
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles

Ana Lucic,1 Harrie Oosterhuis,2 Hinda Haned,1 Maarten de Rijke1

1 University of Amsterdam 2 Radboud University
a.lucic@uva.nl, harrie.oosterhuis@ru.nl, h.haned@uva.nl, m.derijke@uva.nl

Abstract

Model interpretability has become an important problem in
Machine Learning (ML) due to the increased effect that al-
gorithmic decisions have on humans. Counterfactual expla-
nations can help users understand not only why ML models
make certain decisions, but also how these decisions can be
changed. We frame the problem of finding counterfactual ex-
planations as a gradient-based optimization task and extend
previous work that could only be applied to differentiable
models. In order to accommodate non-differentiable models
such as tree ensembles, we use probabilistic model approxi-
mations in the optimization framework. We introduce an ap-
proximation technique that is effective for finding counter-
factual explanations for predictions of the original model and
show that our counterfactual examples are significantly closer
to the original instances than those produced by other meth-
ods specifically designed for tree ensembles.

1 INTRODUCTION
As ML models are prominently applied and their outcomes
have a substantial effect on the general population, there is
an increased demand for understanding what contributes to
their predictions (Doshi-Velez and Kim 2018). For an indi-
vidual who is affected by the predictions of these models, it
would be useful to have an actionable explanation – one that
provides insight into how these decisions can be changed.
The General Data Protection Regulation (GDPR) is an ex-
ample of recently enforced regulation in Europe which gives
an individual the right to an explanation for algorithmic de-
cisions, making the interpretability problem a crucial one for
organizations that wish to adopt more data-driven decision-
making processes (EU 2016).

Counterfactual explanations are a natural solution to this
problem since they frame the explanation in terms of what
input (feature) changes are required to change the output
(prediction). For instance, a user may be denied a loan based
on the prediction of an ML model used by their bank. A
counterfactual explanation could be: “Had your income been
e1000 higher, you would have been approved for the loan.”
We focus on finding optimal counterfactual explanations:
the minimal changes to the input required to change the out-
come.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Counterfactual explanations are based on counterfactual
examples: generated instances that are close to an existing
instance but have an alternative prediction. The difference
between the original instance and the counterfactual exam-
ple is the counterfactual explanation. Wachter, Mittelstadt,
and Russell (2018) propose framing the problem as an op-
timization task, but their work assumes that the underly-
ing machine learning models are differentiable, which ex-
cludes an important class of widely applied and highly ef-
fective non-differentiable models: tree ensembles. We pro-
pose a method that relaxes this assumption and builds upon
the work of Wachter, Mittelstadt, and Russell by introducing
differentiable approximations of tree ensembles that can be
used in such an optimization framework. Alternative non-
optimization approaches for generating counterfactual ex-
planations for tree ensembles involve an extensive search
over many possible paths in the ensemble that could lead
to an alternative prediction (Tolomei et al. 2017).

Given a trained tree-based model f , we probabilistically
approximate f by replacing each split in each tree with a
sigmoid function centred at the splitting threshold. If f is
an ensemble of trees, then we also replace the maximum
operator with a softmax. This approximation allows us to
generate a counterfactual example x̄ for an instance x based
on the minimal perturbation of x such that the prediction
changes: yx ̸= yx̄, where yx and yx̄ are the labels f assigns
to x and x̄, respectively. This leads us to our main research
question:

Are counterfactual examples generated by FOCUS
closer to the original input instances than those gen-
erated by existing heuristic methods?

Our main findings are that our method is (i) a more effective
counterfactual explanation method for tree ensembles than
previous approaches since it manages to produce counterfac-
tual examples that are closer to the original input instances
than existing approaches; (ii) a more efficient counterfactual
explanation method for tree ensembles since it is able to han-
dle larger models than existing approaches; and (iii) a more
reliable counterfactual explanation method for tree ensem-
bles since it is able to generate counterfactual explanations
for all instances in a dataset, unlike existing approaches spe-
cific to tree ensembles.

2 RELATED WORK
2.1 Counterfactual Explanations

Counterfactual examples have been used in a variety of ML
areas, such as reinforcement learning (Madumal et al. 2019),
deep learning (Alaa, Weisz, and van der Schaar 2017), and
explainable AI (XAI). Previous XAI methods for generating
counterfactual examples are either model-agnostic (Poyi-
adzi et al. 2020; Karimi et al. 2020a; Laugel et al. 2018;
Van Looveren and Klaise 2021; Mothilal, Sharma, and Tan
2020) or model-specific (Wachter, Mittelstadt, and Russell
2018; Grath et al. 2018; Tolomei et al. 2017; Kanamori
et al. 2020; Russell 2019; Dhurandhar et al. 2018). Model-
agnostic approaches treat the original model as a “black-
box” and only assume query access to the model, whereas
model-specific approaches typically do not make this as-
sumption and can therefore make use of its inner work-
ings. Our work is a model-specific approach for generat-
ing counterfactual examples through optimization. Previous
model-specific work for generating counterfactual examples
through optimization has solely been conducted on differen-
tiable models (Wachter, Mittelstadt, and Russell 2018; Grath
et al. 2018; Dhurandhar et al. 2018).

2.2 Algorithmic Recourse

Algorithmic recourse is a line of research that is closely re-
lated to counterfactual explanations, except that these meth-
ods include the additional restriction that the resulting ex-
planation must be actionable (Ustun, Spangher, and Liu
2019; Joshi et al. 2020; Karimi, Schölkopf, and Valera 2021;
Karimi et al. 2020b). This is done by selecting a subset of
the features to which perturbations can be applied in order
to avoid explanations that suggest impossible or unrealistic
changes to the feature values (i.e., change age from 50 →
25 or change marital status from MARRIED→ UNMAR-
RIED). Although this work has produced impressive theo-
retical results, it is unclear how realistic they are in practice,
especially for complex ML models such as tree ensembles.
Existing algorithmic recourse methods cannot solve our task
because they (i) are either restricted to solely linear (Ustun,
Spangher, and Liu 2019) or differentiable (Joshi et al. 2020)
models, or (ii) require access to causal information (Karimi,
Schölkopf, and Valera 2021; Karimi et al. 2020b), which is
rarely available in real world settings.

2.3 Adversarial Examples

Adversarial examples are a type of counterfactual example
with the additional constraint that the minimal perturbation
results in an alternative prediction that is incorrect. There
are a variety of methods for generating adversarial exam-
ples (Goodfellow, Shlens, and Szegedy 2015; Szegedy et al.
2014; Su, Vargas, and Kouichi 2019; Brown et al. 2018); a
more complete overview can be found in (Biggio and Roli
2018). The main difference between adversarial examples
and counterfactual examples is in the intent: adversarial ex-
amples are meant to fool the model, whereas counterfactual
examples are meant to explain the model.

2.4 Differentiable Tree-based Models
Part of our contribution involves constructing differen-
tiable versions of tree ensembles by replacing each split-
ting threshold with a sigmoid function. This can be seen
as using a (small) neural network to obtain a smooth ap-
proximation of each tree. Neural decision trees (Balestriero
2017; Yang, Morillo, and Hospedales 2018) are also differ-
entiable versions of trees, which use a full neural network
instead of a simple sigmoid. However, these do not optimize
for approximating an already trained model. Therefore, un-
like our method, they are not an obvious choice for finding
counterfactual examples for an existing model. Soft decision
trees (Hinton, Vinyals, and Dean 2014) are another example
of differentiable trees, which instead approximate a neural
network with a decision tree. This can be seen as the inverse
of our task.

3 PROBLEM DEFINITION
A counterfactual explanation for an instance x and a model
f , ∆x, is a minimal perturbation of x that changes the pre-
diction of f . f is a probabilistic classifier, where f(y | x)
is the probability of x belonging to class y according to f .
The prediction of f for x is the most probable class label
yx = argmaxy f(y | x), and a perturbation x̄ is a counter-
factual example for x if, and only if, yx ̸= yx̄, that is:

argmax
y

f(y | x) ̸= argmax
y′

f(y′ | x̄). (1)

In addition to changing the prediction, the distance between
x and x̄ should also be minimized. We therefore define an
optimal counterfactual example x̄∗ as:

x̄∗ := argmin
x̄

d(x, x̄) such that yx ̸= yx̄. (2)

where d(x, x̄) is a differentiable distance function. The cor-
responding optimal counterfactual explanation ∆∗

x is:

∆∗
x = x̄∗ − x. (3)

This definition aligns with previous ML work on counterfac-
tual explanations (Laugel et al. 2018; Karimi et al. 2020a;
Tolomei et al. 2017). We note that this notion of optimality
is purely from an algorithmic perspective and does not nec-
essarily translate to optimal changes in the real world, since
the latter are completely dependent on the context in which
they are applied. It should be noted that if the loss space is
non-convex, it is possible that more than one optimal coun-
terfactual explanation exists.

Minimizing the distance between x and x̄ should ensure
that x̄ is as close to the decision boundary as possible. This
distance indicates the effort it takes to apply the perturbation
in practice, and an optimal counterfactual explanation shows
how a prediction can be changed with the least amount of
effort. An optimal explanation provides the user with inter-
pretable and potentially actionable feedback related to un-
derstanding the predictions of model f .

Wachter, Mittelstadt, and Russell (2018) recognized that
counterfactual examples can be found through gradient
descent if the task is cast as an optimization problem.
Specifically, they use a loss consisting of two compo-
nents: (i) a prediction loss to change the prediction of f :

Lpred(x, x̄ | f), and (ii) a distance loss to minimize the dis-
tance d: Ldist(x, x̄ | d). The complete loss is a linear com-
bination of these two parts, with a weight β ∈ R>0:

L(x, x̄ | f, d) = Lpred(x, x̄ | f) + βLdist(x, x̄ | d). (4)

The assumption here is that an optimal counterfactual exam-
ple x̄∗ can be found by minimizing the overall loss:

x̄∗ = argmin
x̄

L(x, x̄ | f, d). (5)

Wachter, Mittelstadt, and Russell (2018) propose a predic-
tion loss Lpred based on the mean-squared-error. A clear
limitation of this approach is that it assumes f is differen-
tiable. This excludes many commonly used ML models, in-
cluding tree-based models, on which we focus in this paper.

4 METHOD
To mimic many real-world scenarios, we assume there ex-
ists a trained model f that we need to explain. The goal here
is not to create a new, inherently interpretable tree-based
model, but rather to explain a model that already exists.

4.1 Loss Function Definitions
We use a hinge-loss since we assume a classification task:

Lpred(x, x̄ | f) =

1

[
argmax

y
f(y | x) = argmax

y′
f(y′ | x̄)

]
· f(y′ | x̄).

(6)

Allowing for flexibility in the choice of distance function al-
lows us to tailor the explanations to the end-users’ needs. We
make the preferred notion of minimality explicit through the
choice of distance function. Given a differentiable distance
function d, the distance loss is:

Ldist(x, x̄) = d(x, x̄). (7)

Building off of Wachter, Mittelstadt, and Russell (2018), we
propose incorporating differentiable approximations of non-
differentiable models to use in the gradient-based optimiza-
tion framework. Since the approximation f̃ is derived from
the original model f , it should match f closely: f̃(y | x) ≈
f(y | x). We define the approximate prediction loss as fol-
lows:

L̃pred(x, x̄ | f, f̃) =

1

[
argmax

y
f(y | x) = argmax

y′
f(y′ | x̄)

]
· f̃(y′ | x̄).

(8)

This loss is based both on the original model f and the ap-
proximation f̃ : the loss is active as long as the prediction
according to f has not changed, but its gradient is based
on the differentiable f̃ . This prediction loss encourages the
perturbation to have a different prediction than the original
instance by penalizing an unchanged instance. The approxi-
mation of the complete loss becomes:

L̃(x, x̄ | f, f̃ , d) = L̃pred(x, x̄ | f, f̃) + β · Ldist(x, x̄ | d).
(9)

1.0

1.0

1.0

0.0

0.0

1.0

0.99

0.94

0.01

0.05

Figure 1: Left: A decision tree T and node activations for a
single instance. Right: a differentiable approximation of the
same tree T̃ and activations for the same instance.

Since we assume that it approximates the complete loss,

L̃(x, x̄ | f, f̃ , d) ≈ L(x, x̄ | f, d), (10)

we also assume that an optimal counterfactual example can
be found by minimizing it:

x̄∗ ≈ argmin
x̄

L̃(x, x̄ | f, f̃ , d). (11)

4.2 Tree-based Models
To obtain the differentiable approximation f̃ of f , we con-
struct a probabilistic approximation of the original tree en-
semble f . Tree ensembles are based on decision trees; a sin-
gle decision tree T uses a binary-tree structure to make pre-
dictions about an instance x based on its features. Figure 1
shows a simple decision tree consisting of five nodes. A node
j is activated if its parent node pj is activated and feature xfj
is on the correct side of the threshold θj ; which side is the
correct side depends on whether j is a left or right child; with
the exception of the root node which is always activated. Let
tj(x) indicate if node j is activated:

tj(x) =


1, if j is the root,
tpj

(x) · 1[xfj > θj], if j is a left child,
tpj

(x) · 1[xfj ≤ θj], if j is a right child.
(12)

∀x, t0(x) = 1. Nodes that have no children are called leaf
nodes; an instance x always ends up in a single leaf node.
Every leaf node j has its own predicted distribution T (y |
j); the prediction of the full tree is given by its activated leaf
node. Let Tleaf be the set of leaf nodes in T , then:

(j ∈ Tleaf ∧ tj(x) = 1) → T (y | x) = T (y | j). (13)

Alternatively, we can reformulate this as a sum over leaves:

T (y | x) =
∑

j∈Tleaf

tj(x) · T (y | j). (14)

Generally, tree ensembles are deterministic; let f be an en-
semble of M many trees with weights ωm ∈ R, then:

f(y | x) = argmax
y′

M∑
m=1

ωm · Tm(y′ | x). (15)

4.3 Approximations of Tree-based Models
If f is not differentiable, we are unable to calculate its
gradient with respect to the input x. However, the non-
differentiable operations in our formulation are (i) the indi-
cator function, and (ii) a maximum operation, both of which

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: An example of how the Feature Tweaking (FT) baseline method (explained in Section 5.1) and our FOCUS method
handle an adaptive boosting ensemble with three trees. Left: decision boundary of the ensemble. Middle: three positive leaves
that form the decision boundary, an example instance and the perturbed examples suggested by FT. Right: approximated loss
L̃pred and its gradient w.r.t. x̄. The FT perturbed examples do not change the prediction of the forest, whereas the gradient of
the differentiable approximation leads toward the true decision boundary.

can be approximated by differentiable functions. First, we
introduce the t̃j(x) function that approximates the activa-
tion of node j: t̃j(x) ≈ tj(x), using a sigmoid function with
parameter σ ∈ R>0: sig(z) = (1 + exp(σ · z))−1 and

t̃j(x) =


1, if j is the root,
t̃pj

(x) · sig(θj−xfj), if j is left child,
t̃pj (x) · sig(xfj−θj), if j is right child.

(16)

As σ increases, t̃j approximates tj more closely. Next, we
introduce a tree approximation:

T̃ (y | x) =
∑

j∈Tleaf

t̃j(x) · T (y | j). (17)

The approximation T̃ uses the same tree structure and
thresholds as T . However, its activations are no longer deter-
ministic but instead are dependent on the distance between
the feature values xfj and the thresholds θj . Lastly, we re-
place the maximum operation of f by a softmax with tem-
perature τ ∈ R>0, resulting in:

f̃(y | x) =
exp

(
τ ·

∑M
m=1 ωm · T̃m(y | x)

)
∑

y′ exp
(
τ ·

∑M
m=1 ωm · T̃m(y′ | x)

) . (18)

The approximation f̃ is based on the original model f and
the parameters σ and τ . This approximation is applicable
to any tree-based model, and how well f̃ approximates f
depends on the choice of σ and τ . The approximation is po-
tentially perfect since

lim
σ,τ→∞

f̃(y | x) = f(y | x). (19)

4.4 Our Method: FOCUS
We call our method FOCUS: Flexible Optimizable Counter-
factUal Explanations for Tree EnsembleS. It takes as input
an instance x, a tree-based classifier f , and two hyperparam-
eters: σ and τ which we use to create the approximation f̃ .
Following Equation 11, FOCUS outputs the optimal coun-
terfactual example x̄∗, from which we derive the optimal
counterfactual explanation ∆∗

x = x̄∗ − x.

4.5 Effects of Hyperparameters
Increasing σ in f̃ eventually leads to exact approximations
of the indicator functions, while increasing τ in f̃ leads to
a completely unimodal softmax distribution. It should be
noted that our approximation f̃ is not intended to replace
the original model f but rather to create a differentiable ver-
sion of f from which we can generate counterfactual exam-
ples through optimization. In practice, the original model f
would still be used to make predictions and the approxima-
tion would solely be used to generate counterfactual exam-
ples.

5 EXPERIMENTAL SETUP
We consider 42 experimental settings to find the best
counterfactual explanations using FOCUS. We jointly
tune the hyperparameters of FOCUS (σ, τ, β, α) using
Adam (Kingma and Ba 2015) for 1,000 iterations. We
choose the hyperparameters that produce (i) a valid counter-
factual example for every instance in the dataset, and (ii) the
smallest mean distance between corresponding pairs (x, x̄).

We evaluate FOCUS on four binary classification
datasets: Wine Quality (UCI 2009), HELOC (FICO 2017a),
COMPAS (Ofer 2017), and Shopping (UCI 2019). For each
dataset, we train three types of tree-based models: Deci-
sion Trees (DT), Random Forests (RF), and Adaptive Boost-
ing Trees (AB) with DTs as the base learners. We com-
pare against two baselines that generate counterfactual ex-
amples for tree ensembles based on the inner workings of the
model: Feature Tweaking (FT) by Tolomei et al. (2017) and
Distribution-Aware Counterfactual Explanations (DACE) by
Kanamori et al. (2020).

5.1 Baseline: Feature Tweaking
Feature Tweaking identifies the leaf nodes where the predic-
tion of the leaf nodes do not match the original prediction
yx: it recognizes the set of leaves that if activated, tj(x̄) = 1,
would change the prediction of a tree T :

Tchange =

{
j | j ∈ Tleaf ∧ yx ̸= argmax

y
T (y | j)

}
. (20)

For every T in f , FT generates a perturbed example per
node in Tchange so that it is activated with at least an ϵ dif-
ference per threshold, and then selects the most optimal ex-
ample (i.e., the one closest to the original instance). For
every feature threshold θj involved, the corresponding fea-
ture is perturbed accordingly: x̄fj = θj ± ϵ. The result
is a perturbed example that was changed minimally to ac-
tivate a leaf node in Tchange. In our experiments, we test
ϵ ∈ {0.001, 0.005, 0.01, 0.1}, and choose the ϵ that mini-
mizes the mean distance to the original input, while maxi-
mizing the number of counterfactual examples generated.

The main problem with FT is that the perturbed examples
are not necessarily counterfactual examples, since changing
the prediction of a single tree T does not guarantee a change
in the prediction of the full ensemble f . Figure 2 shows all
three perturbed examples generated by FT for a single in-
stance. In this case, none of the generated examples change
the model prediction and therefore none are valid counter-
factual examples.

Figure 2 shows how FOCUS and FT handle an adaptive
boosting ensemble using a two-feature ensemble with three
trees. On the left is the decision boundary for a standard tree
ensemble; the middle visualizes the positive leaf nodes that
form the decision boundary; on the right is the approximated
loss L̃pred and its gradient w.r.t. x̄. The gradients push fea-
tures close to thresholds harder and in the direction of the
decision boundary if L̃ is convex.

5.2 Baseline: DACE
DACE generates counterfactual examples that account for
the underlying data distribution through a novel cost func-
tion using Mahalanobis distance and a local outlier factor
(LOF):

dDACE (x, x̄|X,C) =

dMahalanobis
2(x, x̄|C) + λqk(x, x̄|X),

(21)

where C is the covariance matrix, qk is the k-LOF (Bre-
unig et al. 2000), X is the training set, and λ is the trade-off
parameter. The k-LOF measures the degree to which an in-
stance is an outlier in the context of its k-nearest neighbors.1
To generate counterfactual examples, DACE formulates the
task as a mixed-integer linear optimization problem and uses
the CPLEX Optimizer2 to solve it. We refer the reader to
the original paper for a more detailed overview of this cost
function. The qk term in the loss function penalizes counter-
factual examples that are outliers, and therefore decreasing
λ results in a greater number of counterfactual examples.
In our experiments, we test λ ∈ {0.001, 0.01, 0.1, 0.5, 1.0},
and choose the λ that minimizes the mean distance to the
original input, while maximizing the number of counterfac-
tual examples generated. The main issue with DACE is that
even for very small values of α, it is unable to generate coun-
terfactual examples for the majority of instances in the test

1We use k = 1 in our experiments, since this is the value of k
that is supported in the code kindly provided to us by the authors,
for which we are very grateful.

2http://www.ibm.com/analytics/cplex-optimizer

sets (see Table 2). The other issue is that it is unable to run
on some of our models because the problem size is too large
when using the free Python API of CPLEX.

5.3 Datasets
We evaluate FOCUS on four binary classification tasks us-
ing the following datasets: Wine Quality (UCI 2009), HE-
LOC (FICO 2017a), COMPAS (Ofer 2017), and Shopping
(UCI 2019). The Wine Quality dataset (4,898 instances, 11
features) is about predicting the quality of white wine on a
0–10 scale. We adapt this to a binary classification setting
by labelling the wine as “high quality” if the quality is ≥ 7.
The HELOC set (10,459 instances, 23 features) is from the
Explainable Machine Learning Challenge at NeurIPS 2017,
where the task is to predict whether or not a customer will
default on their loan. The COMPAS dataset (6,172 instances,
6 features) is used for detecting bias in ML systems, where
the task is predicting whether or not a criminal defendant
will reoffend upon release. The Shopping dataset (12,330
instances, 9 features) entails predicting whether or not an
online website visit results in a purchase. We scale all fea-
tures such that their values are in the range [0, 1] and remove
categorical features.

5.4 Models
We train three types of tree-based models on 70% of each
dataset: Decision Trees (DTs), Random Forests (RFs), and
Adaptive Boosting (AB) with DTs as the base learners. We
use the remaining 30% to find counterfactual examples for
this test set. In total we have 12 models (4 datasets × 3 tree-
based models). See Appendix A for more details.

5.5 Evaluation Metrics
We evaluate the counterfactual examples produced by FO-
CUS based on how close they are to the original input using
three metrics. Mean distance, dmean , measures the distance
from the original input, averaged over all examples. Mean
relative distance, dRmean , measures pointwise ratios of dis-
tance to the original input. This helps us interpret individual
improvements over the baselines; if dRmean < 1, FOCUS’s
counterfactual examples are on average closer to the origi-
nal input compared to the baseline. We also evaluate the pro-
portion of FOCUS’s counterfactual examples that are closer
to the original input compared to the baselines (%closer).
We test the metrics in terms of four distance functions: Eu-
clidean, Cosine, Manhattan and Mahalanobis.

6 Experiment 1: FOCUS vs. FT
We compare FOCUS to the Feature Tweaking (FT) method
by Tolomei et al. (2017) in terms of the evaluation met-
rics in Section 5.5. We consider 36 experimental settings (4
datasets × 3 tree-based models × 3 distance functions) when
comparing FOCUS to FT. The results are listed in Table 1.

In terms of dmean , FOCUS outperforms FT in 20 settings
while FT outperforms FOCUS in 8 settings. The difference
in dmean is not significant in the remaining 8 settings. In
general, FOCUS outperforms FT in settings using Euclidean

Euclidean Cosine Manhattan
Dataset Metric Method DT RF AB DT RF AB DT RF AB

dmean FT 0.269 0.174 0.267⊗ 0.030 0.017 0.034⊗ 0.269 0.223 0.382⊗

Wine FOCUS 0.268◦ 0.188▲ 0.188▼ 0.003▼ 0.008▼ 0.014▼ 0.268◦ 0.312▲ 0.360▼

Quality dRmean FOCUS/FT 0.990 1.256 0.649 0.066 0.821 0.312 0.990 1.977 0.924
%closer FOCUS <FT 100% 21.0% 87.5% 100% 80.8% 95.1% 100% 5.4% 58.6%

dmean FT 0.120 0.210 0.185 0.003 0.008 0.007 0.135 0.278 0.198
HELOC FOCUS 0.133▲ 0.186▼ 0.136▼ 0.001▼ 0.002▼ 0.001▼ 0.152▲ 0.284◦ 0.203◦

dRmean FOCUS/FT 1.169 0.942 0.907 0.303 0.285 0.421 1.252 1.144 1.364
%closer FOCUS <FT 16.6% 57.9% 71.9% 91.6% 91.5% 92.9% 51.3% 43.6% 24.2%

dmean FT 0.082 0.075 0.081 0.013 0.014 0.015 0.086 0.078 0.085
COMPAS FOCUS 0.092▲ 0.079◦ 0.076▼ 0.008▼ 0.011▼ 0.007▼ 0.093▲ 0.085◦ 0.090◦

dRmean FOCUS/FT 1.162 1.150 1.062 0.473 0.965 0.539 1.182 1.236 1.155
%closer FOCUS <FT 29.4% 22.6% 44.8% 82.7% 68.0% 84.8% 65.8% 36.2% 66.9%

dmean FT 0.119 0.028 0.126⊗ 0.050 0.027 0.131⊗ 0.121 0.030 0.142⊗
Shopping FOCUS 0.142▲ 0.025▼ 0.028▼ 0.055▲ 0.013▼ 0.006▼ 0.128◦ 0.026▼ 0.046▼

dRmean FOCUS/FT 1.051 1.053 0.218 0.795 0.482 0.074 0.944 0.796 0.312
%closer FOCUS <FT 40.2% 36.1% 99.6% 44.4% 86.1% 99.5% 55.8% 81.9% 97.1%

Table 1: Experiment 1: Evaluation results for comparing FOCUS and FT counterfactual examples. Significant improvements
and losses over the baseline (FT) are denoted by ▼ and ▲, respectively (p < 0.05, two-tailed t-test,); ◦ denotes no significant
difference; ⊗ denotes settings where the baseline cannot find a counterfactual example for every instance.

Wine HELOC COMPAS Shopping
Metric Method DT DT DT AB DT AB
dmean DACE 1.325 1.427 0.814 1.570 0.050 3.230

FOCUS 0.542▼ 0.810▼ 0.776◦ 0.636▼ 0.023▼ 0.303▼

dRmean FOCUS / 0.420 0.622 1.18 0.372 0.449 0.380DACE

%closer FOCUS < 100% 94.5% 29.9% 96.1% 99.4% 90.8%DACE

CFs DACE 241 1,342 842 700 362 448
found FOCUS 1,470 3,138 1,852 1,852 3,699 3,699

obs in dataset 1,470 3,138 1,852 1,852 3,699 3,699
Table 2: Experiment 2: Evaluation results for comparing FOCUS and DACE counterfactual examples in terms of Mahalanobis
distance. Significant improvements over the baseline are denoted by ▼ (p < 0.05, two-tailed t-test,). ◦ denotes no significant
difference.

and Cosine distance because in each iteration, FOCUS per-
turbs many of the features by a small amount. Since FT per-
turbs only the features associated with an individual leaf,
we expected that it would perform better for Manhattan dis-
tance but our results show that this is not the case – there is
no clear winner between FT and FOCUS for Manhattan dis-
tance. We also see that FOCUS usually outperforms FT in
settings using Random Forests (RF) and Adaptive Boosting
(AB), while the opposite is true for Decision Trees (DT).

Overall, we find that FOCUS is effective and efficient for
finding counterfactual explanations for tree-based models.
Unlike the FT baseline, FOCUS finds valid counterfactual
explanations for every instance across all settings. In the ma-

jority of tested settings, FOCUS’s explanations are substan-
tial improvements in terms of distance to the original inputs,
across all three metrics.

7 Experiment 2: FOCUS vs. DACE
The flexibility of FOCUS allows us to plug in our choice
of differentiable distance function. To compare against
DACE (Kanamori et al. 2020), we use the Mahalanobis dis-
tance for both (i) generation of FOCUS explanations, and
(ii) evaluation in comparison to DACE, since this is the dis-
tance function used in the DACE loss function (see Equa-
tion 21 in Section 5.2).

Table 2 shows the results for the 6 settings we could run

DACE on. We were only able to run DACE on 6 out of our
12 models because the problem size is too large (i.e., DACE
has too many model parameters) for the remaining 6 mod-
els when using the free Python API of CPLEX (the opti-
mizer used in DACE). Therefore, when comparing against
DACE, we have 6 experimental settings (6 models × 1 dis-
tance function).

We found that DACE can only generate counterfactual ex-
amples for a small subset of the test set, regardless of the λ-
value, as opposed to FOCUS, which can generate counter-
factual examples for the entire test set in all cases. To com-
pute dmean, dRmean, and %closer , we compare FOCUS and
DACE only on the instances for which DACE was able to
generate a counterfactual example. We find that FOCUS sig-
nificantly outperforms DACE in 5 out of 6 settings in terms
of all three evaluation metrics, indicating that FOCUS ex-
planations are indeed more minimal than those produced by
DACE. FOCUS is also more reliable since (i) it is not re-
stricted by model size, and (ii) it can generate counterfactual
examples for all instances in the test set.

8 Discussion and Analysis
Figure 3 shows the mean Manhattan distance of the per-
turbed examples in each iteration of FOCUS, along with the
proportion of perturbations resulting in valid counterfactual
examples found for two datasets (we omit the others due
to space considerations). These trends are indicative of all
settings: the mean distance increases until a counterfactual
example has been found for every x, after which the mean
distance starts to decrease. This seems to be a result of the
hinge-loss in FOCUS, which first prioritizes finding a valid
counterfactual example (see Equation 1), then decreasing the
distance between x and x̄.

8.1 Case Study: Credit Risk
As a practical example, we investigate what FOCUS ex-
planations look like for individuals in the HELOC dataset.
Here, the task is to predict whether or not an individual
will default on their loan. This has consequences for loan
approval: individuals who are predicted as defaulting will
be denied a loan. For these individuals, we want to under-
stand how they can change their profile such that they are
approved. Given an individual who has been denied a loan
from a bank, a counterfactual explanation could be:

Your loan application has been denied. In order to
have your loan application approved, you need to
(i) increase your ExternalRiskEstimate score by 62,
and (ii) decrease your NetFractionRevolvingBurden
by 58.

Figure 4 shows four counterfactual explanations generated
using different distance functions for the same individual
and same model. We see that the Manhattan explanation
only requires a few changes to the individual’s profile, but
the changes are large. In contrast, the individual changes in
the Euclidean explanation are smaller but there are more of
them. In settings where there are significant dependencies
between features, the Cosine explanations may be preferred
since they are based on perturbations that try to preserve

Figure 3: Mean distance (top) and cumulative % (bottom)
of counterfactual examples in each iteration of FOCUS for
Manhattan explanations.

the relationship between features. For instance, in the Wine
Quality dataset, it would be difficult to change the amount of
citric acid without affecting the pH level. The Mahalanobis
explanations would be useful when it is important to take
into account not only correlations between features, but also
the training data distribution. This flexibility allows users to
choose what kind of explanation is best suited for their prob-
lem.

Different distance functions can result in different mag-
nitudes of feature perturbations as well as different direc-
tions. For example, the Cosine explanation suggests increas-
ing PercentTradesWBalance, while the Mahalanobis expla-
nations suggests decreasing it. This is because the loss space
of the underlying RF model is highly non-convex, and there-
fore there is more than one way to obtain an alternative pre-
diction. When using complex models such as tree ensem-
bles, there are no monotonicity guarantees. In this case, both
options result in valid counterfactual examples.

We examine the Manhattan explanation in more detail.
We see that FOCUS suggests two main changes: (i) increas-
ing the ExternalRiskEstimate, and (ii) decreasing the Net-
FractionRevolvingBurden. We obtain the definitions and ex-
pected trends from the data dictionary (FICO 2017b) created
by the authors of the dataset. The ExternalRiskEstimate is a
“consolidated version of risk markers” (i.e., a credit score).
A higher score is better: as one’s ExternalRiskEstimate in-
creases, the probability of default decreases. The NetFrac-
tionRevolvingBurden is the “revolving balance divided by
the credit limit” (i.e., utilization). A lower value is better: as
one’s NetFractionRevolvingBurden increases, the probabil-
ity of default increases. We find that the changes suggested
by FOCUS are fairly consistent with the expected trends in

0.5 0.0 0.5

PercentTradesWBalance
NumBank2NatlTradesWHighUtilization

NumInstallTradesWBalance
NumRevolvingTradesWBalance

NetFractionInstallBurden
NetFractionRevolvingBurden

NumInqLast6Mexcl7days
NumInqLast6M

MSinceMostRecentInqexcl7days
PercentInstallTrades

NumTradesOpeninLast12M
NumTotalTrades

MaxDelqEver
MaxDelq2PublicRecLast12M

MSinceMostRecentDelq
PercentTradesNeverDelq

NumTrades90Ever2DerogPubRec
NumTrades60Ever2DerogPubRec

NumSatisfactoryTrades
AverageMInFile

MSinceMostRecentTradeOpen
MSinceOldestTradeOpen

ExternalRiskEstimate

Euclidean

0.5 0.0 0.5

Cosine

0.5 0.0 0.5

Manhattan

0.5 0.0 0.5

Mahalanobis

Figure 4: FOCUS explanations for the same model and same x based on different distance functions. Green and red indi-
cate increases and decreases in feature values, respectively. Perturbation values are based on normalized feature values. Left:
Euclidean explanation perturbs several features, but only slightly. Middle Left: Cosine explanation perturbs almost all of the
features. Middle Right: Manhattan explanation perturbs two features substantially. Right: Mahalanobis explanation perturbs
almost all of the features.

the data dictionary (FICO 2017b), as opposed to suggesting
nonsensical changes such as increasing one’s utilization to
decrease the probability of default.

Decreasing one’s utilization is heavily dependent on the
specific situation: an individual who only supports them-
selves might have more control over their spending in com-
parison to someone who has multiple dependents. An indi-
vidual can decrease their utilization in two ways: (i) decreas-
ing their spending, or (ii) increasing their credit limit (or a
combination of the two). We can postulate that (i) is more
“actionable” than (ii), since (ii) is usually a decision made
by a financial institution. However, the degree to which an
individual can actually change their spending habits is com-
pletely dependent on their specific situation: an individual
who only supports themselves might have more control over
their spending than someone who has multiple dependents.
In either case, we argue that deciding what is (not) action-
able is not a decision for the developer to make, but for the
individual who is affected by the decision. Counterfactual
examples should be used as part of a human-in-the-loop sys-
tem and not as a final solution. The individual should know
that utilization is an important component of the model, even
if it is not necessarily “actionable” for them. We also note
that it is unclear how exactly an individual would change
their credit score without further insight into how the score
was calculated (i.e., how the risk markers were consoli-
dated). It should be noted that this is not a shortcoming of
FOCUS, but rather of using features that are uninterpretable
on their own, such as credit scores. Although FOCUS ex-
planations cannot tell a user precisely how to increase their
credit score, it is still important for the individual to know
that their credit score is an important factor in determining

their probability of getting a loan, as this empowers them to
ask questions about how the score was calculated (i.e., how
the risk markers were consolidated).

9 CONCLUSION
We propose an explanation method for tree-based classi-
fiers, FOCUS, which casts the problem of finding counter-
factual examples as a gradient-based optimization task and
provides a differentiable approximation of tree-based mod-
els to be used in the optimization framework. Given an in-
put instance x, FOCUS generates an optimal counterfactual
example based on the minimal perturbation to the input in-
stance x which results in an alternative prediction from a
model f . Unlike previous methods that assume the underly-
ing classification model is differentiable, we propose a so-
lution for when f is a non-differentiable, tree-based model
that provides a differentiable approximation of f that can be
used to find counterfactual examples using gradient-based
optimization techniques. In the majority of experiments, ex-
amples generated by FOCUS are significantly closer to the
original instances in terms of three different evaluation met-
rics compared to those generated by the baselines. FOCUS
is able to generate valid counterfactual examples for all in-
stances across all datasets, and the resulting explanations are
flexible depending on the distance function. We plan to con-
duct a user study to test how varying the distance functions
impacts user preferences for explanations.

Reproducibility
To facilitate the reproducibility of this work, our code is
available at https://github.com/a-lucic/focus.

Acknowledgements
This research was supported by Ahold Delhaize and the
Netherlands Organisation for Scientific Research under
project nr. 652.001.003., and by the Hybrid Intelligence
Center, a 10-year program funded by the Dutch Ministry
of Education, Culture and Science through the Nether-
lands Organisation for Scientific Research, https://hybrid-
intelligence-centre.nl, and by the Google Research Scholar
Program.

All content represents the opinion of the authors, which
is not necessarily shared or endorsed by their respective em-
ployers and/or sponsors.

References
Alaa, A. M.; Weisz, M.; and van der Schaar, M. 2017.
Deep Counterfactual Networks with Propensity-Dropout. In
ICML Workshop on Principled Approaches to Deep Learn-
ing.
Balestriero, R. 2017. Neural Decision Trees. arXiv preprint
arXiv:1702.07360.
Biggio, B.; and Roli, F. 2018. Wild Patterns: Ten Years After
the Rise of Adversarial Machine Learning. Pattern Recog-
nition, 84: 317–331.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. LOF: Identifying Density-Based Local Outliers. SIG-
MOD Rec., 29(2): 93–104.
Brown, T. B.; Mané, D.; Roy, A.; Abadi, M.; and Gilmer, J.
2018. Adversarial Patch. In Advances in Neural Information
Processing Systems 31.
Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.;
Shanmugam, K.; and Das, P. 2018. Explanations based on
the Missing: Towards Contrastive Explanations with Perti-
nent Negatives. In Advances in Neural Information Process-
ing Systems 31, 592–603. Curran Associates, Inc.
Doshi-Velez, F.; and Kim, B. 2018. Considerations for Eval-
uation and Generalization in Interpretable Machine Learn-
ing, 3–17. Cham: Springer International Publishing. ISBN
978-3-319-98131-4.
EU. 2016. Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 on the protec-
tion of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and re-
pealing Directive 95/46/EC (General Data Protection Regu-
lation). Official Journal of the European Union, L119: 1–88.
FICO. 2017a. Explainable Machine Learning Challenge.
FICO. 2017b. FICO xML Challenge.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In 3rd Interna-
tional Conference on Learning Representations.
Grath, R. M.; Costabello, L.; Van, C. L.; Sweeney, P.;
Kamiab, F.; Shen, Z.; and Lecue, F. 2018. Interpretable
Credit Application Predictions With Counterfactual Expla-
nations. In NeurIPS Workshop on Challenges and Opportu-
nities for AI in Financial Services.

Hinton, G.; Vinyals, O.; and Dean, J. 2014. Distilling the
Knowledge in a Neural Network. In NeurIPS Workshop on
Deep Learning.
Joshi, S.; Koyejo, O.; Vijitbenjaronk, W.; Kim, B.; and
Ghosh, J. 2020. Towards Realistic Individual Recourse
and Actionable Explanations in Black-Box Decision Mak-
ing Systems. In Proceedings of the 23rd International Con-
ference on Artificial Intelligence and Statistics.
Kanamori, K.; Takagi, T.; Kobayashi, K.; and Arimura, H.
2020. DACE: Distribution-Aware Counterfactual Explana-
tion by Mixed-Integer Linear Optimization. In Proceedings
of the Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, 2855–2862. International Joint Confer-
ences on Artificial Intelligence Organization. ISBN 978-0-
9992411-6-5.
Karimi, A.-H.; Barthe, G.; Balle, B.; and Valera, I. 2020a.
Model-Agnostic Counterfactual Explanations for Conse-
quential Decisions. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics.
Karimi, A.-H.; Schölkopf, B.; and Valera, I. 2021. Algo-
rithmic Recourse: From Counterfactual Explanations to In-
terventions. In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency, FAccT ’21,
353–362. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450383097.
Karimi, A.-H.; von Kügelgen, J.; Schölkopf, B.; and Valera,
I. 2020b. Algorithmic recourse under imperfect causal
knowledge: a probabilistic approach. In Advances in Neu-
ral Information Processing Systems 33. Curran Associates,
Inc.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
3rd International Conference on Learning Representations.
Laugel, T.; Lesot, M.-J.; Marsala, C.; Renard, X.; and De-
tyniecki, M. 2018. Inverse Classification for Comparison-
based Interpretability in Machine Learning. In 17th Interna-
tional Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU
2018).
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F.
2019. Explainable Reinforcement Learning Through a
Causal Lens. In AAAI Conference on Artificial Intelligence.
Mothilal, R. K.; Sharma, A.; and Tan, C. 2020. Explaining
Machine Learning Classifiers through Diverse Counterfac-
tual Explanations. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, FAT* ’20,
607–617. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450369367.
Ofer, D. 2017. COMPAS Dataset. https://www.kaggle.com/
danofer/compass.
Poyiadzi, R.; Sokol, K.; Santos-Rodriguez, R.; De Bie, T.;
and Flach, P. 2020. FACE: Feasible and Actionable Coun-
terfactual Explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society.
Russell, C. 2019. Efficient Search for Diverse Coherent
Explanations. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, FAT* ’19, 20–28.

New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450361255.
Su, J.; Vargas, D. V.; and Kouichi, S. 2019. One Pixel Attack
for Fooling Deep Neural Networks. IEEE Transactions on
Evolutionary Computation, 23(5): 828–841.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing Proper-
ties of Neural Networks. In 2nd International Conference
on Learning Representations.
Tolomei, G.; Silvestri, F.; Haines, A.; and Lalmas, M. 2017.
Interpretable Predictions of Tree-based Ensembles via Ac-
tionable Feature Tweaking. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining - KDD ’17, 465–474. ACM.
UCI. 2009. Wine Quality Data Set. https://archive.ics.uci.
edu/ml/datasets/Wine+Quality.
UCI. 2019. Online Shoppers Intention Dataset.
https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+
Purchasing+Intention+Dataset.
Ustun, B.; Spangher, A.; and Liu, Y. 2019. Actionable
Recourse in Linear Classification. In Proceedings of the
Conference on Fairness, Accountability, and Transparency,
FAT* ’19, 10–19. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450361255.
Van Looveren, A.; and Klaise, J. 2021. Interpretable Coun-
terfactual Explanations Guided by Prototypes. In Oliver, N.;
Pérez-Cruz, F.; Kramer, S.; Read, J.; and Lozano, J. A., eds.,
Machine Learning and Knowledge Discovery in Databases.
Research Track, 650–665. Cham: Springer International
Publishing. ISBN 978-3-030-86520-7.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2018. Counter-
factual Explanations Without Opening the Black Box: Au-
tomated Decisions and the GDPR. Harvard Journal of Law
& Technology.
Yang, Y.; Morillo, I. G.; and Hospedales, T. M. 2018. Deep
Neural Decision Trees. In ICML Workshop on Human Inter-
pretability in Machine Learning.

