; finally, Section 5.4 concludes
the chapter.

5.1 Time-Aware Data Fusion

We detail our time-aware data fusion algorithm in this section; Section 5.1.1 details
our fusion method, TimeRA, and Section 5.1.2 contains a brief complexity analysis of
TimeRA. The way we detect bursts in our TimeRA algorithm is the same as that in Burst-
FuseX in Chapter 4. See 4.1.2 for details of how to detect bursts. To be able to present
data fusion methods in a uniform way, we first introduce and summarize additional nota-
tion in Table 5.1 (other notation used throughout the thesis can be found in Table 2.1).

64

5.1. Time-Aware Data Fusion

Algorithm 2: TimeRA: Time-Aware data fusion.
Input : A query q, a number of ranked lists of posts to be fused, L={ L1, L2, . . . , Lm },

the combined set of posts CL :=
⋃m
i=1 Li, learning rate δ.

Output: A final data fusion list of posts Lf .
1 Lf = ∅, initialize R by (2.1), Initialize S and V with random values, let m = |L| and
t = 0;

2 for j = 1, 2, · · · , n do
3 fTimeRA(dj |q) = 0;

4 Generate a set of bursts B (See Chapter 4);
5 repeat
6 for i = 1, 2, · · · ,m do
7 S

(t+1)
i = S

(t)
i − δ

∂C2

∂S
(t)
i

based on (5.13);

8 for j = 1, 2, · · · , n do
9 V

(t+1)
j = V

(t)
j − δ

∂C2

∂V
(t)
j

based on (5.13);

10 t = t+ 1;
11 until C2 given by (5.10) converges;
12 S = S(t), V = V(t);
13 for j = 1, 2, · · · , n do
14 Obtain fTimeRA(dj |q) score for dj via S and V by (5.12);

15 Construct final fused list Lf via decreased scores of fTimeRA(d|q).

5.1.1 The fusion method

Next we detail our time-aware data fusion method, TimeRA. TimeRA utilizes matrix
factorization techniques. The input of the matrix factorization in TimeRA is an m × n
matrix R ∈ Rm×n which we call a list-document matrix; here, again, m is the number
of result lists and n is the number of posts to be fused, i.e., n = |CL|. R is initialized by
(2.1), viz., its elements Rij are defined by (2.1). The output of the matrix factorization
consists of two new matrices S ∈ RA×m and V ∈ RA×n, obtained by factorizing R,
which we call the factor-list matrix and the factor-post matrix, respectively. Here, A is
the number of latent factors. After obtaining S and V, we can infer the normalized scores
of missing posts, based on which we arrive at the fusion scores of all the posts.

We present TimeRA in Algorithm 2. We first provide a high-level walkthrough. To
begin, it sets matrices S ∈ RA×m, V ∈ RA×n with random values and fTimeRA(d|q)
with the value 0 (lines 1–3 in Algorithm 2). Let Si be the i-th column of S, meant to get
the latent factors of the list Li after matrix factorization, and let Vj be the j-th column
of V, meant to get latent factors of post dj after matrix factorization. After detecting
bursts (line 4), TimeRA utilizes burst information and tries to get the final S and V by
performing a gradient descent process on a cost function C2 (lines 5–12). To this end,
fusion scores fTimeRA(d|q) of d ∈ CL can be obtained by S and V (lines 13–14). The
defined cost function plays an important role: (1) it tries to keep the original rank scores
of posts that rank high in many of the lists to be fused, (2) it rewards posts that rank low
in a few lists but in the vicinity of bursts, and (3) it gets the latent factors of both the lists

65

5. Time-Aware Data Fusion

and the posts such that missing posts’ rank scores can be inferred.
Our matrix factorization approach in TimeRA seeks to approximate the list-document

matrix R by a multiplication of A latent factors,

R ≈ S>V (5.1)

To obtain S and V, traditionally, the Singular Value Decomposition (SVD) method (Ku-
rucz et al., 2007) is utilized to approximate the list-document rank matrix R by minimiz-
ing:

S,V = arg min
S,V

1

2
||R− S>V||2F , (5.2)

where || · ||2F denotes the Frobenius norm. Due to the definition that Rij = 0 if dj is a
missing document, i.e., dj ∈ CL \Li, we only need to factorize the observed scores in R
so that (5.2) changes to:

S,V = arg min
S,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij − S>i Vj)
2, (5.3)

where Iij is an indicator function that is equal to 1 if dj appears in Li and equal to 0
otherwise, Si ∈ RA×1 is a column vector in S that serves to get latent factors of Li, and,
similarly, Vj ∈ RA×1 is a column vector in V that serves to get latent factors of dj . As
Rij ∈ [0, 1] according to (2.1), (5.3) can be rewritten as:

S,V = arg min
S,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij − g(S>i Vj))
2, (5.4)

where g(x) is the logistic function defined by g(x) = 1/(1 + exp(−x)), which makes it
possible to bound the range of S>i Vj within the same range [0, 1] by Rij .

In order to avoid overfitting, two regularization terms are added to (5.4):

S,V = arg min
S,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij − g(S>i Vj))
2

+
λ1

2
||S||2F +

λ2

2
||V||2F ,

(5.5)

where λ1, λ2 > 0. For a probabilistic interpretation with Gaussian observation noise for
(5.5) we ref to (Salakhutdinov and Mnih, 2008b). To reduce the model’s complexity we
follow (Kurucz et al., 2007; Ma et al., 2011a; Salakhutdinov and Mnih, 2008a,b) and set
λ1 = λ2 in all experiments we conduct in the chapter.

The cost function defined by (5.5) punishes posts equally when they shift from the
original rank scores Rij . However, a post ranked higher should be punished more than
posts ranked lower if they shift from the original rank scores: higher ranked posts are
more likely to be relevant so that keeping their original rank scores will be of more value.
Thus, we modify (5.5) to obtain the following cost function C1:

S,V = arg min
S,V

1

2

m∑
i=1

n∑
j=1

Iij · w(dj |Li)(Rij − g(S>i Vj))
2

+
λ1

2
||S||2F +

λ2

2
||V||2F ,

(5.6)

66

5.1. Time-Aware Data Fusion

wherew(dj |Li) is a rank punishment weighting function defined for dj given Li. Specif-
ically, we define w(dj |Li) as:

w(dj |Li) =

{
1

2 rank(dj |Li)−1 dj ∈ Li
0 dj /∈ Li.

(5.7)

Our next step is to bring in burst information. After detecting a set of bursts, we introduce
the following item into the cost function C1 to boost the relevance of posts by burst
information, such that:

S,V = arg min
S,V

1

2

m∑
i=1

n∑
j=1

∑
b∈B

1

|{dk ∈ b : dkLidj}|

·
∑
dk∈b
dkLidj

IijIikr(dj |dk)w(dk|Li)(Rik − g(S>i Vj))
2,

(5.8)

where B is a set of detected bursts, b is a burst in B, dkLidj means dk is ranked higher
than dj in list Li, |{dk ∈ b : dkLidj}| is the total number of posts in the burst b that are
ranked higher than the post dj in Li, and r(dj |dk) is the “reward” score for dj from dk
if dj is within or near the burst b to which dk belongs. In (5.8), dkLidj indicates that
only the posts ranked higher than the post dj to be rewarded are capable of boosting the
relevance of dj .

If dj , the post to be rewarded, is generated at (almost) the same time as the highly
relevant post dk, it will be rewarded more than posts that are further away in time from
dk, which is measured by r(dj |dk) in (5.8). Accordingly, we define r(dj |dk) based on a
normal distribution as:

r(dj |dk) = exp

{
−

(tdj − tdk)2

2σ2
b

}
, (5.9)

where tdj and tdk are the timestamps of post dj and dk, respectively, and σb is the stan-
dard deviation of timestamps in burst b:

σ2
b =

∑nb

i=1{i−
nb+1

2 }
2

nb
=
n2
b − 1

12
,

where nb is the number of different timestamps of posts in b, and the detailed derivation
of which can be referred to (4.8) in Chapter 4. According to (5.9), the more likely dj is
generated at the same time with dk, the larger the score r(dj |dk) is, resulting in a bigger
reward for dj from dk.

We are almost ready now to define the cost function C2 that we use in TimeRA. We
integrate the original rank score of the posts in the result lists ((5.6)) with rewards for
posts generated in the vicinity of bursts ((5.8)). To this end, we substitute (5.8) into (5.6).

67

5. Time-Aware Data Fusion

Therefore, our cost function C2 for TimeRA is defined as:

S,V = arg min
S,V

1− β
2

m∑
i=1

n∑
j=1

Iijw(dj |Li)(Rij − g(S>i Vj))
2

+
β

2

m∑
i=1

n∑
j=1

∑
b∈B

1

|{dk ∈ b : dkLidj}|
∑
dk∈b
dkLidj

IijIik

· r(dj |dk) · w(dk|Li)(Rik − g(S>i Vj))
2

+
λ1

2
||S||2F +

λ2

2
||V||2F ,

(5.10)

where β ∈ [0, 1] is a free parameter that governs the linear mixture.
In words, in response to a query q, TimeRA uses a two-component mixture model to

score d ∈ CL. The first component (the first term of (5.10)) tries to maintain the original
rank scores Rij . The second component (the second term of (5.10)), which uses bursts
for posts, “rewards” d if it is strongly associated with the posts in the bursts. Clearly, if
β = 0 in (5.10), TimeRA will only try to maintain the original rank scores, i.e., (5.6).

A local minimum of the objective function given by (5.10) can be found by perform-
ing gradient descent in both Si and Vj . The same can apply to (5.2), (5.3), (5.4), (5.5),
and (5.6). The algorithm for obtaining S and V is straightforward: we first randomly ini-
tialize S and V, then iteratively update these two matrices based on their gradients until
the value of the cost (objective) function converges. The derivation of these equations
are included in Appendix 5.A.

After optimizing (5.10), posts dj ∈ Li they will end up with a score g(S>i Vj) =
Rij + “some reward.” Unlike previous work that assigns 0 to missing documents dj ∈
CL \ Li (Efron, 2011; Fox and Shaw, 1994; Kozorovitsky and Kurland, 2011; Sheldon
et al., 2011; Tsai et al., 2008; Wu, 2012), we infer a rank score RLidj for missing posts
dj as:

Rij =

{
g(S>i Vj) if g(S>i Vj) ≤ min(Rid)

min(Rid) if g(S>i Vj) > min(Rid) ,
(5.11)

where min(Rid) is the minimum rank score of the lowest ranked post that appears in
Li as computed by (2.1) in Chapter 2. As shown in (5.11), if the inferred rank score
g(S>i Vj) is smaller than the minimum rank score, we maintain the inferred score for
that post. However, if the inferred rank score is greater than the minimum rank score, we
give up the inferred score and let Rij = min(Rid), as dj /∈ Li means that it should at
least be ranked lower than any post d ∈ Li.

The final data fusion score for dj ∈ CL is obtained by:

fTimeRA(dj |q) =
m∑
i=1
dj∈Li

g(S>i Vj) +
m∑
i=1

dj∈CL\Li

Rij . (5.12)

The final data fusion score for a post consists of two parts, i.e., scores for lists Li it
appears in (the first term in (5.12)) and scores for lists it does not appear in (the second

68

5.2. Experimental Setup

term in (5.12)), as inferred by (5.11). Finally, the final fused list Lf produced in response
to q is obtained by ranking posts in decreasing order of fTimeRA(dj |q). We call the
model defined by (5.12), TimeRA, and the variant that ignores inferred rank information
Rij in (5.12) is called TimeRA-Infer (“TimeRA minus Infer”).

5.1.2 Analysis of time-aware data fusion

The main computation of TimeRA is detecting bursts and its gradients against matrices
S and V. Our burst detection has computational complexity O(n) because the detection
algorithm runs in linear time (Ruzzo and Tompa, 1999), and the gradients of C2 have
computational complexity of O(e ×m × n × A). In practice, the number of result lists
to be fused, m, the number of posts to be aggregated, n, the number of latent factors, A,
and the number of epochs, e, are all quite small. Therefore, the data fusion procedure
can run in real-time, as we will see in the experiments presented in Section 5.3.6.

In the limiting case, TimeRA reverts back to CombSUM. That is, if we set β = 0
(ignoring burst information), set the weight function w(d|Li) = 1 for all documents d
and lists Li, and, moreover, set λ1 = λ2 = 0, and do not try to infer the rank score of
posts, then g(S>i Vj) = Rij after performing gradient descent in (5.10). Our experimen-
tal results below show that the performance of TimeRA is almost the same as CombSUM
when β = 0. Note that λ1, λ2 6= 0 in the experiments.

5.2 Experimental Setup

In this section, we list our research questions, describe the data set, specify our base-
lines, detail the metrics as well as our training and optimization setup, and describe the
experiments.

5.2.1 Detailed research questions

We divide our main research question (RQ 2) into the following detailed research ques-
tions, and let these questions guide the remainder of the chapter:

RQ 2.1 Does TimeRA outperform traditional and state-of-the-art unsupervised or super-
vised data fusion methods, the best single result list, and the BurstFuseX method
introduced in Chapter 4? (Section 5.3.1 for answer.)

RQ 2.2 What are the relative contributions of the main ingredients of TimeRA (burst
detection and score inference)? (Section 5.3.2 for answer.)

RQ 2.3 What is the effect of using burst information in TimeRA (i.e., what is the impact
of the parameter β in (5.10))? (Section 5.3.3 for answer.)

RQ 2.4 What is the effect of the number of lists to be aggregated in TimeRA? (Sec-
tion 5.3.4 for answer.)

RQ 2.5 Can we observe the hypothesized effect sketched in Fig. 4.1, i.e., posts in bursts
being rewarded? (Section 5.3.5 for answer.)

RQ 2.6 Does TimeRA meet real-time search requirements? (Section 5.3.6 for answer.)

69

5. Time-Aware Data Fusion

RQ 2.7 Does TimeRA beat BurstFuseX and other time-sensitive microblog search mod-
els? (Section 5.3.7 for answer.)

5.2.2 Baselines and evaluation
We compare TimeRA to 6 fusion baselines: 2 traditional unsupervised methods, i.e.,
CombSUM, CombMNZ, 2 start-of-the-art cluster-based fusion methods, ClustFuseComb-
SUM and ClustFuseCombMNZ (Kozorovitsky and Kurland, 2011), a start-of-the-art su-
pervised method, λ-Merge (Sheldon et al., 2011), in which we integrate temporal fea-
tures, and our proposed BurstFuseX presented in Chapter 4. As TimeRA utilizes tem-
poral information, besides BurstFuseX we also compare TimeRA to 4 additional state-
of-the-art time-sensitive microblog search algorithms (also see Section 4.2.2 in Chap-
ter 4): TBLM (Li and Croft, 2003), LM-T(qe) (Massoudi et al., 2011), DIRECT-BM25
(mean) (Dakka et al., 2012) and TSF+QDRM (Miyanishi et al., 2013b). To build the in-
dex of the dataset that some of our baselines require, we apply Porter stemming, tokeniza-
tion, and stopword removal (using INQUERY lists) to posts using the Lemur toolkit.1

Features used in λ-Merge, including those described in Appendix 4.A in Chapter 4 as
well as additional time-sensitive features, i.e., retrieval scores from 4 time-sensitive re-
trieval baselines: TBLM, LM-T(qe), DIRECT-BM25 (mean), and TSF+QDRM.

For performance evaluation we use the official TREC Microblog 2011 metric, p@30.
We also report on p@5, p@10, p@15 and MAP scores. MAP scores are of special
interest to us: we hypothesize that TimeRA has both a precision and recall-enhancing
effect and we use MAP to measure this.

A single free parameter in (5.10), β (∈ {0, 0.1, . . . , 1}), is incorporated in TimeRA,
which is set using leave-one-out cross validation performed over the entire set of 49
queries. The performance of MAP is optimized in the learning phase. In other words, the
performance for a query is attained using a value of β that maximizes MAP performance
over all other queries. The same optimization strategy is used for one of our baselines,
cluster-based fusion. Other baselines do not incorporate free parameters. Following (Ma
et al., 2011b), we set the parameters λ1 = λ2 = 0.001.

5.2.3 Experiments
We report on 7 main experiments in this chapter aimed at understanding (1) the perfor-
mance of TimeRA in general via sampling lists and fusing them; (2) the contribution of
the main ingredients in TimeRA; (3) the performance of TimeRA with increasing num-
bers of runs to be fused; (4) query level performance; (5) TimeRA’s efficiency; (6) the ef-
fect of inferring rank scores of posts by TimeRA; (7) the performance of TimeRA against
temporal retrieval models. The experiments are carried out on the microblog search col-
lection. Details of the microblog search collection can be found in Section 3.2.2

As in Chapter 4, to understand the overall performance of TimeRA, we sample∼10%
from the ranked lists produced by participants in the TREC 2011 Microblog track based
on the lists’ p@30 distribution: 18 out of the runs submitted to the TREC 2011 Microblog
track, 6 with p@30 scores between 0.20 and 0.30 (Class 3), 6 between 0.30 and 0.40
(Class 2), and 6 over 0.40 (Class 1). We also randomly choose two runs from each class

1http://www.lemurproject.org

70

http://www.lemurproject.org

5.3. Results and Analysis

to construct Class 4; see Table 4.2. The runs in Class 1 are the 6 best runs in the TREC
2011 Microblog track. In every class, we use run1, run2, run3, run4, run5 and run6 to
refer to the runs in descending order of p@30.

Next, as in Chapter 4, to understand the contributions of the two main ingredients
of TimeRA, viz., burst detection and inferring scores, we make comparisons among
TimeRA, TimeRA-Infer and CombSUM. We also gradually increase the parameter β in
(5.10) from 0.0 to 1.0 to see if burst information is helpful to boost fusion performance.

As in Chapter 4, to understand the effect of the number of lists being merged, we ran-
domly choose k = 2, 4, 6, . . . , 36 lists from the 184 lists and aggregate them. We repeat
the experiments 20 times and report the average results and standard deviation. In order
to understand the query-level performance of TimeRA, we provide a detailed compari-
son of its performance against the baseline methods. To determine whether TimeRA can
respond to a given query in (near) real time, we again randomly fuse k = 2, 6, 12, 18, 30
lists for all 49 test queries and report the average time required. Finally, we compare
TimeRA against state-of-the-art time-sensitive retrieval models that utilize time/burst in-
formation.

5.3 Results and Analysis

Section 5.3.1 and Section 5.3.2 show the results of fusing the sample lists, the contri-
butions of burst detection and score inference in TimeRA, respectively; Section 5.3.3
analyzes the effect of using burst information; Section 5.3.4 shows the effect of the num-
ber of lists on the overall performance; Section 5.3.5 provides a topic-level analysis;
Section 5.3.6 examines the run times. Finally, Section 5.3.7 compares TimeRA against
time-sensitive models.

5.3.1 Fusing the sample lists

The performance of TimeRA and the 6 baselines is presented in Table 5.2, with numbers
based on the∼10% sample mentioned in Section 5.2.3. The performance of all the fusion
methods is better than that of the best performing result list that is used in the merging
process (run1) for all classes and on almost all metrics. Many of these improvements are
statistically significant. More importantly, when fusing the top 6 result lists (Class 1),
all of the p@30 scores generated by any data fusion method are higher than that of
the best run in TREC 2011 Microblog track (0.4551), especially for TimeRA, which
achieves 0.5531. These findings attest to the merits of using data fusion methods for
microblog search. The performance of TimeRA proposed in this chapter has the best
retrieval performance in most cases in terms of all the metrics under consideration.

It is also worth noting in Table 5.2 that, as in Chapter 4, in almost all cases, the
cluster-based method does not beat the standard fusion method that it integrates, and the
performance differences between the two are usually not significant. As we suggested
in Chapter 4, the reason behind this may be that it is challenging to do clustering in a
microblog environment, with limited amounts of text and very creative language usage.
In most cases, the BurstFuseX methods can beat the standard fusion method it integrates
in terms of MAP, p@5, p@10, p@15 and p@30.

71

5. Time-Aware Data Fusion

The performance of TimeRA is better than that of the baseline methods, and almost
all of the differences are substantial and statistically significant. The performance of
λ-Merge is almost the same as that of CombSUM, CombMNZ and the cluster-based
methods when fusing the lists in Class 2, but in the other classes the performance tends
to be a bit below that of the other methods, on all metrics. This may be due to overfitting.

Interestingly and confirming an observation from Chapter 4, the higher the quality
of the result lists that are being aggregated, the bigger the improvements that can be
observed in Table 5.2. For instance, the p@30 scores after fusion are highest in Class 1
followed by those in Class 2 and Class3, and the quality of Class 1 is best followed by
Class 2 and Class 3, respectively. The p@30 fusion scores in Class 4 are almost the same
as those in Class 2, as some of the lists’ scores in Class 4 are better than those in Class 2.

5.3.2 Contributions of the main ingredients

Next, we compare the relative contributions of the main ingredients of TimeRA against
the very well-performed baseline, viz., CombSUM: burst detection and score inference.
The effect of burst detection in TimeRA can be seen through comparisons between
TimeRA-Infer and CombSUM; the effect of score inference can be seen through com-
parisons between TimeRA and TimeRA-Infer in Fig. 5.1.

Interestingly, in Fig. 5.1 there are large gaps in performance between TimeRA-Infer
and CombSUM in terms of all of metrics; all improvements are statistically significant.
This illustrates that burst detection makes an important contribution to the performance
of data fusion. When we compare TimeRA and TimeRA-Infer in Fig. 5.1, we see that the
performance of TimeRA-Infer in terms of p@5 is almost the same as that of TimeRA,
while in terms of p@10 and p@30, TimeRA has some small advantages over TimeRA-
Infer—some of these improvements are statistically significant. This observation con-
firms that inferring scores for posts during fusion can boost performance as well. It also
shows, however, that enhancing the performance of p@k becomes easier for larger val-
ues of k. This is because the cost of boosting the performance (i.e., changing the original
rank score to be higher) is smaller when the posts are ranked lower. TimeRA is unable to
beat TimeRA-Infer in terms of p@5 (.6939 for both), but TimeRA does boost the p@30
performance (.5531M for TimeRA vs .5405 for TimeRA-Infer).

As burst information is such an important contributor to the performance of TimeRA,
we analyze it further in Section 5.3.3.

5.3.3 The use of burst information

Next we examine the effect of using different amounts of burst information or cluster
information in our time-aware fusion or cluster-based methods, respectively. What is
the impact of the free parameter β in (5.10) and in the cluster-based methods? Fig. 5.2
depicts the MAP performance curves for all data fusion methods when fusing the lists in
Class 1, Class 2, Class 3 and Class 4, respectively. For β = 0, TimeRA almost amounts to
CombSUM, while the cluster-based methods are the same as the standard fusion methods
they incorporate, e.g., ClustFuseCombSUM has no difference with CombSUM in this
case; more weight is put on burst information and cluster information with higher values
of β in TimeRA and the cluster-based methods, respectively. For 0 < β < 1, both

72

5.3. Results and Analysis

Table 5.2: Retrieval performance on the ∼10% sample lists. Boldface marks the best
result per metric; a statistically significant difference between TimeRA and the best base-
line method is marked in the upper right hand corner of the TimeRA score. A significant
difference with run1 for each method is marked in the upper left hand corner using the
same symbols. None of the differences between the cluster-based method and the stan-
dard method it incorporates are statistically significant.

Class 1 Class 2

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .2210 .5918 .5673 .5347 .4551 .1457 .4612 .4143 .3714 .3571
run2 .2690 .5959 .5796 .5442 .4537 .1886 .4776 .4347 .3878 .3463
run3 .2318 .5755 .5367 .5034 .4401 .1525 .4041 .4143 .3878 .3408
run4 .2058 .5714 .5367 .4939 .4211 .1376 .3959 .3939 .3796 .3218
run5 .2575 .5673 .4980 .4721 .4211 .1688 .3878 .3633 .3605 .3136
run6 .2098 .5469 .5102 .4694 .4095 .1820 .4122 .3796 .3619 .3027

CombSUM N.3404 N.6245 .5816 .5524 N.4966 N.2625 N.5306 N.4531 N.4286 N.3735
ClustFuseCombSUM N.3398 N.6240 .5802M .5503 N.4899 N.2612 N.5287 M.4500 N.4213 N.3686
BurstFuseCombSUM N.3563 N.6163 N.5959 N.5878 N.5578 N.2651 M.4898 N.4694 N.4553 N.4312

CombMNZ N.3385 N.6245 .5755 .5524 N.5020 N.2581 N.5347 M.4592 N.4354 N.3789
ClustFuseCombMNZ N.3355 N.6231 .5748 .5502M N.4987 N.2560 N.5330 N.4523 N.4311 N.3731
BurstFuseCombMNZ N.3528 N.6286 N.5959 N.5918 N.5517 N.2587 N.5061 N.4735 N.4567 N.4242

λ-Merge N.3245 N.6213 .5734 .5456 M.4833 N.2573 N.5634 N.4952 N.4463 N.3901
BurstFuseλ-Merge N.3421 N.6243 .5942 N.5837 N.5238 N.2723 H.5483 N.5138 N.4672 N.4132
TimeRA N.3834N N.6939N N.6510N N.6259N N.5531 N.3037N N.6327N N.5551N N.5211N N.4320

Class 3 Class 4

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30

run1 .1661 .4041 .3408 .2898 .2122 .2058 .5714 .5367 .4939 .4211
run2 .0997 .3429 .3000 .2653 .2095 .2098 .5469 .5102 .4694 .4095
run3 .1636 .3959 .3122 .2571 .2041 .1376 .3959 .3939 .3796 .3218
run4 .0753 .3265 .2735 .2585 .2034 .1820 .4122 .3796 .3619 .3027
run5 .0571 .2980 .2551 .2408 .2020 .1636 .3959 .3122 .2571 .2041
run6 .0994 .3510 .2735 .2408 .2016 .0753 .3265 .2735 .2585 .2034

CombSUM N.2150 N.4857 N.4327 N.3837 N.2952 N.2795 N.6122 N.5327 N.4721 O.3918
ClustFuseCombSUM N.2142 N.4804 N.4267 N.3806 N.2882 N.2741 N.6088 M.5297 .4674 H.3865
BurstFuseCombSUM M.2283 N.4408 N.4184 N.3973 N.3318 N.2863 N.5633 N.5449 N.5011 N.4312

CombMNZ N.2187 N.4898 N.4327 N.3932 N.2973 N.2794 N.6000 N.5449 N.4830 .4048
ClustFuseCombMNZ N.2151 N.4872 N.4265 N.3886 N.2894 N.2744 N.5975 N.5407 M.4782 .3958
BurstFuseCombMNZ N.2313 N.4531 N.4327 N.4122 N.3236 N.2883 N.5796 N.5469 M.5043 .4387

λ-Merge N.2125 N.5057 N.4373 N.3827 N.2933 N.2753 N.6046 N.5387 N.4918 .4047
BurstFuseλ-Merge N.2382 N.4937 N.4389 N.4012 N.3115 N.2814 H.5883 N.5412 N.5174 .4221
TimeRA N.2491N N.5347N N.4694N N.4122N N.3293 N.3210N N.6735N N.5918N N.5429N N.4347

the CombSUM scores of posts and burst information are utilized for aggregating lists in
TimeRA.

In each of our four classes of runs, when aggregating lists, the MAP scores of TimeRA
where burst information is used (β > 0) are always higher than that of any other fusion
method. In Class 1 and Class 4 the gain increases gradually as the weight of burst infor-
mation increases. These findings attest to the merits of using burst information to boost
the performance in fusing ranked lists for microblog search. Putting more weight on
cluster information in the cluster-based methods hurts performance in many cases.

73

5. Time-Aware Data Fusion

Class 1 Class 2 Class 3 Class 4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

M
A

P

CombSUM

TimeRA−Infer

TimeRA

Class 1 Class 2 Class 3 Class 4
0.45

0.5

0.55

0.6

0.65

0.7

p
@

5

CombSUM

TimeRA−Infer

TimeRA

Class 1 Class 2 Class 3 Class 4

0.45

0.5

0.55

0.6

0.65

p
@

1
0

CombSUM

TimeRA−Infer

TimeRA

Class 1 Class 2 Class 3 Class 4

0.3

0.35

0.4

0.45

0.5

0.55

p
@

3
0

CombSUM

TimeRA−Infer

TimeRA

Figure 5.1: Retrieval performance of CombSUM, TimeRA-Infer (without using score
inference for posts) and TimeRA in terms of MAP, p@5, p@10, and p@30 when fusing
the runs in the 4 classes. Note that figures should be viewed in color.

5.3.4 Effect of the number of lists being merged

We explore the effect of varying the number of lists to be merged on the performance of
TimeRA. Fig. 5.3 shows the fusion results of randomly sampling k ∈ {2, 4, 6, . . . , 36}
lists from the 184 lists. For each k, we repeat the experiment 20 times and report on the
average scores. We use CombSUM as a representative example for comparisons with
TimeRA; the results of other baseline methods are worse or qualitatively similar to those
of CombSUM.

From Fig. 5.3 we can see that TimeRA performs better than CombSUM over all
performance evaluation metrics no matter how many lists are fused. For both precision
metrics (p@5 and p@30) we find that as long as the number of lists ≤ 10, the perfor-
mance of both TimeRA and CombSUM gradually increases as the number of lists to be
merged increases. The increases level off when the number of lists exceeds 12. For MAP
we find that performance keeps increasing until we fuse 26 lists; then, the performance
increase levels off.

Interestingly, in Fig. 5.3 the improvement of TimeRA over CombSUM on p@5 be-
comes smaller when more lists are merged. When, for example, two lists are fused, the
increase in p@5 of TimeRA over CombSUM is .1063 (.5861 for TimeRA vs .4798 for
CombSUM). The performance increase, however, drops to only .0281 (.6712 for TimeRA
vs .6431 for CombSUM) for 36 lists. Looking at the other metrics, which take a larger
part of the merged result into account (p@30 and especially MAP), the gap remains.

74

5.3. Results and Analysis

0 0.2 0.4 0.6 0.8 1

0.3

0.32

0.34

0.36

0.38

0.4

β

M
A

P

TimeRA

CombSUM

ClustCombSUM

CombMNZ

ClustCombMNZ

λ−Merge

(a) Class 1

0 0.2 0.4 0.6 0.8 1
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

β

M
A

P

TimeRA

CombSUM

ClustCombSUM

CombMNZ

ClustCombMNZ

λ−Merge

(b) Class 2

0 0.2 0.4 0.6 0.8 1
0.2

0.21

0.22

0.23

0.24

0.25

β

M
A

P

TimeRA

CombSUM

ClustCombSUM

CombMNZ

ClustCombMNZ

λ−Merge

(c) Class 3

0 0.2 0.4 0.6 0.8 1
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

β

M
A

P

TimeRA

CombSUM

ClustCombSUM

CombMNZ

ClustCombMNZ

λ−Merge

(d) Class 4

Figure 5.2: Effect of varying the value of β on the MAP performance of six fusion
methods, for lists in (a) Class 1, (b) Class 2, (c) Class 3 and (d) Class 4. More weight is
put on burst information and on cluster information with higher values of β in TimeRA
and the cluster-based methods, respectively. Note: the figures are not to the same scale.

5.3.5 Query-level analysis

As in Chapter 4, here we also take a closer look at per test query improvements of
TimeRA over other runs. For brevity, we only consider CombSUM as a representa-
tive and we only consider runs in Class 1. The results of TimeRA against CombSUM
for other classes of runs and for other baseline methods including the proposed Burst-
FuseX methods in Chapter 4 are qualitatively similar. Fig. 5.4 shows per query perfor-
mance differences in terms of AP, p@5, p@10 and p@30, respectively, between TimeRA
and CombSUM. TimeRA displays both a precision and recall enhancing effect (with in-
creases in precision oriented metrics as well as in MAP). As the metric at hand considers
a larger chunk of the result list, there are more instances where TimeRA outperforms
CombSUM. This is due mainly to topics that are discussed only in very specific time in-
tervals. Examples include queries MB010 (Egyptian protesters attack museum), MB011
(Kubica crash) and MB015 (William and Kate fax save-the-date) etc. For such queries
we found evidence of the intuition depicted in Fig. 4.1: posts that are ranked low in a
small number lists but that TimeRA pushes up because they are central to a burst. E.g.,
in response to query MB010, post #30354903104749568 is ranked near the bottom in

75

5. Time-Aware Data Fusion

0 5 10 15 20 25 30 35
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of runs to be fused

M
A

P

TimeRA

CombSUM

0 5 10 15 20 25 30 35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of runs to be fused

p
@

5

TimeRA

CombSUM

0 5 10 15 20 25 30 35
0.25

0.3

0.35

0.4

0.45

0.5

Number of runs to be fused

p
@

3
0

TimeRA

CombSUM

Figure 5.3: Effect on performance (in terms of MAP, p@5, and p@30) of the number of
lists being merged. We plot averages and standard deviations. Note: the figures are not
to the same scale.

just two lists (at ranks 26 and 27 in the runs clarity1 and DFReekLIM30, respectively).
Many posts for the query were generated around the same time interval (Jan. 26–29) and
are ranked high in many lists; post #30354903104749568 was also published around this
time and ranked 6th in the merged list because of this.

Queries for which TimeRA cannot beat ComSUM tend to be quite general and un-
related to any specific time windows. Examples include queries MB023 (Amtrak train
service), MB027 (reduce energy consumption) and MB029 (global warming and weath-
er) etc. For a very small number of queries, TimeRA’s performance is slightly worse than
that of CombSUM. One reason that we observed for this phenomenon is that not all posts
that are ranked low in a small number of lists but central to a burst need to be rewarded.
An example here is query MB024 (Super Bowl, seats).

5.3.6 Run time comparisons

We now explore how fast TimeRA can merge result lists in response to a query. TimeRA
is developed in C++ and the experiments are run on a 10.6.8 MacBook Pro computer with
4GB memory and a 2.3 GHz Intel core i5 processor. In Table 5.3, we randomly choose
k ∈ {2, 6, 12, 18, 30} lists from the 184 lists. For each k, we repeat the experiment 20
times and report the average run time per query (in seconds) that the fusion methods
require. ClustSUM and ClustMNZ are short for ClustFuseCombSUM and ClustFuse-
CombMNZ, respectively in Table 5.3.

TimeRA does not run as fast as CombSUM or CombMNZ, but it manages to merge
lists near real-time. TimeRA merges the lists within 0.1s when given 30 result lists and

76

5.3. Results and Analysis

-0.5

 0

 0.5

∆
A

P

topics
-0.5

 0

 0.5

∆
p
@

5

topics

-0.5

 0

 0.5

∆
p
@

1
0

topics
-0.5

 0

 0.5

∆
p
@

3
0

topics
Figure 5.4: Per query performance differences, TimeRA vs. CombSUM. The figures
shown are for the runs in Class 1, for MAP, p@5, p@10 and p@30 (left to right). A
bar extending above the center indicates that TimeRA outperforms CombSUM, and vice
versa.

within 0.01s when fusing two lists. As the number of lists to be fused increases, the
time spent on fusing is linear for CombSUM, CombMNZ, TimeRA, and λ-Merge; for
ClustSUM and ClustMNZ, the time increases dramatically with larger numbers of lists.
When fusing 30 lists, ClustMNZ needs to spend 235.91s, although it only spends 1.03s
on fusing two lists. The times clocked for CombSUM and CombMNZ are similar, and
likewise for those of ClustSUM and ClustMNZ.

5.3.7 Effect of fusing time-sensitive result lists

TimeRA uses temporal information in an essential way. How does it compare against
retrieval models that explore temporal information? To answer this question, we again
show 4 additional experimental results from 4 time-sensitive result lists (The same results
of these 4 lists can be seen in Section 4.3.7), and explore the performance of the baseline
fusion methods and TimeRA with each of which respectively fuses these 4 lists. These
lists are generated by TBLM (Li and Croft, 2003), LM-T(qe) (Massoudi et al., 2011),
DIRECT-BM25 (mean) (Dakka et al., 2012) and TSF+QDRM (Miyanishi et al., 2013b).
We also make comparison between TimeRA and BurstFuseX in Table 5.4.

Table 5.4 shows the fusion result. Obviously, except ClustFuseCombMNZ and λ-
Merge, fusion baselines and TimeRA outperform the best time-sensitive component run
(TSF+QDRM) for all metrics and most of the improvements are statistically significant.
This illustrates that exploring time information in data fusion has a different effect than
utilizing time information in an individual ranking function, an effect that can lead to per-
formance increases. One reason behind this is that posts within intervals in which many

77

5. Time-Aware Data Fusion

Table 5.3: Time spent on fusing lists by different fusion methods. Recorded in seconds
with standard deviations (std).

Number of lists

2 6 12 18 30

CombSUM 3.06e–4 5.76e–4 1.03e–3 1.98e–3 3.37e–3
std 1.13e–5 2.57e–5 6.93e–5 6.49e–5 7.50e–5

CombMNZ 3.06e–4 5.76e–4 1.03e–3 1.99e–3 3.38e–3
std 1.13e–5 2.57e–5 6.93e–5 6.52e–5 7.01e–5

TimeRA 4.77e–3 1.69e–2 2.05e–2 4.56e–2 9.60e–2
std 7.60e–5 7.41e–5 2.20e–4 3.53e–4 3.60e–4

λ-Merge 1.15 3.82 7.78 12.03 20.74
std 1.22e–1 5.82e–1 8.03e–1 1.09 1.18

ClustSUM 1.03 4.12 37.56 88.21 235.91
std 9.87e–2 4.24e–1 1.26 3.54 13.08

ClustMNZ 1.03 4.12 37.56 88.21 235.91
std 9.87e–2 4.24e–1 1.26 3.54 13.08

relevant posts appear can only be confirmed to be relevant by gathering data from multi-
ple lists, time-sensitive or not. The TimeRA method outperforms BurstFuseX and some
improvements are statistically significant, which again illustrates the inferring scores of
missing documents can help to improve retrieval performance.

5.4 Conclusion

The special nature of microblog posts, e.g., their limited length and their creative lan-
guage usage, raises challenges for searching them. However, this special nature also
provides unique algorithmic opportunities. In this chapter, we focus on utilizing time
information to boost the performance of searching microblog posts. Specifically, we
proposed a novel data fusion approach, TimeRA, that utilizes bursts and only rank in-
formation to aggregate result lists. TimeRA first detects bursts of posts across the lists
utilizing original rank information of the posts, and then rewards posts that are ranked
low in few lists but in the vicinity of a burst that contains higher ranked posts. It also
infers the rank scores of missing posts by modeling lists and posts as a mixture of latent
factors. Our experiments provide answers to the main research question raised at the
beginning of this chapter:

RQ 2 How to infer scores of so-called missing documents in data fusion?

To answer the question, we continued to work with the TREC microblog tracks dataset
and fuse the result lists submitted to the TREC using our proposed methods and the
baseline methods. Our experimental results show that both utilizing burst information
and score inference for data fusion can significantly enhance retrieval performance even

78

5.4. Conclusion

Table 5.4: Performance on 4 time-sensitive result lists. Boldface marks the better result
per metric; the best score of component lists per metric is underline; a statistically signif-
icant difference between TimeRA and the best baseline is marked in the upper right hand
corner of TimeRA score; a statistically significant difference with TSF+QDRM for each
fusion method is marked in the upper left hand corner of the score; a statistically sig-
nificant difference with BurstFuseCombSUM and TimeRA is marked in the lower right
hand corner of the TimeRA score; the statistically significant difference with BurstFuse-
CombMNZ and TimeRA is the same as that between BurstFuseSUM and TimeRA.

MAP p@5 p@10 p@15 p@30

TSF+QDRM .2834 .6220 .6856 .6279 .5368
DIRECT-BM25 (mean) .2798 .6187 .6725 .6320 .5133
LM-T (qe) .2346 .5836 .5648 .5178 .4471
TBLM .2231 .5742 .5433 .5017 .4395

CombSUM M.2962 M.6395 N.6973 N.6482 N.5513
ClustFuseCombSUM M.2951 M.6385 M.6927 N.6407 N.5476
BurstFuseCombSUM M.3047 M.6408 N.6983 N.6497 N.5613

CombMNZ M.2948 M.6350 M.6918 M.6347 M.5420
ClustFuseCombMNZ .2886 .6312 .6873 .6283 .5416
BurstFuseCombMNZ M.3027 M.6398 N.6972 N.6443 N.5524

λ-Merge .2847 .6275 .6876 .6279 .5383
BurstFuseλ-Merge .2942 .6387 .6894 .6326 O.5428
TimeRA N.3117N

M
N.6518M

M
N.7023M N.6545N N.5733N

M

when compared against BurstFuseX, traditional and state-of-the-art, supervised and un-
supervised data fusion approaches for microblog post search. Additional analyses show
that TimeRA is a robust and efficient data fusion method that outperforms state-of-the-art
temporal retrieval algorithms.

As to future work, we plan to look into combining social information, such as user
relationships into data fusion and further analyze our model in scenarios where the docu-
ments being searched are published in bursts. In addition, matrix factorization is not only
one way to inferring scores of missing rating in collaborative filtering. Other ways for
score inferences include, for instance, latent semantic models (Hofmann, 2004). In the
future, we plan to apply alternative collaborative filtering technologies to infer scores of
missing documents in data fusion. In the next chapter, we will turn to explore data fusion
strategies for ad hoc search.

79

5. Time-Aware Data Fusion

5.A Derivation of The Models

The following is the derivation of (5.10). We leave out the derivations of (5.2), (5.3), (5.4), (5.5)
and (5.6) as they may be obtained in a similar way.

∂C2

∂Si
=(1− β)

n∑
j=1

Iijw(dj |Li)(g(S>i Vj)−Rij)g′(S>i Vj)Vj

+
n∑
j=1

∑
b∈B

β

|{dk : dkLidj |b}|
∑
dk∈b
dkLidj

IijIikr(dj |dk)

· w(dk|Li)(g(S>i Vj)−Rik)g′(S>i Vj)Vj + λ1S
>
i

=(1− β)
m∑
i=1

Iijw(dj |Li)(g(S>i Vj)−Rij)g′(S>i Vj)S
>
i

+
m∑
i=1

∑
b∈B

β

|{dk : dkLidj |b}|
∑
dk∈b
dkLidj

IijIikr(dj |dk)

· w(dk|Li)(g(S>i Vj)−Rik)g′(S>i Vj)S
>
i + λ2Vj ,

(5.13)

where g′(x) = exp(x)/(1 + exp(x))2 is the derivative of the logistic function g(x) =
1/(1 + exp(−x)).

80

6
Manifold-based Data Fusion

In the previous two chapters, Chapters 4 and 5, we have explored data fusion approaches
for microblog search, where the approaches mainly focus on utilizing the ranks of the
documents in the result lists. In the experiments on which we report in Chapters 4
and 5, the cluster-based data fusion methods are not able to beat our proposed fusion ap-
proaches, although cluster-based data fusion methods leverage the content of microblog
posts. Our proposed methods do not utilize the content of the posts, in fact, the experi-
ments showed that using the content of the posts make the retrieval performance become
a little worse and time-consuming. On Twitter people use abbreviations or change their
spelling in creative ways so as to fit their message in the allotted space, giving rise to
a rather idiomatic language and resulting in the fact that content-based fusion may not
work well.

In contrast, in the setting of ad hoc search, the content of documents is more reliable
and useful for retrieval models compared to those in microblogging platforms. In this
chapter, we focus on data fusion strategies that combine not only the ranks of the docu-
ments in the result lists but also the content of the documents for ad hoc search. State-
of-the-art content-based fusion approaches, i.e., cluster-based fusion approaches, have
demonstrated that integrating the content of documents into data fusion can improve the
performance of data fusion and thus improve the performance of ad hoc search. Cluster-
based fusion approaches first cluster documents appearing in the lists to be fused and then
allow for a document appearing low in a single list to be promoted if it is similar to other
highly ranked documents in the cluster (Kozorovitsky and Kurland, 2011). While intu-
itive, a non-relevant document should not be “promoted” even if it is in the cluster that
contains a large number of high ranked documents. We propose a richer structure than
afforded by clusters, namely manifolds (Thurston and Milnor, 1979) (see Section 2.3.4).
The research question we address in this chapter is the following:

RQ 3 Can manifolds be used to improve data fusion performance for ad hoc search?

To answer the question, we propose to use a richer structure to infer (possible) rele-
vance of a document contained in a ranked list to be merged: manifolds. Specifically, we
propose a novel manifold-based data fusion approach, ManX, that integrates manifolds
constructed by using inter-document similarities and ranking information produced by
a standard fusion method X (such as CombSUM or CombMNZ). Our fusion approach
first constructs manifolds for documents in the lists to be merged, then takes the top k

81

6. Manifold-based Data Fusion

L1

d1

d2

d3

d5

L2

d2

d3

d1

d4

d3

 d1

d5

d2

d4

d6
Manifold

d1

d3

d2

d6

L3

Figure 6.1: Rewarding a document that is similar to (assumed) relevant documents and
whose manifold distance to those documents is short. In response to a given query, three
lists need to be fused. Documents d5, d4 and d6 appear only once in the lists and ranked
low, while documents d1, d2 and d3 appear multiple times in the lists and highly ranked.
In terms of the relevances of d4 and d6, d4 is more likely to be relevant. Because the total
manifold distances from d4 to d1, d2 and d3 are small than those between d6 and d1, d2

and d3, although the total Euclidean distances are opposite. Note the manifold distance
between two documents is the length of the trail from one document to another (shown
in red dashed line in the figure); and the Euclidean distance between two documents is
the point-to-point distance between one document to another (shown in gray solid lines
in the figure).

retrieved documents in the merged list produced by the standard fusion method X as
pseudo relevant documents. Subsequently, it boosts documents that are similar to the
pseudo relevant documents in the manifold: if a document d is similar to (pseudo) rele-
vant documents d1, d2 . . . , di and the manifold distances between d and d1, d2 . . . , di
are short, then d can be “rewarded” and is also assumed to be relevant.

Fig. 6.1 illustrates the idea of our manifold-based data fusion approach. There, three
lists need to be fused. Because d1, d2 and d3 are ranked very high in almost all of the lists
and the manifold distances between d5 and them are quite short, d5 can be “promoted”
to being relevant, although d5 may appear only in list L1 and is ranked very low in this
list. According to the cluster-based fusion method (Kozorovitsky and Kurland, 2011),
the point to point distance (Wang et al., 2008) between d6 and the relevant document d3

is shorter than that between d4 and d3, d6 and d3 are in the same cluster, and then d6 is
more likely to be relevant than d4. This is not true in the example. In fact, d4 is more
likely to be relevant than d6, as its manifold distance to d3 (following the red trail; see
Fig. 6.1) is shorter than d6 even if d4 is not in the cluster of d3.

Furthermore, previous work on data fusion mainly focuses on enhancing the retrieval
performance of data fusion and ignores the running time. In fact, there are some bot-

82

6.1. Analysis of Cluster-Based Fusion

tlenecks associated with state-of-the-art data fusion algorithms. For instance, in (Ko-
zorovitsky and Kurland, 2011) document similarity scores need to be obtained for each
document pair and the time complexity is expensive namely the method needs to compute
similarity scores for n× (n− 1)/2 document pairs before processing data fusion, which
is computationally prohibitive in the situation that large number of documents need to
fused. To enhance the fusion efficiency, we propose to use top-k documents in the fusion
list generated by some standard fusion method as anchors.

In our experiments aimed at assessing the performance of our manifold-based data
fusion method, ManX, we sample runs that have been submitted to TREC-3, TREC-10
and TREC-12 and fuse them using our proposed method. For the fusion method X on
top of which ManX builds, we consider two unsupervised fusion approaches: CombSUM
and CombMNZ. We also use a recent state-of-the-art method: cluster-based data fusion
as one of our baselines. Experimental results demonstrate that ManX significantly out-
performs all of the baseline methods and runs faster than state-of-the-art fusion methods.

Our contributions in this chapter can be summarized as:

i. We propose a data fusion method for ad hoc document search, ManX, which not
only takes traditional information such as retrieval status value or rank into ac-
count, but also exploits manifold structure of the documents in the lists.

ii. To the best of our knowledge, this is the first attempt to utilize manifold strategies
for data fusion in IR.

iii. As far as we are aware, ours is also the first attempt to use anchor documents in
data fusion for efficiency.

The remainder of the chapter is organized as follows: Section 6.1 provides an analysis of
the cluster-based fusion methods; Section 6.2 details our proposed manifold-based data
fusion method; Section 6.3 describes our experimental setup; Section 6.4 presents our
experimental results; finally, Section 6.5 concludes this chapter.

6.1 Analysis of Cluster-Based Fusion

In Section 2.3.1 we described cluster-based fusion methods, which we abbreviate as
ClustFuseX for convenient discussion in this chapter. Here we briefly analyze such
methods. The cluster hypothesis has two assumptions (Cao et al., 2013; Liu et al., 2010,
2012b; Zhou et al., 2004):

i Similar documents are likely to have similar relevance to the same information need.
ii Documents in the same structure (cluster, manifold, etc.) are likely to have similar

relevance to the same information need.

The first assumption imposes a constraint on similar documents, i.e., documents located
close to each other in some similarity space. Therefore, this assumption is local. The sec-
ond assumption talks about documents within the same structure (e.g., a cluster), which
may be spread across the similarity space and, thus, this assumption is global.

Many clustering techniques, including the nearest-neighbor-based approach used by
cluster-based data fusion methods, ClustFuseX, depend only on the local assumption

83

6. Manifold-based Data Fusion

−1 0 1 2
−1

−0.5

0

0.5

1

(a) Distribution of the documents in
R2.

−1 0 1 2
−1

−0.5

0

0.5

1

(b) Ranking generated by a nearest-
neighbor-based technique.

−1 0 1 2
−1

−0.5

0

0.5

1

(c) Ideal ranking generated by a
manifold-base technique.

Figure 6.2: Distribution of example documents in R2 and different rankings for these
documents. Relevant documents are shown in the lower moon, whereas non-relevant
documents are shown in the upper moon. The red markers ‘+’ indicate the top-ranked
documents. The remaining documents are marked with blue circles ‘o’. The size of the
blue markers is proportional to the rank of corresponding documents. Here, the x-axis
and y-axis are the intervals of the distribution of the example data.

and fail in cases where both assumptions are required (Zhou et al., 2004). To illustrate
this, consider the example in Figure 6.2. Here, relevant documents are shown in the lower
moon and non-relevant documents are shown in the upper moon. The top-ranked relevant
documents are indicated by red markers ‘+’, while other documents are marked with blue
circles ‘o’, where the size of a circle is proportional to the rank of the corresponding
document. As can be seen in Figure 6.2(b), if we rank documents using a cluster-based
retrieval method, many non-relevant documents, that are close to the red crosses, will be
ranked higher than relevant documents which are further away. However, as can be seen
in Figure 6.2(c), if we rank documents using ideal manifold-based retrieval, all relevant
documents can be ranked higher than any of non-relevant documents.

Another drawback of ClustFuseX is its high computational cost. ClustFuseX per-
forms the following steps to compute fusion scores: (i) estimates a language model of
each document in CL, (ii) computes inter-document similarities, (iii) creates clusters for
all d ∈ CL, (iv) computes fusion scores fClustFuseX(d; q), and (v) ranks documents based
on their scores. For simplicity, we treat basic operations (summation, multiplication, etc.)
with equal importance. Under this simplifying assumption, the complexity of ClustFu-
seX steps is the following:

i Estimating the language model of a document requiresO(avg dl) time, where avg dl
is the average document length in CL. Thus, the first step of ClustFuseX has com-
plexity of O(avg dl · |CL|).

ii Computing the similarity sim(d1, d2) requires O(avg vl) time, where avg vl is the
average vocabulary length of a document in CL. Therefore, computing inter-document
similarities for all document pairs in CL requires O(avg vl · |CL|2) time.

iii Creating a cluster of size δ for each document in CL requires O(|CL| · log(δ)) time.

iv Calculating ClustFuseX scores fClustFuseX(d; q) has O(|CL|2) complexity.

84

6.2. Manifold-Based Data Fusion

v Reranking documents based on fClustFuseX(d; q) requires O(|CL|) time.

Summing up the estimated cost of each step and dropping minor summands, we get the
following time complexity of ClustFuseX: O(avg dl · |CL|+ avg vl · |CL|2). According
to the Heap’s law, the vocabulary size of a document is sublinear with regards to the
document length. Still these two quantities are comparable and, therefore, we assume
that avg dl < avg vl · |CL|. Under this assumption, the time complexity of ClustFuseX
is O(avg vl · |CL|2), which can be very large for documents with a rich vocabulary and
large CL.

In this chapter we aim to address the drawbacks of ClustFuseX by developing an
efficient data fusion technique, which utilizes inter-document similarities and considers
both assumptions, underlying the clustering hypothesis.

6.2 Manifold-Based Data Fusion

In this section we propose a novel data fusion technique, ManX, which is built on the
assumption that if a document d is similar to other relevant documents in a manifold,
then d can be promoted in response to a query. ManX makes use of both assumptions
underlying the cluster hypothesis and, therefore, we expect it to be at least as effective as
the ClustFuseX method, which builds on a similar idea. Moreover, we develop an effi-
cient version of ManX, improving the time complexity compared to ClustFuseX, which
makes our method applicable to real-work data fusion tasks.

6.2.1 Optimization problem

Recall that we are given a set of ranked lists L = {L1, . . . , Lm}, returned in response to
a query q by m retrieval systems. Our goal is to calculate a fusion score f(d; q) for each
document d ∈ CL, where CL :=

⋃m
i=1 Li, and then rank these documents by their fusion

scores to form a single result list Lf .
Our goal is to consider the inter-document similarities in CL and to promote doc-

uments that are similar to that are known or assumed to be relevant documents. To
achieve this goal, we will regularize fusion scores fX(d; q), produced by a data fusion
method X, using the document similarity information. In particular, we define a matrix
W ∈ R|CL|×|CL| of inter-document similarities, where wij = sim(di, dj) for all pairs of
documents in CL. Then we compute a regularized score fManX(d; q) for each document
d ∈ CL by solving the following optimization problem:

min
fManX

Q(fManX) =
1

2
||fManX − fX||2 +

η

2
tr(f>ManXMfManX), (6.1)

where fX is a set of fusion scores produced by a method X: fX = [fX(d1; q), . . . ,
fX(dCL ; q)]>, fManX is a set of regularized fusion scores, which need to be found, η
is a regularization parameter and M is the laplacian matrix: M = D −W, where
D = diag(D11, . . . , D|CL||CL|) is a diagonal matrix defined by Dii =

∑|CL|
j=1 Wij .

The first component in (6.1) forces the ManX fusion scores fManX to be close to
the original fusion scores fX. The second component smoothes fX by assigning similar

85

6. Manifold-based Data Fusion

scores to similar documents. The amount of smoothing is controlled by the parameter η.
The final fused list Lf is constructed by ranking documents d ∈ CL according to their
regularized fusion scores fManX(d; q).

Based on the two assumptions indicated in the cluster hypothesis, we expect our pro-
posed manifold-based fusion method work better than cluster-based fusion method. The-
oretically, we work with manifold distances among the documents to be fused rather than
the point-to-point distances; that is for a document, unlike cluster-based fusion where
only the distances between this document and the other documents in the same cluster
are consider, we consider all the distances between it and all other documents to be fused.

6.2.2 Optimal solution
To solve the optimization problem in (6.1), we need to take a derivative ofQ(fManX) and
equate it to 0:

∂Q(fManX)

∂fManX
= fManX − SfManX + η(fManX − fX) = 0, (6.2)

where S = D−1/2WD−1/2. Letting α = 1/(1 + η), we can obtain the following
closed-form solution for fManX:

fManX = (1− α)(I− αS)−1fX, (6.3)

where I is the identity matrix.
If the set of documents CL is large, then the computation of (I − αS)−1 is in-

tractable. In this case an iterative algorithm, like HITS (Kleinberg, 1999), can be used
to solve (6.2). Let fManX(t) denote a set of regularized fusion scores at a t-th iteration.
Also, let fManX(0) = fX. Then the regularized fusion scores on the next iteration can be
calculated as follows:

fManX(t+ 1) = αSfManX(t) + (1− α)fX. (6.4)

This process is repeated until fManX(t+ 1) converges. After convergence, with (6.4) we
can easily obtain the final score fManX(t+ 1) as the solution to (6.1) as the follows:

fManX(t+ 1) = (αS)tfX + (1− α)
t∑
i=0

(αS)ifX. (6.5)

6.2.3 Efficient ManX
The ManX data fusion technique, as presented in Section 6.2.1, has the same efficiency
issue as the cluster-based approach: the pairwise distances between all documents in CL
need to be computed, which requiresO(avg vl · |CL|2) time. Since data fusion has to run
on the fly and promptly present fused results to users, this problem has to be solved for
techniques, like ClustFuseX and ManX, to be applicable in practice. In the rest of this
section we will focus on addressing the above issue and develop an efficient version of
ManX.

86

6.2. Manifold-Based Data Fusion

Defining Anchors

In a variety of real world information retrieval applications, including web search, online
advertising, users mainly pay attention to the top-k documents and ignore other docu-
ments ranked low (Culpepper et al., 2012; Hofmann et al., 2013). Following this idea, we
will consider the top-k documents (k � |CL|), produced by a basic data fusion method
X, and treat them as anchors for other documents in CL. In other words, the definition of
anchors in our setting is that: anchors are the documents that are ranked within top-k by
a standard data fusion method, e.g., CombSUM.

Recall that ManX uses a data fusion method X to obtain initial fusion scores fX =
[fX(d1; q), . . . , fX(dCL ; q)]>. The top-k documents in this list are assumed to be relevant
to the query q. We will denote their fusion scores as aX = [fX(d1; q), . . . , fX(dk; q)]>.
Then, according to Liu et al. (2010), we represent other regularized fusion scores as a
linear combination of scores in aManX:

fManX(di; q) =
k∑
j=1

ZijfManX(aj ; q), (6.6)

where Zij are the weights discussed below. In matrix form this can be written as follows:

fManX = ZaManX. (6.7)

According to Liu et al. (2010), a good design principle for the weight matrix Z is to
have

∑k
j=1 Zij = 1 and Zij ≥ 0. Therefore, we define Zij as follows:

Zij =
Wij∑k
l=1Wil

, (6.8)

whereWij = sim(di, aj). This means that the more similar a document di and an anchor
aj , the higher the weight Zij . Thus, documents similar to anchors will have higher
regularized scores, which is a desired property, because we assume anchor-documents to
be relevant.

Efficient Optimal Solution

Let us define the similarity matrix W as follows:

W = ZZT . (6.9)

According to this definition, two documents di and dj have a certain similaritywij > 0 if
they share at least one anchor-document (anchor-document is the document that is ranked
within top-k by a standard fusion method) dl: zil 6= 0 & zjl 6= 0. The more anchors
are shared, the more similar are the documents to each other. Note that, according to
the definition of Z, the similarity matrix W is non-negative and, thus, the laplacian
M = D−W is positive semidefinite (Chung, 1997).

According to (6.7), fusion scores of documents in CL can be represented as a lin-
ear combination of fusion scores of anchor-documents: fManX = ZaManX. Therefore,
fManX in (6.3) can be substitute with ZaManX as follows:

f∗ManX = ZaManX = (1− α)(I− αS)−1fX, (6.10)

87

6. Manifold-based Data Fusion

where S = D−1/2WD−1/2 = D−1/2ZZ>D−1/2. According to (6.9), i.e., W = ZZ>,
and Let P = Z>D−

1
2 , (6.10) comes:

f∗ = ZaManX = (1− α)(In − αD−
1
2 ZZTD−

1
2)−1fX

= (1− α)(In −P>(PP> − 1

α
Ik)−1P)fX,

(6.11)

By multiplying (In−αD−
1
2 ZZTD−

1
2) and (In−P>(PP>− 1

αIk)−1P) we obtain an
identity matrix, thereby proving (6.11). Here is the proof.

Proof. We have:

(In − αD−
1
2 ZZ>D−

1
2)× (In −P>(PP> − 1

α
Ik)−1P)

= (In − αP>P)× (In −P>(PP> − 1

α
Ik)−1P)

= In −P>(PP> − 1

α
Ik)−1P− αP>P + αP>PP>(PP> − 1

α
)−1P

= In − (P> − αP>PP>)(PP> − 1

α
Ik)−1P− αP>P

= In − αP>(
1

α
Ik −PP>)(PP> − 1

α
Ik)−1P− αP>P

= In + αP>P− αP>P

= In

In the first transition, we replace S with P>P. Then we open the brackets and perform
the multiplication. In the third transition, we group the summands containing (PP> −
1
αIk)−1. Then we move P> out, so that matrix (1

αIk − PP>) cancels with its inverse.
The remaining matrix αP>P also cancels and we get the identity matrix In as a result.
This proves that (6.10) and (6.11) are indeed equivalent.

6.2.4 Analysis of efficient ManX

There are two important properties in (6.11). The expensive computational cost of in-
verting an n× n matrix can be reduced to inverting a k × k matrix, where k � n. This
reduction in computational cost is able to significantly speed up the fusion of merging
rank lists. Thus, the proposed manifold based fusion method can merge the rank lists fast
and still tries to boost the fusion performance. In addition, during the computation pro-
cess, as indicated by (6.9), we only need to save and use the smaller matrix Z rather than
the adjacency matrix W in memory, which allows our efficient manifold based fusion
method to be applied to very large data sets or memory-short environments.

Efficient ManX performs the following steps:

i Similarly to ClustFuse, ManX estimates language models of all documents in CL,
which requires O(avg dl · n) time, where avg dl is the average document length in
CL and n = |CL| (see Section 6.1 for more details).

88

6.3. Experimental Setup

ii Calculate similarities between the top-k documents and other documents in CL, which
takes O(avg vl · kn) time, where avg vl is the average vocabulary length of docu-
ments in CL.

iii Using (6.8), construct matrix Z. This requires O(kn) time, because the denominator
in (6.8) is computed n times.

iv Using (6.9), construct matrix W. This takes O(kn2) time due to matrix multiplica-
tion.

v Similarly, the construction of matrices D and P requires O(n) and O(kn) time re-
spectively.

vi Invert matrix PP> − 1
αIk in O(k3) time.

vii Calculate fusion scores according to (6.11), which additionally takesO(k2n+kn2) =
O(kn2) time for matrix multiplication.

Summing up the above times and eliminating minor terms, we get that the overall time
complexity of ManX is O(avg vl · kn + kn2). In Section 6.1 we showed that the com-
plexity of ClustFuse is O(avg vl · n2). Since k is a small number, ManX should be
more efficient than ClustFuse. We will verify this theoretical result experimentally in
Section 6.4.2.

6.3 Experimental Setup

In this section, we describe our experimental setup. In particular, we list our research
questions in Section 6.3.1, describe our baselines in Section 6.3.2, and details the exper-
iments in Section 6.3.3.

6.3.1 Detailed research questions

To answer the main research question (RQ 3) in this chapter, we divide it into several
research questions. The research questions guiding the remainder of the chapter are:

RQ 3.1 Does ManX outperform the best run to be fused, the standard data fusion method
that it incorporates, and cluster-based data fusion methods? (See Section 6.4.1 for
the answer.)

RQ 3.2 What is the effect of the number of lists to be fused in ManX? (See Section 6.4.2
for the answer.)

RQ 3.3 How does the number of top-k documents used as anchor documents impact the
performance of ManX? (See Section 6.4.3 for the answer.)

RQ 3.4 Does ManX run faster than state-of-the-art data fusion methods? (See Sec-
tion 6.4.4 for the answer.)

RQ 3.5 Can we actually observe the hypothesized effect sketched in Fig. 6.1? (See Sec-
tion 6.4.5 for the answer.)

89

6. Manifold-based Data Fusion

RQ 3.6 Can LDA rather than tokens of documents be utilized to compute document
similarities for ManSUM? (See Section 6.4.6 for the answer.)

In order to answer our research questions we work with 3 text collections and the corre-
sponding submitted runs provided by the ad hoc track of TREC-3 (Harman, 1994), the
web track of TREC-10 (Hawking and Craswell, 2002) and the robust retrieval track of
TREC-12 (Voorhees, 2005), respectively (see Section 3.2 for details).

6.3.2 Baselines and evaluation

We compare the proposed ManX (using the top 20 documents as anchor documents) to
4 fusion baselines: 2 traditional fusion methods that ManX builds on, i.e., CombSUM
and CombMNZ, 2 state-of-the-art cluster-based fusion methods, ClustFuseCombSUM
and ClustFuseCombMNZ. As ManX utilizes top-k documents as anchor documents, we
also compare ManX to another version of ManX, viz., ManX2. ManX2 is the same as
ManX except that ManX2 utilizes all documents as anchor documents for data fusion.
For cluster-based fusion, our ManX and ManX2 methods, we use a 35/10/5 split of the
dataset for our training, validation and test sets, respectively. We train the fusion model
by varying values of parameters. The best values of the parameters are then chosen on the
validation set, and evaluated on the test queries. The train/validation/test splits are per-
muted until all test queries were chosen once for the test set. We repeat the experiments
10 times and report the average evaluation results.

For building an index to the data set in our experiments, we use the Lemur toolkit1 and
apply tokenization, Porter stemming, and remove stop words using the INQUERY list.
For computing the similarity between two documents in ManX and the baseline meth-
ods, we first apply LDA to capture multinomial distribution of topics specific to all the
documents in CL and then compute the similarity score via symmetric Kullback-Leibler
divergence based on the documents’ multinomial distribution of topics. For evaluation
we use trec eval2 to evaluate the MAP, p@5, p@10, p@20 nDCG@5, nDCG@10 and
nDCG@20 performance for our methods and baselines. See Section 3.3.1 for details
about the metrics we use in this chapter.

In the following, we let ManSUM, ManMNZ, ManSUM2, ManMNZ2, ClustSUM,
ClustMNZ be short for ManFuseCombSUM, ManFuseCombMNZ, ManFuseCombSUM2,
ManFuseCombMNZ2, ClustFuseCombSUM and ClustFuseCombMNZ, respectively.

6.3.3 Experiments

We report 6 main experiments aimed at answering the research questions listed in Sec-
tion 6.3.1. Our first experiment aims at understanding the overall performance of ManX,
we choose 5 best runs out of the runs produced by the participants in the TREC-3 ad hoc
track, the TREC-10 web track and the TREC-12 robust retrieval track based on the runs’
p@20 distribution. See Table 6.1 for a summary of the top 5 best runs in each edition of
TREC.

1http://www.lemurproject.org
2http://trec.nist.gov

90

http://www.lemurproject.org
http://trec.nist.gov

6.4. Results and Analysis

Table 6.1: Summary of top 5 runs in each track used for the experiments.

TREC Top 5 runs Performance

TREC-3 inq102, citya1, brkly7, citya2, assctv2 0.6110 ≤ p@20 < 0.6740
TREC-10 iit01m, csiro0mwa1, ok10wtnd1, flabxtd,

ok10wtnd0
0.3590 ≤ p@20 < 0.4730

TREC-12 pircRBa2, pircRBa1, pircRBd2, pircRBd3,
aplrob03a

0.3640 ≤ p@20 ≤ 0.3930

Then, to understand the effect of the number of lists to be merged, we randomly
choose m = 3, 5, . . . , 25 lists from the 40 lists in TREC-3 and fuse the lists using
ManX, the standard fusion methods, and the cluster-based method. For each m, we re-
peat the experiments 20 times and we report the average results and standard deviation.
Next, to understand the effect of the number of top-k documents used as anchor docu-
ments in ManX, we vary the number of top-k documents from k = 5, 10, . . . , 30 in our
experiments and look into the results. In order to understand the efficiency of ManX,
we again randomly fuse m = 3, 5, 9, 15 and 23 lists from the TREC-3 dataset for all
the 50 queries and report the average time required. To observe the hypothesized effect
sketched in Fig. 6.1, we provide a query-level performance analysis between ManX and
ClustFuseX. Finally, we examine the effectiveness of utilizing LDA rather than tokens of
documents in computing document similarities in ManX.

6.4 Results and Analysis

In Section 6.4.1 we show the results of fusing the top 5 lists; Section 6.4.2 analyzes the
number of lists on the overall performance; Section 6.4.3 shows the effect of the num-
ber of anchor documents in ManX; Section 6.4.4 makes run time comparisons between
ManX and the baselines. Finally, Section 6.4.5 provides a topic-level analysis.

6.4.1 Fusing the top component runs

The performance of ManX, ClustFuseX and the standard fusion method X they incorpo-
rate is presented in Table 6.2, with the runs from the 3 editions of TREC mentioned in
Section 6.3.3. From Table 6.2, we can see that in terms of any metric, MAP, p@5, p@10,
p@20, nDCG@5, nDCG@10 and nDCG@20, ManX, ClustFuseX and the standard fu-
sion methods they integrate can perform substantially better than any of the top 5 runs in
each TREC dataset in most cases. Most of the improvements are statistically significant.

Additionally, it is worth noting in Table 6.2 that ManX outperforms ClustFuseX for
all the 3 datasets where in almost all the cases such improvements are statistically signifi-
cant. This finding shows that utilizing the two prior assumptions of both local and global
consistency in the cluster hypothesis for data fusion can help to enhance the retrieval
performance. Interestingly, although ManX utilizes only the top 20 documents as anchor
documents, it is not statistically significantly worse than ManX2 where all the documents
are taken as anchor documents. ManX performs a litter better than ManX2 in some cases.

91

6. Manifold-based Data Fusion

For instance, when fusing the top 5 runs from TREC-12, ManSUM outperforms Man-
SUM2 a little bit. This illustrates that we can adapt anchor graph in data fusion to reduce
the time complexity but still maintain the effectiveness of manifold based data fusion.

In the following, we use ManSUM, ClustSUM and CombSUM as representative ex-
amples for making comparisons as the results of other methods are qualitatively similar
to those comparisons among ManSUM, ClustSUM and CombSUM.

6.4.2 Effect of the number of lists being merged

We have already seen that ManX outperforms cluster-based data fusion and the standard
fusion methods when fusing top 5 runs in different tracks. We now turn to explore the
effect on the performance of ManX of varying the number of lists to be merged. Fig. 6.3,
we randomly choose m ∈ {3, 5, . . . , 25} lists from the 40 lists submitted to the ad hoc
track in TREC-3. Here we only report results using the TREC 3 runs; the findings us-
ing other runs from other edition of the TREC tracks are qualitatively similar. For each
m, we repeat the experiment 20 times and report on the average scores and the corre-
sponding standard deviations. In each experiment on each metric, we record the best
performance score denoted as “Maximum” and the average performance score of the
input runs denoted as “Average.”

As shown in Fig. 6.3, ManSUM outperforms ClustSUM in terms of all the metrics
and the performance gaps remain almost unchanged, in absolute terms, no matter how
many component runs are fused. One reason for this is that ManSUM inherits the mer-
its of cluster-based fusion methods as it fully utilizes both local and global consistency
in the cluster hypothesis for data fusion, whereas ClustSUM only considers the local
consistency. Additionally, it is clear from Fig. 6.3 that in most cases on most metrics,
both ManSUM and ClustSUM outperform the best input run “Maximum” no matter how
many runs are fused. This illustrates that documents that are ranked low in the input
runs but that are construed in the same manifolds (clusters) where a large number of top
ranked documents are can be rewarded to be relevant. All the fusion methods, Comb-
SUM, ClustSUM and ManSUM can easily beat the average performance of the input
runs.

6.4.3 Effect of anchor documents

Next we examine the effect of using different numbers of top-k documents in our effec-
tive manifold based fusion method. How does the number of top-k documents used as
anchor documents impact the performance of ManX? We again use ManSUM as a repre-
sentative example. Fig. 6.4 depicts the MAP, p@k and nDCG@k performance curves for
ManSUM, ClustSUM and CombSUM when fusing the top 5 runs from the ad hoc track
in TREC-3. As the number of top documents used as anchor documents in manifold
based fusion method, ManSUM, increases, the performance become better. This is be-
cause more anchor documents are included, more relevant documents are used to boost
the performance in ManSUM. The performance improvement seems to level off when
more than 20 top documents are used as anchor documents. This is perhaps because as
more documents are included, more relevant documents but also more non-relevant are
within the top-k documents. The performance of ManSUM can beat ClustSUM when

92

6.4. Results and Analysis

Table 6.2: Retrieval performance on the top 5 best lists from the TREC-3, TREC-10 and
TREC-10 tracks. The best performing run per metric per track is in boldface. Statistically
significant differences between ManX and ClustFuseX, and between ManX and ManX2,
are marked in the upper left hand corner of the ManX score, and the upper right hand
corner of the ManX score, respectively.

p@ nDCG@

MAP 5 10 20 5 10 20

TREC-3 assctv2 .0959 .7280 .6760 .6110 .7540 .7089 .6533
brkly7 .0949 .7600 .7120 .6490 .7582 .7257 .6777
citya1 .0932 .7400 .7120 .6640 .7486 .7265 .6874
citya2 .0876 .7320 .6940 .6280 .7255 .7016 .6533
inq102 .1039 .7440 .7220 .6740 .7423 .7275 .6925
CombSUM .1073 .8040 .7620 .6960 .8009 .7736 .7245
CluSUM .1199 .8200 .8020 .7430 .8136 .8038 .7638
ManSUM N.1312 N.8440 N.8120O N.7840O N.8313 N.8136 N.7958
ManSUM2 .1317 .8480 .8260 .7960 .8336 .8238 .8054
CombMNZ .1065 .8080 .7700 .6970 .8021 .7781 .7254
CluMNZ .1236 .8240 .8040 .7630 .8127 .8031 .7766
ManMNZ N.1305 N.8400 N.8200 N.7910 N.8260 N.8173 N.8001
ManMNZ2 .1324 .8240 .8240 .7930 .8148 .8183 .8004

TREC-10 csiro0mwa1 .1729 .5440 .5020 .4170 .4688 .4768 .4583
flabxtd .1184 .5000 .4460 .3660 .4396 .4263 .4038
iit01m .2145 .6320 .5880 .4730 .5650 .5707 .5369
ok10wtnd0 .1265 .5360 .4540 .3590 .4575 .4456 .4105
ok10wtnd1 .1408 .5560 .4680 .4010 .4766 .4529 .4408
CombSUM .1988 .6480 .5620 .4650 .5870 .5679 .5409
CluSUM .2351 .6400 .5980 .5370 .5821 .5945 .5955
ManSUM N.2742 N.6880 N.6600 N.6140 N.6078O N.6310 N.6496
ManSUM2 .2734 .7040 .6580 .6020 .6293 .6369 .6447
CombMNZ .1999 .6640 .5640 .4560 .6024 .5751 .5381
CluMNZ .2392 .6760 .6020 .5390 .6125 .6043 .5996
ManMNZ N.2858M N.6960O N.6580H N.6100 N.6298 N.6457 N.6554
ManMNZ2 .2748 .7160 .6800 .5990 .6365 .6540 .6474

TREC-12 aplrob03a .1774 .5140 .4510 .3640 .4643 .4409 .4241
pircRBa1 .1843 .5200 .4540 .3890 .4832 .4572 .4470
pircRBa2 .1849 .5280 .4880 .3930 .5004 .4892 .4580
pircRBd2 .1733 .5260 .4570 .3705 .4778 .4565 .4307
pircRBd3 .1745 .5220 .4490 .3665 .4828 .4542 .4319
CombSUM .1899 .5480 .4870 .3980 .5082 .4866 .4632
CluSUM .2213 .5720 .5420 .4655 .5225 .5258 .5197
ManSUM N.2545 N.6300O N.6000 N.5145 N.5657 N.5709 N.5652
ManSUM2 .2498 .6140 .5910 .5085 .5527 .5637 .5611
CombMNZ .1914 .5540 .4900 .4025 .5121 .4883 .4673
CluMNZ .2331 .6100 .5590 .4775 .5503 .5427 .5358
ManMNZ N.2583 N.6400M N.6190 N.5165 N.5752M N.5884M N.5727M

ManMNZ2 .2507 .6260 .5980 .5075 .5628 .5718 .5622

93

6. Manifold-based Data Fusion

5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

Number of runs

M
A

P

●

●

● ●
●

● ● ● ● ● ● ●●

●
●

● ●
● ● ● ● ● ● ●

●

●

ManSUM
ClustSUM
Maximum
CombSUM
Average

5 10 15 20 25

0.
4

0.
5

0.
6

0.
7

0.
8

Number of runs

p@
5

●

●

●

●

●

●
●

● ● ● ●
●

●

●
●

●

●

● ● ● ● ● ● ●

5 10 15 20 25

0.
4

0.
5

0.
6

0.
7

0.
8

Number of runs

p@
10

●

●

●

●

●

● ● ● ● ● ● ●
●

●

●
●

●

● ● ● ● ● ● ●

5 10 15 20 25

0.
4

0.
5

0.
6

0.
7

0.
8

Number of runs

p@
20

●

●

● ●

●

●
● ● ● ● ● ●

●

●

●
●

●

●
● ● ● ● ● ●

5 10 15 20 25

0.
45

0.
55

0.
65

0.
75

Number of runs

nD
C

G
@

5

●

●

●

●

●

●
●

● ● ● ●
●

●

●
●

●

●

● ● ● ● ● ● ●

5 10 15 20 25

0.
45

0.
55

0.
65

0.
75

Number of runs

nD
C

G
@

10

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ●

5 10 15 20 25

0.
45

0.
55

0.
65

0.
75

Number of runs

nD
C

G
@

20

●

●

●
●

●

●
● ● ● ● ● ●

●

●

●
●

●

●
● ● ● ● ● ●

Figure 6.3: Effect on performance (in terms of MAP, p@5, p@10, p@20, nDCG@5,
nDCG@10 and nDCG@20) of the number of component runs, using runs randomly
sampled from the TREC-3 ad hoc track. We plot averages and standard deviations. Note:
the figures are not to the same scale.

94

6.4. Results and Analysis

Table 6.3: Time spent on fusing runs by different fusion methods. Recorded in seconds
with standard deviations (std).

Number of lists

3 5 9 15 23

CombSUM 3.98e–4 (3.28e–5) 8.07e–4 (1.13e–4) 1.69e–3 (3.88e–4) 2.86e–3 (4.61e–4) 3.96e–3 (6.07e–4)
ClustSUM 3.59 (6.39e–1) 11.27 (2.53) 42.91 (5.09) 117.45 (10.97) 267.36 (18.02)
ManSUM 1.46e–1 (4.65e–2) 5.09e–1 (8.26e–2) 1.79 (4.25e–1) 4.48 (6.64e–1) 11.17 (2.19)

as few as 10 top document are used as anchor documents in most cases. This illustrates
that taking only a small number of top-k documents as anchor documents can get better
performance.

6.4.4 Run time comparisons
We now explore how fast ManX can merge component runs in response to a query.
Again, we take ManSUM, ClustSUM and CombSUM as representative examples. These
fusion methods are developed in C++ and the experiments are run on a 10.9.2 MacBook
Pro computer with 4GB memory and a 2.3 GHz Intel core i5 processor. In Table 6.3, we
randomly choose m = 3, 5, 9, 15 and 23 runs from the 40 runs submitted to the ad hoc
track in TREC 3. For each m, we repeat the experiment 20 times and report the average
run time per query (in seconds) that the fusion methods require.

As can be seen in Table 6.3, ManSUM does not run as fast as the standard fusion
method it integrates, CombSUM, but it manages to merge runs fast. ManSUM merges
the runs with 11.17s when given 23 result runs and with 0.15s when fusing 3 runs. As
the number of runs to be fused increases, the time spent on fusing is almost linear for
CombSUM and ManSUM. For ClustSUM, however, the time increases dramatically with
larger numbers of component runs. When fusing 23 runs, ClustSUM needs to spend
267.36s, although it only spends 3.59s on fusing 3 result runs. Combining the findings
in Fig. 6.4 and Table 6.3, we can conclude that manifold-based fusion methods not only
runs faster than cluster based-fusion ones but also achieves better retrieval performance.

6.4.5 Topic-level analysis
We take a closer look at per query improvements of ManX over ClustFuseX and the
underlying standard fusion method X. For brevity, we only consider ManSUM as a rep-
resentative example and report query performance differences against ClustSUM which
outperforms CombSUM. We only consider fusing runs submitted to the ad hoc track in
TREC-3 as other comparison results are quantitively similar.

Fig. 6.5 shows the per query performance differences in terms of MAP, p@k and
nDCG@k, respectively, of ManSUM against ClustSUM. ManSUM achieves performance
improvements for many queries when compared against ClustSUM, and many of the dif-
ferences are relatively big. This shows that in many cases fusion based on manifold
distances is to be preferred over fusion over point-to-point similarities as they are used in
ClustFuseX. For instance, in response to query #190 in TREC-3, ClustSUM ranks the rel-
evant document #ZF109-569-003 at the eighth position, whereas ManSUM works better

95

6. Manifold-based Data Fusion

5 10 15 20 25 30

0.
10

0.
12

0.
14

0.
16

top documents

M
A

P

ManSUM
ClustSUM
CombSUM

5 10 15 20 25 30

0.
60

0.
70

0.
80

0.
90

top documents

p@
5

5 10 15 20 25 30

0.
70

0.
75

0.
80

0.
85

0.
90

top documents

p@
10

5 10 15 20 25 30

0.
60

0.
70

0.
80

0.
90

top documents

p@
20

5 10 15 20 25 30

0.
70

0.
75

0.
80

0.
85

0.
90

top documents

nD
C

G
@

5

5 10 15 20 25 30

0.
70

0.
75

0.
80

0.
85

0.
90

top documents

nD
C

G
@

10

5 10 15 20 25 30

0.
70

0.
75

0.
80

0.
85

top documents

nD
C

G
@

20

Figure 6.4: Effect on performance (in terms of MAP, p@5, p@10, p@20, nDCG@5,
nDCG@10 and nDCG@20) of the number of anchor documents being utilized when
fusing the top 5 runs from the ad hoc track in TREC-3. Note: the figures are not to the
same scale.

96

6.5. Conclusion

Table 6.4: Fusion performance of ManSUM and ManSUM-token. ManSUM-token is
the same as ManSUM except that it computes document-to-document similarity scores
based on tokens of the documents rather than LDA. Statistically significant differences
between ManSUM and ManSUM-token are marked in the upper left hand corner of the
ManSUM score.

p@ nDCG@

MAP 5 10 20 5 10 20

ManSUM-token .1263 .8360 .7980 .7680 .8250 .8023 .7821
ManSUM .1312 .8440 .8120 M.7840 .8313 M.8136 M.7958

and ranks the document at the fifth position. In contrast, in a very small number of cases,
ManSUM performs poorer than ClustSUM. This appears to be due to the fact that some
non-relevant documents in manifolds where there are a number of relevant documents
ranked highly in the result runs are promoted by ManSUM. For instance, in response to
query #176 in TREC-3, ClusteSUM ranks the non-relevant document #AP880609-0187
at the tenth position, but ManSUM becomes worse and ranks it at the sixth position.

6.4.6 Document similarity

Finally, we examine the effect on the overall performance of using LDA to compute
document-to-document similarities used in ManX, and contrast the performance of ManX-
token using tokens directly to compute the similarities. Here, ManX-token is the same
algorithm as ManX except that for computing the similarities it utilizes tokens of docu-
ments directly rather than multinomial distribution of topics specific to the documents.
We again use ManSUM and ManSUM-token as representative examples only.

Table 6.4 shows the experimental results. As we can see in the table, although the
performance of ManSUM and ManSUM-token is not statistically significant different on
the metrics MAP, p@5, p@10 and nDCG@5, the performance of ManSUM on p@20,
nDCG@10 and nDCG@20 statistically significantly outperforms that of ManSUM-token.
This is because LDA can capture the topic similarities between documents rather than just
the token level similarities. In addition, the time complexity of utilizing LDA to obtain
the similarities is smaller than that of utilizing tokens of documents. The finding in Ta-
ble 6.4 plus the analysis of the time complexity show that utilizing LDA in ManSUM not
only helps to fuse result lists faster but also improve the performance.

6.5 Conclusion

In this chapter, we have introduced a novel data fusion approach, ManX, which is based
on manifolds to merge ranked lists that are retrieved in response to a given query. In
ManX, manifolds of documents in the lists to be fused are constructed by utilizing inter-
document similarities that are computed based on multinomial distributions of topics
specific to documents. ManX fully utilizes two prior assumptions in the cluster hypoth-

97

6. Manifold-based Data Fusion

-0.5

 0

 0.5

 0 50

∆
A

P

topics
-0.5

 0

 0.5

 0 50

∆
p

@
5

topics

-0.5

 0

 0.5

 0 50

∆
p

@
1

0

topics
-0.5

 0

 0.5

 0 50

∆
p

@
2

0

topics

-0.5

 0

 0.5

 0 50

∆
n

D
C

G
@

5

topics
-0.5

 0

 0.5

 0 50

∆
n

D
C

G
@

1
0

topics

-0.5

 0

 0.5

 0 50

∆
n

D
C

G
@

2
0

topics

Figure 6.5: Per query performance difference of ManSUM against ClustSUM. The fig-
ures shown are for fusing the runs in TREC-3 ad hoc track., for MAP, p@5, p@10,
p@20, nDCG@5, nDCG@10 and nDCG@20 (from left to right, top to bottom). A bar
extending above the center of a plot indicates that ManSUM outperforms ClustSUM, and
vice versa for bars below the center.

98

6.5. Conclusion

esis, thereby enabling it to reward documents that are ranked low in only few lists but
surrounding which there are many highly relevant documents in the same manifold. Fur-
thermore, it takes the top-k documents from the fused list merged with a standard fusion
method X as anchor documents to make fusion process become faster. Our experiments
provide an answer to the main research question raised at the beginning of this chapter:

RQ 3 Can manifolds be used to improve data fusion performance for ad hoc search?

To answer the main research question, we worked with 3 text collections provided by
the TREC-3 ad hoc, TREC-10 web and TREC-12 robust retrieval tracks. We made com-
parisons between our ManX and the baseline fusion methods. Our experimental results
demonstrated that richer structure of documents can be used to improve fusion perfor-
mance, and ManX not only outperforms the standard fusion methods that it integrates
and a state-of-the-art data fusion method that leverages clustering strategies, but it also
fuses result lists more efficiently.

As to future work, we envisage to combine more useful information to improve the
construction of manifolds for data fusion. We believe that utilizing semantic linking tech-
niques (Meij et al., 2012), i.e., first detecting entities in documents, and then expanding
the documents with other external material such as the Wikipedia articles the entities
link to, would help to improve the quality of manifold such that the fusion methods can
improve the performance. In this chapter we have use top-k documents as anchors to im-
prove the efficiency of running manifold-based data fusion methods. Another direction
for the future work is to consider other more effective strategies for selecting anchors.

In Chapters 4 and 5 we focused on data fusion for searching posts in microblogging
environments. In this chapter we mainly focused on how to utilize manifolds of docu-
ments in the result lists to improve the fusion performance. In the next chapter (Chap-
ter 7) we will investigate whether data fusion can improve the performance of search
result diversification.

99

7
Fusion Helps Diversification

We have shown in Chapters 4 and 5 that data fusion can improve the performance of
microblog search, and in Chapter 6 we have shown the performance improvements of
ad hoc search due to data fusion. In this chapter we continue our study on data fusion,
but in a different setting and with a different application, i.e., search result diversification.
Search result diversification is widely being studied as a way of tackling query ambiguity.
Instead of trying to identify the “correct” interpretation behind a query, the idea is to
make the search results diversified so that users with different backgrounds and intents
will find at least one of these results to be relevant to their information need (Agrawal
et al., 2009). In contrast to the traditional assumption of independent document relevance,
search result diversification approaches typically consider the relevance of a document
in light of other retrieved documents (Santos et al., 2011). Diversification models try
to identify the probable “aspects” of the query and return documents for each aspect,
thereby making the result list more diverse.

As we have seen in Chapters 4, 5 and 6, data fusion methods can improve retrieval
performance in terms of traditional relevance-oriented metrics like MAP and precision@k
over the methods used to generate the individual result lists being fused. One reason is
that retrieval approaches often return very different non-relevant documents, but many
of the same relevant documents (Wu, 2012). In this chapter we explore whether data
fusion can improve performance in terms of diversity metrics. Thus, we are interested in
answering:

RQ 4 Can data fusion help search result diversification?

We examine the hypothesis that data fusion can improve performance in terms of diver-
sity metrics by promoting aspects that are found in disparate ranked lists to the top of the
fused list. Our first step in testing this hypothesis is to examine the impact of existing data
fusion methods in terms of diversity scores when fusing ranked lists. We find that they
tend to improve over individual component runs on nearly all of the diversity metrics that
we consider: Prec-IA, MAP-IA, α-NDCG, ERR-IA (all at rank 20).

Building on these findings we propose a new data fusion method, called diversified
data fusion (DDF). Based on latent Dirichlet allocation (LDA), it operates on documents
in the result lists to be fused, whether the result lists have been diversified or not. DDF
infers latent topics, their probabilities of being relevant and a multinomial distribution of

101

7. Fusion Helps Diversification

topics over the documents being fused. Thus, it integrates topic structure and rank infor-
mation. DDF does not assume the explicit availability of query aspects, but infers these
as well as the latent prior for a given query via the documents being fused. Experimental
results show that DDF can aggregate result lists—whether produced by diversification
or ad hoc retrieval models—and boost the diversity of the final fused list, outperforming
state-of-the-art diversification methods and established data fusion methods, especially
in terms of intent-aware precision metrics.

Our contributions in this chapter can be summarized as follows:

i. We tackle the challenge of search result diversification in a novel way by using
data fusion methods.

ii. We propose a novel data fusion method that aims at optimizing diversification mea-
sures and that proves to be especially effective in terms of intent-aware precision
metrics.

iii. We analyze the effectiveness of data fusion for result diversification and find that
our fusion method as well as other fusion methods can significantly outperform
state-of-the-art diversification methods.

The remainder of the chapter is organized as follows. Section 7.1 describes our proposed
diversified data fusion model for search result diversification. Section 7.2 describes our
experimental setup. Section 7.3 is devoted to our experimental results and we conclude
in Section 7.4.

7.1 Diversified Data Fusion

We first summarize the main notation used in this chapter in Table 7.1; other additional
notation used in this thesis can be referred to Table 2.1. In the remainder of this chap-
ter, we distinguish between queries, aspects and topics. A query is an expression of an
information need; in our experimental evaluation below, queries are provided as part of
a TREC test collection. An aspect (sometimes called subtopic at the TREC Web track)
is an interpretation of an information need. We use topic to refer to latent topics as iden-
tified by a topic modeling method, in our case LDA. A component list is a ranked list
that serves as input for a data fusion method. A fused list is a list that is the result of
applying a fusion method to component lists. A natural and direct way of diversifying a
result list in the setting of data fusion is this: first rank the documents in the component
lists by their estimated relevance to the query through a standard data fusion method,
such as CombSUM, and then diversify the ranking through effective search result diver-
sification models, such as MMR (Carbonell and Goldstein, 1998) and PM-2 (Dang and
Croft, 2012). In our experiments, we implement two more baselines, called CombSUM-
MMR and CombSUMPM-2. They first use CombSUM to obtain a fused list and then use
MMR and PM-2, respectively, to diversify the list. See Section 2.3.1 for how to compute
CombSUM for each documents in the result lists.

We propose a diversified data fusion (DDF) method that not only inherits the mer-
its of traditional data fusion methods, i.e., it can improve the performance on relevance

102

7.1. Diversified Data Fusion

Table 7.1: Additional notation used in the chapter (cf. Table 2.1).

Notation Gloss

z topic
Nd number of tokens in d
R set of top ranked documents
qt[z|q] quotient score for z given q in PM-2 algorithm Dang and Croft (2012)
vz|q probability of z given q
sz|q “portion” of seat occupied by z given q in PM-2
λ a free trade-off parameter in PM-2
α the parameter of a topic Dirichlet prior
β the parameter of a token Dirichlet prior
T number of topics
V number of unique tokens in CL
θd multinomial distribution of topics specific to d
φz multinomial distribution of tokens specific to topic z
µz mean of Log-normal distribution of fusion scores for topic z
σz deviation of Log-normal distribution of fusion scores for z
zdi topic associated with the i-th token in the document d
wdi i-th token in document d
fdi fusion score for token wdi

orientated metrics, but also considers a query as a compound rather than a single rep-
resentation of an underlying information need, and regards documents appearing in the
component lists as mixtures of latent topics.

Overview of DDF

DDF consists of three main parts: (I) perform standard data fusion; (II) infer latent topics;
(III) perform diversification; see Algorithm 3. In the first part (“Part I” in Algorithm 3),
DDF computes the fusion scores of the documents in the component lists based on an
existing unsupervised data fusion method (steps 2 and 3 in Algorithm 3); in this chapter
we use CombSUM, as our experimental results in Section 7.3.1 and Section 7.3.2 show
that CombSUM outperforms other plain fusion methods in most cases. In the second
part (“Part II” in Algorithm 3), DDF integrates fusion scores into an LDA topic model
such that latent topics of the documents, their corresponding estimated relevance scores,
and the multinomial distribution of the topics specific to each document can be inferred
(steps 5–17 in Algorithm 3). In the last part (“Part III” in Algorithm 3), DDF uses the
outputs of Parts I and II as input for an existing diversification method; in this chapter,
we use PM-2 (Dang and Croft, 2012) because it is a the state-of-the-art search result
diversification model. Some concepts in PM-2, such as “quotient” and “seat,” play im-
portant roles in the definition of the diversification step; they have been discussed in
Section 2.3.5.

Below we describe how to infer latent topics (“Part II” in Algorithm 3) and how we
utilize the information generated from latent topics and fusion scores (“Part III”).

103

7. Fusion Helps Diversification

Algorithm 3: Diversified data fusion
Input : A query q

Ranked lists to be fused, L1, L2, . . . , Lm
The combined set of documents CL :=

⋃m
i=1 Li

A standard fusion method X
A tradeoff parameter λ
Number of latent topics T
Hyperparameters α, β

Output: A final fused diversified list of documents Lf .
1 /* Part I: Perform standard data fusion */
2 for d = 1, 2, . . . , |CL| do
3 Initialize fX(d|L, q) using a standard fusion method X

4 /* Part II: Infer latent topics */
5 Randomly initialize topic assignment for all tokens in w
6 for z = 1, 2, . . . , T do
7 Initialize µz and σz randomly for topic z

8 for iter = 1, 2, . . . , Niter do
9 for d = 1, 2, . . . , |CL| do

10 for i = 1, 2, . . . , Nd do
11 draw zdi from P (zdi|w, r, z−di, α, β, µ, σ,L, q)
12 update nzdiwdi and mdzdi

13 for z = 1, 2, . . . , T do
14 update µz and σz

15 Compute the posterior estimate of θ
16 for z = 1, 2, . . . , T do
17 vz|q ←

exp{uz+
1
2
σ2
z}∑T

z′=1
exp{uz′+

1
2
σ2
z′}

18 /* Part III: Perform diversification */
19 Lf ← ∅
20 R← CL
21 for z = 1, 2, . . . , T do
22 sz|q ← 0

23 for all positions in the ranked list Lf do
24 for z = 1, 2, . . . , T do
25 qt[z|q] =

vz|q
2sz|q+1

26 z∗ ← arg maxz qt[z|q]
27 d∗ ← arg maxd∈R λ× qt[z∗|q]× P (d|z∗, q)+
28 (1− λ)

∑
z 6=z∗ qt[z|q]× P (d|z, q)

29 Lf ← Lf ∪ {d∗} /* append d∗ to Lf */
30 R ← R\{d∗}
31 for z = 1, 2, . . . , T do
32 sz|q ← sz|q + P (d∗|z,q)∑

z′ P (d∗|z′,q)

104

7.1. Diversified Data Fusion

φ w f µ

β z

θ

σ

L

α q

Nd

|CL|
T T

T

Figure 7.1: DDF graphical model for Gibbs sampling.

Part II: Inferring latent topics

Previous work on search result diversification shows that explicitly computing the proba-
bilities of aspects of a query can improve diversification performance (Abbar et al., 2013;
He et al., 2012; Santos et al., 2010a). We do not assume that aspect information is explic-
itly available; we infer latent topics and their probabilities of being relevant using topic
modeling.

Topic discovery in DDF is influenced not only by token co-occurrences, but also
by the fusion scores of documents in the component lists. To avoid normalization and
because fusion scores of the documents theoretically belong to (0,+∞), we employ
a log-normal distribution for fusion scores to infer latent topics of the query via the
documents and their relevance probabilities.

The latent topic model used in DDF is a generative model of relevance and the tokens
in the documents that appear in the component individual lists, i.e., documents in CL.
The generative process used in Gibbs sampling (Liu, 1994) for parameter estimation, is
as follows:

i. Draw T multinomials φz from a Dirichlet prior β, one for each topic z;

ii. For each document d ∈ CL, draw a multinomial θd from a Dirichlet prior α; then
for each token wdi in document d:

(a) Draw a topic zdi from multinomial θd;
(b) Draw a token wdi from multinomial φzdi ;
(c) Draw a fusion score fdi for wdi from Log-normal N (µzdi , σzdi).

Fig. 7.1 shows a graphical representation of our model. In the generative process, the
fusion scores of tokens observed in the same document are the same and computed by a
data fusion method, like CombSUM, for the document, although a fusion score is gen-
erated for each token from the log-normal distribution. We use a fixed number of latent
topics, T , although a non-parametric Bayes version of DDF that automatically integrates
over the number of topics would certainly be possible. The posterior distribution of top-
ics depends on the information from two modalities—both tokens and the fusion scores
of the documents.

105

7. Fusion Helps Diversification

Inference is intractable in this model. Following (Griffiths and Steyvers, 2004; Liu,
1994; Ren et al., 2013; Wang and McCallum, 2006; Wei and Croft, 2006; Xu et al., 2012),
we employ Gibbs sampling to perform approximate inference. We adopt a conjugate
prior (Dirichlet) for the multinomial distributions, and thus we can easily integrate out
θ and φ, analytically capturing the uncertainty associated with them. In this way we
facilitate the sampling, i.e., we need not sample θ and φ at all. Because we use the
continuous log-normal distribution rather than discretizing fusion scores, sparsity is not
a big concern in fitting the model. For simplicity and speed we estimate these log-normal
distributions µ and σ by the method of moments, once per iteration of Gibbs sampling
(see the Appendix 7.A). We find that the sensitivity of the hyper-parameters α and β is
limited. Thus, for simplicity, we use fixed symmetric Dirichlet distributions (α = 50/T
and β = 0.1) in all our experiments.

In the Gibbs sampling procedure above, we need to calculate the conditional distri-
bution P (zdi|w, r, z−di, α, β, µ, σ,L, q) (step 11 in Algorithm 3), where z−di represents
the topic assignments for all tokens except wdi. We begin with the joint probability of
documents to be fused, and using the chain rule, we can obtain the conditional probability
conveniently as:

P (zdi|w, r, z−di, α, β, µ, σ,L, q) ∝

(mdzdi + αzdi − 1)× nzdiwdi
+ βwdi

− 1∑V
v=1(nzdiv + βv)− 1

×

1

fX(d|L, q)σzdi
√

2π
exp{− (ln fX(d|L, q)− µzdi)2

2σ2
zdi

},

where nzv is the total number of tokens v that are assigned to topic z, mdz represents the
number of tokens in document d that are assigned to topic z. An overview of the Gibbs
sampling procedure we use is shown from step 5 to step 14 in Algorithm 3; details are
provided in the Appendix 7.A.

One merit of our generative model for DDF is that we can predict a fusion score for
any document once the tokens in the document have been observed. Given a document,
we predict its fusion score by choosing the discretized fusion score that maximizes the
posterior which is calculated by multiplying the fusion score probability of all tokens
from their corresponding topic-wise log-normal distributions. Then the fusion score for
a document d can be obtained by:

fX(d|L, q) = arg max
f

Nd∏
i=1

p(f |µzi , σzi).

More importantly, after the Gibbs sampling procedure, we can easily infer the multino-
mial distribution of topics specific to each document d ∈ CL as (step 15 in Algorithm 3):

θd,z =
nd,z + αz∑T

z=1(nd,z + αz)
, (7.1)

where nd,z is the number of tokens assigned to latent topic z in document d; we can also
conveniently estimate the probability of a topic being relevant to the query, denoted as

106

7.1. Diversified Data Fusion

vz|q , by (step 17 in Algorithm 3):

vz|q :=
E[f |z]∑T

z′=1 E[f |z′]
=

exp{uz + 1
2σ

2
z}∑T

z′=1 exp{uz′ + 1
2σ

2
z′}

, (7.2)

where E denotes the expectation.

Part III: Diversification

In Part III of our DDF model we propose a modification of PM-2. Before we discuss the
details of this modification, we briefly describe PM-2. See Section 2.3.5 for more details
of PM-2. PM-2 is a probabilistic adaptation of the Sainte-Laguë method for assigning
seats (positions in the fused list) to members of competing political parties (aspects) such
that the number of seats for each party is proportional to the votes (aspect popularity, also
called aspect probabilities, i.e., p(z|q)) they receive. PM-2 starts with a ranked list Lf
with k empty seats. For each of these seats, it computes the quotient qt[z|q] for each
topic z given q following the Sainte-Laguë formula:

qt[z|q] =
vz|q

2sz|q + 1
, (7.3)

where vz|q is the probability of topic z given q, i.e., the weight of topic z. According
to the Sainte-Laguë method, this seat should be awarded to the topic with the largest
quotient in order to best maintain the proportionality of the list. Therefore, PM-2 assigns
the current seat to the topic z∗ with the largest quotient. The document to fill this seat is
the one that is not only relevant to z∗ but to other topics as well:

d∗ = arg max
d∈R

(
λ× qt[z∗|q]× P (d|z∗, q) + (7.4)

(1− λ)
∑
z 6=z∗qt[z|q]× P (d|z, q)

)
,

where P (d|z, q) is the probability of d talking about topic z for a given q. After the
document d∗ is selected, PM-2 increases the “portion” of seats occupied by each of the
topics z by its normalized relevance to d∗:

sz|q ← sz|q +
P (d∗|z, q)∑
z′ P (d∗|z′, q)

.

This process repeats until we get k documents for Lf or we are out of candidate docu-
ments. The order in which a document is appended to Lf determines its ranking.

We face two challenges in PM-2: it is non-trivial to get the aspect probability vz|q
(i.e., p(z|q)), which is often set to be uniform, and it is non-trivial to compute p(d|z, q),
which usually requires explicit access to additional information. To address the first
challenge, we compute vz|q by (7.2), such that (7.3) can be modified as:

qt[z|q] =
p(z|q)

2sz|q + 1
=

exp{uz + 1
2σ

2
z}

(2sz|q + 1)
∑T
z′=1 exp{uz′ + 1

2σ
2
z′}

.

107

7. Fusion Helps Diversification

For the second challenge, instead of computing P (d|z, q) explicitly, we modify P (d|z, q)
and apply Bayes’ Theorem so that:

P (d|z, q) =
p(z|d, q)p(d|q)

p(z|q)
=
p(z|d, q)p(d|q)

vz|q
. (7.5)

Then we integrate the fused score generated by CombSUM into our model, i.e., we set:

p(d|q) rank= fCombSUM(d; q)

in (7.5). As a result, after applying (7.5) to (7.4), DDF selects a candidate document by:

d∗ = arg max
d∈R

λ · qt[z∗|q] · p(z
∗|d, q) · fCombSUM(d; q)

vz∗|q
+

(1− λ)
∑
z 6=z∗

qt[z|q] · p(z|d, q) · fCombSUM(d; q)

vz|q
,

(7.6)

where p(z|d; q) is the probability of document d belonging to topic z, which can easily
be inferred in our DDF model by (8.10) (i.e., p(z|d, q) = θd,z). Therefore, after applying
(8.10) and (7.2), (7.6) can be rewritten as:

d∗ = arg max
d∈R

λ · qt[z∗|q] · θd,z
∗ · fCombSUM(d; q)

exp{µ∗z + 1
2σ
∗2
z }

+

(1− λ)
∑
z 6=z∗

qt[z|q] · θd,z · fCombSUM(d; q)

exp{µz + 1
2σ

2
z}

,
(7.7)

where it should be noted that we ignore the constant term:∑T
z=1 exp{µz + 1

2σ
2
z},

as it has no impact on selecting the candidate document d∗.

7.2 Experimental Setup

In this section, we describe our experimental setup; Section 7.2.1 lists our research ques-
tions; Section 7.2.2 lists the metrics and the baselines; Section 7.2.3 details the settings
of the experiments.

7.2.1 Detailed research questions
We divide our main research question (RQ 4) into the following detailed research ques-
tions, and let these questions guiding the remainder of the chapter:

RQ 4.1 Do fusion methods help improve state-of-the-art search diversification meth-
ods? Do they help in terms of intent-aware precision, as our main metric? Does
DDF beat standard and state-of-the-art fusion methods? (See Section 7.3.1 and
Section 7.3.2 for answers.)

108

7.2. Experimental Setup

RQ 4.2 What is the effect on the diversification performance of DDF and fusion methods
of the number of component lists? Does the contribution of fusion to diversification
performance depend on the quality of the component lists? (See Section 7.3.3 for
answers.)

RQ 4.3 Does DDF outperform the best diversification and fusion methods on each query?
(See Section 7.3.4 for the answer.)

RQ 4.4 How do the rankings of DDF differ from those produced by other fusion meth-
ods? (See Section 7.3.5 for the answer.)

RQ 4.5 What is the effect on the diversification performance of DDF of the number of
latent topics used by DDF? (See Section 7.3.6 for the answer.)

In order to answer our research questions we work with the runs submitted to the TREC
2009, 2010, 2011 and 2012 Web tracks, and the billion-page ClueWeb09 collection (see
Section 3.2.3 for details).1 There are two tasks in these tracks: an ad hoc search task and
a search result diversification task (Clarke and Craswell, 2011; Clarke et al., 2009, 2010,
2012). We only focus on the diversification task, where the top-k documents returned
should not only be relevant but also cover as many aspects as possible in response to a
given query. In total, we have 200 ambiguous queries from the four years, with 2 queries
(#95 and #100 in the 2010 edition) not having relevant documents. Typically, each query
has 2 to 5 aspects, and some relevant documents are relevant to more than 2 aspects of
the query.

Many of the runs submitted to these four years of the Web track for the diversification
task were generated by state-of-the-art diversification methods. In total, we have 119, 88,
62 and 48 runs from the 2009, 2010, 2011 and 2012 editions, respectively.2

7.2.2 Evaluation metrics and baselines

We evaluate our component runs and fused runs using several standard metrics that are
official evaluation metrics in the diversification tasks at TREC Web tracks (Clarke and
Craswell, 2011; Clarke et al., 2009, 2010, 2012) and are widely used in the literature on
search result diversification (Agrawal et al., 2009; Aktolga and Allan, 2013; Dang and
Croft, 2012, 2013; Sakai et al., 2013; Santos et al., 2011): Prec-IA@k (Agrawal et al.,
2009), MAP-IA@k (Agrawal et al., 2009), ERR-IA@k (Agrawal et al., 2009) and α-
nDCG@k (Clarke et al., 2008b). The former two are set-based and indicate, respectively,
the precision and mean average precision across all aspects of the query in the search
results, whereas the remaining ones are cascade measures that penalize redundancy at
each position in the ranked list based on how much of that information the user has
already seen from documents at earlier ranks.

We follow published work on search result diversification and mainly compute the
metric scores at depth 20. Statistical significance of observed differences between the
performance of two runs is tested using a two-tailed paired t-test and is denoted using N

(or H) for significant differences for α = .01, or M (and O) for α = .05.

1Available from http://boston.lti.cs.cmu.edu/Data/clueweb09.
2All runs are available from http://trec.nist.gov.

109

http://boston.lti.cs.cmu.edu/Data/clueweb09
http://trec.nist.gov

7. Fusion Helps Diversification

When assessing a fusion method X we will prefer fusion methods that are safe, where
we say that X is safe for metricM if applying X to a set of component runs always yields
a fused run that scores at least as high as the highest scoring component run in the set
(according to M).

We consider several baselines. Two standard fusion methods (Lee, 1995), Comb-
SUM and CombMNZ; two state-of-the-art fusion methods (Kozorovitsky and Kurland,
2011), ClustFuseCombSUM and ClustFuseCombMNZ; each year’s best performing runs
in the diversification tasks at the TREC Web track (Clarke and Craswell, 2011; Clarke
et al., 2009, 2010, 2012), and state-of-the-art plain diversification methods, xQuAD (San-
tos et al., 2010a) and PM-2 (Dang and Croft, 2012). As DDF builds on both fusion
and diversification methods, we also consider two fusion methods, CombSUMMMR
and CombSUMPM-2, that integrate plain diversification methods MMR (Carbonell and
Goldstein, 1998) and PM-2 into CombSUM for diversification, respectively.

7.2.3 Experiments

We report on five main experiments aimed at answering the research questions listed in
Section 7.2.1. In our first experiment, aimed at determining whether fusion methods help
diversification, we fuse the five top performing diversification result lists from the TREC
Web 2009, 2010, 2011 and 2012 submitted runs (some lists are generated by the im-
plementation of PM-2) by our baselines, viz., CombSUM, CombMNZ, ClustFuseComb-
SUM, ClustFuseCombMNZ, CombSUMMMR and CombSUMPM-2 (see Section 7.2.2).
The performance of the baselines is compared against that of DDF.

Our second experiment is aimed at understanding the effect on the diversification
performance of DDF and fusion methods of the number of component lists; we randomly
sample k ∈ {2, 4, . . . , 26} component runs from the submitted runs in the TREC Web
2012 track and fuse them. We repeat the experiments 20 times and report the average
results and the standard deviations. We also show one sample’s result when fusing 4
runs.

Next, in order to understand how DDF outperforms the best component run and the
fusion methods per query, our third experiment provides a query-level analysis. Our
fourth experiment is aimed at understanding how the runs generated by DDF differ from
those produced by other fusion methods; we zoom in on the differences between DDF
and the next best performing fusion method, CombSUMPM-2, in terms of the documents
(and aspects) retrieved by one, but not the other, or by both.

Finally, to understand the influence of the number of latent topics used in DDF, we
vary the number of latent topics and assess the performance of DDF. We also use an
oracle variant of DDF, called DDF2, where for every test query we consider as many
latent topics as there are aspects according to the ground truth. The number of topics
used in DDF is set to 10, unless stated otherwise.

7.3 Results

In Section 7.3.1 we examine the performance of baseline fusion methods on the diversifi-
cation task, which we follow with a section on the performance of DDF in Section 7.3.2.

110

7.3. Results

Section 7.3.3 details the effect of the number of lists; Section 7.3.4 provides a query-level
analysis; Section 7.3.5 zooms in on the effect on ranking of DDF compared to the next
best fusion method; Section 7.3.6 examines the effect of the number of latent topics on
DDF.

7.3.1 Performance of baseline fusion methods

In Table 7.2 we list the diversity scores of the baseline fusion methods on the diver-
sity task: CombSUM, CombMNZ, ClustFuseCombSUM, ClustFuseCombMNZ, Comb-
SUMMMR, CombSUMPM-2, with the 5 best performing component lists from the TREC
Web 2009, 2010, 2011 and 2012 tracks, respectively.3 For all metrics and in all years, al-
most all baseline fusion methods outperform the state-of-the-art diversification methods,
and in many cases significantly so. Note, however, that none of the baseline methods
is safe in the sense defined in Section 7.2.2. Additionally, Table 7.3 shows the diversity
scores of the baseline fusion methods when we fuse 4 randomly sampled runs from the
2012 data set, which confirms that fusion does help diversification.

7.3.2 The performance of DDF

Inspired by the success of baseline fusion methods on the diversification task, we now
consider our newly proposed fusion method, DDF. Returning to Tables 7.2 and 7.3, two
types of conclusion emerge. First, DDF outperforms all component runs (note that com-
ponent runs in Table 7.2 are the best runs in the tracks), on all metrics, for all years.
In other words, it is safe in the sense defined in Section 7.2.2. The difference between
DDF and the best performing component run is always significant. We believe that the
strong performance of DDF is due to the fact that DDF not only focuses on improving
the relevance score of fused run but also explicitly tries to diversify the fused run.

Second, DDF outperforms all baseline fusion methods, on all metrics. In many cases,
CombSUMPM-2 and CombSUM yield the second and third best performance, respec-
tively, but DDF outperforms them in every case, and often significantly so. DDF can beat
CombSUMPM-2 as it tackles two main challenges in PM-2 (see part III in Section 7.1),
although they build on the same framework. CombSUMMMR follows a similar strat-
egy as DDF but its performance is worse than that of DDF. This is due to the fact that
MMR models documents as if they are centered around a single topic only. It is clear
from Tables 7.2 and 7.3 that cluster-based data fusion methods (ClustFuseCombSUM,
ClustFuseCombMNZ) sometimes perform a little worse than the standard fusion method
they build on (CombSUM, CombMNZ). This is because cluster-based fusion focuses on
relevance of the documents rather than on diversification.

3The run “PM-2 (TREC)” is the run that utilizes aspect information from the ground truth in the PM-2
model and the run “PM-2 (engine)” is produced using information from a commercial search engine. The run
“xQuAD (uogTrX)” is a uogTrX TREC edition run generated using the xQuAD algorithm; see (Limsopatham
et al., 2012).

111

7. Fusion Helps Diversification

Table 7.2: Performance obtained using the 2009–2012 editions of the TREC Web tracks.
The best performing run per metric per year is in boldface. Statistically significant dif-
ferences between the fusion method and the best component run, between DDF and
CombSUM, and between DDF and CombSUMPM-2, are marked in the upper right hand
corner of the score, in the upper left hand corner of DDF’s score, and in the lower left
hand corner of DDF’s score, respectively.

Prec-IA MAP-IA α-nDCG ERR-IA

2012 DFalah120A .3241 .0990 .5291 .4259
DFalah120D .3241 .0990 .5291 .4259
xQuAD (uogTrA44xi) .3349 .1345 .5917 .4873
xQuAD (uogTrA44xu) .3504 .1360 .6061 .5048
xQuAD (uogTrB44xu) .3389 .1339 .5795 .4785
ClustFuseCombMNZ .3533 .1488N .6010 .5105
ClustFuseCombSUM .3545 .1495N .5965 .5049
CombSUMMMR .3558 .1544N .6106 .5115
CombSUMPM-2 .3718N .1826N .6228N .5179M

CombMNZ .3663N .1785N .6154M .5153M

CombSUM .3592M .1767N .6114M .5126M

DDF N
N.3904N

N
N.1910N

N
N.6334N

N
N.5266N

2011 ICTNET11ADR2 .2993 .1328 .5725 .4658
umassGQdist .3003 .1313 .5513 .4530
xQuAD (uogTrA45Nmx2) .3039 .1365 .6298 .5284
xQuAD (uogTrA45Vmx) .3030 .1323 .6304 .5238
UWatMDSdm .3214 .1350 .5979 .4875
ClustFuseCombMNZ .3303N .1757N .6221O .5001
ClustFuseCombSUM .3296M .1775N .6307 .5110
CombSUMMMR .3395N .1830N .6341 .5107
CombSUMPM-2 .3450N .2024N .6448N .5196
CombMNZ .3413N .1943N .6430N .5209
CombSUM .3376N .1966N .6423N .5216
DDF N

N.3596N
N
N.2102N .6496N N.5295

2010 CSE.pm2.run .1832 .0351 .4165 .3052
cmuWi10D .1879 .0599 .3452 .2484
xQuAD (uogTrA42x) .1845 .0529 .3558 .2454
PM-2 (engine) .2009 .0414 .3660 .2581
PM-2 (TREC) .2026 .0430 .4449 .3320
ClustFuseCombMNZ .2105 .0845N .4313 .3221
ClustFuseCombSUM .2072 .0825N .4257O .3148O

CombSUMMMR .2115M .0836N .4366 .3189
CombSUMPM-2 .2129N .0839N .4379 .3193
CombMNZ .2177N .0899N .4471 .3411M

CombSUM .2159 .0875N .4454 .3350
DDF N

N.2285N
M
N.0910N

N
N.4627N

N
N.3406N

2009 NeuDiv1 .1343 .0458 .2781 .1705
NeuDivW75 .1239 .0397 .2501 .1598
xQuAD(uogTrDPCQcdB) .1302 .0463 .2968 .1848
xQuAD (uogTrDYCcsB) .1268 .0444 .3081 .1922
uwgym .1224 .0456 .2798 .1701
ClustFuseCombMNZ .1381 .0681N .3076 .1937
ClustFuseCombSUM .1379 .0680N .3223N .2005
CombSUMMMR .1424M .0682N .3343N .2028M

CombSUMPM-2 .1588N .0754N .3887N .2674N

CombMNZ .1400M .0666N .3343N .2033M

CombSUM .1400M .0664N .3482N .2080M

DDF N
N.1631N

N
N.0731N

N
N.4005N N.2713N

112

7.3. Results

Table 7.3: Performance obtained using the 2012 editions of the TREC Web track. The
best performing run per metric is in boldface. Other notational conventions as in Ta-
ble 7.2.

Prec-IA MAP-IA α-nDCG ERR-IA

2012 QUTparaBline .2261 .0639 .5270 .4185
xQuAD (uogTrA44xl) .2957 .1077 .5161 .4009
utw2012c1 .1637 .0439 .5075 .4046
PM-2 (TREC) .2631 .0601 .5245 .4155
ClustFuseCombMNZ .2735O .1155N .5717N .4608N

ClustFuseCombSUM .2752 .1172N .5726N .4674N

CombSUMMMR .2783O .1189N .5799N .4633N

CombSUMPM-2 .2934 .1305N .6013N .4877N

CombMNZ .2864 .1267N .5851N .4708N

CombSUM .2884 .1275N .5944N .4803N

DDF N
N.3193N N

N.1409N M
N.6107N M

N.4919N

7.3.3 Effect of the number of component lists

Next, we zoom in on DDF. In particular, we explore the effect of varying the number
of lists to be fused on its performance. Fig. 7.2 shows the fusion results of randomly
sampling k ∈ {2, 4, . . . , 26} lists from the 48 runs submitted to the TREC Web 2012
track plus the PM-2 runs (due to space limitations, we only report results using the 2012
runs; the findings on other years are qualitatively similar). For each k, we repeat the
experiment 20 times and report on the average scores and the corresponding standard
deviations indicated by the error bars in the figure. We use CombSUM as a representative
example for comparison with DDF, as the results of other baseline fusion methods are
worse or have qualitatively similar results to those of CombSUM.

As shown in Fig. 7.2, DDF always outperforms CombSUM in terms of the Prec-IA,
α-nDCG and ERR-IA evaluation metrics and the performance gaps remain almost un-
changed, in absolute terms, no matter how many component lists are fused. One reason
for this is that as DDF builds on CombSUM, it inherits the merits of the fusion method,
and more importantly, at the same time it tries to infer latent topics and rerank the high
ranked documents in terms of novelty of the documents. For the MAP-IA metric, how-
ever, the gaps increase with more component lists being fused. The performance of both
DDF and CombSUM increases faster when the number of component lists increases but
is ≤ 10 than when the number of component lists is > 10, for all the metrics. This
seems to be inherent to the underlying CombSUM method and is due to the fact that with
smaller numbers of component lists, there is simply more space available at depth 20 to
obtain improvements than with larger numbers of component lists.

7.3.4 Query-level analysis

We take a closer look at per test query improvements of DDF over the best baseline fusion
run when fusing the best 5 runs in 2012, viz., CombSUMPM-2, which outperforms the
best component list. Fig. 7.3 shows the per query performance differences in terms of

113

7. Fusion Helps Diversification

0 10 20 30

0.2

0.25

0.3

0.35

Number of runs to be fused

P
re

c
−

IA

DDF

CombSUM

0 10 20 30
0.05

0.1

0.15

0.2

0.25

0.3

Number of runs to be fused

M
A

P
−

IA

DDF

CombSUM

0 10 20 30
0.43

0.47

0.51

0.55

0.59

Number of runs to be fused

α
−

n
D

C
G

DDF

CombSUM

0 10 20 30

0.35

0.4

0.45

0.5

Number of runs to be fused

E
R

R
−

IA

DDF

CombSUM

Figure 7.2: Effect on performance (in terms of Prec-IA, MAP-IA, α-nDCG and ERR-IA)
of the number of component lists, using runs sampled from the TREC 2012 Web track.
We plot averages and standard deviations. Note: the figures are not to the same scale.

Prec-IA, MAP-IA, α-nDCG and ERR-IA, respectively, of DDF against CombSUMPM-
2. DDF achieves performance improvements for many queries when compared against
CombSUMPM-2, although the differences are sometimes relatively small.

In a very small number of cases, DDF performs poorer than CombSUMPM-2. This
appears to be due to the fact that DDF “over-diversifies” documents in runs produced
by CombSUM that have very few relevant document to start with, so that DDF ends up
promoting different but non-relevant documents.

7.3.5 Zooming in on Prec-IA@k

Next, we zoom in on one of the metrics that shows the biggest relative differences be-
tween DDF and the next best performing fusion method, Prec-IA, so as to understand
how the runs generated by DDF differ from those by other fusion-based methods. Here,
again, we use CombSUMPM-2 as a representative, as it tends to outperform or equal the
other fusion methods. Specifically, we report changes in the number of relevant docu-
ments for DDF against CombSUMPM-2 when fusing the 2012 runs in Table 7.2 in 2012;
see Fig. 7.4. Red bars indicate the number of relevant documents that appear in the run
of DDF but not the run of CombSUMPM-2, white bars indicate the number of relevant
documents in both runs, whereas blue bars indicate the number of relevant documents
that appear not in DDF but in CombSUMPM-2; topics are ordered first by the size of the
red bar, then the size of the white bar, and finally the size of the blue bar.

Clearly, the differences between DDF and CombSUMPM-2 in the top 5 and 10 are
more limited than the differences in the top-15 and 20, but in all cases DDF outperforms

114

7.3. Results

-0.2

 0

 0.2

∆
P

re
c
-I

A

queries
-0.2

 0

 0.2

∆
M

A
P

-I
A

queries

-0.5

 0

 0.5

∆
α

-n
D

C
G

queries

-0.2

 0

 0.2

∆
E

R
R

-I
A

queries

Figure 7.3: Per query performance differences of DDF against CombSUMPM-2 (second
row). The figures shown are for fusing the runs in TREC Web 2012 track, for Prec-
IA@20, MAP-IA@20, α-nDCG@20 and ERR-IA@20 (from left to right). A bar ex-
tending above the center of a plot indicates that DDF outperforms CombSUMPM-2, and
vice versa for bars below the center.

CombSUMPM-2. E.g., in total there are 45 more relevant documents in the top 20 of the
run produced by DDF than those in the CombSUMPM-2 run (49 relevant documents in
DDF but not in CombSUMPM-2, 4 relevant documents in CombSUMPM-2 but not in
DDF). We examine the matter further by comparing the Prec-AI@5, 10, 15, 20 scores of
the DDF and CombSUMPM-2 runs for the 2012 data; see Table 7.4. The differences at
small depths (5, 10) are weakly statistically significant while those at bigger depths are
significant, confirming our observations in Fig. 7.4; we also find that DDF statistically
significantly outperforms CombSUMPM-2 in terms of Prec-IA scores at depth 5, 10, 15
and 20, which again confirms the above observations based on Fig. 7.4.

Table 7.4: Prec-IA@5, 10, 15, 20 performance comparison between CombSUMPM-2
and DDF. A statistically significant difference between DDF and CombSUMPM-2 is
marked in the upper left hand corner of the DDF score.

Prec-IA@ 5 10 15 20

CombSUMPM-2 .4367 .4066 .3887 .3718
DDF M.4555 M.4194 N.4060 N.3904

115

7. Fusion Helps Diversification

0 10 20 30 40 50
0

2

4

6

queries

n
u
m

b
e
r

Top 5 documents

0 10 20 30 40 50
0

5

10

queries

n
u
m

b
e
r

Top 10 documents

0 10 20 30 40 50
0

5

10

15

queries

n
u
m

b
e
r

Top 15 documents

0 10 20 30 40 50
0

5

10

15

20

queries

n
u
m

b
e
r

Top 20 documents

Figure 7.4: How runs produced by DDF and CombSUMPM-2 differ. Red, white,
blue bars indicate the number of relevant documents that appear in DDF but not in
CombSUMPM-2, in both runs and not in DDF but in CombSUMPM-2, respectively,
at corresponding depth k (for k = 5, 10, 15, 20). Figures should be viewed in color.

7.3.6 Effect of the number of topics

Finally, we examine the effect on the overall performance of the number of latent topics
used in DDF, and contrast the performance of DDF with varying number of latent topics
against DDF2, CombSUM and CombSUMPM-2. Here, DDF2 is the same algorithm as
DDF except that for every test query it considers as many latent topics as there are aspects
according to the ground truth. We use DDF2, DDF, CombSUM and CombSUMPM-2 to
fuse the component result runs listed in Table 7.2 in 2012 as an example. We vary the
number of latent topics in DDF from 2 to 16. See Fig. 7.5.

When the number of latent topics used in DDF increases from 2 to 6, the performance
of DDF increases dramatically. When only 2 latent topics are used, the performance
is worse than that of CombSUM and CombSUMPM-2; e.g., Prec-IA@20 for DDF is
0.3404, while the scores of CombSUM and CombSUMPM-2 are 0.3592 and 0.3718,
respectively. In contrast, when the number of latent topics varies between 8 to 16, the
performance of DDF seems to level off. This demonstrates another merit of our fusion
model, DDF: it is robust and not sensitive to the number of latent topics once the num-
ber of latent topics is “large enough.” Another important finding from Fig. 7.5 is that
DDF2 always enhances the performance of DDF, CombSUM and CombSUMPM-2, for

116

7.4. Conclusion

0 5 10 15
0.3

0.35

0.4

Number of topics

P
re

c
−

IA

DDF2

DDF

CombSUMPM−2

CombSUM

0 5 10 15
0.16

0.17

0.18

0.19

Number of topics

M
A

P
−

IA

DDF2

DDF

CombSUMPM−2

CombSUM

0 5 10 15
0.58

0.6

0.62

0.64

α
−

n
D

C
G

Number of topics

DDF2

DDF

CombSUMPM−2

CombSUM

0 5 10 15

0.48

0.5

0.52

0.54

E
R

R
−

IA

Number of topics

DDF2

DDF

CombSUMPM−2

CombSUM

Figure 7.5: Performance comparison between DDF2, DDF, CombSUMPM-2 and Comb-
SUM when varying the number of latent topics used in DDF. Note: the figures are not to
be the same scale.

all metrics, which demonstrates the fact that latent topics can enhance the performance.
The performance differences between DDF2 and DDF are quite marginal and not sta-
tistically significant. We leave it as future work to dynamically estimate the number of
aspects (and latent topics) of an incoming query and to use this estimate in DDF.

7.4 Conclusion

Most previous work on search result diversification focuses on the content of the doc-
uments returned by an ad hoc algorithm to diversify the results implicitly or explicitly,
i.e., using implicit or explicit representations of aspects. In this chapter we have adopted
a different perspective on the search result diversification problem, based on data fusion.

We proposed to use traditional unsupervised and state-of-the-art data fusion meth-
ods, CombSUM, CombMNZ, ClustFuseCombSUM, ClustFuseCombMNZ, CombSUM-
MMR and CombSUMPM-2 to diversify result lists. This led to the insight that fusion
does aid diversification. We also proposed a fusion-based diversification method, DDF,
which infers latent topics from ranked lists of documents produced by a standard fusion
method, and combines this with a state-of-the-art result diversification model. Our ex-
periments provide answers to the main research question raised at the beginning of this

117

7. Fusion Helps Diversification

chapter:

RQ 4 Can data fusion help search result diversification?

To answer the main research question, we worked with the runs submitted to the TREC
2009, 2010 and 2012 Web tracks, and the billion-page ClueWeb09 official collection in
the TREC. In the experiments, we considered a number of baselines, including plain data
fusion methods, e.g., CombSUM, plain search result diversification methods, e.g., PM-2,
and the mixed methods, e.g., CombSUMPM-2. We found that data fusion approaches
outperform state-of-the-art search result diversification algorithms, with DDF invariably
giving rise to the highest scores on all of the metrics that we have considered in this
chapter. DDF was shown to behave well with different numbers of component lists.
We also found that DDF is insensitive to the number of latent topics of a query, once a
sufficiently large number was chosen, e.g., 10.

As to future work, we aim to incorporate into DDF methods for automatically esti-
mating the number of aspects, which will be used to set the number of latent topics. We
also plan to use data fusion methods BurstFuseX and TimeRA proposed in Chapters 4
and 5 for diversification and compare them to DDF. The last and third part of DDF is
based on a particular choice of method, viz. PM-2, and we only apply rank-based fu-
sion methods for diversification. In future work we plan to compare these choices with
alternative choices, and apply other fusion alternatives, e.g., score-based fusion methods.

In Chapters 4 and 5 we focused on data fusion methods for microblog search, and in
Chapter 6 we focused on data fusion methods for ad hoc search. In this chapter, we con-
sidered alternative application of data fusion in search result diversification, where only
document are token into account. In the next chapter, we will continue the research of
search result diversification and investigate how to utilize users’ personalized information
for search result diversification.

118

7.A. Gibbs Sampling Derivation for DDF Model

7.A Gibbs Sampling Derivation for DDF Model

We begin with the joint distribution P (w, f , z|α, β, µ, σ,L) and use conjugate priors to simplify
the integrals. Notation defined in Section 7.1.

P (w, f , z|α, β, µ, σ,L, q) = P (w|z, β)p(f |µ, σ, z,L)P (z|α)

=

∫
P (w|Φ, z)p(Φ|β)dΦ× p(f |µ, σ, z,L, q)

∫
P (z|Θ)P (Θ|α)dΘ

=

∫ |CL|∏
d=1

Nd∏
i=1

P (wdi|φzdi)
T∏
z=1

p(φz|β)dΦ

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
∫ |CL|∏

d=1

(
Nd∏
i=1

P (zdi|θd)p(θd|α)

)
dΘ

=

∫ T∏
z=1

V∏
v=1

φ
nzv
zv

T∏
z=1

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

V∏
v=1

φβv−1
zv

)
dΦ

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
∫ |CL|∏

d=1

T∏
z=1

θ
mdz
dz

|CL|∏
d=1

(
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

T∏
z=1

θαz−1
dz

)
dΘ

=

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

)T (
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

)|CL|

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
T∏
z=1

∏V
v=1 Γ(nzv + βv)

Γ(
∑V
v=1(nzv + βv))

|CL|∏
d=1

∏T
z=1 Γ(mdz + αz)

Γ(
∑T
z=1(mzd + αz))

Using the chain rule, we can obtain the conditional probability conveniently,

P (zdi|w, f , z−di, α, β, µ, σ,L, q)

=
P (zdi, wdi, fdi|w−di, f−di, z−di, α, β, µ, σ,L, q)
P (wdi, fdi|w−di, f−di, z−di, α, β, µ, σ,L, q)

=
P (w, f , z|α, β, µ, σ,L, q)

P (w, f , z−di|α, β, µ, σ,L, q)
because zdi depends only on wdi and fdi

∝ P (w, f , z|α, β, µ, σ,L, q)
P (w−di, f−di, z−di, |α, β, µ, σ,L, q)

∝ (mdzdi + αzdi − 1)
nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

119

7. Fusion Helps Diversification

× 1

fdiσzdi
√

2π
exp{− (ln fdi − µzdi)

2

2σ2
zdi

}

∝ (mdzdi + αzdi − 1)
nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

× 1

fX(d|L, q)σzdi
√

2π
exp{− (ln fX(d|L, q)− µzdi)

2

2σ2
zdi

},

where fX(d|L, q) ∈ (0,+∞) is a fusion score generated by a standard fusion method fX for docu-
ment d ∈ CL given the observation of lists L to be merged and query q. We use fCombSUM(d|L, q).

Since the data fusion score of a token that appears in d when fusing all the lists in L given a
query q and the latent topics of which is zdi, is drawn from log-normal distributions, sparsity is not
a big problem for parameter estimation of both µzdi and σzdi . For simplicity, we update both µzdi
and σzdi after each Gibbs sample iteration by maximum likelihood estimation:

µ̂zdi =

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

ln fd′i′

nzdi

=

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

ln fX(d′|L, q)
nzdi

σ̂2
zdi =

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

(ln fd′i′ − µ̂)2

nzdi

=

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

(ln fX(d′|L, q)− µ̂)2

nzdi

120

8
Personalized Diversification

In the previous chapter, we have explored how to utilize data fusion for search result
diversification where we only focus on the content of the documents and no user’s in-
formation is taken into account. In this chapter, we continue the research question of
search result diversification, but also integrate user’s information for diversification. In
both search result diversification and personalized web search, an issued query is often
viewed as an incomplete expression of a user’s underlying need (Shen et al., 2005). Un-
like search result diversification, where the system accepts and adapts its behavior to a
situation of uncertainty, personalized web search strives to change this situation by en-
hancing the system’s knowledge about users’ information needs. Rather than aiming to
satisfy as many users as possible, personalization aims to build a sense of who the user
is, and maximizes the satisfaction of a specific user (Vallet and Castells, 2012).

Although different, diversification and personalization are not incompatible and do
not have mutually exclusive goals (Shi et al., 2012). Search results generated by diver-
sification techniques should be more diverse when a user’s preferences are unrelated to
the query. Likewise, personalization can improve the effectiveness of aspect weighting
in diversification, by favoring query interpretations that are predicted to be more related
to each specific user (Vallet and Castells, 2012).

In this chapter we study the problem of personalized diversification of search results,
with the goal of enhancing both diversification and personalization performances. The
problem has previously been investigated by Radlinski and Dumais (2006) and Vallet
and Castells (2012). They have presented a number of effective unsupervised learning
approaches that combine both personalization and diversification components to tackle
the problem. To further improve the performance, we propose a supervised learning
approach.

There are a couple of advantages to considering a supervised learning approach. Such
approaches can leverage useful information underlying labeled training data, apply exist-
ing optimization techniques to the problem and are easier to adaptation. Of course, they
also have disadvantages, one of which is that it is expensive to create training data for su-
pervised learning methods. This is, however, a shortcoming for any supervised learning
strategy and we leave it as future work. Accordingly, we are interested in answering:

RQ 5 How to enhance both diversification and personalization performance at the same
time in a supervised way?

121

8. Personalized Diversification

To answer the question, we formulate the task of personalized search result diver-
sification as a problem of predicting a diverse set of documents given a specific user
and a query. Specifically, we formulate a discriminant based on maximizing search re-
sult diversification, and perform training using the well-known structured support vector
machines (SSVMs) framework (Tsochantaridis et al., 2005). The main idea is first to
propose a user-interest LDA-style (Blei et al., 2003, Latent Dirichlet Allocation) topic
model, from which we can infer a per-document multinomial distribution over topics and
determine whether a document can cater for a specific user. Then, during training we
use features extracted directly from the tokens’ statistical information in the documents
and those utilized by unsupervised personalized diversification algorithms, and, more
importantly, those generated from our proposed topic model. Additionally, two types
of constraints in SSVMs are explicitly defined to enforce the search results to be both
diverse and relevant to a user’s personal interest.

We evaluate our proposed approach on a publicly available personalized diversifi-
cation dataset and compare it to unsupervised approaches, that focus on either person-
alization or diversification alone, to combined approaches like those in (Radlinski and
Dumais, 2006) and (Vallet and Castells, 2012), and to two standard structured learning
approaches (Yue and Joachims, 2008; Yue et al., 2007). The three main contributions of
our work in this chapter are as follows:

i. We tackle the problem of personalized diversification of search results differently,
using a supervised learning method.

ii. We propose a user-interest latent topic model to capture a user’s interest and infer
per-document multinomial distributions over topics.

iii. We explicitly enforce diversity and personalization through two types of con-
straints in structured learning for personalized diversification.

The remainder of the chapter is organized as follows. We frame the challenge as a struc-
tured learning problem in Section 8.1. Section 8.2 describes our structured learning for
personalized diversification. Section 8.4 describes experimental setup. Section 8.5 is
devoted to our results and we conclude in Section 8.6.

8.1 The Learning Problem

Let u = {d1, . . . , d|u|} ∈ U be a set of documents of size |u|, which a user u is interested
in. For each query q, we assume that we are given u and a set of candidate documents
x = {x1, . . . , x|x|} ∈ X , whereX denotes the set of all possible document sets. Our task
is to select a subset y ∈ Y of K documents from x that maximizes the performance of
personalized search result diversification given q and u, where we let Y denote the space
of predicted subsets y. Following the standard machine learning setup, we formulate our
task as learning a hypothesis function h : X × U → Y to predict a y given x and u. To
this end, we assume that a set of labeled training data is available:

{(x(i),u(i),y(i)) ∈ X × U × Y : i = 1, . . . , N},

where y(i) is the ground-truth subset of K documents from x(i), and u(i) is the set of
documents that user ui is interested in, and N is the size of the training data. We aim to

122

8.2. Structured Learning for Personalized Diversification

find a function h such that the empirical risk R∆
S (h) = 1

N

∑N
i=1 ∆(y(i), h(x(i),u(i)))

can be minimized, where we quantify the quality of a prediction by considering a loss
function ∆ : Y × Y → R+ that measures the penalty of choosing ȳ = h(x(i),u(i)).
Here, given the ground truth y, viz., the ground truth ranking of relevant documents, and
the prediction ȳ, viz., the ranking of predicted documents, we define the loss function
based on a diversity metric, α-nDCG (Clarke et al., 2008b) (other diversity metrics are
possible but we obtain the best performance when adopting this metric), as:

∆(y, ȳ) = 1− α-nDCG(y, ȳ). (8.1)

We focus on hypothesis functions that are parameterized by a weight vector w, and thus
wish to find w to minimize the risk, R∆

S (w) ≡ R∆
S (h(·; w)). We let a discriminant

F : X × U × Y → R+ compute how well the prediction ȳ fits for x and u. Then the
hypothesis predicts the ȳ that maximizes F :

ȳ = h(x,u; w) = arg max
y∈Y

F(x,u,y). (8.2)

We describe each (x,u,y) through a feature vector Ψ(x,u,y); the extraction will be
discussed later. The discriminant function F(x,u,y) is assumed to be linear in the
feature vector Ψ(x,u,y) such that:

F(x,u,y) = wTΨ(x,u,y), (8.3)

where w is a weight vector to be learned from training data.

8.2 Structured Learning for Personalized Diversification

In this section, we propose constraints for personalized diversification and describe our
optimization problem and the way we make predictions.

8.2.1 Additional constraints

Our personalized diversification model builds on an existing standard structured learning
framework (See Section 2.3.7 for details). As discussed above, we aim at training a
personalized diversification model that can enforce both diversity and consistency with
the user’s interest. This can be achieved by introducing additional constraints to the
structured SVM optimization problem defined in (2.12). To start, diversity requires a
set of retrieved documents that should not discuss the same aspects of an ambiguous
query. In other words, aspects of documents returned by a diversification model should
have little overlap with one another. Formally, we enforce diversity with the following
constraint.

Constraint for diversity:

wTΨ(x(i),u(i),y(i)) ≥
∑
y∈y(i)

wTΨ(x(i),u(i), y)− ξi. (8.4)

123

8. Personalized Diversification

In (8.4), the sum of each document’s score,
∑

wT Ψ(x(i),u(i), y), should not be greater
than the overall score when the documents in y(i) are considered as an ideal ranking
of the document sets. As a result, commonly shared features will be associated with
relatively low weights, and a document set with less redundancy will be predicted.

Additionally, personalization requires a set of returned documents to match the user’s
personal interest. Formally, we enforce personalization with the following constraint.
Constraint for consistency with user’s interest:

wTΨ(x(i),u(i),y(i)) ≥ wTΨ(x(i),u(i),y) + (8.5)
(1− sim(y,u(i)))− µ− ξi,

where sim(y,u(i)) ∈ [0, 1] is a function (see (8.13) below for the definition) that mea-
sures subtopic distribution similarity between a set of documents y and the documents
user ui is interested in, i.e., u(i), µ is a slack variable that tends to give slightly better
performance, which can be defined as µ = 1

N

∑N
i=1(1− sim(y(i),u(i))).

In (8.5), (1 − sim(y,u(i))) quantifies how well a set of documents matches a user’s
interest. If the topics discussed in a set of documents y are not consistent with a user’s
personal interest, wTΨ(x,u,y) will result in a relatively low score. During prediction,
documents consistent with a user’s interest will be preferred.

8.2.2 Our optimization problem
A set of documents produced in response to an ambiguous query should be diverse and
consistent to the user’s personal interest. To this end we integrate the proposed addi-
tional constraints with standard structured SVMs. We propose to train a personalized
diversification model by tackling the following optimization problem:
Optimization Problem 2. (Structured SVMs for personalized diversification)

min
w,ξ≥0

1

2
||w||2 +

C

N

N∑
i=1

ξi (8.6)

subject to ∀i,∀y ∈ Y\y(i), ξi ≥ 0,

i. wTΨ(x(i),u(i),y(i)) ≥ wTΨ(x(i),u(i),y) + ∆(y(i),y)− ξi,

ii. wTΨ(x(i),u(i),y(i)) ≥
∑
y∈y(i)

wTΨ(x(i),u(i), y)− ξi,

iii. wTΨ(x(i),u(i),y(i)) ≥ wTΨ(x(i),u(i),y) + ((1− sim(y,u(i)))− µ)− ξi.

8.2.3 The learning algorithm
We can solve the optimization problem defined in (8.6) by employing the cutting plane
algorithm (Tsochantaridis et al., 2005). The learning algorithm is shown in Algorithm 4.
The algorithm iteratively adds constraints until we have solved the original problem
within a desired tolerance ε. It starts with empty working sets Wi, W ′i and W ′′i , for
i = 1, . . . , N . Then it iteratively finds the most violated constraints ȳ, ȳ′ and y′′ for

124

8.3. User-Interest Topic Model and Feature Space

Algorithm 4: Cutting plane algorithm

Input : (x(1),u(1),y(1)), . . . , (x(N),u(N),y(N)), C, ε
1 Wi ← ∅,W ′i ← ∅,W ′′i ← ∅ for all i = 1, . . . , N

2 µ = 1
N

∑N
i=1(1− sim(y(i),u(i)))

3 repeat
4 for i = 1, . . . , N do
5 H(y; w) ≡ ∆(y(i),y) + wTΨ(x(i),u(i),y)−wTΨ(x(i),u(i),y(i))

6 H ′(y; w) ≡
∑
y∈y(i) wTΨ(x(i),u(i), y)−wTΨ(x(i),u(i),y(i))

7 H ′′(y; w) ≡ wTΨ(x(i),u(i),y) +
8 ((1− sim(y,u(i)))− µ)−wTΨ(x(i),u(i),y(i))
9 compute ȳ = argmaxy H(y; w), ȳ′ = argmaxy H

′(y; w) and
ȳ′′ = argmaxy H

′′(y; w)
10 compute ξi = max{0,maxy∈Wi H(y; w),

maxy∈W′i
H ′(y; w),maxy∈W′′i

H ′′(y; w)}
11 if H(ȳ; w) > ξi + ε or H ′(ȳ′; w) > ξi + ε or H ′′(ȳ′′; w) > ξi + ε then
12 Add constraint to working setWi ←Wi ∪ {ȳ},W ′i ←W ′i ∪ {ȳ′},

W ′′i ←W ′′i ∪ {ȳ′′}
13 w← optimize (8.6) over

⋃
i{Wi,W ′i,W ′′i }

14 until noWi,W ′i andW ′′i have changed during iteration

each (x(i),u(i),y(i)) in terms of the three constraints (i), (ii) and (iii) in (8.6), respec-
tively. If they are violated by more than ε, we add them into the corresponding working
sets. We iteratively update w by optimizing (8.6) over the updated working sets. The
outer loop in Algorithm 4 can halt within a polynomial number of iterations for any
desired precision ε; see (Tsochantaridis et al., 2005).

8.2.4 Prediction

After w has been learned, given an ambiguous query, a set of candidate documents x,
and a set of documents u the user u is interested in, we try to predict a set of documents
ȳ by tackling the following prediction problem:

ȳ = arg max
y∈Y

F(x,u,y) = wTΨ(x,u,y). (8.7)

This is a special case of the Budgeted Max Coverage problem (Khuller et al., 1999), and
can be efficiently solved by Algorithm 5.

8.3 User-Interest Topic Model and Feature Space

In this section, we first review the notation and terminology used in our user-interest
topic model, and then describe the model and the features used in our structured learning
framework.

125

8. Personalized Diversification

Algorithm 5: Greedy subset selection for prediction
Input : w, x, u

1 ȳ← ∅
2 for k = 1, . . . ,K do
3 x̄ = arg maxx:x∈x,x/∈ȳ wTΨ(x,u, ȳ ∪ {x})
4 ȳ← ȳ ∪ {x̄}
5 return ȳ

Table 8.1: Additional notation used in the user-interest topic model in this chapter (cf.
Table 2.1 and 7.1).

Notation Gloss

u user
U number of users
D number of documents
ũ a set of users
w̃ a set of tokens
bz Beta distribution parameter for z
ϑu multinomial distribution of topics specific to u
rdi relevance of the i-th token in d

8.3.1 Notation and terminology
We summarize the main notation used in our user-interest topic model (UIT) in Table 8.1.
As we did in Chapter 7, we distinguish between queries, aspects and topics. A query is
a user’s expression of an information need. An aspect (sometimes called subtopic at the
TREC Web tracks (Clarke et al., 2012)) is an interpretation of an information need. We
use topic to refer to latent topics as identified by a topic modeling method (LDA).

8.3.2 User-interest topic model
To capture per-user and per-document multinomial distributions over topics such that we
can measure whether a document can cater for the user’s interest, we propose a user-
interest latent topic model (UIT). Topic discovery in UIT is influenced not only by token
co-occurrences, but also by the relevance scores of documents evaluated by users. In our
UIT model, we use a Beta distribution over a (normalized) document relevance span cov-
ering all the data, and thus various skewed shapes of rising and falling topic prominence
can be flexibly represented.

The latent topic model used in UIT is a generative model of relevance and tokens
in the documents. The generative process used in Gibbs sampling (Liu, 1994) for its
parameter estimation, is as follows:

i. Draw T multinomials φz from a Dirichlet prior β, one for each topic z;

ii. For each user u, draw a multinomial ϑu from a Dirichlet prior α; then for each token
wdi in document d ∈ u:

(a) Draw a topic zdi from multinomial ϑu;

126

8.3. User-Interest Topic Model and Feature Space

β φ w r b2

α ϑ z

u

b1

q

Nd |ũ|

U

T T

T

Figure 8.1: Graphical representation of user-interest topic model.

(b) Draw a token wdi from multinomial φzdi ;

(c) Draw a relevance score rdi for wdi from Beta (bzdi1, bzdi2).

Fig. 8.1 shows a graphical representation of our model. In the generative process, the
relevance scores of tokens observed in the same document are the same and evaluated by
a user, although a relevance score is generated for each token from the Beta distribution.
In our experiments, there is a fixed number of latent topics, T , although a non-parametric
Bayesian version of UIT that automatically integrates over the number of topics would
certainly be possible. The posterior distribution of topics depends on the information
from two modalities: tokens and the documents’ relevance scores.

Inference is intractable in this model. Following (Boyd-Graber and Blei, 2008, 2009;
Jameel and Lam, 2013; Liu, 1994; Wang and McCallum, 2006), we employ Gibbs sam-
pling to perform approximate inference. We adopt a conjugate prior (Dirichlet) for the
multinomial distributions, and thus we can easily integrate out ϑ and φ, analytically cap-
turing the uncertainty associated with them. In this way we facilitate the sampling, i.e.,
we need not sample ϑ and φ at all. Because we use the continuous Beta distribution
rather than discretizing document relevance scores, sparsity is not a big concern in fitting
the model. For simplicity and speed we estimate these Beta distributions (bz1, bz2) by the
method of moments, once per iteration of Gibbs sampling. We find that the sensitivity
of the hyper-parameters α and β is not very strong. Thus, for simplicity, we use fixed
symmetric Dirichlet distributions (α = 50/T and β = 0.1) in all our experiments.

In the Gibbs sampling procedure above, we need to calculate the conditional distribu-
tion P (zdi|w̃, r, z−di, ũ, α, β,b, q), where z−di represents the topic assignments for all
tokens except wdi. We begin with the joint probability of a dataset, and using the chain
rule, we can obtain the conditional probability conveniently as:

P (zdi|w̃, r, z−di, ũ, α, β,b, q) ∝
nzdiwdi

+ βwdi
− 1∑V

v=1(nzdiv + βv)− 1

nudizdi + αzdi − 1∑T
z=1(nudiz + αz)− 1

×

(1− rdi)bzdi1−1r
bzdi2−1

di

B(bzdi1, bzdi2)
,

127

8. Personalized Diversification

where nzv is the total number of tokens v that are assigned to topic z, nuz represents the
number of topics z that are assigned to user u. Details are provided in the Appendix 8.A.

After the Gibbs sampling procedure, we can easily infer a user’s interest, i.e., multi-
nomial distributions over topics for user u, as:

ϑuz = p(z|u) =
nuz + αz∑T

z=1(nuz + αz)
, (8.8)

and easily infer multinomial distributions over tokens for topic z:

φzv = p(v|z) =
nzv + βv∑V

v=1(nzv + βv)
, (8.9)

where nzv is the number of tokens of word v that are assigned to topic z. To obtain the
multinomial distribution over topics for document d, i.e., θdz , we first apply Bayes’ rule:

θdz = p(z|d) =
p(d|z)p(z)
p(d)

, (8.10)

where p(d|z) is the probability of d belonging to topic z, and p(z) is the probability
of topic z. According to (8.9), p(d|z) can be obtained as p(d|z) =

∏
v∈d p(v|z) =∏

v∈d φzv . According to (8.8), p(z) can be obtained as p(z) =
∑U
u=1 p(z|u)p(u), where

U is the total number of users. Therefore, 8.10 can be represented as:

θdz =

∏
v∈d φzv

∑U
u=1 p(z|u)p(u)

p(d)
. (8.11)

As any d has the same chance to be considered to be returned in response to q, we can
assume that p(d) is a constant, and likewise we also assume that p(u) is a constant, such
that (8.11) becomes:

θdz = 1
E

∏
v∈d φzv

∑U
u=1 ϑuz, (8.12)

where E =
∑T
z=1

∏
v∈d φzv

∑U
u=1 ϑuz is a normalization constant. Then, the topic

distribution similarity sim(y,u) between a set of documents y and the documents u a
user u is interested in can be measured as:

sim(y,u) = 1
|y|
∑
d∈y cos(θd, ϑu), (8.13)

where vectors θd = (θd1, . . . , θdT) and ϑu = (ϑd1, . . . , ϑdT) are the multinomial distri-
bution of topics specific to document d and user u, respectively. We use the cos function
in (8.13); other distance functions such as one based on Euclidean distance can be em-
ployed but we found that the results were not significantly different.

8.3.3 Feature space
The feature representation Ψ must enable meaningful discrimination between high qual-
ity and low quality predictions (Yue and Joachims, 2008). To predict a set of documents
in the personalized diversification task, we propose to consider three main types of fea-
ture space.

128

8.3. User-Interest Topic Model and Feature Space

Tokens. Following (Yue and Joachims, 2008), we define L token sets V1(y), . . . ,
VL(y). Each token set Vl(y) contains the set of tokens that appear at least l times in
some document in y. Then we use thresholds on the ratio |Dl(v)|/|u| (or |Dl(v)|/|x|)
to define feature values of ψl(v,u) (or ψl(v,x)) that describe word v at l-th importance
level. Here, Dl(v) is the set of documents that have at least l copies of v in the whole
set of documents u (or x). We let L = 20 in our experiments, as quite a few tokens can
appear more than 20 times in a document. Besides, we propose to directly utilize the
tokens’ statistics to capture similarity between a document x ∈ y and a set of documents
u that a user u is interested in as features. We consider cosine, Euclidean and Kullback-
Leibler (KL) divergence similarity metrics. For each of these three metrics, we compute
the minimal, maximal, and average similarity scores of the document x ∈ y and the
standard deviations to a set of documents u based on the content of the documents and
the standard LDA model (Blei et al., 2003). In total, we have 49 features that fall in this
feature category.

Interest. In addition, based on our UIT topic model, we also compute the cosine,
Euclidean and KL similarity between a document x ∈ y and a set of documents u based
on a multinomial distribution over topics and the user’s multinomial distribution over
topics generated by UIT. Again, for each of these three similarity metrics, we compute
the minimal, maximal, and average similarity scores and the standard deviation scores.
In total, we have S = 36 features ωs(x,u) that fall in this feature category.

Probability. The main probabilities used in state-of-the-art unsupervised personal-
ized diversification methods are utilized in our learning model as features, i.e., γm(x,x,u).
These probabilities include p(d|q), the probability of d being relevant to q, p(c|d), the
probability of d belonging to a category c, p(c|q, u), the personalized query aspect distri-
bution, p(c|d, u), the personalized aspect distribution over d, and p(d|c, u), the personal-
ized aspect-dependent document distribution, where c is a category that d belongs to in
the Textwise Open Directory Project category service.1 For p(d|q), we obtain 3 versions
of this feature value produced by BM25 (Robertson and Hull, 2000), Jelinek-Mercer and
Dirichlet language models (Zhai and Lafferty, 2001). To get the feature value of p(c|d),
we make use of the Textwise service which returns up to 3 possible categories for d,
ranked by a score in [0, 1], and we use the normalized scores as features. We adopt 5
ways of computing p(c|q, u) as feature values (Vallet and Castells, 2012); for details on
how to compute p(c|q, u), p(c|d, u) and p(d|c, u) we refer to (Vallet and Castells, 2012).

1http://textwise.com

129

http://textwise.com

8. Personalized Diversification

Then, we define Ψ(x,u,y) as follows:

Ψ(x,u,y) =



1
|y|
∑
v∈V1(y) ψ1(v,u)

1
|y|
∑
v∈V1(y) ψ1(v,x)

...
1
|y|
∑
v∈VL(y) ψL(v,u)

1
|y|
∑
v∈VL(y) ψL(v,x)

1
|y|
∑
x∈y ω1(x,u)

...
1
|y|
∑
x∈y ωS(x,u)

1
|y|
∑
x∈y γ1(x,x,u)

...
1
|y|
∑
x∈y γM (x,x,u)



.

8.4 Experimental Setup

In this section, we describe our experimental setup; Section 8.4.1 lists our research ques-
tions; Section 8.4.2 describes our dataset; Section 8.4.3 and Section 8.4.4 lists the base-
lines and metrics for evaluation, respectively; Section 8.4.5 details the settings of the
experiments.

8.4.1 Detailed research questions

We divide our main research question (RQ 5) into the following research questions, and
let these questions guide the remainder of the chapter:

RQ 5.1 Can supervised personalized diversification methods outperform state-of-the-art
unsupervised methods? Can our method beat state-of-the-art supervised methods?
(See Section 8.5.1 for answers.)

RQ 5.2 What is the contribution of the user-interest topic model in our proposed method?
(See Section 8.5.2 for the answer.)

RQ 5.3 What is the effect of the constraints for diversity and consistence with user’s
interest in our method? (See Section 8.5.3 for the answer.)

RQ 5.4 Does our method outperform the best supervised baseline method on each query?
(See Section 8.5.4 for the answer.)

RQ 5.5 Can our method retrieve a competitive number of subtopics per query? (See Sec-
tion 8.5.5 for the answer.)

RQ 5.6 What is the performance of our supervised methods when the C parameter is
varied? (See Section 8.5.6 for the answer.)

130

8.4. Experimental Setup

8.4.2 Dataset
In order to answer our research questions we work with a publicly available personalized
diversification dataset.2 Details of this dataset are discussed in Section 3.2.4. Here we
emphasize two important concepts defined in the dataset–user relevance and topic rele-
vance: each relevance judgement includes 3 main assessments: a 4-grade scale assess-
ment on how relevant the result is to the user’s interests (resulting in the user relevance
ground truth and the set of users’ interesting documents being created); a 4-grade scale
assessment on how relevant the result is to the evaluated query (resulting in the topic rel-
evance ground truth being created); and a 2-grade assessment whether a specific subtopic
is related to the evaluated query (resulting in the subjective subtopics related to the search
query being created). For pre-processing, we apply Porter stemming, tokenization, and
stopword removal (using the INQUERY list) to the documents using the Lemur toolkit.3

Two well-known corpora, ClueWeb09 and ClueWeb12,4 have been proposed for
search result diversification tasks in the TREC 2009–2013 Web tracks (Clarke et al.,
2012). However, they do not contain any user information or relevance judgments pro-
vided by specific users, and thus do not fit our experiments.

8.4.3 Baselines
Let PSVMdiv denote our personalized diversification via structured learning method. We
compare PSVMdiv to eleven baselines: a traditional web search algorithm, BM25 (Robert-
son and Hull, 2000); two well-known plain (in the sense of “not personalized”) search
result diversification approaches, IA-Select (Agrawal et al., 2009) and xQuAD (Santos
et al., 2010a); a plain (in the sense of “not diversified”) personalized search approach
based on BM25 (Vallet et al., 2010), PersBM25; a two-stage diversification and personal-
ization approach, xQuADBM25, as suggested by (Radlinski and Dumais, 2006), that first
applies the xQuAD algorithm and then PersBM25; 4 state-of-the-art unsupervised person-
alized diversification methods (Vallet and Castells, 2012), PIA-Select, PIA-SelectBM25,
PxQuAD, and PxQuADBM25. As PSVMdiv builds on standard structured learning frame-
work, we also consider 2 structured learning algorithms: SVMdiv (Yue and Joachims,
2008) that directly tries to retrieve relevant documents covering as many subtopics as
possible, and a standard structured learning method, denoted as SVMrank (Yue et al.,
2007) that directly ranks documents by optimizing a relevance-biased evaluation met-
ric (we use α-nDCG and nDCG to define the loss functions for SVMdiv and SVMrank,
respectively).5

For the supervised methods, PSVMdiv , SVMdiv and SVMrank, we use a 130/40/10
split for our training, validation and test sets, respectively. We train PSVMdiv , SVMdiv

and SVMrank using values of C (see (8.6)) that vary from 1e-4 to 1.0. The best C value
is then chosen on the validation set, and evaluated on the test queries. The train/valida-
tion/test splits are permuted until all 180 queries were chosen once for the test set. We
repeat the experiments 10 times and report the average evaluation results.

2http://ir.ii.uam.es/˜david/persdivers/
3http://www.lemurproject.org
4http://boston.lti.cs.cmu.edu/clueweb12/
5The source code for SVMrank (Yue et al., 2007) and SVMdiv (Yue and Joachims, 2008) is available

at http://www.cs.cornell.edu/People/tj/.

131

http://ir.ii.uam.es/~david/persdivers/
http://www.lemurproject.org
http://boston.lti.cs.cmu.edu/clueweb12/
http://www.cs.cornell.edu/People/tj/

8. Personalized Diversification

8.4.4 Evaluation

We use the following diversity metrics for evaluation, most of which are official evalu-
ation metrics in the TREC Web tracks (Clarke et al., 2012) and are widely used in the
literature on result diversification: α-nDCG@k, S-Recall@k, ERR-IA@k, Prec-IA@k
and MAP-IA@k. See Section 3.3.3 on how to compute evaluation scores in terms of
these metrics.

For evaluating accuracy, we use nDCG (Järvelin and Kekäläinen, 2002), ERR, Prec@k
and MAP. Also, see Section 3.3.1 on how to compute evaluation scores in terms of these
metrics. Since users mainly evaluated the top 5 returned results (Vallet and Castells,
2012), we compute the scores at depth 5 for all metrics.

8.4.5 Experiments

We report on 6 main experiments aimed at answering the research questions listed in
Section 8.4.1. Our first experiment aims at understanding whether supervised personal-
ized diversification methods outperform unsupervised ones and whether PSVMdiv beats
the supervised algorithms that apply structured learning technique directly. We compare
PSVMdiv to two supervised baselines, SVMdiv and SVMrank, and the nine unsupervised
baselines with both topic relevance and user relevance ground truths, respectively.

To understand the contribution of the user-interest topic model, we conduct our sec-
ond experiment where we perform comparisons between PSVMdiv using all features
(“token”, “interest” and “probability,” see Section 8.3.3) including those extracted from
the topic model and PSVMdiv using basic features (“token” and “probability” only, see
Section 8.3.3). In our third experiment, aimed at understanding the effect of our new con-
straints in PSVMdiv , a series of experiments is conducted by employing different sets of
constraints while training.

In order to understand how PSVMdiv compares to the best baseline, our fourth and
fifth experiment provide a query- and subtopic-level analysis, respectively. Finally, to
understand the influence of the key parameter in our structured learning framework, C,
we train PSVMdiv , SVMdiv and SVMrank by varying C from 1e-4 to 1.0 and report the
performance.

8.5 Results and Analysis

The following sections report, analyze and discuss our experimental results.

8.5.1 Supervised vs. unsupervised

Table 8.2 lists the diversity scores of the unsupervised baseline methods. For all metrics
in terms of either user relevance or topic relevance, none of the plain methods, viz.,
BM25, IA-Select,PersBM25, xQuAD and xQuADBM25, beats the best unsupervised
personalized diversification methods, viz., PIA-Select, PIA-Se-lectBM25, PxQuAD or
PxQuADBM25. Moreover, in some cases the performance differences between the best
plain method and the best unsupervised personalized diversification method are signif-
icant. This indicates that diversity and personalization are complementary and can en-

132

8.5. Results and Analysis

hance each other. The same observation can be found in Table 8.5 where performance is
evaluated by relevance-oriented metrics.

Table 8.3 shows the diversity-oriented evaluation results of three supervised methods
using basic features (“token”, and “probability” features, see Section 8.3.3) in terms of
both ground truths. In terms of diversity-oriented evaluation metrics all of the supervised
methods significantly outperform the best unsupervised methods when making compar-
isons between the scores and the scores of unsupervised methods in Table 8.2 in most
cases. We make further comparisons in Tables 8.5 and 8.6 in terms of relevance-oriented
metrics, and find that supervised methods can statistically significantly outperform unsu-
pervised ones. These two findings attest to the merits of taking supervised personalized
diversification methods for the task of personalized search result diversification.

Next, we compare supervised strategies to each other. Tables 8.3 and 8.4 show the
diversity-oriented evaluation resutls in terms of both grounth truths. It is clear from
both tables that our supervised method PSVMdiv statistically significantly beats plain
supervised methods, SVMrank and SVMdiv . This is because PSVMdiv considers both
personalization and diversity factors, whereas the other two do not take both two fac-
tors into account. SVMrank only tries to return more relevant documents, and SVMdiv

directly utilizes standard structured learning for diversification.
As shown in Table 8.6, in terms of the relevance-oriented metrics, PSVMdiv does

not significantly outperform SVMrank and SVMdiv . This is because PSVMdiv returns
the same number of relevant documents, however, cover more subtopics than the other
supervised methods. Hence, PSVMdiv mainly outperforms the other two in terms of
diversity-oriented metrics. We provide further analyses in Section 8.5.4 (query-level)
and Section 8.5.5 (subtopic-level).

8.5.2 Effect of the proposed UIT model

Next, to understand the contribution of our UIT topic model, we compare the perfor-
mance of the supervised methods using basic features, i.e., all other features but not the
features generated from the UIT model, with those using all the features.

We turn to Tables 8.3 and 8.4, that list the results of the supervised methods in terms
of diversity-oriented metrics when using the basic features and all features, respectively.
For all supervised methods, the performance of using all features is better than that of
only using the basic features. That is, our proposed UIT model can capture users’ interest
distributions and this kind of information can be applied to improve performance. Due
to space limitations, we do not report the results in terms of relevance-oriented metrics;
the findings there are qualitatively similar.

8.5.3 Effect of the proposed constraints

Next, to understand the effect of the newly proposed constraints, we conduct experiments
by employing different sets of constraints while training. The comparisons are again
divided into those using all features and those using basic features. We write PSVMdiv-
Ci, PSVMdiv-Ci,ii, PSVMdiv-Ci,iii, and PSVMdiv-All to denote the methods trained with
the standard constraint (constraint i in (8.6)), standard and diversity-biased constraints
(constraints i and ii in (8.6)), standard and interest-biased (constraints i and iii in (8.6)),

133

8. Personalized Diversification

Table 8.2: Performance of unsupervised methods on diversification metrics. The best
performance per metric is in boldface. The best plain retrieval method (BM25, IA-Select,
PersBM25, xQuAD and xQuADBM25) is underlined. Statistically significant differences
between the best performance per metric and the best plain retrieval method are marked
in the upper left hand corner of the best performance score.

User relevance

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA

BM25 .6443 .4557 .2267 .1659 .1245
IA-Select .6099 .4282 .2241 .1624 .1177
PersBM25 .6427 .4541 .2318 .1639 .1206
xQuAD .6421 .4635 .2299 .1675 .1267
xQuADBM25 .6270 .4558 .2249 .1646 .1123
PIA-Select .5766 .4407 .2006 .1480 .1085
PIA-SelectBM25 .6457 N.4752 .2364 .1581 .1180
PxQuAD .6409 .4588 .2313 .1629 .1296
PxQuADBM25 .6497 .4713 M.2367 .1676 .1296

Topic relevance

BM25 .7599 .4456 .2315 .1717 .1241
IA-Select .7685 .4425 .2365 .1767 .1212
PersBM25 .7746 .4555 .2330 .1794 .1219
xQuAD .7711 .4600 .2348 .1747 .1245
xQuADBM25 .7763 .4741 .2336 .1773 .1225
PIA-Select .7410 .4641 .2227 .1650 .1206
PIA-SelectBM25

M.7854 .4798 M.2415 .1740 N.1300
PxQuAD .7744 .4543 .2350 .1747 .1278
PxQuADBM25 .7827 .4718 .2396 .1797 .1245

and all constraints involved (constraints i, ii and iii in (8.6)), respectively. Again, we only
report results on diversity-oriented metrics.

According to Tables 8.7 and 8.8, when employing one more constraint, either diversity-
biased or interest-biased, the performance is statistically significantly better than that
of only employing the standard constraint. In terms of all metrics, the performance
of PSVMdiv employing all constraints statistically significantly outperforms the perfor-
mance of using at most two constraints. The positive effect of the proposed constraints
again demonstrates that combining diversification (the diversity-biased constraint) and
personalization (the interest-biased constraint) boosts the performance.

8.5.4 Query-level analysis

In order to figure out why PSVMdiv improves over other supervised baselines, we take a
closer look at per test query improvements of PSVMdiv over the best supervised baseline
method, viz., SVMdiv , which outperforms SVMrank in most cases. Fig. 8.2 shows the

134

8.5. Results and Analysis

Table 8.3: Performance of supervised methods utilizing basic features on diversification
metrics. The best performance per metric is in boldface. Statistically significant differ-
ences between supervised and the best unsupervised method (in Table 8.2) per metric,
between PSVMdiv and SVMdiv , are marked in the upper left hand corner of the super-
vised method’ score, in the right hand corner of the PSVMdiv score, respectively.

User relevance

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA

SVMrank
N.6667 M.4837 .2396 .1683 N.1856

SVMdiv
N.6750 M.4887 .2412 M.1698 N.1974

PSVMdiv
N.7234N N.5756N N.2514N N.1702M N.2037M

Topic relevance

SVMrank .7889 .4805 .2437 M.1812 N.1848
SVMdiv

N.8003 M.4893 M.2479 M.1833 N.2045
PSVMdiv

N.8533N N.5834N N.2649N N.1846M N.2113N

Table 8.4: Performance of supervised methods utilizing all features on diversification
metrics. The best performance per metric is in boldface. All the scores here are sta-
tistically significant compared to those in Table 8.2. Statistically significant differences
between the method here and the method in Table 8.3, between PSVMdiv and SVMdiv ,
are marked in the upper left hand corner of the corresponding score, in the right hand
corner of the PSVMdiv score, respectively.

User relevance

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA

SVMrank
M.6782 M.4973 .2416 M.1710 N.2887

SVMdiv
M.6867 M.4973 .2456 M.1729 N.2911

PSVMdiv
N.7513N N.6140N M.2628N M.1742M N.2979M

Topic relevance

SVMrank
N.8422 N.5068 N.2554 M.1903 N.3001

SVMdiv
M.8569 N.5068 N.2628 N.1907 N.3036

PSVMdiv
N.9549N N.6730N N.2849N M.1917M N.3096M

per query performance differences in terms of the diversify-oriented metrics of PSVMdiv

against SVMdiv when they use all the features. PSVMdiv achieves performance improve-
ments for many queries, especially in terms of α-nDCG, S-Recall, ERR-IA.

In a very small number of cases, PSVMdiv performs poorer than SVMdiv . This
appears to be due to the fact that PSVMdiv promotes some non-relevant documents when
it tries to cover as many subtopics as possible for a given query.

135

8. Personalized Diversification

Table 8.5: Performance of unsupervised methods on relevance metrics. Notational con-
ventions are the same as in Table 8.2.

User relevance Topic relevance

nDCG ERR Prec MAP nDCG ERR Prec MAP

BM25 .5697 .9364 .7113 .2038 .7775 .9440 .9146 .2239
IA-Select .5126 .9389 .6796 .1813 .7340 .9452 .9250 .2299
PersBM25 .5713 .9276 .7183 .2076 .7741 .9374 .9298 .2316
xQuAD .5526 .9352 .6858 .1915 .7518 .9367 .9125 .2231
xQuADBM25 .5540 .9133 .6921 .1841 .7605 .9278 .9312 .2281
PIA-Select .4783 .9034 .6417 .1774 .6709 .9062 .8667 .2043
PIA-SelectBM25 .5482 .9271 .6687 .1803 .7264 .9418 .9042 .2223
PxQuAD .5631 .9246 .7050 .2073 .7679 .9435 .9229 .2306
PxQuADBM25 .5764 .9374 M.7258 M.2145 .7793 .9466 .9396 .2355

Table 8.6: Performance of supervised methods utilizing basic features on relevance met-
rics. The best performance per metric is in boldface. Statistically significant differ-
ences between supervised and the best unsupervised method (in Table 8.5) per metric,
between PSVMdiv and SVMdiv , are marked in the upper left hand corner of the super-
vised method’ score, in the right hand corner of the PSVMdiv score, respectively.

User relevance Topic relevance

nDCG ERR Prec MAP nDCG ERR Prec MAP

SVMrank
M.5805 M.9456 M.7345 M.2238 M.7864 .9478 N.9763 M.2446

SVMdiv
M.5813 M.9467 M.7396 M.2240 M.7858 .9493 N.9806 M.2482

PSVMdiv
M.5833 M.9485 M.7412 M.2281 M.7922M M.9521 N.9834 M.2496

Table 8.7: Performance of PSVMdiv involving different constraints using basic features
on diversification metrics with user relevance ground truth. The best performance per
metric is in boldface. Statistically significant differences against PSVMdiv-Ci are marked
in the upper right hand corner of the corresponding scores.

User relevance

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA

PSVMdiv-Ci .6713 .4842 .2403 .1673 .1969
PSVMdiv-Ci,ii .6973N .5262N .2437 .1681 .1977
PSVMdiv-Ci,iii .6994N .5275N .2478M .1687M .1983
PSVMdiv-All .7234N .5756N .2514N .1702N .2037M

8.5.5 Subtopic-level analysis

Next, we zoom in on the number of different subtopics that are returned by PSVMdiv

and SVMdiv , respectively, to further analyze why PSVMdiv beats SVMdiv . Here, again,

136

8.6. Conclusion

Table 8.8: Performance of PSVMdiv involving different constraints using all features on
diversification metrics with user relevance ground truth. Statistically significant differ-
eneces between the score here and that in Table 8.7 are marked in the upper left hand
corner of the scores. Other notational conventions are the same as in Table 8.7.

User relevance

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA

PSVMdiv-Ci
N.6843 N.4965 M.2434 M.1714 N.2906

PSVMdiv-Ci,ii
N.7156N N.5334N M.2494M M.1720M N.2932

PSVMdiv-Ci,iii
N.7194N N.5388N M.2501M M.1723M N.2937M

PSVMdiv-All N.7513N N.6140N M.2628N M.1742N N.2979M

we use SVMdiv as a representative. Specifically, we report changes in the number of
subtopics for PSVMdiv against SVMdiv in Fig. 8.3 when they use all features. Red bars
indicate the number of subtopics that appear in the run of PSVMdiv but not in the run
of SVMdiv , white bars indicate the number of subtopics in both runs, whereas blue bars
indicate the number of subtopics that are not in PSVMdiv but in SVMdiv; queries are
ordered first by the size of the red bar, then the size of the white bar, and finally the size
of the blue bar.

Clearly, the differences between PSVMdiv and SVMdiv in the top 2 and 3 are more
limited than the differences in the top 4 and 5, but in all cases PSVMdiv outperforms
SVMdiv . E.g., in total there are 68 more subtopics in the top 5 of the run produced by
PSVMdiv than those in the SVMdiv run (in terms of all the 180 test queries, 68 subtopics
in PSVMdiv but not in SVMdiv , 7 subtopics in SVMdiv but not in PSVMdiv).

8.5.6 Performance of parameter tuning

To understand the performance of the tradeoff parameter C used in (2.12) (see Sec-
tion 2.3.7) and (8.6), which balances between weights and slacks, we show the perfor-
mance of PSVMdiv as well as the two supervised baselines using all features. To save
space, we only report the performance on α-nDCG. Fig. 8.4 plots the results and it illus-
trates that PSVMdiv performs best when C is small. This indicates the merit of our new
constraints (as well as the standard constraint used in the baselines) focusing on weight
modification rather than on low training loss.

8.6 Conclusion

Most previous work on personalized diversification of search results produce a rank-
ing using unsupervised methods, either implicitly or explicitly. In this chapter, we have
adopted a different perspective on the problem, based on structured learning. We propose
to boost the diversity and match to users’ personal interests of search results by introduc-
ing two additional constraints into the standard structured learning framework. We also
propose a user-interest topic model to capture users’ multinomial distribution of interest

137

8. Personalized Diversification

-0.5

 0

 0.5
∆

α
-n

D
C

G

queries

-1

 0

 1

∆
S

-R
e

c
a

ll

queries

-0.2

 0

 0.2

∆
E

R
R

-I
A

queries
-0.3

 0

 0.3

∆
P

re
c
-I

A

queries

-0.2

 0

 0.2

∆
A

P
-I

A

queries

Figure 8.2: Per query performance differences of PSVMdiv against SVMdiv . The figures
shown are for α-nDCG, S-Recall, ERR-IA, Prec-IA and MAP-IA, respectively. A bar
extending above the center of a plot indicates that PSVMdiv outperforms SVMdiv , and
vice versa for bars extending below the center. Note that figures are not in the same scale.

over topics and infer per-document multinomial distributions over topics. Based on this
a number of user interest features are extracted and the similarity between a user and a
document can be effectively measured for our learning method. Our experiments provide
answers to the main research question raised at the beginning of this chapter:

RQ 5 How to enhance both diversification and personalization performance at the same
time in a supervised way?

138

8.6. Conclusion

0 20 40 60 80

1

3

5

queries

n
u
m

b
e
r

Top 2 documents

0 20 40 60 80

1

3

5

queries

n
u
m

b
e
r

Top 3 documents

0 20 40 60 80

1

3

5

queries

n
u
m

b
e
r

Top 4 documents

0 20 40 60 80

1

3

5

queries

n
u
m

b
e
r

Top 5 documents

Figure 8.3: How runs produced by PSVMdiv and SVMdiv differ. Red, white, blue bars indicate
the number of different subtopics that appear in PSVMdiv but not in SVMdiv , in both runs and
not in PSVMdiv but in SVMdiv , respectively, at corresponding depth k (for k=2, 3, 4, 5). Figures
should be viewed in color.

1e−4 1e−3 1e−2 0.1 1

0.6

0.7

0.8

C

α
 n

D
C

G

PSVM
div

SVM
div

SVM
rank

Figure 8.4: Performance of the supervised methods using all features when varying the
value of parameter C.

To answer the main research question, we worked with a publicly available personalized
diversification dataset. Our evaluation in the experiments showed that supervised person-
alized diversification approaches outperforms state-of-the-art unsupervised personaliza-
tion diversification, plain personalization and plain diversification algorithms. The two

139

8. Personalized Diversification

proposed constraints are shown to play a significant role in the supervised method. We
also found that the user-interest topic model helps to improve performance. In addition,
our proposed learning method is able to return more subtopics.

As to future work, we aim to study other types of learning strategies for personal-
ized diversification of search results. Our method employed the α-nDCG metric in the
loss function; we plan to use other alternative metrics. Finally, our experimental results
were only evaluated on a single dataset. In future work we plan to invite users to label
the existing datasets, e.g., ClueWeb09, such that they can also be used for personalized
diversification algorithms.

This chapter is the last research chapter of the thesis. The next chapter is used to
summarize the research presented in the thesis, to answer the research questions, and to
give directions for future research based on findings in this thesis.

140

8.A. Gibbs Sampling Derivation for UIT Model

8.A Gibbs Sampling Derivation for UIT Model

We begin with the joint distribution P (w̃, r, z, ũ|α, β,b, q). We can take advantage of conjugate
priors to simplify the integrals. All symbols are defined in Sections 8.1, 8.2 and 8.3.

P (w̃, r, z, ũ|α, β,b, q) = P (w̃|z, β)p(r|b, z, q)P (z|ũ, α)

=

∫
P (w̃|Φ, z)p(Φ|β)dΦ× p(r|b, z, q)

∫
P (z|ũ,Θ)p(Θ|α)dΘ

=

∫ D∏
d=1

Nd∏
i=1

P (wdi|φzdi)
T∏
z=1

p(φz|β)dΦ

×
D∏
d=1

Nd∏
i=1

p(rdi|bzdi1, bzdi2, q)

×
∫ D∏

d=1

Nd∏
i=1

P (zdi|ϑu)

U∏
u=1

p(ϑu|α)dΘ

=

∫ T∏
z=1

V∏
v=1

φ
nzv
zv

T∏
z=1

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

V∏
v=1

φβv−1
zv

)
dΦ

×
D∏
d=1

Nd∏
i=1

p(rdi|bzdi1, bzdi2, q)

×
∫ U∏

u=1

T∏
z=1

ϑ
nuz
uz

U∏
u=1

(
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

T∏
z=1

ϑαz−1
uz

)
dΘ

=

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

)T (
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

)U

×
D∏
d=1

Nd∏
i=1

p(rdi|bzdi1, bzdi2, q)

×
T∏
z=1

∏V
v=1 Γ(nzv + βv)

Γ(
∑V
v=1(nzv + βv))

U∏
u=1

∏T
z=1 Γ(nuz + αz)

Γ(
∑T
z=1(nuz + αz))

Applying the chain rule, we can obtain the conditional probability:

P (zdi|w̃, r, z−di, ũ, α, β,b, q)

=
P (zdi, wdi, rdi, udi|w̃−di, r−di, z−di, ũ−di, α, β,b, q)
P (wdi, rdi, udi|w̃−di, r−di, z−di, ũ−di, α, β,b, q)

=
P (w̃, r, z, ũ|α, β,b, q)

P (w̃, r, z−di, ũ|α, β,b, q)
because zdi depends only on wdi, rdi and udi

∝ P (w̃, r, z, ũ|α, β,b, q)
P (w̃−di, r−di, z−di, ũ−di|α, β,b, q)

∝ nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

nudizdi + αzdi − 1∑T
z=1(nudiz + αz)− 1

141

8. Personalized Diversification

×
(1− rdi)bzdi1−1r

bzdi2−1

di

B(bzdi1, bzdi2)

As relevance is drawn from continuous Beta distributions, sparsity is not a big problem for pa-
rameter estimation of b. For simplicity, we update b after each Gibbs sample by the method of
moments as:

bz1 = t̄z

(
t̄z(1− t̄z)

s2z
− 1

)
,

bz2 = (1− t̄z)
(
t̄z(1− t̄z)

s2z
− 1

)
,

where t̄z and s2z are the sample mean and biased sample variance of the relevance belonging to
topic z, respectively.

142

9
Conclusions

The research presented in this thesis revolves around two research themes: How to im-
prove the performance of data fusion and search result diversification in information re-
trieval. The five research chapters of this thesis address the challenges of data fusion and
search result diversification in IR as follows. First, in Chapter 4, we focused on how to
employ data fusion to enhance retrieval performance of microblog search. In particular,
we developed a novel probabilistic data fusion model, BurstFuseX, that is burst-aware
and not only utilizes information traditionally used when merging ranked lists, but also
exploits temporal information of the microblog posts. Second, in Chapter 5, we revisited
the problem of utilizing data fusion approaches for microblog search. We still focused on
how to merge result lists for microblog search, but also inferred the rank scores of miss-
ing documents via latent factor modeling in data fusion. Third, in Chapter 6, we turned
to the problem of data fusion for ad hoc search, and experimentally verified the fusion
performance via a manifold-based algorithm. In Chapter 7, we examined the hypothesis
that data fusion can improve performance in terms of diversity metrics, and introduced
a diversified data fusion method that infers latent topics of an ambiguous query when
fusing result lists. Finally, in Chapter 8, we focused on the problem of personalized
search result diversification, and proposed a structured learning framework to deal with
the problem.

Below, we provide a more detailed summary of the contributions and results of our
research, and answer the research questions set out at the beginning of the thesis (Sec-
tion 9.1). We conclude with an outlook on future research directions (Section 9.2).

9.1 Main Findings

The goal that we have addressed in this thesis is to improve the performance of data fu-
sion and search result diversification in IR. We began the research part of this thesis by
focusing on employing data fusion approaches for post search in microblogging environ-
ments. In particular, the research questions we addressed in Chapter 4 focused on how to
utilize data fusion approaches to tackle the problem of microblog search:

RQ 1 Can data fusion help microblog search?

To answer this question, we have focused on utilizing a special feature for boosting the
performance of search algorithms for microblog posts. We have proposed a data fusion

143

9. Conclusions

approach, BurstFuseX that fuses result lists based in part on the bursty nature of many
discussions on microblog platforms. BurstFuseX not only utilizes ranking information
of microblog posts but also exploits their timestamps. Specifically, our approach is based
on integrating information generated by a standard fusion method, such as CombSUM,
CombMNZ or λ-Merge, detecting bursts of posts across the lists being fused, and re-
warding posts that are published in or near a burst containing highly ranked posts.

Using BurstFuseX, we analyzed the search performance in a microblogging environ-
ment and showed that detecting bursts and then using burst information together with a
standard fusion method can enhance the retrieval performance compared to the standard
fusion method it integrates, in terms of mean average precision as well as precision-
oriented measures. Our new fusion method has a strong recall-enhancing effect; com-
pared to the standard fusion method it incorporates, this comes at a small price in terms
of a small drop in very early precision measures such as p@5. Our findings also showed
that our BurstFuseX method can significantly outperform burst or time-sensitive retrieval
models and models that detect bursts based on the content of posts.

In previous data fusion approaches, documents in the fused list are ranked in decreas-
ing order of their fusion scores. The fusion score of a document is usually the sum of
rank scores from the individual input lists. Previous work on data fusion often assumes,
either implicitly or explicitly, that the rank score of a document is set to zero if the docu-
ment does not appear in the input list. We revisited the problem of searching posts using
data fusion and challenged this assumption, resulting in the following questions:

RQ 2 How to infer scores of so-called missing documents in data fusion?

We focused on utilizing time information to boost the performance of searching micro-
blog posts. Specifically, we proposed a novel rank aggregation approach, TimeRA, that
utilizes bursts and only rank information to fuse result lists. TimeRA first detects bursts
of posts across the lists utilizing the original rank information of the posts, and then re-
wards posts that are ranked low in a few lists but in the vicinity of a burst that contains
higher ranked posts. It also infers the rank scores of so-called missing posts by modeling
lists and posts as a mixture of latent factors.

We experimentally showed that both utilizing burst information and score inference
for data fusion can significantly enhance retrieval performance when compared against
traditional and state-of-the-art, supervised and unsupervised data fusion approaches for
microblog post search. Additional analyses showed that TimeRA is a robust and efficient
data fusion method that outperforms state-of-the-art temporal retrieval algorithms.

After investigating data fusion for microblog search, we then turned to more generic
issues of using data fusion in an ad hoc document retrieval setting. Recent state-of-
the-art work tries to improve data fusion performance based on clustering: documents
appearing in the lists to be fused are clustered and a document that appears low in a
single list can be promoted if it is similar to other relevant documents in the cluster. While
intuitive, such a fusion strategy can fall short in some cases. For instance, a non-relevant
document should not be “promoted” even if it is in a cluster that contains a large number
of relevant documents. What is worse, cluster-based data fusion may be a bottleneck in
some applications, because of its computational costs. After investigating cluster-based
data fusion method analytically and experimentally, we asked the following questions:

144

9.1. Main Findings

RQ 3 Can manifolds be used to improve data fusion performance for ad hoc search?

We have introduced a novel data fusion approach, ManX, which is based on mani-
fold strategies to merge ranked lists that are retrieved in response to a given query. In
ManX, manifolds of documents in the lists to be fused are constructed by utilizing inter-
document similarities that are computed based on a multinomial distribution of topics
specific to documents to be fused. ManX fully utilizes two prior assumptions underlying
the cluster hypothesis, thereby enabling it to reward documents that are ranked low in
only few lists but surrounding which there are many highly relevant documents in the
same manifold. Furthermore, ManX takes top-k documents from fused lists merged with
a standard fusion method X as anchor documents to make fusion process become faster.

We analyzed experimental results when fusing the lists submitted to the TREC-3
ad hoc, TREC-10 web and TREC-12 robust retrieval tracks, and demonstrated that our
ManX method not only outperforms the standard fusion methods that it integrates and
state-of-the-art data fusion method that leverages clustering strategies, but also fuses re-
sult lists more efficiently.

Data fusion methods can improve retrieval performance in terms of traditional rele-
vance-oriented metrics like MAP and precision@k over the methods used to generate
the individual result lists being fused. We also looked at the performance of data fusion
methods in search result diversification and asked:

RQ 4 Can data fusion help search result diversification?

In this thesis we have adopted a new perspective on the search result diversification
problem, based on data fusion. We proposed to use traditional unsupervised and state-
of-the-art data fusion methods, CombSUM, CombMNZ, ClustFuseCombSUM, Clust-
FuseCombMNZ, CombSUMMMR and CombSUMPM-2 to diversify result lists. This
led to the insight that fusion does aid diversification. We also proposed a fusion-based
diversification method, DDF, which infers latent topics from ranked lists of documents
produced by a standard fusion method, and combines this with a state-of-the-art result
diversification model.

After a systematic analysis, we found that data fusion approaches outperform state-
of-the-art search result diversification algorithms, with DDF invariably giving rise to the
highest scores on all of the metrics that we have considered in this chapter. DDF was
shown to behave well with different numbers of component lists. We also found that
DDF is insensitive to the number of latent topics of a query, once a sufficiently large
number was chosen, e.g., 10.

Finally, we zoomed in on studying the problem of personalized diversification of
search results, with the goal of enhancing both diversification and personalization per-
formance. In both search result diversification and personalized web search, an issued
query is often viewed as an incomplete expression of a user’s underlying need (Shen
et al., 2005). Unlike search result diversification, where the system accepts and adapts its
behavior to a situation of uncertainty, personalized web search strives to change this sit-
uation by enhancing the system’s knowledge about users’ information needs. Therefore,
we asked the following research questions:

RQ 5 How to enhance both diversification and personalization performance at the same
time in a supervised way?

145

9. Conclusions

In this thesis, we have adopted a different perspective on the problem, based on struc-
tured learning. We proposed to boost the diversity and matched to users’ personal inter-
ests of search results by introducing two additional constraints into the standard struc-
tured learning framework. We also proposed a user-interest topic model to capture users’
multinomial distribution of interest over topics and inferred per-document multinomial
distributions over topics. Based on this a number of user interest features are extracted
and the similarity between a user and a document can be effectively measured for our
learning method.

We investigated the effects of our proposed learning framework for personalized di-
versification and found that supervised personalized diversification approaches outper-
forms state-of-the-art unsupervised personalization diversification, plain personalization
and plain diversification algorithms. The two proposed constraints were shown to play
a significant role in the supervised method. We also found that the user-interest topic
model helps to improve performance. Our proposed learning method is able to return
more subtopics and more diversified documents than state-of-the-art unsupervised per-
sonalized diversification, plain personalized web search, and plain search result diversi-
fication methods.

9.2 Future Work

The research presented in this thesis motivates a broad variety of future research projects,
most of them aimed at improving over the results presented in the previous chapters, by
adding new methods or optimizing existing ones. We do not list each of these smaller
research directions, but focus on four major directions for future research in data fusion
and search result diversification.

Data fusion. The effectiveness of retrieval methods often varies across queries (Har-
man and Buckley, 2004; Voorhees, 2005). Thus, the ability to automatically infer which
queries are more difficult for a retrieval method than other queries can be very important.
These observations have motivated a large body of work on predicting query perfor-
mance (Markovits et al., 2012); that is, estimating the effectiveness of a search performed
in response to a query in the absence of relevance judgements. Therefore, one important
direction for following up on this work is to predict the performance of data fusion ap-
proaches. The goal is to predict the effectiveness of a document list that is produced by
fusing a few lists that were retrieved from the same corpus or a different corpus by dif-
ferent retrieval systems in response to the query a user submitted. The motivation for the
prediction of data fusion performance is at least twofold. First, fusion methods achieve
effective retrieval performance on average when fusing lists retrieved by using differ-
ent query and document representations or retrieval methods (Markovits et al., 2012).
Furthermore, although fusion-based retrieval was shown to somewhat improve retrieval
performance robustness across queries, we empirically showed that commonly used fu-
sion methods still suffer from substantial performance variance. For instance, as shown
in Section 4.3.4, although there are improvements for a majority of test queries, there is
still a small number of queries suffer from poorer performance after data fusion.

Another important direction for data fusion is to utilize relevance feedback to boost
the performance of data fusion. Using positive relevance feedback, such as document

146

9.2. Future Work

clicks from users (Hofmann et al., 2013, 2014), has been shown in previous work in
ad hoc retrieval to substantially improve retrieval effectiveness (Rabinovich et al., 2014;
Ruthven and Lalmas, 2003). The idea of relevance feedback for data fusion is to involve
the user in the fusion process so as to improve the quality of the final ranking of the
documents. In particular, the user gives feedback on the relevance of documents in an
initial set of results. Relevance feedback can go through one or more iterations by users.
The process exploits the idea that it may be difficult to formulate a good query when
you do not know the collection well, but it is easy to judge particular documents, and so
it makes sense to engage in iterative query refinement in the data fusion process. In the
scenario of fusing documents while involving user feedback, relevance feedback can also
be effective in tracking a user’s evolving information need, resulting in a final ranking
of the documents that may be better at satisfying a user’s information need than without
adaptation over time.

Additionally, supervised learning for data fusion is also an important direction for
future work beyond this thesis. The data fusion algorithms proposed in this thesis mainly
belong to unsupervised learning approaches, in the sense that no training data is utilized.
In fact, most previous work on data fusion also mainly focuses on unsupervised data
fusion strategies. Methods like CombSUM, CombMNZ, Borda Count, median rank ag-
gregation, genetic algorithm, fuzzy logic-based data fusion, Markov Chain-based rank
aggregation are all unsupervised. Although there are several recent publications on
data fusion via supervised learning strategies, like those proposed in (Liu et al., 2007)
and (Hong and Si, 2012), it is still valuable to improve the performance of data fusion
via other more effective supervised learning strategies. Utilizing supervised learning has
a couple of advantages. For instance, we can leverage the use of information existing
in labeled training data, can apply new optimization techniques to the problem of fusing
documents, and it becomes easier to perform domain or user adaption.

Search result diversification. Although a number of search result diversification tech-
niques have been proposed, there are several challenges that need to be dealt with. One
direction of future work on search result diversification is to estimate the number of as-
pects underlying a query and the weights of the aspects. The performance of previous
search result diversification algorithms, especially for the explicit approaches, mainly de-
pends on the availability of the number of aspects underlying an ambiguous query and the
corresponding weights (Dang and Croft, 2012, 2013). However, estimating the aspects
and the weights is a bottleneck in current search result diversification algorithms (Santos
et al., 2010a). The behavior of users using the search engines suggests some ways to
tackle the challenges. For instance, after submitting a query to the system, some users
may not be satisfied with the search results, and then they would iteratively reformulate
their queries until the documents returned by the system satisfy their information need.
During these iterations, the user may click on some documents. Hence, exploiting and
mining users’ query representations, the click data and the search logs could result in
valuable ways to estimate the aspects and the corresponding weights.

Another direction for future work is to personalize search result diversification in
social media. Two main components, i.e., personalized web search and search result di-
versification, play important roles in tackling the problem of personalized search result
diversification. Although there is a large body of work on either personalized web search

147

9. Conclusions

or search result diversification separately, only three previous works have studied the
problem of combining both personalization and diversification. Radlinski and Dumais
(2006) analyzed a large sample of individual users’ query logs from a web search engine
such that the individual users’ query reformulations can be obtained. Then they person-
alized web search by re-ranking the top results using query reformulations to introduce
diversity into those results. Vallet and Castells (2012) investigated the introduction of the
user as an explicit variable in existing search result diversification models. Liang et al.
(2014b) set up a structured learning framework for conducting supervised personalized
diversification. All of the proposed personalized diversification approaches suppose that
users are isolated, and ignore social relationship among users. However, in the context of
social media, users usually interact with each other. Hence, in order to further improve
the performance of personalized diversification, social network data may be a valuable
source of information.

Finally, other directions of future work include, for instance, to estimate the scores
of diversification evaluation metrics. In recent years, a number of evaluation metrics
have been proposed and many of them have been adopted by the diversify task at the
Web 2009-2013 tracks in TREC to evaluate the submitted runs. As explained in Chap-
ter 3, these official evaluation metrics include, e.g., subtopic recall at k (S-Recall@k),
normalized discounted cumulative gain at k (α-nDCG@k), intent-aware expected recip-
rocal rank at retrieval depth k (ERR-IA@k), intent-aware precision at k (Prec-IA@k),
and intent-aware MAP at k (MAP-IA@k). All of the proposed diversification evaluation
metrics make a strong assumption that the relevance judgements are complete, i.e., for
each query, all aspects of the query are easily identified, and all documents in the collec-
tion relevant to these aspects are easily identified as well. However, most diversification
algorithms are applied in the web search applications. In these cases, the collection is
dynamic. For instance, an increasing number of unjudged or unseen documents and
aspects are added into it, resulting in the fact that obtaining complete relevance judg-
ments is infeasible for each aspect of the query because of the need of extensive human
effort (Yilmaz et al., 2008). Specifically, we would like to infer the efficiency of the
diversification metrics and the corresponding evaluation scores given a search results.

148

Bibliography

S. Abbar, S. Amer-Yahia, P. Indyk, and S. Mahabadi. Real-time recommendation of diverse related articles. In
WWW, pages 1–12, 2013. (Cited on pages 22 and 105.)

R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM, pages 5–14,
2009. (Cited on pages 2, 22, 23, 33, 101, 109, and 131.)

N. Ahmad and M. M. S. Beg. Fuzzy logic based rank aggregation methods for the world wide web. In
Proceedings of the International Conference on Artificial Intelligence in Engineering and Technology, pages
363–368, 2002. (Cited on page 17.)

E. Aktolga and J. Allan. Sentiment diversification with different biases. In SIGIR, pages 593–600, 2013. (Cited
on page 109.)

G. Amati, G. Amodeo, M. Bianchi, A. Celi, C. D. Nicola, M. Flammini, C. Gaibisso, G. Gambosi, and G. Mar-
cone. FUB, IASI-CNR, UNIVAQ at TREC 2011 microblog track. In Proceedings of the Text REtrieval
Conference, 2011. (Cited on pages 19 and 55.)

N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning web search ranking functions.
In SIGIR’11, pages 1073–1081, 2011. (Cited on page 59.)

J. A. Aslam and M. Montague. Models for metasearch. In SIGIR’01, pages 276–284, 2001. (Cited on pages 16
and 17.)

P. Atrey, M. Hossain, A. E. Saddik, and M. Kankanhalli. Multimodal fusion for multimedia analysis: a survey.
Multimedia Syst., 16(6):345–379, 2010. (Cited on page 61.)

K. Bache, D. Newman, and P. Smyth. Text-based measures of document diversity. In KDD, pages 23–31, 2013.
(Cited on page 22.)

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind
Search (2nd Edition) (ACM Press Books). Addison-Wesley Professional, 2 edition, Feb. 2011. ISBN
0321416910. (Cited on pages 11, 28, and 31.)

K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in enterprise corpora. In Proceed-
ings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’06, pages 43–50, 2006. (Cited on page 1.)

A. Bandyopadhyay, M. Mitra, and P. Majumder. Query expansion for microblog retrieval. In TREC’11, 2011.
(Cited on page 19.)

M. M. S. Beg. Parallel rank aggregation for the world wide web. In Proceedings of the Intelligent Sensing and
Information Processing, pages 385–390, 2004. (Cited on page 16.)

S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder, D. A. Grossman, and N. Goharian. Disproving the
fusion hypothesis: An analysis of data fusion via effective information retrieval strategies. In SAC’03, pages
823–827, 2003. (Cited on pages 2 and 15.)

P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. Modeling the impact of
short- and long-term behavior on search personalization. In SIGIR, pages 185–194, 2012. (Cited on pages 3
and 23.)

R. Berendsen, M. Tsagkias, W. Weerkamp, and M. de Rijke. Pseudo test collections for training and tuning
microblog rankers. In SIGIR’13, pages 53–62, 2013. (Cited on page 59.)

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, 2003.
(Cited on pages 24, 25, 26, 122, and 129.)

J. Boyd-Graber and D. M. Blei. Syntactic topic models. In NIPS, pages 185–192, 2008. (Cited on page 127.)
J. Boyd-Graber and D. M. Blei. Multilingual topic models for unaligned text. In UAI, pages 75–82, 2009.

(Cited on page 127.)
E. Bruno and S. Marchand-Maillet. Multiview clustering: a late fusion approach using latent models. In

SIGIR’09, pages 736–737, 2009. (Cited on pages 16 and 38.)
F. Cai, S. Liang, and M. de Rijke. Personalized document re-ranking based on bayesian probabilistic matrix

factorization. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR ’14, pages 835–838, 2014a. (Cited on page 8.)

F. Cai, S. Liang, and M. de Rijke. Time-sensitive personalized query auto-completion. In Proceedings of
the 23rd ACM International Conference on Information & Knowledge Management, CIKM ’14, page 10,
2014b. (Cited on page 8.)

L. Cao, R. Ji, W. Liu, H. Yao, and Q. Tian. Weakly supervised codebook learning by iterative label propagation
with graph quantization. Signal Processing, 93(8):2274 – 2283, 2013. (Cited on page 83.)

P. Cao, J. Gao, Y. Yu, S. Liu, Y. Liu, and X. Cheng. ICTNET at microblog track TREC 2011. In Proceedings
of the Text REtrieval Conference, 2011. (Cited on pages 19 and 55.)

J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and

149

Bibliography

producing summaries. In SIGIR, pages 335–336, 1998. (Cited on pages 22, 24, 102, and 110.)
C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate rewriting for translating boolean queries in a

heterogeneous information system. ACM Transactions on Information Systems (TOIS), 17(1):1–39, 1999.
(Cited on page 12.)

Y. Chang, A. Dong, P. Kolari, R. Zhang, Y. Inagaki, F. Diaz, H. Zha, and Y. Liu. Improving recency ranking
using twitter data. ACM Trans. Intell. Syst. Technol., 4(1):4:1–4:24, Feb. 2013. (Cited on page 20.)

H. Chen and D. R. Karger. Less is more: probabilistic models for retrieving fewer relevant documents. In
SIGIR, pages 429–436, 2006. (Cited on page 22.)

W. Chen, C. Chen, L. jun Zhang, C. Wang, and J. jun Bu. Online detection of bursty events and their evolution
in news streams. Journal of Zhejiang University, 11:340–355, 2010. (Cited on page 36.)

J. Choi and W. B. Croft. Temporal models for microblogs. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages 2491–2494, New York, NY,
USA, 2012. ACM. (Cited on page 20.)

J. Choi, W. B. Croft, and J. Y. Kim. Quality models for microblog retrieval. In Proceedings of the 21st ACM
international conference on Information and knowledge management, CIKM ’12, pages 1834–1838, New
York, NY, USA, 2012. ACM. (Cited on page 19.)

F. R. Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997. (Cited on page 87.)
C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty

and diversity in information retrieval evaluation. In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08, pages 659–666.
ACM, 2008a. (Cited on page 32.)

C. L. A. Clarke and N. Craswell. Overview of the TREC 2011 web track. In TREC, pages 1–9, 2011. (Cited
on pages 13, 22, 23, 30, 32, 109, and 110.)

C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty
and diversity in information retrieval evaluation. In SIGIR, pages 659–666, 2008b. (Cited on pages 33, 109,
and 123.)

C. L. A. Clarke, N. Craswell, and I. Soboroff. Overview of the TREC 2009 web track. In TREC, pages 1–9,
2009. (Cited on pages 30, 32, 109, and 110.)

C. L. A. Clarke, N. Craswell, I. Soboroff, and G. V. Cormack. Overview of the TREC 2010 web track. In
TREC, pages 1–9, 2010. (Cited on pages 30, 32, 109, and 110.)

C. L. A. Clarke, N. Craswell, and E. M. Voorhees. Overview of the TREC 2012 web track. In TREC, pages
1–8, 2012. (Cited on pages 22, 23, 30, 32, 109, 110, 126, 131, and 132.)

F. Crestani and I. Markov. Distributed information retrieval and applications. In ECIR, pages 865–868. Springer
Berlin Heidelberg, 2013. (Cited on pages 16 and 59.)

W. B. Croft. Advances in Information Retrieval: Recent Research from the Center for Intelligent Information
Retrieval. Kluwer, 2000. (Cited on pages 15, 16, and 17.)

J. S. Culpepper, M. Petri, and F. Scholer. Efficient in-memory top-k document retrieval. In Proceedings of
the 35th international ACM SIGIR conference on Research and development in information retrieval, pages
225–234. ACM, 2012. (Cited on page 87.)

W. Dakka, L. Gravano, and P. Ipeirotis. Answering general time-sensitive queries. IEEE Trans. Knowledge
and Data Engin., 24(2):220–235, 2012. (Cited on pages 20, 45, 56, 70, and 77.)

V. Dang and W. B. Croft. Diversity by proportionality: An election-based approach to search result diversifi-
cation. In SIGIR, pages 65–74, 2012. (Cited on pages 22, 23, 24, 26, 102, 103, 109, 110, and 147.)

V. Dang and W. B. Croft. Term level search result diversification. In SIGIR, pages 603–612, 2013. (Cited on
pages 22, 24, 109, and 147.)

P. Das-Gupta and J. Katzer. A study of the overlap among document representations. In SIGIR’83, pages
106–114, 1983. (Cited on page 4.)

F. Diaz. Regularizing ad hoc retrieval scores. In Proceedings of the 14th ACM international conference on
Information and knowledge management, pages 672–679. ACM, 2005. (Cited on page 21.)

X. L. Dong and D. Srivastava. Compact explanation of data fusion decisions. In WWW’13, pages 379–390,
2013. (Cited on pages 2, 3, and 15.)

P. Donmez, K. M. Svore, and C. J. C. Burges. On the local optimality of lambdarank, 2008. Microsoft Research
Technical Report. (Cited on page 62.)

Y. Duan, L. Jiang, T. Qin, M. Zhou, and H. Shum. An empirical study on learning to rank tweets. In COLING,
pages 295–303, 2010. (Cited on page 19.)

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In WWW’01, pages
613–622, 2001. (Cited on pages 16 and 17.)

M. Efron. Hashtag retrieval in a microblogging environment. In SIGIR’10, pages 787–788, 2010. (Cited on

150

Bibliography

page 19.)
M. Efron. Information search and retrieval in microblogs. J. Am. Soc. for Inform. Sci. and Techn., 62(6):

996–1008, 2011. (Cited on pages 16 and 68.)
R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank aggregation. In

Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03,
pages 301–312, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. (Cited on page 16.)

M. Farah and D. Vanderpooten. An outranking approach for rank aggregation in information retrieval. In
SIGIR’07, pages 591–598, 2007. (Cited on page 17.)

E. A. Fox and J. A. Shaw. Combination of multiple searches. In TREC-2, 1994. (Cited on pages 1, 3, 4, 5, 15,
16, 17, 38, 63, and 68.)

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information
tapestry. Commun. ACM, 35(12):61–70, Dec. 1992. (Cited on pages 20 and 63.)

W. S. Gosset. The application of the law of error to the work of the brewery. Guinness Internal Note, 1904.
(Cited on pages 33 and 34.)

A. Griffiths, H. C. Luckhurst, and P. Willett. Using interdocument similarity information in document retrieval
systems. Journal of the American Society for Information Science, 37(1):3–11, 1986. (Cited on page 4.)

A. Griffiths, H. C. Luckhurst, and P. Willett. Adaptive manifold learning. IEEE trans. on PAMI, 34(2):253–265,
2012. (Cited on page 21.)

T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101:5228–5235, 2004. (Cited on pages 24,
26, and 106.)

Z. Han, X. Li, M. Yang, H. Qi, S. Li, and T. Zhao. HIT at TREC 2012 microblog track. In TREC ’12 Working
Notes, 2012. (Cited on pages 19 and 29.)

D. Harman. Overview of the third text retrieval conference (TREC-3). In TREC’94, 1994. (Cited on pages 28
and 90.)

D. Harman and C. Buckley. The NRRC reliable information access (RIA) workshop. In Proceedings of SIGIR,
pages 528–529, 2004. (Cited on page 146.)

D. Hawking and N. Craswell. Overview of the TREC-2001 web track. In Proceedings of the TREC-10, pages
1–8, 2002. (Cited on pages 28 and 90.)

C. He, D. Hong, and L. Si. A weighted curve fitting method for result merging in federated search. In
Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’11, pages 1177–1178, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0757-4.
(Cited on page 16.)

D. He and D. Wu. Toward a robust data fusion for document retrieval. In IEEE NLP-KE’08, pages 1–8, 2008.
(Cited on pages 1, 4, and 15.)

J. He, V. Hollink, and A. de Vries. Combining implicit and explicit topic representations for result diversifica-
tion. In SIGIR, pages 851–860, 2012. (Cited on page 105.)

K. Hofmann, S. Whiteson, and M. D. Rijke. Fidelity, soundness, and efficiency of interleaved comparison
methods. ACM Trans. Inf. Syst., 31(4):17:1–17:43, Nov. 2013. (Cited on pages 87 and 147.)

K. Hofmann, A. Schuth, A. Bellogin, and M. de Rijke. Effects of position bias on click-based recommender
evaluation. In 36th European Conference on Information Retrieval (ECIR’14), pages 624–630, 2014. (Cited
on page 147.)

T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50–57, 1999. (Cited on page 24.)
T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89–115, Jan.

2004. (Cited on page 79.)
D. Hong and L. Si. Mixture model with multiple centralized retrieval algorithms for result merging in federated

search. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’12, pages 821–830, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1472-5. (Cited on pages 16 and 147.)

D. Hong and L. Si. Search result diversification in resource selection for federated search. In Proceedings
of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’13, pages 613–622, New York, NY, USA, 2013. ACM. (Cited on page 16.)

A. Hoonlor, B. K. Szymanski, M. J. Zaki, and V. Chaoji. Document clustering with bursty. Computing and
Informatics, 31:1533–1555, 2012. (Cited on page 36.)

C. Horn, O. Pimas, M. Granitzer, and E. Lex. Realtime ad hoc search in Twitter: Know-center at TREC
microblog track 2011. In Proceedings of the Text REtrieval Conference, 2011. (Cited on pages 19 and 55.)

L. B. Jabeur, F. Damak, L. Tamine, K. Pinel-Sauvagnat, G. Cabanac, and M. Boughanem. IRIT at TREC
microblog 2012: Adhoc task. In TREC’12, 2012. (Cited on page 19.)

S. Jameel and W. Lam. An unsupervised topic segmentation model incorporating word order. In SIGIR, pages

151

Bibliography

203–212, 2013. (Cited on page 127.)
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):

422–446, 2002. (Cited on pages 32 and 132.)
O. Jin, N. N. Liu, K. Zhao, Y. Yu, and Q. Yang. Transferring topical knowledge from auxiliary long texts for

short text clustering. In CIKM, pages 775–784, 2011. (Cited on page 24.)
T. Joyce and R. Needham. The thesaurus approach to information retrieval. American Documentation, 9(3):

192–197, 1958. (Cited on pages 1 and 11.)
J. Karas and I. Savage. Publications of frank wilcoxon. Biometrics, 23:1–10, 1967. (Cited on page 33.)
S. Khalaman and O. Kurland. Utilizing inter-document similarities in federated search. In SIGIR’12, pages

1169–1170, 2012. (Cited on pages 16, 17, 42, and 43.)
S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. Inf. Proc. Lett., 70(1):39–45,

1999. (Cited on page 125.)
Y. Kim, R. Yeniterzi, and J. Callan. Overcoming vocabulary limitations in twitter microblogs. In TREC’12,

2012. (Cited on page 19.)
J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, Sept. 1999.

(Cited on page 86.)
A. Klementiev, D. Roth, and K. Small. Unsupervised rank aggregation with distance-based models. In

ICML’08, pages 472–479, 2008. (Cited on page 17.)
A. K. Kozorovitsky and O. Kurland. Cluster-based fusion of retrieved lists. In SIGIR’11, pages 893–902, 2011.

(Cited on pages 1, 4, 15, 16, 17, 18, 38, 68, 70, 81, 82, 83, and 110.)
T. Kurashima, T. Iwata, T. Hoshide, N. Takaya, and K. Fujimura. Geo topic model: joint modeling of user’s ac-

tivity area and interests for location recommendation. In WSDM, pages 375–384, 2013. (Cited on page 25.)
O. Kurland and L. Lee. Corpus structure, language models, and ad hoc information retrieval. In SIGIR’04,

pages 194–201, 2004. (Cited on page 42.)
M. Kurucz, A. A. Benczúr, and K. Csalogány. Methods for large scale svd with missing values. In KDD Cup

and Workshop, volume 12, pages 31–38, 2007. (Cited on pages 20, 63, and 66.)
J. D. Lafferty and D. M. Blei. Correlated topic models. In Advances in neural information processing systems,

pages 147–154, 2005. (Cited on page 25.)
T. Lappas, B. Arai, M. Platakis, D. Kotsakos, and D. Gunopulos. On burstiness-aware search for document

sequences. In SIGKDD’09, pages 477–486, 2009. (Cited on pages 36, 41, 45, and 57.)
G. Lee and J. S. et al. Siteq: Engineering high performance qa system using lexico-semantic pattern matching

and shallow nlp. In TREC, 2011. (Cited on page 62.)
J. H. Lee. Combining multiple evidence from different properties of weighting schemes. In SIGIR’95, pages

180–188, 1995. (Cited on pages 5, 16, 17, 37, 38, and 110.)
J. H. Lee. Analyses of multiple evidence combination. In SIGIR’97, pages 267–276, 1997. (Cited on page 5.)
F. Li, M. Huang, and X. Zhu. Sentiment analysis with global topics and local dependency. In AAAI, pages

1371–1376, 2010. (Cited on page 25.)
W. Li and A. McCallum. Pachinko allocation: Dag-structured mixture models of topic correlations. In ICML,

pages 577–584. ACM, 2006. (Cited on page 25.)
X. Li and W. B. Croft. Time-based language models. In CIKM, pages 469–475, 2003. (Cited on pages 45, 56,

70, and 77.)
S. Liang and M. de Rijke. Finding knowledgeable groups in enterprise corpora. In SIGIR’13, 2013. (Cited on

pages 9 and 59.)
S. Liang and M. de Rijke. Formal language models for finding groups of experts. Some journal, Submitted.

(Cited on page 8.)
S. Liang and M. de Rijke. Burst-aware data fusion for microblog search. Information Processing & Manage-

ment, To appear. (Cited on page 8.)
S. Liang, M. de Rijke, and M. Tsagkias. Late data fusion for microblog search. In Proceedings of the 35th

European Conference on Information Retrieval, pages 743–746, 2013. (Cited on pages 9 and 15.)
S. Liang, Z. Ren, and M. de Rijke. Fusion helps diversification. In Proceedings of the 37th International

ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’14, pages 303–312,
2014a. (Cited on pages 8 and 23.)

S. Liang, Z. Ren, and M. de Rijke. Personalized search result diversification via structured learning. In Pro-
ceedings of the 20th International ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 751–760, 2014b. (Cited on pages 8 and 148.)

S. Liang, Z. Ren, and M. de Rijke. The impact of semantic document expansion on cluster-based fusion for
microblog search. In ECIR’14, pages 493–499, 2014c. (Cited on page 9.)

S. Liang, Z. Ren, W. Weerkamp, E. Meij, and M. de Rijke. Time-aware rank aggregation for microblog search.

152

Bibliography

In Proceedings of the 23rd ACM International Conference on Information & Knowledge Management,
CIKM ’14, page 10, 2014d. (Cited on page 8.)

S. Liang, I. Markov, Z. Ren, and M. de Rijke. Efficient manifold-based fusion of ranked lists. Some journal,
Submitted. (Cited on page 8.)

N. Limsopatham, R. McCreadie, and M.-D. Albakour. University of Glasgow at TREC 2012: Experiments
with Terrier in medical records, microblog, and web tracks. In TREC, 2012. (Cited on page 111.)

J. Lin, C. Macdonald, I. Ounis, and I. Soboroff. Overview of the TREC 2011 Microblog track. In TREC 2011.
NIST, 2012. (Cited on pages 3, 19, 29, 35, and 62.)

C. Liu, N. J. Belkin, and M. J. Cole. Personalization of search results using interaction behaviors in search
sessions. In SIGIR, pages 205–214, 2012a. (Cited on page 23.)

J. S. Liu. The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem.
J. Am. Stat. Assoc., 89(427):958–966, 1994. (Cited on pages 105, 106, 126, and 127.)

T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3):
225–331, 2009. (Cited on pages 11 and 13.)

W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised learning. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pages 679–686, 2010. (Cited on
pages 83 and 87.)

W. Liu, J. Wang, and S.-F. Chang. Robust and scalable graph-based semisupervised learning. Proceedings of
the IEEE, 100(9):2624–2638, 2012b. (Cited on page 83.)

X. Liu and W. B. Croft. Evaluating text representations for retrieval of the best group of documents. In
ECIR’08, pages 454–462, 2008. (Cited on page 43.)

Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li. Supervised rank aggregation. In WWW’07, pages 481–489,
2007. (Cited on pages 16 and 147.)

Z. Luo, M. Osborne, S. Petrovic, and T. Wang. Improving twitter retrieval by exploiting structural information.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 648–654, 2012. (Cited
on page 19.)

H. Ma, D. Zhou, and C. Liu. Recommender systems with social regularization. In WSDM’11, pages 287–296,
2011a. (Cited on pages 20, 63, and 66.)

H. Ma, T. C. Zhou, M. R. Lyu, and I. King. Improving recommender systems by incorporating social contextual
information. ACM Trans. Inf. Syst., 29(2):9:1–9:23, Apr. 2011b. (Cited on page 70.)

C. Macdonald, I. Ounis, J. Lin, A. Choudhury, and I. Soboroff. 2011 track guidelines, 2011. http://
trec.nist.gov. (Cited on pages 28, 29, and 62.)

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University
Press, New York, NY, USA, 2008. ISBN 0521865719, 9780521865715. (Cited on pages 1, 11, and 31.)

I. Markov and F. Crestani. Theoretical, qualitative and quantitative analyses of small-document approaches to
resource selection. ACM Trans. Inf. Syst., 32(2):9:1–9:37, 2014. (Cited on pages 16 and 17.)

I. Markov, A. Arampatzis, and F. Crestani. Unsupervised linear score normalization revisited. In SIGIR, pages
1161–1162. ACM, 2012. (Cited on page 17.)

I. Markov, A. Arampatzis, and F. Crestani. On cori result merging. In ECIR, pages 752–755. Springer, 2013a.
(Cited on page 17.)

I. Markov, L. Azzopardi, and F. Crestani. Reducing the uncertainty in resource selection. In ECIR, pages
507–519. Springer Berlin Heidelberg, 2013b. (Cited on page 16.)

G. Markovits, A. Shtok, and O. Kurland. Predicting query performance for fusion-based retrieval. In CIKM’12,
pages 813–822, 2012. (Cited on pages 42 and 146.)

M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and information retrieval. Journal of the
ACM (JACM), 7(3):216–244, 1960. (Cited on pages 1, 11, and 12.)

K. Massoudi, M. Tsagkias, M. de Rijke, and W. Weerkamp. Incorporating query expansion and quality indica-
tors in searching microblog posts. In ECIR ’11, pages 362–367, 2011. (Cited on pages 19, 20, 45, 56, 70,
and 77.)

M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and describing spatial bursts. In VLDB’10,
pages 1091–1102, 2010. (Cited on pages 36 and 41.)

E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts. In WSDM ’12, pages 563–572.
ACM, 2012. (Cited on page 99.)

D. Metzler and C. Cai. USC/ISI at TREC 2011: microblog track. In Proceedings of the Text REtrieval
Conference, 2011. (Cited on pages 19 and 55.)

D. Metzler, C. Cai, and E. Hovy. Structured event retrieval over microblog archives. In Proceedings of the
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 646–655, 2012. (Cited on pages 39 and 55.)

153

http://trec.nist.gov
http://trec.nist.gov

Bibliography

T. Miyanishi, K. Seki, and K. Uehara. Combing recency and topic-dependent temporal variation for microblog
search. In ECIR’13, pages 331–343, 2013a. (Cited on page 19.)

T. Miyanishi, K. Seki, and K. Uehara. Improving pseudo-relevance feedback via tweet selection. In CIKM,
pages 439–448, 2013b. (Cited on pages 20, 45, 56, 70, and 77.)

M. Montague and J. A. Aslam. Condorcet fusion for improved retrieval. In CIKM’02, pages 538–548, 2002.
(Cited on pages 2, 15, and 17.)

C. Mooers. The next twenty years in information retrieval. American Documentation, 11(3):229–236, 1960.
(Cited on page 11.)

N. Naveed, T. Gottron, J. Kunegis, and A. Che Alhadi. Searching microblogs: coping with sparsity and
document quality. In CIKM’11, pages 183–188. ACM, 2011. (Cited on page 19.)

B. O’Connor, M. Krieger, and D. Ahn. TweetMotif: Exploratory search and topic summarization for Twitter.
In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pages 384–385,
2010. (Cited on page 19.)

M.-H. Peetz, E. Meij, M. de Rijke, and W. Weerkamp. Adaptive temporal query modeling. In ECIR ’12, pages
455–458, 2012. (Cited on pages 36 and 41.)

J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’98, pages 275–281, 1998. (Cited on pages 11 and 12.)

T. Qin, X. Geng, and T.-Y. Liu. A new probabilistic model for rank aggregation. In NIPS’10, pages 1948–1956,
2010. (Cited on page 16.)

E. Rabinovich, O. Rom, and O. Kurland. Utilizing relevance feedback in fusion-based retrieval. In Proceedings
of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’14, pages 313–322, 2014. (Cited on page 147.)

F. Radlinski and S. Dumais. Improving personalized web search using result diversification. In SIGIR, pages
691–692. ACM, 2006. (Cited on pages 23, 121, 122, 131, and 148.)

Z. Ren, S. Liang, E. Meij, and M. de Rijke. Personalized time-aware tweets summarization. In SIGIR’13,
pages 513–522, 2013. (Cited on pages 9, 25, and 106.)

Z. Ren, M.-H. Peetz, S. Liang, W. van Dolen, and M. de Rijke. Hierarchical multi-label classification of social
text streams. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR ’14, pages 213–222, 2014. (Cited on page 9.)

S. E. Robertson. The probability ranking principle in ir. Journal of documentation, 33(4):294–304, 1977.
(Cited on pages 2 and 12.)

S. E. Robertson and D. A. Hull. The TREC-9 filtering track final report. In TREC, pages 25–40, 2000. (Cited
on pages 129 and 131.)

S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976. (Cited on page 12.)

S. E. Robertson, C. Van Rijsbergen, and M. F. Porter. Probabilistic models of indexing and searching. In
Proceedings of the 3rd annual ACM conference on Research and development in information retrieval,
pages 35–56. Butterworth & Co., 1980. (Cited on page 12.)

M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. In
UAI, pages 487–494, 2004. (Cited on page 25.)

I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information access systems. Knowl.
Eng. Rev., 18(2):95–145, June 2003. (Cited on page 147.)

W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring subsequences. In Int.
Conf. Intelligent Systems for Molecular Biology, pages 234–241, 1999. (Cited on pages 41 and 69.)

T. Sakai, Z. Dou, and C. L. A. Clarke. The impact of intent selection on diversified search result. In SIGIR,
pages 921–924, 2013. (Cited on page 109.)

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo.
In ICML, pages 880–887, 2008a. (Cited on pages 20, 37, 63, and 66.)

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural Information Process-
ing Systems, pages 1257–1264, 2008b. (Cited on pages 20, 63, and 66.)

G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. Journal of the ACM (JACM),
15(1):8–36, 1968. (Cited on pages 1, 11, and 12.)

R. L. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations for web search result diversification.
In WWW, pages 881–890, 2010a. (Cited on pages 22, 23, 26, 105, 110, 131, and 147.)

R. L. Santos, C. Macdonald, and I. Ounis. Intent-aware search result diversification. In SIGIR, pages 595–604,
2011. (Cited on pages 101 and 109.)

R. L. T. Santos, J. Peng, C. Macdonald, and I. Ounis. Explicit search result diversification through sub-queries.

154

Bibliography

In ECIR, pages 87–99, 2010b. (Cited on page 22.)
J. Seo and W. B. Croft. Geometric representations for multiple documents. In SIGIR’10, pages 251–258, 2010.

(Cited on page 43.)
J. A. Shaw and E. A. Fox. Combination of multiple searches. In TREC 1992, pages 243–252. NIST, 1993.

(Cited on pages 1, 4, 15, 16, 35, and 37.)
D. Sheldon, M. Shokouhi, M. Szummer, and N. Craswell. LambdaMerge: merging the results of query re-

formulations. In WSDM ’11, pages 795–804, 2011. (Cited on pages 1, 15, 16, 37, 38, 39, 45, 62, 68,
and 70.)

X. Shen, B. Tan, and C. Zhai. Implicit user modeling for personalized search. In CIKM, pages 824–831. ACM,
2005. (Cited on pages 5, 121, and 145.)

Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic. Adaptive diversification of recommendation results via
latent factor portfolio. In SIGIR, pages 175–184. ACM, 2012. (Cited on page 121.)

M. Shokouhi and L. Si. Federated search. Found. Trends Inf. Retr., 5(1):1–102, Jan. 2011. (Cited on pages 2,
15, 16, and 59.)

L. Si, J. Callan, S. Cetintas, and H. Yuan. An effective and efficient results merging strategy for multilingual
information retrieval in federated search environments. Information Retrieval, 11(1):1–24, 2008. (Cited on
pages 16 and 59.)

M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance tests for information
retrieval evaluation. In Proceedings of the sixteenth ACM conference on Conference on information and
knowledge management, pages 623–632. ACM, 2007. (Cited on page 33.)

I. Soboroff, I. Ounis, C. Macdonald, and J. Lin. Overview of the TREC-2012 Microblog track. In TREC 2012.
NIST, 2012. (Cited on pages 13, 29, and 35.)

I. Szpektor, Y. Maarek, and D. Pelleg. When relevance is not enough: promoting diversity and freshness in
personalized question recommendation. In WWW ’13, pages 1249–1260, 2013. (Cited on page 23.)

W. P. Thurston and J. W. Milnor. The geometry and topology of three-manifolds. Princeton University Prince-
ton, 1979. (Cited on pages 2, 21, and 81.)

M. Tsagkias, M. de Rijke, and W. Weerkamp. Linking online news and social media. In WSDM ’11, pages
565–574, 2011. (Cited on pages 16 and 17.)

M.-F. Tsai, Y.-T. Wang, and H.-H. Chen. A study of learning a merge model for multilingual information
retrieval. In SIGIR’08, pages 195–202, 2008. (Cited on pages 1, 4, 15, 16, 62, and 68.)

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interde-
pendent output variables. J. Mach. Learn. Res., 6:1453–1484, 2005. (Cited on pages 26, 122, 124, and 125.)

D. Vallet and P. Castells. Personalized diversification of search results. In SIGIR’12, pages 841–850, 2012.
(Cited on pages 3, 5, 23, 30, 121, 122, 129, 131, 132, and 148.)

D. Vallet, I. Cantador, and J. M. Jose. Personalizing web search with folksonomy-based user and document
profiles. In ECIR, pages 420–431. Springer, 2010. (Cited on pages 3, 23, and 131.)

M. van Erp and L. Schomaker. Variants of the borda count method for combining ranked classifier hypotheses.
In Proceedings of the 7th International Workshop on Frontiers in handwriting Recognition, pages 443–452,
2000. (Cited on page 16.)

S. Vargas, P. Castells, and D. Vallet. Explicit relevance models in intent-oriented information retrieval diversi-
fication. In SIGIR, pages 75–84, 2012. (Cited on pages 22 and 26.)

M. Vlachos, C. Meek, and Z. Vagena. Identifying similarities, periodicities and bursts for online search queries.
In SIGMOD’04, pages 131–142, 2004. (Cited on page 36.)

E. M. Voorhees. Overview of the TREC 2005 robust retrieval track. In Proceedings of the TREC-14, pages
1–9, 2005. (Cited on pages 28, 90, and 146.)

H. Wang, X. He, M.-W. Chang, Y. Song, R. W. White, and W. Chu. Personalized ranking model adaptation for
web search. In SIGIR, pages 323–332, 2013. (Cited on page 23.)

R. Wang, S. Shan, X. Chen, and W. Gao. Manifold-manifold distance with application to face recognition
based on image set. In CVPR’08, pages 1–8. IEEE, 2008. (Cited on pages 21 and 82.)

X. Wang and A. McCallum. Topics over time: a non-markov continuous-time model of topical trends. In
KDD’06, pages 424–433, 2006. (Cited on pages 25, 106, and 127.)

W. Weerkamp and M. de Rijke. Credibility-inspired ranking for blog post retrieval. Information Retrieval
Journal, 15(3–4):243–277, 2012. (Cited on page 62.)

B. Wei, S. Zhang, R. Li, and B. Wang. A time-aware language model for microblog retrieval. In TREC’12,
2012. (Cited on page 19.)

X. Wei and W. B. Croft. Lda-based document models for ad-hoc retrieval. In SIGIR, pages 178–185, 2006.
(Cited on pages 25 and 106.)

X. Wei, J. Sun, and X. Wang. Dynamic mixture models for multiple time-series. In IJCAI, pages 2909–2914,

155

Bibliography

2007. (Cited on page 25.)
Z. Wei, W. Gao, L. Zhou, B. Li, and K.-F. Wong. Exploring tweets normalization and query time sensitivity

for twitter search. In Proceedings of the Text REtrieval Conference, 2011. (Cited on pages 19 and 55.)
F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–83, 1945. (Cited on

page 33.)
S. Wu. Data fusion in information retrieval, volume 13 of Adaptation, Learning and Optimization. Springer,

2012. (Cited on pages 2, 3, 4, 5, 15, 16, 17, 38, 63, 68, and 101.)
Z. Xu, Y. Zhang, Y. Wu, and Q. Yang. Modeling user posting behavior on social media. In SIGIR, pages

545–554, 2012. (Cited on pages 25 and 106.)
J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM ’11, pages 177–186. ACM,

2011. (Cited on pages 3 and 35.)
E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient sampling method for estimating ap and ndcg.

In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 603–610. ACM, 2008. (Cited on page 148.)

Y. Yue and T. Joachims. Predicting diverse subsets using structural svms. In ICML, pages 1224–1231. ACM,
2008. (Cited on pages 26, 122, 128, 129, and 131.)

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In
SIGIR, pages 271–278. ACM, 2007. (Cited on pages 26, 122, and 131.)

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc information
retrieval. In SIGIR, pages 334–342, 2001. (Cited on page 129.)

C. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods and evaluation metrics for
subtopic retrieval. In SIGIR, pages 10–17, 2003. (Cited on pages 22 and 33.)

S.-X. Zhang and M. Gales. Structured SVMs for automatic speech recognition. IEEE Trans. on Audio, Speech,
and Lang. Proc., 21(3):544–555, 2013. (Cited on page 26.)

X. Zhang, K. Hui, B. He, and T. Luo. GUCAS at TREC-2011 microblog track. In TREC’11, 2011. (Cited on
page 19.)

D. Zhao and M. B. Rosson. How and why people twitter: the role that micro-blogging plays in informal
communication at work. In GROUP ’09, pages 243–252, 2009. (Cited on pages 2, 3, 17, and 35.)

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In
NIPS 16, pages 321–328. MIT Press, 2004. (Cited on pages 21, 22, 83, and 84.)

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions.
In ICML’03, pages 912–919, 2003. (Cited on page 21.)

Y. Zhu, Y. Lan, J. Guo, X. Cheng, and S. Niu. Learning for search result diversification. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR
’14, pages 293–302, 2014. (Cited on page 22.)

156

Summary

Data fusion and search result diversification are two critical research topics in informa-
tion retrieval. The first main topic on which this thesis focuses is data fusion. Data
fusion approaches combine search result lists in order to produce a new and hopefully
better ranking. The result lists in data fusion can be produced by a wide range of ranking
approaches, based, for instance, on different query or document representations. Many
effective state-of-the-art data fusion approaches are based on the assumption that only
documents that are highly ranked in many of the result lists are likely to be relevant. As
a consequence, a relevant document will be ranked low in the final fused list if it appears
only in a single list and is ranked low in this list. However, when considering the applica-
tion of data fusion in microblog environments, this assumption may not lead to effective
retrieval. We propose two novel data fusion models for microblog search that not only
utilize information traditionally used when merging ranked lists, such as ranks, but also
exploit temporal information, i.e., the publication time of microblog posts. In addition,
previous work on data fusion often assumes, either implicitly or explicitly, that the rank
score of a document is set to zero if the document does not appear in the result list. We
challenge this assumption. We apply a latent factor model to predict the rank scores of
such documents. Our intuition is that documents that are similar to a document that oc-
curs in an input list, should get similar rank scores. Furthermore, previous work on data
fusion has mainly focused on fusion based on retrieval status values or ranks of docu-
ments in the result lists without fully analyzing inter-document similarities. We propose
a fusion method based on manifolds. The method constructs manifolds for documents
based on their similarities, let low ranked documents be rewarded to be relevant by high
ranked documents in the same manifolds, and utilize the top-k documents as anchors to
enhance the efficiency of data fusion.

The second main research topic this thesis focuses on is search result diversification.
Search result diversification is widely being studied as a way of tackling query ambigu-
ity. Instead of trying to identify the “correct” interpretation behind a query, the idea is to
make the search results diversified so that users with different backgrounds will find at
least one of these results to be relevant to their information need. This thesis examines
the hypothesis that data fusion can improve performance in terms of diversity metrics by
promoting aspects that are found in disparate ranked lists, to the top of the fused list. We
propose a new data fusion method, called diversified data fusion for search result diversi-
fication. Based on latent Dirichlet allocation (LDA), this method operates on documents
in the result lists to be fused, whether the result lists have been diversified or not. It infers
latent topics, their probabilities of being relevant and a multinomial distribution of topics
over the documents being fused. In addition, in both search result diversification and
personalized web search, an issued query is often viewed as an incomplete expression
of a user’s underlying need. Although different, search result diversification and person-
alization are not incompatible and do not have mutually exclusive goals. We study the
problem of personalized diversification of search results via supervised learning, with
the goal of enhancing both diversification and personalization performance. The ideas
are two-fold. Search results generated by diversification techniques should be more di-
verse when a user’s preferences are unrelated to the query. Likewise, personalization
can improve the effectiveness of aspect weighting in diversification, by favoring query

157

Bibliography

interpretations which are predicted to be more related to each specific user.
The results in this thesis show how both our proposed data fusion methods and the

proposed search result diversification methods improve retrieval performance and how
data fusion and diversification relate to each other. The insights from the work in this
thesis may be used to improve retrieval performance for a range of tasks in information
retrieval.

158

Samenvatting

Data fusion en diversificatie van zoekresultaten zijn twee essentiële onderzoeksgebieden
in information retrieval. Het eerste onderwerp van dit proefschrift is data fusion. Data
fusion methoden combineren zoekresultaten van verschillende zoekalgoritmes om zo een
beter geordende lijst van resultaten te verkrijgen. Bovengenoemde zoekalgoritmes kun-
nen heel verschillend zijn. Ze kunnen bijvoorbeeld verschillen in de manier waarop ze
zoekvragen of documenten representeren. Veel state-of-the-art data fusion methodes zijn
gebaseerd op de aanname dat alleen documenten die hoog gerangschikt worden door
veel zoekalgoritmes waarschijnlijk relevant zijn. Als een document dus maar voorkomt
in de resultaten van één algoritme en bovendien met een lage score, dan zal het in de
uiteindelijke gecombineerde lijst van resultaten ook laag gerangschikt zijn. Wanneer we
data fusion bijvoorbeeld toepassen voor het doorzoeken van microblog posts, dan kan
deze aanname tot onbevredigende resultaten leiden. Wij ontwikkelen twee nieuwe data
fusion algoritmes die nieuwe informatie gebruiken ten opzichte van traditionele meth-
oden. De eerste van deze twee methodes legt de nadruk op het gebruik van temporele
informatie, d.w.z. het tijdstip van publicatie van microblog posts. In eerder onderzoek
wordt vaak impliciet of expliciet aangenomen dat de score van een document dat niet
wordt gevonden door een zoekalgoritme op nul moet worden bepaald, een aanname die
wij ter discussie stellen. In ons tweede data fusion algoritme gebruiken we latente vari-
abelen om de scores van dergelijke documenten te schatten. Daarbij laten we ons leiden
door de intuı̈tie dat documenten die lijken op documenten die wèl voorkomen in een li-
jst ook ongeveer dezelfde score zou moeten worden toegekend. Tot nu toe heeft men
bij data fusion vooral gewerkt met de scores of rangorde van documenten in de lijsten
van de verschillende zoekalgoritmes, zonder een diepgaande analyse van de mate waarin
documenten op elkaar lijken. In deze dissertatie introduceren we een derde data fusion
methode gebaseerd op variëteiten. De methode construeert variëteiten voor documenten
gebaseerd op de mate waarin deze documenten op elkaar lijken. Documenten met lage
scores die in dezelfde variëteit liggen als documenten met hoge scores worden opge-
waardeerd. Om de efficiëntie van data fusion te verhogen wordt hierbij gebruik gemaakt
van top-k documenten als referentiepunten.

Het tweede hoofdonderwerp van dit proefschrift is diversificatie van zoekresultaten.
Hier wordt veel onderzoek naar gedaan, met name als een manier om om te gaan met
de ambiguı̈teit van zoekvragen. In plaats van te proberen zoekvragen “correct” te in-
terpreteren wordt er diversiteit aangebracht in de zoekresultaten, zodat mensen met een
verschillende achtergrond en bedoeling tenminste één van de resultaten relevant zullen
vinden. In dit proefschrift onderzoeken we de hypothese dat data fusion kan helpen om
de kwaliteit van zoekresultaten te verbeteren in termen van diversificatie-metrieken. We
doen dit door aspecten van de zoekvragen die in zoekresultaten van verschillende algo-
ritmes voorkomen naar voren te brengen in de gecombineerde resultaten. Dit leidt tot
een nieuwe data fusion methode voor diversificatie van zoekresultaten. Deze methode,
gebaseerd op Latent Dirichlet Allocation (LDA), maakt gebruik van de zoekresultaten
van alle algoritmes die gecombineerd moeten worden, of deze nu zelf al diversificatie
toepassen of niet. Er worden latente onderwerpen gevonden in de te combineren docu-
menten, dan wordt geschat hoe relevant deze onderwerpen zijn voor de zoekvraag. De
documenten worden gerepresenteerd door een multinomiale distributie van deze onder-

159

Bibliography

werpen. In onderzoek naar zowel diversificatie als personalisering van zoekresultaten
wordt een zoekvraag vaak gezien als een onvolledige uitdrukking van een onderliggende
informatiebehoefte. Hoewel ze verschillen, zijn diversificatie en personalisering niet on-
verenigbaar. De doelstellingen van beide sluiten elkaar niet uit. In dit proefschrift onder-
zoeken we het probleem van gepersonaliseerde diversificatie van zoekresultaten. We ver-
beteren zowel de diversificatie als de personalisatie met een methode gebaseerd op gesu-
perviseerd leren. De ideeën zijn tweeledig. Zoekresultaten zouden meer diverse moeten
zijn als de voorkeuren van de gebruiker ongerelateerd zijn aan de zoekvraag. Omge-
keerd kan personalisatie de kwaliteit van de resultaten verbeteren door interpretaties van
de query die stroken met de voorkeuren van de gebruiker sterker te benadrukken. De
resultaten in dit proefschrift laten zien hoe onze data fusion en diversificatie methoden
de kwaliteit van de rangschikking van zoekresultaten verbetert. De resultaten geven ook
inzicht in de verbanden tussen data fusion en diversificatie.

160

	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Background
	Information Retrieval
	Tasks
	Ad hoc search
	Microblog search
	Search result diversification

	Methods
	Data fusion
	Microblog retrieval
	Latent factor modeling
	Manifold-based algorithms
	Search result diversification
	Topic modeling
	Structured learning

	Experimental Methodology
	Introduction
	Test Collections Used in the Thesis
	Ad hoc search collection
	Microblog search collection
	Web track collections
	Personalized diversification collection

	Evaluation Metrics
	Metrics for ad hoc search
	Metrics for microblog search
	Metrics for search result diversification

	Significance Testing

	Burst-Aware Data Fusion
	Fusion Approach
	Standard fusion methods
	Bursts and burst detection
	Burst-aware fusion

	Experimental Setup
	Detailed research questions
	Baselines
	Training and optimization
	Experiments

	Results and Analysis
	Fusing the sample lists
	The use of burst information
	Effect of the number of lists to be merged
	Topic-level analysis
	Run-time analysis
	Effect of fusing time-sensitive result lists
	Further analysis of using burst information
	Performance on single result list

	Conclusion
	Detailing -Merge

	Time-Aware Data Fusion
	Time-Aware Data Fusion
	The fusion method
	Analysis of time-aware data fusion

	Experimental Setup
	Detailed research questions
	Baselines and evaluation
	Experiments

	Results and Analysis
	Fusing the sample lists
	Contributions of the main ingredients
	The use of burst information
	Effect of the number of lists being merged
	Query-level analysis
	Run time comparisons
	Effect of fusing time-sensitive result lists

	Conclusion
	Derivation of The Models

	Manifold-based Data Fusion
	Analysis of Cluster-Based Fusion
	Manifold-Based Data Fusion
	Optimization problem
	Optimal solution
	Efficient ManX
	Analysis of efficient ManX

	Experimental Setup
	Detailed research questions
	Baselines and evaluation
	Experiments

	Results and Analysis
	Fusing the top component runs
	Effect of the number of lists being merged
	Effect of anchor documents
	Run time comparisons
	Topic-level analysis
	Document similarity

	Conclusion

	Fusion Helps Diversification
	Diversified Data Fusion
	Experimental Setup
	Detailed research questions
	Evaluation metrics and baselines
	Experiments

	Results
	Performance of baseline fusion methods
	The performance of DDF
	Effect of the number of component lists
	Query-level analysis
	Zooming in on Prec-IA@k
	Effect of the number of topics

	Conclusion
	Gibbs Sampling Derivation for DDF Model

	Personalized Diversification
	The Learning Problem
	Structured Learning for Personalized Diversification
	Additional constraints
	Our optimization problem
	The learning algorithm
	Prediction

	User-Interest Topic Model and Feature Space
	Notation and terminology
	User-interest topic model
	Feature space

	Experimental Setup
	Detailed research questions
	Dataset
	Baselines
	Evaluation
	Experiments

	Results and Analysis
	Supervised vs. unsupervised
	Effect of the proposed UIT model
	Effect of the proposed constraints
	Query-level analysis
	Subtopic-level analysis
	Performance of parameter tuning

	Conclusion
	Gibbs Sampling Derivation for UIT Model

	Conclusions
	Main Findings
	Future Work

	Bibliography
	Summary
	Samenvatting

