
64

Mixed Information Flow for Cross-Domain Sequential
Recommendations

MUYANG MA, PENGJIE REN, ZHUMIN CHEN, ZHAOCHUN REN, and
LIFAN ZHAO, Shandong University

PEIYU LIU, Shandong Normal University

JUN MA, Shandong University

MAARTEN DE RIJKE, University of Amsterdam

Cross-domain sequential recommendation is the task of predict the next item that the user is most likely

to interact with based on past sequential behavior from multiple domains. One of the key challenges in

cross-domain sequential recommendation is to grasp and transfer the flow of information from multi-

ple domains so as to promote recommendations in all domains. Previous studies have investigated the flow

of behavioral information by exploring the connection between items from different domains. The flow of

knowledge (i.e., the connection between knowledge from different domains) has so far been neglected. In this

article, we propose a mixed information flow network for cross-domain sequential recommendation

to consider both the flow of behavioral information and the flow of knowledge by incorporating a behavior

transfer unit and a knowledge transfer unit. The proposed mixed information flow network is able

to decide when cross-domain information should be used and, if so, which cross-domain information should

be used to enrich the sequence representation according to users’ current preferences. Extensive experiments

conducted on four e-commerce datasets demonstrate that the proposed mixed information flow network

is able to improve recommendation performance in different domains by modeling mixed information flow.

In this article, we focus on the application of mixed information flow networks to a scenario with two

domains, but the method can easily be extended to multiple domains.
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1 INTRODUCTION

Sequential recommendation (SR) aims at predicting the next item that the user is most likely
to interact with based on her/his past sequential behavior (e.g., clicks on items) [57]. Recently,
cross-domain sequential recommendation (CDSR) has emerged as a way to promote recom-
mendation performance by leveraging and combining information from different domains [47].
Users usually have related preferences in different domains, such as finding a movie with a certain
style or looking for a book written by a well-known author, as illustrated in Figure 1. One of the
key challenges in CDSR is to capture and transfer useful information about related preferences
across different domains.

Zhuang et al. [92] and Ma et al. [47] have shown that behavioral information across domains
is helpful for improving recommendation performance. However, behavioral information by itself
can only support the use of cross-domain connections in a limited manner. Behavioral information
may be insufficient for a model to capture fine-grained connections between item attributes or
features. As an example, consider Figure 1 and assume that there is a user who has read Harry Potter

(the book) and watched Captain America (the movie). If there is no external knowledge to indicate
that both items belong to the category of “fantasy,” it is difficult for the model to capture this
connection based solely on the user’s behavior from both domains. When supported by external
knowledge, the model can capture this characteristic from the knowledge information flow, and
this information can be used to model user preferences across different domains. We hypothesize
that enabling a flow of knowledge across different domains is able to alleviate this issue. As a result,
for a user who has read the book The Great Gatsby, we then can recommend her/him a movie
having the same name or movies featuring the same category of “tragic love,” such as Atonement,
Waterloo Bridge, and so on, when she/he logs on to the movie recommendation system.

There is a growing body of work aimed at improving recommendation performance by using
knowledge [43, 59]. Of particular relevance to us is work that has proposed to incorporate knowl-
edge and combine it with behavioral information for SR [see e.g., 34, 35, 82]. However, this work
targets a single domain recommendation scenario. The situation is dramatically different in cross-
domain scenarios where it is necessary to distinguish information from different domains and
effectively link them. We need to select behavioral and knowledge related to users’ current pref-
erence, and determine when and what to use in order to learn a better sequence representation.

To address the issue of using behavioral information and knowledge across domains, we
propose a mixed information flow network (MIFN) to consider mixed information flow across
domains, i.e., the flow of behavioral information as well as the flow of knowledge. The former is
based on user’s behavior, which captures the temporal connection between the items they have
interacted with, while the latter takes cross-domain knowledge as a bridge to connect different
domains to obtain better cross-domain sequence representations. First, we employ a behavior

transfer unit (BTU) to grasp useful information from the flow of behavioral information, which
can extract information related to the user’s preference and then transfer it to another domain
at the level of user behavior level. Then, we propose a knowledge transfer unit (KTU) that is
guided by the user’s preference to model the connection between items from different domains;
we introduce a cross-domain graph convolutional mechanism to distinguish items in the
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Fig. 1. Illustration of a connection between a user’s behavioral information across domains via a knowledge

graph. Lines in different colors represent different connections.

knowledge graph (KG) and grasp useful information for fusion at the knowledge level. Finally,
we generate recommendations based on the fusion of the two types of information. During
learning, mixed information flow network (MIFN) is jointly trained on multiple domains in
an end-to-end back-propagation training paradigm. Experiments on the Amazon datasets show
that MIFN outperforms state-of-the-art methods in terms of MRR and Recall.

To sum up, the contributions of this work are as follows:

— We propose a mixed information flow framework, MIFN, for CDSR, which consists of a
behavior transfer unit and a knowledge transfer unit to simultaneously model the flow
of behavioral information and of knowledge across domains.

— We devise a cross-domain graph convolutional mechanism to disseminate item infor-
mation in the KG, which leads to the better up-to-date item representation.

— We conduct experiments to demonstrate that MIFN is able to improve recommendation per-
formance in different domains by modeling mixed information flow.

2 RELATED WORK

In this section, we briefly introduce related work from the following categories: (1) SR, (2) cross–
domain recommendation, and (3) knowledge-aware recommendation.

2.1 Sequential Recommendations

Early work on recommender systems (RSs) typically uses collaborative filtering (CF) to gen-
erate recommendations [32] according to users’ preferences reflected in similar items such as
K-Nearest neighbors (KNN) or matrix factorization (MF) algorithms. Such methods do not
consider sequential aspects. More recently, however, SR and next-basket recommendation have
witnessed rapid developments.

Before the widespread application of deep learning, Markov chains (MCs) [10, 24, 62, 93] and
Markov decision processes (MDPs) [65, 83] were used to predict users’ next actions given infor-
mation about their past behavior [77, 86]. All these methods take into account sequential character-
istics. However, there are considerable challenges with the size of the state space when considering
arbitrary sequences [56].

Recurrent neural networks (RNNs) have been introduced to SR to handle variable-length se-
quential data. Hidasi et al. [27] are the first to leverage recurrent neural networks (RNNs) for
SR. They utilize session-parallel mini-batch training and employ ranking-based loss functions to
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train the model. Then, Tan et al. [69] propose two techniques to improve the performance, i.e.,
data augmentation and a method to account for shifts in the input data distribution. Li et al. [40]
incorporate an attention mechanism into the encoder to capture the users’ main preference in the
current sequence. Ren et al. [58] point out the repeat consumption in SR, where the same item is
re-consumed repeatedly over time. Quadrana et al. [57] propose a hierarchical RNN model that
can relay and evolve latent hidden states of the RNNs across user sequences. Donkers et al. [16]
explicitly model user information in a gated architecture with extra input layers for gated recur-

rent unit (GRU). Chen et al. [12] argue that most work considers user preferences to be static
and relies on post-processing the list of recommendations to promote diversity. They propose an
intent-aware diversified network to improve accuracy and diversity by introducing self-attention
mechanism based on GRU networks. Memory enhanced RNN has been well studied for SR re-
cently. Chen et al. [13] introduce a memory mechanism to SR and design a memory-augmented
neural network integrated with the insights of CF. Wang et al. [75] propose two parallel memory
modules: one to model a user’s own information in the current sequence and the other to exploit
collaborative information in neighborhood sequences. Wu et al. [82] argue that prior work on
conventional sequential methods neglects complex transitions between items. They model the se-
quence as graph-structured data and then represent it as the composition of global preference and
the current preference of that sequence using an attention network. Zhang et al. [88] propose a
feature-level deeper self-attention network to capture transition patterns between features of items
by integrating various heterogeneous features. Sun et al. [68] argue that previous work often as-
sumes a rigidly ordered sequence, which is not always practical. They employ deep bidirectional
self-attention to model a user’s behavioral sequences.

In addition to sequential information, auxiliary information is also vital for SR. Hidasi et al. [28]
investigate how to add item property information such as text and images to an RNNs framework
and introduce a number of parallel RNN (p-RNN) architectures. Liu et al. [44] incorporate contex-
tual information into SR and propose a context-aware RNN model to capture external situations
and lengths of time intervals. Bogina and Kuflik [9] explore a user’s dwell time based on an exist-
ing RNN-based framework by boosting items above a predefined dwell time threshold. Ma et al.
[48] propose a cross-attention memory network for multi-modal tweets via both textual and vi-
sual information. Li et al. [39] study how to enlist the semantic signals covered by user reviews
for the task of CF. They propose a neural review-driven model by considering users’ intrinsic
preference and sequential patterns. To investigate the influence of temporal sentiments on user
preference, Zheng et al. [91] propose to generate preferences by guiding user behavior through
sequential sentiments. They design a dual-channel fusion mechanism to match and guide sequen-
tial user behavior, and to assist in preference generation. Ren et al. [60] model the effect of context
information on SR and train the model in an adversarial manner by proposing multiple context-
specific discriminators to evaluate the generated sub-sequence from the perspectives of different
contexts.

Although these studies have made great progress, none of them has considered how to combine
knowledge information under cross-domain situations.

2.2 Cross-Domain Recommendations

Cross-domain recommendation has emerged as a potential solution to the cold-start and data-
sparse problem [6, 55] in RS. It aims at mitigating the lack of data by exploiting user preference
and item attributes in domains distinct but related to the target domain [20].

Traditional methods for cross-domain recommendation can be grouped into two main categories
[18]. One category of methods aggregates information across different domains. According to dif-
ferent aggregating strategies, such methods can be further divided into three groups [20]. The
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first group is merging user preference (e.g., ratings, transaction behavior, and browsing logs) from
different domains to obtain better a preference representation so as to improve the recommenda-
tion performance in the target domain. The merge operation is performed by merging a multi-
domain rating matrix [5, 63], leveraging users’ social influence [1, 19], linking users’ preference
by a multi-domain graph [15, 70] or user behavioral information features [46, 50]. The second
group is mediating user modeling data in the source domain to explore the connection between
users or items so as to make recommendations in the target domain especially for cold start users.
For example, Tiroshi and Kuflik [71] and Shapira et al. [66] propose to find similar neighbors and
transfer user–user similarity to the target domain. The third group is combining single-domain

recommendations (e.g., rating matrices, probability distributions), in which recommendations are
generated independently for each domain and later aggregated for the final recommendation. In
contrast to the second group, this type of aggregation strategy aims at modeling the weights as-
signed to recommendations coming from different domains. For example, Givon and Lavrenko
[22] focus on book recommendations accomplished by a CF method and model-based recommen-
dations, relying on the similarity of a book and the user’s model, as well as the book content and
tags. And the final recommendations are combined in a weighted manner. The other category of
cross-domain recommendation aims to transfer information from the source domain to the target
domain by means of shared latent features or rating patterns. Hu et al. [33] propose tensor-based
factorization to share latent features between different domains by using the same parameters in
both factorization models. Li et al. [38] propose a code-book-transfer by co-clustering the source
domain rating matrix and exploit it in the target domain to transfer rating patterns across different
domains. Similarly, Mirbakhsh and Ling [53] focus on extending clustering-based MF in a single
domain into multiple domains through overlapping users.

In order to model more complex connections across different domains, a variety of deep learning
methods have been proposed for cross-domain recommendation [23, 79, 80]. Elkahky et al. [17] pro-
pose a multi-view deep learning recommendation system by using rich auxiliary features to repre-
sent users from different domains. Then, Lian et al. [42] propose a multi-view neural framework of
a dual network for user and item, each network models CF information (user and item embeddings)
and content information (user preference for item features), which ties CF and content-based fil-
tering together. Hu et al. [31] propose a model using a cross-stitch network [54] to learn complex
user behavioral information based on neural CF [26]. Wang et al. [79] propose to combine user
behavioral information in information domains and user–user connection in social domains to do
recommendation. Wang et al. [80] embed item-level information and cluster-level correlative infor-
mation from different domains into a unified framework. Gao et al. [21] transfer item embeddings
across domains without sharing user-relevant data. Li and Tuzhilin [41] develop a latent orthogo-
nal mapping method to extract user preference over multiple domains while preserving connection
between users across different latent spaces based on the mechanism of dual learning. Krishnan
et al. [37] propose to guide neural CF with domain-invariant components shared across the dense
and sparse domains, improving user and item representations learned in the sparse domains. They
leverage contextual invariances across domains to develop these shared modules. Zhao et al. [89]
propose to model user preference transfer at the aspect-level derived from reviews, which does
not require overlapping users or items in all domains. Bi et al. [7] utilize cross-domain mechanism
to promote recommendations for cold start users in insurance domain. They design a meta-path
based method over complex insurance products to learn better item representations and learn the
mapping function between domains through the overlapping users. Bi et al. [8] are the first to
combine a cross-domain mechanism and a heterogeneous information network (including userid,
agents, insurance products, and insurance product properties based on data from the insurance
application PingAn Jinguanjia) to give personalized recommendations for cold start users in the
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insurance domain. Despite the fact that the methods listed above have been proven to be effective,
they cannot be directly applied to SRs.

Recently, cross-domain recommendation has been introduced to SRs as well. Zhuang et al. [92]
propose a novelty seeking model based on sequences in multi-domains to model an individual’s
propensity by transferring novelty seeking traits learned from a source domain for improving the
accuracy of recommendations in the target domain. Yang et al. [85] propose a long short-term

memory (LSTM) with sequence completion to model the temporal information in a cross-domain
scenario. They propose two methods for sequence completion. One uses measures the similarity
between item features and temporal features, the other uses an improved LSTM network. Ma et al.
[47] study CDSR in a shared-account scenario. They propose a novel gating mechanism to extract
and share user-specific information between domains.

Although some studies have begun to explore CDSR, they only focus on user behavioral informa-
tion to conduct information transfer, and neglect exploring extra knowledge to promote sequence
representation across domains.

2.3 Knowledge-Aware Recommendations

Side-information, e.g., user reviews and product descriptions, is usually provided together with
user–item ratings [3]. Alexandridis et al. [4] propose to extend CF–MF algorithms by fusing the
side information into the user/item representations. They propose to use the paragraph vector
model to encode user reviews of variable length into feature representations of fixed length. Then,
they fuse the resulting feature vectors with the rating scores in a hybrid probabilistic MF algo-
rithm based on maximum a-posteriori estimation. Hu [29] argues that traditional CF approaches
only exploit user–item relations (e.g., clicks, likes, and views), which suffer from the data sparsity
issue. They design a personalized neural embedding model to fuse side information for effective es-
timation of user preferences. Furthermore, Hu and Dai [30] integrate item reviews into MF-based
Bayesian personalized ranking, which can generate a ranked list of items for individual users.

Considerable efforts have also been made to utilize some structural side-information [74, 81],
especially knowledge graphs, to enhance the performance of recommendations. Zhao et al. [90]
propose a graph-based method to iteratively update user and item distributions in a heterogeneous
user–item graph and incorporate them as features into the MF for item recommendations. Zhang
et al. [87] combine CF with structural knowledge, textual knowledge, and visual knowledge in
a unified framework. Ai et al. [2] apply TransE on the graph including users, items, and their
connections, which casts the recommendation task as a plausibility prediction task. As graph

convolutional networks (GCNs) have been shown to be effective on many tasks [36], there have
been a number of publications that propose variants of graph convolutional networks (GCNs)
for recommendation by considering different types of information. Wang et al. [73] simulate users’
hierarchical preferences over knowledge entities by extending users’ potential preferences along
links in a KG. Wang et al. [74] consider the connections among items based on higher-order entity
features in KGs. Wang et al. [78] explicitly model the high-order connections in KGs by employing
an attention mechanism to discriminate the importance of the neighbors. Ma et al. [49] propose a
joint framework to integrate the induction of explainable rules from KGs with the construction of
a rule-guided recommendation model. Xian et al. [84] perform explicit reasoning with knowledge
so that the recommendations are supported by an interpretable inference procedure via a policy-
guided reinforcement learning approach.

Not surprisingly, KGs have also been considered in SRs. Huang et al. [35] are the first to inte-
grate KGs into SR; they utilize RNNs to capture user sequential preference and knowledge memory
networks to capture attribute-level user preference. Song et al. [67] model users’ social influence
with a graph-attention neural network, which dynamically infers the influencers based on the
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users’ current preference. Huang et al. [34] introduce a taxonomy-aware memory-based multi-hop
reasoning architecture by incorporating taxonomy data as structural knowledge to enhance the
reasoning capacity. Wang et al. [76] formalize the SR problem as a Markov decision process

(MDP) and propose a knowledge guided reinforcement learning (RL) model named KERL for
fusing KG information into an RL framework, resulting in three main technical contributions con-
cerning state representation, reward function, and learning algorithm. Chen and Wong [11] pro-
pose a heterogeneous graph neural network to learn user and item representations by integrating
knowledge from user social networks. Meng et al. [52] incorporate the user micro-behavior (such
as adding to cart or reading reviews) and item knowledge (item attributes) into a multi-task learn-
ing framework. Wang et al. [72] argue that the temporal evolution of the effects caused by different
item relations are usually neglected. To model the dynamic meaning of an item in different se-
quences, they propose a method named Chorus to take both item relations and the corresponding
temporal dynamics into consideration.

However, no previous work has considered KGs for SR in a cross-domain scenario, which brings
new challenges, e.g., how to find useful and accurate cross-domain knowledge to improve infor-
mation transfer across domains to promote the performance in both domains.

3 METHOD

In this section, we first give a formulation of the CDSR task. Then, we give an overview of our
model MIFN. Finally, we describe each component of MIFN in detail. Table 1 summarizes the main
symbols and notation used in this article.

3.1 Task Formulation

Cross-domain sequential recommendation (CDSR) aims at predicting the next item the user is
mostly likely to interact with in multiple domains simultaneously, by mining users’ previous se-
quential behavior over a period of time. In this work, we take two domains (i.e., domain A and B)
as an example, e.g., watching movies, reading books. Let A = {A1, A2, A3, . . . , An } denote the item
set for domain A, which consists of n unique items. Similarly, let B = {B1, B2, B3, . . . , Bm } denote
the item set for domain B, which consist ofm unique items. A hybrid interaction sequence from the
two domains A and B has the form S = [A1, B1, B2, . . . , Ai , . . . , Bj , . . .], where Ai ∈ A (1 ≤ i ≤ n)
and Bj ∈ B (1 ≤ j ≤ m) are the indices of consumed items in domain A and B, respectively.

We also associate each S with a knowledge graph (KG), which is defined over an entity set
E and a relation set R, containing a set of KG triples. A triple 〈e1, r , e2〉 represents a relation
r ∈ R between two entities e1 and e2 from E. In the cross-domain scenario, entities in the KG
come from different domains, hence we represent them as EA and EB . For example, the triple
〈eA1 , Is_the_same_cateдory, eB3〉 means that entity eA1 from domain A has the same category as
entity eB3 from domain B. Since we aim at linking recommended items to KG entities, an item set
can be considered as a subset of KG entity set, i.e., A ⊆ EA and B ⊆ EB . When extracting KG in-
formation for each sequence S , we also refer to the “items” in S as “item entities”. We will explain
the details of the KG construction method in Section 3.2.

Based on these preliminaries, we are ready to define the CDSR task. Formally, given S and 〈E,R〉,
we formulate CDSR as a task of evaluating the recommendation probabilities for all candidates in
both domains, respectively, as shown in the following equation:

P (Ai+1 |S, 〈E,R〉) ∼ fA (S, 〈E,R〉)
P (Bj+1 |S, 〈E,R〉) ∼ fB (S, 〈E,R〉), (1)

where P (Ai+1 |S, 〈E,R〉) denotes the probability of recommending the next item Ai+1 in domain A
given the hybrid interaction sequence S and KG 〈E,R〉. fA (S, 〈E,R〉) is the model or function used
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Table 1. Summary of the Main Symbols and Notation Used in the Article

Symbol Gloss

A Item set for domain A.

B Item set for domain B.

n The number of item set for domain A, i.e., n = |A|.
m The number of item set for domain B, i.e.,m = |B|.
Ai The interacted item at time step i from domain A.

Bj The interacted item at time step j from domain B.

S Hybrid interaction sequence, i.e., S = [A1, B1, B2, . . . , Ai , . . . , Bj , . . .].

S Set of all hybrid interaction sequences in the training set.

SA A sub-sequence of S which only contains items from domain A.

SB A sub-sequence of S which only contains items from domain B.

eAk
∈ EA

eAk
represents any entity in the KG from domainA; EA is the set of all entities

from domain A.

eBk
∈ EB

eBk
represents any entity in the KG from domain B; EB is the set of all entities

from domain B.

ek ∈ E
ek represents any entity in the KG; E is the set of all entities; note that
E = EA ∪ EB .

R Relation set in the KG.

hAi
∈ HA

hAi
represents the item representation of item Ai ; HA is the set of all item

representations for SA.

hBj
∈ HB

hBj
represents the item representation of item Bj ; HB is the set of all item

representations for SB .

h (A→B )i
Transferred behavioral information flow from domain A to domain B at time
step i .

Ni (k ) Neighbor entity set of entity ek from the same domain as ek .

Nc (k ) Neighbor entity set of entity ek from the complementary domain.

to estimate P (Ai+1 |S, 〈E,R〉). Similar definitions apply to P (Bj+1 |S, 〈E,R〉) and fB (S, 〈E,R〉). It is
important to note that when recommending items (such as Bx ) in the B domain, the model can
only see items before the interaction with Bx from both domains. As to modeling hybrid sequences,
we follow the definition of previous work on CDSR [47].

3.2 Knowledge Graph Construction

Compared with other auxiliary information, KG information has the following advantages. First, it
introduces more semantic relationships between items, which can help to discover user preferences
at a deeper level. Second, the KG can connect the user’s historical records and recommendation
results, thereby improving the user’s satisfaction and acceptance of the recommendation results,
and enhancing the user’s trust in the recommender systems (RSs).

In this work, we extract data (entities and relations) from the Amazon product collection1 as
the complete KG, which is collected from massive user logs. Besides, we also crawl some re-
lations between the entities from Wikipedia.2 The entities include “movies,” “books,” “kitchen-
ware,” and “food,” each of which corresponds to one domain. The relations include “Also_buy,”
“Also_view,” “Buy_together,” “Buy_after_viewing,” “Adapted_from,” and “Is_the_same_category.” For

1https://jmcauley.ucsd.edu/data/amazon.
2https://en.wikipedia.org/.
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example, 〈steak (the food), Buy_together, saucepan (the kitchenware)〉 means that the user also
buys the saucepan while buying the steak. However, the complete KG contains a large number
of related entities, and complicated relations among these entities, which will raise memory and
computational efficiency issues. Therefore, we propose to extract a KG from the complete KG for
each hybrid interaction sequence S . We require that, given any pair of items from both domains,
respectively, we can find at least one path in the KG that connects them.

ALGORITHM 1: KG Construction Algorithm for Each Hybrid Interaction Sequence.

Input:

Hybrid interaction sequence, S ;
Complete KG triples, 〈E,R,E〉;
Maximum hop count, H ;
Number of entities in the KG, N ;

Output:

Multiple relational adjacency matrix, A;
1: Divide the hybrid interaction sequence S into SA and SB ;
2: set ϑ 0

1 = SA, ϑ 0
2 = SB , T 0

1 = ∅, T 0
2 = ∅, connected = false;

3: for k ∈ ranдe (H ) do

4: Extract related entities ϑk
1 = {t |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1

1 } and triples T k
1 =

{(h, r , t ) |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1
1 };

5: Extract related entities ϑk
2 = {t |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1

2 } and triples T k
2 =

{(h, r , t ) |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1
2 };

6: connected = Is_Connect(ϑk
1 , ϑk

2 )
7: if connected = true or k = H -1 then

8: θ = Select_triples(T k
1 , T k

2 , SA, SB );
9: A = Construct_Adjacency_matrix(θ );

10: break;
11: end if

12: end for

13: return adjacency matrix A;

The KG construction algorithm is shown in Algorithm 1. H represents the maximum hop count
and N represents the number of entities in the final KG. We extract all triples and entities that are
related to items involved in the hybrid interaction sequence S within H hops. We stop extracting
more hops when there is a path for any given pair of items from both domains. Finally, we construct
the relational adjacency matrix for the extracted KG. This process can be run in parallel. For about
50,000 sequences, it takes around 3 hours using 10 CPU cores, and each sequence takes 0.2 seconds
on average. In this work, we focus on modeling the behavioral and knowledge flow of information
across domains. The focus is on how to model this flow rather than how to build the knowledge
itself, although a better KG construction algorithm is expected to improve the results a lot (as
shown in Section 5.3).

Specifically, for the input S , we first divide it into two sub-sequences SA and SB according to the
domain to which the items belongs (see line 1). We initialize the related entities ϑ 0

1 or ϑ 0
2 with the

item entities, and initialize the related triplesT 0
1 andT 0

2 with the empty set (see line 2). At each hop,

we extract all related entities in the current KG (i.e., ϑk
1 and ϑk

2 ), where ϑk
1 = {t |(h, r , t ) ∈ 〈E,R,E〉

and h ∈ ϑk−1
1 }, and ϑk

2 = {t |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1
2 }, k = 1, 2, . . . , H , where ϑ 0

1 = SA and

ϑ 0
2 = SB . At the same time, we record the related triples as T k

1 = {(h, r , t ) |(h, r , t ) ∈ 〈E,R,E〉 and
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Fig. 2. An example of path finding during KG construction.

h ∈ ϑk−1
1 } and T k

2 = {(h, r , t ) |(h, r , t ) ∈ 〈E,R,E〉 and h ∈ ϑk−1
2 } (see line 4 and line 5). If there is

a path for any given pair of items from both domains (e.g., A3 → e8 → e26 → e9 → B6) or the
number of hops reaches the maximum number of hops H , we stop extracting other triples from
the complete KG and construct the relational adjacency matrix (see line 7 to line 12). Otherwise,
we continue to extract other related triples. When constructing the adjacency matrix, we limit the
number of entities in the KG toN . Therefore, we need to select some triples if the number of entities
in all related triples is larger than N (see line 8). To do so, we first gather all the entities that connect
a pair of item entities from two domains, e.g., e8, e26 in the path A3 → e8 → e26 → B6. As shown in
Figure 2,A3 is from domainAwhileB6 is from domainB. During the KG construction phase, we aim
at finding paths that can connect A3 and B6, i.e., the path marked in orange (A3 → e8 → e26 → B6).

Then, we select the entities according to their smallest distance w.r.t. any item from the two
domains until the number of all entities meets N . After that, we construct the relational adjacency
matrix A based on the selected entities and their relations (see line 10).

3.3 MIFN

In the following subsections, we will demonstrate the details of MIFN. Generally, MIFN models
P (Ai+1 |S, 〈E,R〉) and P (Bj+1 |S, 〈E,R〉) (see Equation (1)) by taking two recommendation modes
into consideration, as shown in the following equation:

P (Ai+1 |S, 〈E,R〉) =
P (M_SA |S, 〈E,R〉)P (Ai+1 |M_SA, S, 〈E,R〉) + P (M_GA |S, 〈E,R〉)P (Ai+1 |M_GA, S, 〈E,R〉)

P (Bj+1 |S, 〈E,R〉) =
P (M_SB |S, 〈E,R〉)P (Bj+1 |M_SB , S, 〈E,R〉) + P (M_GB |S, 〈E,R〉)P (Bj+1 |M_GB , S, 〈E,R〉).

(2)

Here, M_S and M_G denote sequence mode and graph mode, which make recommendations at the
user behavior level and the knowledge level, respectively. P (M_SA |S, 〈E,R〉) and P (M_GA |S, 〈E,R〉)
represent the probabilities under the sequence mode and the graph mode in domain A, respectively,
P (Ai+1 |M_SA, S, 〈E,R〉) and P (Ai+1 |M_GA, S, 〈E,R〉) refer to the probabilities of recommending the
next itemAi+1 under the sequence mode and graph mode given a hybrid interaction sequence S and
the KG triples 〈E,R〉. The same definitions apply to domain B.

As shown on the left side of Figure 3, MIFN consists of four main components: a sequence en-
coder, a behavior transfer unit (BTU), a knowledge transfer unit (KTU), and a mixed recom-
mendation decoder. The sequence encoder encodes the interacted item sequence into a sequence
of item representations. The BTU takes the representations from the source domain as input, ex-
tracts behavioral information flow, and transfers it to the target domain. The KTU aims at grasping
useful knowledge from the KG and propagates it to both domains. The mixed recommendation
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Fig. 3. An overview of the mixed information flow network (MIFN). The BTU extracts behavioral infor-
mation flow from source domain, and transfers it to the target domain. The KTU aims at grasping useful
knowledge from the KG and propagates it to both domains. Section 3.3 contains a walkthrough of the model.

decoder contains two decoders w.r.t. graph mode and sequence mode, respectively. The graph rec-

ommendation decoder evaluates the probability for all candidate items from the KG, corresponding
to Equation (10). The sequence recommendation decoder evaluates the probability of clicking items,
corresponding to Equation (11).

3.4 Sequence Encoder

As with existing studies [27, 28], we use an RNN to encode the sub-sequences SA and SB . Here,
we employ a GRU as the recurrent unit. The initial state of the GRUs is set to zero vectors,
i.e., h0 = 0. After that, we can obtain HA = {hA1 , hA2 , . . . , hAi

, . . . , hAn
} for domain A, and

HB = {hB1 ,hB2 , . . . ,hBj
, . . . ,hBm

} for domain B. Each hAi
or hBj

is the item representation of
an item Ai in sequence SA or Bj in SB .

3.5 Behavior Transfer Unit

The behavior transfer unit (BTU) takes the representations from the source domain as input, ex-
tracts behavioral information, and transfers it to the target domain. It aims to output the transferred
behavioral representation. The outputs HA and HB from the sequence encoder are representations
of user behavior in single domains. It has been shown that there is connection between HA and
HB [47]. For example, a user who has read the book Harry Potter (e.g., “Harry Potter and the Philoso-

pher’s Stone” or “Harry Potter and the Chamber of Secrets” and so on) has also watched the movie
“Pirates of the Caribbean” within the same time period. Based on behavioral information from both
domains, it is easier for the model to infer that the user might like some magic and fantasy movies
and books.

To achieve this, we employ the BTU to model the flow of behavioral information from domain
A to domain B, i.e., hAi→B , as follows:

fAi
= σ (WfA

· hAi
+WfB

· hBj
+Wf · hAi−1→B + bf )

ĥAi
= tanh(Wh · hAi

+Uh · hAi−1→B + bh )

hAi→B = fAi

 ĥAi

+ (1 − fAi
) 
 hAi−1→B ,

(3)

where hAi
and hBj

are the representations of domain A and B at timestamp i and j, respectively.
fAi

measures the degree of connection between these two representations hAi
and hBj

from both
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Fig. 4. Knowledge transfer unit (KTU).

domains, which employs the gate mechanism to control how much information is to be transferred

from domainA to domain B. ĥAi
is the updated representation of the current input.WA andWB are

the parameters,bf is the bias term, 
 indicates element-wise multiplication.hAi→B can be seen as a

combination of ĥAi
and hAi−1→B balanced by fAi

. Note that the BTU can be applied bidirectionally
from “domainA to domain B” and “domain B to domainA”. Here, we take the “domainA to domain
B” direction and achieve recommendations in domain B as an example.
hAi→B is the information extracted from domain A, which is ready to be transferred to domain

B. Since it still belongs to domain A, we employ an RNN structure to transfer it to domain B as
follows:

h (A→B )i = GRU(h (A→B )i−1
,hAi→B ). (4)

After that, we can obtain the transferred behavioral representation h (A→B )i in domain B at time
step i .

3.6 Knowledge Transfer Unit

The BTU only models the flow of behavioral information. We hypothesize that this may not be
enough for the model to be able to encode the connection between items from the two domains in
some cases. For example, if there is no knowledge indicating that both “Pirates of the Caribbean”
and “Harry Potter” belong to magic and fantasy, it is difficult for the model to capture the con-
nection between them solely based on behavioral information. To better transfer the information
of items from both domains, we propose the knowledge transfer unit (KTU); it takes the item
representation from sequence encoder and transferred behavioral representations from BTU as
input and grasps useful knowledge from KG and propagates it to both domains, as shown in the
Figure 4.

For each hybrid interaction sequence S , we get the item representations {hA1 , hA2 , . . . , hAi
, . . .}

from the sequence encoder (Section 3.4) and the transferred behavioral representations {h (A→B )1
,

h (A→B )2
, . . . ,h (A→B )i , . . .} from the BTU (Section 3.5). We use the item representation of the last

time step to denote the sequence representation hA and the transferred behavioral representation
h (A→B ) . We also obtain the relational adjacency matrix A of the KG, which consists of N entities
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and the corresponding relations (Section 3.2). Here, we represent these N entities as E, the corre-
sponding relations are represented as R.

We initialize all entities in the KG and we can get the initialized entity representations hE0 . That
is, for each entity ek ∈ E, the initialized entity representation is he0

k
∈ hE0 . Then, we learn a

transferred entity representation heT
k
∈ hET for each entity ek by leveraging the relations in the

KG, as shown in the following equation:

r = σ
(
Wr · he0

k
+Ur · h̃eL

k
+ br

)

f = σ
(
Wf · he0

k
+Uf · h̃eL

k
+Vf · hA + bf

)

ĥek
= tanh

(
Wh · h̃eL

k
+Uh 


(
r 
 he0

k

))

heT
k
= (1 − f ) 
 he0

k
+ f 
 ĥek

.

(5)

The explanations for the main parts of Equation (5) are as follows:

(i) Gated functions. r and f are the update gate function and the forget gate function, which
aim at regulating how much of the update information should be propagated. Wr , Ur , Wf ,
Uf , and Vf are the parameters; br and bf are the bias term.

(ii) Candidate knowledge transfer representation. ĥek
is the candidate knowledge transfer

representation, which is calculated based on the cross-domain disseminated entity repre-

sentation h̃eL
k

at the Lth hop layer (we will explain this later in Equation (6)) and the up-

dated entity representation r 
he0
k
.Wh andUh are the parameters, 
 indicates element-wise

multiplication.
(iii) Transferred entity representation. The transferred entity representation heT

k
is a com-

bination of the initialized entity representation he0
k

and the candidate knowledge transfer

representation ĥek
balanced by the forget gate f , where the information among entities has

been disseminated through L hop layers.

Graph convolutional techniques are commonly used to disseminate information among entities
based on their relations [36, 73, 74]. However, in the cross-domain scenario that we consider, the
information disseminated by entities from different domains is different. Hence, we propose a
cross-domain graph convolutional mechanism that can distinguish entities from different
domains and adopt different modeling methods to disseminate their information so as to get better
entity representation. In this manner, the information in the KG is disseminated between both
domains, which can be considered as a flow of knowledge in the hybrid interaction sequence.
Suppose the information can be disseminated within L hop layers. At the lth hop layer (0 ≤ l ≤ L),
the information of each entity and its cross-domain neighbor entities via various relations will
be disseminated to the next hop layer l + 1 and is used to update the entity representation. The
process of cross-domain information dissemination is defined in the following equation:

h̃e l+1
k
= σ

⎡⎢⎢⎢⎢⎢⎣
f0

(
h̃e l

k

)
+

1

|Ni (k ) |
∑
r ∈R

∑
p∈Ni (k )

fi

(
αp · h̃e l

p

)
+

1

|Nc (k ) |
∑
r ∈R

∑
q∈Nc (k )

fc

(
βq · h̃e l

q
+ cq · h̃e l

q

)⎤⎥⎥⎥⎥⎥⎦
,

(6)

where ek is any entity in the entity set E; Ni (k ) is the neighbor entity set of entity ek from the same
domain as ek ; and Nc (k ) is the neighbor entity set of entity ek from the complementary domain. In
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other words, if ek belongs toA domain, Ni (k ) is the neighbor entity set belonging to domainA, and
Nc (k ) is the neighbor entity set belonging to domain B. f0, fi , and fc represent the transformation
functions for initialization, in-domain, and cross-domain, respectively; αp is the in-domain atten-
tion weight calculated between each entity ep ∈ Ni (k ) and the sequence representation hA; βq

is the cross-domain attention weight calculated between each entity eq ∈ Nc (k ) and the trans-
ferred behavioral representation h (A→B ) ; cq shows the sum of similarities between entity eq and

each entity ep ∈ Ni (k ), which is defined as cq =
∑

p∈Ni (k ) ep · eq ; h̃e l
k

denotes the cross-domain

disseminated representation of entity ek at the lth hop layer, which aggregates the information
from itself and cross-domain neighbor entities as the new representation for the next hop layer.
At the first hop layer, the cross-domain disseminated representation is assigned by the gated entity

representation, i.e., h̃e0
k
= heAk

if the entity ek is from domain A, otherwise h̃e0
k
= heBk

:

c = σ
(
Wc · concat[hA,h (A→B ),hE0 ] + bc

)
heAk

= c 

(
αAk
· he0

Ak

)

heBk
= (1 − c ) 


(
βBk
· he0

Bk

)
,

(7)

where Wc is the parameter; bc is the bias term; heAk
is the gated entity representation of entity

eAk
∈ EA, heBk

is the gated representation of entity eBk
∈ EB . c is a cross-domain information

gate to handle the situation where the proportion of entities from different domains in the KG is
different (e.g., when there are 1,000 entities from domain A, but only 10 entities from domain B).
So we define the gated entity representations heAk

for domain A and heBk
for domain B based on

their initial entity representations, respectively, which aims at balancing information from both
domains. αAk

is the attention weight of eAk
for sequence representation hA; βBk

is the attention
weight of eBk

for the transferred behavioral representation h (A→B ) . These attention weights act as
an information controller to identify entities of different importance in the KG, the definitions of
which are shown in the following equation:

αAk
= softmax

(
v1

T tanh
(
WA1 · hA +WA2 · he0

Ak

))

βBk
= softmax

(
v2

T tanh
(
WB1 · h (A→B ) +WB2 · he0

Bk

))
,

(8)

wherehe0
Ak

andhe0
Bk

are the initialized entity representations of entity eAk
and eBk

, respectively.hA

is the sequence representation and h (A→B ) is the transferred behavioral representation as mention
above. v1, v2,WA1 ,WA2 ,WB1 , andWB2 are learnable parameters.

3.7 Mode Switch

Recall that P (M_SB |S, 〈E,R〉) and P (M_GB |S, 〈E,R〉) are the probabilities of conducting recommen-
dations under sequence mode and graph mode, respectively. We model the mode switch as a binary
classifier. Specifically, we first combine the sequence representation hB , the transferred behav-
ioral representation h (A→B ) and the sum of all transferred entity representation

∑
k (heT

k
) (where

heT
k
∈ hET ). Then, we employ a softmax regression to transform the total representation into the

mode probability distributions, as follows:

P (M_GB |S, 〈E,R〉), P (M_SB |S, 〈E,R〉) = softmax 	


Wm · concat

⎡⎢⎢⎢⎢⎣
hB ,h (A→B ),

∑
k

(
heT

k

)⎤⎥⎥⎥⎥⎦ + bm
�
�
,

(9)
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whereWm is the weight matrix and bm is the bias term.

3.8 Graph Recommendation Decoder

The graph recommendation decoder evaluates the probabilities of recommending items involved
in the KG. Here, we directly use the representations of entities to learn the attention weights
and take these weights as the final predicted recommendation probability. The recommendation
probability for each item Bj+1 ∈ EB is computed as follows:

P (Bj+1 |M_GB , S, 〈E,R〉) =
⎧⎪⎪⎨⎪⎪⎩

0 if Bj+1 � B

softmax
(
heT

Bj+1

)
if Bj+1 ∈ B,

(10)

where heT
Bj+1

is the transferred entity representation of eBj+1 (corresponding to heT
k

in Equation (5)

when ek is an item entity from domain B). It is worth noting that this process only calculates the
probability in the item set, and that the size of the item set B ism. Note that eBj+1 ∈ EB is an item
entity corresponding to item Bj+1 ∈ B. The recommendation probabilities are set to zero for those
items that do not exist in B.

3.9 Sequence Recommendation Decoder

The sequence recommendation decoder evaluates the probabilities of items in the sequence item
set. We first concatenate the sequence representationhB and the transferred behavioral representa-
tion h (A→B ) into the hybrid representation cS , i.e., cS = [hB ,h (A→B )]

T. Then, the recommendation
probability for each item Bj+1 ∈ B is computed as follows:

P (Bj+1 |M_SB , S, 〈E,R〉) =
⎧⎪⎨⎪⎩

0 if Bj+1 � B
softmax

(
Wj+1cS + bI

)
if Bj+1 ∈ B,

(11)

whereWj+1 ∈WI is the weight matrix, bI is the bias term. The recommendation probabilities are
set to zero for those items that do not exist in the item set B.

3.10 Objective Function

Our goal is to maximize the prediction probability for each domain given a hybrid interaction
sequence. Therefore, we define the negative log-likelihood loss function as follows:

LR (θ ) = LRA
(θ ) + LRB

(θ ), (12)

where θ are all parameters in MIFN. Specifically, LRA
(θ ) and LRB

(θ ) can be derived as follows:

LRA
(θ ) = − 1

|S|
∑
S ∈S

∑
Ai ∈S

log P (Ai+1 |S, 〈E,R〉)

LRB
(θ ) = − 1

|S|
∑
S ∈S

∑
Bj ∈S

log P (Bj+1 |S, 〈E,R〉),
(13)

where S is the set of all hybrid interaction sequences in our training set, and P (Ai+1 |S, 〈E,R〉) or
P (Bj+1 |S, 〈E,R〉) are the next prediction probabilities, which are as defined in Equation (2).

4 EXPERIMENTAL SETUP

4.1 Research Questions

We evaluate MIFN on four e-commerce datasets. We aim at answering the following questions in
our experiments:
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Table 2. Dataset Statistics

Domain #Items #Train #Test #Valid Avg_Seq_Len

Movie 36,845
44,732 19,861 9,274 11.98

Book 63,937

Food 29,207
25,766 17,280 7,650 9.91

Kitchen 34,886

(RQ1) How does MIFN perform compared with the state-of-the-art methods in terms of Recall and
MRR? (See Section 5.1.)

(RQ2) Does the KTU help to improve the performance of recommendations? And does the perfor-
mance differ from the situation when we only allow for the flow of behavioral information?
(See Section 5.2.)

(RQ3) Does the knowledge graph construction method have a big effect on the overall recommen-
dation results? (See Section 5.3.)

(RQ4) Is MIFN able to provide better recommendations by incorporating the flow of knowledge
across domains? (See Section 5.4.)

(RQ5) Is the overall performance sensitive to the hyperparameters? (See Section 5.5.)

4.2 Datasets

We conduct experiments on the Amazon e-commerce collection,3 which consists of user interac-
tions (e.g., userid, itemid, ratings, timestamps) from multiple domains and some item meta infor-
mation (e.g., descriptions, images, product associations). Compared with other recommendation
datasets, the Amazon dataset contains overlapping user interactions in multiple domains, which is
suitable for cross-domain sequential recommendation (CDSR). Specifically, we pick two pairs
of complementary domains “Movie-Book” domains and “Food-Kitchen” domains for experiments.
For the “Movie-Book” dataset, the “Movie” domain contains movie watching records. The “Book”
domain covers book reading records. For the “Food-Kitchen” dataset, the “Food” domain contains
food purchase records. The “Kitchen” domain contains furniture purchase records. We follow the
settings of Ma et al. [47] to process the data. To satisfy cross-domain characteristics, we first pick
users who have interactions in both domains. Since we do not target cold-start users or items in
this work, we only keep users who have more than 10 interactions and items whose frequency is
larger than 10. To satisfy sequential characteristics which consists of many user interactions within
a period of time, we first order the interactions by time for each user, then we split the sequences
from each user into several small sequences with each sequence containing interactions within a
period, i.e., a month for the “Movie-Book” dataset, and a year for the “Food-Kitchen” dataset. We
also require that each sequence contains at least three items from each domain. The statistics of
the processed datasets are shown in Table 2.

For knowledge graph construction, we use the Amazon product data to mine the relations of
the items.4 The data are collected from large-scale user logs, which contain the following rela-
tions: (1) “Also_buy” (users also buy item X when buying item Y .); (2) “Also_view” (users also
view item X when viewing item Y .); (3) “Buy_together” (users buy item X and Y together fre-
quently); (4) “Buy_after_viewing” (users buy item X after they buy Y ); (5) “Is_the_same_category”
(item X and Y belong to the same category). Additionally, for the “Movie-Book” dataset, we also

3https://www.amazon.com/.
4https://jmcauley.ucsd.edu/data/amazon.
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Table 3. KG Statistics

Domain #Entities #Relations #Triples

Movie 65,418
6

3,911,284
Book 315,770 40,048,795

Food 50,273
5

3,822,123
Kitchen 82,552 7,836,064

crawl the relation “Adapted_from” between books and movies from Wikipedia.5 For example,
〈movie, Adapted_from, book〉 means that the movie is adapted from the book. We align knowl-
edge entities with Wikipedia titles by fully matching. The statistics of the knowledge information
are given in Table 3.

For evaluation, we use the last interacted item in each sequence for each domain as the ground
truth item, respectively. We randomly select 80% of each user’s interactions as the training set, 10%
as the validation set, and the remaining 10% as the test set.

4.3 Baseline Methods

We compare the proposed model MIFN with baselines from four categories: (1) traditional recom-
mendation methods, (2) SR methods, (3) cross-domain recommendation methods, (4) and knowl-
edge-aware recommendation methods.

4.3.1 Traditional Recommendation Methods. We adapt three commonly used traditional recom-
mendation methods to SRs:

— POP: This method recommends the most popular items in which items are ranked based on
their popularity. It is a simple baseline, but is commonly used owing to its simplicity yet
effectiveness [26].

— Item-KNN: This method is inspired by the classical KNN model; it looks for items that are
similar to other items that have been clicked by a user in the past, where similarity is defined
as the cosine similarity between the vector of sequences [64].

— BPR-MF: This method follows the idea of MF with a pairwise ranking objective via stochas-
tic gradient descent [61]. Following Hidasi et al. [27], we represent a new sequence by the
average latent factors of items that appeared in the sequence so far.

4.3.2 SR Methods. A number of SR methods have been proposed in the last few years. In this
work, we construct/select baselines that are fair (use the same information, similar architectures,
etc.) to compare with:

— GRU4REC: It is the first attempt to use GRU for SRs. It utilizes session-parallel mini-batch
training strategy and employs a ranking-based loss functions [27].

— HRNN: This method combines the extra user’s information into GRU networks and proposes
a hierarchical RNN model based on GRU4REC [57].

— NARM: This method takes an attention mechanism into consideration to capture both
sequential-level preferences and the user’s main purpose [40].

— STAMP: This method constructs two network structures to capture a user’s general prefer-
ences and the current preferences of the last click within the current sequence [45].

— SRGNN: This method constructs each sequence as a directed graph, where the items in the
sequence are entities and the transition relationship between adjacent items represents edge.

5https://en.wikipedia.org/.
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By modeling the complex transitions, each session graph and item embeddings of all items
involved in each graph can be obtained through gated graph neural networks [82].

4.3.3 Cross-Domain Recommendation Methods. We use three popular cross-domain recommen-
dation methods for comparison.

— NCF-MLP++: This is a deep learning based method where the model learns the inner prod-
uct of the traditional CF by using multilayer perceptron (MLP) in each domain. The user
representations are shared between both domains while item representations are private in
each domain, and the final recommendations are aggregated from both domain recommen-
dations probabilities. We adopt the implementation in [47].

— Conet: This method transfers information between different domains by a cross-stitch net-
work [54], where information in each domain is captured by neural CF model [26].

— π -Net: This method is the only one that considers cross-domain characteristics for SRs. We
take this as the fairest baseline to compare with. It designs a new gating mechanism to
recurrently extract and share useful information across different domains [47].

4.3.4 Knowledge-Aware Recommendation Methods. As knowledge-aware recommendation
methods, we choose two baseline methods.

— KGAT: This method explicitly models the high-order connectivities in KG in an end-to-end
fashion. It recursively propagates the embeddings from an entity’s neighbors (which can
be users, items, or attributes) to refine the entity’s embedding, and employs an attention
mechanism to discriminate the importance of the neighbors [78].

— KSR: This method incorporates KGs into SRs, and it combines the sequential user prefer-
ence captured by an RNN and attribute-level preferences captured by Key-Value Memory
Networks to get the final representation of user preference [35].

4.4 Evaluation Metrics

We target the top-K recommendations in this work, so we adopt two widely used ranking-based
metrics [14, 25, 51, 58]: MRR@K and Recall@K. Specifically, we report K = 5, 10, 20.

— Recall: This measures the proportion of the top-K recommended items that are in the evalu-
ation set. It does not consider the actual rank of the item as long as it is amongst the list of
recommend items.

— MRR: This is the average of reciprocal ranks of the relevant items. And the reciprocal rank
is set to zero if the ground truth item is not in the list of recommended items. MRR takes
the order of recommendation ranking into account. Since each sample has only one ground
truth item, we choose MRR as the ranking metric instead of others, e.g., NDCG.

4.5 Implementation Details

For most of the baseline methods, we find the best settings using grid search on the validation
set. For those with too many hyperparameters, we follow the reported optimal hyperparameter
settings from the original publications that introduced them. For our model, the embedding size
and the hidden size are set to 256, and the number of entities N in KG is set to 200. As for the
parameter hop layer H , we conduct some preliminary experiments and find that when the hop
layer is limited to 1, most of the sequences cannot be connected, but when the hop layer increases
to 2, around 75% of the sequences can be connected, and when it continues to increase to 5 hops
even 7 hops, there is not much growth, so we limit parameter hop layer to 2. We initialize the model
parameters randomly using the Xavier method. We take Adam as our optimization method. MIFN
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is implemented in TensorFlow and trained on a GeForce GTX TitanX GPU. The code and dataset
used to run the experiments in this article are available at https://github.com/mamuyang/MIFN.

4.6 Discussion

In addition to calculating the prediction probability, we also explore the mode switch module to
calculate the mode selection probability between sequence mode and graph mode. We assume that
if an item does not exist in the item set, it can just be generated under the graph mode. Here, we
can jointly train another mode prediction loss as follows, which adopts the negative log-likelihood
loss:

LMA
(θ ) = − 1

|S|
∑
S ∈S

∑
Ai ∈S

[(1 − 1(Ai+1 ∈ A)) log P (M_SA |S, 〈E,R〉)]

LMB
(θ ) = − 1

|S|
∑
S ∈S

∑
Bj ∈S

[(1 − 1(Bj+1 ∈ B)) log P (M_SB |S, 〈E,R〉)]

LM (θ ) = LMA
(θ ) + LMB

(θ ),

(14)

where 1(item ∈ itemset ) is the indicator function that equals 1 if this item is in the item set and 0
otherwise. LM (θ ) is the total mode loss for domain A and B.

Finally, we adopt a joint-learning strategy, and the final loss combines both recommendation
loss and mode loss:

L(θ ) = LR (θ ) + LM (θ ). (15)

Experimental results for this module are shown in Tables 4 and 5, where MIFN represents the
model without mode prediction loss, MIFN+LM represents the model with this mode prediction
loss. An analysis of these results is provided in Section 5.2.

5 RESULTS AND ANALYSIS

5.1 Overall Performance (RQ1)

We report the results of MIFN compared with the baseline methods on the “Movie-Book” and
“Food-Kitchen” datasets. The results of all methods are given in Tables 4 and 5, respectively. From
the results, we have the following main observations.

First, MIFN outperforms some single-domain SR methods (e.g., STAMP, NARM, SRGNN) and
the knowledge-aware methods (KSR) on all datasets. Particularly, on the “Movie-Book” dataset, the
largest increase over NARM is 7.5% and 12.4% in terms of MRR@5 and Recall@10 on the “Movie”
domain, and on the “Book” domain, the largest increase is 6.2% and 9.1% in terms of MRR@20
and Recall@5. And the increase over KSR on the “Movie” domain is 4.6% and 6.9% in terms of
MRR@5 and Recall@10, on the “Book” domain, the increase is 2.1% and 2.9% in terms of MRR@20
and Recall@5. On the “Food-Kitchen” dataset, the largest increase over NARM is 6.5% and 9.3% in
terms of MRR@20 and Recall@20 on the “Food” domain, and on the “Kitchen” domain, the increase
is 9.1% and 12.3% in terms of MRR@5 and Recall@10. And the increase over KSR is 2.7% and 3.9%
in terms of MRR@20 and Recall@10 on the “Food” domain, and on the “Kitchen” domain, the
increase is 1.6% and 4.1% in terms of MRR@20 and Recall@20. These improvements demonstrate
that jointly considering both cross-domain behavior and knowledge is helpful for SR.

Second, MIFN outperforms the cross-domain recommendation baseline π -Net, which just makes
use of information at user behavior level. Specifically, MIFN outperforms π -Net in terms of all
metrics on both domains. It demonstrates that considering both knowledge and user behavior level
information is better than only behavioral information. Meanwhile, it also proves the effectiveness
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Table 4. Experimental Results (%) on the Amazon (“Movie-Book”) Dataset

Methods

Movie-domain Book-domain

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

POP 0.10 0.11 0.13 0.20 0.29 0.58 0.11 0.14 0.16 0.20 0.44 0.75

BPR-MF 0.51 0.57 0.64 0.89 1.35 2.26 1.44 1.64 1.77 2.51 3.97 5.97

ItemKNN 1.05 1.27 1.48 2.11 3.84 6.99 1.35 1.64 1.95 2.88 5.10 9.69

GRU4REC 12.80 12.86 12.88 13.69 14.11 14.43 13.87 13.92 13.95 14.64 15.02 15.34

HRNN 13.38 13.43 13.45 13.95 14.25 14.58 14.57 14.61 14.62 14.99 15.25 15.46

NARM 13.80 13.85 13.86 14.20 14.53 14.80 15.25 15.26 15.27 15.57 15.66 15.78

STAMP 12.44 12.56 12.63 13.66 14.58 15.68 11.53 11.56 11.57 11.82 12.00 12.20

SRGNN 11.77 11.84 11.88 12.66 13.18 13.87 15.12 15.14 15.15 15.46 15.61 15.77

NCF-MLP++ 1.64 1.86 2.03 2.95 4.61 7.24 1.76 1.98 2.11 3.20 4.84 7.34

Conet 1.43 1.73 2.01 2.83 5.20 9.24 1.17 1.36 1.51 2.13 3.54 5.77

π -Net 14.49 14.52 14.54 14.88 15.10 15.37 15.75 15.76 15.77 15.94 16.02 16.09

KGAT 4.16 4.35 4.48 5.81 7.25 9.18 5.93 6.19 6.36 7.91 9.92 12.32

KSR 14.18 14.23 14.26 14.91 15.28 15.73 15.84 15.87 15.89 16.51 16.72 16.92

MIFN-linear 14.00 14.07 14.10 14.88 14.91 15.22 15.32 15.34 15.35 15.79 15.99 16.07

MIFN-KTU 14.20 14.25 14.28 14.85 15.26 15.44 14.87 14.90 14.91 15.54 15.80 16.07

MIFN+LM 14.73 14.75 14.81 14.87 15.96 16.02 15.75 15.97 15.99 16.87 16.96 17.05

MIFN 14.84 14.87 14.88 15.13 16.34† 16.56† 16.05 16.16 16.23† 16.99† 17.03† 17.13†

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the results of

the baseline (KSR) which performs best on most metrics are marked with † (t-test, p < .05).

of the KTU module of MIFN. With this module, MIFN is able to capture cross-domain knowledge
and conduct information transfer in the KG so as to learn better sequence representations.

Third, we can observe that the results of MIFN in the “Book” domain are better than those in
the “Movie” domain on the “Movie-Book” dataset. We believe that this is because the data are
less sparse in the “Book” domain compared to the “Movie” domain. There is more space for im-
provement in the “Book” domain. With more interaction data, the models can identify more user
preference characteristics in the dense domain so as to transfer it to the sparse domain through
both the user behavioral information flow and the knowledge information flow. At the same time,
we also find that the results in the “Food” domain are better than the “Kitchen” domain on the
“Food-Kitchen” dataset. The final performance is not only related to the difference in sparsity be-
tween the datasets, but also to the characteristics of the domain and the degree of correlation
between different domains.

Fourth, π -Net outperforms other sequential baselines, which means that cross domain infor-
mation is beneficial to both domains. At the same time, knowledge aware methods outperform
other sequential baselines, which also means that knowledge information can improve recom-
mendation performance. Furthermore, it seems that considering knowledge is more useful than
modeling cross-domain characteristics, as KSR slightly outperforms π -Net.

Fifth, the sequential methods achieve much better results in general. This is because RNN-based
methods are able to capture the sequential characteristics and can obtain the better representations
while the traditional methods neglect this information. What’s more, it seems that STAMP obtains
lower results than the sequential method NARM in the “Movie-Book” dataset, while it performs
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Table 5. Experimental Results (%) on the Amazon (“Food-Kitchen”) Dataset

Methods

Food-domain recommendation Kitchen-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

POP 0.40 0.49 0.56 0.82 1.50 2.15 0.22 0.25 0.27 0.40 0.60 1.47

BPR-MF 0.82 0.87 0.94 1.35 1.82 2.61 0.41 0.47 0.50 0.62 1.04 1.47

ItemKNN 1.55 1.98 2.43 3.28 6.70 12.47 1.13 1.44 1.90 2.60 4.77 11.08

GRU4REC 8.10 8.23 8.29 9.46 10.38 11.26 8.36 8.39 8.41 8.70 8.93 9.25

HRNN 7.22 7.35 7.45 8.49 9.47 10.93 7.81 7.86 7.88 8.29 8.61 9.12

NARM 9.43 9.54 9.62 10.34 11.86 12.23 8.41 8.44 8.46 8.69 8.91 9.21

STAMP 9.28 9.38 9.44 10.22 10.91 11.81 8.52 8.55 8.57 8.81 9.05 9.28

SRGNN 7.31 7.49 7.60 8.68 10.02 11.67 7.20 7.26 7.29 7.90 8.36 8.87

NCF-MLP++ 2.01 2.24 2.42 3.45 5.19 8.02 0.87 1.03 1.17 1.72 3.00 4.99

Conet 3.38 3.64 3.82 5.07 7.07 9.73 3.30 3.55 3.71 5.09 7.03 9.47

π -Net 9.56 9.67 9.75 10.59 10.46 12.54 8.57 8.60 8.62 8.89 9.12 9.42

KGAT 4.74 4.97 5.09 6.49 8.18 9.94 4.85 5.09 5.23 6.96 8.77 10.81

KSR 9.79 9.91 9.98 10.82 11.78 12.77 9.03 9.07 9.08 9.39 9.62 9.92

MIFN-linear 9.65 9.76 9.89 10.73 11.34 12.81 9.00 9.05 9.17 9.33 9.36 9.41

MIFN-KTU 9.43 9.65 9.83 10.50 11.16 12.53 8.29 8.33 8.36 8.95 9.17 9.52

MIFN+LM 9.86 9.88 10.03 10.93 11.96 13.14 9.05 9.17 9.18 9.28 9.89 10.24

MIFN 9.91 10.16 10.25 11.20 12.25 13.27† 9.18 9.21 9.23 9.72† 10.01† 10.33

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the results of

the baseline (KSR) which performs best on most metrics are marked with † (t-test, p < .05).

better in the “Kitchen” domain of “Food-Kitchen” dataset. We believe that this is because of differ-
ences in the datasets, e.g., we found that the user preferences in the kitchen domain are relatively
more focused. And the method SRGNN performs worse than most sequential methods. This is
because that SRGNN just employs the transition relation between adjacent items to construct the
graph so as to get the representations of different items, however it does not consider the relation
between the non-adjacent items (the other sequential methods do consider this), which may also
affect item representations.

5.2 Ablation Study (RQ2)

To verify the effectiveness of the proposed modules, we design the ablation study to compare
several model variants. The results are listed in Tables 4 and 5.

(1) MIFN is the best performing variant; this variant includes both the BTU and KTU modules,
and is trained with the recommendation loss LR only.

(2) MIFN-KTU is MIFN without the KTU module and performs information transfer only at the
level of behavioral information;

(3) MIFN-linear is MIFN with the KTU module but it replaces the GRU propagation function
with a linear mapping layer;

(4) MIFN+LM is MIFN by adding the mode switch loss.

First, by removing KTU, the performance of MIFN-KTU is dramatically less than that of MIFN,
which confirms that considering knowledge flow can improve the cross-domain recommendations.
In addition, the results of MIFN-KTU are worse than those of the knowledge-aware method KSR,
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Table 6. Analysis of the Knowledge Graph Construction Algorithm on the
Amazon (“Movie-Book”) Dataset

Ratios

Movie-domain recommendation Book-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

30% 16.46 16.83 16.99 21.27 24.33 28.97 18.51 18.70 18.85 25.82 27.32 31.38
50% 19.53 20.43 20.83 30.33 37.07 42.67 25.04 25.68 25.98 36.08 40.75 45.12
70% 23.41 23.43 23.45 42.54 47.99 50.61 27.12 28.31 28.41 48.93 56.64 57.31
90% 33.45 34.99 35.09 65.81 76.83 77.97 40.01 40.86 43.00 79.83 80.50 83.86
100% 67.04 67.56 67.69 89.57 93.30 95.15 83.08 83.46 83.62 91.97 94.79 97.02

The different ratios represent the different proportions of the predicted ground truth items appeared in the KG.

while MIFN outperforms KSR on all domains. This indicates that the KTU module is able to make
good use of the cross-domain knowledge and is able to better capture user preferences by modeling
the cross-domain knowledge flow.

Second, by replacing the GRU propagation function (Equation (5)) with a linear mapping layer,
the performance of MIFN-linear drops a little compared with the full model MIFN. This demon-
strates that the GRU propagation is also useful for the combination of cross-domain knowledge for
CDSR. At the same time, we find that the MIFN-linear outperforms MIFN-KTU in terms of most
metrics. This indicates that the cross-domain graph convolution mechanism without GRU propa-
gation is also capable of capturing cross-domain knowledge information flow. But the performance
of MIFN-linear is still lower than the KSR in terms of most metrics in both datasets and MIFN out-
performs KSR in terms of all metrics of both datasets. This again shows that GRU propagation is
more effective for cross-domain knowledge representation.

Third, if we jointly train the recommendation loss LR and the mode switch loss LM , the per-
formance drops a little but its performance is still than that of the baselines. The switch loss LM

assumes that if the next item does not exist in the item set, it must be recommended under the
graph mode, which makes the model tend to recommend items existing in the graph. However,
since there already exists a similar supervision signal in LR , which assumes that each item is rec-
ommended under the graph mode, the sequence mode, or a combination of both. Further adding
the LM loss introduces unnecessary bias toward graph mode.

5.3 Influence of the Knowledge Graph Construction Algorithm (RQ3)

The number of triples in the complete KG is large (see Table 3), so we propose a knowledge graph
construction method as detailed in Algorithm 1 to build KG for each sequence. To study the effect
of the knowledge graph construction method, we design an experiment aimed at analyzing the
effect of the ratios of the ground truth items in the constructed KG on the final recommendation
performance. We achieve this by simulating and controlling the ratios artificially. Specifically, we
add the ground truth items to the extracted entities according to the specified ratios in advance.
The results are given in Tables 6 and 7.

First, we can see that the performance increases as the ratio of ground truth item appeared in
the KG increases on both datasets. For instance, when the ratio varies from 30% to 100%, the value
of MRR@20 increases from 16.99% to 67.69% in the “Movie” domain and the value of Recall@20
increases from 22.41% to 95.45% in the “Kitchen” domain. This demonstrates that a good knowledge
graph construction algorithm is of vital importance.
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Table 7. Analysis of the Knowledge Graph Construction Algorithm on the
Amazon (“Food-Kitchen”) Dataset

Ratios

Food-domain recommendation Kitchen-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

30% 11.75 12.30 12.72 17.67 21.77 27.99 10.96 11.51 11.99 13.71 15.52 22.41
50% 22.14 22.61 22.74 35.21 38.51 42.47 22.75 23.20 23.74 34.56 37.86 41.64
70% 26.01 26.74 27.35 41.52 47.11 56.17 25.46 26.24 26.79 37.54 43.51 51.60
90% 36.58 37.50 38.11 59.72 66.57 75.61 31.29 32.88 33.40 55.21 66.78 74.17
100% 47.40 48.51 48.60 85.15 92.89 94.13 43.78 45.57 45.77 80.16 92.68 95.45

The different ratios represent the different proportions of the predicted ground truth items appeared in the KG.

Second, we notice that when the ratio increases linearly, the results do not increase linearly. On
both datasets, the increase is relatively slow from 30% to 90%. However, when we simulate the ratio
from 90% to 100%, the performance is greatly improved in terms of both MRR and Recall on the
“Movie-Book” dataset. We believe that this is because when the ratios reaches a certain value, the
model can easily capture the characteristics of recommended items from the graph mode in most
cases and relies mostly on the KG to do recommendations. We also notice that with 100% ratio,
Recall is improved largely on “Food-Kitchen” dataset while MRR is not. We think this is because
of the density of the KG. As shown in Table 3, there are more triples in the ‘Movie-Book” dataset,
especially the “Book” domain. The richer knowledge makes it relatively easier to rank the ground
truth items.

Currently, using Algorithm 1, the ratios of the ground truth items in the KG of the “Movie-
Book” and “Food-Kitchen” datasets are 14% and 12%, respectively, both of which are relatively low.
Algorithm 1 is only based on the entity distance calculated using the pretrained entity representa-
tions in the KG, which is insufficient. To this end, we think an important future research direction
in order to further improve MIFN is to design a more effective knowledge graph construction
algorithm.

5.4 Qualitative Analysis with Case Studies (RQ4)

To analyze the recommendation results with and without a flow of knowledge, we list some exam-
ples from the “Movie-Book” dataset. Figure 5 shows recommendations when the extracted KG is
relevant to the current user preference, and Figure 6 shows recommendations when the extracted
KG is irrelevant. Figures 5(a) and 6(a) are recommendations from MIFN, while Figures 5(b) and
6(b) are recommendations from MIFN-KTU. In each figure, the orange color represents the inter-
actions in the “Movie” domain, and the blue color represents the interactions in the “Book” domain.
The meaning of the different colored fonts and lines are explained in the legend. The green tick
indicates that the recommendation is correct, and the red cross indicates it is wrong.

From Figure 5, we can observe that when using the extracted KG (Figure 5(a)), MIFN can give
correct recommendations for both domains, however, the recommendation is wrong in the “Book”
domain when the KG is not used (Figure 5(b)). Furthermore, it should be noted that the mode
switch probabilities in Figure 5(a) are different for the two domains. The probability of sequence

mode is 1.0 in the “Movie” domain, but in the “Book” domain, the probability of graph mode is 0.75,
which means that the recommendation of the “Movie” domain comes from the item set, while the
recommendation mostly relies on the KG for the “Book” domain. From the KG, the book entity
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Fig. 5. Case study of MIFN and MIFN-KTU when the extracted KG is relevant to the current user preference.

“One Fine Stooge: Larry Fine’s Frizzy Life In Pictures” gets the highest recommendation score of
0.65 in the “Book” domain. The reason is that there exists a knowledge triple, that is, people who
watch the movie “The Three Stooges Go Around the World in a Daze” will also view the book “One
Fine Stooge: Larry Fine’s Frizzy Life In Pictures.” This knowledge is well transferred by the flow
of knowledge to obtain a better recommendation for the “Book” domain. In contrast, as shown in
Figure 5(b), the recommendation is wrong because the model only relies on the flow of behavioral
information to recommend items from the item set.
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Fig. 6. Case study of MIFN and MIFN-KTU when the extracted KG is irrelevant to the current user
preference.

On the other hand, we also found that the flow of knowledge is not always helpful. As shown
in Figure 6(a), MIFN still gives a wrong recommendation even by modeling knowledge informa-
tion flow with KTU. MIFN recommends “The confucian Transformation of Korea” with the graph

mode recommendation probability of 0.77, which means, in this case, it still relies mostly on the
KG to do recommendation. However, we can observe that most of the extracted entities in the
KG are thriller movies or reference books which are not relevant to the current user preference.
As a result, MIFN performs somewhat worse than MIFN-KTU, because although MIFN-KTU also
recommends the wrong item, the recommended item seems more relevant to the user preference,
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Table 8. Analysis of the Number of Entities N on the Amazon (“Movie-Book”) Dataset

N
Movie-domain recommendation Book-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

50 14.34 14.37 14.39 14.83 15.04 15.37 15.66 15.67 15.67 15.86 15.95 16.04
100 14.38 14.43 14.44 14.88 15.09 15.46 15.70 15.71 15.72 15.90 16.02 16.11
150 14.50 14.51 14.53 15.08 16.23 16.34 16.00 16.01 16.05 16.78 16.93 17.00
180 14.70 14.73 14.74 15.15 16.20 16.42 15.98 16.03 16.07 16.95 17.04 17.18
200 14.84 14.87 14.88 15.13 16.34 16.56 16.05 16.16 16.23 16.99 17.03 17.13

Different N represents the different number of entities of the extracted KG.

Table 9. Analysis of the Number of Entities N on the Amazon (“Food-Kitchen”) Dataset

N
Food-domain recommendation Kitchen-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

100 9.56 9.77 9.96 10.56 11.34 12.85 8.64 8.77 8.99 8.92 9.00 9.29
150 9.67 9.81 9.98 10.79 11.82 13.00 9.08 9.12 9.15 9.58 9.63 9.97
170 9.98 10.12 10.19 11.24 12.23 13.15 9.06 9.10 9.21 9.89 10.10 10.38
180 9.78 9.96 10.06 11.19 12.16 13.17 9.06 9.08 9.11 9.89 10.14 10.20
200 9.91 10.16 10.25 11.20 12.25 13.27 9.18 9.21 9.23 9.72 10.01 10.33

Different N represents the different number of entities of the extracted KG.

i.e., “children|family.” This suggests that the quality of the extracted KG has a large impact on the
final recommendation performance, which further verifies the conclusion in Section 5.3.

5.5 Hyperparameters Analysis (RQ5)

We conduct experiments to investigate the impact of the hyper-parameters in the MIFN framework,
including the number of entities N and the maximum hop count H .

The number of entities N is used to limit the size of the KG during KG construction. The re-
sults of MIFN for different numbers of N are shown in Tables 8 and 9, with N ranging within
[50, 100, 150, 180, 200] for the “Movie-Book” dataset and [100, 150, 170, 180, 200] for the “Food-
Kitchen” dataset. The maximum hop count H is also used to limit the KG size. We show the results
in Tables 10 and 11 when H = 1, 2, 3, 5 for both datasets. From these results, we can observe that
when values of N and H drop, the performance does not decrease dramatically. This demonstrates
that MIFN is not sensitive to both hyperparameters.

6 CONCLUSION AND FUTURE WORK

In this article, we study how to incorporate knowledge into the cross-domain sequential rec-

ommendation task. We present MIFN, which jointly models two types of information flow across
domains, i.e., of behavioral information and of knowledge. To verify the effectiveness of MIFN, we
conduct experiments on datasets from four Amazon domains. The results demonstrate that MIFN
outperforms other state-of-the-art baselines. Through extensive analysis experiments, we confirm
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Table 10. Analysis of the Maximum Hop Count H on the Amazon (“Movie-Book”) Dataset

H
Movie-domain recommendation Book-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

1 14.69 14.71 14.72 14.82 15.31 15.67 15.80 15.81 15.83 16.06 16.37 16.86
2 14.84 14.87 14.88 15.13 16.34 16.56 16.05 16.16 16.23 16.99 17.03 17.13
3 14.88 14.89 14.91 15.34 16.39 16.66 16.01 16.13 16.22 16.80 16.99 17.04
5 14.79 14.80 14.83 15.16 16.38 16.60 15.98 16.07 16.19 16.48 16.69 17.08

Different H represents the different hop layer in which entities and relations can be extracted.

Table 11. Analysis of the Maximum Hop Count H on the Amazon (“Food-Kitchen”) Dataset

H
Food-domain recommendation Kitchen-domain recommendation

MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

1 9.77 9.81 9.95 10.97 11.78 12.81 9.10 9.13 9.19 9.45 9.80 10.00
2 9.91 10.16 10.25 11.20 12.25 13.27 9.18 9.21 9.23 9.72 10.01 10.33
3 9.94 10.33 10.40 11.11 11.96 12.97 9.09 9.14 9.15 9.47 9.64 9.98
5 9.87 10.21 10.35 11.16 12.01 12.98 9.08 9.13 9.16 9.67 10.00 10.28

Different H represents the different hop layer in which entities and relations can be extracted.

that the flow of knowledge helps improve the recommendation performance in general, which
means mixed flow of information can be used to enhance the CDSR performance.

There are also some limitations in this work. Currently the knowledge graph construction algo-
rithm used to extract graphs is simple. So the quality of extracted graph is limited, which we show
can be made more effective by including as much relevant knowledge as possible. And we only
focus on the applications of MIFN to the scenario with two domains, which can be extended to
multiple domains simultaneously. What’s more, some prior correlations are required between dif-
ferent domains. Now we assume that the users are overlapped between different domains during
modeling the information flow, which limits the cross-domain research.

As to future work, MIFN can be enhanced in at least four directions correspondingly. First, we
will further study knowledge graph construction algorithms to improve the quality of the KG
without increasing its size. Second, MIFN is limited to information flow between two domains
in this work. Therefore, we want to study how to make cross-domain recommendations across
multiple domains. Third, it is worth trying to study the cross-domain transfer learning so as to
improve the performance of both domains when there is no relationship between them. Fourth,
we have only experimented on e-commerce datasets from Amazon as other datasets that meet our
requirements do not seem to be available. We hope our work can inspire other researchers working
on different recommendation scenarios.

DATA AND CODE

To facilitate reproduction of the results in the article, we are sharing the code and resources used
to produce our results at https://github.com/mamuyang/MIFN.
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