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Recent advances in neural information retrieval models have significantly enhanced these models’ effec-
tiveness across information retrieval tasks. The robustness of these models, which is essential for ensuring
their reliability in practice, has also garnered significant attention. With a wide array of research on robust
information retrieval being published, we believe it is the opportune moment to consolidate the current status,
glean insights from existing methodologies, and lay the groundwork for future development. Robustness of
information retrieval is a multifaceted concept and we emphasize the importance of robustness against per-
formance variance, out-of-distribution scenarios, and adversarial attacks. With a focus on out-of-distribution
and adversarial robustness, we dissect robustness solutions for dense retrieval models and neural ranking
models, respectively, recognizing them as pivotal components of the neural information retrieval pipeline. We
provide an in-depth discussion of methods, datasets, and evaluation metrics, shedding light on challenges and
future directions in the era of large language models. To accompany this survey, we release three additional
resources: (1) a curated list of publications related to robust information retrieval, (2) a tutorial based on this
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survey, and (3) a heterogeneous benchmark for robust information retrieval, BestIR, that collects all known
datasets for evaluating information retrieval systems for robustness. We hope that this study provides useful
clues for future research on the robustness of information retrieval models and helps to develop trustworthy
IR systems.
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Additional Key Words and Phrases: Robustness, trustworthy systems
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1 Introduction

Recently, with advances in deep learning, neural information retrieval (IR) models have wit-
nessed significant progress [61, 63]. With the development of training methodologies such as
pre-training [52, 118] and fine-tuning [84, 139, 193], neural IR models have demonstrated re-
markable effectiveness in learning query-document relevance patterns. When deploying neural
IR models, an aspect equally essential as their effectiveness is their robustness. A good IR system
must not only exhibit high effectiveness under normal conditions but also demonstrate robustness
in the face of abnormal conditions.

Why Is Robustness Important in IR? The natural openness of IR systems makes them vulnerable
to intrusion, and the consequences can be severe. For example: (1) search engines are vulnerable to
black-hat search engine optimization (SEO) attacks,! necessitating significant efforts to curb
these infringements.” and (2) search engines are confronted with large amounts of unseen data
on a daily basis. The working algorithm needs to be improved constantly to ensure that search
effectiveness is maintained.’

Recently, research has begun to investigate the robustness of IR systems [29, 35, 100, 105, 167,
183]. As neural networks gain increasing popularity in IR, many studies have found that neural
IR systems inherit a wide variety of problematic robustness issues from deep neural networks.
In response, the field of robust neural IR is garnering increasing attention, as evidenced by the
growing number of papers published on the topic annually, as depicted in Figure 1.* The robustness
issues are differently represented in real IR scenarios and raise concerns about deploying neural IR
systems in the real world. Therefore, the study of robust neural IR is crucial for building reliable IR
systems.

How to Define Robustness in IR? User attention mainly focuses on the top-K results and increases
with higher rankings [129]. Based on this, we argue that robustness in IR refers to the consistent
performance and resilience on the top-K results of an IR system when faced with a variety of
unexpected scenarios. Robustness is not a simple concept; it encompasses multiple dimensions,
as illustrated by research within the machine learning (ML) community [154, 195]. In IR, we
identify several facets of robustness:

https://www.bleepingcomputer.com/news/security/15-000-sites-hacked-for-massive-google-seo-poisoning-campaign/.
Zhttps://www.bbc.com/news/technology-28687513, https://developers.google.com/search/docs/essentials.
Shttps://developers.google.com/search/news.

4See Appendix A for a description of the protocol we followed to select the sources aggregated in Figure 1 and surveyed in
this paper.
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Fig. 1. Statistics of publications related to robust neural IR and covered in this survey. “Other” includes arXiv
(mostly), TREC, ICDM, NAACL, and TACL.

(1) Independent and identically distributed (IID) robustness emphasizes the worst-case
performance across different individual queries under the IID data assumption [183];

(2) Out-of-distribution (OOD) robustness refers to the generalizability of an IR model on
unseen queries and documents from different distributions of the training dataset [167]; and

(3) Adversarial robustness refers to the ability of the IR model to defend against malicious
adversarial attacks aimed at manipulating rankings [183].

In this survey, our focus is on adversarial robustness and OOD robustness, which have garnered
significant attention. For adversarial robustness, studies primarily approach the topic from two
angles, i.e., adversarial attacks and defense, to enhance the robustness of IR models. For OOD
robustness, the emphasis is on improving the generalizability of IR models to both unseen documents
and unseen queries. To study the above two aspects, we zoom in on two key components of
the neural IR framework: first-stage retrieval and the subsequent ranking stage. We focus on
dense retrieval models (DRMs) and neural ranking models (NRMs) to further explore the
aforementioned research perspectives.

Relation to Other Surveys. There are several surveys on robustness in the fields of natural
language processing (NLP) [174, 175] and computer vision (CV) [2, 43]. However, the field
of IR presents its own unique characteristics: (1) unlike NLP, which often focuses on individual
examples, IR concerns ranking a collection of documents, highlighting the need for robustness
across the ranked lists, and (2) different from continuous image data in CV, IR deals with robustness
related to discrete text documents. Consequently, the studies explored in these surveys are not
directly transferrable as references within the IR field.

Surveys specific to the IR domain tend to concentrate on effectiveness in areas like pre-training
[48, 198], ranking models [63], initial retrieval stages [61], and the explainability of IR systems [4].
Thus, there is a noticeable gap in the literature: a dedicated survey that consolidates and introduces
research pertaining to robustness in IR is absent.

To complement this survey we release the following resources alongside it: (1) a curated list
of publications related to robust IR, (2) a tutorial on robust IR, and (3) a benchmark that collects
datasets for assessing the robustness of IR systems.

Contributions of This Survey. This article’s contributions are as follows:

— A comprehensive overview and categorization: We define robustness in IR by summarizing
the literature and further dividing it into distinct categories; we provide a curated list of
publications to support this aspect of the survey.
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Fig. 2. Overview of the survey. Section 6 is only partially listed here because of space limitations.

— A detailed discussion of methodologies and datasets: We offer a detailed discussion of method-
ologies, datasets, and evaluation metrics pertinent to each aspect of robustness. We support
this part of the survey by providing a tutorial and a benchmark, BestIR, which integrates the
datasets mentioned in this survey to facilitate follow-up work.

—Identification of open issues and future trends: We highlight challenges and potential future
trends, particularly in the age of large language models (LLMs).

Organization. Figure 2 depicts the organization of our survey. In Section 2, we introduce the
IR task, and give a definition and taxonomy of robustness in IR. In Section 3, we highlight two
key challenges for IID robustness, i.e., performance variance across queries and retrievability
of documents, and present specific methods for addressing these scenarios. In Section 5, we ex-
amine adversarial attack and defense tasks, alongside their respective datasets, evaluation cri-
teria, and state-of-the-art methodologies. In Section 4, we show two key scenarios for OOD ro-
bustness, i.e., OOD generalizability on unseen documents and OOD generalizability to unseen
queries, and present specific datasets, evaluation metrics, and methods for solving these sce-
narios. In Section 6, we describe remaining challenges and emerging opportunities for robust-
ness of IR in the era of LLMs. Finally, Section 7 summarizes the survey and offers concluding

remarks.
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2 Definition and Taxonomy

In this section, we provide a formal definition of robustness in the context of IR and outline the
taxonomy pertinent to this domain.

IR Task. To provide a clear understanding, we first formalize the ad-hoc IR task. Suppose that
R ={ry,ry,...,r;} is the set of relevance levels, where [ denotes the number of levels. A total order
exists among the relevance labels such that r; > rj_; > - -+ > ry, where > denotes the order relation.
The minimum value of the relevance label is 0, which usually implies no relevance. Suppose that
O ={q1,92, - .., qm} is the set of queries in a training dataset. Each query g; is associated with a list
of documents D; = {d;1,d;,...,d;n} and a list of relevance labels Y; = {yi1, yiz2, . .., yin}, Where
yi,j € R denotes the label of document d; ; and N is the document list size. Then we obtain the
training dataset Dirain = {(g;, Dy, Vi) 12,

We use f to denote the IR model; it predicts the relevance score f(q, d) based on a given query ¢
and document d. The IR model f is derived by learning from the following objective:

0" = argminEgp,y)~ D £ (f(4.4).Y:0), (1)

where 0 are the parameters of the IR model f, and £ is a ranking loss function.

The ranking performance of an IR model is usually evaluated by a metric M that focuses on the
top-K ranking results, e.g., Recall@K, normalized discounted cumulative gain (NDCG)@K
and mean reciprocal rank (MRR)@K. Given a triple (g, D, Y) and an IR model f, the score of M
on query q is calculated by:

M(fi@D.Y),K) = > wa-h(rs(@d)-1{rs(qd) <K}, (2)
(d.ya)€(D,Y)

where 77 (g, d) is the rank of document d under query g ranked by model f, k is the mapping
function related to ranking, dependent on the specific metric, and I{-} is an indicator function
which is equal to 1 when its condition is satisfied and 0 otherwise. Notably, here we only consider
meta-evaluation metrics. For composite evaluation metrics, such as average precision, M can be
regarded as the meta metric, specifically precision, while the complete value needs to be derived.

Further, given a test dataset Dy, the ranking performance Ry against metric M is calculated

by:
Rt (f; Diess K) = > M(fi(gD.Y).K). 3)

D
| testl (q,D,Y) € Diest

Typically, the ranking performance Ry of the IR model f on the test dataset Dyeq against metric
M refers to the average evaluation score of M.

IR Models. In order to balance efficiency and effectiveness, the IR task is usually addressed as a
pipeline consisting of a first-stage retrieval stage and re-ranking stage [25]:

(1) First-stage retrieval identifies a small set of candidate documents from millions of documents.
Therefore, in the first-stage retrieval, D; refers to the entire corpus. Considering efficiency, the
neural IR model, represented by the DRM [61], usually adopts a dual-encoder architecture.
In this architecture, the interaction function 7 is often null.

(2) The re-ranking stage generates the final ranked list for a query and a small set of candidate
documents [63], referred to as D; in this stage. To this end, the NRM with cross-encoder
architecture is often modeled jointly by all the matching functions.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.
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Fig. 3. The core of robust IR is to protect the stability of the Top-K results.

The Relationship between Robustness and Explainability. In IR, a number of studies have been
devoted to exploring the explainability of models, including revealing a model’s feature prefer-
ences for relevance judgments [69, 153, 169] and measuring the model’s explainability [133, 171].
Robustness focuses on the evaluation of model performance, while explainability is concerned
with explaining model performance from an internal perspective. Explaining a model’s mechanism
for arriving at relevance judgments may help to develop robustness enhancement methods, while
studying robustness can provide a richer external evaluation perspective for explainability studies.
In this article, we focus on the evaluation and enhancement methods of robustness, and supplement
our understanding with the results of explainability research (if any) where appropriate.

2.1 Definition of Robustness in IR

Robustness refers to the ability to withstand disturbances or external factors that may cause a
system to malfunction or provide inaccurate results [70]. It is important for practical applications,
especially in safety-critical scenarios, e.g., medical retrieval [6], financial retrieval [68], patent
retrieval [114], and sensitive retrieval [156]. If, for any reason, an IR system behaves abnormally, the
service provider can lose time, manpower, opportunities, and even credibility. With the development
of deep learning, robustness has received much attention in the fields of CV [13] and NLP [174].
Concerns about model robustness in these fields are mainly focused on the test phase. In this
scenario, the model is trained on an unperturbed dataset but tested for its performance when
exposed to adversarial examples or OOD data [56, 140].

In IR, the robustness of model in the test phase is also important due to the widespread availability
of SEO [65] and the need for models to adapt to unseen data. Hence, in this survey, we follow prior
work and only discuss the robustness of a model in the test phase.

In most deployed systems, when presented with a ranked list, users focus most of their attention
on the top-K search results, as evidenced by a significant drop in traffic and click-through rates
further down the list [129, 181] and by the prevalence of ranking metrics like MRR [36] and NDCG
[74], which primarily evaluate the effectiveness of these top-ranking results. The relationship
between top-K result stability and robust IR is shown in Figure 3. Taking SEO as an example, it
aims to get a specific document displayed in the top-K-ranked results. A robust neural IR model
protects its top-K results from being affected. Consequently, ensuring the integrity and robustness
of the top-K-ranked results is crucial for deploying IR models in practical web search applications.
Based on this, we present a formal definition of top-K robustness in IR by incorporating the original
test dataset Dyes from the initial dataset and the unseen test dataset Dy ,.

Definition 2.1 (Top-K Robustness in IR). Let § > 0 denote an acceptable error threshold. Let fp,
be an IR model trained on training dataset Diyain, With a corresponding test dataset Dyegt, and an

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.
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[ IID robustness ]

Performance variance under IID data:
Var(QM(foy gy @D, 1), K)|(4,D,) € Do) < 5

[ OOD robustness ]
Top-K Robustness of IR Generalizability on unseen queries and corpus:
| R0t (foesain; Prests K) = Raa (foygain Diest K)| < 6 | R0t (foerain; Drest K) = Rt (foggain; Drest, K)| < 6

[ Adversarial robustness ]

The ability to defend against adversarial attacks:
|Rat (FDirain; Drests K) = Rt (fogpan Diest K)| < 6

Fig. 4. A taxonomy of robustness in IR. In this survey, we pay special attention to adversarial robustness and
OOD robustness.

unseen test dataset Dy, for the top-K ranking results. If:

|RM (thrain; DtESt’ K) - RM (thrain; Dt*est’ K) ’ < 5’ (4)
we consider the model fp,,, to be -robust for metric M.

The formal definition of top-K robustness in IR is inspired by differential privacy [45]. The difference
is that in this article, we express robustness in terms of how drastically the performance of the IR
model changes in different test environments. Therefore, robustness is not an absolute concept; the
value of § depends on the acceptable level of robustness of the IR model in the specific application
environment. Differences between the unseen test dataset D, and the original test dataset Dye
in different robustness scenarios will be specifically analyzed below.

In Section 2.2, below, Dy, refers to different test datasets depending on the context: Dy, for
test datasets with adversarial examples in adversarial robustness, f)test for test datasets from new
domains in OOD robustness.

2.2 Taxonomy of Robustness in IR

In IR, robustness threats come in different flavors, including IID robustness [183], OOD robustness
[167], and adversarial robustness [183]. A high-level taxonomy of robustness in IR is shown in
Figure 4.

2.2.1 1ID Robustness. Typically, the performance of IR models is first represented by their overall
performance on IID data. Recently, it has been recognized that performance stability across IID
queries may be compromised when we try to improve the average retrieval effectiveness across all
queries [196]. Therefore, a robust neural IR model should not only have good retrieval performance
on the overall testing queries, but also ensure that the performance on individual queries is not too
bad. Next, we give a formal definition of IID robustness in IR based on Definition 2.1.

Definition 2.2 (IID Robustness of IR). Let the following be given: an IR model fp, . trained on
training dataset Dirain With a corresponding IID test dataset Dyest, and an acceptable error threshold
4, for the top-K ranking result. If:

Var ({M (thrain; (¢.D.Y) ’K) | (¢.D,Y) € Dtest}) <4, (5)

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.
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where Var(-) is the variance of the ranking performance of the IR model fp, .. on Dy, then the
model f is considered to be §-robust in terms of IID data for metric M.

2.2.2 OOD Robustness. IR models need to cope with a constant stream of unseen data [183]. The
key behind addressing this challenge is how to adapt the model to new data outside of the familiar
distribution. There are a variety of OOD scenarios in IR, so the OOD robustness of the model is
of broad interest. First, the query entered by the user may be unknown and of varying quality
[103, 137]. Then, search engine application scenario migration and incremental new documents
will likely bring in OOD data [18, 23, 167]. Manual labeling of unseen data as well as retraining IR
models incurs significant resource overheads [127, 167]. Therefore, a crucial question is how to
efficiently train IR models to achieve effective performance on unseen data.

OOD robustness measures the performance of an IR model on unseen queries and documents
from distributions that differ from the training dataset. By introducing a test dataset Dhest in a new
domain, we give a formal definition of OOD robustness in IR based on Definition 2.1.

Definition 2.3 (OOD Robustness of IR). Let the following be given: an IR model fp, ., an original
dataset with training and test data, Dyain and Diegt, drawn from the original distribution G, along
with a new test dataset Diest drawn from the new distribution G, and an acceptable error threshold
4, for the top-K ranking result. If:

|(RM (fZ)tmin; Dhest, K ) - Rm (f@min; ZN)test, K )| < 6 where Dyain, Diest ~ G, j)test ~ G, (6)

then the model f is considered to be §-robust against OOD data for metric M. In OOD robustness,
the new test dataset @test consists of different document sources (e.g., a web crawl or patent library,
new or old documents), or different query forms (variants, new query types) than the original test
dataset Dyest.

2.2.3 Adversarial Robustness. In a competitive scenario, content providers may aim to promote
their products or documents in rankings for specific queries [87]. This has provided a market
for SEO and has led to the development of attack techniques against search engines. Traditional
attacks against search engines are generally called term spamming. They usually resort to stacking
keywords to achieve a boost in ranking. In recent years, with the development of deep learning, a
number of neural approaches have emerged that attack through more imperceptible perturbations.
As search engines evolve, defense methods against term spamming are maturing as well. Adversarial
robustness focuses on the stability of an IR model’s performance when imperceptible malicious

’

perturbations are added to documents. By introducing a test dataset Dy, with adversarial examples,
we give a formal definition of adversarial robustness in IR based on Definition 2.1.

Definition 2.4 (Adversarial Robustness in IR). Let the following be given: an IR model fp,, trained
on training dataset Dyy,in With a corresponding testing dataset Dest, @ new document set D4y

containing adversarial examples, and an acceptable error threshold &, for the top-K ranking result.
If:

|RM (f@train; Dtest, K) - RM (thrain; Dt,est’ K)’ < d such that Dt,est — Dtest U Dadv, (7)

where D’ « Diest U D,gy denotes injecting the set of all generated adversarial examples D,g4, into
the original test dataset, then model f is considered to be §-robust against adversarial examples for
metric M. In adversarial robustness, according to existing research [100, 104, 182, 199], the number
of adversarial documents D,qy injected into the original test dataset Dy is generally within 10%
of the original number of documents to simulate a scenario where the corpus is poisoned.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.



Robust Neural Information Retrieval: An Adversarial and OOD Perspective 17:9

Relatively little work has been done on IID robustness. In the following, we will first briefly
introduce IID robustness and its related improvement methods. Then, we pay special attention
to the two other notions of robustness depicted in Figure 4, i.e., OOD robustness and adversarial
robustness. Depending on the types of OOD generalizability in IR models, existing work can be
categorized into OOD generalizability on unseen documents and OOD generalizability on unseen
queries; we will discuss these directions in detail in Section 4. Work on adversarial robustness
usually proceeds along two lines: adversarial attacks and adversarial defenses; we will discuss these
lines in detail in Section 5.

3 1ID Robustness

Most IR models are designed under the assumption that observations are IID random variables,
focusing primarily on improving the average effectiveness of retrieval results. However, prior work
[196] has pointed out that when attempting to enhance the average retrieval effectiveness across
all queries, the stability of performance among individual queries may be compromised. Moreover,
some of the documents in the corpus may be hard to retrieve and also affect the performance of
the IR system [7]. Therefore, this section analyzes the IID robustness of IR models by emphasizing
the variance in query performance and the retrievability of documents.

3.1 Variance in Query Performance

The performance variance of IR models refers to the variance in effectiveness across different
individual queries. When an IR model achieves improvements in average retrieval effectiveness
(e.g., Mean Average Precision, MAP [151]), the performance of certain individual queries may
deteriorate. Although failures in a small number of queries may not significantly impact the average
performance, users interested in these queries are unlikely to tolerate such deficiencies. Therefore,
an ideal IR model should achieve high average effectiveness while maintaining low performance
variance [197].

Here, we propose using the variance of normalized average precision (VNAP) to measure
performance variance, defined as follows:

VNAP =E [(NAP(q,) — E [NAP(q:)])?], (®)

where E[-] denotes the expectation over a set of queries assumed to be uniformly distributed and
NAP(q;) represents the normalized average precision for query g, defined as:

AP(q:)
NAP ==, 9
) = FlaP(q)] ©
where AP(q;) represents the average precision for query ¢;, defined as:
1 Rth 1 Ok
AP(@) = 7= D o ) Hym > 0% (10)

9t k=1 n=1

where R,, denotes the number of relevant documents associated with query g, o represents the
rank position of the kth relevant document predicted by the IR model (ranging from 1 to the size of
the document list), y;,, indicates the true label of document d;,,, and I {-} is an indicator function
used to count the number of relevant documents.

It is worth noting that VNAP is similar to VAP [196], except that we normalize the average
precision to eliminate the influence of average performance. Since different models may have
varying levels of average performance, it is necessary to eliminate this influence to better measure
the variance of IR models. Models with lower variance are considered more robust.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.
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3.2 Retrievability of Documents

While variance in query performance focuses on ensuring that poorly performing queries in a
retrieval system are not excessively bad, this perspective considers robustness from the query
angle. From the document perspective, difficulty in retrieving relevant documents for a particular
query may be the cause of the variance in performance. Since users typically only view the top-K
results returned by the retrieval system, we define a document as retrievable if it appears in the
top-K results for a given query. Furthermore, a document is considered retrievable if there exists a
query that can retrieve it.

For certain tasks, it is necessary to ensure that all documents in a collection are retrievable. For
example, in patent retrieval [114], patent searchers need to ensure that the retrieval system can
locate all documents in the collection relevant to their information needs. To measure whether a
document d is retrievable with respect to a model f, we introduce the notion of retrievability.

Definition 3.1 (Retrievability of Documents). Azzopardi and Vinay [7] define document retrievabil-
ity as the likelihood of a document being retrieved by an IR model in the top-K result, expressed as:

R(d)@K = )" p(q) - {rs(q.d) <K}, (11)
q€Q

where p(q) denotes the probability of users issuing query ¢q (often assumed to be 1), Q is the set of
all possible queries, 77(q, d) represents the rank position of document d given by IR model f for
query g, and I{-} is an indicator function that equals 1 if the condition is satisfied and 0 otherwise.

In practical settings, since the set Q is vast, calculating retrievability as defined above is infeasible.
Therefore, an estimation is needed. One approach [7] is to use a subset of all possible queries Q,
which is sufficiently large and contains relatively likely or feasible queries. For instance, historical
queries from query logs [53] or synthetically generated queries using deep-learning models [1] can
be used. Another method involves estimating retrievability based on document features [8], which
allows for quick estimation of retrievability levels.

Retrievability Bias. Given the retrievability score R(d) @K for each document, the inequality in
retrievability across all documents can be measured. To this end, we use the Gini coefficient to
evaluate the bias in retrievability:

N, (2-i=N-1) R(d)@K
N- 2L R(d)@K

G = (12)

where N is the number of documents. A Gini coefficient of 0 indicates equal retrievability for all
documents (complete equality), while a coefficient of 1 indicates that one document has all the
retrievability while others have none (complete inequality). Thus, a lower Gini coefficient implies
less bias in the model.

Although a system with lower retrievability bias does not necessarily indicate higher effective-
ness, studies have found correlations between the two [10, 179, 180], suggesting that retrievability
bias metrics may be useful for selecting better retrieval systems.

To reduce retrievability bias in systems, Bashir and Rauber [9] propose a new document selection
process combining query expansion techniques for pseudo-relevance feedback in the patent search
domain. Bogers and Petras [15] suggest using document retrievability across a set of query variants
to determine which documents to use for relevance feedback. For DRMs, Penha et al. [138] propose
a method to enhance document retrievability and reduce retrievability bias through controllable

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.



Robust Neural Information Retrieval: An Adversarial and OOD Perspective 17:11

Training corpus Training queries

e
\

Adapt to OOD corpus

<>

Adapt to OOD query set

|
|
|
l
. S I
|
|
|
1
Fig. 5. OOD generalizability on unseen documents vs. queries in neural IR.

query generation, which involves both augmenting the training set and expanding queries during
user searches.

Overall, the IID robustness of an IR model consists of the performance variance from the query
perspective and the retrievability from the document perspective. With respect to each of these
two perspectives, we have briefly described the limited existing work, leaving more exploration for
the future. In the next two sections, we will introduce OOD robustness and adversarial robustness
in detail.

4 OOD Robustness

In addition to IID robustness, deep neural networks lack generalizability to OOD data. When
faced with data that differs from the distribution of the training data, neural networks struggle
to maintain performance. In IR, this problem has begun to be exposed and attract attention as
neural IR models are now widely being used [167, 183]. Prior work focuses on the OOD gener-
alizability of DRMs, since OOD data has a direct impact on the retrieval stage. We refer back to
Section 2.2 for a definition of OOD robustness in IR. In this section, we present specific work
on OOD generalizability on unseen documents and OOD generalizability on unseen queries,
respectively.

4.1 Overview

For a long time, research on neural IR models has been carried out in a narrow IID setting. In this
setting, the model faces homogeneous data during training and testing. But IR systems are widely
used in fields such as search engines [72], digital libraries [33], medical search [111], legal search
[121], and at the same time, the scenarios that IR systems need to cope with are becoming more
complex.

OOD Generalizability Requirements in IR. With deep neural network models being applied to
IR, neural IR models have demonstrated excellent results on many tasks [61, 63]. But IR systems
need to face more than just a single task or scenario [167]. In order to deploy an IR system, it is
often necessary to construct a training dataset for the neural IR model in it. This process is usually
time-consuming and expensive and hence many IR systems are expected to be able to cope with
a wide variety of data not seen during training [103, 137, 167]. Therefore, OOD generalizability
is a key requirement for contemporary IR systems, given the dynamic nature of user needs and
evolving data landscapes. In IR, OOD generalizability is focused on unseen documents and unseen
queries as illustrated in Figure 5.
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Why Should IR Models Be Able to Generalize to Unseen Documents? In real-world scenarios, the
data landscape is constantly evolving, with new documents and information being generated
regularly. It is expensive to annotate each new corpus and retrain the IR models. Therefore, a neural
IR model that can generalize well to unseen corpora ensures its relevance and usefulness over
time, without requiring constant retraining or fine-tuning. Moreover, in complex real-life scenarios,
generalizability to a new corpus helps IR models against distributional shifts or domain-specific
biases. This helps to ensure that IR models deliver reliable ranking results irrespective of diverse
contexts, qualities, and domains.

Why Should IR Models Be Able to Generalize to Unseen Queries? The set of possible queries that
users may input is vast and constantly evolving [60, 137, 206]. E.g., 15% of daily Google searches are
brand new.® The nature of information needs is dynamic and diverse [62, 92]. Users often express
their information needs in varied ways, using different vocabulary, language styles, or even typos
[31, 205]. This challenge becomes particularly pronounced in the context of ever-changing user
interests and the introduction of new vocabularies. Therefore, IR models must possess the ability
to handle queries that were not encountered during training. Without generalizability to unseen
queries, IR models risk providing inadequate or irrelevant results, ultimately diminishing user
satisfaction and trust in the system [20, 137]. A robust neural IR model should be able to understand
and accommodate these variations, effectively retrieving relevant information regardless of how
the query is formulated.

Furthermore, in reality, there is a wide variety of query types that are often not fully or adequately
accessible during IR model training [206, 207]. But, a robust IR system should perform consistently
in response to a wide range of query types.

4.2 OOD Generalizability to Unseen Documents

As argued above, IR systems need to adapt to different environments and variations in the corpus.
However, retraining the neural IR models in each new environment is costly. Previous work has
only analyzed the generalizability of IR models across different domains [147, 167, 183]. In this work,
we summarize work on adaptation to a new corpus and updates to a corpus. Figure 6 illustrates
how we organize the discussion of different methodologies.

4.2.1 Definition. Generalizability to unseen documents implies the ability of an IR model to
maintain retrieval performance when encountering a new and unfamiliar corpus. In IR, improving
the model’s OOD generalizability under unseen documents is mainly reflected in enhancing the
retrieval performance of the IR model under various new corpus. Without loss of generality, given
a test set Diegt With new corpus C, they draw the new distribution G, the goal of improving the
OOD generalizability of a neural IR model f on unseen documents under top-K ranked results can
usually be formalized as:

max Ryt (£ Diess K ) such that C..g € Digin, C

s € z)test (13)

Specifically, the new corpus C may result from two main scenarios with respect to an unseen new
corpus and updates to a corpus:

Adaptation to New Corpora. Adaptation to a new corpus refers to the trained IR models that may
be hard to adapt to a corpus of new domains in the absence of supervised data [167]. The goal of
improving generalizability on the adaptation to a new corpus for a neural IR model f under top-K

Shttps://blog.google/products/search/our-latest-quality-improvements-search/.
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ranked results can usually be formalized as:

train train®

max Ry ( fpo DI, K) such that C%, € DY,y C"5 € Dity, (14)

where o is the domain of the original corpus and n is the new corpus domain. Among the main
solutions for adaptation to a new corpus are data augmentation [16, 73, 173], domain modeling
[190], architectural modifications [83], and scaling up the model capacity [128].

Updates to a Corpus. Updates to a corpus refer to the problem for the trained IR model to maintain
its ranking performance under continuously arriving new documents [23]. The goal of improving
generalizability on the updates to a corpus for a neural IR model f under top-K ranked results can
be formalized as:

ct+

G € Dicw (15)

train’

max Ry (th% Dtt;;tl) such that ng e D2
where ¢ is the time session of each corpus update. The main solution for maintaining the ranking
performance is continual learning, but the different paradigms of generative retrieval (GR) [124]
and dense retrieval (DR) [61] lead to different solutions in the two settings.

Below, we first introduce the evaluation metrics widely used for OOD generalizability on unseen
documents. Then, we detail solutions for adaptation to a new corpus and updates to a corpus,
respectively.

4.2.2  Evaluation. OOD generalizability of IR models on unseen documents is mainly measured
by the ranking performance under the new corpus. For both adaptation to a new corpus and updates
to a corpus, ranking performance is the common evaluation. For updates to a corpus, previous
work also evaluates the degree to which the old corpus is forgotten.

Metrics for Ranking Performance. For adaptation to a new corpus and updates to a corpus, the
ranking performance of IR models under unseen documents is evaluated by common metrics:
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— NDCG [74] evaluates the quality of ranked results by measuring the gain of a document based
on its position in the ranked list;

— MRR [36] evaluates the performance of a ranking result by calculating the average of the
reciprocal ranks of the first relevant document answer;

—HIT [23] evaluates the proportion of times a relevant document is found within a set of top-N
ranked results; and

— AP [123] evaluates the average performance of the ranking performance metrics, overall
new domains in adaptation to new corpus, and sessions in updates to a corpus; the ranking
performance metric could be any of the above.

Metrics for the Degree of Forgetting the Old Corpus. Updates to a corpus are an ongoing process
with many sessions; they require that the model memorizes new data without forgetting the old.
Therefore, some metrics have been proposed to evaluate the model performance from a time-series
perspective.

— Training time [18] evaluates the total time it takes for the IR model to learn new data while
recalling old data;
— Forget, [18] evaluates how much the model forgets at session ¢:

=1
1

Forget; = — max = pri), 16
B =% ]ZO 1€{0,....t-1} (e = ) (19

where p is the ranking performance under any common metrics; and
—FWT [18] evaluates how well the model transfers knowledge from one session to future

sessions:
1ot
_ Zin Xj=aPi -
= —taan a7
2

FWT

where T is the total number of sessions.

4.2.3 Adaptation to New Corpora. Proposed solutions to the adaptation to a new corpus involve
data augmentation, distributionally robust optimization, and domain-invariant projection.

Data Augmentation. Data augmentation involves generating or modifying data in such a way
that it bridges the gap between the source domain (the domain where the model was originally
trained) and the target domain (the new domain where the model is to be applied). This can
include techniques like synthesizing new data examples through transformations that maintain the
integrity of the underlying patterns, translating examples from one domain to another, or creating
semi-synthetic samples. GPL [173] uses an unsupervised domain adaptation method generative
pseudo labeling, which combines a query generator with pseudo labeling from a cross-encoder.
HyperR [19] performs a hyper-prompted training mechanism to enable uniform retrieval across
tasks of different domains.

There is other work that conducts unsupervised pre-training by using large-scale positive and
negative pairs with different data augmentation methods such as, query generation [22, 96, 115,
115, 150, 167], synthetic pre-training [73, 126, 146, 190], or synthetic relevance labels [41, 54, 94,
101, 144]. Overall, data augmentation can enrich the training set to include more domain-relevant
variations, thereby enhancing the model’s ability to generalize across domains.

Very recently, LLMs for data augmentation have significantly enhanced IR models by enabling
effective corpus adaptation [3, 16, 89]. Anaya-Isaza and Mera-Jiménez [5] explore various data
augmentation strategies combined with transfer learning to improve MRI-based brain tumor
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detection accuracy. Chen et al. [27] develop a cross-domain augmentation network to enhance
click-through rate prediction by transferring knowledge between domains with different input
features. Oh et al. [131] propose a prompt-based data augmentation method using generative
language models for creating synthetic parallel corpora, improving neural machine translation
performance.

Domain Modeling. Domain modeling seeks to model the data from both the source and target
domains into a common feature space where the differences between the domains are minimized.
The idea is to learn a representation of the data that retains the essential information for the
task at hand while discarding domain-specific features that might lead to bias or overfitting. By
doing so, the model learns to focus on the underlying task without being distracted by differences
between the domains. COCO-DR [190] use implicit distributionally robust optimization to reweight
samples from different source query clusters for improving model robustness over rare queries
during fine-tuning. Together with contrastive learning, this approach significantly improves the
generalization of DRM over different corpora. There have been many successive efforts to optimize
for this problem, including MoDIR [186], and ToTER [81]. Xu et al. [187] address the domain OOD
challenge by modeling a single passage as multiple units with two objectives. One is the semantic
balance between units and the other is the extractability of essential units. Distributionally robust
optimization helps in reducing the sensitivity of the model to changes in data distribution, thereby
improving its adaptability.

Another way to deal with new domain data is domain-invariant projection. Zhan et al. [192]
have been the first to use a relevance estimation module for modeling domain-invariant matching
patterns and several domain adaption modules for modeling domain-specific features of multiple
target corpora. Xian et al. [185] propose a list-level alignment method, which aligns the distributions
of the lists and preserves their list structure. They also demonstrate the superiority of their method
on theoretical grounds. The domain-invariant feature space enables the model to perform well on
the target domain using knowledge acquired from the source domain, thereby facilitating effective
domain adaptation.

Architectural Modifications. By optimizing the architecture of an IR model, the model can be
made to have good domain adaptability. For instance, hybrid retrieval models have been employed
to integrate out-of-domain semantics, enhancing zero-shot capabilities and using core strengths of
foundational model features [26, 91]. Additionally, DESIRE-ME [83] uses a mixture-of-experts to
tailor retrieval strategies effectively across various domains.

Moreover, methods like employing search agents in hybrid environments or using knowledge
distillation with hard negative sampling further support the development of IR systems that
maintain high performance in unseen domains [51, 71]. These strategies collectively enhance the
adaptability and effectiveness of retrieval systems across a range of out-of-domain scenarios.

Scaling Up the Model Capacity. Scaling up the model capacity has been identified as a crucial
approach that significantly boosts a model’s ability to handle diverse data types and improve
retrieval effectiveness across unfamiliar domains.

Ni et al. [128] explore the impact of enlarging dual-encoder architectures. They demonstrate that
larger models are not only more capable of handling complex queries but also exhibit enhanced
generalization across different domains. In a similar vein, Lu et al. [110] introduce “Ernie-search”
which uses a novel method of self on-the-fly distillation to bridge the gap between cross-encoder and
dual-encoder architectures. This technique enhances the dual-encoder’s performance by distilling
knowledge from a more powerful cross-encoder, effectively scaling up the retrieval capacity without
the direct computational cost typically associated with larger models.
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4.2.4 Updates to a Corpus. In this scenario, IR models need to be compatible with newly
added documents, however, this can lead to catastrophic forgetting problems with old documents.
Therefore, continuous learning [42] has become a dominant approach, which aims to adapt the
model to the newly added data without losing the ability to understand the old data by quickly
adapting to the new unlabeled (little labeled) data.

Continual Learning for GR. In GR, a sequence-to-sequence model is adopted to unify both the
indexing and retrieval stages. All document information is encoded into the model parameters. The
tight binding of the index to the retrieval module makes updating the index costly. To tackle this
challenge, DSI++ [122] adapts a continual learning method for DSI [166] to incrementally index
new documents while maintaining the ability to answer user queries related to both previously
and newly indexed documents. After that, CorpusBrain++ [64] uses a continual learning method
on another GR model called CorpusBrain [24]. Chen et al. [23] propose CLEVER to incrementally
index new documents while supporting the ability to query both newly encountered documents
and previously learned documents. CLEVER performs incremental product quantization [75] to
update a partial quantization codebook, and use a memory-augmented learning mechanism to
form meaningful connections between old and new documents. Subsequent work on continuous
learning has been devoted to the problem of guaranteeing to updates to a corpus for different GR
models, for example, DynamicIR [189] and IncDSI [85].

Continual Learning for DR. In DR, the model needs to learn the representation space of the entire
corpus and encode each document into an embedding to serve as the index. Therefore, continual
learning for DR should effectively adapt to the evolving distribution with the unlabeled new-coming
documents, and avoid re-inferring all embeddings of old documents to efficiently update the index
each time the model is updated. L?R [18] uses backward-compatible representations to deal with
this problem. It first selects diverse support negatives for model training, and then uses a ranking
alignment objective to ensure the backward-compatibility of representations.

4.3 OOD Generalizability to Unseen Queries

Deep-learning-based models, constrained by their training data, often falter when faced with novel
query formulations. Previous work has analyzed the generalizability of IR models under query
variants and different query types [103, 137, 183, 204], respectively. Next, we summarize prior
work and how to improve the generalizability of IR models under unseen queries. The specific
methodology categorization is shown in Figure 7.
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4.3.1 Definition. Generalizability to unseen queries indicates the capacity of an IR model to
sustain its retrieval performance when confronted with new and unfamiliar query formulations.
Enhancing a model’s OOD generalizability with respect to unseen queries mainly involves im-
proving the retrieval accuracy of the IR model across a variety of novel queries. Without loss of
generality, given a test set Dyeq; comprising new queries Q, which introduce a new distribution G,
the objective of augmenting the OOD generalizability of a neural IR model f for unseen queries
under top-K ranked results can be formalized as:

max Ry ( TDwans @test, K ) such that Q.g € Dirain, éN ¢ € @test. (18)

Specifically, the new queries Q may result from two main scenarios with respect to query variation
and unseen query type:

Query Variation. Query variations refer to different expressions of the same information need.
The way in which information is expressed may impact the effectiveness of IR models [137]. Some
query variants, which introduce additional information, e.g., through query expansion, tend to
enhance the retrieval performance [11, 12]. Some introduce noise, such as typos, grammatical
errors, and variations in word order, which often challenges the robustness of the IR model [20,
137, 206]. In this article, we mainly focus on the latter one.

The goal of improving generalizability on the query variation for a neural IR model f under
top-K ranked results can usually be formalized as:

max Ryt (fDuums G (Diest) . K) such that Q.g € Dyrain, G Q). € G (Diest), (19)

where G(-) is a query variation generator that can generate the query variant based on each query in
Q. Among the main solutions for maintaining consistent performance when conformed with query
variation are (1) self-teaching method, (2) contrastive learning method, and (3) hybrid method.

Unseen Query Type. Unseen query type refers to unfamiliar query types with new query intents
that have not been seen during model training. The main solution for unseen query types is cross-
domain regularization. The goal of improving generalizability on an unseen query type for a neural
IR model f under top-K ranked results can be formalized as:

max Ry (f"Dt?' Z)test,K) such that Q7 € D} szg €D, (20)

train’

where 7; and 7; are the different types of queries.

Next, we first introduce evaluation metrics that are widely used for OOD generalizability on
unseen queries. Then, we detail existing solutions for query variation and unseen query type,
respectively.

4.3.2  Evaluation. OOD generalizability of IR models on unseen queries is mainly measured by
the ranking performance under the new query set. In addition to the metrics we mentioned in
Section 4.2.2 for measuring ranking performance, there are two other metrics for ranking. There
are also specific metrics for unseen query types to evaluate differences in the performance of IR
models across query types:

Metrics for Ranking Performance. In addition to MRR and NDCG, the ranking performance of
the IR model under unseen queries is evaluated by other common metrics for query variation and
unseen query type:

— Recall [31] measures the proportion of relevant documents that are successfully retrieved
from the total amount of relevant documents available.
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— MAP [90] quantifies the average precision of retrieval across different recall levels, effectively
summarizing the precision at each point where a relevant document is retrieved.

Specific Metrics for Unseen Query Type. DRoop evaluates the drop rate between the ranking
performance on the original type of queries and the ranking performance on the unseen type of
queries [183]:

DRoop = pOOD—_pHD’ (21)

pID
where pyrp is the ranking performance on original type of queries and poop is the ranking perfor-
mance on unseen type of queries.

4.3.3 Query Variation. Solutions to the query variation challenge include (1) a self-teaching
method, (2) a contrastive learning method, and (3) a hybrid method.

Self-Teaching Methods. The self-teaching approach to query variations focuses on distilling the
matching capabilities of the IR model on the original clean query to the case of query variants.
These methods often align the model output for distillation. Chen et al. [31] argue that the drift
between query variations and original queries in model representation space affects the subsequent
effectiveness of IR models. Based on this, they propose RoDR, which calibrates the in-batch local
ranking of query variants to that of the original query for the representation space alignment.
Zhuang and Zuccon [207] also notice this issue and employ CharacterBERT [47] as the backbone
encoder to perform a character-level self-teaching method. This method distills knowledge from
queries without typos into the queries with typos in a character embedding space. ToRoDer [205]
uses a pre-training method that uses bottlenecked information to recover the query variation.

Contrastive Learning Methods. Contrastive learning-based approaches to query variation typically
make the model robust to query variants by enhancing the supervision of query variants against
the original query as well as positive and negative samples. Zhuang and Zuccon [206] propose
a simple typos-aware training method for BERT-based DRMs and NRMs. During training, this
method randomly selects query variants and migrated the supervised signals of the original queries
directly for training. By comparing the similarity between a query and its variations and other
distinct queries with contrastive learning, Sidiropoulos and Kanoulas [158] improve the robustness
of IR models when encountering typos. MIRS [99] uses a robust contrastive method by injecting
[MASK] tokens into query variations and encouraging the representation similarity between the
original query and the variation.

Hybrid Methods. Some work enables IR models to perform better than previously when dealing
with query variants through a combination of self-teaching and contrastive learning. Tasawong et al.
[165] propose a typo-robust representation learning method that combines contrastive learning
with dual self-teaching achieving competitive performance. CAPOT [20] introduces a notion of
an anchoring loss between the unaltered model and the aligned model and designs a contrastive
alignment post-training method to learn a robust model. Sidiropoulos and Kanoulas [159] argue
that previous work does not make full use of positive samples and employ contrastive learning
with self-teaching that supports multiple positives. There is also work that uses LLMs to enhance
the ability to deal with typos [132].

4.3.4 Unseen Query Type. Part of the unseen query type problem may be caused by unseen
documents. Solutions to such problems are presented in listed in Section 4.2. In this subsection, we
present additional solutions for unseen query types.
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Table 1. Benchmark Datasets for Unseen Documents

Type Dataset #Corpora Publications

[3, 5, 16, 19, 22, 26, 27, 41, 51, 54, 71, 73,

Adaptation to a 81, 83, 89, 91, 94, 96, 101, 110, 115, 126

BEIR [1 1 , 83, 89, 91, 94, 96, ) s i s

new corpus R [167] 8 128, 131, 144, 146, 150, 167, 173, 185-187,
190, 190, 192]

Type Dataset #Documents #Qin  #Qdey  #Qeyal Publications
CDI-MS [23] 32M 370K 5193 5,793 [23]

Updates to a CDI-NQ [23] 88M 500K 6,980 6,837 [23]

corpus LL-LoTTE [18] 5.5M 16K 85K 8.6K [18]
LL-MultiCPR [18] 30M 136K 15K 15K [18]

#Documents denotes the number of documents in corpus; #Qirin denotes the number of queries available for training;
#Qgev denotes the number of queries available for development; #Qey, denotes the number of queries available for
evaluation; #Corpora denotes the number of corpora.

Wau et al. [183] analyze the robustness of ranking models in the face of unseen query types with
five types of queries. They find that most NRMs do not generalize well to unseen query types. Even
after training on multiple types of queries, NRMs still perform poorly when faced with a new kind
of query. Among all ranking models, traditional probabilistic ranking models, such as BM25 [149],
have the strongest generalizability to OOD query types, while NRMs are the worst. Liu et al. [103]
analyze the robustness of GR models and DRMs under different query types and find that both
models are sensitive to query types.

To improve the generalizability to unseen query types for IR models, Cohen et al. [35] explore
the use of adversarial learning as a regularization technique across different domains within the
ranking task framework. By employing an adversarial discriminator and training a NRM across a
limited number of domains, the discriminator acts to give negative feedback, thereby preventing
the model from adopting domain-specific representations. Bigdeli et al. [14] propose to integrate
two kinds of triplet loss functions into neural rankers such that they ensure that each query is
moved along the embedding space, through the transformation of its embedding representation,
in order to be placed close to its relevant document. In this way, they provide the opportunity to
jointly rank documents and difficult queries. There has been some work focusing on the challenges
of unseen query types in different scenarios [113, 116, 152].

4.4 Benchmark Datasets

In this section, we present commonly used datasets for studying OOD robustness in IR. All datasets
can be found in the BestIR benchmark; details about BestIR can be found in Appendix B.

4.4.1 Datasets for Unseen Documents. The datasets for unseen documents mainly involve adap-
tation to new corpus datasets and updates to corpus datasets. Datasets on unseen documents in IR
are listed in Table 1.

Adaptation to a New Corpus. In order to model the migration of models between corpora of
different domains, datasets that cater for adaptation to a new corpus typically aggregate multiple
domain-specific IR datasets. Of these, BEIR [167] is the best-known example; it includes nine
retrieval tasks, such as fact-checking, news retrieval, question answering, entity retrieval. It also
has 18 datasets, across diverse tasks, diverse domains, task difficulties, and diverse annotation
strategies.
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Table 2. Benchmark Datasets for Unseen Queries

Type Dataset #Qeval Publications
DL-Typo [207] 60 [207]
noisy-MS MARCO [20] 5.6k [20]
rewrite-MS MARCO [20] 5.6k [20]
noisy-NQ [20] 2k [20]

Query variation noisy-TQA [20] 3k [20]
noisy-ORCAS [20] 20k [20]
variations-ANTIQUE [137] 2k [137]
variations-TREC19 [137] 430 [137]
Zhuang and Zuccon [206] 41k [206]
MS MARCO [127] 15k [183]

Unseen query type L4 [163] 10k [35]

#Qeval denotes the number of queries available for evaluation.

Updates to a Corpus. Updates to a corpus focus on the performance of an IR model when updates
to a corpus occur. In order to follow updates to a corpus over time, the available datasets are mainly
constructed by slicing or expanding the existing dataset. For example, to mimic the arrival of new
documents in MS MARCO [127], CDI-MS [23] first randomly samples 60% documents from the
whole corpus as the base documents. Then, it randomly samples 10% documents from the remaining
corpus as the new document set, which is repeated four times.

4.4.2 Datasets for Unseen Queries. The datasets for unseen queries mainly involve query varia-
tion datasets and unseen query type datasets. Existing datasets on unseen queries in IR are shown
in Table 2.

Query Variation Datasets. The importance of query variation datasets lies in their ability to
simulate real-world search scenarios, where users often have unique ways of expressing their
information needs. Query variation datasets contain sets of queries that target the same information
need but are expressed in alternative ways, reflecting the natural diversity in how different users
might phrase their search queries. Such datasets can include paraphrased queries, queries with
typos, order-swapped queries, and queries without stop words. For example, Penha et al. [137]
construct query variation datasets by turning queries from TREC DL19 [39] and ANTIQUE [66]
into different variants using four categories in 10 ways.

Unseen Query Type Datasets. Unseen query type datasets have queries that are not repre-
sented in the training data, either by virtue of their topic or the nature of the information be-
ing sought. For example, the MS MARCO dataset [127] only contains five types of queries, i.e.,
location, numeric, person, description, and entity. The primary purpose of these datasets is to
test the generalization ability of IR models to novel, real-world query scenarios that users may
present.

5 Adversarial Robustness

Deep neural networks have been found to be vulnerable to adversarial examples that can produce
misdirection with human-imperceptible perturbations [46, 57]. In IR, deep learning-based models
are also likely to inherit these adversarial vulnerabilities [164], which raises concerns about the
robustness of neural IR systems. Building on the definitions of adversarial robustness in IR provided
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in Section 2.2, we survey work on adversarial robustness, focusing specifically on adversarial
attacks and adversarial defenses.

5.1 Overview

In IR, adversarial robustness has gained significant attention in competitive ranking scenarios, such
as web search, product search, and pharmaceutical search. In these scenarios, content publishers
often want their content to achieve a higher position on the search results page to gain more
exposure, which ultimately translates into more benefits [87].

Gaming and SEO in Competitive Ranking. When content publishers aim to improve their rankings,
the competitive ranking scenario becomes a gaming environment. In such scenarios, each content
publisher observes the current ranking of their documents and takes actions to improve their
rankings [87]. SEO is a typical representative of this type of activity; it has been around since the
dawn of the world wide web [65]. It includes white-hat SEO [59], which modifies documents in
good faith and within the rules and expectations of search engines to optimize the quality of web
pages. In contrast, black-hat SEO [21], maliciously exploiting loopholes of search engines, is used
to get a site ranking higher in search results.

Apart from the ranking competition among content publishers, there is also a game-theoretic
relationship between IR system owners and content publishers: IR system owners guide the opti-
mization of the entire corpus toward higher-quality content by establishing content manipulation
rules and ranking mechanisms, while content publishers seek to maximize their rankings based on
the current rules [87]. This gaming relationship provides the context and platform for studying
adversarial attacks and defenses in IR systems.

Traditional Web Spamming. Black-hat SEO creates a poor experience for the audience and
is a common concern among site owners. One adversarial search environment brought about
by black-hat SEO is primarily manifested in web spamming [21]. Web spamming refers to the
manipulation of Web page content to make spam pages appear relevant for certain queries. Its
specific methods, including term spamming and link spamming, have been described in detail
by Gyongyi and Garcia-Molina [65]. Since web spamming methods are often straightforward
and simple, they are usually easy to restrict. A representative approach is online spam detec-
tion [200, 201], which can effectively identify term spamming based on TF-IDF features in the
corpus. In the age of neural networks, this traditional attack and defense is translated to neural
methods.

Why Study Adversarial Attacks in IR? Building on developments in deep learning, neural networks
are now widely being used in IR models and have achieved excellent performance. Although
traditional web spamming can also have a significant attack effect on neural IR models, this method
does not really pose a threat due to its ease of detection. However, in the context of black-hat SEO,
neural IR models are at risk of being attacked due to the inherent vulnerability inherited from
neural networks. Therefore, adversarial attacks are being studied to expose vulnerability flaws in
neural IR models in advance.

Why Study Adversarial Defense in IR? To mitigate adversarial attacks, there is a growing body of
work that is focusing on adversarial defenses. Adversarial defense focuses on the early hardening of
model vulnerabilities discovered by adversarial attacks. Its goal is to obtain robust neural retrieval
models to build reliable IR systems.

The relationship between adversarial attacks and defenses is shown in Figure 8. Adversarial
robustness has begun to gain widespread attention. Below, we describe these efforts from several
perspectives: adversarial attacks, adversarial defenses, and benchmark datasets.
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Fig. 8. Purpose and relationship between adversarial attacks and defenses.

5.2 Adversarial Attacks

As neural networks have become increasingly prevalent in IR systems, they have also become a
target for adversarial attacks. Studying adversarial attacks can help understand the vulnerability of
neural IR models before deploying them in real-world applications, and it can also be used as a
surrogate evaluation and support the development of appropriate countermeasures.

5.2.1 What Are the Differences between IR Attacks and CV/NLP Attacks? Adversarial attacks
have undergone significant development in the fields of CV and NLP [46, 57], where attacks
are typically directed at image retrieval and text classification tasks, respectively. However, the
landscape of adversarial attacks differs in IR: (1) compared with image retrieval attacks, IR attacks
need to maintain semantic consistency of the perturbed document with the original document by
considering the textual semantic similarity, rather than pixel-level perturbations within a fixed
range in continuous space; and (2) inspired by black-hat SEO, the goal of IR attacks is to inject
imperceptible perturbations within a document to improve its ranking for one or multiple specific
queries within the entire candidate set or corpus, not inducing classification errors by the model.

Without loss of generality, given a query g and target document d, the goal of generating
imperceptible perturbations p to attack against a neural IR model f under top-K ranked results can
usually be formalized as:

max (K—ﬂf(q,dEBp)+/1~Sim(d,d69p)), (22)
P

where 77 (¢,d @ p) denotes the ranking position of the perturbed document d @ p in the ranked
list generated by f with respect to query ¢. The Sim (-) function measures the similarity between
the adversarial example and the original document, both textually as well as semantically. A is
a regularization parameter used to balance two goals: keeping the adversarial samples as close
as possible to the original document, while allowing adversarial samples to be ranked as high
as possible. Ideally, the adversarial sample d @ p preserves the original semantics of d and is
imperceptible to human judges yet misleading to the neural IR models.

5.2.2  What Is the Attack Setting? Depending on whether the attacker has access to the knowledge
of the parameters of the target model, the attack setup can be categorized into two main types
[100, 182]:

(1) White-box attacks: Here, the attacker can fully access the model parameters and use the
model gradient to directly generate perturbations.

(2) Black-box attacks: Here, the model parameters cannot be obtained; the attacker usually adopts
a transfer-based black-box attack paradigm [32]. They construct a surrogate white-box model
by continuously querying the model and getting the output. Specifically, a surrogate model
is trained to simulate the performance of the target model, and then the surrogate model is
attacked to the transferability of the adversarial samples to indirectly attack the target model.
In IR, attackers can query the target model to obtain a ranked list with rich information.
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Algorithm 1: Adversarial Sample Generation for Neural IR Models

Require:
A target query g, a target document d, a query collection @, a corpus C, a neural IR model
f, and a ranking loss function L
Ensure: An adversarial document d%%°
1: if f is a black-box model then
2. Procedure Surrogate model imitation
3:  Query the model f with @, and collect ranked lists.
4:  Train the surrogate model f with Q and the collected ranked lists.
s f=f
6 end if
7: Procedure Adversarial attack
8: Initialize the adversarial example d°* as a copy of the target document d.
9: fort « 1tondo
10:  Query the model f with the target query g, and collect the ranked list D.
11:  Calculate the gradient of £ with respect to the target query g and target document d:
122 gradient « V4L (f,q,d°%, D)
13:  Generate the higher dimensional adversarial perturbation p:
14:  p <« normalize(gradient)
15:  Mapping high-dimensional perturbations to text space:
16: pep
17:  Add textual perturbations:
18 d9 —dop
19: end for

20: return d%4°

Adversarial
example

Adversarial
example

Neural

retrieval model

Corpus ) 5 Document
candidates
Recalled
candidates
Adversarial retrieval attack Adversarial ranking attack

Fig. 9. Adversarial retrieval attacks vs. adversarial ranking attacks. AREA, Adversarial retrieval attacks.

Therefore, the surrogate model often has access to sufficient training data, making this attack
effective [100, 182].

There are various attack methods and target models in IR. We present pseudo-code to illustrate a
fundamental IR attack in Algorithm 1.

According to the type of target model, attack efforts against IR models can be categorized into
two types, which are visualized in Figure 9:
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Fig. 10. Classification of adversarial attacks against neural IR models.

(1) Adversarial retrieval attacks (AREA) target the first-stage retrieval, mainly against DRMs;
and
(2) Adversarial ranking attacks target the re-ranking stage, mainly against NRMs.

The methodology for conducting adversarial attacks in IR may differ based on the chosen attack
strategy and the target model. A categorization of adversarial attacks in IR is shown in Figure 10.

It is worth noting that in adversarial attacks, we primarily focus on scenarios targeting the
inference phase. In CV and NLP, there are cases where attackers manipulate the model by influencing
the training phase [102, 188]. In IR, this assumption seems to differ from typical competitive ranking
scenarios, such as SEO. Backdoor attacks are one such example [109], where attackers can inject
documents with specific features into the training dataset (which is also part of the corpus). In IR
attacks, there is only limited related work, which we will briefly introduce below. We look forward
to seeing more research being pursued in this area in the future.

Next, we introduce evaluation, AREAs, and adversarial ranking attacks in IR.

5.2.3  Evaluation. The evaluation of adversarial attacks includes both attack performance and
naturalness performance.

Attack Performance. Attack performance mainly refers to the degree of ranking improvement
after a target document has been attacked. In general, the following automatic metrics for attack
performance are widely adopted:

— Attack success rate (ASR)/SR [100, 105, 182], which evaluates the percentage of target
documents successfully boosted under the corresponding target query;

— Average boosted ranks (Boost/Avg.boost) [100, 104, 105], which evaluates the average improved
rankings for each target document under the corresponding target query;

— Boosted top-K rate (TKR) [100, 105], which evaluates the percentage of target documents that
are boosted into top-K w.r.t. the corresponding target query; and
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—Normalized ranking shifts (NRS) rate [104, 177], which evaluates the relative ranking
improvement of adversarial examples that are successfully recalled into the initial set with K
candidates:

NRS = (IT — I jado ) /T4 X 100%, (23)

where IT; and T aa0 are the rankings of d and d%?, respectively, produced by the target IR
model.

The effectiveness of an adversary is better with a higher value for all these metrics.

Naturalness Performance. Naturalness performance refers primarily to the degree to which a
target document is imperceptible to humans after it has been attacked. In general, the following
automatic metrics for naturalness performance and human evaluation are widely adopted:

— Automatic spamicity detection, which can detect whether target pages are spam or not; the
utility-based term spamicity method OSD [200] is usually used to detect the adversarial
examples;

— Automatic grammar checkers, i.e., Grammarly® and Chegg Writing,” which calculate the
average number of errors in the adversarial examples;

— Language model perplexity, which measures the fluency using the average perplexity calculated
using a pre-trained GPT-2 model [141]; and

— Human evaluation, which measures the quality of the attacked documents w.r.t. aspects of
imperceptibility, fluency, and semantic similarity [100, 105, 183].

5.2.4 AREA. In this subsection, we introduce the task definition of AREAs and methods to
achieve such attacks.

Task Definition. The AREA task is designed for attacks against DRMs. The objective of AREAs is
centered around the manipulation of a document that initially fails to be recalled. By integrating
adversarial perturbations, the aim is to ensure that this document is subsequently retrieved by
the first-stage neural retrieval model, thereby securing its presence within the candidate set. This
approach not only challenges the robustness and reliability of neural retrieval systems but also
raises significant questions regarding the integrity of information authenticity [104, 199]. The goal
of AREAs under top-K ranked results can be formalized as:

max (K — Recally (q,d ® p) + A Sim (d,d & p)), (24)
P

where Recally (g,d @ p) denotes the recalled position of the perturbed document d & p produced
by the first-stage retrieval model f with respect to query g given the entire corpus. A smaller value
of Recall denotes a higher ranking.

Method. Current retrieval attack methods mainly include corpus poison attacks, backdoor attacks,
and encoding attacks.

— Corpus poison attack: Corpus poisoning attacks construct adversarial samples against a specific
query and inject them into the corpus in the inference phase so that they are recalled. MCARA
[104] addresses this issue and attempts to mine the vulnerability of DRMs. It introduces
the AREA task, which intends to deceive a DRM into retrieving a target document that is
outside the initial set of candidate documents. Zhong et al. [199] adopt the HotFlip method
[46] from NLP to iteratively add perturbations in the discrete token space to maximize its

®https://app.grammarly.com/.
https://writing.chegg.com/.
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similarity to a set of queries. In this way, they maximize the contamination of the corpus
by a limited number of documents. MAWSEO [98] employs adversarial revisions to achieve
real-world cybercriminal objectives, including rank boosting, vandalism detection evasion,
topic relevancy, semantic consistency, user awareness (but not alarming) of promotional
content, and so on.

In addition, there has been some work that has uncovered special sensitivities of retrieval
models. For example, MacAvaney et al. [119] find that the high sensitivity of some models to
word and sentence order is also biased towards recalling factually correct text (rather than
just relevant text), and Weller et al. [178] find that denser retrieval models with dual-encoder
architectures are weaker at discriminating the relevance of content that contains negative
sentences.

— Backdoor attack: Backdoor attacks inject a small proportion of ungrammatical documents
into the corpus. When user queries contain grammatical errors, the model will recall the
learned triggering pattern and assign high relevance scores to those documents. Long et al.
[109] introduces a novel scenario where the attackers aim to covertly disseminate targeted
misinformation, such as hate speech or advertisements, through a retrieval system. To achieve
this, they propose a backdoor attack triggered by grammatical errors and ensure that attack
models can function normally for standard queries but are manipulated to return passages
specified by the attacker when users unintentionally make grammatical mistakes in their
queries.

— Encoding attack: By imperceptibly perturbing documents using uncommon encoded repre-
sentations, encoding attacks control results across search engines for specific search queries.
Boucher et al. [17] make words look the same as they originally do by adding an offset
encoding to them, while the search engines are deceived. The experiment on a mirror of
Simple Wikipedia shows that the proposed method can successfully deceive search engines in
realistic scenarios.

5.2.5 Adversarial Ranking Attack. In this subsection, we introduce the task definition of adver-
sarial ranking attacks and methods to achieve adversarial ranking attacks.

Task Definition. The adversarial ranking attack task is designed to attack against NRMs. Adver-
sarial ranking attacks typically involve introducing adversarial perturbations to a document already
present in the candidate set, to manipulate its ranking position either elevating or diminishing it
as determined by a NRM. The goal of adversarial ranking attacks under top-K ranked results can
usually be formalized as:

max (K —Ranks (q.d®p)+A-Sim(d,d @ p)), (25)
P

where Ranky (q,d ® p) denotes the position of the perturbed document d @ p in the final ranked
list generated by the NRM f with respect to query g. A smaller value of Rank denotes a higher
ranking.

Method. Adversarial ranking attacks against NRMs include word substitution attacks, trigger
attacks, and prompt attacks.

— Word substitution attack: Word substitution attacks typically boost a document’s ranking by
replacing a small number of words in the document with synonyms. A common method of
white-box word substitution attack is the gradient-based attack, where the attacker uses the
gradient of the loss function with respect to the input data to create adversarial examples.
These examples are designed to cause the model to make incorrect relevance predictions or
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rankings. Raval and Verma [145] present a systematic approach of using adversarial examples
to measure the robustness of popular ranking models. They follow an approach that is similar
to one used in text classification tasks [95] and perturb a limited number of tokens (with a
minimum of one) in documents, replacing them with semantically similar tokens such that the
rank of the document changes. Brittle-BERT [177] adds/replaces a small number of tokens to
a highly relevant or non-relevant document to cause a large rank demotion or promotion. The
authors find a small set of recurring adversarial words that, when added to documents, result
in successful rank demotion/promotion of any relevant/non-relevant document, respectively.
As for black-box word substitution attacks, in the field of ML, Szegedy et al. [164] find that
adversarial examples have the property of cross-model transferability, i.e., the adversarial
example generated by a surrogate model can also fool a target model. Black-box attacks in IR
usually adopt this transfer-based paradigm due to the excellent performance of imitation of
the target model. Wu et al. [182] propose the first black-box adversarial attack task against
NRMs, the word substitution ranking attack (WSRA) task. The WSRA task aims to fool
NRMs into promoting a target document in rankings by replacing important words in its
text with synonyms in a semantic-preserving way. Based on this task, the authors propose a
novel pseudo-relevance-based adversarial ranking attack method, which outperforms web
spamming methods by 3.9% in ASR. The WSRA task focuses only on attacks on single query-
document pairs and does not take into account the dynamic nature of search engines. Based
on this, Liu et al. [105] introduce the topic-oriented adversarial ranking attack task, which
aims to find an imperceptible perturbation that can promote a target document in ranking for
a group of queries with the same topic.

— Trigger attack: Jiang et al. [79] find that NRMs are more sensitive to the text at the front of the
position through the analysis of information bottleneck in the ranking models. Trigger attacks
boost document rankings by injecting a generated trigger sentence into a specific location in
the document (e.g., the beginning). Song et al. [160] propose using semantically irrelevant
sentences (semantic collisions) as perturbations. They develop gradient-based approaches for
generating collisions given white-box access to an NRM. Goren et al. [59] propose a document
manipulation strategy to improve document quality for the purpose of improving document
ranking. Liu et al. [100] propose a trigger attack method, PAT, empowered by a pairwise
objective function, to generate adversarial triggers, which cause premeditated disorderliness
with very few tokens. TRAttack [161] uses rewriting existing sentences in the text to improve
document ranking with learning ability from the multi-armed bandit mechanism.

— Prompt attack: Prompt attacks use prompts to guide a language model to generate perturbations
based on existing documents to improve document ranking. Chen et al. [29] propose a
framework called imperceptible document manipulation (IDEM) to produce adversarial
documents that are less noticeable to both algorithms and humans. IDEM finds the optimal
connect sentence to insert into the document through a language model. Parry et al. [135]
analyze the injection of query-independent prompts, such as “true” into documents and find
that the prompt perturbation method is valid for several sequence-to-sequence relevance
models like monoT5 [130].

— Multi-granular attack: Multi-granular attacks focus on generating high-quality adversarial
examples by incorporating multi-granular perturbations, i.e., word level, phase level, and
sentence level. Liu et al. [107] propose RL-MARA, a reinforcement learning framework, to
navigate an appropriate sequential multi-granular ranking attack path. By incorporating word-
level, phrase-level, and sentence-level perturbations to generate imperceptible adversarial
examples, RL-MARA is able to increase the flexibility of creating adversarial examples, thereby
improving the potential threat of the attack. In addition to gradient-based attacks, Parry
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et al. [136] propose the use of LLMs to generate entity-specific promotional text for query-
agnostic ranking attacks. By crafting text with strategic token placements and leveraging the
transformer’s tendency to prioritize certain positions, the method achieves query-agnostic
content injection. Generated confrontation content may include specific words, phrases, or
even descriptions. Experiments demonstrate that the attack successfully manipulates search
rankings to promote target content, even when unrelated to user queries.

5.3 Adversarial Defenses

With the advent of SEO, many defenses have been created to counter malicious attacks. In the
field of adversarial defenses, much work has been devoted to training robust neural IR models or
identifying malicious adversarial examples in advance.

5.3.1 IR Defense Task. The primary objective of defenses in IR is to maintain, or even enhance,
the performance of IR models when the test dataset includes adversarial examples. This involves the
implementation of strategies during the training or inference phases: the goal is to ensure that the
model’s ability to accurately retrieve relevant documents remains uncompromised, even in the
presence of manipulative adversarial perturbations.

Without loss of generality, given a test set Dyt and an adversarial document set D,qy, the goal
of adversarial defense against an neural IR model f under top-K ranked results can usually be
formalized as:

max Ryt (fDyuns Dres» K) such that Dy« Diest U Dagy.- (26)

The adversarial defense task is in the training or testing phase. In the testing phase, it is usually in
the form of attack detection. The training phase is usually in the form of both empirical defense
and certified robustness. We present pseudo-code to illustrate a fundamental IR defense, as shown
in Algorithm 2. A detailed categorization of adversarial defenses in IR is shown in Figure 11.

Next, we introduce the evaluation, attack detection, empirical defense, and certified robustness
of adversarial defense in IR.

5.3.2  Evaluation. Adversarial defense assessment includes metrics for the training phase and
metrics for the inference phase. Specifically, defenses for the training phase mainly comprise of
empirical defenses and certified robustness; and defenses for the inference phase mainly concern
the detection of adversarial samples.

Metrics Used in the Training Phase. Metrics in the training phase are mainly for evaluating the
ability of empirical defenses and certified robustness methods to maintain the original ranked list
in the presence of adversarial samples:

— CleanMRR@k evaluates MRR [36] performance on a clean dataset;

— RobustMRR@k [108] evaluates the MRR performance on the attacked test dataset;

— ASR [108] evaluates the percentage of the after-attack documents that are ranked higher than
the original documents; and

— Location square deviation [108] evaluates the consistency between the original and perturbed
ranked list for a query, by calculating the average deviation between the document positions
in the two lists.

Metrics Used in the Inference Phase. Metrics in the inference phase are mainly used for evaluating
the ability of attack detection methods to accurately recognize adversarial samples:

— Point-wise detection accuracy [28] evaluates the correctness of the detection of whether a
single document has been perturbed or not;
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Algorithm 2: Adversarial Defense in Neural IR Models
Require:
A query collection Q, a corpus C, a neural IR model f, potentially adversarial documents

Ensure: Safe and robust document rankings

1: Procedure Attack Detection
2: Train a detector model g using benign and adversarial examples from Q and C
3: for each document d € C do
4:  Compute the probability g(d) of d being adversarial
5. if g(d) > threshold then
6
7
8

Flag document d as adversarial
end if
: end for

9: Procedure Empirical Defense

10: Fine-tune f on adversarial examples using augmented training set Q’, C’

11: for each training iteration do

12:  Apply random transformations to documents in C’ to simulate adversarial perturbations
13:  Update f to minimize loss on transformed documents

14: end for

15: Procedure Certified Robustness

16: Incorporate certified defense methods into f (e.g., randomized smoothing)
17: for each query g € Q do

18:  Compute a robustness certificate for the ranking produced by f(q)

19:  if certificate fails then

20: Adjust f to enhance robustness for g
21:  end if
22: end for

23: return Updated and defended neural IR model f

—#DD [28] denotes the average number of discarded documents ranked before the relevant
document; and
—#DR [28] denotes the average number of discarded relevant documents.

5.3.3 Attack Detection. While progress in empirical defenses and certified robustness aids
in training NRMs to be more robust in their defense against potential attacks, the detection of
adversarial documents has also been explored.

Perplexity-Based Detection. Perplexity-based detection mainly uses the difference in the distribu-
tion of perplexity between the adversarial samples and the original document under the language
model for recognition. Adversarial perturbations applied to original documents can significantly
impact the semantic fluency of their content [29, 100, 104]. Song et al. [160] have developed a
perplexity-based detection to counter ranking attacks. Detection involves using a pre-trained
language model to assess the perplexity of documents, where higher perplexity values indicate less
fluent text. Consequently, any document surpassing a certain perplexity threshold is filtered out
from consideration.

Language-Based Detection. Language-based detection primarily uses “unnatural” language to
identify adversarial samples. Adversarially generated or modified documents often exhibit grammat-
ical inconsistencies or lack context coherence [29, 155], since documents that have been maliciously
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Fig. 11. Classification of adversarial defenses in neural IR.

perturbed are usually grammatically incorrect and incoherent. Some work uses grammar checkers,
i.e., Grammarly and Chegg Writing, to detect adversarial examples [100, 105]. The number of
grammatical errors in the target document according to the grammar checkers and the quality
scoring are used as indicators of linguistic acceptability. Any document deemed to have poor
linguistic acceptability is subsequently discarded.

Learning-Based Detection. Learning-based detection uses neural networks to model the char-
acteristics of adversarial samples, and empirically learns to distinguish adversarial samples from
clean samples. As mentioned earlier, spamming, perplexity-based, and language-based detectors
lack knowledge of the adversarial documents, potentially leading to sub-optimal performance.
Consequently, Chen et al. [28] introduce two kinds of detection task, namely point-wise and list-
wise detection, to standardize evaluation processes of the efficacy of adversarial ranking detection
methods. They fine-tune BERT and RoBERTa models using the original and adversarial document
pairs present in the training set of the generated dataset. Experimental results demonstrate that a
supervised classifier can effectively mitigate known attacks, the detection accuracy can be up to
99.5%, but it performs poorly against unseen attacks.

5.3.4 Empirical Defense. Empirical defenses attempt to make models empirically robust to
known adversarial attacks; this has been extensively explored in image retrieval [120] and text
classification [176]. The aim of an empirical defense is to find adversarial examples during training
and use them to augment the training set.

Data Augmentation. Data augmentation often employs randomized or heuristic methods to
transform the training samples, thereby expanding the training data. In the training phase, models
that have seen augmented data will have some defense against adversarial samples. There are many
data augmentation methods in NLP that achieve good defense performance [77, 148].

In IR, Wu et al. [181] are the first to apply data augmentation to the defense of NRMs. They
find that data augmentation can reduce the ASR to some extent. However, it performs worse than

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 17. Publication date: November 2025.



Robust Neural Information Retrieval: An Adversarial and OOD Perspective 17:31

customized defenses for IR. Hence, simply augmenting the training documents (as in NLP) is not a
robust defense against attacks in IR.

Adversarial Training. Adversarial training is one of the most effective defenses against specific
seen attacks. By integrating pre-constructed adversarial samples into training data, adversarial
training has demonstrated a strong defense in both CV and NLP [120, 203].

In IR, there is a body of work that implements adversarial training by means of adversarial
optimization [172, 194, 202], such as GAN [55]. In this context, the goal is often to simply improve
the effectiveness of the IR model. Meanwhile, there is work by Lupart and Clinchant [112] and
Park and Chang [134] who attempt to use adversarial training for improving robustness. By
incorporating adversarial examples into training data, adversarial training has become the de facto
defense approach to adversarial attacks against NRMs. However, this defense mechanism is subject
to a tradeoff between effectiveness and adversarial robustness.

To tackle this issue, Liu et al. [108] define the perturbation invariance of a ranking model and
design a perturbation-invariant adversarial training (PIAT) method for ranking models to
achieve a better effectiveness-robustness tradeoff. Experimental results on several ranking models
demonstrate the superiority of PIAT compared to earlier adversarial defenses.

5.3.5 Certified Robustness. Since empirical defenses are only effective for certain attacks rather
than all attacks, competition emerges between adversarial attacks and defense methods. To solve
the attack-defense dilemma, researchers resort to certified defenses to make models provably robust
to certain kinds of adversarial perturbations. In NLP, Jia et al. [78] have been the first to propose to
certify the robustness of adversarial word substitutions by using interval bound propagation [44].

In the field of IR, Wu et al. [181] propose a rigorous and provable certified defense method for
NRMs. They define certified Top-K robustness for ranking models since users mainly care about
the top-ranked results in real-world scenarios. Then, they propose CertDR to achieve certified
top-K robustness, based on the idea of randomized smoothing. Their experiments demonstrate
that CertDR can significantly outperform state-of-the-art empirical defense methods for ranking
models.

5.4 Benchmark Datasets

In this section, we present the datasets commonly used for studying adversarial robustness. Prior
work on attacks and defenses against robustness has focused on experiments on previously pub-
lished IR datasets, as shown in Table 3. All datasets can be found in the BestIR benchmark; see
Appendix B for an overview of the resources collected in BestIR.

Basic Datasets. Some datasets in IR are adapted for reuse by attack and defense methods as basic
datasets. These include MS MARCO document/passage [127] and Clueweb-09B [34]. Some work
[104, 107, 182] performs experiments against attacks and defenses directly on these datasets. For
example, prior work usually uses the training set of the basic dataset to train an NRM as the target
model [107, 182]; the queries in the development set are used as target queries, and a portion of the
documents in the ranked list of each query is sampled as target documents. Attacks on these target
documents measure the performance of adversarial attack methods. We will discuss the specific
evaluation methods in Section 5.2.

Expansion of Datasets. Some collaborative benchmarks, such as TREC DL19 [39] and TREC DL20
[38], have provided additional query collections for evaluation against the base dataset. Similarly,
these query collections can be used to evaluate the effectiveness of attack methods. Queries in
these datasets are often attacked as additional sets of targeted queries. For example, existing work
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Table 3. Benchmark Datasets for Studying Adversarial Robustness

Dataset #Documents #Qiin  #Qdev  #Qeval References

MS MARCO document [127] 3.2M 370K 5,193 5,793 [100, 104, 107, 181, 182]
MS MARCO passage [127] 8.8M 500K 6,980 6,837 [29, 104, 108, 177, 181, 182, 199]
Clueweb09-B [34] 50M 150 - - [107,177]

Natural Questions [88] 21M 60K 8.8K  3.6K [100, 109, 199]
TriviaQA [80] 21M 60K 8.8K 11.3K [109]

TREC DL19 [39] - - 43 - [100, 135, 177]

TREC DL20 [38] - - 54 - [135]

TREC MB14 [97] - - 50 - [100]

ASRC [142] 1,279 - 31 - [58,183]

Q-MS MARCO [105] - - 4,000 - [105]

Q-Clueweb09 [105] - - 202 - [105]

DARA [28] 164k 50k 3,490 3,489 [28]

#Documents denotes the number of documents in the corpus; #Qain denotes the number of queries available for training;
#Qgey denotes the number of queries available for development; #Qey, denotes the number of queries available for evaluation.

usually trains an NRM on the MS MARCO passage dataset and uses the 43 queries in TREC DL19
as the target queries to perform attacks [29, 100].

Off-the-Shelf Datasets. Some research has adapted the above datasets to construct new datasets
that can be used directly to perform attacks or evaluate defenses. For example, ASRC [142] is based
on documents in Clueweb that are manually modified to generate new adversarial samples for
evaluating the model’s adversarial defense abilities. Existing work has also used it to study the
effects of manual manipulation of documents on IR systems [58, 168]. To perform a topic-oriented
attack, Liu et al. [105] construct query groups on the same topic based on ORCAS [37] and the TREC
2012 Web Track [34] as a complement to MS MARCO document and Clueweb-09b, respectively.
DARA [28] is a dataset for detecting adversarial ranking attacks and includes two types of detection
task for adversarial documents.

6 Open Issues and Future Directions

In addition to the significant progress documented in Sections 4 and 5 above, robust neural IR
presents several remaining challenges and opportunities for future research.

6.1 Remaining Challenges and Issues

In this subsection, we identify challenges and issues in robust neural IR with a special focus on
adversarial robustness and OOD robustness, respectively.

6.1.1 Challenges on Adversarial Robustness in IR. Many key issues in adversarial robustness in
IR have not received much attention yet.

Penetration Attacks against the Whole “Retrieval-Ranking” Pipeline. As explained in Sections 4
and 5, there is a considerable body of work that focuses on attacking the first-stage retrieval [104,
199] and re-rank stage [100, 182] separately. Penetration attacks focus on exploiting vulnerabilities
within the retrieval re-rank pipeline, a critical component in IR systems that ranks results based on
relevance to the query. These attacks aim to manipulate rankings by identifying and exploiting
weaknesses in the pipeline’s design or its underlying algorithms. This manipulation can result
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in irrelevant or malicious content being ranked higher than genuine content, compromising the
integrity and reliability of the IR system.

Universal Attacks. Universal attacks represent a form of adversarial threat that is particularly
challenging due to its generalizability across different models and instances [170]. Unlike targeted
attacks that aim at specific vulnerabilities within a system, universal attacks exploit common
weaknesses that are present across a wide range of systems. This makes it difficult to defend
against them, as they require solutions that are not just effective for a single model or instance but
across the entire spectrum of possible configurations. The development of robust defenses against
universal attacks is therefore a significant challenge that demands innovative approaches and a
deep understanding of the underlying vulnerabilities.

Dynamic Attack Scenarios. Most prior work on adversarial attacks is based on static assumptions
about search engines [29, 100, 182]. However, search engines operate within a dynamic landscape,
which may include changes such as the expansion or reduction of the corpus, and the demotion of
documents suspected of spamming in their rankings. In search engines, the search engine results
page for a query is constantly changing. Research indicates that, in the dynamic environment
of search engines, current attack methods struggle to maintain a consistent ranking advantage
[105]. Therefore, designing attack methods that fully consider the dynamic nature of search engines
is both practically significant and challenging. At the same time, it is worthwhile to explore the
development of defense methods that evolve in tandem with updates to the search engine.

Gaming in Search Engines. The phenomenon of “gaming” in search engines, where individuals
or entities manipulate search results for competitive advantage, poses a significant challenge to
maintaining the integrity and relevance of search outcomes [87]. This competitive manipulation
not only undermines the quality of information presented to users but also erodes trust in the
search engine’s ability to deliver unbiased and accurate results. As search engines evolve into more
sophisticated platforms, so too do the methods employed by those looking to exploit their algorithms
for personal gain [142]. This ongoing battle between search engines and gamers necessitates the
development of more advanced detection and mitigation techniques that can adapt to new gaming
strategies, preserving the search engine’s role as a reliable source of information.

Defense against Unseen Attacks. In IR counter defenses, it is often the case that empirical defenses
where the attack method is known, can yield good results [108]. Whereas in real scenarios, the attack
methods are multiple and potentially unknown. Defending against unseen attacks is a paramount
challenge in enhancing adversarial robustness in IR systems. These attacks are particularly daunting
because they exploit new or unknown vulnerabilities, making traditional defense mechanisms,
which are often designed to combat known threats, ineffective. The key to overcoming this challenge
lies in the development of adaptive, intelligent systems capable of anticipating potential threats and
dynamically adjusting their defense mechanisms in real-time. Achieving this level of adaptability
and foresight requires a profound shift in the current paradigms of security in IR, embracing more
proactive and predictive approaches.

Defense in Practice. Implementing effective defense mechanisms in practice is a balancing act
between effectiveness, efficiency, and cost. Effective defense strategies are those that can accurately
detect and neutralize threats without significantly impacting the user experience or the relevance of
search results. However, the computational resources required for these strategies often come with
high costs and can affect the efficiency of the search engine, leading to slower response times and
decreased user satisfaction. To address these challenges, search engines are increasingly turning to
ML and artificial intelligence technologies that can provide scalable and cost-effective solutions [93,
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117]. These technologies enable the development of adaptive defense mechanisms that can learn
from attack patterns and evolve over time, offering a dynamic approach to security that maintains
the delicate balance between protecting the search engine and preserving its performance.

6.1.2  Challenges on OOD Robustness in IR. Several key issues in OOD robustness in IR have not
received much attention yet.

Reliance on Large-Scale Data. The reliance on large-scale datasets for training and evaluating IR
systems poses significant challenges in ensuring OOD robustness. Large datasets often contain
biases and do not necessarily represent the diversity of real-world scenarios [82], leading to models
that perform well on seen data but poorly on unseen, OOD examples [167, 190]. Addressing this
challenge requires innovative approaches to data collection and model training that prioritize
diversity and real-world applicability, ensuring that IR systems remain reliable and effective across
a broad range of OOD scenarios.

Lack of Harmonized Benchmarks for Multiple OOD Scenarios. A major burden in enhancing OOD
robustness in IR is the lack of harmonized benchmarks that accurately reflect the multitude of real-
world, OOD scenarios. Without standardized benchmarks, it is difficult to assess the true robustness
of IR systems across different contexts and to identify areas for improvement. Developing these
benchmarks involves not only capturing a wide range of OOD scenarios but also ensuring that
they are representative of the actual challenges faced by IR systems in practice. This effort is crucial
for advancing the state of OOD robustness in IR.

Enhancing Continuous Corpus Adaptation for DRMs. As we have seen in Sections 4 and 5, prior
work mainly considers the problem of one-shot adaptation of DRMs to new corpora [35, 167].
However, in real search engines, new documents are constantly added to the search engine and
bring in a variety of new domains, which poses a challenge to the continuous adaptation ability of
DRMs. To address this, it is essential to develop DRMs that not only quickly adapt to new corpora in
a one-shot learning scenario but also continuously learn and adjust as new data is introduced. This
requires innovative approaches that can dynamically update the models in an incremental fashion
without the need for frequent retraining from scratch. Techniques such as online learning, transfer
learning, and meta-learning can play pivotal roles in enhancing the continuous corpus adaptation
of DRMs, ensuring they remain effective and relevant in the ever-changing search landscape.

Improving OOD Generalization of NRMs. Approaches to improve OOD generalization ability
mainly target neural retrieval models [167, 190, 192]. More generally, the OOD robustness of NRMs
should be optimized along with retrieval models. Enhancing the OOD generalization of NRMs
involves developing models that can effectively handle queries that deviate significantly from
the training distribution, thereby ensuring the retrieval of relevant and accurate results under a
wide range of search scenarios. This challenge requires a multifaceted approach, incorporating
advanced ML techniques such as robust representation learning, anomaly detection, and domain
adaptation strategies. By prioritizing the OOD robustness of NRMs alongside DRMs, search engines
can significantly improve their ability to serve high-quality, relevant content to users, even when
faced with novel or unexpected queries.

Improving OOD Robustness in Practice. Enhancing OOD robustness in practice is essential for
maintaining the effectiveness, efficiency, and cost-effectiveness of search engines. To achieve this,
search engines must be able to accurately identify and process queries that fall outside the typical
distribution of observed data, ensuring that even uncommon or unseen queries return relevant
and useful results. Implementing robust OOD handling mechanisms can significantly improve the
quality of search results [103, 167], but this often requires sophisticated algorithms that can detect
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and adapt to OOD queries in real-time [137, 207]. While these algorithms can be computationally
intensive, leading to higher operational costs, the investment in OOD robustness can ultimately
enhance user satisfaction and trust in the search engine [103, 205]. Moreover, optimizing these
algorithms for efficiency can help mitigate additional costs, ensuring that improvements in OOD
robustness also align with the search engine’s operational goals.

6.2 Challenges and Opportunities Posed by LLMs

LLMs have gained attention for their generative abilities. There have been several works applying
them to IR with good results. The introduction of LLMs may bring new robustness problems and
also provide new solutions to known robustness problems.

6.2.1 New Challenges to IR Robustness from LLMs. Recently, there has been a lot of exploratory
work on using LLMs for IR tasks. However, these attempts may pose new robustness challenges to
LLMs-based IR methods due to the robustness issues of LLMs themselves.

New Challenges to OOD Robustness. LLMs have shown biases and input sensitivities [50, 76], and
these will affect the OOD robustness of IR systems: (1) the training process of LLMs often introduces
domain bias due to the limited representation of real-world diversity in the training data, which
can result in degraded performance when handling out-of-domain queries or documents; existing
work also reveals that neural IR models may prefer documents generated by LLMs in corpora [40];
and (2) LLMs are highly sensitive to slight variations in input [30, 50, 76], potentially leading to
inconsistent IR outcomes. Addressing both the domain bias and input sensitivity is crucial for
developing robust and generalizable IR systems with LLMs.

New Challenges to Adversarial Robustness. When applied to IR systems, the adversarial vulner-
ability of the LLMs themselves is imported at the same time: (1) LLMs used as ranking models
[162] are susceptible to hallucinations, generating plausible yet factually incorrect or irrelevant
information, which can lead to the retrieval of misleading data and undermine the reliability of IR
systems [107]; and (2) the large scale and opacity of LLMs complicate the diagnosis and mitiga-
tion of vulnerabilities, making defensive measures technically challenging and resource-intensive.
Addressing hallucinations and managing defense costs are critical for ensuring the integrity and
credibility of LLM-based IR systems [157, 184].

6.2.2 New Opportunities for IR Robustness via LLMs. While the use of LLMs may introduce new
robustness risks, the power of LLMs also provides new ideas for improving robustness. In the field
of NLP, several publications enhance the robustness of NLP models using LLMs [e.g., 67, 125, 191],
but not so much yet in IR.

New Opportunities to OOD Robustness. The powerful generation and language understanding
ability of LLMs can help to improve the OOD robustness of IR systems. (1) Synthesizing OOD training
data with LLMs. Some preliminary attempts have revealed that LLMs perform well in generating
relevant queries for unannotated documents [16, 49, 143]. LLMs may also generate diverse and
complex data that mirror OOD scenarios, providing IR systems with the training needed to better
handle unfamiliar or novel situations. Such synthetic data can help improve the generalizability
and robustness of IR models against OOD inputs. (2) LLMs for OOD detection. Using LLMs’ abilities
in language understanding, to detect and manage OOD queries has not been carefully explored.
By identifying queries that deviate from the training distribution, LLMs may trigger specialized
handling for such cases, thereby enhancing the robustness and reliability of IR systems [157, 184].
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New Opportunities to Adversarial Robustness. LLMs hold promise for improving the adversarial
robustness of IR systems through their ability to generate and predict adversarial examples. (1) Gen-
erating adversarial examples with LLMs. LLMs have been shown to achieve preliminary success
in generating adversarial examples against IR systems [106, 136]. By exposing systems to a wider
array of adversarial tactics during training, LLMs can help develop more robust IR models. (2) IR
model defense assisted with LLMs. LLMs hold promising potential in assisting the development of
defense mechanisms by predicting and countering adversarial strategies, which is worth further
exploration. Leveraging LLMs in simulation environments to anticipate potential attacks could also
enable the proactive enhancement of IR systems.

7 Conclusion

The landscape of IR has evolved significantly with the advent of neural methods. This evolution
has brought with it new challenges in the robustness of IR systems. These robustness issues
undermine the trust of users in search engines, making it a critical concern for both researchers
and practitioners in the field.

In this survey, we have organized the IR literature on various forms of robustness, focusing
particularly on IID robustness, OOD robustness, and adversarial robustness. We have also discussed
the remaining challenges of these fields, as well as potential future directions for research. This
survey contributes to that journey by providing a structured overview of the current state-of-the-
art, offering a roadmap for future research directions, and inspiring continued exploration and
innovation in the field. While significant progress has been made in understanding and robustness
of IR, there is still much work to be done. As the field continues to evolve, it will be crucial to
develop robust defenses against these attacks, to ensure the integrity of search results and maintain
the trust of users.

In conclusion, robust neural IR represents a complex and multifaceted problem space, but also an
opportunity for innovative research and development. As we look forward, the goal of developing
IR systems that are not only robust but also adaptable, trustworthy, and user-centric is essential,
promising to redefine the boundaries of what is possible in IR.
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Appendices

A Source Selection

We loosely followed the guidelines by Kitchenham and Charters [86] for the selection of publications

used in our survey.

A1

We used the sources listed in Table A1 for our survey.

Sources

Table A1. Venues, Journals, and Repositories Used for the Survey

Source Acronym or URL
AAAI Conference on Artificial Intelligence AAAI
Annual Meeting of the Association for Computational Linguistics ACL
arXiv https://arxiv.org
ACM Conference on Computer and Communications Security CCs
ACM International Conference on Information and Knowledge Management CIKM
European Conference on Information Retrieval ECIR
Conference on Empirical Methods in Natural Language Processing EMNLP
Foundations and Trends in Information Retrieval FnTIR
International Conference on Learning Representations ICLR
International Conference on Data Mining ICDM
International Conference on Machine Learning ICML
International Conference on the Theory of Information Retrieval ICTIR
International Joint Conference on Artificial Intelligence IJCAI
Information Processing and Management IPM
ACM SIGKDD Conference on Knowledge Discovery and Data Mining KDD
Annual Conference of the North American Chapter of the Association for Compu- NAACL
tational Linguistics

Conference on Neural Information Processing Systems NeurIPS
SIGIR Conference on Research and Development in Information Retrieval SIGIR
Transactions of the Association for Computational Linguistics TACL
ACM Transactions on Information Retrieval TOIS
Text Retrieval Conference TREC
International World Wide Web Conference WebConf

A.2 Inclusion Criteria

For papers in the sources listed in Table A1 we used the following criteria to include them in our
survey:

(IC1) The paper proposes a definition of one or several robustness notions in the context of IR.

(IC2) The paper proposes an approach to improving the robustness of an IR model.

(IC3) The paper proposes a method to evaluate one or several robustness notions in the context of
IR.

(IC4) The paper presents one or several benchmarks for assessing the robustness of IR models.

(IC5) The paper presents a study that investigates the foundations of robustness of IR models.
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A.3 Exclusion Criteria
For papers in the sources listed in Table A1 we used the following criteria to exclude them from

our survey:

(EC1) The paper is not written in English.
(EC2) The paper is not in the date range of January 2012 to July 2024.
(EC3) An extended version of the paper has been published, which subsumes its contents.

B The BestIR Benchmark

BestIR aims to provide a robustness evaluation benchmark for neural IR models. In order to address
the comprehensive robustness challenge, we construct benchmarks mainly in terms of seven types
of two aspects of robustness, i.e., adversarial robustness and OOD robustness.

Table B1. Statistics of Datasets in BestIR Benchmark

Robustness Type Dataset #Doc  #Quain  #Qdev  #Qeval

MS MARCO document [127]  3.2M 370K 5,193 5,793
MS MARCO passage [127] 8.8M 500K 6,980 6,837

Basic datasets Clueweb09-B [34] 50M 150 - -
Natural Questions [88] 21M 60K  8.8K 3.6K
TriviaQA [80] 21M 60K 88K 113K
A(linvertsana1 Expansion of TREC DL19* [39] - - 3 -
robustness dagsets TREC DL20? [38] - - 54 -
TREC MB14? [97] - - 50 -
ASRC [142] 1,279 - 31 -
Off-the-shelf Q-MS MARCO [105] - ~ 4,000 -
datasets Q-Clueweb09 [105] - - 292 -
DARA [28] 164k 50k 3,490 3,489
Adaptation to a BEIR? [167] 18 corpora from datasets in BEIR
new corpus
CDI-MS [23] 3.2M 370K 5,193 5,793
Updates to a CDI-NQ [23] 8.8M 500K 6,980 6,837
corpus LL-LoTTE [18] 5.5M 16K 8.5K 8.6K
LL-MultiCPR [18] 30M 136K 15K 15K
DL-Typo [207] — - - 60
noisy-MS MARCO [20] - - - 5.6K
00D rev'vrite—MS MARCO [20] - - - 5.6K
bustness noisy-NQ [20] - - - 2K
robu Query variation noisy-TQA [20] - - - 3K
noisy-ORCAS [20] - - - 20K
variations-ANTIQUE [137] - - - 2K
variations-TREC19 [137] - - - 430
Zhuang and Zuccon [206] - - - 41K
Unseen auery t MS MARCO [127] - - - 15K
cen query type 14 1163] - - - 10K

#Doc denotes the number of documents in corpus; #Qirain denotes the number of queries available for training; #Q ey
denotes the number of queries available for development; #Qcy, denotes the number of queries available for evaluation.
#Under current implicit assumptions, one may attempt to use BEIR test queries over MSMARCO.
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For adversarial robustness, the datasets are usually used both for adversarial defense and adver-
sarial attack tasks. There are three construction methodologies: (i) basic datasets, which are the
original IR datasets that are directly performed attacks and defenses on; (ii) expansion of datasets,
which are extensions of the original dataset to model unknown queries or new documents; and (iii)
off-the-shelf datasets, which are datasets customized for the task of adversarial attack or defense
that can be used directly for evaluation.

OOD robustness, datasets are used to evaluate the performance of the model under unseen
documents and unseen queries, respectively. For each scenario, there are two types of evaluation
perspectives. For unseen documents: (i) adaptation to a new corpus consists mainly of IR datasets
from different domains; and (ii) updates to a corpus consist mainly of the same dataset sliced and
diced based on factors such as time or randomly. For unseen queries: (i) query variation consists of
different variants of the same query intent, such as typos, changes in word order, and changes in
the form of expression; and (ii) unseen query type consists mainly of the different types of queries
in a dataset.

Table B1 summarizes the statistics of the datasets provided in BestIR. BestIR is publicly available
at https://github.com/Davion-Liu/BestIR. There are lots of datasets available within each aspect
for robustness challenges and continue growing. We try to balance the assessment of each aspect
of robustness to fully evaluate the model’s abilities. In the future, we will consider the issue of
robustness in a broader sense and introduce datasets into BestIR. Meanwhile, researchers can also
focus on observing specific aspects of robustness performance according to this categorization
according to their concerns.
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