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ABSTRACT
Federated recommender systems have distinct advantages in terms
of privacy protection over traditional recommender systems that
are centralized at a data center. With the widespread use and the
growing computing power of mobile devices, it is becoming in-
creasingly feasible to store and process data locally on the devices
and to train recommender models in a federated manner. However,
previous work on federated recommender systems does not fully
account for the limitations in terms of storage, RAM, energy and
communication bandwidth in a mobile environment. The scales
of the models proposed are too large to be easily run on mobile
devices. Also, existing federated recommender systems need to
fine-tune recommendation models on each device, which makes it
hard to effectively exploit collaborative filtering information among
users/devices.

Our goal in this paper is to design a novel federated learning
framework for rating prediction (RP) for mobile environments that
operates on par with state-of-the-art fully centralized RP methods.
To this end, we introduce a federated matrix factorization (MF)
framework, named meta matrix factorization (MetaMF), that is able
to generate private item embeddings and RP models with a meta
network. Given a user, we first obtain a collaborative vector by
collecting useful information with a collaborative memory module.
Then, we employ a meta recommender module to generate private
item embeddings and a RP model based on the collaborative vector
in the server. To address the challenge of generating a large number
of high-dimensional item embeddings, we devise a rise-dimensional
generation strategy that first generates a low-dimensional item
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embedding matrix and a rise-dimensional matrix, and then multiply
them to obtain high-dimensional embeddings.We use the generated
model to produce private RPs for the given user on her device.

MetaMF shows a high capacity even with a small RP model,
which can adapt to the limitations of a mobile environment. We
conduct extensive experiments on four benchmark datasets to com-
pare MetaMF with existing MF methods and find that MetaMF
can achieve competitive performance. Moreover, we find MetaMF
achieves higher RP performance over existing federated methods
by better exploiting collaborative filtering among users/devices.
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1 INTRODUCTION
Traditionally, recommender systems are organized in a centralized
fashion, i.e., service providers hold all data and models at a data
center. As even an anonymized centralized dataset still puts user
privacy at risk via combinations with other datasets [43], federated
or decentralized recommender systems are increasingly being con-
sidered so to realize privacy-aware recommendations [1, 2, 47]. In
federated recommender systems, a global model in the server can be
trained from user-specific local models on multiple mobile devices
(e.g., phones, laptops, smartwatches), ensuring that users’ interac-
tion data never leaves their devices. Such recommender systems
are capable of reducing the risk of leaking private user data.
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Larger recommendation models need more space for storage,
more RAM for running programs, more energy for calculation,
and more communication bandwidth for downloading or updat-
ing. Unlike fully centralized recommender systems at a data center,
federated recommender systems that need to run on local devices
have stricter requirements on the scale of the model. Previous work
on federated recommender systems [1, 7, 32, 47, 55] neglects to
fully account for the model scale, so that the proposed federated
recommendation approaches need to fine-tune the model on each
device. Accordingly, limited device resources (e.g., storage, RAM,
energy, and communication bandwidth, etc.) are heavily occupied.
Moreover, existing federated approaches cannot effectively exploit
collaborative filtering (CF) information among users/device, which
limits the performance of existing federated recommendation meth-
ods.

To tackle the problems listed above, we focus on a new privacy-
aware federated recommendation architecture for the rating pre-
diction (RP) task [24, 30, 31]. For the RP task we aim to predict the
rating that a user would give to an item that she has not rated in the
past as precisely as possible [19, 25]. In this paper, our target is to
design a novel federated learning framework to RP for a federated
mobile environment that operates on par with state-of-the-art fully
centralized RP methods.

As themethod of choice for the RP task, matrix factorization (MF)
is used to optimize latent factors to represent users and items by
projecting users and items into a joint dense vector space [18, 25].
Today’s MF methods consider RP models as well as item embed-
dings of the same size and shared parameters for all users in order
to predict personalized ratings. For fitting all user data, the shared
RP model with item embeddings must be large in size. In this paper,
we hypothesize that using private item embeddings and models can
achieve competitive performance with a small model scale, based
on two intuitions. First, different users might have different views
and/or angles about the same item: it is not necessary for all users to
use shared item embeddings that require many parameters. Second,
different users might favor different RP strategies, which means we
can use a specific and small model to fit a user’s private data. A key
challenge is how we can build private RP models on local devices
and at the same time effectively utilize collaborative filtering (CF)
information on the server as we may not have enough personal
data for each user to build her own model.

In this paper, we address this challenge by introducing a novel
matrix factorization framework, namely meta matrix factoriza-
tion (MetaMF). Instead of building a model on each local device, we
propose to “generate” private item embeddings and RP models with
a meta network. Specifically, we assign a so-called indicator vector
(i.e., a one-hot vector corresponding to a user id) to each user. For a
given user, we first fuse her indicator vector to get a collaborative
vector by collecting useful information from other users with a
collaborative memory (CM) module. Then, we employ a meta rec-
ommender (MR) module to generate private item embeddings and
a RP model based on the collaborative vector. It is challenging to
directly generate the item embeddings due to the large number of
items and the high dimensions. To tackle this problem, we devise
a rise-dimensional generation (RG) strategy that first generates a
low-dimensional item embedding matrix and a rise-dimensional

matrix, and then multiply them to obtain high-dimensional embed-
dings. Finally, we use the generated RP model to obtain RPs for this
user. In a federated recommender system, we deploy the private RP
model on the user’s device, and the meta network, including CM
and MR modules, on the server.

We perform extensive experiments on four benchmark datasets.
Despite its federated nature, MetaMF shows comparable perfor-
mance with state-of-the-art MF methods on two datasets, while
using fewer parameters for item embeddings and RP models. Both
the generated item embeddings and the RP model parameters ex-
hibit clustering phenomena, demonstrating that MetaMF can effec-
tively model CF in a federated manner while generating a private
model for each user. Moreover, we find thatMetaMF achieves higher
RP performance than state-of-the-art federated recommendation
methods by better exploiting CF among users/devices. To facilitate
reproducibility of the results, we are sharing the code.

The main contributions of this paper are as follows:
• We introduce a novel federated matrix factorization (MF)
framework, MetaMF, that can reduce the parameters of RP
models and item embeddings without loss in performance.

• We devise a meta network, including collaborative memory
and meta recommender modules, to better exploit collabora-
tive filtering in federated recommender systems.

• We propose a rise-dimensional generation strategy to reduce
the parameters and calculation in generation.

• We conduct extensive experiments and analyses to verify
the effectiveness and efficiency of MetaMF.

2 RELATEDWORK
We group related work into federated recommender systems, matrix
factorization, and meta learning.

2.1 Federated Recommender Systems
For RPs in a federated environment, it is impractical to only rely
on local data to train a model for each device, due to data sparsity.
Thus, previous work for the federated environment focuses on how
to collaboratively train models on distributed data using existing
recommendation methods. Ziegler [55] propose to build a graph
among computers based on trust, then to use collaborative filtering
to do recommendations. Kermarrec et al. [22] further present a
user-based random walk approach with CF across devices to pre-
dict ratings. Wang et al. [47] introduce a parallel and distributed
matrix factorization algorithms to cooperatively learn user/item
latent factors across multiple devices. Barbosa et al. [2] propose
that smartphones exchange data between devices and calculate
their own recommendation via collaborative filtering. Beierle and
Eichinger [3] further present a mobile architecture consisting of
data collection, data exchange, and a local recommender system;
the data collection component gets data about the user from local
device, data exchange gets data about other users from other de-
vices, and the local recommender system utilizes all available data
for recommending items to the user.

Several studies have introduced federated learning [33] into
the realm of recommendation, which provides a way to realize
federated recommender systems. Chen et al. [7] propose a recom-
mendation framework based on federated meta learning, which



Figure 1: An overview of MetaMF. It consists of three modules. The CMmodule and the MRmodule with the RG strategy tend
to generate private item embeddings and RP models for different users, which are deployed into the server. The prediction
module aims to predict private ratings based on the generated item embeddings andRPmodels for each user, which is deployed
into the device.

maintains a shared model in the cloud. To adapt it for each user,
they download the model to the local device and fine-tune the
model for personalized recommendations. Ammad-ud din et al. [1]
formulate federated collaborative filtering (FCF) methods and adapt
WRMF [20] to demonstrate the applicability of FCF.

Unlike us, Ammad-ud din et al. [1] do not focus on the size of
the local models while maintaining performance; importantly, they
focus on the ranking task, not the rating prediction task that we
focus on. In previous federated learning methods, the global model
in the server and the local model in the device have the same size,
the local model is a copy of the global model. No previous work uses
the type of architecture that we design for MetaMF that deploys a
big meta network into the server to exploit CF while deploying a
small RP model into the device to predict ratings.

2.2 Matrix Factorization
Matrix factorization (MF) has attracted a lot of attention since
it was proposed for recommendation tasks. Early studies focus
mainly on how to achieve better rating matrix decomposition. Sar-
war et al. [39] employ singular value decomposition (SVD) to re-
duce the dimensionality of the rating matrix, so that they can get
low-dimensional user and item vectors. Goldberg et al. [13] apply

principal component analysis (PCA) to decompose the rating ma-
trix, and obtain the principal components as user or item vectors.
Zhang et al. [54] propose non-negative matrix factorization (NMF),
which decomposes the rating matrix by modeling each user’s rat-
ings as an additive mixture of rating profiles from user communities
or interest groups and constraining the factorization to have non-
negative entries. Mnih and Salakhutdinov [34] propose probabilistic
matrix factorization (PMF) to model the distributions of user and
item vectors from a probabilistic point of view. Koren [24] proposes
SVD++, which enhances SVD by including implicit feedback as
opposed to SVD, which only includes explicit feedback.

The matrix decomposition methods mentioned above estimate
ratings by simply calculating the inner product between user and
item vectors, which is not sufficient to capture their complex inter-
actions. Deep learning has been introduced to MF to better model
user-item interactions with non-linear transformations. Sedhain
et al. [40] propose AutoRec, which takes ratings as input and re-
constructs the ratings by an autoencoder. Later, Strub et al. [42]
enhance AutoRec by incorporating side information into a denois-
ing autoencoder. He et al. [18] propose the neural collaborative
filtering (NCF), which employs a multi-layer perceptron (MLP) to
model user-item interactions. Xue et al. [52] present the deepmatrix
factorization (DMF) which enhances NCF by considering both ex-
plicit and implicit feedback. He et al. [17] use convolutional neural



networks (CNNs) to improve NCF and present the ConvNCF, which
uses the outer product to model user-item interactions. Cheng et al.
[9] introduce an attention mechanism into NCF to differentiate the
importance of different user-item interactions. Recently, a number
of studies have investigated the use of side information or implicit
feedback to enhance these neural models [30, 49, 50, 53].

All these models provide personalized RPs by learning user rep-
resentations to encode differences among users, while sharing item
embeddings and models. In contrast, MetaMF provides private RPs
by generating non-shared and small models as well as item embed-
dings for individual users.

2.3 Meta Learning
Meta learning, also known as “learning to learn," has shown its
effectiveness in reinforcement learning [51], few-shot learning [35],
image classification [37].

Jia et al. [21] propose a network to dynamically generate filters
for CNNs. Bertinetto et al. [4] introduce a model to predict the
parameters of a pupil network from a single exemplar for one-shot
learning. Ha et al. [15] propose hypernetworks, which employ a
network to generate the weights of another network. Krueger et al.
[26] present a Bayesian variant of hypernetworks that learns the
distribution over the parameters of another network. Chen et al.
[8] use a hypernetwork to share function-level information across
multiple tasks. Few of them target recommendation, which is a
more complex task with its own unique challenges.

Recently, some studies have introduced meta learning into rec-
ommendations. Vartak et al. [45] study the item cold-start prob-
lem in recommendations from a meta learning perspective. They
view recommendation as a binary classification problem, where
the class labels indicate whether the user engaged with the item.
Then they devise a classifier by adapting a few-shot learning par-
adigm [41]. Lee et al. [27] propose a meta learning-based recom-
mender system called MeLU to alleviate the user cold-start problem.
MeLU can estimate new users’ preferences with a few consumed
items and determine distinguishing items for customized preference
estimation by an evidence candidate selection strategy. Du et al.
[10] unify scenario-specific learning and model-agnostic sequential
meta learning into an integrated end-to-end framework, namely
Scenario-specific Sequential Meta learner (s2Meta). s2Meta can pro-
duce a generic initial model by aggregating contextual information
from a variety of prediction tasks and effectively adapt to specific
tasks by leveraging learning-to-learn knowledge.

Different from these publications, we learn a hypernetwork (i.e.,
MetaMF) to directly generate private MF models for each user for
RPs.

3 META MATRIX FACTORIZATION
3.1 Overview
Given a user 𝑢 and an item 𝑖 , the goal of rating prediction (RP) is to
estimate a rating 𝑟𝑢,𝑖 that is as accurate as the true rating 𝑟𝑢,𝑖 . We
denote the set of users asU, the set of items as I, the set of true
ratings as R, which will be divided into the training set 𝐷𝑡𝑟𝑎𝑖𝑛 , the
validation set 𝐷𝑣𝑎𝑙𝑖𝑑 , and the test set 𝐷𝑡𝑒𝑠𝑡 .

As shown in Fig. 1,MetaMF has three components: a collaborative
memory module (see Section 3.3), a meta recommender module (see

Section 3.4 and a prediction module (i.e., a RP model; see Section 3.5),
where the CM and MR modules constitute a meta network shared
by all users, and the prediction module is private. In CM module,
we first obtain the user embedding e𝑢 of𝑢 from the user embedding
matrix U and take it as the coordinates to obtain the collaborative
vector c𝑢 from a shared memory space that fuses information from
all users. Then we input c𝑢 to the MR module to generate the
parameters of a private RP model for𝑢. The RP model can be of any
type. In this work, the RP model is a multi-layer perceptron (MLP).
We also generate the private item embedding matrix I𝑢 of 𝑢 with a
rise-dimensional generation strategy. Finally, the prediction module
takes the item embedding e𝑢𝑖 of 𝑖 from I𝑢 as input and predicts 𝑟𝑢,𝑖
using the generated RP model.

3.2 Federated Rating Predictions
Before we detail each module, we first detail how to use MetaMF to
decentralize data to build a federated recommender system. Because
MetaMF can be divided into a meta network, including CM and
MR modules, and a RP model, i.e., the prediction module, making
it suitable to combine with federated learning to realize a federated
recommender system.

Specifically, we can deploy the CM and MR modules into a data
center, i.e., the server, and deploy the prediction module locally into
mobile devices. The centralized server first generates and delivers
different parameters to different mobile devices. Next, each mobile
device calculates the loss and the gradients of the parameters in
the prediction module based on its private data, and uploads the
gradients to the server. Then the server can calculate the gradients
of the parameters in the CM andMRmodules based on the gradients
gathered from each device, and update the parameters. Finally, the
server generates and delivers new parameters to each mobile device.
Like federated machine learning methods, MetaMF can protect user
privacy to a certain extent, because user data does not need to
be uploaded to the server. Naturally, the strength of the privacy
protection depends on the content of the updates; see Section 7.

MetaMF provides a solid trade-off between exploiting CF for
higher RP performance and protecting users’ personal information.
It places the meta network with the most parameters in the server
and places the prediction module of a small scale in devices, which
is more suitable to a mobile environment with limited storage, RAM,
energy and communication bandwidth.

3.3 Collaborative Memory Module
In order to facilitate collaborative filtering, we propose the CM
module to learn a collaborative vector for each user, which encodes
both the user’s own information and some useful information from
other users.

Specifically, we assign each user 𝑢 and each item 𝑖 the indicator
vectors, i𝑢 ∈ R𝑚 and i𝑖 ∈ R𝑛 respectively, where𝑚 is the number
of users and𝑛 is the number of items. Note that i𝑢 and i𝑖 are one-hot
vectors with each dimension corresponding to a particular user or
item. For the given user 𝑢, we first get the user embedding e𝑢 by
Eq. 1:

e𝑢 = Ui𝑢 , (1)

where e𝑢 ∈ R𝑑𝑢 , U ∈ R𝑑𝑢×𝑚 is the user embedding matrix, and
𝑑𝑢 is the size of user embeddings. Then we proceed to obtain a



collaborative vector for 𝑢. Specifically, we use a shared memory
matrix M ∈ R𝑑𝑢×𝑘 to store the basis vectors which span a space of
all collaborative vectors, where 𝑘 is the dimension of basis vectors
and collaborative vectors. And we consider the user embedding
e𝑢 as the coordinates of 𝑢 in the shared memory space. So the
collaborative vector c𝑢 ∈ R𝑘 for 𝑢 is a linear combination of the
basis vectors inM by e𝑢 , as shown in Eq. 2:

c𝑢 =
∑
𝑖

M(𝑖, :)e𝑢 (𝑖), (2)

whereM(𝑖, :) is the 𝑖-th vector ofM and e𝑢 (𝑖) is the 𝑖-th scalar of
e𝑢 . Because the memory matrix M is shared among all users, the
shared memory space will fuse information from all users. MetaMF
can flexibly exploit collaborative filtering among users by assigning
them with similar collaborative vectors in the space defined by
M, which is equivalent to learning similar user embeddings as in
existing MF methods.

3.4 Meta Recommender Module
We propose the MR module to generate the private item embed-
dings and RP model based on the collaborative vector from the CM
module.

3.4.1 Private Item Embeddings. We propose to generate the private
item embedding matrix I𝑢 ∈ R𝑑𝑖×𝑛 for each user 𝑢, where 𝑑𝑖 is
the size of item embeddings. However, it is a challenge to directly
generate the whole item embedding matrix when there are a large
number of items with relatively high-dimensional item embeddings
(instead of extremely small ones). Therefore, we propose a rise-
dimensional generation (RG) strategy to decompose the generation
into two parts: a low-dimensional item embeddingmatrix I𝑙𝑢 ∈ R𝑠×𝑛
and a rise-dimensional matrix I𝑟𝑢 ∈ R𝑑𝑖×𝑠 , where 𝑠 is the size of
low-dimensional item embeddings and 𝑠 ≪ 𝑑𝑖 . Specifically, we first
follow Eq. 3 to generate I𝑙𝑢 ∈ R𝑠𝑛 and I𝑟𝑢 ∈ R𝑑𝑖𝑠 (in the form of
vectors):

h𝑙𝑖 = ReLU(W𝑙
𝑖c𝑢 + b𝑙𝑖 ), I𝑙𝑢 = U𝑙

𝑖h
𝑙
𝑖 ,

h𝑟𝑖 = ReLU(W𝑟
𝑖 c𝑢 + b𝑟𝑖 ), I𝑟𝑢 = U𝑟

𝑖 h
𝑟
𝑖 ,

(3)

where W𝑙
𝑖
and W𝑟

𝑖
∈ R𝑜×𝑘 , U𝑙

𝑖
∈ R𝑠𝑛×𝑜 and U𝑟

𝑖
∈ R𝑑𝑖𝑠×𝑜 are

weights; b𝑙
𝑖
and b𝑟

𝑖
∈ R𝑜 are biases; h𝑙

𝑖
and h𝑟

𝑖
∈ R𝑜 are hidden

states; 𝑜 is the hidden size. Then we reshape I𝑙𝑢 to a matrix whose
shape is 𝑠 × 𝑛, and reshape I𝑟𝑢 to a matrix whose shape is 𝑑𝑖 × 𝑠 .
Finally, we multiply I𝑙𝑢 and I𝑟𝑢 to get I𝑢 :

I𝑢 = I𝑟𝑢 I
𝑙
𝑢 . (4)

Compared to directly generating I𝑢 , which needs 𝑂 (𝑑𝑖 × 𝑛) param-
eters, the RG strategy needs 𝑂 (𝑠 × 𝑛 + 𝑑𝑖 × 𝑠) parameters which
reduces the cost of generating I𝑢 . For different users, the generated
item embedding matrices are different.

3.4.2 Private RP Model. We also propose to generate a private RP
model for each user𝑢. We use a MLP as the RP model, so we need to
generate the weights and biases for each layer of MLP. Specifically,
for layer 𝑙 , we denote its weights and biases asW𝑢

𝑙
∈ R𝑓out×𝑓in and

b𝑢
𝑙
∈ R𝑓out respectively, where 𝑓in is the size of its input and 𝑓out is

the size of its output. ThenW𝑢
𝑙
and b𝑢

𝑙
are calculated as follows:

h𝑔 = ReLU(Wℎ
𝑔 c𝑢 + bℎ𝑔 ),

W𝑢
𝑙
= U𝑤

𝑔 h𝑔 + b𝑤𝑔 ,

b𝑢
𝑙
= U𝑏

𝑔h𝑔 + b𝑏𝑔 ,

(5)

whereWℎ
𝑔 ∈ R𝑜×𝑘 , U𝑤

𝑔 ∈ R𝑓out 𝑓𝑖𝑛×𝑜 and U𝑏
𝑔 ∈ R𝑓out×𝑜 are weights;

bℎ𝑔 ∈ R𝑜 , b𝑤𝑔 ∈ R𝑓out 𝑓in and b𝑏𝑔 ∈ R𝑓out are biases; h𝑔 ∈ R𝑜 is hidden
state. Finally, we reshape W𝑢

𝑙
to a matrix whose shape is 𝑓out × 𝑓in.

Note that Wℎ
𝑔 , bℎ𝑔 , U𝑤

𝑔 , b𝑤𝑔 , U𝑏
𝑔 and b𝑏𝑔 are not shared by different

layers of the RP model. And 𝑓in and 𝑓out also vary with different
layers. Detailed settings can be found in the experimental setup.
Also, MetaMF returns different parameters of the MLP to each user.

3.5 Prediction Module
The prediction module estimates the user’s rating for a given item 𝑖

using the generated item embedding matrix I𝑢 and RP model from
the CM module.

First, we get the private item embedding e𝑢
𝑖
∈ R𝑑𝑖 of 𝑖 from I𝑢

by Eq. 6:
e𝑢𝑖 = I𝑢 i𝑖 . (6)

Then we follow Eq. 7 to predict 𝑟𝑢,𝑖 based on the RP model:

h1 = ReLU(W𝑢
1 e

𝑢
𝑖 + b𝑢1 ),

h2 = ReLU(W𝑢
2h1 + b𝑢2 ),

.

.

.

h𝐿−1 = ReLU(W𝑢
𝐿−1h𝐿−2 + b𝑢𝐿−1),

𝑟𝑢,𝑖 = W𝑢
𝐿h𝐿−1 + b𝑢𝐿,

(7)

where 𝐿 is the number of layers of the RP model. The weights
{W𝑢

1 ,W
𝑢
2 , . . . ,W

𝑢
𝐿−1,W

𝑢
𝐿
} and biases {b𝑢1 , b

𝑢
2 , . . . , b

𝑢
𝐿−1, b

𝑢
𝐿
} are gen-

erated by the CMmodule. The last layer 𝐿 is the output layer, which
returns a scalar as the predicted rating 𝑟𝑢,𝑖 .

3.6 Loss
In order to learn MetaMF, we formulate the RP task as a regression
problem and the loss function is defined as:

𝐿rp =
1

|𝐷train |
∑

𝑟𝑢,𝑖 ∈𝐷train

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2 . (8)

To avoid overfitting, we add the L2 regularization term:

𝐿reg =
1
2
∥Θ∥22, (9)

where Θ represents the trainable parameters of MetaMF. Note that
unlike existing MF methods, the item embeddings and the parame-
ters of RP models are not included in Θ, because they are also the
outputs of MetaMF, not trainable parameters.

The final loss 𝐿 is a linear combination of 𝐿rp and 𝐿reg :

𝐿 = 𝐿rp + 𝜆𝐿reg, (10)

where 𝜆 is the weight of 𝐿reg . The whole framework of MetaMF
can be efficiently trained using back propagation with federated
learning on decentralized data, as showed in Algorithm 1.



Algorithm 1MetaMF
Input: All trainable parameters Θ, which are stored in the server;

The user setU, where one user per device; For user 𝑢, her local
data 𝐷𝑢 stored in her device, and 𝐷train =

∑
𝑢∈U 𝐷𝑢 ; † means

the code is executed in the device.
Output: Θ; For user 𝑢, the parameters of her RP model and item

embeddings Φ𝑢 , which are stored in her device;
1: Initialize Θ randomly in the server;
2: for u inU do
3: Generate Φ𝑢 based on Θ;
4: Send Φ𝑢 to 𝑢’s device;
5: end for
6: while not convergent do
7: Sample a batch 𝑆 from U;
8: for 𝑢 in 𝑆 do
9: Sample a batch 𝐵𝑢 from 𝐷𝑢 ;†
10: Calculate the gradient of Φ𝑢 based on 𝐵𝑢 ;†
11: Upload the gradient to the server;†
12: Calculate the gradient of Θ based on the gradient of Φ𝑢 ;
13: end for
14: Accumulate the gradients of Θ gathered from 𝑆 ;
15: Update Θ based on the accumulated gradient;
16: for u inU do
17: Regenerate Φ𝑢 based on new Θ;
18: Send Φ𝑢 to 𝑢’s device;
19: end for
20: end while

Table 1: Statistics of the datasets, where #avg means the av-
erage number of user ratings, Hetrec-ML is the short name
of Hetrec-movielens.

Datasets #users #items #ratings #avg #sparsity (%)

Douban 2,509 39,576 894,887 357 0.9
Hetrec-ML 2,113 10,109 855,599 405 4
Movielens1M 6,040 3,706 1,000,209 166 4.5
Ciao 7,375 105,096 282,619 38 0.04

4 EXPERIMENTAL SETUP
We seek to answer the following research questions. (RQ1) How
does the proposed method MetaMF for federated rating predictions
perform compared to state-of-the-art MF methods for the RP task?
Does the federated nature of MetaMF come at cost in terms of
performance on the RP task? (RQ2) What is the contribution of
generating private item embeddings and RP models?

4.1 Datasets
We conduct experiments on fourwidely used datasets:Douban [19],
Hetrec-movielens [6],Movielens1M [16] and Ciao [14]. We list
the statistics of these four datasets in Table 1. For each user on each
dataset, we randomly separate her data into three chunks: 80% as
the training set, 10% as the validation set and 10% as the test set.

4.2 Baselines
We compareMetaMFwith the following conventional, deep learning-
based and federated MF methods. It is worth noting that in this
paper we focus on predicting ratings based on rating matrices, thus
for fairness we neglect MF methods that need side information.

• Conventional methods:
– NMF [54]: uses non-negative matrix factorization to de-
compose rating matrices.

– PMF [34]: applies Gaussian distributions to model the
latent factors of users and items.

– SVD++ [24]: extends SVD by considering implicit feed-
back for modeling latent factors.

– LLORMA [28]: uses a number of low-rank sub-matrices
to compose rating matrices.

• Deep learning-based methods:
– RBM [38]: employs restricted Boltzmann machine (RBM)
to model the generation process of ratings.

– AutoRec [40]: proposes autoencoders (AEs) to model in-
teractions between users and items. AutoRec has two vari-
ants, with one taking users’ ratings as input, denoted by
AutoRec-U, and the other taking items’ ratings as input,
denoted by AutoRec-I.

– NCF [18]: the state-of-the-art MF method that combines
generalized matrix factorization and MLP to model user-
item interactions. We adapt NCF for the RP task by drop-
ping the sigmoid activation function on its output layer
and replacing its loss function with Eq. 8.

• Federated methods:
– FedRec [7]: a federated recommendation method, which
employs MAML [11] to learn a shared RP model in the
server and update the model for each device. In our ex-
periments, the shared RP model is a MLP with two layers
(layer sizes are 16 and 1 respectively), and its user/item
embedding size is 64.

4.3 Evaluation Metrics
To evaluate the performance of rating prediction methods, we em-
ploy two evaluation metrics, i.e., Mean Absolute Error (MAE) and
Mean Square Error (MSE). Both of them are widely applied for the
RP task in recommender systems. Given the predicted rating 𝑟𝑢,𝑖
and the true rating 𝑟𝑢,𝑖 of user 𝑢 on item 𝑖 in the test set 𝐷test , MAE
is calculated as:

MAE =
1

|𝐷test |
∑

𝑟𝑢,𝑖 ∈𝐷test

|𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 |. (11)

MSE is defined as:

MSE =
1

|𝐷test |
∑

𝑟𝑢,𝑖 ∈𝐷test

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2 . (12)

Statistical significance of observed differences is tested for using a
two-sided paired t-test for significant differences (𝑝 < 0.01).

4.4 Implementation Details
The user embedding size 𝑑𝑢 and the item embedding size 𝑑𝑖 are set
to 32. The size of the collaborative vector 𝑘 is set to 128. The size
of the low-dimensional item embedding 𝑠 is set to 8. The hidden



Table 2: Comparison results ofMetaMF and baselines on the four datasets. A superscript ≈ indicates that there is no statistically
significant difference between MetaMF and NCF (two-sided paired t-test, 𝑝 < 0.01).

Method Douban Hetrec-movielens Movielens1M Ciao

MAE MSE MAE MSE MAE MSE MAE MSE

NMF 0.602 0.585 0.625 0.676 0.727 0.848 0.750 1.039
PMF 0.639 0.701 0.617 0.644 0.703 0.788 1.501 3.970
SVD++ 0.593 0.570 0.579 0.590 0.671 0.740 0.738 0.963
LLORMA 0.610 0.623 0.588 0.603 0.675 0.748 1.349 3.396

RBM 1.058 1.749 1.124 1.947 1.122 2.078 1.132 2.091
AutoRec-U 0.709 0.911 0.660 0.745 0.678 0.775 1.673 5.671
AutoRec-I 0.704 0.804 0.633 0.694 0.663 0.715 0.792 1.038
NCF 0.583 0.547 0.572 0.575 0.675 0.739 0.735 0.937

FedRec 0.760 0.927 0.846 1.265 0.907 1.258 0.865 1.507

MetaMF 0.584≈ 0.549 0.571≈ 0.578≈ 0.687 0.760 0.774 1.043

Table 3: Rating prediction results of MetaMF, MetaMF-SI and MetaMF-SM on the four datasets. MetaMF-SI shares item embed-
dings for all users; MetaMF-SM shares the parameters of prediction module for all users.

Method Douban Hetrec-movielens Movielens1M Ciao

MAE MSE MAE MSE MAE MSE MAE MSE

MetaMF 0.584 0.549 0.571 0.578 0.687 0.760 0.774 1.043
MetaMF-SI 0.586 0.552 0.590 0.615 0.696 0.784 0.732 0.925
MetaMF-SM 0.595 0.571 0.595 0.622 0.697 0.788 0.789 1.061

size 𝑜 is set to 512. And the RP model in the prediction module is
an MLP with two layers (one hidden layer and one output layer)
whose layer sizes are 8 and 1. During training, we initialize all
trainable parameters randomly with the Xavier method [12]. We
choose Adam [23] to optimize MetaMF, set the learning rate to
0.0001, and set the regularizer weight 𝜆 to 0.001. Our framework is
implemented with Pytorch [36]. In our experiments, we implement
NCF based on the released code of the author.1 We use the code
released by the respective authors2 for AutoRec. We use LibRec3
for the remaining baselines.

5 EXPERIMENTAL RESULTS
5.1 What Is the Cost of Federation?
We start by addressing RQ1 and compare our federated rating
predictionmodelMetaMFwith state-of-the-artMFmethods. Table 2
lists the RP performance of all MF methods.

Our main observations are as follows. First, on the Douban and
Hetrec-movielens datasets, MetaMF outperforms most baselines
despite the fact that it is federated while most baselines are central-
ized. And MetaMF is slightly inferior to NCF, but this difference
is not significant. So we can draw the conclusion that the perfor-
mance of MetaMF is comparable to NCF on these two datasets. See
Section 5.2 and Section 6.1 for further analysis.

Second, on theMovielens1M and Ciao datasets, MetaMF does not
perform well, in some cases worse than some traditional methods,

1https://github.com/hexiangnan/neural_collaborative_filtering
2https://github.com/gtshs2/Autorec
3https://www.librec.net/

such as SVD++. The most important reason is that the average num-
bers of user ratings on these two datasets are small. As shown in Ta-
ble 1, the statistics #avg on these four datasets are 357, 405, 166 and
38 respectively. Because the Douban and Hetrec-movielens datasets
provide more private data for each user, MetaMF is able to capture
the differences among users for learning private item embeddings
and RP models. However, the Movielens1M and Ciao datasets lack
sufficient data, which limits the performance of MetaMF.

Third and finally, MetaMF significantly outperforms FedRec on
all datasets with smaller user/item embedding size and RP model
scale. And FedRec performs worse than most baselines on most
datasets. The reason may be that FedRec cannot effectively exploit
CF information among users/devices. Although FedRec maintains a
shared model in the server, it needs to fine-tune the model on each
device, which prevents some useful information from being shared
among devices. However, MetaMF can flexibly take advantage of
CF among users/devices by the meta network. See Section 6.2 for
further analysis.

Although federated recommender systems can protect user pri-
vacy by keeping data locally, it is harder for them to exploit collabo-
rative filtering among users than for centralized approaches, which
affects their performance. So how to share information among mul-
tiple devices in a privacy-aware manner is still a core problem in
federated recommender systems. We can observe that MetaMF does
not outperform NCF, and the performance of FedRec is also worse
than of most centralized baselines. Although the federated nature of
MetaMF makes it trade performance for privacy, it can still achieve
comparable performance with NCF on two datasets, which shows

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/gtshs2/Autorec
https://www.librec.net/


MetaMF can get a better balance between privacy protection and
RP performance.

5.2 What Does the Privatization of MetaMF
Contribute?

Next we address RQ2 to analyze the effectiveness of generating
private item embeddings and RP models to the overall performance
of MetaMF. First, we compare MetaMF to MetaMF-SI, which only
generates private RP models for different users while sharing a
common item embedding matrix among all users. As shown in
Table 3, MetaMF outperforms MetaMF-SI on most datasets, except
for the Ciao dataset. We conclude that generating private item
embeddings for each user can improve the performance of MetaMF.
It is possible that the Ciao dataset lacks sufficient private data for
learning private item embeddings, so that MetaMF performs worse
than MetaMF-SI. And if we compare MetaMF-SI with NCF, we find
that MetaMF-SI also outperforms NCF on the Ciao dataset, which
indicates that generating private RP models can improve RP on the
Ciao dataset.

Next, we compare MetaMF with MetaMF-SM, which generates
different item embeddings for different users and shares a common
RP model among all users. From Table 3, we can see that MetaMF
consistently outperforms MetaMF-SM on all datasets. Thus, gener-
ating private RPmodels for users is able to improve the performance
of MetaMF too.

Furthermore, by comparing MetaMF-SI and MetaMF-SM, we
observe that MetaMF-SI outperforms MetaMF-SM on all datasets.
This shows that item embeddings have a greater impact on the
performance of MetaMF than RP models.

Finally, in response to RQ2 we conclude that generating private
item embeddings and RP models in MetaMF contributes to overall
performance of MetaMF.

6 ANALYSIS
Next, we want to understand whether MetaMF shows a high ca-
pacity at a small RP model scale compared to NCF. And to which
degree does MetaMF generate different item embeddings and RP
models for different users while exploiting collaborative filtering?

6.1 Model Scale Analysis
We examine whether MetaMF shows a high model capacity at a
small RP model scale by comparing MetaMF with NCF at differ-
ent model scales on the Douban and Hetrec-movielens datasets.
Because MetaMF and NCF are both MLP-based methods, we rep-
resent each model scale as a combination of the item embedding
size and the list of layer sizes,4 which are the key hyper-parameters
to affect the number of parameters. For MetaMF, we also list the
collaborative vector size and the hidden layer size in the CM and
MR modules for each model scale, however we only care about the
generated parameters in the prediction module of MetaMF because
in federated recommender systems we only need to deploy the
prediction module (i.e., the RP model) on local devices. Note that
the number of parameters we consider is independent from the
number of users/devices.

4The specific number of parameters is 𝑑𝑢 ×𝑚 + 𝑑𝑖 × 𝑛 +∑𝐿
𝑙=1 𝑓

𝑙
𝑖𝑛

× 𝑓 𝑙𝑜𝑢𝑡 , here
we use 𝑙 to differentiate different layers.

Table 4: The performance of MetaMF with different model
scales, where eachmodel scale is represented as a tuple (item
embedding size, [layer sizes in the Prediction Module], [col-
laborative vector size, hidden layer size in the MR Module]).

Model scale Douban Hetrec-movielens

MAE MSE MAE MSE

(8, [2, 1], [32, 128]) 0.584 0.548 0.575 0.584
(16, [4, 1], [64, 256]) 0.587 0.552 0.573 0.582
(32, [8, 1], [128, 512]) 0.584 0.549 0.571 0.578
(64, [16, 1], [256, 1024]) — — 0.578 0.591

Table 5: The performance of NCF with different model
scales, where each model scale is represented as (item em-
bedding size, [layer sizes]).

Model scale Douban Hetrec-movielens

MAE MSE MAE MSE

(16, [16, 8, 4, 1]) 0.587 0.552 0.585 0.603
(32, [32, 16, 8, 1]) 0.587 0.552 0.583 0.600
(64, [64, 32, 16, 1]) 0.584 0.549 0.579 0.595
(128, [128, 64, 32, 1]) 0.585 0.549 0.574 0.579
(256, [256, 128, 64, 1]) 0.583 0.547 0.572 0.575
(512, [512, 256, 128, 1]) 0.584 0.547 0.572 0.581
(1024, [1024, 512, 256, 1]) 0.586 0.549 0.574 0.582

In Table 4 and Table 5, we list the performance of MetaMF and
NCF for different model scales. By comparing the best settings
of MetaMF (32, [8], [128, 512]) and NCF (256, [256, 128, 64]), we
see that MetaMF achieves a comparable performance with NCF
with a smaller item embedding size, fewer layers and smaller layer
sizes. Importantly, at small model scales, MetaMF significantly out-
performs NCF. This is because the item embeddings and the RP
model generated by MetaMF are private, using a small scale is
sufficient to accurately encode the preference of a specific user
and predict her ratings. However for NCF, the shared RP model
with item embeddings has to be large in size since it needs to in-
corporate the information of all users and predict ratings for all
users. We conclude that generating private item embeddings and
RP models helps MetaMF to keep a relatively high capacity with
fewer parameters in item embeddings and RP models, and improve
the performance of rating prediction at the small model scale. Fur-
thermore, when deploying the recommendation system on mobile
devices, this advantage of MetaMF can save storage space, RAM,
energy and communication bandwidth.

As themodel scale increases, the performance ofMetaMF deterio-
rates earlier than NCF. Because there is not sufficient private data to
train too many parameters for each user, larger model scales easily
lead MetaMF to overfit. And even though we have the RG strategy
to alleviate the memory and computational requirements for gen-
erating private item embeddings, it is unrealistic to generate larger
embeddings for too many items. For example, we do not list the per-
formance of MetaMF with the model scale of (64, [16], [256, 1024])
on the Douban dataset, because there are too many items in the
dataset, making generation too difficult.



(a) The weights of the hidden layer on the
Douban dataset.

(b) The embeddings of item 16716 on the
Douban dataset.

(c) The weights of the hidden layer on the
Hetrec-movielens dataset.

(d) The embeddings of item 1931 on the
Hetrec-movielens dataset.

(e) The weights of the hidden layer on the
Movielens1M dataset.

(f) The embeddings of item 482 on theMovie-
lens1M dataset.

(g) The weights of the hidden layer on the
Ciao dataset.

(h) The embeddings of item 8271 on the Ciao
dataset.

Figure 2: The generated weights and item embeddings reduced dimension by t-SNE and normalized by mean and standard
deviation on the four datasets, where one point corresponds to one user.

6.2 Weights and Embeddings
In order to verify that MetaMF generates private item embeddings
and RP models for users while efficiently exploiting CF, we visu-
alize the generated weights and item embeddings after reducing
their dimension by t-SNE [44] and normalizing them by mean and
standard deviation,5 where each point represents a user’s weights
or item embeddings. Because there are many items, we randomly
select one item from each dataset for visualization. As shown in
Fig. 2, MetaMF generates different weights and item embeddings
for different users on most datasets, which indicates that MetaMF
has the ability to capture private factors for users. We also notice
the existence of many non-trivial clusters in most visualizations,
which shows that MetaMF is able to share information among users
to take advantage of collaborative filtering in the meta network.

The only exception is on the Ciao dataset, where MetaMF seems
unable to learn distinguishable weights and item embeddings. The
Ciao dataset does not provide sufficient private data for learning ef-
fective weights and item embeddings for each user. It also illustrates
why MetaMF does not perform well on the Ciao dataset.

7 CONCLUSION AND DISCUSSION
In this paper, we studied the federated rating prediction problem.
In particular, we investigated how to reduce the model scale of
matrix factorization methods in order to make them suitable for a
federated environment. To achieve this, we proposed a novel matrix
factorization framework, named MetaMF, that can generate private
RPmodels as well as item embeddings for each user with a meta net-
work. We conducted extensive experiments to compare and analyze
the performance of MetaMF. MetaMF performs competitively, at

5Here, norm(𝑥) = 𝑥−𝜇
𝜎

, where 𝜇 is the mean and 𝜎 is the standard deviation.

the level of state-of-the-art RP methods despite using a significant
smaller RP model and embedding size for items. In particular, by
using collaborative filtering in a federated environment, MetaMF
outperforms the federated recommendation method FedRec by a
large margin. Thus, we hope MetaMF can advance future research
on federated recommendation by presenting a new framework and
a scheme.

Next, we discuss some limitations of MetaMF and related future
work. First, MetaMF still has a risk of leaking private information.
MetaMF uses a meta network to directly generate private item em-
beddings and RP models on the server. Although the meta network
can efficiently exploit CF to improve RP performance, it may leak
personal information about users in private item embeddings, RP
models and their updates. As future work, we plan to design a
more privacy-aware generation network that preserves the high RP
performance at the same time. Second, currently MetaMF cannot
handle cold-start users well [5]. Although MetaMF incorporates
a CM module to collect collaborative information to alleviate this
issue, it still needs a certain amount of data for each user to achieve
satisfactory performance. As a result, it does not perform well
when there is not enough personalized data for each user. A possi-
ble solution direction is to reduce the data requirements of MetaMF
using few-shot [46] or zero-shot learning [48]. Finally, because the
ranking prediction task [29] is also important in the area of rec-
ommendation system, we will also evaluate the performance of
MetaMF on the ranking prediction.

DATA AND CODE
To facilitate reproducibility of our work, we are sharing all resources
used in this paper at https://bitbucket.org/HeavenDog/metamf/src/
master/.

https://bitbucket.org/HeavenDog/metamf/src/master/
https://bitbucket.org/HeavenDog/metamf/src/master/
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