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ABSTRACT
Beyond effectiveness, the robustness of an information retrieval
(IR) system is increasingly attracting attention. When deployed, a
critical technology such as IR should not only deliver strong perfor-
mance on average but also have the ability to handle a variety of
exceptional situations. In recent years, research into the robustness
of IR has seen significant growth, with numerous researchers offer-
ing extensive analyses and proposing myriad strategies to address
robustness challenges. In this tutorial, we first provide background
information covering the basics and a taxonomy of robustness in IR.
Then, we examine adversarial robustness and out-of-distribution
(OOD) robustness within IR-specific contexts, extensively review-
ing recent progress in methods to enhance robustness. The tutorial
concludes with a discussion on the robustness of IR in the context
of large language models (LLMs), highlighting ongoing challenges
and promising directions for future research. This tutorial aims to
generate broader attention to robustness issues in IR, facilitate an
understanding of the relevant literature, and lower the barrier to
entry for interested researchers and practitioners.
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1 MOTIVATION
Information retrieval (IR) systems are an important way for people
to access information. In recent years, with the development of
deep learning, deep neural networks have begun to be applied in IR
systems [8, 18, 24], achieving remarkable effectiveness. However,
beyond their effectiveness, these neural IR models also inherit the
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inherent robustness flaws of neural networks [38, 39, 41]. This poses
a hindrance to their widespread application in the real world.

In the past few years, the issue of the robustness of IR has re-
ceived wide attention, e.g., Wu et al. [42] analyzed the robustness
of neural ranking models (NRMs), and a perspective paper on com-
petitive search [21] discussed adversarial environments in search
engines. Since then, there has been a lot of work that focuses on
different robustness aspects in IR, such as adversarial robustness
[23, 25, 27, 41], out-of-distribution (OOD) robustness [12, 38], per-
formance variance [42], robustness under long-tailed data [16], and
on the corresponding improvement options. Today, the research
community can effectively scrutinize IR models leading to more
robust and reliable IR systems.

To ensure the quality of the tutorial, we will focus on the two
most widely studied types of robustness issues, namely adversarial
robustness and OOD robustness. There are many analyses and sug-
gestions for improvement around these two robustness issues, but
it has not yet been systematically organized. Through this tutorial,
we aim to summarize and review the progress of robust IR to attract
attention and promote widespread development in this field.

2 OBJECTIVES
1. Introduction. We start by reminding our audience of the re-
quired background and introducing the motivation and scope of
the robustness issue in IR in our tutorial.
2. Preliminaries. In IR, robustness signifies an IR system’s consis-
tent performance and resilience against diverse unexpected situ-
ations. There is a large volume of work that covers many aspects
of IR robustness, e.g., (i) Adversarial robustness [25, 41], which fo-
cuses on the ability of the IR model to defend against malicious
adversarial attacks aimed at manipulating rankings; (ii) OOD ro-
bustness [38, 42], which measures the performance of an IR model
on unseen queries and documents from different distributions of
the training dataset; (iii) Performance variance [42], which empha-
sizes the worst-case performance across different individual queries
under the independent and identically distributed (IID) data; and
(iv) Robustness under long-tailed data [16], which refers to the ca-
pacity to effectively handle and retrieve relevant information from
less common, infrequently occurring queries or documents.

In this tutorial, we focus on adversarial robustness and OOD
robustness, which have received the most attention. Interest in
adversarial robustness stems largely from the widespread practice
of search engine optimization (SEO) [4]. Concerns about OOD ro-
bustness are primarily due to the need for adaptation across diverse
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and complex real-world scenarios. Moreover, as large language
models (LLMs) are being integrated into IR, new robustness chal-
lenges emerge; LLMs also offer novel opportunities for enhancing
the robustness of IR systems.

Building on these preliminaries, we will cover adversarial ro-
bustness, OOD robustness, and robust IR in the age of LLMs.
3. Adversarial robustness. The web is a competitive search envi-
ronment, which can lead to the emergence of SEO, in turn causing
a decline in the content quality of search engines [4, 21]. With the
gradual rise of SEO, traditional web spamming [19] started to be-
come an effective way to attack IR systems. However, this approach
based on keyword stacking is easily detected by statistical-based
spamming detection methods [48].

Adversarial attacks. In order to exploit the vulnerability of neu-
ral IR models, many research works have simulated real black-hat
SEO scenarios and proposed a lot of adversarial attack methods.
(i) First, we introduce the differences between attacks in IR and
CV/NLP, including task scenarios and attack targets; (ii) Then, we
present adversarial retrieval attacks [1, 22, 25, 29, 47] against the
first-stage retrieval models, including the task definition and eval-
uation. Current retrieval attack methods mainly include corpus
poison attacks [22, 25, 47], backdoor attacks [29], and encoding
attacks [1]; and (iii) Finally, we introduce adversarial ranking at-
tacks [11, 23, 26, 27, 36, 39, 41] against NRMs with task definitions
and evaluation setups. These include word substitution attacks
[26, 39, 41], trigger attacks [23, 26, 36], and prompt attacks [11, 33].

Adversarial defense. To cope with adversarial attacks, research
has proposed a series of adversarial defense methods to enhance
the robustness of IR models. (i) We introduce the objective and eval-
uation of IR defense tasks. Based on these defense principles, adver-
sarial defense methods in IR can be classified as attack detection,
empirical defense, and certified robustness; (ii) We turn to attack
detection, which includes perplexity-based, linguistic-based, and
learning-based detection [10]; (iii) We present empirical defenses,
which encompass data augmentation [9], traditional adversarial
training [30, 32], and theory-guided adversarial training [28]; and
(iv) We introduce the certified robustness method in IR [40].
4. Out-of-distribution robustness. In real-world scenarios, search
engines are in an ever-changing data environment, and new data
are often not IID with the training data. Therefore, the ability to
generalize to OOD data or not is the basis for the evaluation of IR
systems in terms of OOD robustness [42].

OOD generalizability on unseen documents. In IR, the OOD ro-
bustness scenarios that have been examined can be categorized
into unseen documents and unseen queries. The unseen documents
scenario may be caused by adaptation to new corpus [38] or by
incrementation of original corpus [2]. (i) Adaptation to new corpus
usually refers to the phenomenon that the corpus on which an
IR model is trained is not in the same domain as the corpus on
which it is tested. Due to the overhead of retraining, the perfor-
mance of the model on the new domain needs to be guaranteed
under zero/few-shot scenario, which is usually solved by domain
adaptation [3, 13, 43, 45]; and (ii) Incrementation of original corpus
refers to the real-world scenario where new documents are con-
tinuously added to the corpus with potential distribution drift. In
this situation, the IR model should effectively adapt to the evolving

distribution with the unlabeled new-coming data, which is usually
solved by continual learning [2, 6].

OOD generalizability on unseen queries. Unseen queries concern
query variations [49] and unseen query types [42]. (i) The query
variations are usually different expressions of the same information
need [34, 49] which may impact the effectiveness of IR models.
Many noise-resistant approaches [12, 34, 35, 49, 50] have been
proposed for neural IR models; and (ii) Unseen query types refer
to the unfamiliar query type with new query intents [42]. Domain
regularization [13] is effective for dealing with new query types.
5. Robust IR in the Age of LLMs. (i) We first discuss the potential
robustness challenges with applications of LLMs in IR, such as
retrieval augmentation [15, 20, 31], and LLMs for ranking [37, 46];
and (ii) Then, we will discuss how LLMs can be used to enhance
the robustness of IR systems. These explorations will inspire many
novel attempts in this area.
6. Conclusions and future directions. We conclude our tutorial
by discussing several important questions and future directions,
including (i) There is a diverse focus on the robustness of IR models
from multiple perspectives. Establishing a unified benchmark of
analysis to systematically analyze the robustness of all aspects of
existing models. (ii) For adversarial robustness, existing work on
adversarial attacks focuses on specific stages (first-stage retrieval or
re-ranking) [25, 41] in IR systems. Customizing adversarial exam-
ples to make them effective for all stages is challenging. Therefore,
one potential future direction is to explore howwe can design a gen-
eral unified attack method that can cater to every IR stage. (iii) For
OOD robustness, the main limitation of existing work is the diffi-
culty of seeing enough diverse domain data in advance, leading to
insufficient transfer capabilities of the model. Using the generation
capabilities of LLMs to synthesize corpora for adaptation domains
seems to be a promising direction.

3 RELEVANCE TO THE IR COMMUNITY
In recent years, a considerable number of tutorials focusing on
the topic of robustness have emerged across disciplines within
computer science. In KDD’21 [14], CVPR’21 [7], and AAAI’22,
there were tutorials on robustness for AI and computer vision.
In EMNLP’21 [5] and EMNLP’23 [44], there were tutorials on ro-
bustness and security challenges in NLP. The focus of these tutorials
was not on search tasks and models.

Search and ranking is a core theme at SIGIR. Evaluation, an-
other core theme at SIGIR, encompasses multiple critical criteria
beyond effectiveness for evaluating an IR system. Robust informa-
tion retrieval aligns well with these core themes. Recently, robust
information retrieval has gained considerable attention as more
and more work is now devoted to analyzing and improving the
robustness of information retrieval systems [17, 23, 38, 41, 42]. Our
tutorial will describe recent advances in robust information retrieval
and shed light on future research directions. It would benefit the IR
community and help to encourage further research into robust IR.

4 FORMAT AND DETAILED SCHEDULE
A detailed schedule for our proposed half-day tutorial (three hours
plus breaks), which is aimed at delivering a high-quality presenta-
tion within the selected time frame, is as follows:
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1. Introduction (15 minutes)
• Introduction to robust IR: motivation and scope
• Tutorial overview

2. Preliminaries (20 minutes)
• Definition of robustness in IR
• Taxonomy of robustness in IR

3. Adversarial Robustness (50 minutes)
• Traditional Web spamming
• Adversarial attacks

- Comparison: IR attacks vs. CV/NLP attacks
- Retrieval attacks: definition, evaluation, method, etc.
- Ranking attacks: definition, evaluation, method, etc.

• Adversarial defense
- IR defense tasks: objective & evaluation
- Empirical defense: adversarial training, detection, etc.
- Theoretical defense: certified defense, etc.

4. Out-of-distribution Robustness (45 minutes)
• OOD generalizability in IR
• OOD generalizability on unforeseen corpus

- Definition & evaluation
- Adaptation to new corpus
- Incrementation of original corpus

• OOD generalizability on unforeseen queries
- Definition & evaluation
- Query variation
- Unseen query type

5. Robust IR in the Age of LLMs (20 minutes)
- New challenges to IR robustness from LLMs
- New solutions for IR robustness via LLMs

6. Challenges and Future Directions (20 minutes)
7. QA Session (10 minutes)

5 TUTORIAL MATERIALS
We plan to make all teaching materials available online for atten-
dees, including: (i) Slides: The slides will be made publicly available.
(ii) Annotated bibliography: This compilation will contain refer-
ences listing all works discussed in the tutorial, serving as a valuable
resource for further study. (iii) Reading list: We will provide a read-
ing list with a compendium of existing work, open-source code
libraries, and datasets relevant to the work discussed in the tutorial.
We intend to ensure that all instructional materials are available
online.1 Moreover, we grant permission to include slides and video
recordings in the ACM anthology.
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