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Abstract. Generative information retrieval methods retrieve documents
by directly generating their identifiers. Much effort has been devoted to
developing effective generative information retrieval (IR) models. Less
attention has been paid to the robustness of these models. It is criti-
cal to assess the out-of-distribution (OOD) generalization of generative
IR models, i.e., how would such models generalize to new distributions?
To answer this question, we focus on OOD scenarios from four perspec-
tives in retrieval problems: (i) query variations; (ii) unseen query types;
(iii) unseen tasks; and (iv) corpus expansion. Based on this taxonomy, we
conduct empirical studies to analyze the OOD robustness of representa-
tive generative IR models against dense retrieval models. Our empirical
results indicate that the OOD robustness of generative IR models is in
need of improvement. By inspecting the OOD robustness of generative IR
models we aim to contribute to the development of more reliable IR mod-
els. The code is available at https://github.com/Davion-Liu/GR_OOD.
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1 Introduction

With the development of representation learning techniques [8], considerable
progress has been made in dense retrieval based on the “index-retrieve” pipeline
[5, 13, 34]. Information retrieval (IR) approaches based on the index-retrieve
pipeline may suffer from a large memory footprint and difficulties in end-to-end
optimization. Recently, a generative information retrieval paradigm has been
proposed [35]. In this paradigm, different components for indexing and retrieval
are fully parameterized with a single consolidated model. Specifically, a sequence-
to-sequence (seq2seq) learning framework is employed to directly predict the
identifiers of relevant documents (docids) with respect to a given query.
⋆ Corresponding author
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Current research on generative IR is often conducted in a homogeneous and
narrow setting. That is, work on generative IR often assumes that the train-
ing and test examples are independent and identically distributed (IID). Under
the IID assumption, the generative IR models that have been proposed so far
have achieved promising performance on large-scale document retrieval tasks
[3, 45, 48]. However, in real-world scenarios, the IID assumption may not always
be satisfied: the test distribution is usually unknown and possibly different from
the training distribution. Put differently, high IID accuracy does not necessarily
translate into out-of-distribution (OOD) robustness for document retrieval. Be-
sides, pre-trained transformers, which usually serve as the backbone of existing
generative IR models, may rely on spurious cues and annotation artifacts are
less likely to include OOD examples [16]. So far, little is known about the OOD
robustness of generative IR models.

In this work, we systematically study OOD robustness across various families
of retrieval models, including generative, dense, and sparse retrieval models. In
particular, we focus on comparing the robustness of generative IR models with
that of the other models. We decompose OOD robustness into a model’s general-
ization ability to (i) query variations, (ii) unseen query types, (iii) unseen tasks,
and (iv) corpus expansion Each generalization ability perspective corresponds
to a different OOD scenario. Based on this taxonomy, we design corresponding
experiments and conduct empirical studies to analyze the robustness of several
representative generative IR models against dense retrieval models.

For our experiments, we employ the comprehensive knowledge-intensive lan-
guage tasks (KILT) benchmark [39], which comprises eleven datasets across five
KILT tasks. With its distinct tasks and multiple corpora for several of its tasks,
KILT is ideal for an analysis of OOD robustness. In the future we will also try
to explore more general datasets and models for experimentation. In this work,
following [3, 7], we consider the retrieval task of KILT, in which the model should
retrieve a set of Wikipedia pages as evidence for the final prediction with respect
to the input query.

Our experimental results reveal that, overall, generative IR models perform
poorly in terms of OOD robustness. Different generative IR models display dif-
ferent types of generalizability performance in different OOD scenarios. As a
result, there is considerable scope for future robustness improvements. With our
findings, we draw attention to an understudied research area.

2 Related Work

2.1 Sparse and dense retrieval models

Sparse retrieval models build representations of queries and documents based
on the bag-of-words (BoW) assumption [55], where each text is treated as a
multiset of its words, ignoring grammar and word order [13, 41]. During the
past decades, we have witnessed sparse retrieval models going through quick
algorithmic shifts from early heuristic models [43], vector space models [43],
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to probabilistic models [40, 41]. BM25 [42], as a representative of probabilistic
models, is widely used for its efficiency while guaranteeing retrieval performance.

With the development of deep learning, many researchers have turned to
dense retrieval models [19, 20, 56], which have been proven to be effective in cap-
turing latent semantics and extracting effective features. Dense retrieval models
typically adopt a bi-encoder architecture to encode queries and documents into
low-dimension embeddings and use embedding similarities as estimated relevance
scores for effective retrieval [13]. Karpukhin et al. [19] were pioneers in discover-
ing that fine-tuning BERT to learn effective dense representations, called DPR,
outperforms traditional retrieval methods like BM25. Subsequently, researchers
began exploring various fine-tuning techniques to enhance dense retrieval models,
such as mining hard negatives [51, 54], late interaction [20]. Recently, researchers
have also investigated pre-training tasks for dense retrieval [12, 33]. Although
these methods greatly improve the performance of dense retrieval models, they
follow the same bi-encoder architecture represented by the DPR and usually
come with considerable memory demands and computational overheads.

2.2 Generative IR models

Generative IR has recently garnered increasing interest [1, 2, 35, 48]. Genera-
tive IR retrieves documents by directly generating their identifiers based on the
given query. It offers an end-to-end solution for document retrieval tasks [4, 35]
and allows for better exploitation of the capabilities of large generative language
models. For example, De Cao et al. [7] proposed an autoregressive entity retrieval
model and Tay et al. [45] introduced a differentiable search index (DSI) and rep-
resent documents as atomic ids, naive string, or semantic strings. Chen et al.
[3] proposed a pre-trained generative IR model called CorpusBrain to encode all
information of the corpus within its parameters in a general way. Rather than
using BART [23] directly as a generative IR model, CorpusBrain can capture rel-
evance signals within documents, leading to promising retrieval performance in a
wide range of knowledge-intensive language tasks. However, so far the robustness
of generative IR models has been overlooked by the community.

2.3 Out-of-distribution in IR

OOD robustness refers to a model’s ability to maintain performance when en-
countering data that differs from the distribution of the training data [15]. In
real-world applications, retrieval models often face unseen data, highlighting the
challenges of out-of-distribution robustness [25, 26, 31, 46, 49]. Current studies
on OOD robustness in IR have their own limitations. For example, Wu et al.
[49] only explored the OOD generalization performance of neural ranking mod-
els. Some work has been devoted to alleviating the poor performance of dense
retrieval in the scenarios of query variants [6, 38, 44, 57] or zero/few-shot of cor-
pus [24, 46, 53]. In this work, we focus on the OOD generalizability of generative
IR models and compare them analytically with representative retrieval models
from other families.
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3 IID Settings for the Retrieval Problem

For a better understanding of the OOD setting for the retrieval problem, we first
briefly introduce the IID setting for the retrieval problem.

Formally, given a dataset D = {(qi, D, Yi)}ni=1, where qi denotes a query,
D = {d1, d2, . . . , dN} represents the corpus, and Y = {r1, r2, . . . , rl} indicates
the corresponding relevance label of each document in D. A total order exists
among the relevance labels such that rl ≻ rl−1 ≻ · · · ≻ r1, where ≻ denotes
the order relation. Each query qi is associated with a list of corresponding labels
yi = {yi1, yi2, . . . , yi,N}, where N denotes the corpus size.

Traditionally, a retrieval model could be a term-based retrieval mode [40, 41]
or a dense retrieval model [19, 33]. Recently, generative IR models have emerged
as another paradigm [3, 7, 45]. Although the paradigm is different, these retrieval
models have the same formal definition regarding the retrieval task. Without loss
of generality, we use f to denote the retrieval model. We consider the retrieval
model f learned on the dataset D, which is drawn from the training distribution
G. For retrieval we employ the learned model f to generate a score for any
query-document pair (q, d), reflecting the relevance degree of d given q. This
set-up allows us to produce a permutation π(qt, D, f) according to predicted
scores. Given an effectiveness evaluation metric M , retrieval models are typically
evaluated by the average performance over the test queries under the IID setting,
i.e.,

E(qt,D,yt)∼GM(π(qt, D, f),yt), (1)

where qt, D and yt denote the query, the corpus and the label in the test set,
respectively. Specifically, the test samples are supposed to be drawn from the
same distribution as G.

4 OOD Settings for the Retrieval Problem

In this work, we define the OOD robustness of retrieval models in four ways,
i.e., in terms of query variations, unseen query types, unseen tasks, and corpus
expansion. For query variations, the models are trained on the original dataset
D and tested on the same dataset with query variations. For unseen query types
and unseen tasks, the models are trained on an original dataset D and tested on
a new dataset D′ with the same task as D and on D̃ with a task that is different
from D, respectively. For corpus expansion, the new dataset Dn that the models
are tested on, is an expansion of the original dataset D.

4.1 Query variations

The query variations refer to different expressions of the same information need.
Therefore, a query and its variations usually correspond to the same related
document. This query-level OOD aims to analyze the model’s generalizability
across different query variations within the dataset.
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Formally, suppose that the examples qt, D and yt are drawn from the train-
ing distribution G. We aim to evaluate the models’ performance on the query
OOD example. Specifically, the testing scenario of OOD generalizability on query
variations is defined as

E(qt,D,yt)∼GM(π(G(qt), D, f),yt), (2)

where G(qt) denotes the query variations generated by the generator G.

4.2 Unseen query types

The unseen query types scenario refers to unseen types of queries that are due
to new types of information needs on the same task. Due to the query-specific
provenance, query distributions differ between one query set to another, every
though they focus on the same task. This query-type-level OOD aims to analyze
the model’s generalizability across different query types.

Formally, suppose that the new types of queries OOD examples q′t and rele-
vance label y′

t are drawn from the new distribution G′
Q and come from dataset

D′. The corpus of datasets D and D′ are consistent as D. Specifically, the testing
scenario of OOD generalizability on unseen query types is defined as

E(q′t,D,y′
t)∼G′

Q
M(π(q′t, D, f),y′

t). (3)

Note that the training dataset D and the testing dataset D′ with unseen query
types come from the same task.

4.3 Unseen tasks

The unseen tasks scenario refers to distribution shifts arising from task shifts. In
practice, a retrieval model is usually trained to focus on a specific task and model
a particular relevance pattern. Therefore, it is essential to evaluate how well a
retrieval model, trained on datasets of a given task, can generalize to datasets of
new tasks. This pair-level OOD aims to analyze a model’s generalizability across
different retrieval tasks.

Formally, suppose that the new task OOD examples q̃t, D̃ and ỹt are drawn
from the new distribution G̃T and come from dataset D̃. Specifically, the testing
scenario of OOD generalizability on unseen corpus is defined as

E(q̃t,D̃,ỹt)∼G̃T
M(π(q̃t, D̃, f), ỹt). (4)

Note that the training dataset D and the test dataset D̃ belong to different tasks,
respectively.

4.4 Corpus expansion

The corpus expansion scenario refers to the scenario for the trained IR model to
maintain its retrieval performance under continuously arriving new documents.
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Table 1: Statistics of datasets in the KILT benchmark. ‘-’ denotes that the task
does not provide ground-truth documents in the training set.
Task Label Dataset Train. size Dev. size

Dialogue WoW Wizard of Wikipedia [9] 63,734 3,054

Entity linking
AY2 AIDA CoNLL-YAGO [17] 18,395 4,784
WnWi WNED-WIKI [14] - 3,396
WnCw WNED-CWEB [14] - 5,599

Fact checking FEV FEVER [47] 104,966 10,444

Open domain QA

NQ Natural Questions [21] 87,372 2,837
HoPo HotpotQA [52] 88,869 5,600
TQA TriviaQA [18] 61,844 5,359
ELI5 ELI5 [11] - 1,507

Slot filling T-REx T-REx [10] 2,284,168 5,000
zsRE Zero Shot RE [22] 147,909 3,724

In reality, an IR corpus may expand as new documents continuously enter the
system. Along with this, queries related to these new documents will also emerge.
Therefore, it is important to evaluate the model’s adaptability to these unseen
documents. This pair-level OOD analysis is aimed at assessing a model’s ability
to generalize to an expanding corpus.

Formally, suppose that the corpus update examples qnt , Dn and yn
t come from

corpus expansion Dn. Specifically, the testing scenario of OOD generalizability
on corpus expansion is defined as

E(qt,D,yt)∼GT
M(π(qnt , D

n, f),yn
t ), (5)

Note that the test dataset Dn is an expansion of the training dataset D.

5 Experimental Setup

We introduce the experimental setup for analyzing OOD robustness.

5.1 Datasets

For four OOD settings, we construct four benchmark datasets based on the
KILT benchmark [39] (see Table 1). Due to the submission frequency limits of
the online leaderboard, we used the performance on the dev set to evaluate model
performance. In the following, we describe the details of the constructed datasets
for evaluating the OOD generalizability on query variation, unseen query types,
unseen tasks, and corpus expansion, respectively.

– Dataset for query variations. We use the queries in Fever (FEV) and
Natural Questions (NQ) to generate their variations, as all of the retrieval



On the Robustness of Generative Information Retrieval Models 7

Table 2: Synthetic queries using variation generators.
Original query who wrote most of the declaration of independence

Misspelling who wreit most of the declaration of independence
Naturality who wrote most of the declaration of independence
Order who declaration most of the wrote of independence
Paraphrasing who authored most of the declaration of independence

models perform relatively well on these datasets. Four generation strategies
are considered [38] to perturb input queries, including (1) Misspelling for
randomly substituting existing characters; (2) Naturality for removing all
stop words; (3) Order for randomly exchanging positions of two words; and
(4) Paraphrasing for replacing non-stop words according to the similarity of
counter-fitted word embeddings [36]. Examples of the generated query varia-
tions are listed in Table 2.

– Dataset for unseen query types. We use the datasets under the open-
domain QA task which covers the largest number of datasets in the KILT.
There are three full datasets in open domain QA, i.e., NQ, HoPo, TQA. These
datasets contain different topics and provenances, i.e., web search queries [21],
multi-hop questions [52], and trivia questions [18].

– Dataset for unseen tasks. We use 5 tasks from the KILT benchmark,
namely, dialogue (Dial.), entity linking (EL), fact checking (FC), open domain
question answering (QA), and slot filling (SF). For each task in the KILT, we
mix every training and test set of all datasets under each task separately to
create a new dataset for that task.

– Dataset for corpus expansion. To mimic corpus expansion, we randomly
sample 60% documents from the whole Wikipedia pages to serve as the initial
corpus D0 and leave the other 40% Wikipedia pages as the incremental corpus
D1. To construct the downstream KILT training set corresponding to D0, We
filter the original KILT training set by retaining only those query-document
pairs where all relevant articles in the corresponding provenance exclusively
belong to D0. Similarly, to construct the test set Q0 and Q1 corresponding to
D0 and D1, we first filter the original dev set by retaining only those query-
document pairs where all relevant articles in the corresponding provenance
exclusively belong to D0, and then construct the filtered and remaining dataset
as Q0 and Q1 respectively.

5.2 Retrieval models

We use representative samples of models from different families:
– BM25 [42] is a representative sparse retrieval model that estimates the rele-

vance based on term frequency, document length, and document frequency.
– DPR [19] is a representative dense retrieval model that uses dual-encoder

architecture and is trained with in-batch negatives and a few hard negatives
selected with BM25.
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Table 3: R-precision (%) for the page-level retrieval task on the KILT dev data.
Dial. EL FC Open Domain QA Slot Filling

Model WoW AY2 FEV NQ HoPo TQA T-REx zxRE Avg.

BM25 27.5 3.5 50.1 25.8 44.0 29.4 58.6 66.4 38.2
DPR 25.2 2.1 52.9 53.9 26.1 42.8 13.5 28.4 30.6
BART 50.7 90.1 79.6 48.9 41.6 64.4 74.4 94.3 68.0
CorpusBrain 55.0 90.7 81.4 57.6 50.7 70.9 75.7 97.6 72.5

– BART [23] is a Seq2Seq model applicable for sequence generation tasks. Fol-
lowing [3, 7], we extract the query-title pairs from each dataset and fine-tune
the BART for generative retrieval.

– CorpusBrain [3] is a pre-trained generative IR model for knowledge-intensive
language tasks. We fine-tune CorpusBrain on every specific downstream KILT
task.

5.3 Evaluation

To measure the OOD generalizability of the retrieval models, following [49], we
use DROOD (%) to evaluate the drop rate between the retrieval performance
POOD under the OOD setting and the retrieval performance PIID under the IID
setting, defined as,

DROOD =
POOD − PIID

PIID
, (6)

where PIID denotes the retrieval performance of the model trained on the train-
ing set corresponding to the test set. And POOD denotes the retrieval perfor-
mance of the model trained on the training set that is out-of-distribution for the
test set. The ranking model would be more robust with a higher DROOD .

The effectiveness metric for evaluating the retrieval performance in KILT is
usually defined as R-precision (%), which is suggested in the official instructions
and widely used in previous works on KILT [2, 3, 7]. R-precision is calculated as
r
R , where R is the number of Wikipedia pages inside each provenance set and r
is the number of relevant pages among the top-R retrieved pages.

6 Results

We examine the empirical results in the IID setting and the three OOD settings
sequentially: query variations, unseen query types, unseen tasks, and corpus
expansion.

6.1 Overall IID results

We compare the selected retrieval models on the KILT benchmark. From Table
3, we can observe that the generative IR models significantly outperform sparse
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Table 4: R-precision / DROOD for query variations on the FEV and NQ dev
data. Significant performance degradation with respect to the corresponding
IID setting is denoted as ‘−’ (p-value ≤ 0.05).
Model Original Misspelling Naturality Order Paraphrasing

FEV

BM25 50.1 31.8/-36.5 49.2/-0.02 22.3/ 0 39.5/-21.2
DPR 52.9 24.1/-54.4 32.4/-38.8 22.3/-57.8 34.8/-34.2
BART 79.6 20.7/-74.0 38.3/-51.9 22.1/-72.2 34.7/-56.4
CorpusBrain 81.4 26.0/-68.0 41.8/–48.6 27.7/-66.0 40.6/-50.1

NQ

BM25 25.8 20.5/-20.5 25.4/-0.02 31.0/ 0 22.1/-14.3
DPR 53.9 25.6/-52.5 31.8/-41.0 31.0/-42.5 44.6/-17.3
BART 48.9 26.2/-46.4 39.1/-20.0 32.8/-32.9 43.4/-11.2
CorpusBrain 57.6 28.1/-51.2 39.2/-31.9 36.1/-37.3 50.1/-13.0

and dense retrieval models like BM25 and DPR across all the datasets, indicating
that combining the retrieval components into a unified model benefits effective
corpus indexing. CorpusBrain consistently outperforms BART on all five tasks,
demonstrating that the adequately well-designed pre-training tasks for genera-
tive retrieval contribute to improving document understanding for generative IR
models.

6.2 Analysis of OOD generalizability on query variations

Firstly, from Table 4, we provide a comprehensive performance analysis of all
the retrieval models. We can observe that some types of query variants, such as
naturality and order, have little impact on BM25. This is because BM25 uses
bags of words to model documents and is insensitive to changes in word order
and stop words. Beyond that, there is a significant effectiveness drop for query
variations in all dense and generative retrieval models. The results indicate that
both dense retrieval models, as well as generative IR models, are not robust to
query variations, which complements the findings from previous work [38].

When we compare the generalizability of the dense and generative IR mod-
els, we find that the generative IR models perform particularly poorly on Mis-
spelling and Order. One possible explanation would be that the generative
IR models generate document identifiers autoregressively based on the query, so
query quality and word order greatly impact the generation effect. When we look
at the performance of generative IR models, we can find that the CorpusBrain
has better R-precision than BART, indicating that pre-training tasks tailored
for generative retrieval help the model adapt better to query variations.
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Table 5: R-precision/DROOD for unseen query types on the open domain QA
dataset of KILT.

Testing

Model Training NQ HoPo TQA

BM25
NQ 25.8 - -
HoPo - 44.0 -
TQA - - 29.4

DPR
NQ 53.9 23.1/-11.5 29.2/-31.8
HoPo 41.2/-23.6 26.1 26.3/-38.6
TQA 42.3/-21.5 21.8/-16.5 42.8

BART
NQ 48.9 36.4/-12.5 50.7/-21.3
HoPo 18.8/-61.6 41.6 46.8/-27.3
TQA 26.5/-45.8 35.2/-15.4 64.4

CorpusBrain
NQ 57.6 47.0/ -7.3 52.7/-25.7
HoPo 33.4/-42.0 50.7 48.6/-31.5
TQA 32.9/-42.9 44.7/-11.8 70.9

6.3 Analysis of OOD generalizability on unseen query types

The results of OOD generalizability on unseen query types are shown in Table
5. Note that BM25 does not rely on the training set, so its test results remain
consistent across datasets. When we look at the overall performance of all the
dense and generative retrieval models, we can observe that as the shift of query
types distributions, the performance of all models decreases significantly. For
DPR, some of the query types in which it had an advantage are instead inferior
to BM25 in OOD scenarios. This suggests that, even under the same task, neural
retrieval models face challenges of poor OOD generalizability. Consequently, it
is important to consider the OOD performance for these unseen query types.

Comparing the performance of dense and generative IR models, we find that
generative IR models exhibit worse generalizability on web search queries in the
NQ dataset. It indicates that, in terms of generalizability performance on unseen
query types, generative IR models behave differently and merit separate studies.
Furthermore, we observe that CorpusBrain demonstrates better generalizability
than BART on unseen query types. This could be attributed to the pre-training
process of CorpusBrain, which effectively encodes relevant information for a
given corpus to cope with potentially unknown queries, thereby enhancing its
stability when encountering unseen query types.

6.4 Analysis of OOD generalizability on unseen tasks

Examining the overall performance of all retrieval models in Table 6, we observe
that the generalizability defects for unseen tasks are common among models.
In the entity linking (EL) task, the models’ generalization performance drops
significantly, likely due to the task’s distinct format compared to the others.
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Table 6: R-precision/DROOD for unseen tasks on the 5 KILT task-mixed
datasets.

Testing

Model Training Dial. EL FC QA SF

BM25

Dial. 27.5 - - - -
EL - 3.5 - - -
FC - - 50.1 - -
QA - - - 34.6 -
SF - - - - 61.9

DPR

Dial. 25.5 0.7/-66.7 48.2/ -8.9 25.1/-30.1 10.3/-46.6
EL 13.6/-46.7 2.1 46.8/-11.5 15.9/-55.7 13.6/-29.5
FC 24.0/ -5.9 0.8/-61.9 52.9 22.3/-37.9 15.2/-21.1
QA 22.5/-11.8 0.6/-71.4 50.8/ -4.0 35.9 12.1/-37.3
SF 10.0/-60.8 0.2/-90.5 45.4/-14.2 20.2/-43.7 19.3

BART

Dial. 49.7 8.6/-90.5 71.8/ -9.8 40.2/-31.8 69.2/-17.5
EL 21.5/-56.7 90.1 68.6/-13.8 24.6/-58.3 77.4/ -7.7
FC 48.1/ -3.2 10.0/-88.9 79.6 41.5/-29.7 81.1/ -3.3
QA 45.0/ -9.5 9.8/-89.1 76.4/ -4.0 59.0 77.6/ -7.5
SF 17.1/-65.6 3.7/-95.9 65.6/-17.6 36.3/-38.5 83.9

CorpusBrain

Dial. 58.0 6.9/-92.4 74.1/ -9.0 49.3/-18.8 77.7/ -7.8
EL 33.0/-43.1 90.7 68.6/-15.7 38.4/-36.7 62.7/-25.6
FC 46.8/-19.3 9.3/-89.7 81.4 48.9/-19.4 82.2/ -2.5
QA 46.3/-20.1 8.1/-91.1 79.2/ -2.7 60.7 78.7/ -6.6
SF 25.3/-56.4 4.9/-94.6 68.1/-16.3 43.7/-28.0 84.3

DPR lags behind BM25 almost across the board when faced with unseen
tasks. The reason may be the large differences in data distribution across tasks.
The semantic representations that DPR learns by learning from the original task
are empirical and difficult to flexibly migrate to the new task. While dense re-
trieval models have excellent performance, there are situations where traditional
sparse retrieval models are rather more to be relied upon.

When we observe the performance between dense and generative IR models,
we find that, in general, generative IR models have higher DROOD on slot-filling
(SF) task. This could be because the format of this downstream task aligns with
the pre-training tasks of the backbone generative models. Comparing BART
and CorpusBrain from the generative IR models, we observe that CorpusBrain
outperforms BART in most (13 out of 20) unseen task scenarios. This may
be attributed to the pre-training tasks of CorpusBrain. CorpusBrain includes
three tasks: Inner Sentence Selection (ISS), Lead Paragraph Selection (LPS),
and Hyperlink Identifier Prediction (HIP). ISS models the semantic granularity
differences between queries and documents in various retrieval requirements,
helping to bridge the gap between different downstream tasks. This finding is
consistent with the original analysis of CorpusBrain [3].
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Table 7: R-precision/DROOD for corpus expansion on the 5 KILT task-specific
datasets.
Model Session Dial. EL FC QA SF

BM25 D0 26.0 2.6 46.5 40.2 55.7
D1 20.5/-21.2 1.8/-30.8 37.8/ -6.0 28.2/-29.9 46.7/-16.2

DPR D0 49.2 2.3 73.2 46.5 40.1
D1 28.7/-41.7 1.6/-30.4 65.7/-10.2 41.8/-10.1 35.0/-12.7

BART D0 42.7 63.0 74.5 22.7 63.6
D1 47.0/ 10.1 57.2/ -9.2 70.7/ -5.1 20.9/ -7.9 47.0/-26.1

CorpusBrain D0 36.4 64.0 78.8 41.2 81.2
D1 15.1/-58.5 43.5/-32.0 56.7/-28.0 28.3/-31.3 74.7/ -8.0

6.5 Analysis of OOD generalizability on corpus expansion

The result of OOD generalizability on corpus expansion is shown in Table 7. From
the result, we can observe that, BM25 has an average ability to maintain retrieval
performance. When faced with incremental documents entering the corpus, the
performance degradation of DPR is not significant. The possible reason for this
is that under the same task, the newly arrived document belongs to the same
topic as the old one, and DPR can build the complete semantic representation
space from the original training.

For the generative IR model, both BART and CorpusBrain perform signif-
icantly better in corpus expansion than dense retrieval models like DPR. Even
with a lower DROOD than BM25 and DPR, the overall performance of the gen-
erative IR model is still higher than that of them. The reason for this is that
generative retrieval uses a prefix tree to store indexes, and unseen indexes will
still be distributed in the neighborhood of the indexes they are related to. That
is, generative IR models can extensively probe for relevant documents in the
corpus through beam search, which underpins their generalization capabilities.

7 Conclusion

In this paper, we have analyzed the out-of-distribution robustness of several
representative generative and dense retrieval models on the KILT benchmark.
Specifically, we have proposed four perspectives to define out-of-distribution ro-
bustness. Our results exposed significant vulnerabilities in OOD robustness of
generative IR models.

We believe that the understanding of different forms of retrieval models can
open up ideas from a robustness perspective. As we observed, the dense retrieval
model and the generative retrieval model perform differently for different OOD
scenarios. While there is some prior work that relates generative and dense re-
trieval [37, 50], the robustness perspective on their connection is missing – what
can we learn from their relative strengths and weaknesses to develop more robust
retrieval models?
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Concerning limitations presented here, we chose CorpusBrain and BART,
which perform well on KILT, as representatives of generative IR models. In
future work, we will introduce more generative IR models with more datasets
to further explore the OOD robustness. Due to inheriting the vulnerabilities of
neural network models, neural IR models are also susceptible to being deceived
by out-of-distribution adversarial examples [27, 28, 29, 30, 32]. Future work
should consider introducing new web search datasets into the benchmark to
simulate more broader and potentially even more challenging OOD environments
like adversarial attacks. Our work highlights the need to create benchmarks that
include various OOD perspectives to better understand the generative IR models’
robustness.

Finally, we will consider different docid forms of generative IR models to
explore the differences in robustness performance between generative IR models.
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