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ABSTRACT
While recent progress in the field of machine learning (ML) and
information retrieval (IR) has been significant, the reproducibility
of these cutting-edge results is often lacking, with many submis-
sions failing to provide the necessary information in order to ensure
subsequent reproducibility [20, 21, 32]. Despite the introduction
of self-check mechanisms before submission (such as the Repro-
ducibility Checklist [31]), criteria for evaluating reproducibility
during reviewing at several major conferences [4, 11, 28], artifact
review and badging framework [18], and dedicated reproducibility
tracks and challenges at major IR conferences [8, 14–17], the moti-
vation for executing reproducible research is lacking in the broader
information community. We propose this tutorial as a gentle intro-
duction to help ensure reproducible research in IR, with a specific
emphasis on ML aspects of IR research.
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1 MOTIVATION
Reproducibility of scientific results is a crucial component of scien-
tific progress. It underpins trust in science. Reproducibility has been
a primary concern in IR for many decades [22]. As a discipline that
is strongly rooted in experimentation, it has long since stressed
the importance of repeatability of experiments, for instance, by
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relying on the common Cranfield paradigm [9], developing shared
experimental collections, and running broadly supported collab-
orative benchmarking activities [17]. With today’s increased role
for machine learning-based approaches to information retrieval
(IR), significant new challenges have emerged for reproducibility in
IR, as the experimental conditions in which modern IR experimen-
tation have become far more complex, in terms of data, libraries,
dependencies, baselines, and the sheer volume of publications from
very diverse technological (sub)communities in our discipline.

Two key dimensions emerge in the IR community’s thinking
about reproducibility. One has to do with the mechanics (i.e., prac-
tices and resources), the other has to do to with the notion of gener-
alizability (how can we make our scientific findings generalizable,
and in which dimensions?). Through a large number of bottom-up
initiatives over the past decade — badging, special conference tracks,
workshops, etc. — good practices and principles for reproducibility
in IR are being discovered and shared, and good (as well as not so
good) examples of reproducible research are being generated, both
concerning the mechanics dimension and concerning the general-
izability dimension. The time is right to bring these many advances
together in the form of a tutorial — to help the IR community learn
about these advances and to help the IR community advance the
reproducibility of its own science.

Our focus will be on machine learning aspects of IR, as that is
where we believe a large number of lessons and best practices have
been learned and can be shared.

As reproducibility is not a widely taught aspect in most curric-
ula in which IR is being taught, in addition to sharing principles
and practices about IR reproducibility, we also offer ways of using
reproducibility as a teaching tool as part of this tutorial.

2 OBJECTIVES
The objective of this tutorial is to first impart the basic tenets of
reproducibility, using which the audience can improve their own
research in IR. After attending our tutorial, we expect the audience
to be familiar with the processes required to conduct reproducible
research, and be aware of the broader efforts in the community to
improve the state of reproducible research.

Another objective of this tutorial is to showcase the use of re-
producibility as a teaching tool, in order to equip the audience to
further impart the knowledge and best practices of reproducible re-
search in their own setting, through course offerings or educational
programs at their home institutions.
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Our final objective is to facilitate a discussion between our tu-
torial participants and several members of the SIGIR community
about reproducibility in IR through a panel discussion.

2.1 Introduction to Reproducibility
The objective of the introduction is to explain how reproducibility
works in fields outside of computer science, such as medicine or
psychology, explain the mechanisms they use, and the criteria for
achieving reproducible results. For example, what does it mean for
research results to (not) be reproducible? What are some examples
of important results that were (not) reproducible? Why is there a
reproducibility crisis in IR and in ML [7, 21]? What would it look
like if we, as a community, prioritized reproducibility?

After the introduction, the audience will be able to provide ex-
amples of successes and failures of reproducibility in non-CS fields,
the reasons why the research was (not) reproducible, and the re-
sulting consequences. We will follow with a similar discussion of
fields within computer science, specifically in ML, before diving
into reproducibility in IR.

2.2 Reproducibility in Information Retrieval
The objective of this part is to focus on reproducibility in IR specifi-
cally and understand the challenges that the IR community is facing,
and how these differ from the challenges in ML, and in science more
broadly.

We will discuss examples of results that were reproducible and
those that were not reproducible. For the latter, we will categorize
reproducibility failures in IR, such as the work by Dacrema et al.
[10] as well as work that has been published in reproducibility
tracks at IR conferences [14, 15, 33].

2.3 Mechanisms for Reproducibility
The purpose of this part of the tutorial is to understand the various
existing initiatives to tackle the reproducibility problem in ML, NLP,
and IR, such as reproducibility checklists [4, 11, 28, 31], and ACM’s
badging system [1, 18].

Another objective is to introduce the ML Reproducibility Chal-
lenge,1 where researchers investigate the results of papers at top
ML conferences by reproducing the experiments and writing a
report about their experiences. There are several university-level
courses which have incorporated a reproducibility project via the
ML Reproducibility Challenge, which is the subject of the following
part of the tutorial.

2.4 Reproducibility as a Teaching Tool
Our objective in this section is to discuss how reproducibility can
be used as a tool in education to improve the scientific process,
scientific discourse, and science in general. It is imperative that we
teach the next generation about conducting reproducible research.

After this part of the tutorial, attendees will have the tools to
be able to set up a reproducibility project in a university-level
computer science course. We will provide recommendations for
using reproducibility as a teaching tool based on our experiences
[12, 23, 24], and reflect on the lessons learned.

1https://paperswithcode.com/rc2021

2.5 Panel Discussion
We will conclude our tutorial with a panel discussion about re-
producibility in IR with one moderator from our teaching team
and three invited panelists from the SIGIR community with di-
verse backgrounds in reproducibility. The moderator and invited
panelists will be on-site at the SIGIR conference.

3 RELEVANCE TO THE INFORMATION
RETRIEVAL COMMUNITY

In the tutorial, we introduce and contrast reproducibility [13], dis-
cuss papers reflecting on the reproducibility crisis in ML and IR
[2, 3, 6, 7, 26, 29], including possible reasons for this crisis [21].
This includes barriers to reproducibility, such as lack of code avail-
ability [29, 34] and the influence of different experimental setups
[5, 19, 30].

Our focus is on the reproducibility of ML-based research in IR,
as we believe that that is the area where the community has made
most progress, with the ECIR reproducibility track as one of the
primary outlets for this type of research, since 2015. Unfortunately,
other areas of importance to IR have (so far) witnessed less work
devoted to reproducibility, such as work on understanding users,
either in the small through users studies [35] or at scale through
online surveys [25].

We note that parts of this tutorial will be part of a half-day tuto-
rial at ACL 2022. The focus of that tutorial will be on ML research
reproducibility in NLP.2

4 FORMAT AND DETAILED SCHEDULE
The tutorial will cover five parts over the course of three hours:
I: Introduction to Reproducibility (35 mins)

1.1 Definitions and challenges
1.2 Reproducibility crisis in ML
1.3 Reproducibility in fields outside of computer science
1.4 Best practices for conducting reproducible research

II: Reproducibility in IR (35 mins)
2.1 Reproducibility challenges in the IR community
2.2 Reproducibility failures in IR
2.3 Reproducibility tracks at SIGIR,ECIR [8, 14, 15, 33]

III: Mechanisms for Reproducibility (35 mins)
3.1 Reproducibility checklists [4, 28]
3.2 ACM badging system [1]
3.3 ML Reproducibility Challenge [27]

IV: Reproducibility as a Teaching Tool (35 mins)
4.1 How to incorporate a reproducibility project in a university-

level course [12, 23]
4.2 Courses that have used reproducibility as a teaching tool

[24, 36]
V: Panel Discussion (40 mins)

5.1 Discussion
5.2 Closing

5 TYPE OF SUPPORT MATERIALS TO BE
SUPPLIED TO ATTENDEES

We will share the following materials with participants:
2https://acl-reproducibility-tutorial.github.io
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(1) Slides: All slides will be made publicly available.
(2) Annotated bibliography: An annotated compilation of

references will list all works discussed in the tutorial and
should provide a good basis for further study.
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