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ABSTRACT
Sequential Recommendation (SR) is the task of recommending the
next item based on a sequence of recorded user behaviors. We study
SR in a particularly challenging context, in which multiple indi-
vidual users share a single account (shared-account) and in which
user behaviors are available in multiple domains (cross-domain).
These characteristics bring new challenges on top of those of the
traditional SR task. On the one hand, we need to identify different
user behaviors under the same account in order to recommend the
right item to the right user at the right time. On the other hand, we
need to discriminate the behaviors from one domain that might be
helpful to improve recommendations in the other domains.

We formulate the Shared-account Cross-domain Sequential Rec-
ommendation (SCSR) task as a parallel sequential recommendation
problem. We propose a Parallel Information-sharing Network (π -
Net) to simultaneously generate recommendations for two domains
where user behaviors on two domains are synchronously shared at
each timestamp. π -Net contains two core units: a shared account
filter unit (SFU) and a cross-domain transfer unit (CTU). The SFU
is used to address the challenge raised by shared accounts; it learns
user-specific representations, and uses a gating mechanism to filter
out information of some users that might be useful for another
domain. The CTU is used to address the challenge raised by the
cross-domain setting; it adaptively combines the information from
the SFU at each timestamp and then transfers it to another domain.
After that, π -Net estimates recommendation scores for each item
in two domains by integrating information from both domains.

To assess the effectiveness of π -Net, we construct a new dataset
HVIDEO from real-world smart TV watching logs. To the best of
our knowledge, this is the first dataset with both shared-account
and cross-domain characteristics. We release HVIDEO to facilitate
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future research. Our experimental results demonstrate that π -Net
outperforms state-of-the-art baselines in terms of MRR and Recall.
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1 INTRODUCTION
In Sequential Recommendation (SR) a recommender system has to
promote recommendations based on a sequence of logged user be-
haviors, where interactions are usually grouped by virtue of taking
place within the same time frame [11, 27, 29, 36, 38]. Users usually
have specific goals during the process, such as finding a good restau-
rant in a city, or listening to music of a certain style or mood [35].
SRs have a wide range of applications in many domains such as
e-commerce, job websites, music and video recommendations [39].

In this paper, we study SR in a particularly challenging context,
Shared-account Cross-domain Sequential Recommendation (SCSR),
in which multiple individual users share a single account (shared
account) and inwhich user behavior is recorded inmultiple domains
(cross-domain). The shared account characteristic is considered
because in some applications, people tend to share a single account.
For example, in the smart TV recommendation scenario depicted
in Figure 1, members of a family share a single account to watch
videos. The existence of shared accounts makes it harder to generate
relevant recommendations, because multiple user behaviors are
mixed together.

We consider the cross-domain task because it is a common phe-
nomenon in practice. Users use different platforms to access domain-
specific services in daily life. We can get user behavior data from
different domains during the same time period. User behaviors in
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Figure 1: The smart TV scenario provides a natural ex-
ample of Shared-account Cross-domain Sequential Recom-
mendation (SCSR). Here, the video domain contains vari-
ous movies, TV series, cartoons, etc. The education domain
contains educational programs and technical tutorials, etc.
Boxed items reflect similar user interests.

one domain might be helpful for improving recommendations in an-
other domain [13, 21, 22, 40, 44], the idea being that user behavior in
different domains might reflect similar user interests. For example,
as shown in Figure 1, videos like “Mickey Mouse” in the video do-
main might help to predict the next item “Schoolhouse Fun” in the
education domain because they reflect the same interest in Disney
cartoon character “Mickey Mouse,” presumably by a child in this
family. Leveraging user behavior information from another domain
will incorporate useful and noisy information at the same time. This
raises another challenge, namely how to identify behavior from one
domain that might be helpful to improve recommendations in the
other domains while minimizing the impact of noisy information.

Recurrent Neural Networks (RNNs) have received a lot of atten-
tion in the context of SR [see, e.g., 19, 27, 35, 36]. However, most
publications focus on a single domain and none simultaneously
considers the shared account and cross-domain characteristics. In
prior work that focuses on shared accounts, a common approach is
to capture user preferences by extracting latent features from high-
dimensional spaces that describe the relationships among users
under the same account [2, 3, 12, 43, 45, 50]. And in prior work
on the cross-domain task, one common solution is to aggregate
information from two domains [13, 18, 21, 44], while another is
to transfer knowledge from the source domain to target domain
[12, 52]. None of these methods can be directly applied to SCSR for
at least two reasons. Either important sequential characteristics of
SR are largely ignored or they rely on explicit user ratings, which
are usually unavailable in SR.

To address the above issues, we propose a novel Parallel Infor-
mation-sharing Network (π -Net) for SCSR. π -Net is organized in
four main modules, namely a sequence encoder, a shared account
filter unit (SFU), a cross-domain transfer unit (CTU) and a hybrid
recommendation decoder. The sequence encoder module encodes the
current user behavior sequence into a representation. Then, the SFU
module identifies different user behaviors by learning user-specific
representations and uses a gate mechanism to filter out information
that might be useful for another domain. The output of the SFU
is adopted to the CTU module, which transfers the information
to another domain. The SFU and CTU are operated in a parallel
recurrent way, which means that they can synchronously share
information across both domains at each timestamp. Finally, the
hybrid recommendation decoder module estimates the recommen-
dation scores for each item based on the information from both

domains. During learning, π -Net is jointly trained on two domains
in an end-to-end fashion.

To assess the effectiveness of π -Net, we construct a new dataset,
HVIDEO, which is defined based on real-world smart TV watching
logs. To the best of our knowledge, HVIDEO is the first dataset that
has shared account and cross-domain characteristics. We carry out
extensive experiments on HVIDEO. The experimental results show
that π -Net outperforms state-of-the-art baselines in terms of MRR
and Recall.

Our contributions can be summarized as follows:
• We introduce the task of Shared-account Cross-domain Sequential
Recommendation (SCSR), which has little attention in existing
studies. We release a new shared account, smart TV recommen-
dation dataset to facilitate future research in this space.

• We propose a novel π -Net model for SCSR, which simultaneously
yields recommendations for two domains.

• We propose a shared account filter unit (SFU) and cross-domain
transfer unit (CTU) that recurrently extract and share useful
information between two domains to improve recommendation
performances for both domains.

2 RELATEDWORK
We consider three types of related work: sequential, shared account,
and cross-domain recommendation.

2.1 Sequential recommendations
Traditional methods. The main traditional approach is based on
Markov chains to predict users’ next action given the last action [39].
Zimdars et al. [53] are the first to propose Markov chains for web
page recommendation. They investigate how to extract sequential
patterns to learn the next state using probabilistic decision-tree
models. To further improve the performance, Shani et al. [39] pro-
pose a Markov Decision Process (MDP) based recommendation
method, where the next recommendation can be computed through
the transition probabilities among items. Yap et al. [48] introduce a
competence score measure in personalized sequential pattern min-
ing for next-item recommendations. Chen et al. [9] take playlists
as Markov chains, and propose logistic Markov embeddings to
learn the representations of songs for playlists prediction. A ma-
jor issue of these methods is that the state space quickly becomes
unmanageable when taking the whole sequence into account [27].

Deep learning based methods. Recently, RNNs have been devised
to model variable-length sequential data. Quadrana et al. [35] have
been the first to apply RNNs to sequential recommendation and
achieve significant improvements over traditional methods. They
utilize session-parallel mini-batch training and employ ranking-
based loss functions to train the model. Later, they further propose
data augmentation techniques to improve the performance of RNNs
[42]. Bogina and Kuflik [6] explore user’s dwell time based on an
existing RNN-based framework by boosting items above a prede-
fined dwell time threshold. Hidasi et al. [20] investigate how to
add item property information such as text and images to an RNNs
framework and introduce a number of parallel RNN (p-RNN) archi-
tectures; they propose alternative training strategies for p-RNNs
that suit them better than standard training. Quadrana et al. [35]
propose a hierarchical RNN model that can be used to generate



personalized sequential recommendations. Li et al. [27] explore a
hybrid encoder with an attention mechanism to model the user’s
sequential behavior and intent to capture the user’s main purpose
in the current sequence. Jiang et al. [24] propose an unsupervised
learning-based model to identify users in the current sequence.
They introduce an item-based sequence embedding technique by
constructing a normalized randomwalk in the heterogeneous graph.
Zhuang et al. [52] propose a novelty seeking model based on se-
quences in multi-domains to model an individual’s propensity by
transferring novelty seeking traits learned from a source domain for
improving the accuracy of recommendations in the target domain.

Although there are many studies for sequential recommenda-
tions, none considers shared accounts and cross-domain simultane-
ously.

2.2 Shared account recommendations
Most previous approaches to shared account recommendations
first identify users and then make personalized recommendations
[2, 12, 43, 50]. Zhang et al. [49] are the first to study user identi-
fication, in which they use linear subspace clustering algorithms;
they recommend the union of items that are most likely to be rated
highly by each user. Bajaj and Shekhar [3] propose a similarity-
based channel clustering method to group similar channels for IPTV
accounts, and they use the Apriori algorithm to decompose users
under an account. After that, they use personal profiles to recom-
mend additional channels to the account. Wang et al. [45] suppose
that different users consume services in different periods. They de-
compose users based on mining different preferences over different
time periods from consumption logs. Finally, they use a standard
User-KNN method to make recommendations for each identified
user. Yang et al. [47] also analyze the similarity of the proportion of
each type of items under a time period to judge whether a sequence
is generated by the same user. Then they make recommendations
to the specific user individually by recommending personalized
genres to the identified users.

Yang et al. [46] identify users by using a projection based unsu-
pervised method, and then use Factorization Machine techniques
to predict a user’s preference based on historical information to
generate personalized recommendations. Jiang et al. [24] propose
an unsupervised learning-based framework to differentiate the
preferences of users and group sessions by users. They construct
a heterogeneous graph to represent items and use a normalized
random walk to create item-based session embeddings. A hybrid
recommender is then proposed that linearly combines the account-
level and user-level item recommendation by employing Bayesian
personalized ranking matrix factorization (BPRMF) [37].

The differences between our method and above methods are at
least two-fold. First, the work described above achieves user iden-
tification and recommendation in two separate processes, which
means that the proposed models are not end-to-end learnable. Sec-
ond, they do not consider the cross-domain scenario on which we
focus.

2.3 Cross-domain recommendations
Cross-domain recommendation concerns data from multiple do-
mains, which has proven to be helpful for alleviating the cold start

problem [1, 5] and data sparsity issues [26, 33]. There is an assump-
tion that there exists overlap in information between users and/or
items across different domains [13, 14].

Traditional methods. There are twomain ways in dealing with cross-
domain recommendations [15]. One is to aggregate knowledge be-
tween two domains. Berkovsky et al. [4] propose four mediation
techniques to solve the data sparsity problem by merging user pref-
erences and extracting common attributes of users and items. Loni
et al. [30] model user preference by using Matrix Factorization sep-
arately on different domains, and then incorporate user interaction
patterns that are specific to particular types of items to generate
recommendations on the target domain. Shapira et al. [40] compare
several collaborative methods to demonstrate the effectiveness of
utilizing available preference data from Facebook. Zhuang et al.
[51] propose a consensus regularization classifier framework by
considering both local data available in source domain and the
prediction consensus with the classifiers learned from other source
domains. Cao et al. [7] construct a nonparametric Bayesian frame-
work by jointly considering multiple heterogeneous link prediction
tasks between users and different types of items. Chen et al. [8]
exploit the users and items shared between domains as a bridge
to link different domains by embedding all users and items into a
low-dimensional latent space between different domains.

The other approach to cross-domain recommendation is to trans-
fer knowledge from source domain to target domain. Hu et al.
[22] propose tensor-based factorization to share latent features be-
tween different domains. Cremonesi and Quadrana [12] propose
a code-book-transfer to transfer rating patterns between domains.
Kanagawa et al. [25] propose a content-based approach to learn
the semantic information between domains. However, compared
with deep learning methods, they are all shallow methods and have
difficulties in learning complex user-item interactions.

Deep learning based methods. Deep learning is well suited to trans-
fer learning as it can learn high-level abstractions among different
domains. Lian et al. [28] first introduce a factorization framework to
tie collaborative filtering and content-based filtering together; they
use neural networks to build user and item embeddings. Elkahky
et al. [13] propose a multi-view deep learning recommendation
system by using rich auxiliary features to represent users from
different domains based on deep structured semantic model (DSSM)
[23]. Hu et al. [21] propose a model using a cross-stitch network
[32] to learn complex user-item interaction relationships based
on neural collaborative filtering [18]. Zhuang et al. [52] propose a
graphic novelty-seeking model to fully characterize users’ novelty-
seeking trait so as to obtain better performances between different
domains. Wang et al. [44] are the first to introduce the problem of
cross-domain social recommendation, and they combine user-item
interactions in information domains and user-user connections
in social network services to recommend relevant items of infor-
mation domains to target users of social domains; user and item
attributes are leveraged to strengthen the embedding learning.

Although these studies have been proven effective in many ap-
plications, they are designed for static rating data, and cannot be
applied to sequential recommendations, unlike the methods that
we introduce in this paper.



Figure 2: An overview of π -Net. Different colors represent different domains. Section 3.2 contains a walkthrough of themodel.

3 METHOD
In this section, we first give a formulation of the SCSR problem.
Then, we give a high-level introduction to the framework of π -Net.
Finally, we describe each component of π -Net in detail.

3.1 Task definition
We represent a cross-domain behavior sequence (e.g., watching
videos, listening to musics) from a shared account as S = {A1,B1,
B2, . . . ,Ai , . . . ,Bj , . . .}, where Ai ∈ A (1 ≤ i ≤ n) is the index of
one consumed item in domain A; A is the set of all items in domain
A; Bj ∈ B (1 ≤ j ≤ m) is the index of one consumed item in domain
B;B is the set of all items in domain B. Given S , SCSR tries to predict
the next item by computing the recommendation probabilities for
all candidates in two domains respectively, as shown in Eq. 1:

P(Ai+1 |S) ∼ fA(S)

P(Bj+1 |S) ∼ fB (S),
(1)

where P(Ai+1 |S) denotes the probability of recommending the item
Ai+1 that will be consumed next in domain A. Also, fA(S) is the
model or function to estimate P(Ai+1 |S). Similar definitions apply
to P(Bj+1 |S) and fB (S).

The main differences between SCSR and traditional SR are two-
fold. First, S is generated by multiple users (e.g., family members)
in SCSR while it is usually generated by a single user in SR. Second,
SCSR considers information from both domains for the particular
recommendations in one domain, i.e., S is a mixture of behaviors
frommultiple domains. In this paper, we only consider two domains
but the ideas easily generalize to multiple domains.

3.2 An overview of π -Net
In the following subsections, we will describe π -Net, our proposed
solution for SCSR, in detail. The key idea of π -Net is to learn a

recommendation model that can first extract some specific users’
information from domain A, and then transfer the information to
domain B, and combine it with the original information from do-
main B to improve recommendation performance for domain B, and
vice versa. This process is achieved in a parallel way, which means
that the information from both domains are shared recurrently at
each timestamp.

Figure 2 provides an overview of π -Net. π -Net consists of four
main components: a sequence encoder, a shared account filter unit
(SFU), a cross-domain transfer unit (CTU) and a hybrid recommenda-
tion decoder. The sequence encoder encodes the behavior sequences
of each domain into high-dimensional hidden representations. The
shared account filter unit (SFU) takes each domain’s representation
as input and tries to extract the representation of specific users and
ignore the others at each timestamp t . The cross-domain transfer
unit (CTU) takes the information from the SFU as input, trans-
forms it to another domain at each timestamp t , and combines the
information from the two domains recurrently. The hybrid recom-
mendation decoder integrates the information from both domains
and generates a list of recommended items.

3.3 Sequence encoder
Like existing studies [19, 35, 42], we use a RNN to encode a sequence
S . Here, we employ a gated recurrent unit (GRU) as the recurrent
unit, with the GRU given as follows:

zt = σ (Wz [emb(xt ),ht−1])

rt = σ (Wr [emb(xt ),ht−1])

h̃t = tanh(Wh̃ [emb(xt ), rt ⊙ ht−1])

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t ,

(2)



Figure 3: Shared account filter unit SFU. Domain A to do-
main B SFU.

whereWz ,Wr , andWh̃ are weight matrices; emb(xt ) is the item
embedding of item x at timestamp t ; σ denotes the sigmoid function.
The initial state of the GRUs is set to zero vectors, i.e., h0 = 0.
Through the sequence encoder we obtain HA = {hA1 , hA2 , . . . , hAi ,
. . . , hAn } for domain A, and HB = {hB1 ,hB2 , . . . ,hBj , . . . ,hBm } for
domain B.

3.4 Shared-account filter unit
Under the shared account scenario, the behavior records under the
same account are generated by different users. In practice, not all
users that share the account are active in all domains. Besides, even
though some users are active in the same domain, they may have
different interests. For example, in the smart TV scenario, children
may occupy the majority of the educational channel, while adults
dominate the video TV channel.

The outputs HA or HB of the sequence encoder are the mixed
representations of all users sharing the same account. To learn
user-specific representations from the mixed representations, we
propose a shared account filter unit (SFU) module, as shown in
Figure 3. The SFU can be applied bidirectionally from “domain
A to domain B” and “domain B to domain A”. Here, we take the
“domain A to domain B” direction and achieving recommendations
in domain B as an example. To learn user-specific representations,
we need to know the number of users for each account, which is,
unfortunately, unavailable in most cases. In this work, we assume
that there are K latent users (u1, u2, . . . , uk , . . . , uK ) under each
account. We first embed each latent user into emb(uk ) (1 ≤ k ≤ K),
which represents and encodes the latent interests of each user. Then,
the specific representation for user uk at timestamp i in domain A
is defined in Eq. 3:

h
uk
Ai
= f

uk
Ai

⊙ ĥ
uk
Ai
+ (1 − f

uk
Ai

) ⊙ hSFUAi−1→B . (3)

Mathematically, the representation h
uk
Ai

is a combination of two

representations hSFUAi−1→B and ĥukAi balanced by f
uk
Ai

. A higher value
of f ukAi

means that item Ai is more likely generated by uk and we

should pay more attention to uk ’s related representation ĥ
uk
Ai
. A

lower value of lower f ukAi
means that item Ai might not be related

to uk and we should inherit more information from previous time
steps.

Next, we introduce the definitions of the three parts one by one.

(a) We propose a distill gate to implement f ukAi
in Eq. 4:

f
uk
Ai
= σ

(
WfA · hAi +WfB · hBj +

Uf · hSFUAi−1→B +Vf · emb(uk ) + bf

)
,

(4)

whereWfA ,WfB , Uf and Vf are the parameters; bf is the
bias term; hAi and hBj are the mixed representations of
domain A and B at timestamp i and j , respectively. hSFUAi−1→B
is the previous SFU output, which will be explained later.
After the sigmoid function σ , each value of f ukAi

falls into
(0, 1). Thus, the distill score f

uk
Ai

controls the amount of
information of uk to transfer from domain A to domain B.
It should be noted that each latent representation emb(uk)
indicates the distribution of users with similar preference
under one account, and it does not explicitly represents a
specific user.

(b) ĥukAi is the candidate representation for uk at timestamp i in
domain A, which is computed based on the mixed represen-
tation hAi , the filtered previous SFU output hSFUAi−1→B , and
the user uk ’s own latent interest emb(uk ), as shown in Eq. 5:

ĥ
uk
Ai
= tanh

(
Wh · hAi +

Uh · hSFUAi−1→B +Vh · emb(uk ) + bh

)
,

(5)

whereWh ,Uh andVh are the parameters; bh is the bias term.
(c) hSFUAi→B is the final output of the SFU at timestamp i in domain

A, which is calculated as a combination of each user-specific
representation hukAi :

hSFUAi→B =
1
K

K∑
k=1

(
h
uk
Ai

)
. (6)

Note that hSFUAi→B is recurrently updated with Eq. 3 and 6.

3.5 Cross-domain transfer unit
The output of the SFU, hSFUAi→B , still belongs to the domain A. We
need to transfer it to the domain B and then combine it with the
original information in domain B to improve the recommendation
performance for domain B. We propose the CTU to achieve this
process. Specifically, we transform the representation hSFUAi→B from
domain A to domain B by employing another GRU to recurrently
encode hSFUAi→B at each time step to obtain a hCTU

(A→B)i
, as shown in

Eq. 7:

hCTU
(A→B)i

= GRU (hSFUAi→B ,h
CTU
(A→B)i−1

), (7)

wherehSFUAi→B is the representation filtered from domainA;hCTU
(A→B)i−1

is the previous transformed representation in domain B. The initial
state of the CTU is also set to zero vectors, i.e., hCTU

(A→B)0
= 0.

3.6 Hybrid recommendation decoder
The hybrid recommendation decoder integrates the hybrid informa-
tion from both domains A and B to evaluate the recommendation
probabilities of the candidate items. Specifically, it first gets the hy-
brid representation by concatenating the representation hBj from
domainB and the transformed representationhCTU

(A→B)i
from domain



A to domain B. Then, it evaluates the recommendation probability
for each candidate item by calculating the matching of between the
hybrid representation and the item-embedding matrix followed by
a softmax function, as shown in Eq. 8:

P(Bj+1 |S) = softmax
(
WI ·

[
hBj ,h

CTU
(A→B)i

]T
+ bI

)
, (8)

whereWI is the embedding matrix of all items of domain B; bI is
the bias term.

3.7 Objective function
We employ the negative log-likelihood loss function to train π -Net
in each domain as follows:

LA(θ ) = −
1
|S|

∑
S ∈S

∑
Ai ∈S

log P(Ai+1 |S)

LB (θ ) = −
1
|S|

∑
S ∈S

∑
Bj ∈S

log P(Bj+1 |S),
(9)

where θ are all the parameters of our model π -Net and S are the
sequence instances in the training set. In the case of joint learning,
the final loss is a linear combination of both losses:

L(θ ) = LA(θ ) + LB (θ ). (10)

All parameters as well as the item embeddings are learned in an
end-to-end back-propagation training way.

4 EXPERIMENTAL SETUP
4.1 Research questions
We aim to answer the following research questions:
(RQ1) What is the performance of π -Net in the SCSR task? Does it

outperform the state-of-the-art methods in terms of Recall
and MRR? (See Section 5.)

(RQ2) What are the performances of π -Net on different domains?
Does it improve the performance of both domains? Are the
improvements equivalent? (See Section 5.)

(RQ3) Is it helpful to model the shared-account characteristic? How
well does SFU improve the performance of recommenda-
tions? (See Section 6.1.)

(RQ4) Is it helpful to leverage the cross-domain information? How
well does CTU improve the performance of recommenda-
tions? (See Section 6.1.)

(RQ5) How does the hyperparameterK (the number of latent users)
affect the performance of π -Net? Does the best K accord
with reality? (See Section 6.2.)

4.2 Dataset
There is no publicly available dataset for SCSR. To demonstrate the
effectiveness of the proposed π -Net model, we build and release a
new dataset, named HVIDEO. HVIDEO is a smart TV dataset that
contains 260k users watching logs from October 1st 2016 to June
30th 2017. The logs are collected on two platforms (the V-domain
and the E-domain) from a well-known smart TV service provider.
The V-domain contains family video watching behavior including
TV series, movies, cartoons, talent shows and other programs. The
E-domain covers online educational videos based on textbooks from
elementary to high school, as well as instructional videos on sports,

Table 1: Statistics of the HVIDEO dataset.

V-domain
#Items 16,407
#Logs 227,390

E-domain
#Items 3,380
#Logs 177,758

#Overlapped-users 13,714
#Sequences 134,349
#Training-sequences 102,182
#Test-sequences 13,201
#Validation-sequences 18,966

food, medical, etc. On the two platforms, we gather user behaviors,
including which video is played, when a smart TV starts to play a
video, and when it stops playing the video, and how long the video
has been watched. Compared with previous datasets, HVIDEO
contains rich and natural family behavior data generated in shared-
account and cross-domain context. Therefore, it is very suitable for
SCSR research.

We conduct some preprocessing on the dataset. We first filter out
users who have less than 10 watching records and whose watching
time is less than 300 seconds. Then, we merge records of the same
item watched by the same user with an adjacent time less than
10 minutes. After that, we combine data from different domains
together in chronological order which is grouped by the same
account.

Because each account has a lot of logs recorded in a long time,
we split the logs from each account into several small sequences
with each containing 30 watching records. And we require that the
number of items in both domains must be greater than 5 in each
sequence, which can ensure the sequences mix is high enough.

For evaluation, we use the last watched item in each sequence
for each domain as the ground truth respectively. We randomly
select 75% of all data as the training set, 15% as the validation set,
and the remaining 10% as the test set. The statistics of the final
dataset are shown in Table 1.

4.3 Baseline methods
For our contrastive experiments, we consider baselines from four
categories: traditional, sequential, shared account, and cross-domain
recommendations.

4.3.1 Traditional recommendations. As traditional recommenda-
tion methods, we consider the following:
• POP: Ranks items in the training set based on their popularity,
and always recommends the most popular items. Frequently used
as a baseline because of its simplicity [18].

• Item-KNN: Computes an item-to-item similarity that is defined
as the number of co-occurrences of two items within sequences
divided by the square root of the product of the number of se-
quences in which either item occurs. Regularization is included to
avoid coincidental high similarities between rarely visited items
[29].

• BPR-MF: A commonly used matrix factorization method. Like
[19], we apply it for sequential recommendations by representing



a new sequence with the average latent factors of items that
appeared in this sequence so far.

4.3.2 Shared account recommendations. There are some studies
that explore shared account recommendations by first achieving
user identification [3, 24, 47]. However, they need extra information
for user identification, e.g., some explicit ratings for movies or
descriptions for some musics, even some textual descriptions for
flight tickets, which is not available in HVIDEO. Therefore, we
select a method that works on the IP-TV recommendation task that
is similar to ours.
• VUI: Encompasses an algorithm to decompose members in a
composite account by mining different preferences over differ-
ent time periods from logs [45]. The method first divides a day
into time periods, so the logs of each account fall into the corre-
sponding time period; logs in each time period are assumed to be
generated by a virtual user that is represented by a 3-dimensional
{account × item × time} vector. After that, cosine similarity is
used to calculate similarity among virtual users, some of which
are merged into a latent user. VUI deploys User-KNN method to
produce recommendations for these latent users.

4.3.3 Cross-domain recommendations. As cross-domain recom-
mendations, we choose two baseline methods.
• NCF-MLP++: Uses a deep learning-based process to learn the
inner product of the traditional collaborative filtering by using
Multilayer perceptron (MLP) [18]. We improve NCF-MLP by
sharing the collaborative filtering in different domains. It is too
time-consuming to rank all items with this method, because it
needs to compute the score for each item one by one. We ran-
domly sample four negative instances for each positive instance
in the training process, and sample 3,000 negatives for each pre-
dicted target item in the test process, thus simplifying the task
for this method.

• Conet: A neural transfer model across domains on the basis
of a cross-stitch network [21, 32], where a neural collaborative
filtering model [18] is employed to share information between
domains.

4.3.4 Sequential recommendations. As sequential recommenda-
tions methods we consider two methods with somewhat similar
architectures as π -Net.
• GRU4REC: Uses GRU to encode sequential information and em-
ploys ranking-based loss functions for learning the model [19].

• HGRU4REC: Takes the user’s information into account, and pro-
poses a hierarchical RNN model based on GRU4REC [35]. It in-
corporates auxiliary features into GRU networks to improve the
sequential recommendations.

4.4 Evaluation metrics
Recommender systems can only recommend a limited number of
items at a time. The item a user might pick should be amongst the
first few on the ranked list [10, 17, 35]. Commonly used metrics are
MRR@20 and Recall@20 [27, 31, 36]. In this paper, we also report
MRR@5, Recall@5 and MRR@10, Recall@10.
• Recall: The primary evaluation metric is Recall, which measures
the proportion of cases when the relevant item is amongst the
top ranked items in all test cases.

• MRR:Another usedmetric isMRR (Mean Reciprocal Rank), which
is the average of reciprocal ranks of the relevant items. And the
reciprocal rank is set to zero if the ground truth item is not
in the recommendation list. MRR takes the rank of the items
into consideration, which is vital in settings where the order
of recommendations matters. We choose MRR instead of other
ranking metrics, because there is only one ground truth item for
each recommendation; no ratings or grade levels are available.

4.5 Implementation details
We set the item embedding size and GRU hidden state size to 90. We
use dropout [41] with drop ratio p = 0.8. These settings are chosen
with grid search on the validation set. For the latent user size K in
Section 3.4, we try different settings, the analysis of which can be
found in Section 6.2.We initialize model parameters randomly using
the Xavier method [16]. We take Adam as our optimizing algorithm.
For the hyper-parameters of theAdamoptimizer, we set the learning
rate α = 0.001. We also apply gradient clipping [34] with range
[−5, 5] during training. To speed up the training and converge
quickly, we use mini-batch size 64. We test the model performance
on the validation set for every epoch. π -Net is implemented in
Tensorflow and trained on a GeForce GTX TitanX GPU. The code
used to run the experiments and HVIDEO dataset released in this
paper is available online.1

5 EXPERIMENTAL RESULTS (RQ1 & RQ2)
The results of π -Net and the baseline methods are shown in Table 2.
We can see that π -Net outperforms all baselines in terms of MRR
and Recall for all reported values. We can gain several insights from
Table 2.

First, π -Net significantly outperforms all baselines and achieves
the best results on all metrics. Some strong baselines, i.e., GRU4REC
and HGRU4REC, are also outperformed by π–Net. The improve-
ments indicate that considering the specific shared account and
cross-domain setting is helpful for sequential recommendations.
The increase over GRU4REC is 13.03% (at most) in terms of Recall,
and 3.18% in terms of MRR. And the increase over HGRU4REC is
7.67% (at most) in terms of Recall, and 0.77% in terms of MRR.We be-
lieve that those performance improvements are due to the fact that
π -Net contains two main components for as part of its end-to-end
recommendation model, namely the SFU and CTU. With these two
modules, π -Net is able to model user preferences more accurately
by leveraging complementary information from both domains and
improve recommendation performance in both domains. As an
aside, GRU4REC and HGRU4REC have very similar architectures
as π -Net and we re-implement them within the same TensorFlow
framework, so as to obtain a fair comparison. We will analyze the
effects of the SFU and CTU in more depth in Section 6.1.

Second, we can observe that the Recall values of π -Net on the
V-domain are better than those on the E-domain. This is also true
for the other methods. Most accounts have much more data on
the V-domain due to its content diversity; because of this, models
can better learn users viewing characteristics on the V-domain.
Additionally, comparing π -Net with the best baseline, HGRU4REC,
we find that the largest increase on the E-domain is larger than on
1https://bitbucket.org/Catherine_Ma/sigir2019_muyang_recommendation/

https://bitbucket.org/Catherine_Ma/sigir2019_muyang_recommendation/


Table 2: Experimental results (%) on the HVIDEO dataset.

Categories Methods
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

Traditional
POP 2.66 3.07 3.27 5.01 7.77 10.49 1.71 1.96 2.24 2.21 3.61 6.58
Item-KNN 4.43 4.16 2.93 10.48 16.49 23.93 2.11 2.39 2.90 3.01 5.77 12.11
BPR-MF 1.21 1.31 1.36 1.88 2.56 3.38 1.34 1.52 1.64 2.74 4.05 5.83

Shared account VUI-KNN 3.44 3.53 2.87 16.46 24.85 34.76 2.03 2.51 3.48 6.36 11.55 24.27

Cross domain NCF-MLP++ 16.25 17.25 17.90 26.10 33.61 43.04 3.92 4.57 5.14 7.36 12.27 20.84
Conet 21.25 22.61 23.28 32.94 43.07 52.72 5.01 5.63 6.21 9.26 14.07 22.71

SR GRU4REC 78.27 78.46 78.27 80.15 81.63 83.04 12.27 13.00 13.70 16.24 21.89 32.16
HGRU4REC 80.37 80.53 80.62 81.92 83.21 84.43 14.47 15.37 16.11 19.79 26.72 37.52

SCSR π -Net 80.51 80.80 80.95 83.22† 85.34† 87.48† 14.63 15.83 16.88† 20.41† 29.61† 45.19†

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the best baseline results are marked with † (t-test,
p < .05). To ensure a fair comparison, we re-implemented GRUE4REC and HGRU4REC in Tensorflow, just like π -Net; the final results may be slightly
different from the Theano version released by the authors. To obtain the results of NCF-MLP++ and Conet, we run the code released by Hu et al. [21].

V-domain. The largest increase in Recall is 3.05% on the V-domain
and 7.67% on the E-domain. And for the MRR values, the largest
increase is 0.33% on the V-domain, and 0.77% on the E-domain.
As before, this difference is relative gain is because the V-domain
contains much more data than the E-domain. Therefore, the space
for potential improvements on the V-domain is smaller than that on
the E-domain after considering shared account and cross-domain
information.

Third, RNN-based methods perform better than traditional meth-
ods, which demonstrates that RNN-based methods are good at deal-
ing with sequential information. They are able to learn better dense
representations of the data through nonlinear modeling, which we
assume is able to provide a higher level of abstraction. The shared
account and cross-domain baselines (e.g., VUI-KNN, NCF-MLP++
and Conet) perform much worse than π -Net. They also perform
substantially worse than HGRU4REC. This is because these shared
account and cross-domain baselines ignore sequential information,
VUI-KNN only considers the length of watching time, and NCF-
MLP++ and Conet do not use any time information. Another reason
is that NCF-MLP++ and Conet just map each overlapped account
in both domains to the same latent space to calculate the user-item
similarity. However, the existence of shared accounts makes it diffi-
cult to find the same latent space for different latent users under one
account. Besides, VUI-KNN is not a deep learning method and it
simply distinguishes users based on the fixed divided time periods,
which means it assumes there is only one member in each time
period. However, in the smart TV scenario, many people usually
watch programs together [45]. This situation cannot be captured
very well by VUI-KNN. In contrast, the SFU can extract compo-
nents of each hidden user according to their viewing records in
another domain, which proves to be informative. We can also see
the results of BPR-MF are lower than POP, which indicates that
most items users watched are very popular, which is also in line
with the phenomenon of people like pursuing popularity.

Fourth, the increase in Recall is greater than the increase in
MRR. As for π -Net, Recall increases by 24.78% from Recall@5 to

Recall@20 while MRR only increases by 2.25% from MRR@5 to
MRR@20. This is because Recall measures the proportion of rele-
vant items when they are amongst the top-k list, while MRR takes
the rank of the relevant items into consideration. As the size of k
increases, the number of relevant items will increase, and conse-
quently, Recall values will increase. However, the calculation of
MRR is the reciprocal of the ranking of each positive item. So an
increase k is bound to have a limited impact on the MRR.

6 EXPERIMENTAL ANALYSIS
6.1 Analysis of SFU and CTU (RQ3 & RQ4)
We design experiments to verify the effectiveness of the proposed
SFU and CTU. The results are listed in Table 3. There, we compare
π -Net with π -Net (no SFU, no CTU) and π -Net (no SFU). π -Net
(no SFU, no CTU) removes both SFU and CTU, which is actually
GRU4REC except that π -Net (no SFU, no CTU) is jointly trained
with a different loss. π -Net (no SFU) is π -Net without the shared-
account filter part, whichmeans it makes recommendations without
considering filtering the information of each latent user. To achieve
this, π -Net (no SFU) uses the output of the sequence encoder as the
input of the CTU part.

From Table 3, we can see that π -Net (no SFU) performs better
than π -Net (no SFU, no CTU). This is because π -Net (no SFU)
leverages information from both domains when making next-item
prediction. On V-domain recommendation, the largest increase is
0.69% in terms of MRR@20, and 2.4% in terms of Recall@20. On
E-domain recommendation, π -Net (no SFU) improves by 3.66% in
terms of MRR@5, and 4.43% in terms of Recall@5. This confirms
that CTU is able to improve the recommendation performance by
transferring information recurrently.

From Table 3, we can also observe that π -Net outperforms π -Net
(no SFU) in terms of most metrics, which means extracting informa-
tion of latent users under the same account to another domain can
greatly improve recommendation performances in both domains.
On V-domain recommendation, MRR values can increase by 1.98%



Table 3: Analysis of the SFU and CTU.

Methods
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

π -Net (no SFU, no CTU) 78.02 78.17 78.28 80.13 81.34 82.93 12.69 13.43 14.05 16.54 22.29 31.45
π -Net (no SFU) 78.59 78.85 78.97 81.71 83.58 85.33 16.35 17.04 17.59 20.97 26.29 34.44
π -Net 80.51† 80.80† 80.95† 83.22† 85.34† 87.48† 14.63 15.83 16.88 20.41 29.61† 45.19†

π -Net (no SFU) is π -Net without SFU. π -Net (no SFU, no CTU) is π -Net without SFU and CTU. SFU relies on CTU and SFU will not exist without CTU, so
there is no π -Net (no CTU). Significant improvements over π -Net (no SFU) are marked with † (t-test, p < .05).

Table 4: Analysis of the hyperparameter K .

K values
V-domain recommendation E-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

1 80.19 80.50 80.66 82.85 85.15 87.40 13.92 15.06 16.10 19.76 28.74 43.98
2 80.48 80.75 80.91 83.08 85.06 87.31 14.29 15.47 16.54 19.83 28.96 44.77
3 80.53 80.79 80.93 83.34 85.31 87.31 14.45 15.54 16.64 20.23 28.61 44.64
4 80.51 80.80 80.95 83.22 85.34 87.48 14.63 15.83 16.88 20.41 29.61 45.19
5 80.60 80.86 81.02 83.25 85.19 87.47 14.59 15.71 16.75 20.42 28.97 44.38

at most and 1.92% at least, Recall values can increase by 2.15% at
most and 1.51% at least. On E-domain recommendation, Recall@20
increases by 10.75%. But some metrics decrease a little; we believe
this is a sign of noise brought in through cross-domain information.
The proposed SFU sometimes fails to distinguish between noisy
and valuable information; it remains as a topic for future work to
design even better SFU modules.

We find that the gap between π -Net (no SFU) and π -Net (no SFU,
no CTU) is larger than that between π -Net and π -Net (no SFU).
π -Net (no SFU) is even better than π -Net on E-domain in terms of
MRR. This indicates that the CTU is more effective than the SFU in
π -Net. Almost all members have viewing records in the V-domain.
However, items on the E-domain are mostly educational programs,
so children take up a large proportion, and their educational inter-
ests are relatively fixed. As a result, the information extracted by
the SFU from the V-domain mostly belongs to children, which is
less helpful because we already have enough data on the E-domain
to learn such features in most cases.

Additionally, we see that π -Net (no SFU, no CTU) gets the lowest
performance amongst the three these methods, while it still out-
performs most of the baselines listed in Table 2. Meanwhile, π -Net
(no SFU) outperforms all sequential recommendation baselines. In
summary, then, combining information from an auxiliary domain
is useful.

6.2 Influence of hyperparameter K (RQ5)
Family members share a single account in the HVIDEO dataset. We
have proposed the SFU to model this, which introduces a hyperpa-
rameter K , representing the number of latent users. To study how
the settingK affects recommendation performance, we compare dif-
ferent values of K while keeping other settings unchanged. Taking
into account the popular sizes of families, we consider K = 1, . . . , 5.

As shown in Table 4, we can see that the best values of MRR and
Recall are achieved when K = 3, 4, 5, and especially K = 4. This
is mostly consistent with the size of modern families. The lowest
MRR and Recall values are achieved when K = 1. Although K can
affect the recommendation performance, the influence is small. The
largest gap between the best and worst performances is only 1.21%
in terms of Recall and 0.78% in terms of MRR. Even if K = 1, our
model still considers the information of all members except that all
members are modeled as a single latent user.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed the new task of SCSR. To address
this task, we have proposed a novel parallel information-sharing
network named π -Net. By leveraging a shared account filter and a
cross-domain transfer mechanism, π -Net is able to improve recom-
mendations performance. To show the effectiveness of π -Net, we
have conducted experiments on a newly created smart TV dataset,
that will be released upon publication of the paper. Experimental re-
sults demonstrate that π -Net outperforms state-of-the-art methods
in terms of MRR and Recall.

A limitation of π -Net is that it works better only when we have
shared information in two domains that are complementary to each
other. When there is only one domain or the data in two domains
share less information, π -Net is not as effective. As to future work,
π -Net can be advanced in two directions. First, better SFU modules
can be designed. Especially, we assume the same latent users for
all shared accounts in this study. This can be further improved by
automatically detecting the number of family members. Second,
to avoid the influence of other factors, we have simplified the ar-
chitecture of π -Net (e.g., encoders, decoders and loss functions). It
would be interesting to see whether more complex architectures
will further improve the performance of π -Net.
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