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One of the key challenges in sequential recommendation is how to extract and represent user preferences. is prone to

data sparsity problem. Traditional methods rely solely on predicting the next item. But user behavior may be driven by

complex preferences. Therefore, these methods cannot make accurate recommendations when the available information user

behavior is limited. To explore multiple user preferences, we propose a transformer-based sequential recommendation model,

named MrTransformer (Multi-preference Transformer). For training MrTransformer, we devise a preference editing-based

self-supervised learning mechanism that explores extra supervision signals based on relations with other sequences. The

idea is to force the sequential recommendation model to discriminate between common and unique preferences in diferent

sequences of interactions. By doing so, the sequential recommendation model is able to disentangle user preferences into

multiple independent preference representations so as to improve user preference extraction and representation.

We carry out extensive experiments on ive benchmark datasets. MrTransformer with preference editing (PE) signiicantly

outperforms state-of-the-art sequential recommendation methods in terms of Recall, MRR, and NDCG. We ind that long

sequences of interactions from which user preferences are harder to extract and represent, beneit most from preference

editing.

CCS Concepts: · Information systems→ Recommender systems.

Additional Key Words and Phrases: Transformer-based sequential recommendation, Self-supervised learning, User preference

extraction and representation

1 INTRODUCTION

Sequential recommendation (SR) methods aim to predict the next item that the user is most likely to interact
with based on his/her past interactions, such as clicking on products or watching movies [10, 25, 42, 71]. One of
the key challenges faced by SR approaches is to extract and represent user preferences from historical interaction
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sequences [47, 75]. Traditional studies typically learn a user embedding vector by encoding the user’s overall
preferences from his complex behavior sequence [12]. However, in some recommendation scenarios user’s
preferences may change slightly over a period of time [1, 3, 80]. Prior studies fail to make distinctions between
diferent preferences by combining multiple preferences into a single vector [51]. To extract multiple user
preferences for each sequence, recent research has proposed a multi-head attention mechanism on top of RNN-
based methods [1, 2, 9] or some graph convolutional techniques [35, 59, 80]. However, to the best of our knowledge,
it has not been explored in transformer-based methods so far. Therefore, we propose a transformer-based model
named MrTransformer that incorporates a preference identiication module into a transformer-based model,
BERT4Rec [45]. We concatenate special tokens at the start of each interaction sequence. The encoded vector
corresponding to each special token from the transformer represents a speciic user preference. We guarantee
that each special token attends to diferent parts of the interaction sequence by introducing a preference coverage
mechanism.
To train an SR model, traditional methods typically rely only on predicting the next item [7, 41, 58, 83].

The supervision signals are these next items which come from the sequence itself [36, 37, 61]. This learning
process is very similar to the language modeling task in natural language processing (NLP). For example, in
łI like orange [. . . ]ž, the next word has a high probability of being łjuicež. This is reasonable because the co-
occurrence probability of łorangež and łjuicež is higher than other words in natural grammatical structures.
But in a recommendation scenario, the order of items in the interaction sequence is not restricted by similar
grammatical structures. Therefore, we need to explore new supervision signals suitable for recommendation
scenarios to guide model learning in addition to predicting the next item.

Self-supervised learning (SSL) can automatically generate a supervision signal to learn representations of the
data or to automatically label a dataset [52, 55], which has made great progress in computer vision (CV) [48, 76]
and NLP [6, 8, 18, 19]. Similarly, it has been introduced to SR as well. These methods can enhance the learned
representations of users and items and help alleviate the data sparsity of cold-start users/items by exploring the
intrinsic correlations among sequences of interactions [28, 63, 70, 73]. Existing SSL methods for SR can be divided
into three categories: generative, contrastive and adversarial. Generative methods aim to reconstruct the part or
the whole original interaction sequence. Representative methods are auto-regressive (AR) and auto-encoder (AE)
models, which aim to establish a joint probability distribution of this sequence, or randomly mask some items
and try to predict these masked items based on the remaining sequence. Contrastive methods focus on sampling
negative items to guide the model to learn the diference between positive and negative target items by noise
contrastive estimation (NCE), or model the relationship between the local and global features of the input
sequence by mutual information maximization (MIM). Adversarial methods introduce the generative adversarial
network into the traditional next-item prediction learning task by designing generators and discriminators to
capture the context information, which can capture the high-level semantic information. However, these studies
propose new SSL signals by exploring a current interaction sequence itself but neglect its relations with other
sequences. Moreover, so far SSL methods have not made a direct connection to user preference extraction and
representation.

In this paper, we propose a novel learning strategy, named preference editing (PE), for training our basic model
MrTransformer. It aims to explore supervision signals from the relations between diferent interaction sequences
and focus on discriminating between common and unique preference representations. During the training stage,
PE involves two operations to edit both user preferences: preference separation and preference recombination. The
former separates the common and unique preference representations from the respective multiple preference
representations. The latter swaps the common user preference representations so as to get recombined user
preference representations for each interaction sequence. We irst sample two interactive sequences randomly. We
can obtain multiple preference representations �1 and �2 through MrTransformer for each sequence, respectively.
Then we extract the common preference representations �1 and �2, and the unique preference representations
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�1 and �2 through the preference separation operation. After that, we combine �2 and �1 to get the recombined
preferences � ′1, and combine �1 and �2 to get the recombined preferences � ′2 through the preference recombination

operation. Based on the above process, we devise two types of SSL signals:

(1) We use the recombined preferences to predict the next item in both sequences; and
(2) We require that the recombined preferences (e.g., � ′1) are as similar as possible to the original preferences

(e.g., �1), and that the common preference representations are close to each other (i.e., �1 = �2).

By doing so, we force the preference extraction model to learn how to identify and edit user preferences so as to
do better user preference extraction and representation.
For the whole model MrTransformer (PE), the training phase contains two stages (i.e., the pre-training stage

and the ine-tuning stage). In the pre-training stage, we only use the SSL signals to train the model. Then we
initialize the model with the pre-trained parameters and use the next item recommendation supervision signal to
guide the model learning.

To assess the full model MrTransformer (PE), we carry out extensive experiments on ive benchmark datasets:
Beauty, Sports, Toys of Amazon datasets, ML-100k and Yelp datasets. The results show that MrTransformer with
preference editing signiicantly outperforms state-of-the-art baselines on all datasets in terms of Recall, MRR and
NDCG. We also ind that long sequences whose user preferences are harder to extract and represent beneit the
most from preference editing.

To sum up, the main contributions of this work are as follows:

• We propose a transformer-based multi-preference extraction model MrTransformer for SRs, which can
produce multiple preferences representations.

• We devise a novel self-supervised learning method preference editing (PE) for training MrTransformer,
which explores supervision signals from the relations between sequences.

• The joint framework, MrTransformer (PE), combines the basic SR model MrTransformer and the learning
strategy preference editing (PE) to capture the commonness and uniqueness of diferent sequences.

• We demonstrate the efectiveness of MrTransformer and preference editing through extensive experiments
on ive benchmark datasets.

2 RELATED WORK

In this section, we survey related work from two categories: transformer-based SR and self-supervised learning
for SR.

2.1 Transformer-based sequential recommendation

Various neural architectures or mechanisms have successfully been applied to the sequential recommenda-
tion task [64]. These include recurrent neural networks (RNNs) [12, 21, 31, 46], convolutional neural net-
works (CNNs) [49, 50], graph neural networks (GNNs) [38, 60, 72], reinforcement learning (RL) [57, 69], copy
mechanisms [40], and memory networks [4, 15, 56]. Transformer-based methods have recently been proven to be
efective [16, 45, 68].
Kang and McAuley [16] propose SASRec, which introduces a self-attention mechanism (the most important

component in the transformer) to SRs to identify important items from interactions. Several variants have been
proposed to improve upon SASRec. Mi et al. [34] argue that traditional SRs use SASRec as a basic sequence
representation extractor; they propose a continual learning setup with an adaptive distillation loss to update
the recommender periodically as new data streams in. Li et al. [22] propose TiSASRec, a variant of SASRec, to
explicitly model the timestamps of items in sequences and explore the inluence of diferent time intervals on
next item prediction. Luo et al. [29] argue that even the same item can be represented diferently for diferent
users at the same timestep; they propose a collaborative self-attention network to learn sequence representations
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and predict the preferences of the current sequence by investigating neighborhood sequences. Sun et al. [45]
adopt a bidirectional transformer to predict masked items in sequences based on the surrounding items. Wang
et al. [54] equip the transformer with hyper-graph neural networks to capture dynamic representations of items
across time and users. Xie et al. [68] propose three data augmentation approaches (crop, mask, and reorder) to
pre-train a transformer-based model to get user and sequence representations, and then ine-tune it on the SR
task.
Previous work has also investigated how to combine auxiliary tasks or information with SR based on the

transformer. Cho et al. [5] introduce multiple types of position embeddings by considering timestamp information,
and propose a self-attention based model, in which each attention head uses a diferent position embedding.
Wu et al. [62] point out that previous studies ignore the temporal and context information when modeling
the inluence of a historical item to the current prediction; they propose a contextualized temporal attention
mechanism to weigh the inluence of historical interactions not only on what items to interact with, but also
when and how the interactions took place. Lin et al. [23] argue that modeling users’ global preferences only based
on their historical interactions is imperfect and the users’ preference is uncertain; they propose a FISSA solution,
which fuses item similarity models with self-attention networks to balance the local and global user preference
representations by taking the information of the candidate items into account.Wu et al. [65] propose a personalized
transformer model with a recent regularization technique called stochastic shared embeddings (SSE) [66] to
overcome overitting caused by simply adding user embeddings.

The studies listed above have proposed various transformer-based SR models. No previous work has considered
how to identify users’ multiple preferences behind the interaction sequence. In contrast, we extract multiple user
preferences and represent them using distributed vectors.

2.2 Self-supervised learning for sequential recommendation

Previous approaches to SR are typically trained by predicting the next interaction, which is prone to sufer from
data sparsity [68, 70]. To mitigate this, some work explores SSL and derives self-supervised signals to enhance
the learning of item and sequence representations. Inspired by the survey of existing work about SSL[27], we
divide SSL for SR approaches into three categories.

The irst category of SSL approaches are generative methods, which aim to reconstruct the part or whole of the
original interaction sequence. One type of methods models the user’s interaction sequence in an auto-regressive
fashion. The goal is to establish a joint probability distribution of this sequence, which can be decomposed into
the product of conditional probability distributions. Each variable depends on the previous variable. The next-item
prediction labels are derived from the piece of sequence itself, which can make use of contextual information and
the information low is from left to right at most cases. One of the representative works is SASRec[16], which
seeks to identify which items are ‘relevant’ from a user’s interaction sequence, and use them to predict the next
item by applying a self-attention mechanism. The other type of methods models the user’s interaction sequence
in an auto-encoder fashion. It randomly masks some items in an interaction sequence and tries to predict these
masked items based on the surrounding items. Sun et al. [45] adopt a BERT-like training scheme, which predicts
the masked items in the sequence based on surrounding items. Instead of masking items, Yao et al. [70] propose
to mask sparse categorical features of items; they mask or dropout some categorical feature embeddings to
learn internal relations between two sets of categorical features. Yuan et al. [74] represent and transfer user
representation models for serving downstream tasks where only limited data exists through a pretrain-inetune
strategy; in the pretraining stage, they randomly mask a certain percentage of items in the sequence and then
predict the masked items to get user preference representations.
The second category of SSL approaches are contrastive methods, which focus on sampling negative items to

guide the model to learn the diference between positive and negative target items by noise contrastive estimation,
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or model the relationship between the local and global features of the input interaction sequence by mutual
information maximization. One type of methods mainly focuses on sampling negative items to guide the model
to learn the diference between positive and negative target items by NCE. The input interaction sequence is
augmented to obtain multiple views of this sequence, and the model can distinguish the diferent views by taking
diferent negative examples. Zhou et al. [81] propose a ixed-size queue to store items’ representations computed
in previous batches, and use the queue to sample negative examples for each sequence. Xie et al. [68] propose
three data augmentation methods (crop, mask, and reorder); then they encode the sequence representation by
maximizing the agreement between diferent augmented methods of the same sequence in the latent space.
Another type of contrastive methods aims to model the relationship between the local and global features of the
input sequence by MIM. Ma et al. [30] propose a sequence-to-sequence training strategy to mine extra supervision
by looking at the longer-term future; they irst use a disentangled encoder to obtain multiple representations of a
given sequence and predict the representation of the future sub-sequence given the representation of the earlier
sequence; sequence representations that are not from the same sequence as the earlier ones are considered as
negative samples. Zhou et al. [82] devise four auxiliary self-supervised objectives to learn correlations among
four types of data (item attributes, items, sub-sequences, and sequences), by utilizing the mutual information
maximization principle. Xia et al. [67] model sequences as a hypergraph and propose a dual channel hypergraph
convolutional network to capture higher-order relations among items within sequences; during training, they
maximize the mutual information between the sequence representations learned via the two channels; negative
sampling SSL ensures that diferent channels of the same sample are similar.
The third category of SSL approaches are adversarial methods, which introduce the generative adversarial

network into the traditional next-item prediction learning task. Adversarial methods mainly design generators
and discriminators to capture the context or other information and trace how these information contributes
to the recommendation. Zhao et al. [78] propose a seq2seq learning strategy for SR, which yields a sequence
of items consistent with the user preference in sequence level rather than on next-item prediction. They also
present adversarial oracular learning over the seq2seq recommendation, reducing the exposure bias in the
auto-regressive style while improving the integrality in the recommended sequences. Ren et al. [43] propose a
transformer-based generator taking user interaction sequences as input to recommend the possible next items,
and multiple discriminators to evaluate the generated sub-sequence from the perspectives of diferent context
information.
Compared with existing SSL strategies for SR, we mainly focus on how to devise self-supervision signals by

investigating correlations between diferent sequences through preference editing, i.e., forcing the SR model to
learn better representations by identifying the common and unique preferences for sequence pairs.

3 METHOD

We irst formulate the sequential recommendation task. Then, we introduce our basic transformer-based multi-
preference extraction model MrTransformer. Next, we describe our new SSL method preference editing. Together,
preference editing and MrTransformer constitute our complete model MrTransformer (PE).

3.1 Task definition

Let I denote the item set and S denote the set of interaction sequences respectively, where � ∈ I denotes an
item and � ∈ S denotes a sequence. The numbers of items and sequences are denoted as |I| and |S| respectively.
Each sequence can be denoted as � = [�1, . . . , �� , . . . , �� ], where �� refers to an item which was interacted with at
timestep � . Given � , the sequential recommendation (SR) task is to predict the next item that the user will interact
with at timestep � + 1 by computing the recommendation probabilities over all candidate items as follows:

� (��+1 |�) ∼ � (�), (1)
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where � (��+1 |�) denotes the probability of recommending the next item ��+1, and � (�) is the model or function to
estimate � (��+1 |�).

3.2 MrTransformer

In this section, we will introduce our proposed transformer-based [53] multi-preference extraction model Mr-
Transformer. Unlike the basic BERT4Rec model, the core idea of MrTransformer is to mine multiple preferences
behind the interaction sequence, and then generate predictions based on the multiple preference representations.

MrTransformer’s network structure is based on the transformer, and it consists of three main components:

(1) a sequence encoder,
(2) a preference identiication module, and
(3) a sequence decoder.

The preference identiication module identiies multiple preferences behind the current interaction sequence and
represents them as distributed vectors. Unlike RNN-based methods and traditional transformer-based methods,
we concatenate � special tokens ([�1] , [�2] , . . . , [�� ]) at the start of each sequence. During sequence encoding,
the special tokens can capture all sequence information, each of them can represent the sequence representation.
The coverage mechanism (which will be introduced later) ensures that the representations learned by all special
tokens are diferent, each special token refers to a speciic user preference. Like other model parameters, the
special tokens are initialized randomly. Next, we introduce these modules in detail.

Sequence encoder. We deine the processed sequence � ′ = [[�1] , [�2] , . . . , [�� ] , �1, . . . , �� , . . . , �� ] which concate-
nates � special tokens at the start of the sequence � . It is worth noting that � represents the number of latent
preferences for the whole sequence set, not for a particular sequence. In this module, we encode the processed
sequence �

′
into hidden representations.

We irst initialize the embedding matrix E of �
′
, where ei� ∈ Rℎ represents the embedding for item �� , ℎ is the

hidden size. Then we add the position embedding matrix P of �
′
to the embedding matrix, which can be deined

as E = E + P. After that, we feed the sequence of items into a stack of � bidirectional transformer encoder layers.
Each layer iteratively revises the representation of all positions by exchanging information across some speciic
positions, which are controlled by the masking matrix at previous layers. Speciically, the transformer encoder
layer is composed of several self-attention layers and feedforward layers, which are deined as:

Self-Atention(Q,K,V) = sotmax

(

QK�
√
��

)

V,

Feed-Forward(�) = (ReLu(�W1 + �1))W2 + �2,
(2)

where Q = XW� , K = XW� and V = XW� are the linear transformations of the input representation matrix X,

and
√
�� is the scale factor to avoid large values of the inner product.W1, �1,W2 and �2 are trainable parameters.

As for the sequence encoder, the process is deined as follows:

El = Trm(El−1,Maske), (3)

where Trm refers to a transformer encoder layer, El ∈ R(�+� )∗ℎ is the representation matrix of �
′
at the �-th layer,

and Maske is the masking matrix. Speciically, each special token [�� ] obtains information from all positions
because it needs to capture the user’s multiple preferences behind the whole sequence. Each special token can
attend to every position and items can only attend to items. From the top layer, we can obtain the representation
EL of �

′
.
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Preference identification. In this module, we calculate the distributed attention scores over all items for each
special token. The process is deined as follows:

P,A = Ident(EL,MaskI), (4)

where Ident is also implemented by a transformer encoder layer, and MaskI is the masking matrix for preference
identiication. To guarantee that the learned preferences are diferent from each other, each special token only
attends to items. P ∈ R�∗ℎ is the representation matrix for the multiple preferences corresponding to the irst �
special tokens. We can also get the attention matrix A over all items for the special tokens.
To avoid that diferent special tokens focus on the same items and thus learn similar representations, we

introduce a preference coverage mechanism. We maintain � coverage vectors ��� (� = 1, . . . , �). ��� is the sum of
attention distributions over items at previous timesteps by the special token [�� ], which represents the degree of
coverage that those items have received from the attention mechanism by [�� ] so far:

��� =

�−1︁

�=1

��� , (5)

where ak ∈ A is a distributed attention vector over all items by [�� ] and
∑

� �
�
� = 1. ��0 is a zero vector, which

denotes that, at the irst timestep, none of the items have been covered. Correspondingly, we deine a coverage
loss to penalize repeatedly attending to the same items by diferent preferences:

���� (� ) =
�︁

�=1

︁

�

min(��� , ��� ). (6)

Sequence decoder. After the preference identiicationmodule, we get the representation for the multiple preferences.
Diferent from existing methods that use item representations to predict the next item [14, 20, 44, 79], we use the
learned multiple preference representations to do recommendation:

� (��+1 |�) = sotmax(pW + �). (7)

We sum the multiple preference matrix P along the irst dimension, i.e., � =

∑�
�=1 � [�,:] , where � ∈ Rℎ and

� ∈ R�∗ℎ . W ∈ Rℎ∗|I | is the embedding matrix of all items, and � is the bias term.

Objective functions. As with traditional SR methods [13, 26, 39, 56], our irst objective is to predict the next item
for each position in the input sequence. We employ the negative log-likelihood loss to deine the recommendation
loss as follows:

���� (� ) = − 1

|S|
︁

�∈S

︁

�� ∈�
log � (��+1 |�), (8)

where � are all parameters of MrTransformer.
Finally, the coverage loss function, weighted by the hyperparameter � , is added to the recommendation loss

function to yield the total loss function:

�(� ) = ���� (� ) + ����� (� ), (9)

where � is the weight of the coverage loss.
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Fig. 1. Overview of preference editing. Section 3.3 contains a walkthrough of this figure.

3.3 Preference editing

In this subsection, we detail the preference editing learning strategy to mine relations among items with other
interaction sequences.

As illustrated in Figure 1, we irst sample two sequences �� and �� from the sequence set S randomly. Through
the preference identiicationmodule, we get the multiple preference representations for each sequence (e.g., ��1 , �

�
2

and ��3 for the sequence �� and �
�
1 , �

�
2 and �

�
3 for the sequence ��). Then, the preference separation module forces

the model to separate common (��1 , �
�
2 and �

�
1 , �

�
2 ) and unique (��3 and �

�
3 ) preference representations for the

paired sequences. After that, the preference recombination module swaps the common preference representations
so as to obtain the recombined preference representations for each sequence (e.g., �

�
1 , �

�
2 , �

�
3 for the sequence ��

and ��1 , �
�
2 , �

�
3 for the sequence ��).

Next, we explain the above process in detail.

Preference separation. For each pair of sequences �� and �� , we obtain the multiple preference representation

matrices Px and Py through preference identiication module, where Px, Py ∈ R�∗ℎ . In order to measure the degree

of similarity between these two representations, we calculate the similarity matrix I ∈ R�∗� to consider their
relations. Each element �� � ∈ R is calculated as:

�� � = Ws
T
[

pi; pj; pi ⊙ pj
]

, (10)

where pi and pj are the vectors in the multiple preference representation matrices Px and Py respectively; ⊙ is

the element-wise multiplication calculation; Ws ∈ R3ℎ∗1 is initialized randomly and optimized with the other
model parameters simultaneously. Based on the similarity matrix I, we calculate the attention matrices Ax and
By, which relect the attention distribution of the preference representations of one sequence to the preference
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representation in another sequence:

Ax = sotmax��� (I),
By = sotmax��� (I),

(11)

where sotmax��� and sotmax��� refer to performing a sotmax calculation on the rows and columns respectively.
After that, the common and unique preference representations of each sequence are calculated as follows:

Cx = By ⊙ Px, Ux = (1 − By) ⊙ Px,

Cy = Ax ⊙ Py, Uy = (1 − Ax) ⊙ Py,
(12)

where Cx and Cy refer to the common preference representations of each sequence, Ux and Uy are the unique
preference representations. These common preference representations (Cx and Cy) and unique preference

representations (Ux and Uy) have the same shape, which are R�∗ℎ . Ax and By play the role of gate functions that
ilter the common and unique preference representations.

Preference recombination. Through the preference separationmodule, we obtain the common and unique preference
representations of the sequence pairs �� and �� . Then we swap the common preference representation to form a
recombined representation for each sequence as follows:

P′x = add[Cy;Ux;Cy ⊙ Ux],
P′y = add[Cx;Uy;Cx ⊙ Uy],

(13)

where the add operation means the matrix addition; the shapes of P′x and P′y are R
�∗ℎ . Based on the recombined

representation, we deine two types of supervision signals for learning:

���� (� ) = ����� (� ) + ���� (� ). (14)

����� (� ) is used to perform next item prediction based on the recombined representations P′x and P′y:

����� (� ) = ����� + �
�
��� , (15)

where ����� and �
�
��� are negative log-likelihood loss, which are the same as calculation in Eq. 8. ����� and �

�
��� are

used to predict the next item for each sequence using the recombined representation.
���� (� ) is a regularization term,

���� (� ) = ���� (� )� + ���� (� )� + ���� (� )� , (16)

where:

���� (� )� =

1

� ∗ ℎ
︁

�� ,�� ∈S
(Px − P′x)2,

���� (� )� =

1

� ∗ ℎ
︁

�� ,�� ∈S
(Py − P′y)2,

���� (� )� =
1

� ∗ ℎ
︁

�� ,�� ∈S
(Cx − Cy)2.

(17)

���� (� )� and ���� (� )� make sure that the recombined representation is close enough to the original preference
representation. ���� (� )� requires that the learned common representations are also close to each other.

The inal training loss for MrTransformer (PE) is as follows:

���� (� ) = �(� ) + ���� (� ), (18)
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where �(� ) is the loss for preference extraction and recommendation (Eq. 9). ���� (� ) is the loss for preference
editing (Eq. 14).

We use MrTransformer to refer to our basic model that models a user’s multiple preferences based on trans-
former layers by using the preference identiication module as detailed in Section 3.2. We write MrTransformer

(PE) for MrTransformer pretrained with the preference editing learning strategy described in this section.

3.4 Computational complexity

The computational complexity of MrTransformer (PE) and other baselines is mainly due to the transformer layer
which contains the self-attention layer and the feed-forward layer. The complexity is� (�2 ∗ℎ +� ∗ℎ2) where � is
the max sequence length, ℎ is the hidden-size. Compared with other baselines, our model contains the preference
editing operation in the training stage, the complexity has increased by � (�2 ∗ ℎ) where � is the number of
latent preferences and is much smaller than �. During testing, the complexity of our model is the same as other
baselines.

4 EXPERIMENTAL SETUP

We seek to answer the following questions in our experiments:

(RQ1) What is the performance of MrTransformer (PE) compared to other methods? Does it outperform the
state-of-the-art methods in terms of Recall, MRR and NDCG on all datasets?

(RQ2) What is the efect of the preference editing learning strategy on the performance of MrTransformer (PE)?
And how does it afect sequences of diferent lengths?

(RQ3) What is the efect of the preference coverage mechanism on the performance of MrTransformer (PE)?
(RQ4) How does the hyperparameter � (the number of assumed latent preferences) afect the performance of

MrTransformer (PE)?

4.1 Datasets

We conduct experiments on ive datasets in diferent domains:

• Amazon Beauty, Sports, Toys: These datasets are obtained from Amazon product review datasets crawled
by McAuley et al. [32]. We select three subcategories of Beauty (40,226 users and 54,542 items), Sports
(25,598 users and 18,357 items) and Toys (19,412 users and 11,924 items).1

• MovieLens: This is a popular benchmark dataset for recommendation evaluation. We adopt a well-
established version, ML-100k (943 users and 1,349 items).2

• Yelp: This is a popular dataset for business recommendation (30,431 users and 20,033 items).3 As it is very
large, we only use the transaction records after January 1st, 2019 like [82].

We follow the data processing given in [16, 45]. We convert the rating scores of reviews to the implicit feedback
of 1 if the user has interacted with this item. Then we group the interactions by the same user and sort them
according to the timesteps. Like [20, 33, 77], since we do not target cold-start recommendation, we ilter out
cold-start users who have less than 5 interactions and cold-start items with less than 5 interactions. Because
each user has a lot of interactions in a long time, we limit the maximum length of each sequence to be 50. The
statistics of datasets are shown in Table 1.

1http://jmcauley.ucsd.edu/data/amazon/
2https://grouplens.org/datasets/movielens/
3https://www.yelp.com/dataset
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Table 1. Statistics of the datasets used in this paper.

Datasets #users #items #actions #min(len) #max(len) #avg(len) #sparsity

Beauty 40,226 54,542 353,962 3 291 8.8 99.98%
Sports 25,598 18,357 296,337 3 294 6.3 94.50%
Toys 19,412 11,924 167,597 3 548 6.6 99.92%
ML-100k 943 1,349 99,287 17 646 103.2 92.19%
Yelp 30,431 20,033 316,354 3 348 8.4 99.94%

4.2 Evaluation metrics

We adopt the leave-one-out recommendation evaluation scheme [45]. We use the last item and the second
last item as the test set and validation set, and the rest as training set. We concatenate the training and val-
idation data to predict the last item in the test set. For example, assume that there is one user interaction
sequence � = [�1, �2, �3, �4, �5, �6]. When we split the dataset, we regard ������ = [�1, �2, �3, �4], ������ = [�1, �2, �3, �4, �5],
����� = [�1, �2, �3, �4, �5, �6]. During training, we use [�1] to predict �2, use [�1, �2] to predict �3, and use [�1, �2, �3] to
predict �4. During validation, we use [�1, �2, �3, �4] to predict �5. During testing, we use [�1, �2, �3, �4, �5] to predict �6.
Following [20, 32], we pair each ground truth item with 100 randomly sampled negative items according to their
popularities.

We report results using Recall@k, MRR@k and NDCG@k with � = 5, 10, 20. Assuming that the tested item of
user � is ranked �� based on the predicted scores, the metrics are calculated as follows:

• Recall@k: The proportion of cases when the ground-truth item is amongst the top-� ranked items.
• MRR@k: The average of reciprocal ranks of the ground-truth items, i.e., ����@� =

1
��

if �� ≤ � and

����@� = 0 otherwise.
• NDCG@k: A position-aware metric which assigns larger weights on higher ranks, i.e., �����@� =

1
log2 (1+�� )

if �� ≤ � and �����@� = 0 otherwise.

4.3 Methods used for comparison

To assess the efectiveness of MrTransformer (PE), we compare it with the following methods:

• POP ranks items in the training set based on their popularity, and always recommends the most popular
items [11].

• BPR-MF is a commonly used matrix factorization method. We apply it for sequential recommendation by
representing a new sequence with the average latent factors of items appearing in the sequence so far [12].

• Item-KNN computes an item-to-item similarity matrix and recommends items that are similar to the
actual item. Regularization is included to avoid coincidental high similarities [24].

• SASRec [16] uses a left-to-right self-attention based model to capture users’ sequential behavior.
• SSE-PT [65] is a personalized transformer-based model with a regularization technique called SSE [66] to
overcome overitting caused by simply adding user embeddings.

• FISSA [23] uses the SASRec model to get the user preference representations, with a transformer-based
layer that fuses item similarity to model the global user preference representation; a gating module balances
the local and global representations.

• BERT4Rec [45] models the user preference representation with a bidirectional transformer network;
during training, it randomly masks some items in the sequence and predicts these items jointly conditioned
on their left and right context; during testing, it only masks the last item to do recommendations.

• S3-rec [82] adopts SASRec as the base model and devises four auxiliary self-supervised objectives; it
pretrains the sequential recommender model using attribute, item, subsequence, and sequence by utilizing
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mutual information maximization; it ine-tunes the parameters according to the SR task; we do not consider
attribute characteristics as they are not supported by the datasets and only use the masked item prediction
and sequence prediction loss functions.

• CL4SRec [68] proposes three data augmentation methods (crop, mask, and reorder); then it encodes the
sequence representation by maximizing the agreement between diferent augmented methods of the same
sequence in the latent space for pre-training the sequence representations.

Other SSL based methods [e.g., 63, 70, 73, 74, 81] have only been proposed for general, cross-domain or social
recommendation tasks; hence, we omit comparisons against them. We also exclude the SSL based method in [30],
as the authors found laws in their experimental setup. As for the SSL based method in [67], they adopt a diferent
experimental setting of next-session recommendation to model the sequence graph representation; instead, we
use the next-item recommendation setting which does not satisfy their hypergraph construction assumptions.

4.4 Implementation details

We implement POP, BPR-MF and Item-KNN using Tensorlow. For SASRec,4 SSE-PT,5 FISSA,6 BERT4Rec,7 and
S3-rec,8 we use the code provided by the authors. We use hyperparameters as reported or suggested in the
original papers. We implement CL4SRec with Pytorch.
We implement MrTransformer with Tensorlow. All parameters are initialized using a truncated normal

distribution in the range [−0.02, 0.02]. We set the hidden size to 64 and dropout probability to 0.5. We set the
number of transformer layers to 2 and the number of attention heads to 2. For MrTransformer (PE), the training
phase contains two stages (i.e., the pre-training and the ine-tuning stage). The learned parameters in the pre-
training stage are used to initialize the embedding layers and transformer layers in the ine-tuning stage. In the
pre-training stage, we only use the SSL loss (as deined in Eq. 14) to train MrTransformer. In the ine-tune stage,
we use the recommendation loss (as deined in Eq. 9) to train MrTransformer. We try diferent settings for the
number of latent preferences � , the analysis of which can be found in Section 5.4. Here we set �=1 for the łYelpž
dataset, �=3 for the łBeautyž and the łML-100kž datasets, �=9 for the łSportsž dataset and �=11 for the łToysž
dataset. We train the model using the Adam optimizer [17], we set the learning rate as 1e-4, �1 = 0.99, �2 = 0.999,
�2 weight decay of 0.01, with linear decay of the learning rate. We also apply gradient clipping with range [−5, 5]
during training. To speed up training and convergence, we use a mini-batch size of 256. We test the model
performance on the validation set for every epoch. All models are trained on a GeForce GTX TitanX GPU.

For sampling sequence pairs in the learning of preference editing, we sample 20 sequences from the sequence
set for each sequence randomly.

5 RESULTS AND ANALYSIS

5.1 Overall performance of MrTransformer (PE)

To answer RQ1, we report on the performance of MrTransformer (PE) and the baseline methods in terms of
Recall, MRR, NDCG. See Table 2. We obtain the following insights from the results.
First, MrTransformer (PE) achieves the best results on all datasets in terms of all metrics. It outperforms

strong transformer-based SR methods (SSE-PT, FISSA) and SSL-based methods (S3-Rec and CL4SRec). Speciically,
concerning the transformer-based SR methods on the łBeautyž dataset, the increase over FISSA is 31.55% in
terms of MRR@5. As for the SSL-based SR methods, the increase over S3-Rec is 11.91% in terms of Recall@5.

4https://github.com/kang205/SASRec
5https://github.com/wuliwei9278/SSE-PT
6http://csse.szu.edu.cn/staf/panwk/publications/FISSA/
7https://github.com/FeiSun/BERT4Rec
8https://github.com/RUCAIBox/CIKM2020-S3Rec

ACM Trans. Inf. Syst.

https://github.com/kang205/SASRec
https://github.com/wuliwei9278/SSE-PT
http://csse.szu.edu.cn/staff/panwk/publications/FISSA/
https://github.com/FeiSun/BERT4Rec
https://github.com/RUCAIBox/CIKM2020-S3Rec


Improving Transformer-based Sequential Recommenders through Preference Editing • 13

On the łML-100kž dataset, the increase over SSE-PT is 24.39% in terms of Recall@5, while the increase over
S3-Rec is 19.13% in terms of NDCG@5. On the łYelpž dataset, the increase over the transformer-based SR method
FISSA is 2.80% in terms of NDCG@10. The increase over the SSL-based SR method BERT4Rec is 8.17% in terms
of Recall@20. To sum up, MrTransformer (PE) consistently and in many cases signiicantly outperforms all the
compared methods on these datasets. The improvements are mainly because that MrTransformer (PE) achieves
better preference extraction and representation by discriminating the common and unique items of multiple
preferences between sequences with the help of preference editing. We will analyze the preference editing
learning strategy in more depth in Section 5.2.
Second, the diferences in performance between MrTransformer (PE) and the baselines on the łML-100kž

dataset are larger than on other datasets. This is related to the characteristics of diferent datasets. From Table 1,
we can observe that the average sequence length of the łML-100kž dataset is much larger than other datasets,
the number of items is less than other datasets, and it’s denser than other datasets. Therefore, we speculate that
there are more extensive and diverse preferences behind user’s interaction sequences on the łML-100kž dataset.
Since MrTransformer (PE) is especially adept at extracting multiple preferences and capturing their commonness
and uniqueness through preference editing, its advantages are more obvious on łML-100kž.

Third, on most datasets the improvements in terms of NDCG and MRR tend to be larger than those in Recall.
This demonstrates that MrTransformer (PE) is beneicial to the ranking of the list of recommendations. Compared
with the improvements of the best baseline over the second best, i.e., the largest increase of CL4SRec over
S3-Rec on the łBeautyž dataset achieves 6.18% in terms of Recall@10. On the łML-100kž dataset, the largest
increase of CL4SRec over SSE-PT achieves the improvement of 7.55% in terms of Recall@5, the improvements
of MrTransformer (PE) on Recall is already considered large. Generally, SSL-based SR methods outperform
transformer-based SR methods, which indicates that SSL is an efective direction for SRs by introducing more
supervision signals to improve representation learning. Moreover, the SSL-based method S3-Rec outperforms
other SSL-based methods, e.g., BERT4Rec, on almost all datasets. This is because S3-Rec also leverages sequence-
level self-supervised signals besides the item-level signals, which further conirms that self-supervised signals
are very helpful for improving the recommendation performance.

5.2 Efect of preference editing

To answer RQ2, we conduct an ablation study to analyze the efects of the preference editing (PE) learning
strategy. We compare MrTransformer (PE) with MrTransformer where MrTransformer is only trained with the
recommendation loss (Eq. 8) and the preference coverage loss (Eq. 6). The results are shown in Table 3.
On all datasets, we can observe that the diferences between MrTransformer and MrTransformer (PE) are

signiicant. The results decrease when comparing MrTransformer (PE) vs MrTransformer, i.e., by removing
preference editing. The results drop by more than 18.15%pt in terms of MRR@5 on the łSportsž dataset, with
similar results on the łBeautyž and łToysž datasets. And the results drop by more than 4.80%pt in terms of
Recall@5 on the łML-100kž dataset. On the łYelpž dataset, the results drop by more than 3.70%pt in terms of
NDCG@20 respectively. This demonstrates that preference editing is efective by forcing MrTransformer to
learn common and unique items between sequences. At the same time, we see that the MRR and NDCG of
MrTransformer are slightly higher than those of strong baselines such as BERT4Rec and FISSA while the Recall
values are comparable on most datasets. This is in line with expectations, because MrTransformer is also a
transformer-based method, and without preference editing, its improvements are limited.

Next, we analyze the performance on three datasets (i.e., łSportsž as a representative of the Amazon datasets,
łML-100kž, łYelpž) to understand the efects of preference editing on sequences with diferent lengths. Speciically,
we divide the sequences into four groups according to their length in terms of the number of items interacted
with: [20, 30), [30, 40), [40, 50], [50,∞). The results are shown in Table 4ś6.
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From Table 4ś6, we see that MrTransformer (PE) outperforms MrTransformer in terms of most metrics over all
sequence length groups on all three datasets. This veriies the efectiveness of preference editing. On the łSportsž
dataset, MrTransformer (PE) achieves the largest increase when the sequence length is between 30 and 40. It
gains 14.91% in terms of Recall@5. On the łML-100kž dataset, when the sequence length is between 20 and 30,
MrTransformer (PE) achieves the largest increase. It gains 24.67% in terms of MRR@5. This indicates that the
gains brought by preference editing are bigger for sequences that are less than 50 in length. We also see that on
diferent datasets the best performance is achieved for diferent length groups. It achieves the best performances
in the groups of [30, 40), [40, 50), [20, 30) on the łSportsž, łML-100kž, łYelpž datasets, respectively. We believe
that this is because of the varied length distributions on diferent datasets. From Table 1, we can see that the
average length of łSportsž and łYelpž datasets are shorter than that of the łML-100kž dataset. Hence, the biggest
improvements are achieved for longer sequences with a length of no more than 50 on the łML-100kž dataset.
Finally, when the sequence length is beyond 50, the performance drops sharply on all three datasets. This

reveals the limitations of MrTransformer and MrTransformer (PE) for very long sequences.

5.3 Efect of preference coverage

To answer RQ3, we remove the coverage mechanism from MrTransformer (PE) and keep the other settings
unchanged. The results of MrTransformer (PE) with and without coverage mechanism are shown in Table 7.

As in the Section 5.2, we select another three datasets (łBeautyž, łToysž as well as łML-100kž) for veriication.
On all datasets, the results of MrTransformer (PE) with preference coverage are signiicantly higher than
MrTransformer (PE) without preference coverage in terms of most metrics. On the łBeautyž dataset, adding
preference coverage results in an increase of 10.91% and 10.78%, in terms of Recall@10 and NDCG@10 respectively.
On the łML-100kž dataset, adding preference coverage achieves an increase of 11.99% and 9.81% in terms of
Recall@5 and MRR@5. This is because without preference coverage, diferent preferences might attend to the
same items, resulting in redundant preferences and low coverage of the whole sequence.

The efects of the preference coverage vary on diferent datasets. For example, compared with the other datasets,
adding preference coverage only results in minor increases of 2.52% and 6.06% in terms of Recall@20 and MRR@5
respectively on the łToysž dataset. A possible reason for these diference in efect is that the characteristics of the
datasets are diferent, where the number of items interacted with by users are smaller and the data is more sparse
in the łToysž dataset than in łML-100kž dataset. This may result in little similarity between items. In this case,
the attention distribution in the transformer itself is not very concentrated to begin with, so the increase caused
by the coverage mechanism is not so large.

MrTransformer (PE) without preference coverage performs worse than some of the baselines on the łBeautyž
dataset. This demonstrates the importance and complementary efect of preference coverage for preference
modeling. Comparing the results of MrTransformer in Table 7 and Table 2, we see that removing the preference
editing strategy results in worse performance, in general, than removing the preference coverage mechanism. This
demonstrates that the preference editing strategy plays a leading role in improving recommendation performance.

5.4 Impact of the hyperparameter �

Recall thatMrTransformer (PE) concatenates� special tokens to represent user preferences. Note that� represents
latent user preferences for the whole dataset, not for a particular sequence. To answer RQ4, and study how �

afects the recommendation performance of MrTransformer (PE), we compare diferent values of � while keeping
other settings unchanged. We consider � ∈ {1, 3, 5, 7, 9, 11, 15, 20}.

There is no uniform setting of � that achieves the best performance on all metrics on all datasets. Table 8ś12
show that the best values of Recall, MRR and NDCG are achieved when � = 3 on the łBeautyž and łML-100kž
datasets, � = 9 on the łSportsž dataset, � = 11 on the łToysž dataset, and � = 1 on the łYelpž dataset. This
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relects that user preferences on the łBeautyž, łML-100kž and łYelpž datasets are more centralized than those on
the łSportsž and łToysž datasets. This does not conlict with our indings in Section 5.1 that the improvements
of MrTransformer (PE) on łML-100kž dataset are larger than those on other datasets and the advantages of
MrTransformer (PE) are more obvious on łML-100kž), as � represents the number of latent preferences for all
sequences in the whole dataset in general, not for a particular sequence. MrTransformer (PE) still works well
when � = 1. This relects that user preferences on some datasets are diverse, but sometimes users do have only
one preference behind an interaction sequence on other datasets. We calculate the cosine similarity between
diferent learned user preferences. On the łBeautyž dataset, there are 3 user preferences (�1, �2 and �3). The
similarity between �1 and �2 is 0.26, the similarity between �1 and �3 is 0.37, and the similarity between �2 and
�3 is 0.24. While on the łYelpž dataset, the similarity between �1 and �2 is 0.77, the similarity between �2 and
�3 is 0.81. The result shows that user preferences are diverse on some datasets, like łBeautyž, while they are
more concentrated on others, like łYelpž. It is also in line with the number of preferences that users relect in
an interaction sequence in most cases. The lowest scores are obtained when � is set to a very large value (e.g.,
� = 15, 20) on most datasets.

Importantly, although the value of � can afect recommendation performance, the inluence is limited. On
the łBeautyž dataset, the largest gap between the best and the worst performance is 5.80% and 7.23% in terms of
Recall@20 and NDCG@20 respectively.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a transformer-based model named MrTransformer and introduced a novel SSL strategy,
i.e., preference editing. Diferent from traditional SR methods which use the next item of the sequence as the
supervision signal to train the model, we have designed SSL signals between interaction sequences for the
SR scenario. We have conducted extensive experiments and analysis on ive benchmark datasets to show the
efectiveness of MrTransformer and preference editing.

Main findings. Our experimental results demonstrate that MrTransformer with preference editing signiicantly
outperforms state-of-the-art methods in terms of Recall, MRR and NDCG. We ind that the diferences between
MrTransformer (PE) and other baselines in diferent datasets are caused by the characteristics of diferent datasets.
MrTransformer (PE) is especially adept at extracting multiple preferences and capturing their commonness and
uniqueness through preference editing, when the user preferences are changeable in some cases. MrTransformer
(PE) is beneicial to the ranking of the list of recommendations compared to the Recall metric. Moreover, preference
editing is efective by forcing MrTransformer to learn common and unique items between sequences, as the
results decrease when comparing MrTransformer (PE) vs MrTransformer,i.e., by removing preference editing.
Both MrTransformer and MrTransformer (PE) have limitations on modeling very long sequences. Furthermore,
we observe that the model MrTransformer (PE) is not sensitive to hyperparameter � that represents latent user
preferences for the whole dataset.

Broader implications. We believe that the model MrTransformer (PE) has further uses in the context of recom-
mender systems, including cold-start scenarios and privacy preserving recommendations. What’s more, this SSL
method is not only limited to recommendation tasks, but can also be used in NLP tasks to mine the relationship
between adjacent sentences by exploring the commonness and uniqueness of them.

Limitations and future work. At the same time, MrTransformer also has limitations. Importantly, it is not able
to efectively explore user multiple preference from very long sequences. In addition, we sample 20 sequences
for each sequence randomly. More efective sampling algorithms can be designed to improve the performance.
MrTransformer can be advanced and extended in several directions. First, rich side information can be taken into
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consideration for user preference extraction and representation, as well as for SSL. Second, variants of MrTrans-
former can be applied to other recommendation tasks by introducing other information, such as conversational
recommendations.

REPRODUCIBILITY

To facilitate the reproducibility of the results obtained in this paper, we share (i) the datasets, (ii) code, and
(iii) parameter iles used in this paper at https://github.com/mamuyang/MrTransformer.
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Table 2. Experimental results on five datasets. Bold face indicates the best results in terms of the corresponding metrics.
Significant improvements over the best baseline results are marked with ∗ (t-test, � < .05). We set K=1 for the łYelpž dataset,
K=3 for the łBeautyž and the łML-100kž datasets, K=9 for the łSportsž dataset and K=11 for the łToysž dataset.

Metric POP BPR-MF Item-Knn SASRec SSE-PT FISSA BERT4Rec S3-Rec CL4SRec MrTransformer (PE)

B
e
a
u
ty

Recall@5 0.0315 0.1390 0.1660 0.1934 0.1959 0.2116 0.2137 0.2173 0.2029 0.2432

Recall@10 0.0628 0.2152 0.2029 0.2653 0.2813 0.3079 0.2964 0.2909 0.3086 0.3231

Recall@20 0.1280 0.3292 0.2695 0.3724 0.3901 0.4289 0.3971 0.3926 0.4199 0.4354∗

MRR@5 0.0147 0.0755 0.1259 0.1112 0.1199 0.1198 0.1299 0.1348 0.1355 0.1576∗

MRR@10 0.0187 0.0855 0.1308 0.1220 0.1286 0.1325 0.1408 0.1445 0.1467 0.1681

MRR@20 0.0230 0.0933 0.1352 0.1291 0.1327 0.1408 0.1477 0.1514 0.1543 0.1758∗

NDCG@5 0.0188 0.0912 0.1359 0.1436 0.1491 0.1424 0.1506 0.1552 0.1573 0.1788

NDCG@10 0.0288 0.1157 0.1477 0.1633 0.1683 0.1734 0.1773 0.1789 0.1847 0.2045∗

NDCG@20 0.0449 0.1443 0.1644 0.1823 0.1944 0.2039 0.2026 0.2044 0.2127 0.2327∗

S
p
o
rt
s

Recall@5 0.0313 0.0376 0.1512 0.1622 0.2102 0.2133 0.2124 0.2072 0.2166 0.2421

Recall@10 0.0624 0.0819 0.1927 0.2788 0.3212 0.3180 0.3105 0.3250 0.3381 0.3691∗

Recall@20 0.1364 0.1735 0.2260 0.3908 0.4492 0.4592 0.4464 0.4817 0.5036 0.5318

MRR@5 0.0139 0.0167 0.0449 0.0913 0.1180 0.1262 0.1227 0.1122 0.1194 0.1363

MRR@10 0.0178 0.0224 0.0547 0.1042 0.1344 0.1367 0.1356 0.1276 0.1353 0.1530∗

MRR@20 0.0227 0.0285 0.1224 0.1105 0.1464 0.1486 0.1449 0.1384 0.1467 0.1642∗

NDCG@5 0.0181 0.0218 0.0783 0.1102 0.1407 0.1325 0.1449 0.1356 0.1434 0.1622

NDCG@10 0.0279 0.0359 0.1132 0.1532 0.1780 0.1726 0.1764 0.1734 0.1824 0.2032∗

NDCG@20 0.0464 0.0587 0.1550 0.1704 0.2126 0.2157 0.2106 0.2128 0.2240 0.2442

T
o
y
s

Recall@5 0.0348 0.0487 0.0986 0.2411 0.2940 0.3127 0.2980 0.3110 0.3118 0.3420∗

Recall@10 0.0697 0.0970 0.2344 0.3417 0.4001 0.4062 0.3878 0.4094 0.4141 0.4366∗

Recall@20 0.1443 0.1995 0.2360 0.4407 0.5344 0.5134 0.5058 0.5282 0.5455 0.5565∗

MRR@5 0.0161 0.0226 0.0388 0.1530 0.1753 0.1934 0.1932 0.1964 0.1975 0.2308∗

MRR@10 0.0206 0.0288 0.0562 0.1630 0.1882 0.2098 0.2050 0.2096 0.2110 0.2434

MRR@20 0.0256 0.0356 0.0665 0.1707 0.1960 0.2200 0.2131 0.2177 0.2200 0.2516

NDCG@5 0.0207 0.0290 0.0534 0.1749 0.2047 0.2254 0.2192 0.2249 0.2259 0.2584

NDCG@10 0.0318 0.0443 0.0965 0.2177 0.2380 0.2653 0.2481 0.2567 0.2588 0.2890∗

NDCG@20 0.0505 0.0699 0.1325 0.2274 0.2708 0.3025 0.2778 0.2866 0.2919 0.3192∗

M
L
-1
0
0
k

Recall@5 0.0965 0.1866 0.1845 0.2948 0.3017 0.2585 0.3003 0.3012 0.3245 0.3753∗

Recall@10 0.1431 0.3138 0.3276 0.4746 0.4688 0.4492 0.4662 0.4761 0.5133 0.5186∗

Recall@20 0.2396 0.4655 0.4835 0.6548 0.6723 0.6409 0.6506 0.6755 0.6925 0.6713

MRR@5 0.0484 0.0989 0.0958 0.1753 0.1748 0.1311 0.1707 0.1513 0.1765 0.2104∗

MRR@10 0.0549 0.1154 0.1152 0.1984 0.2046 0.1555 0.1926 0.1748 0.2015 0.2290

MRR@20 0.0613 0.1258 0.1257 0.2117 0.2183 0.1690 0.2058 0.1897 0.2140 0.2395∗

NDCG@5 0.0602 0.1203 0.1176 0.2035 0.2106 0.1624 0.2028 0.1881 0.2131 0.2509

NDCG@10 0.0755 0.1610 0.1642 0.2655 0.2599 0.2230 0.2562 0.2448 0.2739 0.2967

NDCG@20 0.0996 0.1992 0.2032 0.3088 0.2993 0.2718 0.3033 0.2985 0.3193 0.3352∗

Y
e
lp

Recall@5 0.0474 0.0500 0.0499 0.4070 0.3884 0.4520 0.4561 0.4224 0.4483 0.4677∗

Recall@10 0.0960 0.0983 0.1080 0.5691 0.5609 0.6153 0.6138 0.5926 0.6258 0.6523∗

Recall@20 0.1897 0.1970 0.2278 0.7414 0.7684 0.7757 0.7621 0.7625 0.8118 0.8244∗

MRR@5 0.0227 0.0230 0.0224 0.2265 0.2261 0.2690 0.2703 0.2439 0.2515 0.2630

MRR@10 0.0290 0.0307 0.0298 0.2476 0.2492 0.2974 0.2914 0.2666 0.2771 0.2876

MRR@20 0.0353 0.0365 0.0380 0.2592 0.2686 0.3002 0.3017 0.2783 0.2895 0.2996

NDCG@5 0.0288 0.0291 0.0291 0.2699 0.2663 0.3140 0.3163 0.2880 0.3027 0.3136

NDCG@10 0.0443 0.0447 0.0476 0.3242 0.3224 0.3631 0.3673 0.3430 0.3647 0.3733∗

NDCG@20 0.0677 0.0691 0.0777 0.3632 0.3789 0.4089 0.4048 0.3860 0.4098 0.4168∗
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Table 3. Recall, MRR and NDCG of MrTransformer without preference editing (top) and with preference editing (botom) on
all datasets.

Datasets
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

MrTransformer

Beauty 0.2220 0.2989 0.4070 0.1438 0.1540 0.1614 0.1632 0.1879 0.2151
Sports 0.2069 0.3225 0.4829 0.1146 0.1297 0.1408 0.1374 0.1744 0.2149
Toys 0.3023 0.3955 0.5224 0.1969 0.2092 0.2178 0.2231 0.2530 0.2849
ML-100k 0.3436 0.4920 0.6648 0.1929 0.2119 0.2230 0.2315 0.2784 0.3209
Yelp 0.4403 0.6086 0.7771 0.2609 0.2834 0.2951 0.3053 0.3597 0.4023

MrTransformer (PE)

Beauty 0.2432 0.3231 0.4354 0.1576 0.1681 0.1758 0.1788 0.2045 0.2327
Sports 0.2421 0.3691 0.5318 0.1363 0.1530 0.1642 0.1622 0.2032 0.2442
Toys 0.3420 0.4366 0.5565 0.2308 0.2434 0.2516 0.2584 0.2890 0.3192
ML-100k 0.3753 0.5186 0.6713 0.2104 0.2290 0.2395 0.2509 0.2967 0.3352
Yelp 0.4677 0.6523 0.8244 0.2630 0.2876 0.2996 0.3136 0.3733 0.4168

Table 4. Recall, MRR and NDCG of MrTransformer without preference editing (top) and with preference editing (botom) of
diferent sequence lengths on the łSportsž dataset. The highest scores (per metric and method) are underlined.

Length Number
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

MrTransformer

[20, 30) 5,062 0.2176 0.3387 0.4846 0.1267 0.1424 0.1525 0.1492 0.1879 0.2246
[30, 40) 858 0.2172 0.3252 0.4521 0.1317 0.1455 0.1543 0.1528 0.1871 0.2192
[40, 50] 241 0.2018 0.3211 0.4678 0.1233 0.1392 0.1497 0.1425 0.1810 0.2185
[50,∞) 178 0.2125 0.3375 0.4560 0.1295 0.1430 0.1520 0.1486 0.1822 0.2153

MrTransformer (PE)

[20, 30) 5,062 0.2263 0.3413 0.4963 0.1347 0.1495 0.1602 0.1573 0.1940 0.2331
[30, 40) 858 0.2496 0.3589 0.4958 0.1445 0.1586 0.1683 0.1705 0.2089 0.2457
[40, 50] 241 0.2247 0.3394 0.4908 0.1376 0.1523 0.1625 0.1591 0.1956 0.2334
[50,∞) 178 0.2313 0.3438 0.4938 0.1523 0.1665 0.1770 0.1718 0.2073 0.2403
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Table 5. Recall, MRR and NDCG of MrTransformer without preference editing (top) and with preference editing (botom) of
diferent sequence lengths on the łML-100kž dataset. The highest scores (per metric and method) are underlined.

Length Number
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

MrTransformer

[20, 30) 157 0.3872 0.6011 0.7645 0.1949 0.2232 0.2354 0.2424 0.3113 0.3554
[30, 40) 117 0.4220 0.5871 0.7706 0.2457 0.2670 0.2798 0.2888 0.3414 0.3880
[40, 50] 80 0.4545 0.6590 0.7840 0.2464 0.2713 0.2827 0.3032 0.3628 0.4034
[50,∞) 589 0.2772 0.4176 0.5857 0.1529 0.1712 0.1827 0.1835 0.2284 0.2708

MrTransformer (PE)

[20, 30) 157 0.4335 0.6127 0.7861 0.2430 0.2668 0.2788 0.2927 0.3516 0.3954
[30, 40) 117 0.4403 0.6238 0.7798 0.2441 0.2694 0.2793 0.2927 0.3528 0.3896
[40, 50] 80 0.4785 0.6785 0.8095 0.2333 0.2544 0.2668 0.2924 0.3462 0.3953
[50,∞) 589 0.3032 0.4228 0.5875 0.1604 0.1772 0.1887 0.1955 0.2350 0.2767

Table 6. Recall, MRR and NDCG of MrTransformer without preference editing (top) and with preference editing (botom) of
diferent sequence lengths on the łYelpž dataset. The highest scores (per metric and method) are underlined.

Length Number
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

MrTransformer

[20, 30) 1,736 0.4730 0.6405 0.8035 0.2842 0.3065 0.3178 0.3310 0.3851 0.4263
[30, 40) 679 0.4326 0.5879 0.7606 0.2482 0.2693 0.2814 0.2938 0.3444 0.3882
[40, 50] 327 0.4512 0.6017 0.7694 0.2653 0.2845 0.2871 0.3104 0.3562 0.3971
[50,∞) 397 0.3756 0.5405 0.7135 0.2171 0.2393 0.2512 0.2563 0.3098 0.3534

MrTransformer (PE)

[20, 30) 1,736 0.4840 0.6637 0.8139 0.2950 0.3193 0.3300 0.3418 0.4001 0.4385
[30, 40) 679 0.4437 0.6371 0.8035 0.2569 0.2832 0.2947 0.3028 0.3658 0.4078
[40, 50] 327 0.4675 0.6234 0.7792 0.2661 0.2864 0.2948 0.3155 0.3655 0.4045
[50,∞) 397 0.3946 0.5757 0.7703 0.2309 0.2547 0.2679 0.2714 0.3297 0.3786
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Table 7. Recall, MRR and NDCG of MrTransformer (PE) with and without coverage mechanism on three representative
datasets. Bold face indicates the beter results.Significant improvements over MrTransformer without coverage mechanism
results are marked with ∗ (t-test, � < .05).

MrTransformer (PE)
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

Beauty
−coverage 0.2169 0.2913 0.4012 0.1421 0.1520 0.1591 0.1606 0.1846 0.2111

+coverage 0.2432 0.3231∗ 0.4354∗ 0.1576 0.1681 0.1758∗ 0.1788∗ 0.2045∗ 0.2327∗

Toys
−coverage 0.3251 0.4191 0.5428 0.2176 0.2301 0.2385 0.2443 0.2746 0.3057

+coverage 0.3420 0.4366∗ 0.5565 0.2308∗ 0.2434∗ 0.2516 0.2584∗ 0.2890 0.3192∗

ML-100k
−coverage 0.3351 0.4984 0.6702 0.1916 0.2131 0.2248 0.2270 0.2796 0.3227

+coverage 0.3753∗ 0.5186 0.6716 0.2104∗ 0.2290∗ 0.2395∗ 0.2509∗ 0.2967∗ 0.3352∗

Table 8. Results of MrTransformer (PE) on the łBeautyž dataset with diferent values of � . Bold face indicates the value of �
for which the highest performance is achieved for a given metric.

�
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

1 0.2267 0.3068 0.4185 0.1430 0.1566 0.1642 0.1660 0.1918 0.2198
3 0.2432 0.3231 0.4354 0.1576 0.1681 0.1758 0.1788 0.2045 0.2327

5 0.2263 0.3057 0.4217 0.1432 0.1536 0.1615 0.1638 0.1893 0.2184
7 0.2250 0.3043 0.4176 0.1422 0.1567 0.1644 0.1657 0.1913 0.2197
9 0.2294 0.3013 0.4170 0.1450 0.1570 0.1637 0.1638 0.1917 0.2215
11 0.2237 0.3051 0.4217 0.1441 0.1523 0.1633 0.1642 0.1904 0.2197
15 0.2248 0.3021 0.4115 0.1438 0.1550 0.1625 0.1648 0.1895 0.2170
20 0.2234 0.3071 0.4173 0.1437 0.1546 0.1621 0.1634 0.1903 0.2180

Table 9. Results of MrTransformer (PE) on the łSportsž dataset with diferent values of � . Bold face indicates the value of �
for which the highest performance is achieved for a given metric.

�
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

1 0.2339 0.3401 0.4812 0.1375 0.1514 0.1610 0.1613 0.1954 0.2309
3 0.2238 0.3334 0.4840 0.1307 0.1451 0.1554 0.1537 0.1889 0.2268
5 0.2283 0.3375 0.4905 0.1324 0.1468 0.1573 0.1560 0.1912 0.2297
7 0.2284 0.3397 0.4956 0.1334 0.1480 0.1586 0.1569 0.1926 0.2318
9 0.2421 0.3691 0.5318 0.1363 0.1530 0.1642 0.1622 0.2032 0.2442

11 0.2270 0.3349 0.4865 0.1335 0.1476 0.1579 0.1566 0.1912 0.2293
15 0.2285 0.3427 0.4965 0.1334 0.1485 0.1589 0.1618 0.1936 0.2322
20 0.2175 0.3317 0.4845 0.1259 0.1410 0.1514 0.1485 0.1853 0.2236
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Table 10. Results of MrTransformer (PE) on the łToysž dataset with diferent values of � . Bold face indicates the value of �
for which the highest performance is achieved for a given metric.

�
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

1 0.3215 0.4166 0.5356 0.2156 0.2282 0.2363 0.2419 0.2725 0.3025
3 0.3230 0.4177 0.5389 0.2171 0.2296 0.2379 0.2434 0.2739 0.3044
5 0.3202 0.4162 0.5446 0.2142 0.2269 0.2357 0.2405 0.2715 0.3038
7 0.3257 0.4243 0.5466 0.2160 0.2290 0.2374 0.2432 0.2750 0.3037
9 0.3123 0.4069 0.5305 0.2044 0.2169 0.2254 0.2312 0.2616 0.2928
11 0.3420 0.4366 0.5565 0.2308 0.2434 0.2516 0.2584 0.2890 0.3192

15 0.2997 0.3982 0.5317 0.1913 0.2043 0.2143 0.2182 0.2499 0.2835
20 0.3006 0.3968 0.5208 0.1981 0.2108 0.2193 0.2236 0.2546 0.2857

Table 11. Results of MrTransformer (PE) on the łML-100kž dataset with diferent values of � . Bold face indicates the value of
� for which the highest performance is achieved for a given metric.

�
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

1 0.3595 0.5143 0.6808 0.1975 0.2188 0.2297 0.2375 0.2896 0.3297
3 0.3753 0.5186 0.6716 0.2104 0.2290 0.2395 0.2509 0.2967 0.3352

5 0.3521 0.5068 0.6903 0.1991 0.2193 0.2319 0.2367 0.2862 0.3325
7 0.3383 0.4973 0.6787 0.1948 0.2160 0.2289 0.2303 0.2817 0.3280
9 0.3521 0.4942 0.6861 0.1961 0.2154 0.2289 0.2346 0.2809 0.3297
11 0.3351 0.4942 0.6585 0.1940 0.2150 0.2265 0.2287 0.2799 0.3216
15 0.3298 0.4835 0.6702 0.2030 0.2211 0.2341 0.2322 0.2823 0.3294
20 0.3552 0.5121 0.6935 0.2010 0.2214 0.2338 0.2308 0.2790 0.3217

Table 12. Results of MrTransformer (PE) on the łYelpž dataset with diferent values of � . Bold face indicates the value of �
for which the highest performance is achieved for a given metric.

�
Recall MRR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20

1 0.4677 0.6523 0.8244 0.2630 0.2876 0.2996 0.3136 0.3733 0.4168

3 0.4500 0.6284 0.8039 0.2787 0.2918 0.3040 0.3154 0.3630 0.4075
5 0.4447 0.6173 0.7877 0.2541 0.2771 0.2889 0.3012 0.3570 0.4000
7 0.4514 0.6300 0.8012 0.2602 0.2841 0.2960 0.3075 0.3652 0.4086
9 0.4385 0.6148 0.7885 0.2490 0.2725 0.2846 0.2958 0.3528 0.3968
11 0.4587 0.6361 0.8055 0.2592 0.2830 0.2948 0.3086 0.3660 0.4089
15 0.4125 0.5870 0.7634 0.2295 0.2528 0.2651 0.2747 0.3312 0.3758
20 0.4354 0.6147 0.7918 0.2488 0.2727 0.2851 0.2949 0.3529 0.3978
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