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Keep and Select: Improving Hierarchical Context
Modeling for Multi-Turn Response Generation
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Abstract— Hierarchical context modeling plays an important
role in the response generation for multi-turn conversational
systems. Previous methods mainly model context as multiple
independent utterances and rely on attention mechanisms to
obtain the context representation. They tend to ignore the
explicit responds-to relationships between adjacent utterances
and the special role that the user’s latest utterance (the query)
plays in determining the success of a conversation. To deal
with this, we propose a multi-turn response generation model
named KS-CQ, which contains two crucial components, the Keep
and the Select modules, to produce a neighbor-aware context
representation and a context-enriched query representation. The
Keep module recodes each utterance of context by attentively
introducing semantics from its prior and posterior neighboring
utterances. The Select module treats the context as background
information and selectively uses it to enrich the query rep-
resenting process. Extensive experiments on two benchmark
multi-turn conversation datasets demonstrate the effectiveness
of our proposal compared with the state-of-the-art baselines in
terms of both automatic and human evaluations.

Index Terms— Hierarchical context modeling, multi-turn con-
versational system, neural generative model, response generation.

I. INTRODUCTION

IN RECENT years, neural response generation has attracted
considerable interests in the field of open-domain con-

versational systems [1], due to the availability of large-scale
corpora and recent progress in deep learning technologies [2],
[3]. Compared with single-turn scenario, multi-turn conver-
sations [4]–[12] are more extensive in daily life and come
with stricter requirements for contextual coherence. In a multi-
turn scenario, response generation should not only depend on
the user’s latest utterance (the query) but also be consistent
with conversational history (the context). Thus, how to model
context and query is key to multi-turn response generation.

There are mainly two kinds of context modeling meth-
ods: non-hierarchical and hierarchical. The non-hierarchical
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methods usually concatenate contextual utterances into one
sentence using their chronological order [4]–[7] or rewrite
them as a new informative sentence [13], [14], and then
feed the sentence into a vanilla sequence-to-sequence frame-
work [15] to generate a response. These methods essentially
follow the single-turn framework, which may neglect the
dynamic topic flow across utterances [8], [16]. Thus, to further
investigate the semantic structure of contextual utterances,
hierarchical context modeling methods [8]–[12] have been
proposed, which model the context at both utterance and
discourse levels. A previous work has incorporated memory
networks [17], latent variable models [18] and variational auto-
encoders [19], [20] into the hierarchical framework. Compared
with the non-hierarchical methods, the hierarchical methods
have shown better performance on capturing conversational
dynamics and have achieved improvements in multi-turn
response generation [3], [9], [12].

One challenge of multi-turn context modeling is to obtain
the semantic representation of context [1]. The current hier-
archical models usually regard context as multiple indepen-
dent utterances and encode them separately. They ignore
the fact that a multi-turn conversation is produced in a
coherent process, where utterances are semantically related
and mutually complementary. As illustrated in Table I,
adjacent utterances in a conversation, e.g., (Utterance 1,
Utterance 2), (Utterance 2, Utterance 3), have explicit
responds-to relationships. When encoding utterances sepa-
rately without consideration of their inner relationships, hier-
archical models may fail to capture the discourse coherence
within context and eventually produce non-ideal responses,
as shown in Table I. In addition, conversational utterances tend
to be colloquial with omissions, e.g., in Utterance 3, “Yes.
What did you think of it?” The word “it” refers to “ the new
James Bond movie.” We hypothesize that encoding utterances
separately will produce nonspecific utterance representations
and lead to the generation of uninformative or irrelevant
responses.

Another challenge of multi-turn context modeling is to
detect relevant context for the ongoing response genera-
tion [12], [21], [22], since the contribution of different context
to response generation is likely to change as the conversa-
tion progresses, especially for conversations with many turns.
Previous hierarchical models mostly depend on response-
context [8], [11], [12] and context-context attention mech-
anisms [10], [12] to detect relevant context. Unfortunately,
this is not a guarantee for generating relevant responses,
as shown in Table I. The query (such as Utterance 4 in Table I)
is a promising source to capture the focus of an ongoing
conversation, since the response is fundamentally generated
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TABLE I

EXAMPLE OF A MULTI-TURN CONVERSATION AND RESPONSES
GENERATED BY VARIOUS MODELS. REFERENCE IS THE REAL

RESPONSE PROVIDED IN THE DATASET. HRED, WSEQ, SD-HRED,
HRAN, AND RECOSA ARE STRONG HIERARCHICAL MODELS,

WHERE RECOSA IS THE STATE-OF-THE-ART WORK.
KS-CQ IS THE PROPOSED METHOD

as a feedback to it. WSeq, a method proposed in [9], also
considers to determine the importance of each context by its
similarity to the query. However, WSeq is easily misled to
choose an irrelevant context and generate an inappropriate
response (see Table I), due to words that frequently appear
in the context without carrying a specific meaning, e.g., “did,”
“you,” and “it.”

To address the above challenges, we propose a context mod-
eling framework named KS-CQ for the multi-turn response
generation task. It contains two pivotal components, namely,
the Keep and the Select modules, to produce a neighbor-aware
Context representation and a context-enriched Query repre-
sentation. The Keep module focuses on explicit responds-to
relationships and recodes each utterance in context by a
transformer encoder structure to use semantic information
from its neighbor utterances, i.e., prior and posterior adjacent
utterances. Then, through a sequential across-turn integration,
we obtain a neighbor-aware context representation that not
only contains semantics of utterances but also captures the
discourse coherence within context. The Select module first
uses self-attention to capture relationships between words of
a query and then adopts context attention to let the query
select relevant context and thereby enrich itself. With the
Keep and the Select modules, the proposed KS-CQ model
can generate a contextually coherent response with presenting
more informativeness, as shown in Table I.

To examine the effectiveness of our proposal and its piv-
otal components, we conduct extensive experiments on two
benchmark datasets. Our experiments show that with the
proposed Keep and the Select modules, our KS-CQ model
outperforms the state-of-the-art baselines in terms of automatic
and human evaluations, demonstrating its effectiveness on
generating appropriate and informative responses. We also
analyze the impact of context length and query length on
response generation in the KS-CQ model, finding that it is
robust to contexts and queries of various lengths, especially
presents strong performance on cases with short queries.

Our main contributions can be summarized as follows.

1) We propose to represent conversational context by
accounting for explicit responds-to relationships between
adjacent utterances and addressing the dominant role of
the query in response generation.

2) We propose a novel hierarchical context modeling frame-
work named KS-CQ for multi-turn response generation
task, which mainly consists of a Keep module to produce
a neighbor-aware context representation and a Select
module to generate context-enriched query representa-
tion.

3) We conduct extensive experiments on two benchmark
conversational datasets to examine the effectiveness of
our proposal and its pivotal components, finding it out-
performs the state-of-the-art baselines in terms of both
automatic and human evaluations.

Next, we review related work in Section II and then present
the details of the KS-CQ model in Section III. In Section IV,
we describe our experimental settings. Section V presents
the experimental results and reflections on the outcomes.
We formulate our conclusions in Section VI.

II. RELATED WORK

We mainly review two types of related work: open-domain
conversational systems and multi-turn response generation.

A. Open-Domain Conversational Systems

The conversational systems can be classified into two types,
i.e., task-oriented and non-task-oriented (or open-domain)
[2], [3]. The task-oriented conversational systems [23] are
designed to help users complete specific tasks, e.g., searching
products and booking flights. The open-domain conversational
systems [1] focus on realizing natural interactions with humans
on open-domain topics. As pointed by Huang et al. [1],
the goal of an open-domain system is to ensure long-term user
engagement, which is difficult to optimize for and requires a
comprehensive understanding of the conversational context to
produce appropriate responses.

Three kinds of approach have been developed for
open-domain conversational systems, including generation-
based, retrieval-based, and hybrid. In the generation-based
methods [4]–[6], [9]–[12], [16], [17], the responses are gen-
erated word by word in an auto-regressive manner. Inspired
by statistical machine translation, the encoder-decoder frame-
work [15] is the most popular choice for neural generative
conversational models, where conversational context is first
encoded into semantic vectors and the decoder takes the
context representation as input to sample a word from a pre-
defined vocabulary. Conditional variational autoencoders [19]
and generative adversarial networks [24] are also used. With
the success of transformer framework [25], pre-trained gen-
erative models on large-scale datasets, such as GPT-2 [26],
GPT-3 [27] and DialoGPT [6], can produce responses closely
emulating real-world text written by humans. As for the
retrieval-based methods [28], [29], given a conversational
context, they select a response from a pre-defined corpus
of candidate responses. The key to response selection is the
matching process between the response and the context.
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In general, the generation-based methods tend to provide
flexible but generic responses, while the retrieval-based meth-
ods can give informative but blunt responses [3]. A nat-
ural way for performance improvement is to assemble them
in a unified framework, i.e., hybrid conversational models
[30], [31], where retrieved candidate responses together with
the conversation context are input to a neural response gener-
ator, and the final response is produced by a post-ranker.

Our work investigates the generation-based approach for
the open-domain conversational system. To make an engaging
conversation, we propose a novel context modeling method to
perform a deep understanding of conversation content through
capturing discourse coherence and ongoing topic.

B. Multi-Turn Response Generation

Response generation is at the heart of an open-domain con-
versational system [1]. In a multi-turn scenario, responses need
to be coherent and consistent with respect to the conversation
context. From the perspective of context modeling, the current
multi-turn response generation methods can be grouped into
two major types: non-hierarchical and hierarchical.

In non-hierarchical response generation, all historical utter-
ances are processed as a whole and a single-turn conversa-
tional framework is adopted to produce a response. Early
non-hierarchical models [4], [5], [32] produce a concate-
nation of the original contextual utterances or their corre-
sponding encoded vector representations, and then use an
RNN-based encoder-decoder network [15] for response gener-
ation. Transformers [25] present a more powerful architecture
than RNNs for modeling long sequences and have been
applied to multi-turn response generation in some studies,
e.g., DialoGPT [6], T5 [33], and GPT-3 [27]. Besides the
above concatenation strategy, some studies [7], [13] propose
rewriting mechanisms to model contextual utterances, where
a user’s latest utterance will be rewritten into a new utterance
by restoring omitted information and co-references. How-
ever, the non-hierarchical models ignore semantic relationships
within contextual utterances, which actually provide rich infor-
mation about the dynamic conversation flow across multi-turn
interactions [3], [16].

For hierarchical response generation, Serban et al. [8] first
proposed a hierarchical framework, HRED, with two-level
recurrent encoders to generate the context representation by
integrating individual utterance embeddings. It gives rise to
new insights about modeling context at multiple semantic
levels. Since then, Serban et al. [18] introduced a latent vari-
able model into HRED to improve the response diversity.
Chen et al. [17] used a memory network to enhance HRED
in terms of modeling long-term dependencies. Considering
that response is only related to a few previous contextual
utterances, some researchers attempted to investigate the rel-
evance between the context and the response. For instance,
Tian et al. [9] proposed a model named WSeq that empha-
sizes the significance of the similarity between the context and
the user’s latest utterance. The SD-HRED model proposed by
Zhang et al. [10] concentrates on weighting the importance of
each contextual utterance with static and dynamic attentions.
Xing et al. [11] argued that words and utterances in context

have different degrees of importance for response generation
and then presented the HRAN method to model the hier-
archy and levels of importance. Zhang et al. [12] combined
transformer [25] and HRED, proposing the ReCoSa method
to leverage masked response representation to detect relevant
contexts.

Our work follows the hierarchical manner of context mod-
eling. Unlike previous hierarchical studies, which encode
utterances individually and apply an integration strategy to
fuse them afterward, our work considers the responds-to rela-
tionship between adjacent contextual utterances to optimize
the representation learning of context. We also address the
dominant role of the query, i.e., the user’s latest utterance,
in response generation, and design a context-enriched repre-
senting method to complement query with context.

III. APPROACH

We first formalize the multi-turn response generation task.
Given M (M ≥ 2) utterances of a conversation session
{U1, . . . , UM }, the last utterance UM is denoted as query and
U<M = {U1, . . . , UM−1} is viewed as context. Thus, the pur-
pose of the response generation task is to produce a response
UM+1 given the context and the query by calculating a condi-
tional probability P(UM+1 | U<M ;UM). Assuming that UM+1

is a sequence of NM+1 words, i.e., (w1,M+1, . . . , wNM+1,M+1),
the probability of generating a response can be decomposed
as

P(UM+1 | U<M ;UM)

=
NM+1∏
n=1

P
(
wn,M+1 | w<n,M+1;U<M;UM

)
(1)

where w<n,M+1 denotes all previously generated words before
nth step of UM+1.

Our solution for the multi-turn response generation task
is outlined in Fig. 1. The proposed KS-CQ model con-
sists of four main components, i.e., the utterance encoder
(see Section III-A), the Keep (see Section III-B) and the Select
(see Section III-C) modules, and the response decoder (see
Section III-D). For utterance encoding, we use a bidirectional
recurrent structure to encode each utterance in context and
query into a sequence of hidden vectors. Next, the Keep
module recodes each utterance of context, i.e., Um ∈ U<M ,
by making it attentively keep semantics from its neighboring
utterances, including the prior and the posterior adjacent
utterances, i.e., Um−1 and Um+1. Through an across-turn
integration, the Keep module can produce a neighbor-aware
context representation. After that, the Select module computes
within-query relevance to make each word of UM absorb
information from other words, and then selectively introduces
relevant semantics from context to obtain a context-enriched
query representation. Finally, the response UM+1 is gen-
erated by a recurrent decoder with attentively taking the
neighbor-aware context representation and context-enriched
query representation as input.

A. Utterance Encoder

The utterance encoder aims to obtain the initial word-level
embedding of each individual utterance in both context
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Fig. 1. Overview of the KS-CQ model.

and query. Given M utterances of a conversation session,
i.e., {U1, . . . , UM }, each utterance Um (m ∈ [1, M]) contains a
sequence of Nm words, denoted as Um = {w1,m, . . . , wNm ,m}.
We apply a bidirectional gated recurrent unit (BiGRU) [34] to
convert each word wn,m (n ∈ [1, Nm]) into a hidden vector as
follows:

−−→
hutt

n,m =
−−−−−→
BiGRUu

(−−−→
hutt

n−1,m, ewn,m

)
(2)

←−−
hutt

n,m =
←−−−−−
BiGRUu

(←−−−
hutt

n−1,m, ewn,m

)
(3)

and then

hutt
n,m =

−−→
hutt

n,m +
←−−
hutt

n,m (4)

where ewn,m is the randomly initialized word embedding of

wn,m ;
−−→
hutt

n,m and
←−−
hutt

n,m are the respective hidden vectors of wn,m

for the forward and backward passes. By the utterance encoder,
Um is represented as a sequence of hidden vectors, i.e.,
{hutt

1,m, . . . , hutt
Nm ,m}, which is denoted as the initial word-level

embedding of utterance Um .

B. Keep Module

In a multi-turn conversation, contextual utterances are
interdependent as they follow local discourse coherence and
thus may be linked by the responds-to relationships. Hence,
we recode each utterance of context by introducing relevant
semantics from its neighbors, including the prior and the
posterior adjacent utterances. Given the initial word-level
embedding of utterance Um in context, i.e., {hutt

1,m, . . . , hutt
Nm ,m}

(m ∈ [1, M)), we use a transformer encoder [25] to inject the
relevant information from its neighbor utterances, i.e., Um−1

and Um+1 into Um . It is worthy noting that the neighbor-aware
recoding procedure contains two transformer encoders from
different directions, namely, a prior one and a posterior one.

Formally, for each word wn,m (n ∈ [1, Nm]) of Um , the prior
transformer encoder

←−
TF takes its hidden vector hutt

n,m as the
input query vector of attention, and the hidden vectors of Um−1

as key and value vectors as follows:⎧⎪⎨
⎪⎩

zpr
n,m =

←−
TF(q, k, v), m ∈ (1, M)

q = hutt
n,m

k, v ∈ {
hutt

1,m−1, . . . , hutt
Nm−1 ,m−1

} (5)

and for the first utterance U1 in context, we will get

q, k, v ∈ {
hutt

1,1, . . . , hutt
N1,1

}
, m = 1 (6)

which turns to be a self-attention. For the posterior transformer
encoder

−→
TF, we have⎧⎪⎨

⎪⎩
zpo

n,m =
−→
TF(q, k, v), m ∈ [1, M)

q = hutt
n,m

k, v ∈ {
hutt

1,m+1, . . . , hutt
Nm+1,m+1

}
.

(7)

After obtaining zpr
n,m and zpo

n,m , which denote representations
of wn,m enhanced by the prior and the posterior neighbor
utterances, respectively, we concatenate them as

zn,m = Concat
[
zpr

n,m; zpo
n,m

]
(8)

where zn,m is the final representation for word wn,m of Um ,
which not only contains its own meaning but also carries
relevant semantics from neighbor utterances.

We denote the above operation as Bi-Keep, where zn,m is
obtained by a concatenation of zpr

n,m and zpo
n,m . We also present
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two variants, i.e., Pr-Keep and Po-Keep, to give insights into
the impact of neighbor utterances that are from different
directions. Specifically, the Pr-Keep module only introduces
relevant semantics from its prior neighbor utterance, which
means zn,m = zpr

n,m . While the Po-Keep focuses on its posterior
neighbor utterance, where zn,m = zpo

n,m .
In this manner, we obtain a new sequence of Nm hid-

den vectors for each contextual utterance Um , denoted as
{z1,m, . . . , zNm ,m}. We sum the Nm hidden vectors as follows:

zm =
Nm∑

n=1

zn,m (9)

where zm denotes a unified utterance-level representation of
Um , which contains neighbor-aware semantics from all its
words. Then, to make each contextual utterance aware of its
position in context, we conduct a discourse-level integration
through a BiGRU structure as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

←−−
zkeep

m =←−−−−−BiGRUk

(←−−
zkeep

m−1, zm

)
−−→
zkeep

m = −−−−−→BiGRUk

(−−→
zkeep

m−1, zm

)
zkeep

m =←−−zkeep
m +−−→zkeep

m

(10)

where zkeep
m denotes the discourse-level representation of

Um (m ∈ [1, M − 1]), and {zkeep
1 , . . . , zkeep

M−1} can be regarded
as the neighbor-aware context representation.

C. Select Module

For the task of response generation in multi-turn conversa-
tions, the query, i.e., user’s latest utterance, plays a dominant
role because the response is produced as a feedback to it.
Thus, instead of directly incorporating all context for response
generation, we propose to process context as background
information of the conversation and use it to enrich the query
representation.

The Select module aims to make the query selectively
absorb relevant semantic information from the neighbor-aware
context representation produced by the Keep module. Specif-
ically, by the utterance encoder, the words in query UM have
been represented as {hutt

1,M , . . . , hutt
NM ,M }. For each word wi,M

in UM , we first calculate the importance of other words in UM

relative to it as

βi, j =
exp

(
f
(

gβ,q
relu

(
hutt

i,M

)
, gβ,k

relu

(
hutt

j,M

)))
∑NM

j ′=1, j ′ �=i exp
(

f
(

gβ,q
relu

(
hutt

i,M

)
, gβ,k

relu

(
hutt

j ′,M

))) (11)

where βi, j is the importance of w j,M relative to wi,M and
j �= i ∈ [1, NM ]. gβ,q

relu and gβ,k
relu are full-connected networks

with ReLU activation function; f is the attention function and
is implemented by dot-product operation. Then we attentively
accumulate information from other words to update the rep-
resentation of wi,M as follows:

ri,M = gnorm
relu

⎛
⎝hutt

i,M +
NM∑

j=1, j �=i

βi, j ∗ hutt
j,M

⎞
⎠ (12)

where gnorm
relu is a full-connected network with ReLU activation

function to conduct normalization.
After introducing semantics from other words in the query,

we continue to make wi,M selectively absorb information
from relevant contexts. To be specific, we first calculate
the relevance between wi,M and each contextual utterance
Um (m ∈ [1, M − 1]) as

ϕi,m =
exp

(
f
(

gϕ,q
relu

(
zkeep

m

)
, gϕ,k

relu

(
ri,M

)))
∑M−1

m′=1 exp
(

f
(

gϕ,q
relu

(
zkeep

m′

)
, gϕ,k

relu

(
ri,M

))) . (13)

Then we selectively introduce semantic information from
contextual utterances according to their corresponding rele-
vances to wi,M as follows:

rselect
i,M = gnorm

relu

(
ri,M +

M−1∑
m=1

ϕi,m ∗ zkeep
m

)
. (14)

Here, we can represent the query UM as {rselect
1,M , . . . , rselect

NM ,M},
which is enriched by both the inner-query relation-
ships and relevant context information. For simplicity,
{rselect

1,M , . . . , rselect
NM ,M} is rewritten as {rselect

1 , . . . , rselect
NM
}.

D. Response Decoder

The response decoder aims to generate the response step-
by-step in an auto-regressive way. At the t th step, the response
decoder calculates

p(ŵt ) = Softmax
(
Wdechdec

t

)
(15)

where p(ŵt ) is the predicted vector of probabilities over all
words in a pre-defined vocabulary V . Wdec is a projection
matrix. hdec

t is the hidden state of the t th step in the decoder,
which is obtained by a GRU structure as{

hdec
0 = rselect

NM

hdec
t = GRU

(
hdec

t−1,
[
eŵt−1, ct

]) (16)

where eŵt−1 is the word embedding of ŵt−1. ct can be regarded
as a unified representation of conversation, which is obtained
by joint attentions, namely, a query and a context attentions
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct = Concat
[
cq

t ; cc
t

]
cq

t =
NM∑
n=1

ρ
q
t,nrselect

n

cc
t =

M−1∑
m=1

ρc
t,mzkeep

m

ρ
q
t,n = Softmax

(
gq

tanh

(
hdec

t−1, rselect
n

))
ρc

t,m = Softmax
(
gc

tanh

(
hdec

t−1, zkeep
m

))

(17)

where ρ
q
t,n and ρc

t,m denote the importances that the word
wn,M of query and the utterance Um of context hold to the
t th step of generated response, respectively. gq

tanh and gc
tanh are

the full-connected networks with tanh activation function.
We write KS-CQ to denote the model with the above

decoding strategy. To gain insight into the impact of context
and query on response generation, we also consider another
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strategy, that is, to obtain ct only from the query represen-
tation. We write KS-Q to denote this variant, where ct is
obtained by an attention mechanism over the context-enriched
query representation that is produced by the Select module,
i.e., {rselect

1 , . . . , rselect
NM
}. The computation process is formalized

as ⎧⎪⎨
⎪⎩

ct =
NM∑
n=1

ρt,nrselect
n

ρt,n = Softmax
(
gq

tanh

(
hdec

t−1, rselect
n

))
.

(18)

It is worth noting that both KS-CQ and KS-Q adopt the
Bi-Keep module.

E. Loss Function

Following previous response generation models [9]–[12],
[16], [17], we use the cross-entropy loss function as

L� = − 1

NM+1

NM+1∑
t=1

p(wt) log p(ŵt ) (19)

where p(wt ) is the one-hot vector over the vocabulary V ,
and p(ŵt ) is the predicted vector of the word probability
distribution. � denotes the trainable parameters of our model.

The training process of the KS-CQ model is outlined
in Algorithm 1. We first randomly initialize the parameter
set �, which mainly includes word embeddings, parameters
of neural structures in utterance encoder (denoted as Enc),
Keep module (denoted as Keep), Select module (denoted as
Select), and response decoder (denoted as Dec). Then, given
a conversation session {U1, . . . , UM} ∈ D (D is the dataset),
we use the utterance encoder and the Keep module to produce
the neighbor-aware context representation {zkeep

1 , . . . , zkeep
M−1}

from Step 4 to Step 11. Based on this, the Select module
further produces the context-enriched query representation
{rselect

1 , . . . , rselect
NM
} at Step 12. For the t-position of the response

UM+1, the decoder predicts the probability vector over all
words in vocabulary at Step 15, and the loss is obtained by
the cross-entropy loss function at Step 17. We average the loss
across the length of response UM+1 at Step 19, and eventually
use back propagation to update parameters in �.

IV. EXPERIMENTAL SETUP

We list the following research questions to guide our exper-
iments.

1) RQ1: Does KS-CQ outperform start-of-the-art base-
lines for response generation in terms of automatic
evaluation?

2) RQ2: How do query and context affect the perfor-
mance of response generation in KS-CQ?

3) RQ3: How do neighbor utterances (from different
directions) affect the Keep module, respectively?

4) RQ4: How does KS-CQ perform in terms of human
evaluation?

5) RQ5: What is the contribution of the proposed Keep
and Select modules? Do they really help boost the
performance of KS-CQ?

6) RQ6: What is impact of context length on the perfor-
mance of KS-CQ?

Algorithm 1 Training Process of the KS-CQ Model
1: randomly initialize the parameters �.
2: for epoch in range(Epochs) do
3: for {U1, . . . , UM } ∈ D do
4: for Um ∈ {U1, . . . , UM−1} do
5: if m = 1 then
6: zkeep

m = Keep(Enc(m), Enc(Um+1))
7: else
8: zkeep

m = Keep(Enc(Um−1), Enc(m), Enc(Um+1))
9: # detailed by Eq. 2-Eq. 10.

10: end if
11: end for
12: {rselect

1 , . . . , rselect
NM
} =

Select(Enc(UM ), {zkeep
1 , . . . , zkeep

M−1})
13: # detailed by Eq. 11-Eq. 14.
14: for t in range(NM+1) do
15: p(ŵt ) = Dec({zkeep

1 , . . . , zkeep
M−1}, {rselect

1 , . . . , rselect
NM
})

16: # detailed by Eq. 15-Eq. 17.
17: L(t) = −p(wt) log p(ŵt)
18: end for
19: L = 1

NM+1

∑NM+1
t=1 L(t)

20: use back propagation to update �.
21: end for
22: end for
23: return �.

7) RQ7: How does the length of the query utterance affect
KS-CQ?

A. Datasets and Pre-Processing

We conduct experiments on two multi-turn conversation
datasets.

1) DailyDialog1 [35]: is collected from human-to-human
talks in daily life, where utterances tend to be collo-
quial. It contains about 1.3k English conversation sessions
covering various open-domain topics such as culture
and education. We use the official training/validation/test
splits, i.e., 11 118/1000/1000.

2) KdConv2 [36]: is a Chinese conversation dataset that
contains 4.5k conversation sessions from three domains,
namely, film, music, and travel. Different from the Dai-
lyDialog dataset, each utterance in KdConv is related to
certain knowledge triples. We randomly divide the dataset
according to the ratio of 80%:10%:10% for training,
validation, and test, respectively.3

To enrich the training samples, we pre-process the datasets
as follows. The M-turn (M ≥ 2) conversation involves M
utterances, i.e., {U1, . . . , UM}. At the mth (2 ≤ m < M)
turn, we denote Um as the query, U<m = {U1, . . . , Um−1}
as context, and Um+1 as the ground-truth response. Similar
to [8], [10], [12], we adopt truncations on samples, where the

1Available at http://yanran.li/dailydialog
2Available at https://github.com/thu-coai/KdConv
3We perform a random split since there is no official data split in the KdConv

dataset.
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TABLE II

DESCRIPTIVE STATISTICS OF THE PRE-PROCESSED DATASETS; CONTEXT
LENGTH DENOTES THE NUMBER OF UTTERANCES CONTAINED IN THE

CONTEXT, WHILE UTTERANCE LENGTH DENOTES THE NUMBER

OF WORDS CONTAINED IN EACH UTTERANCE

maximum turn length of conversation is 15 and the maximum
utterance length is 50. We obtain 76 052/6740 samples for
training/testing in the DailyDialog dataset and 56 644/6294 in
the KdConv dataset. Table II shows the major statistics about
the pre-processed datasets.

B. Model Summary

Considering that our task is hierarchical context modeling
for response generation, we compare the performance of
KS-CQ against the following competitive baselines.

1) HRED [8]: The first hierarchical context model-
ing method for response generation, which uses
an utterance-level RNN to encode utterances and a
discourse-level RNN to sequentially integrate utterance
embeddings into context representations.

2) WSeq [9]: An improved method based on HRED, which
considers the similarity between context and query to
selectively integrate utterance embeddings for response
generation.

3) SD-HRED [10]: A hierarchical model that proposes static
and dynamic attention mechanisms to measure context-to-
context and context-to-response importance for response
generation.

4) HRAN [11]: A method that uses both word-level and
utterance-level attentions to produce context representa-
tion. It proposes that words in context may have different
degrees of importance to response generation.

5) ReCoSa [12]: A hybrid model of transformer and HRED,
where both the utterance-level and the discourse-level
encoders are implemented by the self-attention mecha-
nism. It also leverages masked response representation
to detect relevant context and gains the state-of-the-art
performance on the task of hierarchical context modeling.

All the baselines use the separate encoding way in the
utterance embedding, which neglect the inner relationships
within context. Moreover, except for WSeq, most baselines
ignore the distinct role of the query utterance in response
generation.

As for our models, besides KS-CQ, we also consider six
variants, whose component details are provided in Table III.

1) KS-Q is used to investigate the impact of query on
response generation. It only inputs the context-enriched
query representation into the response decoder.

2) PrKS-CQ and PoKS-CQ are proposed to analyze the
influences of prior and posterior neighbor utterances,
which, respectively, apply Pr-Keep and Po-Keep opera-
tions in the Keep module.

3) SA-S-CQ and S-CQ are used to investigate the contri-
bution of the Keep module. SA-S-CQ replaces the Keep
module with a self-attention transformer [25], while S-CQ
directly removes the Keep module and sums the initial
word-level embedding of each utterance as its context
representation.

4) K-CQ is used to examine the effectiveness of the Select
module. It removes the Select module from KS-CQ,
using the initial word-level embedding of query as query
representation.

C. Implementation Details

For all models, the word embeddings are randomly initial-
ized with a dimension of 512 and updated during training.
The GRU and BiGRU units have a two-layer structure with
512 hidden cells. The number of heads in the transformer
structure is 4. The parameters are optimized by the Adam
Optimizer with a learning rate of 0.0001 and gradient clipping.
We set the mini batch size as 64. We implement our models
and baselines on the basis of code released by Lan et al. [37],4

which uses the PyTorch framework and is trained on a
workstation with a TITAN RTX GPU.5

D. Evaluation Methodology

Following prior work on response generation [8], [10], [12],
we use both automatic and human evaluation metrics.

1) Automatic Evaluation: We adopt two types of standard
metrics.

1) Appropriateness-Based Metrics: A common way to eval-
uate the appropriateness of a generated response is to
compare it with the ground-truth response. BLEU [38]
has been found to be inconsistent with human evalu-
ation, hence we use embedding-based topic similarity
metrics [10], [17], [39].
Average is computed as

Average = 1− cos(er , er̂ ) (20)

er =
∑

w∈r ew

|r | (21)

where er and er̂ denote the sentence-level embeddings of
ground-truth response r and generated response r̂ , respec-
tively. ew is the embedding of word w in a response. It is
noticeable that er̂ is computed the same as er .
Extrema also uses the cosine distance like (20), while er

is obtained by vector extrema. Here, at dth dimension of
er , its value erd is the most extreme value among all word
vectors in the response r . The computation is formulated
as

erd =
{

maxw∈r ewd, if ewd > |minw′∈r ew′d |
minw∈rewd, otherwise

(22)

where ewd is the dth dimension of word embedding ew.
Greedy does not calculate sentence-level embeddings. For

4The code is available at https://github.com/gmftbyGMFTBY/MultiTurn
DialogZoo

5Our implementation is open-sourced at https://github.com/katherinelyx/KS-
CQ
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TABLE III

COMPONENT DETAILS OF KS-CQ AND ITS VARIANTS. THE �OF EACH COLUMN DENOTES THE CORRESPONDING COMPONENT IS EMPLOYED IN THE
MODEL. “QUERY-ONLY” MEANS THE DECODER ONLY TAKES THE QUERY REPRESENTATION AS INPUT, WHILE “CONTEXT+QUERY” DENOTES

THE INPUT OF THE DECODER IS THE CONCATENATION OF CONTEXT AND QUERY REPRESENTATIONS

each word w ∈ r , we greedily match it with a word ŵ ∈ r̂
according to the cosine distance of their corresponding
word embeddings, i.e., ew and eŵ. Then the greedy score
is computed as

Greedy = Greedy(r, r̂)+ Greedy(r̂ , r)

2
(23)

Greedy(r, r̂) =
∑

w∈r maxŵ∈r̂ (1− cos(ew, eŵ))

|r | (24)

Greedy(r̂ , r) =
∑

ŵ∈r̂ maxw∈r (1− cos(eŵ, ew))

|r̂ | . (25)

These embedding-based metrics can measure the appro-
priateness from the perspective of semantic relevance, not
just the word overlap.
In practice, for the DailyDialog dataset, we use the
publicly available word vectors pre-trained on the Google
News Corpus with the Word2Vec method. For the
KdConv dataset, we use the word embeddings6 released
by Li et al. [40], which are pre-trained by Word2Vec
with large-scale Sina Weibo Corpus. Words that are not
included in the above corpora will be initialized with zero
vectors.

2) Informativeness-Based Metrics: We use H(w), i.e., the
average trigram word entropy [17], [18], to measure the
informativeness of the generated response. For the i th
word wi, j in the j th generated response, H (wi, j) =
−p(wi, j |wi−2, j ;wi−1, j ) log p(wi, j |wi−2, j ;wi−1, j ), where
p(wi, j |wi−2, j ;wi−1, j ) is approximated by the frequency
of the trigram {wi−2, j ;wi−1, j ;wi, j } in the training corpus.
Thus

H(w) = 1

|�|
|�|∑
j=1

1

N j

N j∑
i=1

H
(
wi, j

)
(26)

where |�| is the total number of generated responses,
and N j denotes the number of words contained in the
j th generated response.

2) Human Evaluation: Following [22], [41], we randomly
select 300 samples from the DailyDialog test set. We conduct
human evaluation on the DailyDialog dataset, as it involves
daily conversations that are easy to understand and do not
require domain knowledge to make the judgment. For each test
sample, we generate responses using our models and baselines
based on the given conversational history (context and query).

6https://github.com/Embedding/Chinese-Word-Vectors

We invite four undergraduate students who are not involved
with this work as human annotators.

Given these predicted responses and their corresponding
conversational history, the annotators are asked to give a rating
based on the following two criteria [42]: appropriateness mea-
sures how appropriate the generated response is for the given
conversational history. It can be understood as semantically
relevant and logically reasonable; informativeness measures
how informative the generated response is. Generally, the more
meaningful words contained in a response, the more informa-
tive it is. This metric can distinguish engaging responses from
generic and dull ones, e.g., “Yeah,” “I’m not sure.”

For each metric, each annotator will give a score ranged
from 1 to 5 based on how the generated response performs on
it. Higher value denotes better performance. Then, for each
model, we average the scores provided by on annotator and
continue averaging across four annotators. The final averaged
value is regarded as the model’s evaluated result.

V. RESULTS AND DISCUSSION

A. Performance on Automatic Evaluation

To answer RQ1 to RQ3, we examine the quality of the
responses generated by our models and the baselines in terms
of Average, Extrema, Greedy, and H (w), respectively. We also
conduct statistical significance tests on the pairwise differences
of the best performer versus the best baseline. The results are
presented in Table IV.

Let us first concentrate on RQ1. As shown in Table IV,
KS-CQ outperforms the baselines in terms of all metrics on
both the datasets; the improvement in terms of Average on
the DailyDialog dataset is by a large margin. This confirms
the significant improvement of our proposal for generating
appropriate and informative responses for multi-turn conver-
sations. Among the baselines, HRED shows superiority on
appropriateness-based metrics in most cases and WSeq keeps
consistently advantage on informativeness-based metric. Com-
pared with our models, most baselines present inconsistent per-
formance on different metrics. For instance, in the DailyDialog
dataset, ReCoSa performs quite well on Greedy while gains
the lowest value on H (w). In the KdConv dataset, HRED is
the best baseline in terms of Average, while its performance
in terms of H (w) is non-ideal. It indicates the difficulty
of obtaining comprehensively good performance on response
generation. In contrast, our KS-CQ model enable achieve
balanced improvement on both response appropriateness and
informativeness.
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TABLE IV

MODEL PERFORMANCE ON AUTOMATIC EVALUATION. THE BEST
PERFORMER AND THE BEST BASELINE OF EACH COLUMN ARE

BOLDFACED AND UNDERLINED, RESPECTIVELY. STATISTICAL

SIGNIFICANCE OF PAIRWISE DIFFERENCES OF THE

BEST PERFORMER VERSUS THE BEST BASELINE IS
DETERMINED BY A t -TEST (� FOR α = 0.05)

Besides, for all models, we see that the performance in terms
of all metrics on the DailyDialog dataset is lower than that on
the KdConv dataset. This may be attributed to the fact that
the DailyDialog dataset is collected from human daily talks
and contains many colloquial expressions. Most conversations
in the KdConv dataset can be grounded to certain knowledge
graphs, and thus utterances are usually more informative and
more recognizable than those in the DailyDialog dataset.
The larger improvements achieved by KS-CQ over the best
baselines on the DailyDialog dataset demonstrate the ability of
KS-CQ to model semantically sparse conversations. However,
we can also note that the performance gains of our model on
the KdConv dataset are mostly not significant. This indicates
that our model still has improvement room on dealing with
such knowledge-driven conversations.

Next, we move to RQ2. In Table IV, compared with KS-CQ,
the variant model KS-Q that only uses the context-enriched
query representation to generate a response displays perfor-
mance drop in terms of all metrics on both the datasets. This
demonstrates the importance of context to response generation
in KS-CQ. Interestingly, even without inputting context to
response decoder, KS-Q can beat some baselines on certain
metrics, such as it outperforms all baselines in terms of
Average and Extrema on the DailyDialog dataset. Moreover,
among the baselines, we can see that HRED and WSeq,
emphasizing the effect of the query on response generation,
obtain relatively good performance. This confirms the impor-
tance of the query, and we conclude from the empirical test
that: 1) context and query are both important to multi-turn
response generation and 2) the query, i.e., the latest utterance,
usually plays a dominant role in response generation and
can help filter out noises in the context. The outstanding
performance of KS-Q can be attributed to the Select module.
It uses the context-enriched query representation to generate a

TABLE V

MODEL PERFORMANCE IN TERMS OF HUMAN EVALUATION ON THE
DAILYDIALOG DATASET. THE VALUE IN BRACKETS DENOTES THE

STANDARD DEVIATION OF THE AVERAGED RESULTS FROM

DIFFERENT ANNOTATORS. THE BEST PERFORMER AND THE

BEST BASELINE OF EACH COLUMN ARE BOLDFACED
AND UNDERLINED, RESPECTIVELY. STATISTICAL

SIGNIFICANCE OF PAIRWISE DIFFERENCES OF

KS-CQ VERSUS THE BEST BASELINE IS
DETERMINED BY A t -TEST (� FOR α = 0.05)

response, which can absorb relevant contextual semantics even
without directly taking the context as input.

Let us turn to RQ3. First, as shown in Table IV, in most
cases KS-CQ achieves better performance than PrKS-CQ or
PoKS-CQ, which only introduces prior or posterior neighbor
utterances. Moreover, on the DailyDialog dataset, PrKS-CQ
and PoKS-CQ beat the baselines on most metrics (except
Greedy). This confirms the intuition underlying the Keep
module that utterances in context are interdependent and
their representations can be enhanced by neighboring utter-
ances from both prior and posterior directions. Furthermore,
PrKS-CQ consistently outperforms PoKS-CQ and even beats
KS-CQ in terms of H (w) on the DailyDialog dataset. We
interpret this as saying that prior neighboring utterances may
matter more than posterior ones, since the generation of a
conversation is a sequential progression where prior utterances
usually provide the background for posterior ones.

B. Performance on Human Evaluation

To answer RQ4, we conduct a human evaluation on the
DailyDialog dataset in terms of appropriateness and infor-
mativeness. Statistical significance tests on the pairwise dif-
ferences of the best performer versus the best baseline are
presented. Besides, we also present the standard deviations of
the averaged results from different annotators. The results of
the human evaluation are listed in Table V.

As shown in Table V, KS-CQ achieves the best performance
in terms of both appropriateness and informativeness, which
confirms its effectiveness on response generation from a
subjective view. Especially, compared with the best baselines,
i.e., SD-HRED and HRED, KS-CQ gains lower standard
deviations on both the metrics. This indicates that different
annotators present relatively high consistency to the good
performance of our model.

As to baselines, we can see that HRAN and ReCoSa
perform non-ideally in human evaluation. A closer look at the
samples generated by ReCoSa reveals that it fails to produce
natural responses while it usually does provide one or several
relevant keywords, which may explain its good performance
on the (automatic) Greedy metric and its poor performance in
human evaluation. Besides, on a scale of 5, no model achieves
a high absolute score in human evaluation. It actually reflects
the gap between current response generation models and what
people expect.
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TABLE VI

PERFORMANCE OF KS-CQ, S-CQ, SA-S-CQ, AND K-CQ ON
AUTOMATIC EVALUATION. THE VALUE IN BRACKETS DENOTES

THE PERFORMANCE DROP RATIO COMPARED WITH THE PROPOSED

KS-CQ MODEL. “KEEP→SA” DENOTES REPLACING THE

KEEP MODULE OF KS-CQ WITH A SELF-ATTENTION
TRANSFORMER. STATISTICAL SIGNIFICANCE OF PAIR-

WISE DIFFERENCES OF THE BEST PERFORMER

VERSUS THE SECOND BEST PERFORMER IS
DETERMINED BY A t -TEST (� FOR α = 0.05)

C. Contributions of the Keep and Select Modules

To answer RQ5, we use three variant models, i.e., SA-S-CQ,
S-CQ, and K-CQ, comparing them with the KS-CQ model
in terms of automatic evaluation. The component details of
variant models are shown in Table III. The experimental results
are shown in Table VI.

As shown in Table VI, compared with KS-CQ, the per-
formance of SA-S-CQ and S-CQ in terms of most metrics
declines on both the datasets, validating the effectiveness
of the Keep module. Then, we can also find performance
drops of K-CQ. This indicates the contribution of the Select
module. Furthermore, by comparing S-CQ and K-CQ on the
DailyDialog dataset, we see that the performance drop of
K-CQ is larger than that of S-CQ in terms of most metrics;
it turns out to be opposite on the KdConv dataset. This
may be attributed to the fact that the query utterances in the
DailyDialog dataset are relatively colloquial and informal, due
to frequent omission and co-references. Such condition empha-
sizes the function of the Select module, as it can selectively
absorb relevant semantics from context to enrich itself. While
in the KdConv dataset, although utterances usually contain
informative entities, the context of conversations tends to be
long, which highlights the importance of the Keep module
as it provides a memorization ability to capture long-term
dependencies.

When we combine the results of Tables VI and IV, we see
that S-CQ and K-CQ beat the best baselines on several metrics;
for example, both S-CQ and K-CQ achieve better performance
in terms of Average and Extrema on DailyDialog compared
with the best baselines, i.e., HRED and WSeq, respectively. In
summary, both the Keep and the Select modules play key roles
in KS-CQ, while they can also provide strong performance on
response generation solely by themselves. A possible direction
is to incorporate these two modules solely or together into

other context modeling frameworks, which may bring more
improvements.

D. Analysis of the Impact of Context Length

To answer RQ6, we analyze the performance of KS-CQ and
baselines on the test samples with varying context lengths,
i.e., the number of utterances contained in context. Due to
space limitations, we only present our results on the DailyDi-
alog dataset. We split these 6740 test samples into three groups
according to their corresponding context length, and finally get
63.32% featuring the length ranged in [1,5], 28.95% in (5,10],
and 7.73% larger than 10 (denoted as >10). Then we evaluate
the model performance in terms of various metrics. The results
are plotted in Fig. 2.

As shown in Fig. 2, KS-CQ consistently obtains the best
performance in terms of Average and Extrema with vary-
ing context length, which demonstrates that it can generate
appropriate responses for both short and long conversations.
Although we find that for cases with context lengths larger
than 5, KS-CQ loses to ReCoSa in terms of Greedy and to
WSeq in terms of H (w), these two baselines gain polarized
performance. For example, ReCoSa performs well on Greedy
while bad on H (w), and WSeq is just the opposite. It shows
that KS-CQ can keep a balanced performance on metrics of
different perspectives, and such ability is also robust to the
variations in context length.

E. Analysis of the Impact on Query Length

To answer RQ7, we conduct an analysis of the performance
of KS-CQ and baselines on the test samples with varying
query lengths, i.e., the number of words contained in the query
utterance. Due to space limitations, we only present our results
on the DailyDialog dataset. We split these 6740 test samples
into three groups based on their query length, where 13.71% of
the samples have a query length in [1,5], 60.28% in (5,15], and
26.01% bigger than 15 (denoted as >15). Generally, a bigger
length indicates more information in the query. We evaluate
the model performance in terms of various metrics. The results
are plotted in Fig. 3.

As shown in Fig. 3, compared with the baselines, KS-CQ
achieves consistently good performance in terms of all metrics
with varying query lengths. With short queries that contain no
more than five words (i.e., the [1,5] group), the performance
gap between KS-CQ and the baselines is larger than that with
long queries. This demonstrates that KS-CQ can make full
use of the limited semantics carried by short queries so as
to generate appropriate and informative responses. This may
be attributed to the Select module, which helps enrich the
query representation by selectively absorbing information from
relevant contexts. However, as to baselines, they either neglect
the distinct role of query or fail to deal with short query.

As the query length decreases, the performance of all
models on all metrics presents a down-going trend. Thus,
we hypothesize that short queries are usually more difficult for
the response generation task, since in this condition only lim-
ited information is available to track the ongoing conversation
focus. Moreover, short queries are often generic utterances,
e.g., Yeah, OK, and modal particles like Umh.
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Fig. 2. Model performance under varying context lengths (the number of utterances in the context), where , and denote results with the context
length in [1,5], (5,10], and >10, respectively.

Fig. 3. Model performance under varying query lengths (the number of words in the query utterance), where , and denote results with the query
length in [1,5], (5,15], and >15, respectively.

To gain insights into the model performance on such cases,
we select samples that feature short queries with no more than
five words from the DailyDialog test set. Then we conduct an
analysis of the performance on these samples with varying
context lengths, similar to Section V-D. We sample 942 such
cases, where 66.23% features a context length in [1,5], 25.76%
in (5,10], and 8.01% in >10. The results of the response
generation task on this sample of short queries are presented
in Fig. 4.

First, by comparing the results of Fig. 4 with those of
Fig. 2, we see that all models display a performance drop
for most context lengths in terms of all metrics. This indi-
cates that it is growing harder for context understanding and
response generation, when the query is short or lack efficient
information. Furthermore, as the context length increases,
KS-CQ shows an increase for the informativeness-based met-
ric, i.e., H (w), and a decrease on the majority appropriateness-
based metrics, i.e., Average and Greedy. This may be attributed
to the fact that, on one hand, more context can provide
more semantic information to characterize the conversation,
which, in turn, can help produce specific and diverse words
in responses. On the other hand, a bigger context length
indicates more frequent topic transitions in the conversation,
which makes it harder to predict the topic currently being
discussed for response generation. Short queries are usually
too uninformative to help detect relevant context and filter out
noise. KS-CQ consistently outperforms the baselines on the
selected samples with short queries. This indicates that given
a sufficiently long context, KS-CQ still can efficiently extract
useful context and track the ongoing conversation focus from
samples with a short query so as to generate appropriate and
informative responses.

F. Case Study

To ground our understanding of the models discussed,
we perform a case study on both the test sets. Table VII
presents several examples of generated responses.

In Example 1, the context is short, and the query is ambigu-
ous as a typical case of one-to-many, which means there may
be multiple proper responses. Then, HRED, SD-HRED, and
most of our models produce appropriate responses, showing
better comprehension of the conversation than other mod-
els. Compared with HRED and SD-HRED, KS-CQ, S-CQ,
SA-S-CQ, and KS-Q, which contain the keyword “hamburger”
or “coffee,” seem to be more logically reasonable. However,
compared with KS-CQ and SA-S-CQ, KS-Q and S-CQ con-
currently produce improper words like “champagne.” This
indicates that on one hand it will hurt the coherence of a
generated response without taking its context into consider-
ation, as context provides the conversation background; on
the other hand, no matter the Keep module or a self-attention
transformer can boost the response consistence, they can
capture the conversation background through modeling the
semantical relationships within context.

In Example 2, the context is long and the query involves
a question. Of the baselines, HRED, WSeq, and HRAN
provide obviously irrelevant responses, indicating a failure
to understand the context and capture the topic being dis-
cussed. SD-HRED and ReCoSa get the point of “music,”
while they are weak on producing informative responses.
Compared with the baselines, our models except for S-CQ
show better coherence to the reference response with con-
taining the key phrase “classical music.” It may be attributed
to that the Keep module performs a memorization on con-
text through the neighbor-aware recoding process, which can
alleviate the long-term dependency issue existing in long
context.

In Example 3, based on the context we can see that the
conversation involves “ordering a dessert,” and the query
focuses on “some pie.” In such case, WSeq and HRAN
give irrelevant responses, and HRED and SD-HRED are not
consistent with context or the reference response. ReCoSa
produces a relatively appropriate but ambiguous response.
It may be attributed to that the baselines fail to efficiently
use the information contained in query. However, most of our



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Model performance on difficult samples with short queries ([1,5], i.e., containing no more than five words) under various context lengths,
where , and denote results with context length ranged in [1,5], (5,10], and >10, respectively.

TABLE VII

EXAMPLES OF CONTEXT, QUERY, AND THE CORRESPONDING RESPONSES GENERATED BY VARIOUS MODELS. REFERENCE DENOTES THE

GROUND-TRUTH RESPONSE IN THE DATASETS. “→” SEPARATES DIFFERENT CONVERSATION TURNS

models can provide relevant responses, especially the KS-CQ
model accurately hits the keyword “pie.” We attribute such

performance to the Select module of our model which helps
track the ongoing topics by the query utterance.
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Example 4 is a representative case for the KdConv dataset,
where we find that the conversation is driven by domain
knowledge and its local topics transit across different turns,
especially the reference response presents a sharp transition
from the query. The responses generated by HRED, SD-
HRED, HRAN, and ReCoSa seem reasonable and natural
to the query, but they show repetition or some degree of
conflict to the context. WSeq produces a relatively appropriate
response. Of our models, KS-CQ, K-CQ, and PoKS-CQ also
provide relevant responses, while KS-CQ also gives a good
echo to the context “Yes, he is a British actor” by the
expression “he is an excellent actor.” Such phenomena may
be ascribed to the Keep module that helps memorize the long
context. However, we can note that responses produced by all
models fail to perform consistence with the reference response.
It may be attributed to that there is a sharp topic transition
from the query to the reference response, which increases the
difficulty of capturing the ongoing topic.

VI. CONCLUSION

In this article, we have improved the multi-turn context
modeling in response generation by addressing two crucial
factors, namely, the explicit responds-to relationship within
context and the distinctive importance of the query utter-
ance. We have proposed a neural response generation model,
KS-CQ, which consists of two pivotal modules, i.e., the Keep
and the Select modules. The Keep module recodes each
utterance in the context by incorporating relevant semantics
from its prior and posterior neighbor utterances, leading to
a neighbor-aware context representation. The Select module
focuses on making the query selectively absorb information
from its context, leading to a context-enriched query represen-
tation. Extensive experiments conducted on two benchmark
datasets confirm the effectiveness of the proposed KS-CQ
model; it consistently outperforms competitive baselines in
terms of automatic and human evaluations.

The proposed Keep and Select modules are possible to be
incorporated solely or together into other multi-turn conver-
sation models, which can provide strong ability of context
modeling and further boost the response quality. However, our
model also has limitation on modeling extreme long conver-
sations, especially those featuring frequent topic transitions.
As to future work, we are interested in introducing topic
maintenance in the context modeling procedure, which aims to
capture the topic flows underlying multi-turn interactions and
implement reasonable topic transition in response generation.
Our work can also be extended to multi-party conversations
by introducing an additional detector so as to identify multi-
threaded responds-to relationships.
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