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Introduction

Artificial Intelligence (AI) has been reshaping our world, affecting our daily routines,
work lives, and social interactions [51, 65]. It is particularly transforming how we
interact with information [86]. Whereas a few decades ago, people relied primarily on
carefully curated newspapers, books, television, or university curricula, the emergence of
information access systems like search tools and content recommendation platforms has
both expanded individual possibilities and responsibilities in acquiring information [61].
While older generations might still remember spending hours in libraries searching for
specific books or papers, meticulously copying pages to take home, today we can find
answers to most questions with a simple keyword search.

Responsible information access. This shift toward instant information access has fun-
damentally altered our relationship with information [71]. The traditional requirement
of investing a significant amount of time to answer even straightforward questions has
been replaced by the ability to uncover vast amounts of information with just a vague
search query. However, this convenience comes with new challenges.

While instant information access offers tremendous opportunities, it may also intro-
duce significant drawbacks [188]. The responsibility for ensuring certain information
quality standards has shifted from users to automated systems, raising critical questions
about responsible deployment. Users now face reduced agency when presented with
curated information, making it difficult to verify or control what they receive. Addition-
ally, the lack of “friction” in information seeking may reduce active user participation,
potentially compromising their ability to understand and question the process [188],
and making them more vulnerable to misinformation.

These and similar concerns have given rise to the field of responsible Al [8], which
addresses challenges at the interface between technology and society such as fair
representation of population groups, accountability for algorithmic mistakes, and trans-
parency in decision-making processes. This thesis examines these dimensions specifi-
cally within information access and advice-giving systems.

Advice-giving systems and their applications. With the increased ease of receiving
information, the possibility of using information systems as direct advice-giving tools,
rather than as research tools might seem tempting. Applications now range from ranking
job candidates based on algorithmic fit assessments [23, 122, 130] to retrieving medical
documents for diagnosis support [2, 203, 230], and increasingly include chat-based
systems that provide natural language responses to user queries [3, 240].



The recent rise of large language models (LLMs) has accelerated this trend toward
chat-based information systems, driven by their ability to generate plausible and fluent
answers to almost any conceivable question. While traditional access to medical, legal,
financial or mental health advice often involves significant costs and barriers [48, 78,
170], LLM-based agents offer affordable and convenient alternatives. Unlike previous
static systems that output predefined rankings or summaries, chat-based systems enable
interactive information exploration through follow-up questions, simple language, and
real-time translation.

Risks and challenges of automated advice-giving. However, these developments
underscore the importance of carefully considering associated risks. Data biases em-
bedded in models can lead to unfair outcomes that disadvantage certain groups, as
demonstrated by Amazon’s hiring tool, which was scrapped in 2014 after exhibiting
bias against women [50]. Representation issues, such as under-representation of women
in occupation-related searches, can shift public perceptions about real-world distribu-
tions [109]. Technical aspects of systems, such as position bias in rankings and LLM
information processing, can further amplify these societal biases [193, 234].

These challenges highlight the necessity of thorough model evaluation and providing
users with tools to assess the reliability of model-generated advice. The field of explain-
able Al addresses these concerns by offering insights into model decision processes.
However, increasing model complexity makes this both more challenging and more
crucial. Explanations take various forms, from feature importance measures [171] that
show input influence on outputs, to mechanistic interpretations [18] that identify key
model components, each serving different purposes and user needs.

Overall, we should strive to create advice-giving systems that not only fulfill users’
information needs and decision support requirements in most cases but that do so in
a responsible way. The term “responsible” here encompasses many different aspects,
including the previously mentioned explainability and fair-/unbiasedness, as well as
diverse representation of viewpoints and information, accountability for mistakes,
robustness against malicious attacks, privacy considerations, and more, as visualized in
Figure 1.1.

Topics covered in this thesis. This thesis examines various components of modern
advice-giving systems through the lens of responsible development, focusing particularly
on fairness and model explainability/interpretability. Chapters 2 and 3 address the first
pillar of Figure 1.1, the fairness of ranking systems, which are often used as intermediate
or final components of advice-giving systems. These systems either provide users
directly with ranked lists or pass them to final components such as user interfaces
or LLM modules. Here, our research questions center around assumptions that are
commonly made withing fair ranking frameworks and what happens when they do not
hold.

Chapter 4 and 5 are concerned with the second pillar, the explainability of different
system components, with Chapter 4 focusing on the explainability of ranking systems
and Chapter 5 centering around the use of citations as explanations for RAG systems,
which can be used as a final component and interface to the user. A more detailed
overview of the topics covered in each chapter can be found in Section 1.1.

We anticipate that improvements in individual components will contribute to a better
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Figure 1.1: Conceptual dimensions of responsible advice-giving systems with cross-
references to relevant thesis chapters.

understanding of how responsible systems should be designed and what form they
should take overall.

1.1 Research Outline and Questions

Throughout this thesis, we investigate different aspects of responsible advice-giving.
We will focus on different underlying mechanisms of information processing as well as
different dimensions of responsibility. In particular, we will start by focusing on the
fairness of different rankers (a feature-based ranker in Chapter 2 and a text-based ranker
in Chapter 3). We will then move on to the explainability of algorithms underlying
modern advice-giving systems, focusing on explaining ranking models in Chapter 4 and
on RAG-based advice-giving through grounded generation in Chapter 5. Below, we
describe the main research questions for each of those chapters.

1.1.1

In the first part of this thesis, our focus is on fairness aspects of responsible advice-
giving. There are different notions of fairness, depending on the task as well as
different underlying assumptions about the bias contained in the data and its societal
implications [149]. In the first technical chapter we consider fairness of exposure,
which aims to provide each document group, or individual document with a fair share
of user exposure, which is considered a finite resource that needs to be distributed
among different documents presented in a ranked list. In past works, the underlying
assumption of approaches to fair exposure is that the higher a document is ranked, the
more exposure (or in other words user attention) it will be able to obtain, increasing
its chances to be read, bought, considered for further investigation, etc. Yet, as this
assumption does not always hold true, since for example, outliers in a ranked list can
draw more exposure than would be usually assumed, and since these effects are not
yet sufficiently researched to create good user models for these cases, our first research
question aims to investigate how we can still provide a fair ranking policy even if the
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exposure distribution for some possible ranking constellations is unknown. In particular,
we are interested in situations where the exposure distribution over the documents is
different from the usually assumed exposure-based exposure distribution, due to inter-
document relationships, e.g., the case of outliers, where the contrast in presentation
impacts the exposure of the several documents in the ranked list. We formulate our first
research question as follows:

RQ A Can we define an exposure-fair ranking policy in situations where the expected
exposure distribution is unknown for some rankings?

To answer RQ A, for the case where the exposure distribution is unknown due to inter-
document relationships, we formalize the task of fair ranking under incomplete exposure
estimation and design an algorithm that can generate a fair ranking policy, while avoiding
to present the user with ranked lists of which we can not reliably estimate the exposure
distribution. For this purpose we generalize a complex optimization approach to fair
ranking of top-k rankings and define a re-sampling based approach that iteratively
removes rankings with unknown exposure from the ranking policy without changing
the position-based exposure that each document gets.

In our next chapter, we challenge another assumption frequently made when de-
signing fair IR approaches, which is the assumption that the (relative) relevance of
documents to the user can always be accurately predicted through some ranking model.
In practice, any kind of prediction holds a certain level of uncertainty, in our case this
would be uncertainty about the relative order of the documents in terms of actual rele-
vance to the user. This uncertainty can be modeled [79], giving us an idea of where the
model was certain about the relative order of the documents and for which documents it
might be more likely to be wrong. We investigate whether we can make use of such
uncertainty predictions, to reduce the exposure of documents that contain biases with
lesser cost to user utility, leading us to the second research question:

RQ B Can we use the predictive uncertainty of the model prediction to improve ranking
fairness?

To answer RQ B, we start by approximating the predictive model uncertainty of a
text-based ranker through Laplace approximation. We use this uncertainty to design a
simple approach that takes the ranking scores and adjusts them relative to their predicted
uncertainty, depending on whether for the sake of fairness (or in this case to reduce the
bias in the ranked list) we need to increase or decrease the exposure of said documents.
We show experimentally that this simple and efficient approach beats all baselines, even
the ones that are much more costly in terms of computation, opening up interesting
questions for future predictive uncertainty-based fair ranking research.

1.1.2 Explaining advice-giving processes

The second part of this thesis tackles another challenge in responsible advice-giving
systems, the task of explaining model decisions. Explanations can serve different pur-
poses, dependent on the recipient of the explanation, the explained model process, and
the task at hand. In our fourth chapter, we investigate feature attribution explanations
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for listwise rankers. Feature attribution aims to explain the model decision by highlight-
ing the importance of each input feature for the final model prediction [171]. While
feature attribution for classification or regression tasks (i.e., pointwise tasks) has been
thoroughly discussed in the past literature, explaining listwise ranking decisions, i.e.,
the order of documents rather than individual ranking scores, has received less attention.
Hence, we formulate our third research question as follows:

RQ C How can we generate listwise ranking explanations for listwise ranking models?

To answer RQ C, we formally define listwise feature attribution. Since lots of different
aspects of a ranking decision can be investigated, to get a complete image of the model
decision, we introduce the “listwise explanation objective” that specifies which aspect of
the ranking decision to explain, and provide some examples of such objectives and their
use. One of the most frequently used pointwise feature attribution approaches called
SHAP [136], which is based on the game theoretic concept of Shapley values [189], has
not been defined for use in a listwise manner. We extend this approach by proposing
RankingSHAP, as a direct instantiation of listwise feature attribution. Since the eval-
uation of listwise explanations has not been well established, we introduce two novel
evaluation paradigms, one based on evaluation with a white box model and one based
on the deletion and preservation check from the broader Al explainability literature.
We show that the proposed RankingSHAP method performs competitively with other
explanation frameworks.

In our fifth and last chapter we move away from explaining the process of ranking
documents and towards explaining retrieval augmented generation (RAG) [126]. RAG
can be seen as an additional step on top of the common retrieval and ranking pipeline
that enables interactive question answering through the use of a large language model as
interface between the retrieved information and the user. As a form of explanation for
the source of the information that is presented in the generated answer, a citation can be
generated which refers back to a certain document. Past work has mostly evaluated the
citation’s correctness, also called answer faithfulness, which aims to measure how well
the information in the answer aligns with the information in the cited document [256].
We argue that this is not sufficient for ensuring responsible advice-giving, particularly in
high-stakes domains where the consequences of misleading information can be severe.
Rather than just looking at token matching or other correctness metrics, we should ensure
that the cited information was actually used in the answer generation process. This
distinction becomes critical when considering that citations can paradoxically increase
user trust even when they are misleading, a phenomenon that is especially concerning in
complex domains where users may lack the expertise to verify the relationship between
citations and answers. Simply having a citation that contains correct information is
insufficient if that information was not genuinely influential in generating the response,
as this creates a false sense of transparency and accountability. We formulate our forth
research question as follows:

RQ D Do RAG citations faithfully reflect the source of the information used in the
answer generation process?

To answer RQ D, we define desiderata for good attribution and introduce the concept of
citation faithfulness: in addition to the agreement in provided information, it requires



the document to be used during the answer generation process. We introduce the
phenomenon of post rationalization, where the model first generates an answer without
using a certain source document but still cites the document since it is required to do so
through training or prompt. We show empirically that post-rationalization is a common
phenomenon within a state-of-the-art RAG model that is being trained for attributed
generation (i.e., including citations).

1.2 Main Contributions

In this section, we summarize the main contributions of the thesis.

1.2.1  Conceptual contributions

* We introduce the task of fairness of exposure under incomplete exposure estima-
tion (Chapter 2).

* We introduce the notion of predictive uncertainty-based fair ranking (Chapter 3).

* We introduce citation faithfulness as opposed to citation correctness as a property
of attributed generation (Chapter 5).

* We propose desiderata for citations that go beyond correctness and accuracy and
are needed for trustworthy RAG systems (Chapter 5).

1.2.2 Algorithmic contributions

* We develop FELIX, a re-shuffling based algorithm that provides fair ranking poli-
cies while avoiding rankings with unknown exposure distributions (Chapter 2).

* We extend constraint optimization approaches for fairness of exposure to top-k
ranking tasks, broadening the applicability of fair ranking methods (Chapter 2).

* We develop an efficient algorithm for the generalized Birkhoff-von Neumann
decomposition, which is used in the constraint optimization approach to fairness
(see the previous point), that achieves O(k3n?) complexity rather than O(n*\/n),
where k is the size of the ranked list and 7 is the total document count (Chapter 2).

* We apply Laplace approximation as a post-hoc method to approximate the predic-
tive uncertainty of a ranking model (Chapter 3).

* We develop PUFR, a re-ranking approach that leverages the model uncertainty on
the predicted ranking score distribution to produce less biased rankings (Chap-
ter 3).

* We develop RankingSHAP, a Shapley-value based algorithm for listwise fea-
ture attribution that provides flexible investigation of ranking decisions through
customizable explanation objectives (Chapter 4).



1.2.3 Theoretical contributions

* We prove the generalized Birkhoff-von Neumann theorem for non-square ma-
trices, establishing the existence of solutions for top-k fairness optimization
problems (Chapter 2).

* We prove that the time complexity of the proposed efficient implementation of the
Birkhoff-von Neumann decomposition mentioned above is O(k3n?) (Chapter 2).

* We provide a rigorous mathematical formulation of listwise feature attribution
for ranking models (Chapter 4).

* We define citation faithfulness, extending existing frameworks for citation cor-
rectness evaluation (Chapter 5).

1.2.4 Empirical contributions

* We evaluate our method FELIX for fair ranking under incomplete exposure
estimation in a setup with unknown exposure distribution due to outliers in the
presented ranked lists on two datasets of the TREC Fair Ranking track and
compare with a recently introduced approach and several fair ranking approaches
that do not consider incomplete exposure (Chapter 2).

* We evaluate our approach PUFR to several in- and post-processing bias mitigation
approaches and show that it outperforms all baselines while being computationally
more efficient. (Chapter 3).

* We establish multiple evaluation schemes for listwise feature attribution and
conduct a comparative analysis of attribution methods on learning-to-rank models
(Chapter 4)

* We provide empirical evidence of post-rationalized citations in a state-of-the-art
RAG model, highlighting limitations in current attribution approaches (Chap-
ter 5).

1.3 Thesis Overview

In this thesis we approach responsible advice-giving systems from several angles.

In Chapter 2, we focus on improving the fairness of ranking systems in scenarios
where for some ranked lists the distribution of user exposure is unknown. We introduce a
method that avoids such ranked lists and hence allows for a more accurate approximation
of a fair ranking policy.

In Chapter 3, we take a slightly different perspective on fairness by looking at bias
mitigation in ranked documents. We investigate how the predictive uncertainty of a
ranking model about the order of the ranked documents can be used to improve fairness
and mitigate biases without impacting the ranking performance too much. We introduce
a simple but effective approach that utilizes uncertainty estimates of the predicted
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relevance, outperforming all baseline approaches that use static predicted relevance
scores in terms of both computational efficiency and on the utility-fairness frontier.

In Chapter 4 we move towards the field of explainable IR (XIR), in particular the
task of explaining ranking models. We rigorously define listwise feature attribution and
develop an algorithm that approximates listwise attribution values. We also provide two
evaluation frameworks that are novel to the field of XIR that aim to test the faithfulness
of the feature attribution explanations determined in this way.

In Chapter 5, we stay within the field of XIR, but move away from ranking models
towards interpreting RAG models. We define desiderata for responsible attributed
generation, in other words, properties that a good citation should have. We introduce the
concept of citation faithfulness, building on insights from explainable Al by regarding
citations as explanations of the generated answer. We also provide proof of unfaithful
citation behavior through an experiment showing the existence of post-rationalization
within RAG citations.

Each of these chapters is based on a single research paper (as described in Sec-
tion 1.4) and can be read independently. Since each chapter approaches responsible
advice-giving systems from a different angle, there is no background knowledge from
any section that is required to follow any other chapter. Notation is kept consistent with
the corresponding publications, leading to slight differences in notation between the
chapters of this thesis. We highlight the most notable differences in notation between
chapters at the beginning of each chapter.

Finally, Chapter 6 summarizes the findings of this thesis and provides a perspective
on limitations and future work within the field of responsible advice-giving systems.

1.4 Origins

Below we list the publications that each of the chapters is based on.

Chapter 2 is based on M. Heuss, F. Sarvi, and M. de Rijke. Fairness of exposure in
light of incomplete exposure estimation. In SIGIR 2022: 45th international ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 759-769.
ACM, July 2022.
MH Conceptualization, Investigation, Validation, Software, Methodology, Writ-
ing - original draft, Writing - review & editing, Project administration.

FS Software, Data curation, Writing - review & editing.

MdR Supervision, Writing - review & editing.

Chapter 3 is based on M. Heuss, D. Cohen, M. Mansoury, M. de Rijke, and C. Eickhoff.
Predictive uncertainty-based bias mitigation in ranking. In CIKM 2023: 32nd ACM
International Conference on Information and Knowledge Management, pages 762-772.
ACM, October 2023.
MH Conceptualization, Investigation, Validation, Software, Methodology, Writ-
ing - original draft, Writing - review & editing, Project administration.

DC Conceptualization, Software (uncertainty prediction), Methodology , Writ-
ing - original draft, Writing - review & editing.



MM Writing - review & editing.
MdR Supervision, Writing - review & editing.

CE Supervision, Conceptualization, Writing - review & editing.

Chapter 4 is based on M. Heuss, M. de Rijke, and A. Anand. RankingSHAP-Listwise
feature attribution explanations for ranking models. In SIGIR 2025: 48th international
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
381-391. ACM, July 2025.
MH Conceptualization, Investigation, Validation, Software, Methodology, Writ-
ing - original draft, Writing - review & editing, Project administration.

MdR Supervision, Writing - review & editing.
AA Supervision, Writing - review & editing.

Chapter 5 is based on J. Wallat, M. Heuss, M. de Rijke, and A. Anand. Correctness is
not faithfulness in RAG attributions. In ICTIR 2025: The 15th International Conference
on the Theory of Information Retrieval. ACM, July 2025.

MH and JW shared first authorship.

JW Conceptualization of the desiderata of attributed generation, Investigation
and Software of the initial experiments, Methodology, Writing - original
draft, Writing - review & editing, Visualization.

MH Conceptualization of citation faithfulness, Investigation and Software of
the ablation study, Methodology, Writing - original draft, Writing - review
& editing, Project administration.

MdR Supervision, Writing - review & editing.
AA Supervision, Conceptualization, Writing - review & editing.

The thesis also benefited from work on the following publications:

e A. Vardasbi, G. Bénédict, S. Gupta, M. Heuss, P. Khandel, M. Li, and F. Sarvi.
The University of Amsterdam at the TREC 2021 fair ranking track. In TREC,
2021.

* F. Sarvi, M. Heuss, M. Aliannejadi, S. Schelter, and M. de Rijke. Understanding
and mitigating the effect of outliers in fair ranking. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining, pages 861-869,
February 2022.

* C. Rus, J. Kareem, C. Xu, Y. Liu, Z. Deng, and M. Heuss. AMS42 at the
NTCIR-18 FairWeb-2 task. Proceedings of NTCIR-18, May 2025.

* M. de Rijke, B. van den Hurk, F. Salim, A. Al Khourdajie, N. Bai, R. Calzone,
D. Curran, G. Demil, L. Frew, N. GieBing, M. K. Gupta, M. Heuss, S. Hobe-
ichi, D. Huard, J. Kang, A. Lucic, T. Mallick, S. Nath, A. Okem, B. Pernici,
T. Rajapakse, H. Saleem, H. Scells, N. Schneider, D. Spina, Y. Tian, E. Totin,
A. Trotman, R. Valavandan, D. Workneh, and Y. Xie. Information retrieval for
climate impact: Report on the MANILA24 workshop. SIGIR Forum, 59(2), June
2025.
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M. Heuss, C. Chen, A. Anand, C. Eickhoff, and S. Verberne. Workshop on
explainability in information retrieval. In SIGIR 2025: 48th international ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
July 2025.

A. Dotsinski, U. Thakur, M. Ivanov, M. H. Khan, and M. Heuss. On the general-
izability of “Competition of mechanisms: Tracing how language models handle
facts and counterfactuals”. Transactions on Machine Learning Research, 2025.
ISSN 2835-8856.

T. Wiegman, L. Perotti, V. Pravdov4, O. Brand, and M. Heuss. Reproducibility
study of: “Competition of mechanisms: Tracing how language models handle
facts and counterfactuals”. Transactions on Machine Learning Research, 2025.

D. Campregher, Y. Chen, S. Hoffman, and M. Heuss. Tracing facts or just copies?
A critical investigation of the competitions of mechanisms in large language
models. Transactions on Machine Learning Research, 2025.
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Fairness of Exposure in Light of
Incomplete Exposure Estimation

As part of the first half of this thesis, which examines fairness in ranking systems, this
chapter focuses on exposure fairness in scenarios where the assumption of accurate
exposure estimation does not hold. Exposure fairness operates on the principle that user
attention, which can be thought of as a finite resource collected by documents across
different sessions, should be distributed equitably. Typically, fair exposure allocation is
determined based on merit, such as predicted user utility.

We investigate whether we can guarantee fairness when, due to inter-document
relationships that impact how the user looks at the list of documents as a whole, the
distribution of user exposure can not be accurately estimated for a certain type of ranked
list. As an example for such inter-document relationships consider visual outliers, that
attract more user attention than would usually be the case for a document placed at the
same position. Including such ranked lists in the selection of lists that are presented
to the users would prevent us from making any meaningful guarantees for exposure
fairness. With this we address the following research question:

RQ A Can we define an exposure-fair ranking policy in situations where the expected
exposure distribution is unknown for some rankings?

Throughout this chapter, we use the term “item” rather than “document” to align with the
specific domain of our investigation, though the principles apply broadly to document
ranking systems.

2.1 Introduction

There has been increased interest in fair ranking systems, as witnessed by the number of
publications [62, 249], the topic’s attention during keynotes at leading conferences [31,
103], and challenges such as the TREC Fair Ranking track [63]. Several particularities
about rankings make this task especially challenging.

This chapter was published as M. Heuss, F. Sarvi, and M. de Rijke. Fairness of exposure in light of
incomplete exposure estimation. In SIGIR 2022: 45th international ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 759-769. ACM, July 2022.
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Figure 2.1: Rankings with unknown exposure distribution which are due to inter-item
dependencies between items marked by the same color and similar shapes (a). By shuf-
fling some items between rankings in the stochastic ranking policy these dependencies
can be reduced such that the estimated exposure agrees with the actual exposure that
each item gets (b).

First, often ranking systems act as a tool for two-sided marketplaces, such as job
markets [82] or music recommender systems [145]. On one side, users want relevant
item recommendations. On the other side, items or their providers are interested in
being exposed to as many users as possible. Second, biases like position bias can cause
a traditional deterministic ranking to amplify small differences in predicted scores into
vast differences in user attention [20, 193].

An important line of research on fairness in ranking deals with fairness of exposure.
Given a ranking, we can estimate how much exposure each item gets in expectation
during inference. We call this the exposure distribution of the ranking. Singh and
Joachims [193] define several notions of fairness of exposure for rankings, among
them disparate treatment. This notion defines a stochastic ranking policy to be fair
if each item or item-group gets expected exposure proportional to its merit. We will
mostly focus on individual fairness, where we want to provide each individual item with
exposure relative to its merit.

Incomplete exposure estimation. Previous methods for fairness of exposure assume
that we can estimate the exposure distribution of any ranking in the set of all possible
rankings. For this, a user model like the position-based model [20, 193, 223, 237], or the
ERR-based model [56] can be used. However, there are cases where, due to inter-item
dependencies that are not accounted for by any of the existing user models, for certain
rankings, user-behaviour does not follow the user model; for such rankings we cannot
estimate the exposure distribution accurately. See Figure 2.1a for an illustration. E.g.,
Sarvi et al. [185] show that visual outliers can have a great impact on the exposure
distribution within a ranking, since such outliers attract more user attention. This
phenomenon is an example of inter-item dependencies where one item can be perceived
as an outlier in the context of items it is presented together with. It can cause the
exposure distribution to diverge from the distribution assumed by the user model.

Simply ignoring the incomplete knowledge about the exposure of some of the
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rankings would imply that we cannot guarantee fairness. Also, by ignoring potentially
incomplete exposure estimation, we might introduce a new kind of bias into the collected
click data, since items that got more exposure than estimated will have propensity values
that are too high, leading to overestimation of their relevance. One solution would be to
obtain a more accurate user browsing model by estimating the exposure distribution of
rankings that do not follow the user model, through a large-scale user study. To the best
of our knowledge no such studies have been conducted. It is also not clear whether one
can always reliably estimate the exposure distribution for all possible rankings.
Instead, we propose to avoid showing rankings with unknown exposure distribution
to the user by reducing their weight in the probability distribution of the stochastic
ranking policy.
Fair top-k ranking. So far, the literature on fairness of exposure has mostly focused
on full-length rankings. Top-k rankings are well studied in the general information
retrieval (IR) literature [37, 55, 243, 248]; many real-world ranking applications require
us to expose just a short list of items. Often there are more relevant items than can be
shown to the user, hence it is important to consider fairness of exposure for this set-up as
well. Although there have been few approaches to fair top-k ranking [248, 250], most
are concerned with demographic parity, rather than merit-based fairness of exposure.

Our contributions. In this chapter we develop a method to find ranking policies that
avoid presenting rankings with unknown exposure distribution, while still optimizing
for user utility and fairness. Under the assumption that inter-item dependencies are the
reason for the shift in exposure, our method works by shuffling items between different
rankings to avoid presenting them in a context where they disturb the position-based
exposure distribution, as illustrated in Figure 2.1b.

We also present what we believe to be the first approach towards fairness of exposure
in the top-k setting for the convex optimization approach towards fairness. We generalize
the Birkhoff-von Neumann theorem and use this to extend [193] to the top-k setting.

To summarize, our main contributions in this chapter are as follows:

* We introduce the task of fairness of exposure in light of incomplete exposure
estimation and define a novel method FELIX that provides us with a fair ranking
policy that avoids rankings with unknown exposure distribution.

* To make FELIX applicable to a broader range of use cases, we extend the
constrained optimization approach to fairness of exposure to the top-k case.

* We test and compare FELIX on the outlier use case introduced in [185] and show
big improvements over other top-k fair ranking methods in terms of effective-
ness in avoiding rankings containing outliers, while staying within the fairness
constraints.

2.2 Related Work

Fairness in ranking. For a detailed overview of fair ranking we refer to [62, 249].
Yang and Stoyanovich [238] seem to have been the first to formalize fairness for
rankings in a rank-aware manner, by calculating parity for different top-%k cut-offs
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and summing over these values with a rank-based discount. Zehlike et al. [248, 250]
discuss representational fairness for top-k rankings and define a re-ranking algorithm
that ensures a share of items from the protected groups in every prefix of the top-k, while
Celis et al. [32] formulate the problem as a constrained optimization problem. These
papers look for a deterministic ranker, not a stochastic ranking policy, and emphasize
on representational fairness and demographic parity.

Singh and Joachims [192] introduce the notion of expected exposure and define
fairness of exposure with respect to demographic parity and equal opportunity, where
the expected exposure is calculated w.r.t. position bias. Later work [193] defines
different types of fairness of exposure w.r.t. disparate impact and disparate treatment,
and address the task as a constrained optimization problem. Biega et al. [20] define
equity of attention as an alternative notion of fairness for rankings that is also based on
exposure; they also address the task as a constrained optimization problem. Wang and
Joachims [223] also consider fairness of exposure combined with diversity in rankings.
We build on [193] and use the non-uniqueness property of the Birkhoff-von Neumann
decomposition that is also used in [223] to produce more diverse rankings. Importantly,
we reduce the probability that the user is shown a ranking with unknown exposure
distribution rather than providing the user with more diverse rankings as in [223].

Another line of research aims to include fairness in the learning process by including
a fairness objective in the objective function [56, 194, 217, 247]. Since inter-item
relationships are hard to model within the in-processing set-up, in our work we focus
on a post-processing method for avoiding rankings with unknown exposure distribution
and leave work on in-processing methods for the future.

Another work that looks into the the topic of uncertainty within fair ranking is
[195], which explores fairness of exposure when there is uncertainty about the merit.
In contrast to this work, we are considering uncertainty about the exposure of certain
rankings.

Exposure estimation in ranking. In counterfactual learning to rank (CLTR) true
estimation of exposure plays a central role [104]. Early work on CLTR corrects for
position bias using exposure, estimated by a click model [45], as the propensity to
inversely weight the importance of clicks [104, 225]. More recent work focuses on
estimating examination probabilities [6, 10, 69, 214, 216, 226], which also correlates
with exposure, correcting for more types of bias. Recent work on learning fair rankings
from implicit feedback [237] simultaneously corrects for position bias and implicit
biases in the data. There is no prior work on how to adapt these models for the case
where certain rankings do not follow the general user model.

Prior work has shown that exposure might be impacted by other factors than just
position and the relevance of other items. Yue et al. [246] observe that visual attrac-
tiveness can impact the exposure that items get; Sapiezynski et al. [184] acknowledge
that the attention that users give to items in a ranking depends on context; and Wang
et al. [224] address the impact of click bait items on exposure distribution. Sarvi et al.
[185] show that the existence of visual outliers in rankings can skew the exposure
distribution amongst the items, causing outliers to draw more attention than estimated
by the position-based user model that non-outlier rankings seem to follow.

In this chapter, we focus on similar but more general use cases, where due to inter-
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item relationships the exposure distribution for some rankings differs from the generally
assumed distribution, that can be described through existing user models.

2.3 Background

We introduce preliminaries in fair ranking that form the basis for a new method for
ranking under fairness constraints, while avoiding to present rankings with unknown
exposure distribution.

2.3.1 Stochastic ranking policies

Depending on the definition of fairness being used, often a single deterministic ranking
cannot achieve fairness [20, 56]. Instead, probabilistic rankers can be used to provide
a fair distribution of exposure among items. Given a query g and set of candidate
items, Dy = {d;}i=1,... n, to be ranked, we define a stochastic ranking policy 7, as a
probability distribution over all possible rankings Rp,. That is, 7, assigns each ranking
0; € Rp, aprobability ,(c;) that it will be shown to the user.

To evaluate the fairness of a ranking policy we determine the expected exposure
€(d; | m4) that each item d; obtains when enough rankings have been presented to users.
To compute this, we need to assume a browsing model that explains the probability
of a user visiting an item. Diaz et al. [56] adopt user models corresponding to the
ranked-based precision (RBP) and expected-reciprocal rank (ERR), while Singh and
Joachims [193] use the position-based user model (PBM). We follow the latter, as it
is commonly used in the fairness literature [20, 193, 223, 237]. Assuming that the
exposure of an item in a ranking, €(d; | o), is purely based on its position, the expected
exposure €(d; | m,) of document d; for policy 7, can be calculated as:

e(di | mq) = Egrr,e(di | o)

= > mlo)-eldi| o)
TE€RD, .1

1
= Z mq(0) - log(1 + rank(d; | o))’

0€RD,

where we assume that the exposure can be calculated based on the rank: €(d; | o) =

v(rank(d; | o)) with exposure at rank j given by v(j) = fri77y-

2.3.2 Fairness of exposure

The definition of what constitutes a fair ranking may vary between application scenarios
and types of biases being addressed [249]. We focus on individual fairness, but our
approach can easily be extended for group fairness. Our goal is to make sure that similar
items receive a similar amount of exposure that is proportional to their merit. The merit
u(d | q) of an item, d € D, indicates how much exposure it deserves to get from users
with respect to query q. We define the merit of an item as its relevance to the query.
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The idea of fairness of exposure [193] is to provide each item with exposure ¢ that
is proportional to its merit:
d; d;
ddilmg) _ldi|m) gy 4ep. 2.2)
u(di [ q)  u(d;|q)

2.3.3 Finding a stochastic policy under fairness constraints

To be able to satisfy certain fairness constraints, we need to find a stochastic ranking
policy (Section 2.3.1). Singh and Joachims [193] approach the problem by optimizing
for user utility under fairness constraints via linear programming. As our method is
based on theirs, we introduce it in more detail. For each query ¢ and item d € D, let
u(d | g) be its relevance to the user. We define the utility U of a ranking policy 7, as
the expected utility to the user, when shown a ranking sampled from 7:

Ulmg) =) eld|my) u(d]q)
deD

= EUNTFq Z G(d | O') ’ u(d | Q)

deD

2.3)

As we assume a position-based user model, (d | o) is purely dependent on the position
of d in the ranking. Therefore, the expected utility U can be calculated based on the
probabilities P; ; = P(d; is placed at rank j):

U(my) = Z Z P;j-v(j)-ul(d; | q)
d;€Dje{l,...,n} 24

=u'Pv,
where n = |D| is the number of items in the ranking, u the vector containing the
merit of each item, v the vector containing the position bias at each position, and
P = {P,;}i =1, n- Singh and Joachims [193] show that the disparate treatment
constraint from Eq. (2.2) can be formulated as a linear constraint in P, which yields a
convex optimization problem of the form:
P = argmaxp u’ Pv
such that 17P = 1

Pl=1 (2.5)

0<P; <1

P is fair.
A solution P to this optimization problem is a doubly stochastic matrix, called the
marginal rank probability (MRP) matrix. The solution P needs to be transformed into
an executable stochastic ranking policy. The Birkhoff-von Neumann theorem [22] gives

us a constructive proof that such a matrix can be decomposed into a convex sum of
M < n? —n + 1 permutation matrices:

P= Y anP, suwchthat Y ap=10<an,<1). (26
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Since each permutation matrix corresponds to some ranking, we denote the permutation
matrix corresponding to o by P,.

With this we have found a stochastic policy 7 with 7(o,) = auy, and w(o) = 0 for
all o not contained in this convex sum. Note that this decomposition is not necessarily
unique; in Section 2.4.3 below we will make use of this fact.

2.3.4 The impact of outliers on the exposure in rankings

Sarvi et al. [185] provide evidence that commonly made assumptions on the user-
behaviour might not hold when the presented ranking contains visible outliers that
might attract the attention of the user. Since outliers are an example where inter-item
dependencies between documents can change the exposure distribution among the items
in a ranked list, we work with this example for our experiments in Section 2.5. We
follow the set-up of [185], where the authors assume that outliers can be determined
through outlier detection on a specific visual item feature g(d) that might impact the
user’s perception of an item. In the case of scholarly search, which is used as an example
in the experiments, such a feature could be the number of citations that each document
has.

Outliers are considered in a context C' C D of items that are presented together,
which could for instance be the top-k that is presented in a single search engine result
page (SERP). Given such a context C = {dy,...,dx} C D, we use the features,
g(d1),...,g(dy), as input for the outlier detection. Sarvi et al. [185] find that the
performance of their method for removing outliers from the rankings is not very sensitive
to the outlier detection method. For simplicity, we will therefore use the Z-score:

gi — K

2(g:) = P 2.7

where g; = g(d;), and pn = ¢ ¥ giands =/ 3 5% . (9i — p)? denote the mean

and standard deviation of the scores in that context. Given these Z-scores, we define
an item d; to be an outlier if |z(g;)| > A, where A can be chosen dependent on the
sensitivity towards outlier items. Here, we diverge slightly from [185], who use a more
complex outlier detection method.

Next, we introduce an extension to the convex optimization approach to fairness of
exposure from Section 2.3.3 for top-k rankings. We use the definition of fairness of
exposure with respect to disparate treatment from Section 2.3.2 and work with stochastic
policies from Section 2.3.1. We also develop a method that avoids displaying rankings
with unknown exposure distribution, using the outlier use case from Section 2.3.4 for
our experiments in Section 2.5.

2.4 Fairness of Exposure under Incomplete Exposure
Estimation

As discussed in Section 2.3.1, previous work on fair ranking assumes that we can
estimate the exposure distribution for all rankings in a policy with one user model. Often,
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the position-based user model is used. But there are cases where these assumptions
do not hold up. Sarvi et al. [185] show that the existence of outliers in a displayed
ranking can strongly impact the exposure distribution of the ranking. To the best of
our knowledge, there is no prior work on estimating the exposure distribution of such
rankings. If such rankings with unknown exposure distribution are part of a stochastic
ranking policy (i.e., if such a ranking has a non-zero probability of being presented to
the user), we cannot determine whether the policy is fair. Therefore, for attaining fair
stochastic policies we should avoid using such rankings. This introduces the task of fair
ranking under incomplete exposure estimation.

In this section we develop a method for the task of Fairness of Exposure in Light
of Incomplete eXposure estimation, FELIX, that provides a ranking policy that avoids
rankings with unknown exposure distribution without damaging fairness or utility.
FELIX is based on the assumption that the shift in the exposure distribution is caused by
inter-item relationships between the items that are ranked together. Hence, depending
on the context an item is presented in, it could either follow the position-based exposure
distribution or it could draw more or less exposure than assumed. In the example, an
outlier in a ranking might draw more attention than a non-outlier item at the same
position, as demonstrated in [185]. When presented in a more diverse ranking, the same
item might not be considered an outlier any more and follow the assumed position-based
exposure distribution. Compared to the method for removing outliers from the top-k
in [185], FELIX is more generally applicable to any use case where, due to inter-item
dependencies, some rankings have unknown exposure distribution. Also, FELIX allows
us to consider outliers in the local context that they are presented in, while Sarvi et al.’s
approach can only remove outliers with respect to the global context of all items in the
list.

Since the context in which items are presented in plays a central role for our task,
naturally we are interested in our method to work in the top-k setting. Therefore, we
first generalize the constrained optimization approach towards fairness of exposure,
introduced in [193], to the top-k setting and present an efficient way to determine a fair
policy. Then we present our method FELIX that uses iterative re-sampling to determine
a stochastic policy that avoids presenting rankings with unknown exposure distribution
to the user, while staying within the fairness constraints.

2.4.1 Fair ranking in the top-k setting

We will now extend the convex optimization approach to fairness to the top-k setting.
Let n be the number of candidate items to be ranked and k£ < n be the number of ranks
of the desired rankings. As explained in Section 2.3.3, searching for a stochastic policy
under fairness constraints can be done by first searching for a marginal rank probability
matrix P that satisfies the fairness constraints, and then decomposing this matrix. Since
we are interested in the top-k case, P = {P; j}i—1, .5 j=1,.k 1S NOW a n X k matrix,
where P; ; is the probability that item ¢ is placed at rank j. With u the n-dimensional
utility vector and v the k-dimensional vector containing the examination probability at
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each of the top-k positions we can solve the following linear program:

P = argmaxp u’ Pv
such that 17P = 1,
P1, < 1, (element-wise inequality) (2.8)
0<P,;<1

P is fair.

Given the marginal rank probability matrix P, we want to determine a stochastic policy
given by a distribution over actual rankings. In the n X n setting, the Birkhoff-von
Neumann (BvN) decomposition provides us with an algorithm to determine such a
distribution. The following result generalizes the BvN theorem to the n X k setting
where n is not necessarily equal to k.

Theorem 2.4.1. Any matrix P = {a; j}i<n, j<t WithVi,j : 0 < a;; < 1, Vj :
S ai; =landVi: Zle a;,; < 1can be written as the convex sum P = %" | -
P, of permutation matrices P, with coefficients oy € [0,1] such that >, oy = 1.

Proof. In Lemma 2.4.2 below, we show that P can be extended to a doubly stochastic
matrix P’. We can use the BVN decomposition for doubly stochastic matrices to find a

decomposition for P’, which will induce a decomposition for P. For a more detailed
proof, see the Section 2.9.1. O

Here we say that P’ € R™ *¥' is an extension of P € R"** if n/ > n, k' > k, and
P; ;= P/ forall (4,5) withi < nand j < k. We will denote this by P’|;<y j<x = P.

Lemma 2.4.2. Let P = {a;, 7 Yi<n, j<k be amatrix with the same properties as described

in Theorem 2.4.1 with k < n. Then there is a matrix P' = {a; ;}i<n, j<n With
Vi,j 1 0 < aj; < 1suchthat P = P'li<n <k, and ¥i @ Y77 a}; = 1 and

Vi:yigai; =1

Proof. Define P’ = {a; ;}i<n j<n as

Qj, 5 lfj S k

a, ;= OS5k, 2.9
v {1 Zioatidif sk, @9

Then P’|;<, j<r = P by definition. P’ satisfies all the requirements from the lemma.
A proof of this can be found in Section 2.9.1. O

By transposing P we can show that the Lemma also holds if & > n.

2.4.2 An efficient implementation of the generalized Birkhoff-von
Neumann decomposition

For an implementation of the generalized Birkhoff-von Neumann theorem, one can in
theory use the proof of Theorem 2.4.1 and extend the MRP-matrix, that we obtained
by solving the convex optimization problem from Eq. 2.8, to a full n x n-matrix. This
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Algorithm 1 Algorithm for the generalized Birkhoff-von Neumann decomposition.

Require: P € Mat,, ; with properties as in Theorem 2.4.1
1: Initialize P = {} empty decomposition
2. Extend P to P by adding a column {¢; };=1,... », with values ¢; = 1 — 2?21 P;;
3: while P # 0 do
4: Translate P to a bipartite graph with n resp. k£ + 1 vertices on each side with
edges between the i-th and j-th vertex if P; ; # 0

5: Find a perfect matching m (with multiplicity of n — k for the last vertex) with
the adjusted Hopcroft-Karp algorithm

6: Translate m to a matrix P", where P™|;<,, j<} forms a permutation matrix.

7. o= Inin{i,j\Pﬁj;ﬁO}(Pi,j)

8 PP+ (o, P"icnj<k)

9: P+ P—aP™

10: end while

11: Return P

matrix can then be decomposed into the convex sum of permutation matrices with
help of the BvN theorem for doubly stochastic matrices after which we can restrict the
matrices again to the first £ columns. Since the complexity of the BvN decomposition
for square matrices is O(n*/n) [98, 105] and hence infeasible for large n, we propose
an alternative implementation for n X k or k x n matrices with £ < n, that can be
implemented with time complexity O(k3n?).

Algorithm 1 gives a structured overview of our algorithm for the generalized BvIN
decomposition. We start off by noting that the way in which we extended the doubly
stochastic matrix from P in the proof of Lemma 2.4.2 is not unique. For any index
pair (i,7), (¢, j") with j, j* > k we can subtract some value § from a; ; and aj, .,
while adding the same value to a;,’ ; and a; ;- The resulting matrix will have the same
properties as P’ and will also be an extension of P. Therefore, instead of extending P
to a full doubly stochastic matrix, we can extend it to an n x (k 4+ 1) matrix P, where
the last column contains the entries that make the values of each row sum to 1. In the
decomposition we split off matrices that are permutation matrices on the first £ columns
and have n — k non-zero entries on the last column; see line 2 in Algorithm 1.

We can use this realization to extend the implementation of the BvN algorithm [21],
which translates the marginal rank probability matrix into a bipartite graph and uses
the Hopcroft-Karp algorithm [98] to find a perfect matching m, which in turn can be
translated back into a permutation matrix, P™; see line 4, 5 and 6.!

In the next step, line 7, we calculate the biggest coefficient «, such that subtracting
the scaled permutation matrix a.P™, still results in a matrix with only non-negative
coefficients. We add the coefficient-matrix pair to the decomposition and subtract the
scaled permutation matrix from P; see line 8 and 9. By translating the matrix P into a
bipartite graph, where the node corresponding to the (k + 1)-th column has multiplicity
n — k, and adjusting the Hopcroft-Karp algorithm (line 5) slightly to allow for certain

'For the implementation we used https://networkx.org and https://github.com/
jfinkels/birkhoff
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vertices to be matched with higher multiplicity, we can significantly speed up this
part of the algorithm from n?,/n to k?n. Since the upper bound of matrices in the
decomposition decreases from order n? to kn the complexity changes as stated in the
following Theorem. A proof of this statement can be found in Section 2.9.2.

Theorem 2.4.3. Using the modified top-k algorithm for the generalized Birkhoff-von
Neumann theorem, Algorithm 1, a decomposition as described in Theorem 2.4.1 can be
obtained with time complexity O(k3n?).

2.4.3 Determining a stochastic policy that avoids rankings with
unknown exposure distribution

As explained in Section 2.3.4, certain types of rankings can have a non-typical exposure
distribution. Allowing such rankings invalidates the approach by Singh and Joachims
[193], since a position-based exposure vector v is used in both the utility calculation and
the fairness constraint in their approach. In this section our goal is to find a stochastic
policy that avoids rankings for which the exposure distribution is unknown. We will use
a re-sampling strategy, which, after the decomposition step in Eq. 2.6, rejects rankings
with unknown exposure distribution. The core idea we present below is based on the
assumption that the inter-item dependencies between some of the items is the cause
of the shift in exposure and that by shuffling the items between different rankings,
rankings with unknown exposure distribution might be changed into rankings with
known exposure distribution.

Algorithm 2 gives a step-by-step overview of the algorithm used by FELIX. Sim-
ilarly to Wang and Joachims [223], we make use of the fact that the Birkhoff-von
Neumann decomposition is not unique. For most doubly stochastic matrices there is
a large number of possible decompositions [60], which makes it possible for us to
search for a decomposition that does not have a lot of weight on rankings with unknown
exposure distribution. After determining the MRP matrix P (line 1), we decompose
it into the sum P = Zz]\il a; P,,. In the top-k setting this can be done by using the
generalized Birkhoff-von Neumann algorithm (Algorithm 1); see Algorithm 2 line 4.
We write P = {(c, Py,) }i=1,...,m for the set of coefficient, matrix pairs in this convex
sum. Once the matrix is fully decomposed, we divide the resulting coefficient, per-
mutation matrix pairs («;, P,,) into two groups, one containing all the permutations
where the corresponding ranking has a known exposure distribution amongst its items
and the other one containing pairs corresponding to rankings with unknown exposure
distribution:

Prnown = {(ai, Py,) € P|o; has known exposure distribution}

Punknown =P - Pknouﬂr

We use the elements of Py, directly as a part of the final decomposition; see
lines 5—7. The elements of P,,known are aggregated, weighted by their coefficient; see
line 8.

P- Y P 2.10)

(@i, P; ) €Punknown
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Algorithm 2 Fairness of Exposure in Light of Incomplete Exposure Estimation (FELIX)

Require: D, k, merit vector u, position bias vector v, number of iterations iter
1: Determine MRP matrix P as in Eq. 2.8 with u and v
Initialize 7(0) = 0,Vo € Rp
while iter # 0 do
‘P < Decompose P with Algorithm 1
for all (o, P,) € Prnown do
(o) + 7(0) +

P — Z(Q,Pg)epuvbkvbo'ur7l Q- PU
iter <— iter —

end while

: for all (o, P,) € Punknown do
(o) « w(0) +

: end for

: Return 7

R A A A

—_ = = =

Up to scalar multiplication, the resulting matrix P satisfies the required characteristics
of Theorem 2.4.1 and hence can be decomposed again with the generalized BVvN
decomposition (Algorithm 1).

This decomposition-aggregation process repeats for a number of iterations, iter
(line 3—10). In each iteration, the recombination of rankings with unknown exposure
distribution makes it possible for the algorithm to group items together that previously
have not been together in one ranking. Through this re-sampling, the context in which
items are presented changes, which often also means that the exposure distribution
of these newly ranked list is known. Note that this approach does not remove items
from the rankings, but rather shuffles the items among different rankings within the
decomposition. After iter iterations the remaining rankings with unknown exposure
distribution are being added to the policy (line 11-13) to ensure the fairness and utility,
that was optimized for.

2.4.4 Upshot

To summarize Section 2.4, we extended the continuous optimization approach to fairness
for the top-k setting in Section 2.4.1 by proving that the Birkhoff-von Neumann theorem,
which is used to decompose the matrix that was attained through the convex optimization,
can be extended to a more general setting. In Section 2.4.2 we gave an algorithm for
the decomposition in the top-k case and discussed an efficient implementation. This
extends the space of use cases to which this approach to fair ranking can be applied. We
will use this in our experiments, which will partly be conducted in the top-k setting.
In Section 2.4.3 FELIX is introduced, which, by iteratively rejecting rankings with
unknown exposure distribution, reduces the probability that such rankings are shown to
the user.

Next, we test the performance of the proposed method for top-k fairness. Further-
more, we investigate how well FELIX is able to avoid rankings with unknown exposure
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Table 2.1: Descriptive statistics of the original and pre-processed TREC Fair Ranking
track 2019 and 2020 data.

2019 2020
Train Test Train Test
Avg. list size (original) 41 41 235 234
Avg. list size (pre-proc.) 4.1 13.0 235 319

Avg. # rel. items/list (original) 20 20 37 34
Avg. #rel. items/list (pre-proc.) 20 44 37 45

distribution and how this impacts the performance w.r.t. fairness and user utility.

2.5 Experimental Set-up

We experiment with two variants of our model: to evaluate our top-k approach to
fair ranking we use FELIX without re-sampling i.e., with only one iteration, denoted
by FELIX;;.,—1; to evaluate our method for reducing the probability of generating
rankings with unknown exposure we use 20 iterations (FELIX;;c,=20).

Our experiments aim to answer the following research questions: RQ2.1 Can
FELIX;;.,—1 provide fair top-k rankings while maintaining the user utility compared to
the baselines? RQ2.2 Can FELIX;;.,—o¢ reduce the probability of showing rankings
with unknown exposure distribution to the user without compromising fairness or utility,
compared to other methods? We use the case of rankings with outliers as an example
for rankings with unknown exposure distribution. As Sarvi et al. [185] show, outliers
can change the exposure distribution that items collect in expectation; we broadly follow
their experimental set-up to be able to compare to prior work that is, for this specific
use case, closest to our approach.

Datasets. Our experiments in Section 2.6 use two academic search datasets provided
by the TREC19 and TREC20 Fair Ranking track.? These datasets come with queries,
relevance judgements, and information about the authors and academic articles extracted
from the Semantic Scholar Open Corpus.? See Table 2.1 for descriptive statistics of the
datasets. Since we experiment on the task of removing outliers from the top-k, which
only makes sense for queries with enough items, for testing we only use rankings with
at least 20 items. The 2020 dataset comes with 200 queries for training and 200 for
testing; keeping only the lists with at least 20 papers leaves us with 112 test queries.
Similarly, the 2019 dataset comes with 631 queries for training and 631 for testing.
However the test set contains only 3 queries with more than 20 items, which is not
acceptable. As a pragmatic solution, we keep lists with at least 10 items, which leaves
us with 69 test queries, but up-sample each of these queries to 50 items by using the
feature vectors of non-relevant items from other random lists as negative samples.

Experiments. We consider approaches where correcting for fairness is a post-processing

’https://fair-trec.github.io/
3http://api.semanticscholar.org/corpus/
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step. We use ListNet [30] as our learning to rank (LTR) model for the ranking step,
with a maximum of 30 epochs, the Adam optimizer with learning rate of 0.02, and early
stopping. As input to the LTR model we use the same data as OMIT* with 25 features
based on term frequencies, BM25 [174], and language models [209, 25413

To be able to treat the output of the LTR model as the relevance probabilities we
normalize the predicted scores to be within the range [e, 1] with e = 10~%. Choosing
e > 0 ensures that each item has a non-zero probability of being placed in a ranking.

As mentioned earlier in this section, we use rankings that contain visible outliers as
example for rankings with unknown exposure distribution. Following [185] we use the
number of citations of a paper as a visible feature that may be subject to outliers. For
the context in which outliers are perceived we use the top-k items. We use the Z-score
with threshold value 2.5 to determine whether an item can be considered an outlier; see
Section 2.3.4.

We conduct two types of experiments. The first experiment imitates the experimental
set-up of Sarvi et al. [185], where full rankings are formed but the presence of outliers
is only measured in the top-k of each ranking. The second experiment looks at top-k
ranking. We use £ = 10 in our experiments and aim for individual fairness as opposed
to [185, 193], where group fairness is used.

Baselines. To answer research questions RQ2.1 and RQ2.2, we compare FELIX;¢,—1
and FELIX;.,—2¢ with the following baselines:

PL As suggested in [56], we use a Plackett-Luce (PL) ranker initialized with the
predicted, normalized scores of the LTR model.

PL-random We use a PL ranker over a uniform score distribution as a baseline for a
random ranker.

Vanilla We use the method introduced by Singh and Joachims [193] with only fairness
constraints as the vanilla baseline. This is the model we build upon.

Deterministic This baseline is ListNet, our traditional LTR model.

OMIT The method was introduced in [185], where a similar optimization problem is
solved as for Vanilla, but with an additional regularizing objective that punishes
rankings with a global outlier in the top-k.

For the experiments on the top-k, we only sample k£ = 10 items from the PL models,
PL@10 and PL-random@10. Since FELIX,;.,.— is a novel extension of the Vanilla
convex optimization approach for the top-k setting, we do not have the Vanilla baseline
in this setting. For OMIT we use our top-k convex optimization approach with the
additional outlier objective, OMIT @10, to be able to compare the outlier reduction of
FELIXter—20 and OMIT in the top-k setting.

Evaluation. To evaluate fairness we use the EE-L metric [56]. The target exposure
of item d; is calculated as €*(d;) = etorar - u(d;)/ Zj u(d;), where €044 is the total
amount of exposure that users spend in expectation on the ranking, and u(d;) is the

“https://github.com/arezooSarvi/OMIT_Fair_ranking
5Qur experimental code is based on https://github.com/MilkaLichtblau/BA_Laura.
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merit, i.e. relevance, of item d;. Given the expected exposure of all items as a vector e,
the expected exposure loss, EE-L can be calculated as:

EE-L =/ (e,€*) = |le — ¢*||3. (2.11)

Ranking utility performance is measured with NDCG.

For a given query, to evaluate how well a policy 7 performs in avoiding rankings
with unknown exposure distribution, we measure the probability that such a ranking is
displayed by the policy. In our experiments this translates to measuring the probability
that a randomly sampled ranking, o contains an outlier:

P(u | ) = P(o has unknown exposure distribution | o ~ 7)

=here P(# outliersino > 1 | o~ 7r).
Additionally, for comparability with [185], we measure:

Outlierness Qk(7) = Eyr Z 1(d; is outlier)z(d;).
d; €top-k(o)

For each metric we report the average value taken over all queries. Each experiment was
conducted 5 times with different train/validation split and different random seed. Each
split uses 80% of the train-data for training and 20% of the train-data for validation. In
our result tables we report the mean results. We test for significance with a two tailed
paired students t-test, using the metric values over all queries as input and comparing
each method with FELIXe.—o0.

2.6 Results

Table 2.2 and 2.3 contain the results for our experiments on the top-k and full ranking
set-up, respectively.

RQ2.1: Can FELIX;;.,—; provide fair top-k rankings while maintaining the user
utility compared to the baselines? To answer this research question we first compare
the performance of FELIX;..—1 with PL@10, since this is the only baseline that
has as its objective to create fair top-k ranking policies. For both utility and fairness
FELIX;c-—1 performs marginally better on TREC20 data. In the case of TREC19 data,
FELIX;;.-—1 still has slightly better user utility; the fairness scores are close to identical.
Overall none of these differences are significant.

As a sanity check, looking at our other baselines, we see that w.r.t. user utility
(NDCG), in Table 2.2 the deterministic ranker outperforms all probabilistic rankers,
which is expected since it is purely optimized for utility. This is reflected in the fairness
score, where the deterministic ranker scores significantly worse than FELIX;;c-—20.
W.r.t. utility, the random ranker is outperformed by all other probabilistic ranking
methods, showing that these methods present users with better results than a uniform
ranking policy would.

To summarize, we find no significant differences in terms of utility or fairness
between FELIX;.,.—1 on the one hand and the PL-ranker on the one hand. This makes
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Table 2.2: Top-k rankings. Significance is measured with a two-tailed paired t-test; all
comparisons are against FELIX;;¢,—20.

Optimizing NDCG?T Fairness| P(u | 7)] Outlierness)

Method Fairness @5 @10 EE-L @10 @10
FELIX;;cr—20 Yes 0.203 0.279  6.22 0.20 0.115
S FELIX;;cr—1 Yes 0.203 0.279 6.23 0.39* 0.151*
g PL@10 Yes 0.197 0.275 6.24 0.47* 0.174*
E PL-random@10 No 0.177*%0.249*% 6.29 0.47* 0.175%*
Deterministic No 0.287*%0.370* 7.22* 0.41%* 0.154%*
OMIT@10 Yes 0.198 0.273 6.34 0.33* 0.132*
FELIX;;.,—20 Yes 0.12 0.16 5.9 0.12 0.08
o FELIX;;o,—1 Yes 0.12 0.16 5.9 0.30* 0.12%
o
8 PL@10 Yes 0.11 0.16 5.8 0.35% 0.14*
E PL-random@ 10 No 0.10 0.15 5.8 0.41* 0.16*
Deterministic No 0.15 0.21* 7.5% 0.25% 0.12*
OMIT@10 Yes 0.11 0.15 6.0 0.23* 0.10

our approach suitable for top-k ranking under fairness constraints and hence allows us
to extend FELIX for this setting. In the rest of this section, we will see other advantages
of FELIX over the PL baseline.

RQ2.2: Can FELIX;;.,—o reduce the probability of showing rankings with un-
known exposure distribution to the user, without having to compromise fairness or
utility, compared to other methods? We are interested in the trade-offs between user
utility, fairness and the probability of showing rankings with unknown exposure, which
is indicated by P(u | ), in Tables 2.2 and 2.3. For the TREC20 data, in both settings
FELIXte—20 successfully improves P(u | ) while maintaining the NDCG@ 10 and
EE-L scores compared to all baselines. Our main baseline to compare with for this
research question is OMIT, as it is the only model that optimizes for presenting fewer
outliers in the top-k positions. Compared to OMIT, FELIX;;..—2¢ achieves signifi-
cantly better results in terms of P(u | ) for both settings, while keeping the same (or
better) scores for other metrics. For the top-k experiment, we also see a significant
improvement w.r.t. P(u | 7), compared to FELIX4.,.—1: iteratively re-sampling suc-
cessfully reduces the number of rankings with unknown exposure distribution in the
policy. For the TREC19 data we can still observe that FELIX;;.,.—2¢ offers the best
trade-off between the three objectives in the top-k setting. However, the improvements
w.r.t. the outlier removal are less significant in the full length experiments. Since for
this dataset we used an up-sampling strategy that adds varying negative samples, the
variation within these experiments is much higher, which makes the results less reliable
and causes the observed differences to be less significant. Still, since the results broadly
agree with the results for the more reliable TREC20 dataset, we take this as confirmation
for the conclusions drawn there.

We also report the Outlierness metric, as introduced in [185], to show that the
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Table 2.3: Full length rankings, remove outliers from the top-%. Significance is reported
in the same way as in Table 2.2.

Optimizing NDCG?T Fairness| P(u | 7)] Outlierness)

Method Fairness @5 @10 EE-L @10 @10
FELIX;;cr—20 Yes 0.221 0.302 24.5 0.24 0.126
S Vanilla Yes 0.221 0.302 24.5 0.40* 0.163*
% PL Yes 0.192*0.269* 24.7 0.45* 0.169*
E PL-random No 0.178*%0.249* 249 0.47* 0.175%*
Deterministic No 0.267 0.348 24.7 0.40* 0.152
OMIT Yes 0.221 0.302 24.5 0.34* 0.139
FELIX;;cr—20 Yes 0.15 0.22 46.4 0.11 0.06
2\ Vanilla Yes 0.16 0.22 46.4 0.14 0.07
8 PL Yes 0.12 0.17 46.4 0.32% 0.13*
E PL-random No 0.10* 0.15* 46.5 0.41* 0.16*
Deterministic No 0.17 0.23 46.6 0.12 0.07
OMIT Yes 0.13 0.18 46.5 0.15 0.06

improvement of FELIX;;..—2¢ is not just due to the evaluation metric introduced in this
chapter but that there is an actual improvement w.r.t. the outlier use case.

We conclude that in our experiments, FELIX;;.,—2¢ is able to effectively reduce
the probability that a ranking with unknown exposure distribution is shown to the user,
without a drop in utility or fairness, compared to other fair ranking methods and OMIT.

Discussion. If we compare our results to those in [185], OMIT does not perform as well
as expected w.r.t. P(u | ) and Outlierness. We see two reasons for this. First, OMIT
considers outliers in the context of the whole list, while we consider outliers in the
context of the top-k that they are presented in; their approach is able to remove outliers
defined in the global context from the rankings but does not consider the outliers in the
local context they are presented in, which is what we are evaluating for.

Second, in this chapter we consider individual fairness, while Sarvi et al. [185] report
results on group fairness. For individual fairness the number of constraints is much
higher, therefore the space we are optimizing over is smaller, making it challenging for
OMIT to find a good solution that is optimized for both utility and reducing outliers
while satisfying all the fairness constraints. FELIX;;.,—2¢ does not suffer from this,
since, instead of adding an additional objective term to the optimization, it intervenes
at the decomposition step, making it independent from the constraints used in the
optimization.

This comparison shows that FELIX is very general in terms of use cases that it can
be applied to. The condition that determines whether a ranking has a known exposure
distribution can be focused on each individual ranking without having to rely on global
assumptions. This allows us to really consider inter-item dependencies, while OMIT
needs to work with the heuristic of global outliers instead. This also highlights the
advantages of FELIX over the aperL-ranker method. While for most experiments
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Figure 2.2: Sensitivity analysis. Relative reduction in P(u | 7) in % on the y-axis for
different numbers of available candidate items (left) and different numbers of iterations
(right).

there was no significant difference in utility and fairness between those two methods,
considering inter-item dependencies within the rankings is not possible for the PL
approach to fair ranking.

2.7 Sensitivity Analysis of FELIX

Given the results obtained in the previous section, we now analyze the ability of
FELIX to reduce the number of rankings with unknown exposure distribution along
two important dimensions: (D1) the number of available item candidates; and (D2) the
number of re-sampling iterations, iter (see line 3 in Algorithm 2).

For the TREC datasets most queries have less than 40 items, hence, we use a
simulated set-up. This gives us more control, allowing us to observe FELIX’s behaviour
for different distributions and numbers of candidate items. Each analysis is conducted
with a series of m = 100 simulated sets of n items (one can think of these item-sets as
corresponding to m imaginary queries). Since we want to focus on the effectiveness of
FELIX, rather than the quality of the predicted labels, we assume that for each item we
know the correct probability that an item is relevant to users. For our analysis we sample
these scores uniformly in the interval [0, 1]. The feature that is used for the outlier
detection is sampled from a different probability distribution. We conduct experiments
on the uniform, normal, log-normal, and power-law distribution to see how dependent
the results are on the underlying data distribution. Each of the different distributions has
a different base probability for a list of a given length to contain an outlier, and hence
can be seen as different levels of difficulty for removing the rankings with unknown
exposure distribution. With the definition of outliers used in this chapter and a list length
of 10, the probability that such a list contains an outlier is 0.6% for the uniform, 2.7%
for the normal, 36.3% for the log normal and 60.5% for the power-law distribution.

(D1) Candidate items. The left plot in Figure 2.2 shows the relative reduction of
rankings with outliers with a varying number of candidate items. We use 20 re-sampling
iterations. We see that for all distributions, FELIX performs increasingly better as the
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number of items increases. Having more items to shuffle between various rankings gives
the method more flexibility in putting outlier items into different contexts, in which they
do not appear as outliers.

(D2) Re-sampling parameter. The right plot of Figure 2.2 shows how well FELIX is
able to remove outliers from the rankings based on the number of re-sampling iterations,
which is the only new hyper-parameter introduced by our method. We use 100 candidate
items per query. We find that with an increasing number of re-samples, FELIX can
remove more outliers. Nevertheless, the gains seem to be diminishing, depending on
the distribution after 5-20 iterations.

Broader implications. Ranking systems often work in two stages, where in the first
stage a certain number of documents are retrieved and in the second stage they are
re-ranked with help of a learning to rank method. Our analysis of the number of
candidate items (D1) can help deciding on how many items to retrieve in the first stage.
Moreover, the analysis of the re-sampling parameter (D2) can help with deciding on a
good performance/computation time trade-off when choosing the number of allowed
re-sampling iterations.

2.8 Conclusion

Motivated by recent work on the impact of outliers on the exposure distribution within
a ranking, we introduced the task of fair ranking under incomplete exposure estimation.
We defined a new method, FELIX, that avoids showing rankings to the user which,
due to inter-item dependencies, have unknown exposure distribution. We extended
the convex optimization approach to fairness to the top-k setting and gave an efficient
implementation of the algorithm that makes it feasible, even for a large number of items.
We showed empirically that FELIX is able to significantly reduce the probability of
generating rankings with unknown exposure, without hurting user utility or fairness
compared to previous fair ranking methods.

FELIX is a first step towards fair ranking in cases where due to inter-item dependen-
cies there is uncertainty about the exposure distribution of some rankings. By defining
an efficient algorithm for the top-k setting, we enable the usage of the convex opti-
mization approach towards fairness for use cases with a large number of items, which
previously had been infeasible. We discussed that this approach gives more flexibility
than other methods and allows, for example, to consider the relationship between items.

One limitation of our work in this chapter is that, since the policy achieved by the
convex optimization is only fair in expectation, this approach is most useful for head
queries with a large number of repetitions. Use cases where this might be applied include
job search, where next to the individual fairness criterion a correction for historical
biases should be considered, or item search for items that are frequently bought. Second,
our results are based on the assumption that the unknown exposure comes from inter-
item dependencies and that the same items that cause one ranking to have unknown
exposure distribution, when placed in another context will result in a ranking with
known exposure distribution. This assumption holds for rankings with visible outliers,
however, to prove the generalizability of this approach, experiments with other use
cases are needed. Lastly, to have enough flexibility within the Birkhoff-von Neumann
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decomposition algorithm, enough entries of this matrix need to be non-zero. Using
group fairness with only two groups, results in a marginal rank probability matrix that
is a linear combination of just two permutation matrices [193]. More groups introduce
more stochasticity, therefore this method is particularly interesting when working with
individual fairness or a larger number of groups.

A potential direction for future work is to investigate whether FELIX can be extended
for different user models. In this chapter we assume that most rankings follow a position-
based exposure distribution. For other user-models like the cascade model a different
approach might be necessary. Also, more research needs to be done on inter-item
dependencies between items in a ranking and their impact on the exposure for different
use cases. Phenomena like outliers or click bait have been explored to some extent but
other types of cognitive bias that impact how we perceive items in relation to others
have been broadly unexplored in the context of ranking systems. Lastly, extending user
models to include inter-item dependencies such as outliers might allow for a more direct
approach to fair ranking in cases where the exposure distribution is unknown.

Data and Code

To facilitate reproducibility of our work, all code and parameters are shared at https:
//github.com/MariaHeuss/2022-SIGIR-FOE-Incomplete—-Exposure.

2.9 Proofs

2.9.1 Extended proof for the generalized Birkhoff-von Neumann

We give a more detailed proof of Lemma 2.4.2 and Theorem 2.4.1. Recall that we say
that P’ € R™ *¥ is an extension of P € R*** if n/ > n, k' > k, and P ;= P’ for
all (¢,7) with ¢ <mn and j < k. We denote this by P'|;<p j<i = P.

Lemma2.9.1. Let P = {a; ; }i<n, j<k be a matrix with the same properties as described
in Theorem 2.4.1 with k < n. Then there is a matrix P' = {a ;}i<n j<n with
Vi,j : 0 < aj; < 1suchthat P = P'li<yj<k, and Vi : 335_ aj; = 1 and
\ED s

Proof. Define P’ = {a; ;}i<n j<n a8

, Qg lfj < k (2 12)
= 1-3k, S .
! 7271_*;@ Lifj > k.

Then P’'|;<,, j<r = P by definition. Since for all ¢, 0 < 25:1 a; ; <1 we also have

1—2’?’,71 a; it .
0 < —==—- < 1. Moreover, for all i < n:
k
- / jr=1 %5’
> di Zaw B
J=1 j=k+1
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where we used in the second equality that we sum over (n — k) times the same value.

We know that the columns of the matrix sum to 1 for all j < k, since this is the case for
P. For j > k we have:

Say = (oY)
i=1 j=k i=1
1 k n
= n_k(n_;;a;’])
n—=k
- n—=k =1

Here in the first equality we used that all columns from the k-th column are the same.
In the second equality we used that since all rows are summing to 1, the sum of all rows
(and therefore also the sum of all columns) equals n. The last equality simply uses the
fact that each of the first £ columns sums to 1. O

We use this Lemma to prove the generalized Birkhoff-von Neumann theorem. Let
k<n.

Theorem 2.9.2. Any matrix P = {a; j}i<n j<i withVi,j : 0 < a;; < 1, Vj :
S ai; =landVi: 2521 a;,j < 1 can be written as the convex sum P = >"" | oy
P, of permutation matrices P, with coefficients oy € [0,1] such that >, | oy = 1.

Proof. In Lemma 2.9.1 we show that P can be extended to a doubly stochastic matrix
P’ iee. P = P'|;<n, j<t. For this matrix P’, the theorem by Birkhoff and von Neumann
states that we can find a decomposition into the convex sum of permutation matrices,
P =" aqyP/, witha; € [0,1], >, @y = 1 and P/ permutation matrices. This
induces a decomposition of the original matrix P:

m
/
P=% aPlicnjcr O
=1

2.9.2 Complexity of the generalized Birkhoff-von Neumann algo-
rithm

In this section we prove the following claim from Section 2.4.2:
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Theorem 2.9.3. Using the modified top-k algorithm for the generalized Birkhoff-von
Neumann theorem, Algorithm 1, a decomposition as described in Theorem 2.4.1 can be
obtained with time complexity O(k3n?).

Proof. The time complexity of Algorithm 1 depends on the complexity of the adjusted
Hopcroft-Karp algorithm (line 5) and the number of times it needs to be executed
(line 4-9), which is equal to the number of permutation matrices in the decomposition.
Hopcroft and Karp [98] show that the time complexity of the Hopcroft-Karp algorithm
is O((m + 1)V/1), where [ is the number of vertices and m is the number of edges in
the biparate graph. For the baseline approach we have [ = 2n and m = n?, therefore
the complexity of the Hopcroft-Karp algorithm in this setting would be O(n?,/(n)).
Using our approach instead, we have [ = n + (k+ 1) and m = n - (k + 1) which
reduces the complexity to O(kny/(n)). Furthermore since the maximum length of
each augmenting path is bounded by 2 - k, we can substitute the v/n term with & (see
Corollary 2 and Theorem 3 of [98]). This gives us a time complexity of O(k?n) for the
full matching algorithm. For the number of matrices in the decomposition, Johnson et al.
[105] define an upper bound of n? — 2n + 2 permutation matrices, which means that
the total complexity of the Birkhoff-von Neumann algorithm equals O(n*/n). Since
for our algorithm, a loose upper bound for the number of permutation matrices is k - n,
the algorithm proposed in this chapter has a time complexity of only O(n2k?), which
makes it much more feasible than the more naive algorithm proposed in Section 2.4.1
for large values of n. O

Conclusion to Chapter 2

Returning to research question RQ A: “Can we define an exposure-fair ranking policy in
situations where the expected exposure distribution is unknown for some rankings?”’, we
demonstrate that our proposed approach FELIX makes significant progress toward this
goal. Specifically, FELIX effectively reduces the frequency with which a probabilistic
ranking policy presents ranked lists with unknown exposure distributions to users,
thereby improving overall exposure-fairness.

Our findings show that while the complete elimination of such rankings remains
an open problem, substantial improvements in exposure-fairness are achievable. It is
important to note that our investigation focuses specifically on scenarios where exposure
distribution uncertainty arises from inter-document relationships, representing one
important class of this broader problem.

Based on these results, we can answer research question RQ A positively, though
with important caveats: FELIX does improve exposure-fairness when some rankings
have unknown exposure distributions, but it cannot eliminate the problem entirely.
This represents a meaningful step forward, even if the broader challenge of handling
unknown exposure distributions in all cases remains open for future work.
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Predictive Uncertainty-based Bias
Mitigation in Ranking

In this second chapter on ranking fairness, we investigate how to reduce biases in
ranked lists by using the uncertainty inherent in relevance assessments. While the
literature frequently assumes that document relevance can be accurately determined,
this assumption rarely holds in practice. We exploit this uncertainty to develop fairer
ranking approaches.

Our focus in this chapter differs from that of Chapter 2 in two key ways. First,
rather than addressing fairness through exposure-based methods, we explicitly target the
removal of biased or stereotypical documents from top-ranked positions. Second, we
work with text-based rankers, though our approach remains applicable to feature-based
ranking systems.

Multi-objective optimization typically involves trade-offs between competing goals
and improving fairness or unbiasedness often comes at the cost of user utility. However,
since model predictions inherently carry uncertainty, we hypothesize that this trade-off
can be managed more strategically. Specifically, we propose making fairness-oriented
adjustments primarily where the model exhibits the greatest uncertainty about optimal
ranking decisions.

This leads us to address the following research question:

RQ B Can we use the predictive uncertainty of the model prediction to improve ranking
fairness?

Note: The notation in this chapter differs slightly from Chapter 2. Most notably, we use
L to denote a ranked list (rather than o), while o represents the standard deviation of
model predictions.

3.1 Introduction

The probability ranking principle (PRP) [175] states that, for optimal retrieval, the
documents should be ranked in order of the predicted probability of relevance to the

This chapter was published as M. Heuss, D. Cohen, M. Mansoury, M. de Rijke, and C. Eickhoft.
Predictive uncertainty-based bias mitigation in ranking. In CIKM 2023: 32nd ACM International Conference
on Information and Knowledge Management, pages 762-772. ACM, October 2023.
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user. While this principle is ideal with respect to user utility, a ranking approach that
solely relies on this principle can lead to an unfair treatment of the documents through
unfair exposure and learned historical biases that are implicit in the data [20, 248]. This
realization has led to a broad range of work in the field of fair ranking, where ways of
ranking are explored that do not always strictly follow the PRP, but instead correct for
such historical biases and distribute exposure more fairly [31, 63, 157]. Such biases
can be reflected in different ways, e.g., models can be biased to over proportionally
favor members of one group over another [13]. In this chapter, we follow Rekabsaz
et al. [168], and say that a ranking model is biased, if documents that contain biases or
stereotypes towards a protected group, e.g., people identifying with a certain gender,
are being placed in ranked lists for queries that should be inherently neutral.

Using uncertainty to mitigate biases and improve fairness. Recent work has high-
lighted how learned ranking models violate the PRP — that each score is not well
calibrated, and that learned ranking models do not provide an equally reliable estimate
of a document’s relevance [47, 158]. In this chapter, we take advantage of this violation
of assumptions to produce a fair ranking with minimal utility loss. Rather than relying
on a deterministic score, we consider the uncertainty of the model’s estimate to violate
the PRP in an informed manner by focusing on the most uncertain documents.

Our proposed method, called Predictive Uncertainty based Fair Ranking (PUFR)
exploits knowledge about the certainty of the predicted relevance scores for mitigating
bias by intervening at the scoring distribution, making it a post-processing method
that is easy to use on top of arbitrary ranking models. Furthermore, PUFR does not
require any training or fine-tuning of supervised models. Rather, given a ranked list
of documents generated by a ranking model (most likely biased), PUFR leverages the
uncertainty of the predicted scores assigned to the candidate documents by the ranking
model to modify the ranked list among the most uncertain positions to generate a fairer
ranking. PUFR aims to reduce the impact of biased documents, while adhering to the
PRP as closely as possible, only intervening in places where the ranking model was not
very certain to begin with.

Additionally, we introduce an entirely post hoc uncertainty quantification procedure,
based on Laplace approximation, that allows PUFR to approximate the uncertainty for
any off the shelf model without access to the training data or optimization procedure.
This is in contrast to past work that requires a specific training regime to produce the
uncertainty scores for each candidate [46, 47, 158, 242].

Motivating example. In Figure 3.1, we visualize our approach to predictive uncertainty-
based fairness, PUFR. In this example, the objective is to promote the unbiased docu-
ments (marked in green) to appear on top of the ranked result. We start by considering
not only the mean ranking score but also the score distribution (uncertainty) as visual-
ized with the cross resp. curve in Figure 3.1a. We chose confidence intervals relative to
the standard deviation in which we allow PUFR to adjust the scores for each document,
as can be seen in Figure 3.1b. Depending on whether a document is biased or not, we
increase the score in this confidence interval if the document is unbiased or decrease it
otherwise as visualized with the green/red crosses in Figure 3.1c. As the confidence
intervals of the second (D2) and third (D3) documents intersect, this changes the order
of these scores. After re-ranking with respect to the newly obtained scores, the pro-
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Figure 3.1: Visualization of our method PUFR. Next to the mean ranking scores PUFR
also considers the score distribution that we obtained from the ranking model (3.1a).
Through intersecting confidence intervals (3.1b) that allow us to adjust the scores (3.1c)
such that a not biased document, visualized in green, is swapping place with a higher
ranked, biased document (3.1d).

tected document D3 has swapped place with the non-protected document D2 as seen in
Figure 3.1d. As there are minimal computational costs for PUFR, developers/users have
the freedom to modify the trade-off between utility and fairness with minimal costs for
their use-cases.

Our contributions. We summarize our contributions as follows:

* We introduce the notion of uncertainty-based fair ranking and analyze the potential
of using the model uncertainty w.r.t. the ranking scores for bias mitigation.

* We define PUFR, an intuitive re-ranking approach that takes as input the ranking
score distribution and calculates new ranking scores that can be used to create a

less biased ranked list, while still preserving some certainty guarantees.
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* We compare PUFR to several in- and post-processing bias mitigation methods
and show that it outperforms all baselines, while being computationally much
less expensive than some of them. Moreover, we demonstrate that PUFR is easily
controllable with respect to the trade-off between fairness and utility, making it
practical for use in real-life ranking applications.

3.2 Related Work

3.2.1 Uncertainty in ranking

Zhu et al. [259] introduce the notion of considering a model’s confidence when ranking
documents. The authors view the confidence of a score based on the probabilistic
model’s own estimate — the variance. Alternatively, we can assume a Bayesian per-
spective that considers how well the training data support the current model. As this
approach does not rely on a probabilistic ranking model, it complements current ranking
regimes. Penha and Hauff [158] first introduce this notion of uncertainty into conversa-
tional retrieval by incorporating dropout into a BERT architecture at inference time. The
ranking score is then modified by an uncertainty measure to improve the final re-ranking.
Cohen et al. [46] suggest a similar approach for ad hoc retrieval where only the last
layer’s uncertainty is measured to offset both the complexity of a neural model and the
size of the document set with similar re-ranking improvements. Yang et al. [241] extend
the above work by leveraging the uncertainty estimate to improve the exploration of an
online learning to rank model. Rather than performing uncertainty-aware re-ranking, the
uncertainty estimate is used to take an optimistic perspective on candidate documents to
reduce the exploitation bias commonly found in an online learning to rank setting.

3.2.2 Mitigating bias and fair ranking

Recent years have seen a broad range of research on uncovering and mitigating biases
in different information retrieval systems, such as biases in talent pool [82] and resume
search [36] and the reinforcement of gender biases through search engines [68]. Rekab-
saz and Schedl [167] explore the extent to which documents with gender bias can be
found in the retrieved results of different neural retrieval models. Other work focuses
more on the mitigation of such biases [e.g., 168, 253], where models are optimized to
contain fewer biased documents for queries that are inherently unbiased. Rekabsaz et al.
[168] use adversarial learning to remove gender bias from the trained model, Zerveas
et al. [253] optimize the query representation from a previously trained architecture
instead.

Mitigating biases is often framed as a fairness task. Zehlike et al. [251, 252]
introduce a classification framework for fair ranking approaches, which we partly use
to position our work in the existing fair ranking literature. As opposed to score-based
fairness [33, 112, 205, 239], where the ranking scores are assumed to be known, in this
chapter we focus on supervised learning to rank, where the ranking scores need to be
determined with a ranking model.

A large body of work focuses on merit-based fairness, where the goal is to distribute
the user attention in some way proportional to the merit of either individual documents
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(individual fairness [e.g., 91, 120, 185]) or groups of documents [e.g., 20, 193, 223].
In contrast, other work [e.g., 248, 250] focuses on representational fairness, which is
concerned with removing historical biases from the ranking or representing documents
from different groups fairly w.r.t. some demographic within the ranking.

Independently of the notion of fairness, we differentiate between pre-processing [119],
in-processing [19, 20, 168, 193, 194, 247, 248, 253], and post-processing [56, 113, 250]
approaches to fairness interventions. These methods come into play either before the
model is being trained, adjust the model or training process itself, or intervene after the
model has been trained and the ranking scores are determined.

PUFR is a post-processing approach that aims to mitigate bias (representational
unfairness) as opposed to prior in-processing work on the same task [168, 253]. While
other work on post-processing approaches [such as, e.g., 32, 248] intervene at the ranked
output, our approach instead adjusts the score distribution. What distinguishes PUFR
from prior work on fair ranking is that we aim to exploit the uncertainty that the ranking
model has on the predicted relevance scores to increase the fairness of the rankings.

3.2.3 Uncertainty in fair ranking

Prior work at the intersection of uncertainty and fairness can be grouped into two
categories. The first category deals with uncertainty introduced when group membership
cannot be determined with confidence. Ghosh et al. [84] discover that, when group
labels are inferred from data, the usage of fair ranking methods can invalidate fairness
guarantees and even increase the disadvantage that protected groups might receive.
Mehrotra and Vishnoi [144] follow up on this work and develop a fair ranking framework
for cases where socially-salient group attributes cannot be determined with certainty
but are assumed to follow a given probability distribution.

The other category, which contains, among others, the work in this chapter, considers
the predictive uncertainty stemming from imperfect prediction of merits and ranking
scores. Yang et al. [242] are concerned with uncertainty in the relevance estimation.
Unlike this chapter, the authors study an online setting where the relevance estimation
is constantly updated. We target a static setting, not aiming to reduce the uncertainty
for some exploration strategy but to exploit the uncertainty to obtain a better trade-off
between fairness and utility.

Lastly, Singh et al. [195] are concerned with uncertainty in merit due to observations
of secondary attributes instead of directly observing the merit. The authors suggest a
probabilistic fairness framework in the presence of such uncertainty. Their work defines
a notion of fairness that takes the uncertainty in the merit prediction into account, while
we exploit uncertainty to, for example, correct for historic biases in the data and ranking
model.

In summary, where existing methods either ignore the predictive uncertainty of ranking
scores, aim to either reduce uncertainty, or take it into account when defining fairness,
the work in this chapter is the first to harness uncertainty to improve the fairness-utility
trade-off.
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3.3 Method

We take an uncertainty-based approach to post hoc bias mitigation in ranking. We
exploit the model’s uncertainty over the predicted ranking scores to manipulate the
ranking in a way that benefits documents that do not contain biases, which results in
a fairer ranked list. By staying within a certain confidence range, we minimize the
potential cost to utility. Following prior work [144, 168], we frame the task as a fair
ranking problem.

Our method operates entirely through principled machinery and allows us to trade-
off between user utility and fairness by adjusting a single coefficient. Furthermore, an
existing ranker can be used as-is, without the need to retrain it, making it possible to
use and adjust it for various levels of fairness, with little additional costs.

Below, in Section 3.3.1, we start by defining our notation and the fair ranking task.
In Section 3.3.2, we introduce our method PUFR that, assuming that the predictive
uncertainty over the ranking scores is given, uses those uncertainty values to develop a
fair ranking approach. Finally, in Section 3.3.3 we follow with a description of how to
attain the uncertainty of a given deterministic ranking model over its scores at inference
time.

3.3.1 Notation and preliminaries

Given a query ¢, we consider the task of ranking documents from a candidate set
D, = {dgi}: w.r.t. their relevance, to g. Regarding measured user utility only, an ideal
ranked list would be ordered by decreasing document relevance. We assume a ranking
model has been trained to order the documents w.r.t. the relevance to the query by
predicting relevance scores. Most rankers are deterministic, outputting only a single
predicted relevance score, /14 ;. In Section 3.3.3 we will describe how to approximate
the uncertainty of predicted scores for such a model. We write o, ; for the standard
deviation of the predicted score p, ; for document d,; ;. Note that we implicitly assume
the score distribution to be Gaussian.

Prior work has shown that models that are trained solely for maximizing the mea-
sured utility can be biased and contain unfair representations of the resulting ranked
lists [167]. In this chapter, as an additional objective, we aim to decrease the presence
of biased documents in the ranked lists. We treat the task as a fair ranking problem,
where we want to increase the exposure of the protected group Df; C D, of documents
without biases and decrease the exposure of the non-protected group Dé\’ C D, of
documents that contain biases.

3.3.2 PUFR: Uncertainty-aware fairness

In this section, we introduce our post-processing fairness intervention method Predictive
Uncertainty based Fair Ranking, PUFR. The core idea of PUFR is to take advantage of
the uncertainty of the model over the predicted ranking scores to adjust these scores
proportional to the standard deviation of the predictive distribution for each document,
allowing fairness adjustments with minimal cost to the utility. For now, we treat the
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score distribution for each document, A ( Iq.is U;i), as being given, but in Section 3.3.3
we describe how to obtain it for a deterministic ranker.

As the goal of PUFR is to mitigate bias and hence increase the fairness of the ranking
system, PUFR accomplishes this by swapping some of the documents of the protected
group, Df; , with higher ranked documents of the non-protected group, Dév . Since the
uncertainty of the scores for the documents within the same group can differ greatly,
this allows for a tuned adjustment of the ranking scores where swaps only occur in
settings where there exists a reasonable chance of the documents being equally relevant,
quantified by the model’s uncertainty, og,;.

In other words, we allow PUFR to pick ranking scores that maximize fairness in
intervals [pg; — @ - 04, ftq,i + & - 04;], without re-ordering the documents within the
same group. Here, « is a user defined hyper-parameter that quantifies the chance of a
utility violation when performing this procedure. A higher value of a will result in a
fairer ranking but at the cost of less accurate predicted scores, and hence potentially a
drop in utility.

As shown in Algorithm 3, PUFR initially loops over all documents of the protected
group dg; € Df , sorted w.r.t. decreasing ranking score, /i ;, see line 1. PUFR then
increases the score as much as possible while staying within the confidence bounds, i.e.,

fbgi = Mg + Q- 0g . (3.1

See line 2. To avoid intra-group swapping of documents, modified ranking scores are
bounded by the lowest score of any higher ranked document within the same group:

Hqi < minD};,jgi(ﬂq,j)a (3.2)

where j, 4 are rank positions, see line 3. Equivalently, for all documents of the non-
protected group, d, ; € Dév , we decrease the score as follows, this time starting with
the document with the lowest ranking score (see line 5):

fg,i = fqi — Q" Ogy, (3.3)

see line 6. Again, to avoid the same intra-group swapping for the non-protected group,
we lower bound the adjusted scores by the maximum score of all documents in the same
group that are ranked lower in the original ranking:

fig,i = mMaxpy ;>;(flq,;)- (3.4

See line 7. PUFR then uses these adjusted scores fiq ; to re-rank the documents (line 9).

Note that even though we define PUFR for a setting with only one protected docu-
ment group, it can be extended to several protected groups, that need to receive different
treatments. Our approach allows us to adjust the strength of the score adjustment
individually for each group, e.g., enabling a stronger correction for more disadvantaged
groups, by allowing a group-wise choice of hyper-parameter o,.

Many pre-trained ranking models do not output the uncertainty scores o, ; that
PUFR employs to reorder rankings. Thus we need a way to approximate the uncertainty
scores 0 ; in a post-processing manner. Next, we show how to do this with the help of
Laplace approximation.
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Algorithm 3 Predictive Uncertainty based Fair Ranking (PUFR)

Require: mean ranking scores {/tq,;}4, ,eD, standard deviation {oy ; }4, ,eD, . control
parameter «, groups DX, Dév

1: foralld,; € Df; , sorted by decreasing yi, ; do
2 flgi & Hgi T Ogi
3 flgi < maXDg’,jgi(ﬁqJ)
4: end for

5: for all d, ; € DY, sorted by increasing 114,; do

6

7

8

9

fhqi <= Hqi— Q- 0q
fig,i <= minpx ;>i(fiq ;)
: end for
: Obtain ranking L by sorting documents d, ; € D, with respect to scores fiq ;
10: return L

3.3.3 Attaining uncertainty scores from a deterministic ranking
model

The goal is to attain effective uncertainty scores, o, from a ranking model at inference
time; conventional uncertainty approaches fail to satisfy this condition [46, 158, 241,
242]. Past approaches have relied on a specific training regime — Monte Carlo (MC)
dropout — to achieve an effective Bayesian model. As PUFR is a post hoc method, we
leverage an alternative form of uncertainty, Laplace approximation, that can be applied
to any already trained ranking model.

The standard approach to training a deterministic model f, where there exists a
single output for each input, is to learn a set of parameters, fyap, that minimizes the
loss function

L(O)=—InP(0|D)+r9), (3.5)

where r is some regularization on # and D is the training dataset. While this is a
probabilistic interpretation of the loss function and optimization process, prior work
has mapped margin-based ranking losses to this framework [46]. At inference time, the
model, f, is evaluated using the single point fy;ap, which minimizes £(6). Alternatively,
a Bayesian perspective captures the uncertainty of the model by considering all possible
0 values weighed by how likely they are based on the training data using the posterior
P(0 | D), with Oyap as the most likely value. This produces a distribution over outputs,
of which the variance o2 represents the uncertainty present within the model and D:

P(y|2.D) = /9 Py | ,60)P(8 | D)do, (3.6)

with z as the input and y as the output of the model. Unfortunately, capturing this
distribution is intractable for all but the smallest models due to the nature of computing
the posterior P(6 | D). There exists prior work that approximates this distribution using
MC Dropout [46, 158, 241, 242]. However, this requires a specific training regime,
which would prevent the general application of PUFR to off-the-shelf architectures or
previously trained ranking models.
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Using Laplace approximation for post-hoc uncertainty approximation. We pro-
pose using Laplace approximations (LA), which can turn any conventionally trained
deterministic model into a Bayesian model at inference time to produce the necessary o
values for PUFR [140]. LA encompass a family of approaches that fit a local Gaussian
around the MAP estimate (3.5) via a second-order Taylor expansion of the log posterior:

hlP(e | D) ~ lnP(eMAp | 9)

1 _ 3.7
5(9 — Omar) TH (6 — Ovap),

where H is the expected Hessian at fyap. The key observation is that the right side
only requires the deterministic model, fyap to produce the log Bayesian posterior
distribution on the left side. Then, to recover the full posterior, exponentiating both
sides reveals the Gaussian functional form for 0,

1 _
exp (2(9 — QMAP)TH(G — HMAP)) (38)
~ N(GMAPa .Hil).

Thus, this approximation can take any twice differentiable off-the-shelf model and
conveniently convert it to a Bayesian model at inference time by inverting the Hessian.
While inverting to produce the covariance matrix is intractable for most models, we
leverage past work by only inverting the last layers of a neural model to achieve
actionable uncertainty estimates with near-zero cost [46, 47] (Algorithm 4, lines 2-3).
While there exists a closed form linearization of Eq. 3.8, we are able to achieve sufficient
efficiency using Monte Carlo sampling to capture the predictive distribution P(y | z, f)
by sampling from the Gaussian (line 5), N (Omap, H 1) [54],
Ply|x,D)=[| P(y|x,0)P(0|D)dd
(3.9)

p(y | z,60,),600 ~ N (Ouar, H V).

2= s—

M=

o~
Il

1

Furthermore, as the covariance matrix H ! is viewed as independent to the training
process, we do not need to use the original loss function either [115]. Lastly, for further
efficiency, we exploit the property that the Hessian, H, is equivalent to the Fisher
information matrix, F, at @yap. As shown in Algorithm 4, we therefore approximate H
by taking the diagonal of F', which is a common approximation regime (line 3) [87, 173].

After estimating N (fyvap, H ~1) for the last layer of a neural model, we sample this
distribution /N times to produce NN versions of the last layer, in order to produce y,,.
and o7 as parameters of the predictive distribution P(y | z, D) = N(pq,., 02 ) (line
7-8). These parameters are then used by PUFR as described in Section 3.3.2 to debias
the ranked list.
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Algorithm 4 Post hoc uncertainty estimation for single query

Require: pre-trained [-layer model fy, Ovap = [Oigap: - - - » Ohiap)> query g, candidate
documents D, = {d, ; };, Monte Carlo sample size N.

1: foralld,; € D, do

2: hﬁ_l’y = f9MAP(qadq7i)

3 H~diag(F) = diag(E[Vg In P(y | ¢,dy))?]

4: for all j € N do

5 {0}] ~ N (0'map, diagF 1)

6 end for

T g = ot for ()

2
N - N =
8: ‘73,1' = % PO fé)i(hi 1)2 - (% 21 f‘)i(hi 1)>
9: end for
10: return p,;, 04, Vdg; € Dy

3.4 Experimental Setup

We aim to answer the following research questions with our experiments: (RQ3.1) Based
on empirical findings, are the uncertainty intervals around the ranking scores of a
Bayesian ranking model sufficiently intersecting to allow for a re-ranking of documents,
while staying within reasonable certainty bounds? (RQ3.2) Can PUFR be used to
reduce the number of biased documents that are ranked on top of the list more effectively
than prior methods? (RQ3.3) How do the various methods for fairness interventions
compare with respect to controllability and computational efficiency?

There are four properties that we consider relevant to answer these questions: (i) We
want to improve the fairness within the rankings. (ii) We want to do so with the least loss
in utility possible. (iii) The next property is the controllability of the approach at hand.
A human user/engineer should be able to easily adjust the trade-off between fairness
and utility to fit their purposes. (iv) The last property is computational efficiency since
this can also play a role when choosing a fairness method.

Next, we detail our experimental design. Then we discuss the evaluation metrics
that we use to measure the four properties mentioned above (Section 3.4.2) and the
dataset that we use (Section 3.4.3). Section 3.4.4 summarizes the baselines that we
compare against.

3.4.1 Experimental design

We perform our experiments on a web search task, where for each query, the objective
is to rank documents that might be relevant to that query. In addition to the requirement
of being relevant to the user, the ranked list should not contain any gender biases
for queries that are naturally non-gendered [168]. Therefore, we consider only non-
gendered queries and expect a fair ranking model to not promote any documents that
are biased towards some gender. See Section 3.4.3 for a discussion on the data used for
this task.
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To get an effective impression of the trade-off between utility and fairness, we
perform a range of experiments per baseline, by varying some hyperparameter ov. We
define this hyperparameter individually for each baseline, based on the respective
underlying algorithms (see Section 3.4.4).

To demonstrate the efficacy of PUFR on current search models, we use the BERT
ranker introduced by Nogueira and Cho [155] as it represents a common language
model architecture in current ranking regimes [58, 96, 132, 183]. Due to hardware
constraints, we use Bert-Mini [212], a distilled four-layer version of BERT that performs
comparably to the full model in search and other related tasks. We note that in the case
of uncertainty modeling, Cohen et al. [46] demonstrate that a distilled model results in
less expressive ranking uncertainty compared to larger variants of the same architecture
on the same data. Thus, Bert-Mini represents a challenging setting and a conservative
estimate of PUFR’s performance.

To facilitate reproducibility of the work in this chapter, all code and parameters are
made available; see Section 3.7.

3.4.2 Evaluation

User utility and fairness are measured per query. To get a single score to compare across
methods, we report the mean over all queries. We measure significance with paired
t-tests, where we treat the results of each query as one sample.

User utility. To measure user utility, we use the nDCG metric (normalized discounted
cumulative gain). We use different cut-offs to measure the user utility in the top-10
documents, as well as for the first 100 documents.

Fairness. As discussed in Section 3.4.1, our task entails reducing the impact of strongly
biased documents in the presented rankings. Therefore, we use the nFaiRR metric as a
measure of fairness introduced by Rekabsaz et al. [168]. For a ranked list L, the FaiRR
score at cut-off k is defined as:

. 1
FaiRRGk(L) = > ng, - kg (d) (3.10)
ranky, (d;)<k L%

where rank;, (d;) describes the rank of candidate document d; in L, and the neutrality
score ng, € [0, 1] is lower, the more biased a document is. Since the possible range of
FaiRR scores depends on the distribution of neutrality scores of its candidate documents,
to make the results easier to interpret and better comparable among queries, we use the
normalized FaiRR score (nFaiRR). For this, we normalize the FaiRR score with the
highest attainable FaiRR score with the document candidates for this query, similar to
how nDCQG is calculated from DCG. In our experiments we measure the nFaiRR at a
cut-off value of 10 and 50. We select a different cut-off than the utility measure (@ 100)
so as to compare with reported values from the baseline evaluations.

Controllability. We follow prior work [168], and focus on a qualitative analysis of the
results by investigating the predictability of the utility-fairness trade-off when adjusting
the controllable hyperparameter of each of the methods. An ideal approach should have
small change in utility and fairness for a small change in a. To this end, we compare
the plots in Figure 3.6 below.
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Computational efficiency. For computational efficiency, we measure the run time of our
implementation for each approach. We acknowledge that method-specific performance
optimization might be able to further improve on the run times observed for the generic
implementations used here, but assume that at least a rough execution time comparison
can be gleaned. We measure the run time of each query and report the mean run time in
Table 3.1.

Significance testing. To test the significance of observed differences in evaluation
scores, we perform two-tailed paired t-tests on the metrics, treating the results of an
approach of each query as a measurement of the same random variable. In Table 3.1,
we mark results with an asterisk if they are significantly different from those of PUFR.

3.4.3 Dataset

The retrieval models that we use are trained on the MS MARCO Passage Retrieval
collection [154]. For evaluation, we use MS MARCOg,;;, a subset consisting of 215
queries from the validation set that are non-gendered in nature — i.e., not containing
any words or concepts that could be attributed to some gender [168]. However, the top
candidate documents for these queries are highly associated with gender [168, 253]. We
quantify the degree of gender bias for each document using the neutrality scores provided
by Rekabsaz and Schedl [167] in order to measure fairness. We define documents with
neutrality score 1 as the protected group for the post-processing baselines and PUFR.

3.4.4 Baselines

The baseline fairness intervention methods that we consider include the two in-processing
approaches that have been introduced for the same bias mitigation task and dataset used
here [168, 253]. Since PUFR is a post-processing approach, we add two commonly used
post-processing fairness approaches that have been slightly adjusted to fit the task. Both
post-processing baselines as well as UNFAIR use the mean scores 4 ;, produced by
Algorithm 4 in Section 3.3.3 for the BERT-based ranker (see Section 3.4.1) as ranking
scores. For each baseline the hyper-parameter « that allows us to control the trade-off
between utility and fairness, is defined individually.

UNFAIR. The ranking resulting from ordering the documents with respect to the mean
scores iq,;, Without considering fairness.

ADV. The (in-processing) adversarial fairness optimization from [168], which shares
the same underlying BERT re-ranking architecture as discussed in Section 3.4.1. How-
ever, training is done using an adversarial discriminator head that attempts to predict
whether the document is gendered or neutral by optimizing a classification loss function.
The gradient from this loss is reversed within the main BERT architecture, therefore
moving the parameters away from regions that can effectively capture gender [73]. We
implement this model using the source code and suggested hyperparameters provided
by the authors. The controlling hyperparameter « (originally \) is defined by the scale
of the reversed gradient.

CODER. This (in-processing) baseline [253] is intended for dense retrieval architectures.
The method directly optimizes the query representation from a previously trained
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architecture, TAS-B [96], by jointly optimizing thousands of candidate documents in a
list-wise manner. While improving overall ranking performance, the large candidate
pool within a list-wise loss provides a stable and competitive way to incorporate fairness
directly during training. We include this baseline not as a direct comparison with
respect to ranking performance, but to provide context on how a direct list-based
fairness optimization approach compares to methods that operate entirely within a post
hoc framework when viewed from a utility-fairness trade-off perspective. Here, the
hyperparameter « (in the original paper \,.) is defined as the regularization coefficient
for the neutrality loss.

CVXOPT. A (post-processing) convex optimization approach similar to [32]. For each
query we optimize the ranking L for utility, measured by nDCG, under a constraint on
the nFaiRR score, nFaiRR(L) > «. To keep computational costs within a reasonable
range, we only re-rank the first 50 documents of each query.

FA*IR. A (post-processing) approach suggested in [248]. We use a significance param-
eter 0.1 as suggested in [248] and vary p, the desired minimal proportions of documents
with the protected attribute in the top-k for any value of k. In the remainder of this
chapter we use o := p, not to be confused with the significance parameter in the
original paper, to match the other methods. For a fair comparison w.r.t. to computational
efficiency, we use an efficient implementation that pre-computes the required number
of protected documents for each rank upfront via an iterative algorithm.

3.5 Experimental Resulis

We present and discuss answers to our research questions.

3.5.1 Intersections of uncertainty intervals

Recall (RQ3.1): Based on empirical findings, are the uncertainty intervals around the
ranking scores of a Bayesian ranking model sufficiently intersecting to allow for a
re-ranking of documents, while staying within reasonable certainty bounds? To answer
(RQ3.1), we analyze the confidence intervals of the ranking scores. If the uncertainty
intervals do not intersect much, the ranking model is very certain about the ordering of
its ranking scores. In such a case, our approach, or any uncertainty-aware approach in
general, would not be able to re-rank the documents within an acceptable utility bracket.
Previous work has shown that ranking models tend to be very certain for the ranking
scores of highly ranked documents [46], but certainty decays when going down the
ranked list. We are interested in how much flexibility a rank-aware fairness approach
would offer in swapping documents by allowing the ranking scores to take values in
a given certainty [(1g,; — & - 0, Jiq,i + - 04,;] interval around the mean score value
[1q,i- Figure 3.2 shows the median number of documents with intersecting confidence
intervals (i.e. the median number of documents that the document at that rank could
swap position with) for « = 1 resp. a = 2 standard deviations.

Even for documents ranked at higher positions, there is flexibility to change the
order of the ranking. For a confidence interval of 1 standard deviation, most documents
in the top-10 each have at least 6 documents that they could swap rank with. If we
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Figure 3.2: MSMARCOgar: Median number of documents that have intersecting
uncertainty intervals with the document placed at each rank for uncertainty intervals of
1 (left) resp. 2 (right) standard deviations.

look at confidence intervals of two standard deviations, this number increases to ~10
documents that the document at rank 10 can swap place with. We therefore answer
(RQ3.1) positively: The uncertainty intervals around the ranking scores of the Bayesian
ranking model are sufficiently intersecting to allow for a re-ranking of documents, while
staying within acceptable certainty bounds for utility.

Having confirmed that within the uncertainty of the model there is flexibility for an
uncertainty-based fairness approach to change the order of documents, we address our
second research question that asks whether the proposed approach can improve fairness.

3.5.2 The fairness utility trade-off

Recall (RQ3.2): Can PUFR be used to reduce the number of biased documents that are
ranked on top of the list more effectively than prior methods? To answer this question
we refer to Figure 3.3 and 3.4, where we plot fairness on the x-axis against utility on the
y-axis, for PUFR and the baselines discussed in Section 3.4.4, for different values of the
respective hyper-parameter « that controls the trade-off. In addition we use Table 3.1,
where we compare the experimental outcomes with the best nFaiRR value for a given
minimum utility requirement.

Utility-fairness trade-off. In Figure 3.3 and 3.4, we observe that the CODER baseline
starts with a better trade-off for the top-10 documents, which can be attributed to better
ranking scores that it starts out with (PUFR uses a BERT-based model to obtain ranking
scores). CODER’s advantage quickly vanishes as the balancing parameter « increases
for more weight on fairness. Overall, PUFR offers a better trade-off between fairness
and utility than the CODER based and the adversarial fairness optimization baseline
(ADV).

If we compare PUFR to the post-processing baselines (CVXOPT and FA*IR),
it clearly outperforms those baselines. Once a nFaiRR value of 0.96 is reached the
advantage of PUFR over these baselines becomes smaller. For a possible explanation
see Section 3.6.

Overall, PUFR outperforms all baselines for a large range of nFaiRR values, which
we also highlight by comparing the fairness of the different approaches at two different
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documents.

49



Table 3.1: Results for experiment with best nFairr value for nDCG decrease not more
than 0.01 and 0.02 respectively. ADV baseline does not fulfill the criteria of being at
most 0.01 nDCG points worse than UNFAIR. * denotes significance w.r.t. PUFR via
two tailed paired students t-test of p < .05.

nDCG?T nFaiRR{  re-rank- req.
Method o @10 @100 @10 @50 time(s)] train
UNFAIR 0.0 0.26 032 0.858 0.873 0.00 No

ADV 20 021 026 091 0.896 - Yes
PUFR 25 025 031 0938 0932 0.014 No
CODER 3.0 0.25 0.31 0.920%0.920* - Yes

CVXOPT 0.8 0.25 0.31 0.906%0.905* 0.123 No
FA*IR 0.7 025 0.31 0.898*0.901* 0.058 No

PUFR 7.0 023 030 0.970 0.960 0.014 No
CODER 4.0 0.24 0.30 0.927%0.926* - Yes
CVXOPT 091 0.23 0.30 0.949%0.931* 0.123 No
FA*IR 0.85 0.23 0.30 0.944%0.935* 0.058 No

nDCG1gp > 0.30 [nDCG10g > 0.31

utility levels (nDCG@100 = 0.31 and nDCG@100 = 0.30) in Table 3.1. We chose
these levels of utility, assuming that, when taking a fair ranking approach in production
there might be a certain (small) allowance for a drop in utility given, within which
the best possible fairness value should be reached. We see that for these levels PUFR
reaches significantly higher scores for nFaiRR than all baselines.

Ablation study. To ensure that the uncertainty estimates indeed do contribute to the
success of PUFR, we conduct an ablation study. We compare PUFR with a similar
approach that, instead of adjusting the scores relative to the standard deviation, in- or
decreases all scores by the same, constant value. In our experiments we use the mean
uncertainty score over all queries and candidates documents, oyean = meany ;(oq.;).
The results of this ablation study are presented in Figure 3.5. We see that by using the
uncertainty scores instead of a uniform correction factor, we gain a better trade-off. For
the top-10, these improvements are less visible (see Figure 3.5 (a)). When considering
the top-100 documents instead, the advantages of using uncertainty become much
clearer (see Figure 3.5 (b)). This might be due to fact that, as also noted by Cohen
et al. [46], for the top-10 documents the uncertainty scores tend to be fairly similar to
each other, making our approach, if we only look at a small window, seem similar to
the ablation study approach. When we look at a larger window, the uncertainty scores
deviate more, emphasizing the advantages of PUFR.

We conclude this section and answer (RQ3.2) in the affirmative. PUFR performs
competitively with baselines. In terms of fairness-utility trade-offs it significantly
outperforms other post-processing schemes, and clearly beats the two state-of-the-art
in-processing baselines. The ablation study confirms that this result is at least partially
due to the use of the model’s uncertainty in its scores. Hence, PUFR can be used to
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Figure 3.5: Ablation study comparing PUFR (score adjustment proportional to the
ranker’s uncertainty) with an ablation experiment with uniform score adjustment.

reduce the number of biased documents that are ranked on top of the list more effectively
than prior methods.

Since a good utility-fairness trade-off is not the only relevant criterion when choosing
a fair ranking method, our next research question (RQ3.3) concerns the degree of
controllability and computational costs of the different methods.

3.5.3 Controllability and computational efficiency

Next, we address (RQ3.3): How do the various methods compare with respect to
controllability and computational efficiency? As discussed in Section 3.4.2, we focus on
a qualitative analysis of the a-fairness and a-utility curves, evaluating how predictable
and hence controllable the utility-fairness trade-off is. Figure 3.6 shows that for PUFR
the nFaiRR score monotonically increases with increasing «.. At the same time, utility,
measured by nDCG, decreases. Both curves are highly predictable. Furthermore, since
re-ranking is computationally very efficient, a broad range of rankings with different
trade-offs can be explored to find the right choice of hyper-parameter for the desired
trade-off between nFaiRR and nDCG. The CODER-based approach has similarly
predictable trade-off curves as PUFR [253]. However, CODER is an in-processing
approach, meaning that the model needs to be re-trained for each choice of hyper-
parameter «, making it much less controllable in practice. The ADV method on the
other hand, seems to be highly unpredictable, on top of the downsides that come with
in-processing methods as discussed above. For the FA*IR baseline, although its curve
seems to be fairly well controllable, the granularity in which we can produce results is
much coarser. Due to space constraints we omit the figure for the convex optimization
approach; because of computational efficiency, FA*IR or PUFR should be preferred
over it.

With regard to computational efficiency, we recall that both in-processing ap-
proaches, ADV and CODER, once trained, do not have the post-processing overhead
of the other methods. However, these methods need a large amount of training to gain
a reasonable level of performance [168, 253]. Looking at Table 3.1, re-ranking with
PUFR is much faster than with the other two post-processing approaches. Obtaining
uncertainty labels can be done within microseconds. After adjusting the ranking scores
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Figure 3.6: Controllability of different approaches visualized by plotting utility and
fairness against the controlling hyper-parameter  on the x-axis (see Section 3.4.4 for a
description of « for each approach).

there is a single re-sorting of the documents that dominates the execution time. Hence,
when using PUFR in production and adjusting the score before the initial ordering of
the documents, the execution of PUFR is nearly free.

3.6 Discussion

Exploiting model uncertainty for the fairness-utility trade-off. To increase the
fairness of a ranking, we would commonly need to trade-off some predicted utility.
Encouraging this trade-off to take place when the ranking model is less certain about the
ranking scores will cause roughly equivalently relevant documents that the model cannot
confidently rank, to swap place. Assuming that the ranking model is well calibrated,
this might be the reason for the overall better trade-off that PUFR achieves, compared
to models that do not consider predictive uncertainty. This quality is highlighted in
Figure 3.7, where we show the score distribution of the top-5 documents of two queries
in the MSMARCOFg,;; dataset. In the case of Figure 3.7a and 3.7b, the larger variance
leads to overlapping score distribution, allowing PUFR to swap documents in the re-
ranked list. On the other hand, Figure 3.7c and 3.7d show a query where the model is
very certain about the order of the documents. PUFR hence does not change the order
of the documents, whereas FA*IR and CVXOPT both do adjust the ranking, leading to
decreased user utility for those baselines.

Using PUFR outside the models confidence. Our empirical results show that if we
allow PUFR to adjust the scores too far outside of its confidence, its performance starts to
decay (see Figure 3.3). If « is too high, the natural interpretation of adjusting the scores
within plausible error-bounds gets lost and we cannot exploit the models knowledge
of its own certainty any further. Without the certainty to back it up, PUFR becomes
more arbitrary in its decisions where to trade-off predicted utility with fairness. Hence,
PUFR is most effective for small values of «, roughly up to o = 4 (see Figure 3.6).
This observation means that a purely uncertainty-based fairness method might not be
the best choice when the bias we want to correct for is too strong. In such cases, it
might be beneficial to use uncertainty in combination with another approach that has
proven effective for the task at hand.

52



(a) query 1032855 before PUFR

o I

I
—3 —2.5 —2 —1.5 -1 —0.5

L
—2 —1.5

—1

I
—0.5 [0}

(b) query 1032855 after PUFR

10 —o——

0 I

—3 —2.5 —2 —1.5

—1 —0.5 o]

(c) query 1089383 before PUFR (d) query 1089383 after PUFR
Figure 3.7: Examples of score distributions for the top-5 documents for two queries
of the MS MARCOg,;; dataset. Protected documents in green, non-protected in red.
Subfigs. 3.7a and 3.7c show the ranking score before PUFR adjusts the scores, 3.7b
and 3.7d show them after. Query 1089383 was scaled before plotting.

3.7 Conclusion

We have introduced the notion of predictive uncertainty-based ranking fairness, aiming
to exploit a ranking model’s uncertainty as an indicator of which documents we should
focus on when re-ordering for a fairer ranking which de-emphasizes documents contain-
ing biases. Through our empirical analysis we have found that the uncertainty intervals
of the ranking scores are sufficiently intersecting to allow us to swap the position of
some documents. We have also introduced an intuitive and principled post-processing
method, PUFR, that adjusts the predicted ranking scores within some desired confidence
bound. We have shown that by considering uncertainty, PUFR can achieve the best
utility-fairness trade-off and has superior time complexity and good controllability.

We hope that our contribution makes the adoption of methods to remove bias
in ranked results more attractive to practitioners working on real- world search and
recommendation systems.

More experimentation is needed to confirm our findings in more settings. We see
limitations of our approach as twofold. Firstly, PUFR allows a re-ordering of the
documents only within the uncertainty of the model. This might make our method less
effective in reducing unfairness when the model is very skewed towards documents
containing biases. As a second limitation, we rely on uncertainty scores containing
accurate information on which documents are more likely to be in the wrong order.
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Furthermore, the uncertainty intervals around the scores need to intersect sufficiently. In
our experiments, we are using a neural ranking model on text data, which is a task that
inherently carries a fair amount of uncertainty. For other tasks and fairness definitions,
more research will be necessary to evaluate whether an uncertainty-based approach can
be beneficial for the utility-fairness trade-off.

As to future work, an important next step would be to define ways to evaluate
uncertainty scores in a listwise manner for ranking models. Without proper evaluation
of the predictive uncertainty, we are unable to put trust on the score distribution and
hence on an uncertainty-based fairness approach. Moreover, more work is needed to
investigate whether PUFR could be extended to, for example, Bayesian learning-to-rank
models or recommender systems. Finally, we see a clear need to create more datasets
for large language models with fairness labels, on which methods such as ours can be
tested.

Data and code. To facilitate reproducibility of the work in this chapter, all code and
parameters are shared at https://github.com/MariaHeuss/2023-CIKM-
uncertainty-based-bias-mitigation.

Conclusion of Chapter 3

We now return to research question RQ B: “Can we use the predictive uncertainty of the
model prediction to improve ranking fairness?”. Our empirical analysis of the predictive
uncertainty-based re-ranking approach PUFR demonstrates that we can reduce the
number of biased documents appearing at the top of ranked lists while incurring less
utility loss compared to baseline approaches that do not consider model certainty
about document ordering. These findings enable us to answer the research question
affirmatively: Considering predictive model uncertainty can improve the fairness and
unbiasedness of ranking models.

We position this work as a proof of concept, with future research needed to investi-
gate how effectively model uncertainty can enhance the fairness-utility trade-off across
different tasks and use cases.
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Part 11

Explaining Advice-Giving
Processes
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RankingSHAP — Faithful Listwise
Feature Attribution Explanations for
Ranking Models

This second part of the thesis focuses on the interpretability of advice-giving systems.
The motivation behind making model decisions more interpretable includes several
potential benefits: helping developers and users identify failure cases, understanding
the model’s decision process to improve human-model interaction, debugging model
behavior, determining when to trust model predictions, and addressing various other
interpretability needs.

This chapter investigates how ranking system predictions can be explained through
feature attribution explanations. Here, we refer to feature attribution as a proxy for
the importance of input features to a specific model prediction. We focus on local
or instance-wise explanations that are specific to individual predictions, rather than
explaining the model’s behavior as a whole (i.e., global explanations).

While extensive research on feature attribution explanations exists in other domains,
the field of information retrieval (IR) has seen less progress on this topic. The challenge
stems from the fact that ranking predictions take the form of ranked lists (listwise
predictions) rather than single prediction values (pointwise predictions), making the
application of existing methods less straightforward. In particular, one of the most
popular feature attribution explanation approaches, called SHAP, has not been formally
defined for listwise ranking models, leaving a gap in the toolbox available to practitioners
interested in analyzing their ranking models.

To address this gap, we formalize listwise feature attribution in this chapter and
define RankingSHAP, a concrete instantiation that can be flexibly adjusted to explain
specific aspects of ranking decisions.

This allows us to answer the following research question:

RQ C How can we generate listwise ranking explanations for listwise ranking models?

This chapter was published as M. Heuss, M. de Rijke, and A. Anand. RankingSHAP-Listwise feature
attribution explanations for ranking models. In SIGIR 2025: 48th international ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 381-391. ACM, July 2025.
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Note: The notation in this chapter differs slightly from previous chapters. Most impor-
tantly, we use R for pointwise ranking models, I? for listwise ranking models, and 7 for
a specific ranked list.

4.1 Introduction

Feature attribution explanations are a posthoc family of explainability approaches that
assign scores to features, quantifying their relative contribution to a model’s decision.
They are used to understand which features most influence the model’s predictions,
thereby enhancing transparency and trust. Feature attributions are among the most
commonly used explanation types for posthoc explanations of trained models in general
machine learning (ML) [118, 150, 171, 258].

Typical ML tasks involve pointwise prediction, explaining single classification or
regression decisions. However, explaining rankings has different aspects — Why is a
document relevant? (pointwise explanations), Why is one document more relevant than
another? (pairwise explanations), or Why are the documents ranked in this specific
order? (listwise explanations). Listwise explanations encode more context in terms of
an entire or partial ranked list and are arguably more accurate/faithful since they are
able to find features that affect an entire ranking. This is unlike feature attributions that
focus on a single relevant document or a certain preference pair.

Feature attribution often lacks rigorous definition, beyond attributing the highest
value to the most important feature. Limited work exists on pairwise [159] and listwise
explanations [12, 137, 198, 199, 245]. Consequently, listwise feature attribution remains
under-explored and in need of further theoretical underpinnings.

4.1.1 A motivating case study — Talent search

To motivate the need for tools that help practitioners arrive at a nuanced understanding
of ranking outcomes, we consider talent search. There, systems use learning-to-rank to
produce candidate rankings based on features like academic performance, experience,
skills, and private attributes such as gender, ethnicity, and university attended. The inclu-
sion of certain attributes in decision-making is debatable, as biases from past decisions
can be reflected in the learned model and are best left to human judgment. However,
sometimes these attributes are necessary for the model to perform well. Consider the
two models in Figure 4.1. Both use the same features, including skills, experience, grad-
uation grade, university, and whether the candidate meets job requirements. The right
model (Figure 4.1b) uses the university reasonably by normalizing grades from different
institutions, while the left model (Figure 4.1a) discriminates against candidates from
certain universities and favors others. Explanations can help differentiate between such
models with similar performance to identify which is less biased and more trustworthy.
Feature selection alone may not provide sufficient insights, as it likely selects the same
features (2u; and xq) for both models. Instead, feature attribution, which assigns
each feature an importance value, can identify nuanced differences in their relative
importance. Furthermore, since candidate ranking scores are only meaningful relative
to others, pointwise explanations focusing on features for high scores may not reveal
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Figure 4.1: Flow chart of a biased and an unbiased model for a talent search task. With
the help of explanations we would like to be able to differentiate between the two.

the university feature as the key factor in determining the relative order for queries with
candidates from universities that the model is biased against. Pairwise and listwise
explanations are better suited to explain relative rankings. While pairwise explanations
require a specification of the pair of candidates to compare, listwise explanations can
provide insight into the model decision as a whole. We will revisit this case study in
Section 4.5 to demonstrate listwise feature attribution in practice.

4.1.2 Listwise feature attribution explanations

We are interested in developing a listwise explanation method based on SHAP [136], a
method inspired by Shapley values from game theory, that quantifies the contribution of
each feature to a model’s prediction. SHAP has gained significant popularity as a post-
hoc explanation approach due to its theoretical properties and versatility [114]. However,
SHAP only explains pointwise predictions: Given the contrastive nature of ranking
tasks, listwise feature attribution would provide valuable insights into model decisions
by explaining the relative order of documents, enabling comparisons across queries
and ranking aspects. To address this gap, we introduce RankingSHAP, which extends
SHAP to support listwise explanations while maintaining compatibility with existing
research on SHAP’s limitations and extensions. RankingSHAP provides flexibility in
the listwise explanation objective, allowing users to determine feature importance for
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specific ranking aspects that faithfully reflect the model’s behavior in the context of
ranked lists.

4.1.3 Approach and contributions

Our proposed method, RankingSHAP, preserves the context of ranked lists rather
than evaluating documents in isolation. This contextual awareness is crucial because
ranking models make decisions about relative document ordering. Therefore, a feature
attribution method needs to identify a specific aspect of the model’s decision to focus
on and define a singular metric that quantifies changes within the ranked list with
respect to that aspect. Aspects of interest may include a document’s rank, measured
by its shift in position, or the overall order of the top-k documents, measured by
the number of permutations within the top-k. These diverse aspects underscore the
need for a nuanced definition of listwise feature attribution in ranking models, which
RankingSHAP provides.

We rigorously assess the faithfulness of RankingSHAP using established learning-to-
rank (LtR) benchmark datasets, demonstrating its effectiveness in interpreting ranking
models’ outputs and providing deeper insights into their decision-making processes.

In summary, (i) we propose and rigorously define listwise feature attribution; (ii) we
present a novel instantiation of our feature attribution framework called RankingSHAP;
and (iii) we propose multiple evaluation schemes, white box check, preservation and
deletion check for ranking feature attributions, and conduct extensive experiments to
showcase RankingSHAP’s performance.

4.2 Related Work

4.2.1 Shapley values and SHAP

Shapley values, originating from game theory to define a player’s marginal contribu-
tion [189], are widely used in explainable Al. Efficient approximation techniques have
facilitated their application in AI model decisions [206, 207]. SHAP (SHapley Additive
exPlanations) [136] is one such technique, approximating the expected marginal contri-
bution of a feature to any feature set excluding it. A comprehensive overview and recent
advancements are available in [150]; we build on this work, extending it for ranking
models.

Contemporaneously with the work in this chapter, Pliatsika et al. [162] propose a
Shapley value-based framework for rankings and preferences, but our research empha-
sizes listwise explanations, unlike their document-level focus. Concurrently, Chowdhury
et al. [43] establish theoretical properties for feature attribution in ranked lists and intro-
duce a method similar to ours that satisfies these properties.

4.2.2 Explainable information retrieval

Explainable IR [12] has focused on models that are explainable by design [125, 257] and
on approaches that can posthoc (after model training) explain models [197, 198, 218].
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Posthoc approaches operate at the global level (model level) or at the local level (per-
query). Global explainability approaches have been used to diagnose ad-hoc neural
text rankers with well-understood axioms of text ranking [26, 169, 219] or to probe
pre-trained transformer-based ranking models for ranking abilities [220]. We focus on
posthoc, local feature attributions.

Feature selection and attribution for ranking models. Early work on interpreting
ranking models was adapted for explaining query-document relevance from popular
paradigms of black-box methods [136, 171] or white-box methods [190, 191, 208].
Singh and Anand [197], Verma and Ganguly [218] modify LIME [171], to generate
terms as the explanation for a trained black-box ranker. Choi et al. [40], Fernando et al.
[70] applied gradient-based feature attribution methods [136, 208] to interpret document
relevance scores. Contrary to posthoc feature attribution approaches, local feature
selection [97, 124, 125] approaches select a subset of features without distinguishing
feature importance. Most work on local feature selection for rankings [97, 125] is not
posthoc, and has been performed on text features, not on learning-to-rank data. In this
chapter, we work on posthoc approaches for attribution and not selection.

Listwise explanations for ranking models. Typical ML tasks are pointwise prediction
tasks, i.e., focusing on a single classification or regression decision. In rankings,
even for a single query, we also have to deal with pairwise and listwise explanations,
which might be constructed by an aggregation of decisions. There has been limited
work on pairwise [159] and listwise explanations [137, 182, 198, 245]. LiEGe [245]
tackles the task as text generation. Other work uses simple rankers to approximate the
original ranking of a complex black-box model by expanding query terms by solving
a combinatorial optimization problem [137, 198]. The work that is closest to ours,
on RankLLIME [42], approaches the problem with the local surrogate approach LIME,
which the authors adapt for ranking models. Again, most of the approaches focus on
text features and are not directly applicable to learning-to-rank models.

Explainability in learning-to-rank. Local feature selection approaches can be ap-
plied to learning-to-rank [80, 85, 163]. Among the feature-selection approaches, filter
methods are model-agnostic [80], while wrapper methods are designed for a particular
type of model [85]. In the context of ranking, some work produces local feature selec-
tions [163, 196]. Singh et al. [200] propose the notions of validity and completeness
based on the information contained in the explanation. While these notions are useful
in both conception and evaluation of explanations, they still view the explanation as a
selection of features. Feature selection methods, however, lack the capability to differen-
tiate between features of varying importance, thereby avoiding a nuanced understanding
of which features are substantially more critical in the decision-making process. We
focus on feature attributions.

4.2.3 Faithfulness in explainable Al

Faithfulness measures how accurately an explanation represents the reasoning process
behind a model’s prediction [100]. Evaluating faithfulness is challenging because the
model’s actual reasoning cannot be directly observed. Hence, various definitions and
evaluation frameworks for faithfulness have been proposed [100, 139]. While there
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is no clear agreement as to what notion or framework should be used to measure and
establish faithfulness [139], there are two dominant frameworks in explainable IR [12].
When locally approximating a ranking model with a proxy model, faithfulness is the
degree to which the proxy model approximates the original ranking [137, 198]. An
alternative notion of faithfulness is based on an information-theoretic notion of feature
importance [200, 232]. There, faithfulness refers to the predictive power of the features
in the attribution. Specifically, if a feature set is important then masking off or removing
the non-relevant features should not result in a big change in model output. While
both notions model different aspects of faithfulness, in this chapter we follow the latter
framework.

4.3 Feature Attribution for Pointwise Rankers

Early work on local feature explanations has introduced the concept of feature attribu-
tion [206]; recent work often lacks a clear definition of what makes a feature important,
causing ambiguity in evaluating attribution faithfulness. Despite attempts to formal-
ize feature attribution [5], these efforts have not been widely adopted, resulting in
inconsistencies and confusion in the field [114]. We build on [136] to define pointwise
Sfeature attribution for black-box models with one-dimensional model output such as a
pointwise ranking model ~

R:D — R, Lq,1 = Sq,l, “.1)

that predicts the ranking scores s,; € R, representing the probability of relevance,
for the feature vectors of each document-query pair, x,; € D in the space of all
documents D. We consider instance-wise feature attribution explanations that assign
to each feature i an attribution value ¢;(x, R), directly reflecting the importance of the
feature to the model decision for instance x. Hence, feature attribution explanations can
be understood as dictionaries {i — ¢;(z, R)}lzln containing exactly one attribution
value per feature. A well-defined, instance-specific definition of feature attributions
should consider the specific combinations of feature values in the input that collectively
lead the model to predict a high score. Also, features with greater importance for the
prediction should have higher attribution values.

We use marginal contributions to define pointwise feature attribution." Our def-
inition is based on SHAP [136]. In Section 4.4, we extend this to listwise feature
attribution and define RankingSHAP to approximate feature attribution for listwise
rankers.

Definition 4.3.1. We define the attribution or importance of a feature j in terms of
marginal contributions. Let n = dim(D) be the input space dimension, and let a
coalition be a subset S C {1,...,n}\ j of the input features excluding j. To measure
the marginal contribution of feature j to coalition S, we compare the model output
when shown only features in .S to the output when shown features in S U {j}. Since we
cannot simply erase features, we mask them with samples from a set of feature-vectors
B C D, called background data, which ideally summarizes the data distribution. For
masking, we use templates defined by subsets S, indicating the presence (i € S) or

!For a detailed discussion of marginal contributions, see [150].
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absence (i ¢ S) of a feature, and data-points from the background data b € D. We
define mgy : D — D as:

zi, ifi€S
msp()i = {b ifi ¢S @2

The marginal contribution of feature j to coalition .S for vector b is:

R(mSU{j},b(x)) — R(m&b(x)). (4.3)

We define the pointwise feature attribution of feature j to the model decision of R at
input x as the expected marginal contribution of feature j to all possible coalitions of
features:

¢i(x, R)= > ws Epp[R(msugys(@)) — Rimss(x))],
Sc{1l,..n}\j

with weighting factor wg = %[S|!(n — |S| — 1)! and uniform sampling from B.

Computational costs. Given the exponential growth of coalitions with the number
of features and the need for numerous background examples for a good summary, we
approximate pointwise feature attribution using sampling. Following [136], we use
SHAP for this approximation. Even though we are approximating the attribution values,
SHAP is known to be computationally expensive, especially for high feature dimensions.
There have been advances to making the sampling more efficient [102, 255]. Also,
since pointwise explanations are usually used as an analysis tool for specific input
examples rather than to analyze the whole corpus, it remains a broadly used explanation
approach [114, 150] despite its computational costs.

4.4 Feature Attribution for Listwise Rankers

For many machine learning tasks, SHapley Additive exPlanations (SHAP) [136] effec-
tively approximate feature attribution values for individual model decisions, such as
regression scores or classification probabilities. However, applying this method to list-
wise ranking models is challenging because these models output a ranked list rather than
a single score. Within this ranked list, different decisions are made regarding the order
of individual documents. Pointwise SHAP is only defined for a single one-dimensional
model output. While it can explain the model score of an individual document, it does
not consider the context of other documents in the list. In this chapter, we extend SHAP
to an approach that caters to listwise ranking decisions, called RankingSHAP.

Instead of looking at pointwise ranking models, as we did in Section 4.3, we consider
a listwise ranking model

R :{D,}q — Sym,{z, ;}; — 74 4.4)

that maps a set of candidate feature vectors for query ¢, Dy = {z4;};, to some
permutation matrix m, € Sym(D,) representing the ranked list in the Symmetry group
of all permutations of the candidate set D,,.
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We define two components, listwise masking and listwise explanation objectives
that enable us to establish listwise feature attribution for ranking models, which we
will introduce in Section 4.4.1. In Section 4.4.2, we formally define RankingSHAP
for approximating listwise attribution values. We define RankingSHAP as a wrapper
around SHAP using those two components. We deliberately chose not to modify SHAP’s
internal algorithm, allowing us to leverage the extensive literature on SHAP directly.
Finally, we examine listwise explanation objectives with examples in Section 4.4.3.

4.41 Feature attribution for ranking models

Our definition of feature attribution/feature importance for ranking models consists of
two parts: (i) Define how masking applies to each document in the ranking D,, for query
q. And (ii) measure the impact of input changes on the model decision, quantified by a
single number.

Masking the inputs of a ranking model. We apply a listwise mask mg to all
documents {xz, ; }; in the ranking: mg,(D,) = qu,jqu mg,p(2q,;). By masking the
feature vector x, ; of each document with the same mask m s, we disregard the impact
of the masked features on the ranking decision. This helps identify the contributions of
non-masked features to the document ordering.

Reducing the model prediction to a single prediction value. Feature attribution is
defined by the expected change in the predicted score. We need to reduce the ranking
model’s decisions to a single value reflecting the change for a perturbed input sample,
using a listwise explanation objective that takes a ranked list and maps it to a value,
highlighting some property of the ranked list that we want to investigate.

One example for such a function is a rank similarity coefficient like Kendall’s
tau 7 [111], which is commonly used in the interpretability literature to measure rank
correlation [137, 198, 200]. By comparing the change in the relative order of documents,
we can measure how much the prediction deviates from the optimal order 7, predicted
by the model:

9q(7) = 7(my, 7). 4.5)

For any such listwise explanation objective g4, we define feature importance through
the composition with the original ranking model, g, o R. Section 4.4.3 provides further
examples.

In summary, we have defined how to “remove” a feature from the model input
through masking and measure its impact on the model prediction with a single value.
This allows us to determine the listwise feature attribution using Section 4.3.

4.4.2 Estimating listwise feature attribution with RankingSHAP

With the definition of feature attribution for ranking models, we introduce Ranking-
SHAP. This depends on the choice of listwise explanation objective g and aims to
explain which features are important for specific aspects of the ranked list. The ability
to focus on different aspects of the ranking decision allows RankingSHAP to provide
contrastive and flexible instance-wise explanations for rankers.

64



Algorithm 5 Adjusted model prediction (used in combination with SHAP)

Require: ranking-model R, feature-vectors D, for query g, listwise explanation objec-
tive g,

Input: masking function mg
1: forall z; € D, do
2 i‘j — ms,b(xj)
3: end for
4: T R({f]}J)
5: v« g(m)
6: return v

Following the definition of feature attribution with simultaneous masking of doc-
ument vectors and a listwise explanation objective, we establish RankingSHAP as a
wrapper around SHAP to approximate the marginal contribution of each feature in a
ranking model, leveraging prior work.

SHAP samples both coalitions (templates for creating masks) and background data
to generate masked perturbations (see Eq. 4.2) of the input, approximating the marginal
contribution of a feature to any coalition. Given a sampled mask mg ;, we illustrate how
RankingSHAP adjusts the model prediction for use with SHAP in Algorithm 5. We loop
over all documents x; € D, (lines 1-3) and perturb the document features with the mask
to get £; = mg(z,). Then, we rank the perturbed feature vectors with the ranking
model m = R({Z;},) (line 4). Finally, we apply the listwise explanation objective
v = g(m) to measure the change in output according to the specified explanation
objective (lines 5 and 6).

Computational costs. Our approach allows for the use of existing SHAP implemen-
tations. This also means that it inherits any limitation that SHAP has such as the
computational complexity. Nevertheless, it does not introduce any significant new addi-
tional computational overhead and allows us to use prior research on SHAP extensions
and improvements for ranking without adjustments, such as advances in improving
efficiency. Since SHAP is a commonly used explanation approach for pointwise predic-
tions, we do not expect the computational complexity of RankingSHAP to hinder it’s
adoption in practice.

4.4.3 Listwise explanation objectives

We provide examples of listwise explanation objectives to illustrate the types of con-
trastive explanations RankingSHAP can generate.

Emphasizing top-ranked documents. Instead of focusing on the entire ranked list, we
can emphasize the top-k documents to identify features crucial for their high ranking.
For example, we demonstrate RankingSHAP using a weighted rank difference objective
with common position weighting:

g0 (7) = Z rank(d|7) — rank(d|7rq). .6)

2z Tog,(rank(dln,))
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Explaining feature importance of a singular document. This objective focuses on
one particular document d, investigating which features contribute, or would contribute,
most to its high ranking compared to others when only a subset of features is considered.
This can be implemented using the negative rank? of that document:

gremk(@) () = — rank(d|7). (4.7)

Alternatively, we can use RankingSHAP to determine the features that are the most
beneficial for the document’s exposure:

9P () = exp(rank(d|7)) = 1/ log,(rank(d|7)). (4.8)

Explaining the position of a group of documents. RankingSHAP allows us to compare
ranking decisions for two groups of documents. We can consider the relative ordering
or absolute distance of members of the different groups. Future work could explore
explaining model fairness or identifying biases using listwise feature attribution.

4.5 Talent Search: A White Box Example

To demonstrate the application of RankingSHAP and to evaluate the feature attributes
generated by different explanation approaches, we create a synthetic example, revisiting
the talent search case study from the introduction. We design an interpretable model
to estimate the importance of features for various model decisions. This evaluation
framework, known as a “White Box Check,” is widely used in the explainability
community for other ML tasks [152].

In the following sections, we define features and ranking model that we will use as
white box in Section 4.5.1. We then describe the experimental setup in Section 4.5.2 and
examine various queries modeling different types of model decisions in Section 4.5.3.
These queries demonstrate the practical use of listwise feature attribution and qualita-
tively evaluate three feature explanation approaches. In Section 4.5.4, we show how to
use RankingSHAP to zoom in on individual documents and compare it to a pointwise
explainer. We conclude with a detailed discussion in Section 4.5.5.

4.5.1 Model design

We design a model using 5 features indicating whether a candidate meets general
job requirements, the university the candidate graduated from, skill and experience
levels, and average graduation grade. This model ranks candidates for various academic
degree-required scenarios, aiming to mimic biases in trained models.

Detailed feature information is in Table 4.1. The model favors candidates from
UNiepotism and disadvantages those from unipeg-nias- A flowchart is in Figure 4.1a in
Section 4.1. The ranking score is determined as follows:

2We use the negative rank to maintain consistency with higher values being more desirable, explaining
why a document ranks high (low rank) rather than low.
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Table 4.1: Candidate evaluation criteria for running example

Feature Description

Requirements Binary value 4 € {T,F} indicating if the candidate meets
the job’s minimum requirements.

Experience Relevant work experience on a scale zeyp, € [0, 1] (1=exten-
sive experience, O=none)

Skills Skill fit on a scale zgq € [0, 1], (1 = perfect match, 0 = no
relevant skills)

University Institution where the candidate obtained their degree, xy;.

Grades Mean graduation grade, Zgrade, With range depending on the
university.

 Normalize the grade norm(Zgade, Zuni), scaling it so that the minimum possible
grade is 0 and the maximum is 1, to make grades from universities with different
grading schemes comparable.

* Calculate the sum of T, Texp, and NOIM(Z grade, Tuni)-

* For candidates from university,, ias» apply a negative bias by multiplying the
score by 0.9.

* If the candidate does not meet the job requirements, multiply the score by 0.25, ef-
fectively placing them at the bottom of the list. Candidates from universityepqtism
are exempt from this penalty.

Candidates are ranked by their scores, with the highest at the top. We then investigate
different queries with RankingSHAP to identify biases and compare attribution values
to other explanation approaches.

4.5.2 Experimental setup

The main goal of this Section is to showcase the usage of RankingSHAP and demonstrate
the need for listwise, as opposed to pointwise, explanations and feature attribution rather
than feature selection. Therefore, we compare RankingSHAP to the pointwise SHAP
explainer, PointwiseSHAP (averaged over all candidates), as well as to the Greedy
feature selection approach from [199]. The latter iteratively adds features to an initially
empty set based on their marginal contribution to the Kendall’s tau objective from
Eq. 4.5 until the contribution becomes non-positive or the explanation size reaches
2. Section 4.6 contains a more complete empirical comparison with a comprehensive
set of baselines, including RankLIME [42] and ShaRP [162]. For background data,
we sample 100 candidates from uniform distributions over the possible feature values
defined in Section 4.5.1. Detailed feature values and candidate lists for each query are
provided in Appendix 4.A.
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Figure 4.2: Feature attribution values for different query scenarios from Section 4.5.3.

4.5.3 Listwise evaluation across query scenarios

We define scenarios to demonstrate feature attribution for contrastive ranking explana-
tions and evaluate them. We present 5 query scenarios: three in the main body and two
in Appendix B.3 We discuss the setup, candidate constellation, estimated feature impor-
tance ¢MmpPreqmr for some features on the overall ranking, and evaluate the explanation
approaches. In this part of our analysis RankingSHAP uses Kendall’s tau explanation
objective from Eq. 4.5 to explain the overall order of the candidates.

Average query

Description. This query includes candidates from universities with the same grad-
ing scheme, only some meeting the requirements, but none from universitypeg_pias OF
UNIVersity e ofiom-

Importance. Since no exceptions for candidates from biased institutes apply and grades
are within the same scheme, we expect impyq to be high, as hiding this feature could
change the ranking significantly. We also expect impyy; to have a positive but smaller
value since a change of university for all candidates causes ambiguity for the evaluation
of the grade.

Evaluation of Feature Attributes. Figure 4.2(a) shows attribution values/selected
features (bars with length 1). Both RankingSHAP and PointwiseSHAP identify x4 as
an important feature and assign a positive value to x,,;. The greedy feature selection
approach only selects the university feature.

Qualified query

Description. Similar to the average query, but only candidates meeting the requirements.
The model can ignore x4 without bias.

3An extended appendix including these additional results is available at https://github.com/
MariaHeuss/RankingShap/blob/main/Paper_RankingSHAP.pdf.
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Importance. While impy,; should still be assinged a positive value, imp;q should be
assigned a lower value than before as x4 is irrelevant for these candidates.

Evaluation of the feature attributes. Figure 4.2(b) shows that Greedy and Ranking-
SHAP correctly assign a low value to the 4. PointwiseSHAP is not able to identify
that the feature that is most important for attaining a high ranking score for each indi-
vidual document, x4, is not important for this specific query. Furthermore, we notice
that RankingSHAP assigns higher values to other features, that are now important to
distinguish between the candidates.

Negative bias query

Description. Similar to the average query, but with an additional candidate from uni-
Versityneg-bias having the best overall profile. The model has a negative bias towards this
university.

Importance. We expect impyy; to be higher due to the bias.

Evaluation of the feature attributes. In Figure 4.2(c), both RankingSHAP and Greedy
are able to identify the negative bias towards one candidate by correctly assigning a
higher attribution value to x,,; than for the average query, while PointwiseSHAP is not.

4.5.4 Highlighting feature importance for the rank of individual
documents

In this section we zoom in on individual documents and the role of different features
on the placement of that documents. For this analysis we use the exposure-based
explanation objective from Eq. 4.8, highlighting the impact that the different features for
the ranking model have on the exposure of the individual candidates. We compare to the
attribution values generated by PointwiseSHAP for the specific document in question.
We investigate two of the scenarios in more detail, the results for the other scenarios
can be found in Appendix B.* Claims made in this subsection on the relative qualities
of the candidates can be confirmed with Table 4.A.1 in Appendix 4.A.

Qualified query

Since the university and requirements are the same for all candidates, a recruiter
might be interested in which features were particularly important for ranking them.
RankingSHAP provides more contrastive insight into the strengths of a document than
PointwiseSHAP. For example, RankingSHAP highlights the skill feature as negatively
impacting the third candidate’s exposure. If a recruiter is more interested in grades,
Figure 4.3(a) allows them to make an informed decision to invite the candidate regardless
of the model prediction. In contrast, PointwiseSHAP provides similar attribution values
for each candidate and does not highlight the grades of the third-ranked candidate as a
redeeming quality.

4An extended appendix including these additional results is available at https://github.com/
MariaHeuss/RankingShap/blob/main/Paper_RankingSHAP.pdf.
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Figure 4.3: Feature attribution values, for RankingSHAP with the gg*” @ exposure
objective defined in Section 4.4.3 and Pointwise SHAP for individual candidate in the
ranked list.

Biased query

The listwise feature attribution analysis of RankingSHAP from Figure 4.2 shows high
importance of the university feature for this query, warranting further investigation.
Figure 4.3(c) and (d) demonstrate that RankingSHAP can identify the unfair treatment
of the third-ranked candidate due to their university, unlike PointwiseSHAP.

455 Discussion

The contrastive use of feature attribution. We define the estimated feature importance
used in this section’s evaluation in a contrastive way, comparing them to other queries as
well as to other explanation objectives. Prior work [150] suggests that attribution values
are hard to interpret in isolation; contextualizing them with other model decisions aids
understanding. The use of different explanation objectives makes feature attribution
particularly effective for ranking models: since a model decision involves a complex
interplay of various decisions about the relative ordering of documents, contrasting
different aspects of the decision allows us to uncover nuances that led to a specific
model decision.

Using RankingSHAP to identify biases. By comparing attribution values of different
queries, we can identify instances where a feature expected to be of moderate importance,
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such as z,;, impacts the decision more than anticipated. For example, in the biased
query, we can detect hints of bias in the explanations in Section 4.5.3. Zooming in on
what features are most important for the model to provide the individual candidates
with exposure in Section 4.5.4, we see that RankingSHAP identifies the candidate that
got negatively effected by the model bias, as well as qualities that might still speak for
them.

Pointwise vs. listwise ranking explanations. From our synthetic example we see that
simply using a pointwise explanation approach to explain listwise ranking decisions fails
to consider interactions between the feature values of different documents. Features that
are important for a high ranking score are assigned a high attribution value, independent
of whether they are important for the relative ordering of the list.

Selection is not attribution. While feature selection can be a useful tool for understand-
ing ranking models, more nuanced explanations are sometimes necessary to interpret
model decisions. Even if the selection approach correctly identifies the most important
features, a feature attribution approach is needed to gain detailed insight into the relative
importance of the features impacting for example model bias.

Limitations of white box check evaluation. We acknowledge the limitations of the
qualitative evaluation in this section due to the subjective nature of estimated impor-
tance, the synthetic experiment setup, and the limited number of queries investigated.
Nevertheless, this section is crucial for providing insights into using listwise feature
attribution methods like RankingSHAP. To complement this qualitative evaluation, we
will quantitatively compare RankingSHAP to a broad range of baselines in Section 4.6.

4.6 Quantitative Feature Attribution Evaluation

The quantitative evaluation of explanations is a difficult task [135]. In contrast to usual
machine learning tasks, where labeled data to benchmark different models can be used
for the evaluation, for explanations there is nothing like a ground truth explanation.
Evaluating feature attribution values in particular is challenging, leading to prior work
on evaluating feature attribution often defaults to evaluating the feature selection of the
top-k features instead [176]. We will follow this strategy, by defining Preservation and
Deletion Checks [152] for listwise explanations. We pose the following two research
questions on the correctness/completeness of the explanations: (RQ4.1) Are explana-
tions generated with RankingSHAP faithful to the model decision in terms of overall
order of the documents? And (RQ4.2) Can RankingSHAP identify features responsible
for the distribution of exposure in the ranked list? We describe our experimental setup in
Section 4.6.1, our evaluation framework in Section 4.6.2, and our experimental results
in Section 4.6.3.

4.6.1 Experimental setup

Datasets

Following [199] we consider two datasets from LETOR4.0 [165]. MQ2008 consists
of 800 queries with pre-computed query-document feature vectors of dimension 46.
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The MSLR data set consists of 10k queries with query-document feature vectors of
dimension 136. For both, we use the train-val-test split of foldl and evaluate the
explanations on the test data.

Ranking model

We use the LightGBM [110] to train a listwise ranker with LambdaRank, using NDCG
as metric.

Listwise explanation objectives

To provide additional evidence for the flexibility of RankingSHAP we use two different
explanation objectives: RShapK uses Kendall’s tau objective from Eq. 4.5 to identify
features important for the overall ordering of candidate documents. RShapW employs
the weighted rank difference objective g* from Eq. 4.6 to prioritize documents ranked
higher by the model.

Baselines

We consider the following baselines:
Random: Random feature attribution, normalized.

PWSHAP Previously used as a baseline in [199], we take the mean over the pointwise
SHAP values of the top-5 documents.

PWLime: The mean over the pointwise attribution values generated with LIME of the
top-5 documents.

Greedy: A greedy feature selection approach from [199]. The authors iteratively add
features with the biggest marginal contribution to the initially empty explanation set
until a set size of k is reached.

RLime: Listwise LIME for rankers, inspired by RankLLIME [42]. Perturbation is done
on each feature of each document independently. Since we are interested in listwise
explanations, we report the mean of feature attribution values over all documents.

ShaRP As discussed in Section 4.2, parallel to the work in this chapter, Pliatsika
et al. [162] generate feature attribution explanations with SHAP for input features
of individual documents, rather than the ranked list as a whole. We use the “Rank
Quantity of Interest” for our implementation as it is closest in idea to our Kendall-tau
based implementation of RankingSHAP. We use the mean of the individual document
explanations to get listwise explanations.

Implementation details

All approaches, except Random, use background data for masking or perturbing input
features. For MQ2008, we sample 100 random samples from the training data; for
MSLR10k, we sample 20 to compensate for higher feature dimensions. For evaluation,
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we sample a different set of 100 background samples for both datasets. We use the
KernelSHAP implementation from the SHAP library [136] for RankingSHAP, PW Shap
and ShaRP and the TabularExplainer from the LIME library [171] for PWLime and
RLime, all with default settings.

4.6.2 Experimental evaluation

Due to the lack of ground truth attribution values and evaluation frameworks for rankers,
we use the deletion and preservation check strategy [152] from other machine learning
tasks, adapted for ranking. A good explanation should replicate the original model
output when non-explained features are masked (Preservation check) and significantly
alter the output when important features are removed (Deletion check).

Both checks measure the impact of masking features on the model output, evaluated
by a function v. We sample masking values b from background data B to substitute for
non-explained features, resulting in re-ranked lists 7 p:

Preservation(e) = Epup[v(Teb)] -

Similarly, the deletion check applies the mask to the features included in the explanation.

For ranked list outputs, we use Kendall’s similarity 7 with the original ranked
list 7, hence v (7ep) = T(m, 7). These checks align with the validity and com-
pleteness criteria in [199]. Additionally, we evaluate the alignment of the generated
explanations with the original model by measuring the exposure difference between
each candidate ranked with the original input and the masked input; v<®-diff (Tep) =
> der | exp(rank(d|r)) — exp(rank(d|7.p))|. We conduct evaluations at explanation
sizes of 1, 3, 5, 7, and 10 and report the mean values over all evaluated queries.

Note that in this approach, we evaluate feature selection explanations as subsets of
features, not attribution values. For feature attribution explanations, we use the top-k
features.

4.6.3 Results

The results with the deletion and preservation checks are presented in Figure 4.4.

(RQ4.1) Are explanations generated with RankingSHAP faithful to the model
decision in terms of overall order of the documents? To address this research question,
we evaluate the correctness (how well the explanation aligns with the model’s decision)
and completeness (how much relevant information is captured in the features with
the highest attribution values) of the explanations. The preservation check with rank-
similarity measures how well the ranked list can be reconstructed using only the most
important features identified by each explanation approach. As shown in Figure 4.4 (a),
only the Greedy baseline outperforms RankingSHAP, which is expected since Greedy
is designed to maximize this metric through feature selection explanations. Conversely,
the deletion check (b), which involves removing the features with the highest attribution
values, reveals that RankingSHAP outperforms all baselines, including the Greedy
and all pointwise baselines. These findings are consistent for the MSLR dataset, as
illustrated in Figure 4.4 (c) and (d). Overall using an explanation size of 10 features, we
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Figure 4.4: Preservation (a, c, e, g) and Deletion Check (b, d, f, h). Only features
top-k of the explanations are kept/ masked. For the Kendall 7 measure, higher numbers
represent higher similarity with the original rank, so for the Preservation check higher
is better while for the Deletion check lower is better. For the exposure-base measure, it
is exactly the other way around since lower numbers represent exposure closer to the
original one.

achieve approximately 0.7 rank similarity for the MQ2008 data and 0.6 rank similarity
for the MSLR-10k data. In contrast, the rank similarity drops to less than 0.2 and
0.4, respectively, when removing these 10 features with the highest attribution values
from the model input. Thus, we answer our first research question in the affirmative:
RankingSHAP is capable of faithfully explaining the model decision.

(RQ4.2) Can RankingSHAP identify features responsible for the distribution of
exposure in the ranked list? We compare explanation approaches using the Preser-
vation Check (Figure 4.4 (e) and (g)) and the Deletion Check (Figure 4.4 (f) and (h)),
alongside the exposure difference metric v®P4 from Section 4.6.2. The Preservation
Check indicates that the exposure difference decreases for all explanation approaches as
the explanation size increases. RankingSHAP and the Greedy approach perform best
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in the Preservation Check, reducing the exposure difference by 1/2 to 1/3 compared
to the random baseline. In the Deletion Check, RankingSHAP clearly outperforms all
other approaches, producing an exposure difference 3 to 5 times greater, depending on
the dataset, when the most important features identified by RankingSHAP are omitted,
as opposed to random features. These findings provide evidence that RankingSHAP
effectively identifies features responsible for the distribution of exposure in a ranked
list, thus positively answering the research question.

4.6.4 Reflections

Using different explanation objectives for focusing on different aspects of the rank-
ing decision. The performance difference between the two versions of RankingSHAP,
each with distinct explanation objectives, highlights RankingSHAP’s ability to empha-
size different aspects of the ranked list for specialized explanations. A listwise similarity
objective, like Kendall’s tau in RShapK, identifies features critical for the overall rank-
ing. Conversely, an objective like the weighted rank difference in WShapK focuses on
the top of the ranked list, improving faithfulness for top documents, as evidenced by
exposure-based evaluation. Hence, when using RankingSHAP for generating ranking
explanations, it is crucial to carefully consider which aspects of the ranking decision
should be elucidated.

Using SHAP advances in RankingSHAP for enhanced interpretability. Since we
define RankingSHAP as a wrapper around SHAP, it is possible to apply improve-
ments developed for SHAP to RankingSHAP. This allows for the use of numerous
advances in the field, such as handling correlated features [1], increasing the efficiency
of SHAP [102, 107], and making adjustments to the sampling of background data [83],
or the weighting of different coalitions when calculating SHAP values [118]. Some of
these advances can be applied directly to RankingSHAP, although future research will
need to investigate how easily transferable these improvements are to the ranking task.

4.7 Conclusion

In this chapter, we have defined the concept of listwise feature attribution for ranking
tasks, allowing flexible and contrastive examination of ranking decisions through a list-
wise explanation objective. We show that our proposed approach RankingSHAP results
in delivering faithful feature attributions and RankingSHAP can aid in meaningfully
understanding model decisions and detecting biases.

However, we note that RankingSHAP has limitations, including high computational
costs for high-dimensional input spaces and the challenge of interpreting SHAP values,
which may not always align with human expectations [116], potentially lacking con-
trastiveness [148], and it can be susceptible to adversarial attacks [201]. Additionally,
SHAP assumes uncorrelated features, leading to unrealistic out-of-distribution data if
ignored [1]. Some of these limitations have been addressed in prior literature, and due
to RankingSHAP’s structure as a SHAP wrapper, these improvements could potentially
be applied to RankingSHAP (see Section 4.6.4).
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For future work, we see the need for a more thorough evaluation framework that
goes beyond faithfulness. Furthermore, future research should examine whether using
listwise SHAP attribution values in a contrastive manner can bridge the gap between
mathematically well-defined explanations and practical applications in real-life scenar-
ios.

Data and code. To facilitate reproducibility, code and parameters are available at
https://github.com/MariaHeuss/RankingShap.

Conclusion to Chapter 4

This chapter addresses research question RQ C: “How can we generate listwise ranking
explanations for listwise ranking models?”. We have formally defined listwise feature
attribution by focusing on one specific aspect of ranking decisions at a time. By
implementing RankingSHAP as a wrapper around SHAP, a well-established feature
attribution approach in other domains, we develop a Shapley value-based method for
generating listwise ranking explanations. Our approach uses the listwise explanation
objective to explain specific aspects of the ranking decision, thereby providing an answer
to research question RQ C: We can use RankingSHAP to generate listwise ranking
explanations for listwise ranking models.
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Appendices

4.A Appendix A

Here we include the explicit set-up of the simulated example from Section 4.5. In
Table 4.A.1 we give an overview over all candidates that were used for the different
query scenarios. The different universities have different grading schemes, which the

Table 4.A.1: Feature values for the individual candidates.

candidate experience skills grades university req

qual-1 0.8 0.55 3.5 UNiy True
qual-2 0.7 0.75 33 Uiy True
qual-3 09 0.8 3 Uiy True
non-qual 0.7 0.7 3 Uiy False
privileged 0.8 0.6 3.6 UNipep False
qual-net 0.7 0.9 8 Ui peq True
qual-ger 0.8 0.8 1 UNiger True
qual-biased 0.8 0.7 3.6 UNipjas True

models from Figure 4.1 depends on. Table 4.A.2 shows an overview over the different
universities that are used in the query scenarios. We show the best possible and the
worst passing grade as well as whether the biased model is biased towards the university
in question. Those candidates were then used for different queries. Which candidates

Table 4.A.2: Comparison of grading schemes and model bias across universities.

university  highest grade lowest grade model bias

UNiyg 4 1 None
UNipep 4 1 Positive
UNipjae 4 1 Negative
Ui ger 1 4 None
UNip e 10 6 None

were used for what queries can be found in Table 4.A.3. The table entries indicate the
rank of the candidate for the biased ranker, with 0 indicating that they were not included.
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Table 4.A.3: Query-candidate matrix - numbers indicate the rank for the biased ranker,
0 that they were not considered.

candidate average nepotism qualified internat. biased
qual-1 2 3 3 0 3
qual-2 1 2 2 0 2
qual-3 0 0 1 2 0
non-qual 3 4 0 4 4
privileged 0 1 0 0 0
qual-net 0 0 0 3 0
qual-ger 0 0 0 1 0
qual-biased 0 0 0 0 1
(d) Nepotism (e) International
req I I I I [—
5] ==
. | — |
uni | s— | —
ora d [E— I I Greedy
= ' PWShap
. | |
skills [ - 0 RShap
exp | | —
! = ! =
—0.5 0 0.5 —0.5 0 0.5

Attribution values
Figure 4.B.1: Feature attribution values for different query scenarios from Section 4.5.3.

4.B Appendix B — Simulated Experiment — Additional
Results

Here we present additional results for the simulated experiment for some more query
scenarios, as well as for the unbiased model from the flowchart in Figure 4.1b.

4.B.1 Additional query scenarios
Nepotism query

Description. For this query, one additional candidate from university, sy, With good
records for i, Texp and Tgrage is considered, but lacking some of the job requirements.
Importance. As we know, the model has picked up on a bias in the data, favoring
candidates coming from university,.,qs,, Which coincidentally or not is the same
university that some people that made past hiring decisions graduated from. Hence,
for this query we estimate impq to take a smaller value, and impuy,; to take a higher
importance value.

Evaluation of the feature attributes. In Figure 4.B.1(d) we see that all approaches
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correctly pick up on the bias towards university, s, by assigning a high value to z;,
while assigning a low value to/ not selecting the usually important req.

International query

Description.This query considers candidates from universities with different grading
schemes. Most candidates meet the job requirements, and none are from university, .,
or universityneg_bias

Importance. For this query we estimate impy,; to take a higher value than for the
average query. Since candidates from universities with different grading schemes
are compared, knowing which university the candidate went to is important for the
interpretation of the grades.

Evaluation of the feature attributes. By comparing Figure 4.B.1(e), with the plot for

the average query from Figure 4.2(a) we see that RankingSHAP is the only approach
assigning x,,; a higher value than for the average query.

4.B.2 Unbiased model explanations

The bar chart in Figure 4.B.2 shows the feature attribution values from the three
considered approaches from Section 4.5.2 for the same query scenarios as defined in
Section 4.5.3. Comparing the attribution values of different models for different query
scenarios like in Figures 4.B.1 and 4.B.2 can help us with selecting the least biased
model when we have a choice of models of similar performance.

4.B.3 Additional per candidate analysis

Here we provide additional results of the per candidate analysis from Section 4.5.4,
which can be found in Figures 4.B.3 and 4.B 4.
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Figure 4.B.2: Feature attribution values of the unbiased model for different query
scenarios
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Figure 4.B.3: Feature attribution values, for RankingSHAP with the g]l'“”k exposure
objective defined in Section 4.4.3
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in the ranked list.
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Correctness 1s not Faithfulness in
Retrieval Augmented Generation
Attributions

In the second chapter of Part II on interpretability in advice-giving systems, and thereby
the last technical chapter of this thesis, we move away from explaining ranking sys-
tems toward another component of responsible advice-giving. We examine retrieval
augmented generation (RAG) systems that, in addition to retrieving and sorting docu-
ments with respect to relevance scores, interface with human users through a chat-based
interface operated by a large language model.

Recent progress in the field of LLMs has made RAG systems more attractive
for enabling easy and customized interaction with information. However, while the
ever-growing complexity of LLMs enables them to perform impressive tasks, their
decision-making processes are notoriously difficult to interpret.

Self-explanations such as chain-of-thought, in which the model generates a reason-
ing chain that explains the final answer, or, in the case of RAG, citations that explain
the origin of certain pieces of information, might help shed light on parts of the answer
generation process. However, such self-explanations should only be trusted when they
are faithful to the answer generation process; in other words, when they accurately
reflect the internal model processes that led to the generation of the answer.

This leads us to ask the following research question:

RQ D Do RAG citations faithfully reflect the source of the information used in the
answer generation process?

Note: In this chapter we use A as notation for the set of candidate documents, as
opposed to D from prior chapters.

This chapter was published as J. Wallat, M. Heuss, M. de Rijke, and A. Anand. Correctness is not
faithfulness in RAG attributions. In ICTIR 2025: The 15th International Conference on the Theory of
Information Retrieval. ACM, July 2025.
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5.1 Introduction

Recent years have shown great improvements in LLMs and a steep increase in the
adoption of chat systems for different tasks, such as information access. They can
improve information accessibility through their interactive nature, the possibility to
interact with information in a foreign language or the use of simple language. The
adoption of these systems spans lots of different societal applications, ranging from
healthcare [240] and legal systems [186] to education [108]. Trustworthiness of Al
systems is key to their responsible deployment and usage in high-stakes scenarios,
particularly in such high stakes domains [95, 101].

A critical challenge in these systems are hallucinations, where large language
models (LLMs) generate plausible but incorrect or fabricated information, potentially
undermining their reliability and disproportionately affecting vulnerable populations
who may rely on these systems for critical information access [9].

One promising approach to address hallucinations is enabling text generation
that is explicitly grounded in retrieved source documents and accompanied by cita-
tions [24, 166] which is often operationalized through retrieval augmented generation
(RAG). RAG employs a two-step process: first, retrieve relevant documents and then
use them to generate answers. While citations cannot eliminate hallucinations, they
enhance verifiability by explaining the origin of information [133]. This grounded
text generation approach [74] has been successfully applied to various NLP tasks,
including summarization and question answering. Recent implementations of RAG
mechanisms [126] ensure that content remains coherent, contextually relevant, and
anchored in verifiable sources [24].

In this chapter, we investigate the faithfulness of citations in RAG, examining
whether cited documents genuinely contribute to the answer generation process or
are merely superficially referenced. We conceptualize citations as a form of LLM
(self-) explanation that should give insight into the source of generated information,
analogous to how chain-of-thought explanations reveal a model’s reasoning process.
This analogy raises important concerns, as recent research [39] has demonstrated that
even reasoning models, that should benefit from coherent chains of thought, frequently
exhibit unfaithful behavior by omitting crucial information from their reasoning chains
that was evidently used in generating answers.

Current evaluation practices for attributed text focus primarily on two aspects: the
correctness of the answer and the correctness of citations, which is based on the
agreement between attributed statements and the information found in referenced source
documents. Citation correctness, sometimes called answer faithfulness [77], measures
the extent to which cited documents support a generated statement.

We argue that ensuring mere correctness is insufficient for reliable information
retrieval systems. This is particularly evident in domains such as legal information
retrieval [142] and medical question answering [123], where documents are complex
and responses are vulnerable to model biases. In these contexts, simple fact-checking or
correctness evaluation may prove inadequate, requiring instead a nuanced understanding
of document content. Both unwarranted trust and excessive skepticism toward model
outputs can have significant consequences.

Moreover, research has shown that the presence of explanations can paradoxically

84



“Model Question:

‘ModeT ~ ) )
/, Memory \ ‘What is the capital
) of Germany?

“ModeT Question:
Model ~ 4 )
/, Memory  \ What is the capital
of Germany?

Berlin is Germany's
capital

Berlin is Germany’s

capital

1
Berlin : German
\ VARV
capital ‘
SN2 NG}

Berlin : German

A ARVAA

o epital )
~--

Retrieved docs Retrieved docs

I
Bonn: no longer
capital

AT ~ Question: AT ~ Question:

. g . , f .

¢ Memory th{‘ is the capital Berlin is Germany’s ¢ Memory What is the capital Berlin is Germany’s
of Germany? capital of Germany? capital

Berlin : German Berlin : German
M 4 ‘\ capital

~a -

Vs

~o -

Retrieved docs Retrieved docs

Bonn : German
al

Bonn:
<

Figure 5.1: Different answer scenarios for the query “What is the capital of Germany?”
(a) The ideal case, i.e., a correct citation that is faithful to the answer’s generation
process. (c) A correct but unfaithful citation, where the model post-rationalizes a
citation to fit its prior. (b) A citation referring to the context that was used during the
answer generation but does not contain the statement itself. (d) An incorrect citation.

increase user trust, even when these explanations are misleading [181], particularly in
hard to assess tasks where output verification is challenging. To address this concern,
we need to understand the model’s reasoning process to verify that it correctly used
the cited documents rather than answering from its parametric memory through post-
rationalization, where models may cite sources to fit preconceived notions rather than
genuine retrieval. We introduce the term citation faithfulness to describe whether the
citation accurately reflects the model’s reasoning process. Figure 5.1 illustrates the
differences between faithful and unfaithful behavior as well as correct and incorrect
citations.

When building trustworthy IR systems that offer self-explanations — in this case,
citations — we should strive to convey the system’s decisions accurately. Only if the
produced citations are faithful to the underlying processes can we enable justified trust
(as opposed to misplaced trust if faithfulness breaks down).

Our contributions are threefold: First, we offer coherent notions of attribution and
citation in the context of grounded generation and introduce the concept of citation
faithfulness. Second, we propose desiderata for citations that go beyond correctness
and accuracy and are needed for trustworthy and usable systems. Third, we emphasize
the need to evaluate the faithfulness of citations by studying post-rationalization. Our
experiments reveal the existence of unfaithful behavior, with up to 57% of citations
being post-rationalized.

Our work on disentangling citation correctness and faithfulness in grounded text
generation using LLMs aims to create more reliable IR systems by ensuring accurate
and contextually faithful citations. By focusing on post-rationalization, we enhance

85



Question Question ————> DB Question ————>» DB Question ————> DB

g g

LLM LLM LLM
find find
Answer —n) DB Answer —n) DB Prompt:
support support X D4
please cite .
the sources l
Attributed Answer Attributed Answer Attributed Answer Attributed Answer

Figure 5.2: Different methods of attribution generation, using information from the
database (DB) at different stages of the generation pipieline. The likelihood for un-
faithful behavior and post-rationalization decreases from left to right.

accountability, helping IR systems avoid propagating biases or misinformation, thus
promoting ethical standards in information dissemination and ensuring these systems
effectively serve all users, regardless of their technical expertise or background.

5.2 Related Work

We summarize relevant background and position our work w.r.t. risks of LLMs, the
evaluation of attributed generation, faithfulness in interpretability, and faithfulness of
self-explanations. The area of knowledge conflicts [236] examines information flow
and whether answers originate from parametric memory or the contextual [153, 227].
Its goal of understanding models is similar, but has a different focus (full answers vs.
citations) and is therefore out of scope.

5.2.1 Risks of LLMs

Recent work in the field of responsible Al has identified numerous risks associated
with the deployment of LLMs in real-world applications. These risks span multiple
domains, from security vulnerabilities and susceptibility to adversarial attacks [233],
environmental concerns [172], and challenges related to the trustworthiness of these
systems and their alignment with social norms, values, and regulations [134]. This
chapter focuses on the risk of unreliable or incorrect information being presented as
authoritative and trustworthy. LLMs are known to produce hallucinated information
that may be inconsistent with real-world facts or entirely unverifiable [129]. These
fabricated “facts” can become sources of misinformation, since the presence or absence
of citations can influence users’ trust in the presented content [177]. The risk of misin-
formation becomes particularly concerning when considering demographic variations
in susceptibility. Research has shown that certain population groups, including younger
individuals, those with lower levels of education, and racial minorities, are especially
vulnerable to health misinformation [151]. This vulnerability is particularly troubling
given the increasing use of LLMs in high-stakes domains such as healthcare, where
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misinformation has long been a significant concern among public health practitioners
and researchers [41, 204]. The expansion of LLM applications into sensitive domains
such as emotional support, financial advice, medical advice, and legal assistance [90]
raises additional concerns. For instance, the use of LLMs for self-diagnosis purposes
has been identified as a potential new vector for health misinformation [16]. These
applications highlight the critical need for robust safeguards and regulatory frameworks.
Current regulatory efforts, such as the EU Al Act, attempt to address these risks, though
some argue that existing frameworks are inadequate for the challenges posed by gen-
erative language models [89]. Although legislative frameworks may need refinement,
the documented risks associated with LLM-powered information systems underscore
the technical community’s responsibility to anticipate potential failures and develop
responsible solutions. Our work in this chapter aims to contribute to that effort by
examining post-rationalization and unfaithful citations in LLM-powered advice systems
which might become sources of misinformation.

5.2.2 LLMs and attributions

Supplying LLM-generated answers with attributions aims to improve the quality of the
generated answers [76], reduce hallucination [211], and improve users’ trust [147] in
the generated outputs. Methods for generating attributed answers range from prompting
[76], adding post-hoc attributions [76, 210], and training paradigms [14, 34, 147, 210,
244] to generation-planning for more fine-grained citations [202]. Figure 5.2 provides
an overview of common methods. The simplest method is generate-then-retrieve (GTR),
a paradigm in which a model produces an answer (without attributions), and supporting
evidence is added in a subsequent step [24, 76]. Retrieve-then-generate (RTG) operates
similarly, but the model produces the (unattributed) answer after seeing both the question
and the retrieved documents. As with GTR, RTG produces attributions in a second
retrieval step, independent of the initially retrieved documents [244]. Thus, both GTR
and RTG have post-hoc attributions, which are unfaithful to the model by design, i.e.,
the citation does not reflect the model’s decision-making during the answer generation
process. It is, however, possible to directly generate attributed answers by prompting
the RTG model to do so [24, 76]. The resulting attributed answer may be faithful to
the model’s decision process, but we lack guarantees. As we show below, there is
a significant chance of unfaithful behavior. The ultimate goal of attributed answer
methodologies is to verify that certain information in the answer originates from the
source document.

5.2.3 Evaluation of attributed generation

Attributed generation is a complex process that requires evaluation across multiple
dimensions. One dimension is the usability of the generated response, which includes
factors like fluency and perceived utility [133]. Traditionally, these factors have been
assessed through user studies and automatic evaluation methods [76]. Other important
dimensions include answer relevance, which measures how well the response addresses
the question, and context relevance, which looks at the compactness of the retrieved
context [66]. Datasets like HAGRID [106] are useful for evaluation, with human

87



evaluations of the informativeness and attributability of the responses, which can be
used to measure overlap with gold citations [57]. Weller et al. [229] use the QUIP-Score,
a method based on n-gram comparisons, to measure grounding and quoting from model
pre-training data.

Next to the generated answer, the citation to the referenced document needs to be
evaluated, too. To this end, prior work often uses natural language inference (NLI)
classifiers [24, 75]. These help evaluate citation precision, which measures the average
correctness of citations, and comprehensiveness/citation recall, which quantifies the
proportion of accurately cited statements in all statements [57, 127]. The correctness of
citations is a major focus in prior work [4, 57, 77, 127, 143, 166, 178, 180, 256]. We
differentiate between citation correctness and the related but distinct aspect of citation
faithfulness. Citation faithfulness requires a causal relationship between the cited
document and the generated statement, an area that has so far received little attention.

5.2.4 Faithfulness in interpretability

In retrieval-augmented generation (RAG) attributions, (citation) faithfulness has not
been studied much. In contrast, the evaluation of faithfulness of explanations has been
studied extensively. Here, faithfulness refers to how accurately an explanation reflects
the model’s decision-making process, clearly differentiating it from explanation plausi-
bility [100]. It lacks a universally accepted formal definition and is often defined in an
ad-hoc manner [139]. Faithfulness establishes a causal relationship. Various methods
have been proposed for evaluating faithfulness: (i) axiomatic evaluation, (ii) predic-
tive power evaluation, (iii) robustness evaluation, (iv) perturbation-based evaluation,
(v) white-box evaluation, and (vi) human perception evaluation [139]. Twelve desir-
able properties of explanations have been identified by Nauta et al. [152], including
correctness (of explanations), which is equated with faithfulness. Overall, the concepts
of faithfulness and correctness appear entangled in the explainability literature. We take
a step towards disentangling those two aspects for attributed text. Inspired by Lyu et al.
[139], we consider the causal relationship between the attributed text and generated
answer to be a fundamental condition of faithful attribution.

5.2.5 Faithfulness of LLM self-explanations

Self-explanations are explanations that an LLM is prompted to generate along with the
answer to a posed question. Self-explanations have been divided into (i) chain-of-thought
(CoT) reasoning, which involves generating a sequence of intermediate steps that lead
to the response [228], (ii) token importance, which highlights tokens that significantly
influence the response generation [128, 235], and (iii) counterfactual explanations,
which provide insights into how different inputs might lead to a different response [7].
Faithfulness of self-explanations has recently received attention [7, 121, 138, 213?
], with work on evaluating faithfulness [121, 213] and its importance in contrast to
plausibility [7]. There is high variation in how much LLMs use CoT on different tasks,
some relying upon it heavily, others merely generating it in a post-hoc manner [121].
Recent work on evaluating the faithfulness of reasoning models reveals that even models
explicitly trained for reasoning tasks exhibit an astonishing level of unfaithful CoT
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reasoning [39, 44]. We view attributed generation that generates citations along with
the text, rather than post-hoc, as a special class of self-explanation. We use a similar
evaluation strategy as was previously used for the evaluation of faithfulness for CoT
explanations [213] to show that similar faithfulness concerns arise for attributed genera-
tion as for CoT reasoning. We identify the problem of post-rationalization, which is
closely related to post-hoc reasoning [121].

5.3 Attributions

RAG systems provide a way of grounding LLM-generated answers in documents that
are retrieved from a corpus. By ensuring high quality of information in the corpus, this
can improve the quality of the generated answers. RAG operates in two stages, where
the first stage retrieves documents that match the information need/query of the user,
and the second stage uses the retrieved documents to generate an answer. In the context
of attributed text generation in RAG, an answer may be accompanied by references
to documents, emphasizing that certain information originates from the referenced
document. Merriam-Webster defines the verb fo attribute as explaining by indicating a
cause, emphasizing the causal nature.'

5.3.1 Notation

Let A = {a;}; be a set of retrieved documents and let s be a text snipped a factual
statement that needs to be grounded in the retrieved documents A. A citation cit : s —
a; € A, or simply (s, aj), connects a statement to a document that supports the stated
statement. We use the term attribution to refer to the referenced document a; or the
process of referencing source documents.

Question: Whats the biggest penguin in the world?
Answer: The Emperor Penguin [0] is the tallest [0] or biggest penguin in the
world.

In Example 1, “tallest” would be a factual statement s attributed to document @ = 0
through the citation (“tallest”, 0). We note that many attributed statements are under-
specified. Therefore, we distinguish between the statement (“tallest”) and the underlying
claim (“Emperor penguin: tallest: in the world”). Ideally, a citation should map claims
to documents, but it is currently operationalized as statement to document, which can
cause problems of misalignment between those two.

When attribution generation is integrated with answer generation, citations can be
considered a form of self-explanation, others being chain-of-though explanations [228],
explain-then-predict and predict-then-explain frameworks [27], and counterfactuals [38].

https://www.merriam-webster.com/dictionary/attribute#h2
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5.3.2 Desiderata for good attributions

Here we define several dimensions that can make attribution good or bad (Overview in
Table 5.1).

Table 5.1: Desiderata for good attributions.

Desideratum Description

Correctness The attribution accurately represents
the content of the cited document.

Faithfulness The attribution accurately represents
how the model derived its answer.

Appropriateness The attribution is relevant and mean-
ingful, not noisy or irrelevant.

Comprehensiveness The attributions cover all the key
points in the answer.

Correctness. Most importantly, good citations should be correct, meaning that the cited
documents should support the generated statement. Ensuring correctness in attribution
is crucial for maintaining the integrity and reliability of the information being presented.
However, there are several ways in which the outputs of an LLM can be right or wrong.

Wrong answers. A direct way in which an LLM-generated answer can be wrong is if
the statement itself is wrong, not matching the ground truth answer. This is the property
that is evaluated most frequently in the open-domain QA and attribution literature [e.g.,
24, 57, 126]. Wrong answers can result from hallucinations or correct attributions from
a document containing false information. Therefore, an answer can be wrong despite
having proper citations.

Hallucinated attributions. Attributions that do not exist, i.e., when a model hallucinates
a reference to a non-existing document, are relatively easy to spot. LLMs without a
retrieval component, such as the early versions of ChatGPT, especially, commonly
generate broken links or hallucinate titles and authors of the source document from
which certain information should come.

Wrong citations. Attributions can be incorrect, for example, by misrepresenting
the content of the attributed documents or by attributing claims from document a
to document b. In these cases, the citation (s,b) is incorrect. Compared to answer
correctness, less work focuses on the correctness of attributions. Attributions are usually
evaluated by testing if the attributed document implies the statement. To do so, recent
work employs NLI models [24, 57, 75].

Appropriateness & comprehensiveness — What do we cite? Besides unfaithful
behavior and incorrect attributions, bad citations may (appear to) be inappropriate
or non-comprehensive and, therefore, dilute our understanding or evaluation of the
answer. Appropriateness of attributions means that the attribution should be relevant,
understandable, and meaningful; comprehensiveness refers to covering all the key points
in the answer. The question of how much we need to cite and whether attributions cover
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the important claims are less prominent in current evaluations frameworks, but these
aspects may heavily skew the results of other evaluation metrics like correctness.

Question: how long was gabby in a coma in the choice
Answer: In the novel [0, 4] the choice [0, 3, 4], Gabby is in a coma for three
months.

Inappropriate citations. In Example 2, neither citation offers much value given the
question. Attributing the title “the choice” provided in the question to documents 0,
3, and 4 offers no additional insights. On the contrary, when evaluating the quality of
the provided citations, common approaches average over all existing citations. A large
number of such low-value citations, which re-state information from the question, may
heavily skew the evaluation metrics.

Short statements — What is the actual claim? Capturing a comprehensive, standalone
statement in an LLLM-generated response that maintains its specificity even when
separated from the rest of the text can be a complex task. The statement is often reduced
to a single word or concept, subtly referring to other parts of the generated response. In
our example, it remains ambiguous as to what the highlighted word “novel” pertains
to (i.e., the actual claim). This lack of clarity makes interpreting and evaluating such
references more challenging.

For which statements do we need a citation? An answer may contain several citations,
but one may be missing for the factual answer to the question. In the above example, the
focus of the question is the time that Gabby spent in a coma (“three months”). This is
the most critical statement in the answer and should be attributed to a source document.
The above answer is not comprehensive since a central requested fact is not attributed
to any source.

Faithfulness — Right for the wrong reason? Can an attribution be correct and still be
bad? Like model explanations, attributions can be right for the wrong reason. To judge
whether an attribution is right for the wrong reason, it is key to understand the internal
model processes and understand whether a document a was considered during answer
generation. If a is cited for another reason, then the attribution is not faithful to the
underlying model behavior. Importantly, unfaithful attributions might still be factually
correct and, therefore, difficult to spot — yet unfaithful attributions foster misguided
trust.

Post-rationalization. We hypothesize that post-rationalized attributions are a special case
of unfaithful behavior. In this setting, an LLM’s parametric memory produces an answer
to the question, and the model looks for support in the documents in some shallow way
(e.g., by token-matching). The resulting citation is not faithful since the attribution
superficially maps to a document, while using the model’s internal knowledge. Let us
consider Example 3.
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Question: What is the capital of Germany?
Answer: The capital of Germany is Berlin [1, 2]

Document 1: The capital of Germany is Berlin [...]
Document 2: Berlin has the best night-life [...]

Faithful (right for the right reason): Citing document 1 because the LLM
used document 1’s information to generate the answer.

Post-rationalized but correct (right for the wrong reason): Citing document 1
because the model knows the answer and finds a document that agrees with its
priors.

Post-rationalized and wrong: Citing document 2 because the model knows the
answer, and the answer token is mentioned in document 2.

Since the outputs in the faithful and unfaithful cases are identical (citing document 1),
unfaithful behavior is hard to identify. We propose that a comprehensive evaluation
of faithfulness must consider both the attributions themselves and the process through
which they are derived. Given that citation faithfulness and correctness have often
been conflated in previous research, we provide a detailed discussion and definition of
citation faithfulness in Section 5.4.

5.4 Citation Faithfulness

The Cambridge Dictionary defines faithful as “true or not changing any of the details,
facts, style, etc. of the original”? In explainability literature, a “faithful explanation
should accurately reflect the reasoning process behind the model’s prediction” [100].
Lyu et al. [139] further clarify that faithfulness establishes causality, distinguishing be-
tween “what is known by the model” and “what is actually used in making predictions.”

Prior work on attributed answer generation defines answer faithfulness as the extent
to which the cited document supports the generated statement [256]. Answer faithfulness
considers the answer itself rather than the citation. In the context of the citation, this
property is often called the correctness of the citation. In this chapter, we define
citation faithfulness and disentangle the concepts of answer faithfulness/correctness
and citation faithfulness. Prior work on attributed answers often has defined faithfulness
loosely, for example, as “whether the selected documents influence the LLM during the
generation” [164]. We take inspiration from the rich literature on the faithfulness of
explanations and define the faithfulness of citations through a casual dependency of the
generated answer and referenced document.

2https://dictionary.cambridge.org/us/dictionary/english/faithful
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Let s be a generated statement underlying claim c. Let A = {a;}; be a set of
documents that the model has retrieved as context. We call (s, a;) a faithful
citation if:

*a; € A,
* The underlying claim c is supported by a; (correctness), and

* cis causally impacted by a;.

The second condition, often referred to as the “correctness” of the citation, has been a
focal point in previous studies evaluating RAG attribution. Correctness usually tests
whether a statement or claim is supported by the attributed document (measured by
NLI models). However, while correctness is a necessary condition for faithfulness, it is
insufficient. For a citation to be deemed faithful, the model must also rely causally on
the cited document to generate the answer in a way that the flow of information goes
from the document to the generated claim. The evaluation of this causal dependence of
the model output on the cited statement has been largely overlooked, which is why we
advocate for increased attention to the topic in future research.

We recognize that our definition of faithfulness is somewhat abstract. As Lyu et al.
[139] observe, formulating a concrete definition with a single, comprehensive test to
evaluate explanation faithfulness remains an open challenge — one that extends beyond
our field to explanation methods in general. Thus, a set of more tangible necessary
conditions with corresponding tests should be established in practice. These can assist in
approximating the level of faithfulness of specific explanations. Consider the following
examples of more concrete necessary conditions for faithful attribution. For a citation
(s, a) to be considered faithful, the following should hold:

(1) If the relevant information in the cited document a is altered, the model should
either provide a different generated statement s or modify the decision-making
process. This could involve using different evidence a’ or the model’s memory to
generate the answer.

(2) Adding irrelevant documents to the context should not affect the attribution, pro-
vided that the answer remains unchanged.

In Section 5.5, we design and implement an experiment to test the second necessary
condition, providing empirical evidence for post-rationalization. While the first con-
dition might offer broader insights into model faithfulness, testing it directly would
require a deeper understanding of the model’s internal decision-making process. Current
analytical techniques are insufficient for this level of investigation. Therefore, we leave
this analysis to future work.
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5.5 Post-Rationalization — A Study of Unfaithful Behav-
ior

We study attributions of a prominent RAG model and produce evidence of unfaithful
behavior. As Jacovi and Goldberg [100] argue, faithfulness, as opposed to plausibility,
should not be measured through human evaluation. Therefore rather than doing a human
study to evaluate the quality of the citation self-explanations, we deploy a test based
on input-output relationships. We investigate a particular case of unfaithful behavior,
post-rationalization, i.e., the process in which a model generates a prior answer from
model memory without regard to the documents and then searches retrieved documents
to find supporting evidence.
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Figure 5.3: Statistical analysis of citations performed by Command-R+ on NaturalQues-
tions.

5.5.1 Setup

Cohere’s COMMAND-R+ model is a “RAG-optimized” LLM specifically trained to
produce grounded answers.? It has 104B parameters and a context length of 128k tokens,
which we use in 4-bit quantization to run on a single NVIDIA A100 GPU. We evaluate
COMMAND-R+’s attributions on the NaturalQuestions QA dataset, containing 1,444
real user questions answered by Wikipedia pages [117]. We use the temporally-aligned
KILT [160] Wikipedia dump* as a retrieval base. Following [49], we split passages
into chunks of 100 tokens and prepend the title of the page to the chunks. We index
the resulting chunks and, for each query, retrieve the top 30 documents using BM25.
We rerank the 30 retrieved documents using ColBERT v2 [183] and feed the top 5
documents together with the question into COMMAND-R+-.

We use the grounded generation prompt template provided by Cohere.> The
grounded generation pipeline with COMMAND-R+ follows four steps: (i) predict
the relevance of the retrieved documents; (ii) predict which documents should be
cited; (iii) produce an answer without citations, and (iv) one with citations. This setup
makes COMMAND-R+ a retrieve-then-generate (RTG) model with direct attributions

3https://cohere.com/blog/command-r-plus-microsoft-azure
4Available here: https://huggingface.co/datasets/facebook/kilt_tasks.
Shttps://huggingface.co/CohereForAl/c4ai-command-r-plus
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Figure 5.4: Number of cited documents and position of the cited documents in the input.

via prompting (see Figure 5.2). We selected an instance from this class of models since
its chances of faithful behavior are higher than in the case of post-hoc attributions.

5.5.2 Citing behavior

As an initial step, we study the answers and attributions performed by COMMAND-R+.
Figure 5.3 provides an overview. The model produces relatively short answers with on
average 2.4 sentences and roughly five citations per answer. The cited spans (statements)
have a median length 4 tokens and are, therefore, relatively short. Further looking at
individual documents (Figure 5.4), we see that COMMAND-R+ cites on average 3
documents for a given statement, with almost equal frequency of 1-5 documents being
cited. We also find 76 instances where the model did refrain from answering and,
therefore, cited nothing. With regard to the position of the cited documents, we observe
a tendency to citing the first documents. The first document is cited more than twice as
much as the fifth document. However, since we order the input documents by reranking
scores, it is to be expected that the earlier documents are more relevant.

To better understand COMMAND-R+’s grounded generation process, we also in-
vestigate whether the model cites the documents it predicted to be relevant and to be
cited (step 1 and 2, c.f. Section 5.5.1). We present the results in Table 5.2. While it
is expected that the model does not cite all documents it predicted to be relevant, it is
somewhat surprising that it only cited 46% of the documents it predicted to be cited. In
the remaining 54%, the model cited either nothing, fewer documents, or some docu-
ments it did not predict to be cited (1%). We hypothesize that the model was specifically
trained to cite only the documents selected in the earlier processes. Furthermore, we
did not find the model hallucinating attributions (e.g., citing document IDs other than
the five retrieved documents). Nevertheless, the large mismatch between the documents
predicted to be cited and the actual citations lets us question the faithfulness of the
model’s attribution behavior.

5.5.3 Unfaithful attributions

We devise the following experiments to better understand the extent to which COMMAND-
R+ post-rationalizes citations. One possible way of post-rationalization could be finding
documents to cite by token matching, so we (i) generate attributed answers for QA pairs,
and (ii) select statements from these answers and append them to other documents.
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Table 5.2: Investigation into the citing behavior of Command-R+. We explore whether
all documents that the model predicted as relevant (step 1 in Command-R+’s grounded
generation) and predicted to be cited (step 2) were cited in the grounded answer (step
4).

Split Pred. Rel. Pred. Cited
Cited all selected documents 636 820
Cited less than all selected 708 522
documents

Cited not selected documents 8 12
Cited nothing 76 76

Since statements are, usually, around 4 tokens, they mostly contain short concepts such
as “Emperor penguin” or “The Choice,” which should not be cited when appearing
without factual context. We append these adversarial statements into three kinds: ran-
dom documents retrieved using BM25 for arbitrary questions, documents predicted to
be relevant in step 1 of Section 5.5.1 but never cited, and documents cited for other
statements in the attributed answer step 4 of Section 5.5.1. The created dataset with
adversarial documents consists of 1,344 QA pairs (random), 702 (relevant but not cited),
and 829 (cited for other reasons). In step (iii) we again generate attributed answers, but
this time with our adversarial documents. In the case that the adversarial document was
created from a random document, we append it to the list of documents in the context.
If the original document was part of the context, we substitute it with the adversarial
one. Lastly, (iv) we observe whether the model now cites our adversarial documents
for the statements selected in step (ii). We operate under the assumption that citing
documents that just randomly contain the statement (“Emperor penguin”) indicates
post-rationalization. This process is also depicted in Figure 5.5.

The results are presented in Figure 5.6. First and foremost, we note that recovering
the old statement in the newly generated answer worked in 63—70% of the cases, while
the generated answer changed at least to some extent in the remainder of the cases. Since
a change in answer statement might reflect a change in the used attention mechanisms
and makes it impossible to compare citations for previously generated statements with
newly generated ones, we discard those cases. This is necessary to understand if the
adversarial document has been cited for the same statement. By injecting the statement
into random documents and passing them to the model, the model cited these documents
in 12% (116/936) cases. Interestingly, the number of adversarial documents cited is
much higher when forging relevant but uncited documents (57%) and documents cited
for different reasons (55%). Based on our results, we conjecture post-rationalization to
be a common phenomenon. We additionally present an examples of COMMAND-R+’s
post-rationalization behavior, citing a random adversarial document below:
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(a) Get attributed answers

‘Who played Apollo Creed
int e};novugRoc —— Carl Weathers [1,2]

) )

(b) Append statement to document

0| 1| 2

w

Add Carl Weathers” to random document 5*

0| 1] 2

(98]

4 0| 1| 2| 3| 4|5

(c) Regenerate attributed answer

Who played Apollo Creed *
in the movie Rocky? Carl Weathers [1,2,5°]

‘012345* 1| 2| 5"

Did the model cite our Carl Weathers [1.2,5"]
adversarial document?
—— 1] 21,5
Post-Rationalized
Figure 5.5: Experimental setup of the post-rationalization experiment. We inject

attributed statements into random documents and regenerate the answer to see if the
model cites unrelated documents when injected with statements.

Example 4: QA pairs with adversarial random documents added

Question: who played apollo creed in the movie rocky

Answer: Carl Weathers [1,2,5*] played Apollo Creed in the Rocky films.
Adversarial Document 5*: 1974 State of the Union Address

The 1974 State of the Union Address was given to the 93rd United States
Congress, on Wednesday, January 30, 1974, by Richard Nixon, the 37th
President of the United States. He said, ”We meet here tonight at a time of great
challenge and great opportunities for America. We meet at a time when we face
great problems at home and abroad that will test the strength of our fiber as a
nation. But we also meet at a time when that Carl Weathers

Are the adversarial documents actually adversarial? Our first experiment is based
on the assumption that adversarial documents, generated by appending statements
to unrelated documents, do not contain the actual claims. If this assumption does
not hold, the model might be able to use the information within the document to
generate the answer, hence the citation referencing this document might in fact be
faithful. Therefore, to verify our estimation of post-rationalization, we examine whether
adversarial documents alone might be sufficient to generate the investigated claims.
Recall from Section 5.3.1 that we differentiate between the text snippet that the citation
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Figure 5.6: Results of the post-rationalization tests. We measure the cases in which
the model cited our adversarial document (which had the previously cited statement
appended). Since we also change the input, the model is not guaranteed to produce the
same statements again. Therefore, we also include the number of cases where we could
match the old statement.

is referencing called statement s (“Carl Weathers” in Figure 5.5) and the underlying
claim c (“Carl Weathers played Apollo Creed in Rocky™). Since statements are typically
quite short (median of 4 tokens, cf. Figure 5.4, right), we do not expect that adding
statements alone provides sufficient context to generate an answer (or claim) using only
information from the adversarial documents. To validate this assumption, we conducted
an additional experiment focusing on instances where the model cites adversarial
documents.

We ran inference using three different context configurations (instead of the full list
of retrieved documents (e.g., [0,1,2,3,4]):

(a) The complete set of originally cited documents for the corresponding statement
(e.g., [1,2] in Figure 5.5).

(b) One randomly sampled document that was originally cited for the corresponding
statement (e.g., [2] in in Figure 5.5).

(c) The adversarial document alone (e.g., [5] in Figure 5.5).

We hypothesize that the model should recover original statements more frequently from
previously cited documents than from adversarial documents, assuming that at least
some of the original citations were faithful to their sources.

The results are presented in Figure 5.7. We found that adversarial documents
alone are only sufficient to recover the statement in 14-21% of cases, varying by
the document type used for adversarial generation. In contrast, contexts containing
cited documents yielded much higher recovery rates of 30-43%. These findings were
somewhat unexpected, as we anticipated higher recovery rates from originally cited
documents and near-zero recovery from adversarial documents.

The relatively low recovery rates from cited documents might stem from the inherent
instability of language generation, as can also be seen in Figure 5.6, where simply adding

98



300 | |/ 1 Total #Advs. docs cited | o973 290 -
(a) Prev. cited
- (b) Indiv. cited
% 200 | ['17 (c) Adversarial a
>
(on
o 116 111 115
“ 100| 100 93 |
57
40
35 35 18
0 T T T
Random Relevant uncited Cited other reasons

Figure 5.7: Frequency of statement recovered when providing different types of context
documents to the model. The bars show the total number of adversarial instances
investigated (green), and the number of recovered statements when all previously
cited documents (pink), only a single cited document (yellow), or only the adversarial
document (orange) is used as context.

irrelevant adversarial documents to the context reduces answer consistency, as well as
the potential existence of unfaithful citations in the original answers.

On the other hand, several factors may explain the non-zero recovery from adversar-
ial contexts: (1) the model might generate answers from its parametric memory and then
match tokens to create citations, though this process is not directly observable; (2) as
shown by Chen et al. [39], reasoning models change their answers based on subtle hints
in prompts without faithfully reflecting these changes in their reasoning — similarly, the
appended statements in our adversarial documents might serve as subtle hints pointing
to plausible answers; and (3) a few adversarial documents may in fact contain the target
claims, although preliminary qualitative analysis suggests otherwise.

Nevertheless, considering the big differences in recovery rate between the adversarial
only setup (c) and the two baselines (a), (b) we conclude that at least most of the
adversarial documents do not contain the claim that is necessary to generate the correct
answer and can hence be considered adversarial.

5.6 Discussion

Citing parametric memory. Our results are the first step toward understanding un-
faithful behavior in RAG systems due to post-rationalization. We focus on attributions,
where a faithful attribution should signify the origin of the corresponding information.
In contrast to past work, which values high citation recall, we argue that statements
that were not generated from context but rather from model memory should not be
accompanied by a citation. If the parametric model memory is used to generate an
answer, a faithful model should either omit the citation or acknowledge their use of
parametric memory rather than attempting to provide potentially misleading citations.
This could for example be done by adding “model memory” as an explicit source,
increasing transparency about the true origin of information.
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The importance of faithfulness evaluation. Our work underscores the importance of
establishing control settings that yield conclusive evidence regarding faithfulness in
model-generated content. Several issues necessitate a principled approach to measuring
faithfulness in future research. The challenges we encountered are reminiscent of those
seen in explainability research within IR and other fields, where ensuring validity in
attribution metrics remains difficult [17, 28, 138]. A lack of ground truth, as well as the
inherently interpretative nature of attribution for RAG systems, presents a challenge
for constructing evaluation criteria that can accurately identify unfaithful outputs. We
suggest using evaluation strategies from explainability in IR, such as deliberate data
contamination techniques [99, 198], model probing to gain first insights into specific
model capabilities [72, 187, 220, 221], or reverse engineering parts of decision process
[35]. However, validating LLM-based attributions introduces new challenges that call
for the development of novel evaluation paradigms. We have proposed a preliminary test
designed to assess faithfulness. This test, however, implicitly assumes that the model
internals, or in other words, where the model looks and based on what it generates the
answer, do not change through the insertion of additional irrelevant documents. To verify
this assumption, an investigation of the model’s internal states during answer generation
would be necessary. Subsequent work could apply recent findings in understanding
internal model processes [25, 64, 81] to the problem of faithful attributions.

5.7 Conclusion

In this chapter, we have demonstrated that citation faithfulness is a crucial yet often
overlooked aspect of reliable information retrieval systems. We have defined desiderata
of faithful attribution and defined and disentangled the notions of citation correctness
and citation faithfulness. We provide empirical evidence of unfaithful citation behavior
through post-rationalization in Command-R+, a state-of-the-art LLM trained for the
RAG task, by measuring the impact of short text insertions into irrelevant documents on
the generated citations. Our investigation reveals that up to 57% of such insertions result
in post-rationalization, highlighting a significant gap between correctness measured
through mere token matching and true faithfulness in citation behavior. This highlights
the importance of evaluating faithfulness, along with correctness, especially in high-
stakes decision-making and decision-support.

Our study has several limitations that warrant careful consideration. First, the
relatively small scale of our empirical analysis may limit the generalizability of our
findings across different contexts. Second, our research builds on the assumption that
citations in Al-generated responses enhance user trust. While there is some initial
evidence that misleading explanations can increase user trust [181], the impact of
misleading citations on user trust still requires further empirical validation. Third, we
acknowledge that a user study would be necessary to empirically measure the actual
impact of misleading citations on information consumption and trust in reliable sources,
particularly among vulnerable populations. Lastly, the conducted experiments raise
several questions that cannot be addressed within the scope of this work, such as the
instances where the adversarial document alone suffices to generate the model’s answer,
as observed in our experiments (Section 5.5).
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These limitations point to several directions for future research. First, larger-scale
studies are needed to validate our findings on post-rationalization and unfaithful attribu-
tion across a more diverse range of language models and datasets. Second, systematic
human studies should investigate how different user groups, particularly vulnerable
populations, interpret and interact with Al-generated citations. Third, researchers should
develop robust evaluation frameworks for algorithmic accountability that specifically
address attribution faithfulness in RAG systems. Finally, there is a need to explore
alternative citation mechanisms that clearly distinguish between information drawn
from model memory versus document-sourced statements.

Conclusion to Chapter 5

Returning to research question RQ D: “Do RAG citations faithfully reflect the source of
the information used in the answer generation process?”, in this chapter we investigated
a state-of-the-art RAG model that was explicitly fine-tuned for the attributed generation
task. We employed adversarial documents that had been specifically designed to trigger
citations while not containing the corresponding supporting statements. This approach
demonstrated that the model relies on superficial textual cues rather than genuine
semantic grounding to generate citations, essentially post-rationalizing citations instead
of anchoring them in the answer generation process.

Based on this counterexample using a state-of-the-art model, we must answer
research question RQ D negatively: RAG citations do not always faithfully reflect the
sources of information actually used during the answer generation process.

While research in this field is advancing rapidly with new LLMs appearing fre-
quently, future investigations of citation faithfulness may require more sophisticated
adversarial methods to demonstrate unfaithfulness or more comprehensive evaluation
frameworks to build evidence supporting faithful citation behavior.

We consider this chapter a foundational step toward developing principled ap-
proaches for evaluating citation faithfulness in RAG systems — a critical requirement
for creating trustworthy systems capable of supporting interactive and customizable
automated advice-giving.
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Conclusions

6.1 Summary of Findings

In this section we take a step back and discuss our main findings across the two parts of
this thesis.

6.1.1 Fairness in ranking systems

The first part of this thesis focused on the fairness of IR systems. In Chapter 2, we took
steps towards answering the first research question:

RQ A Can we define an exposure-fair ranking policy in situations where the expected
exposure distribution is unknown for some rankings?

To answer this research question, in a context where the exposure distribution is un-
known due to inter-document relationships, we formulated the task of fair ranking under
incomplete exposure estimation. We generalized the convex optimization approach for
fair ranking to be applicable to top-k rankings and provided an efficient algorithm that
solves the convex optimization problem. Furthermore, we defined an approach that
re-shuffles documents between ranked lists within the same ranking policy to provide
a fairer ranking policy that mitigates rankings with unknown exposure distribution.
Through careful experimentation on the example of outliers, which have been shown in
past work to impact user exposure to documents, we demonstrated that our approach
can substantially reduce the number of rankings with unknown exposure distribution
that the policy produces. While this does not completely solve the problem, it represents
a significant step toward addressing exposure-fairness in situations where the expected
exposure distribution is unknown for some types of ranked lists due to inter-document
relationships. This provided a positive but partial answer to the first research question:
we can define an exposure-fair ranking policy when exposure distributions are unknown
for some rankings, as FELIX successfully reduces the occurrence of such unknown
rankings, yet it cannot completely eliminate them from the policy, leaving some room
for improvement for future fair policies.

Then, we turned our attention to the task of bias mitigation for a language-based
ranking model by answering the following research question:
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RQ B Can we use the predictive uncertainty of the model prediction to improve ranking
fairness?

We started our investigation by approximating the predictive model uncertainty about
the order of documents in the ranked list with the help of Laplace approximation. We
used these uncertainty estimates to define a method that swaps the ranking positions
of documents with scores that have intersecting confidence intervals if it benefits the
fairness or unbiasedness of the model. We showed empirically that with this intuitive
approach, purely by exploiting the model’s internal uncertainty about the ordering
of documents, we could achieve a better utility-fairness trade-off than any of the
baselines we test against, while remaining very computationally efficient. This lead
us to answering the second research question positively: We can effectively use the
predictive uncertainty of the model prediction to improve ranking fairness.

6.1.2 Explaining advice-giving processes

In the second part of this thesis, we turned to another aspect of responsible advice-giving:
the ability to explain model predictions, thereby enabling monitoring of internal model
processes (including biases), providing a tool for debugging, and giving users more
information to help them decide whether to trust the model output.

Our first research question on this topic concerned explaining ranking models
through feature attribution values:

RQ C How can we generate listwise ranking explanations for listwise ranking models?

Since listwise feature attribution explanations in past literature have not been properly
defined, we started Chapter 4 by rigorously defining listwise feature attribution. For
this, we defined a masking strategy that masks features within all documents simultane-
ously to determine the listwise importance of said feature, and the listwise explanation
objective, which can be used to zoom in on certain properties of the ranked list, giving
us a flexible tool for thoroughly investigating different aspects of the ranking decision.
We defined a method that uses these two building blocks to extend SHAP, a Shapley-
value based approach to explain pointwise (regression/classification) predictions, for the
ranking use case. We introduced two evaluation paradigms to evaluate the explanations
produced by our method against existing feature explanation approaches and show that
our method performs competitively. Hence, we answered RQ C positively: We can
generate listwise ranking explanations through the use of Shapley values.

To conclude this thesis, we investigated citation as a means of explaining the
generated output of a language model that generates grounded answers in a RAG setup
by asking the following research question:

RQ D Do RAG citations faithfully reflect the source of the information used in the
answer generation process?

Since faithfulness and correctness of citations have previously been entangled concepts,
we started Chapter 5 by defining desiderata of good and responsible attribution and
highlighted the difference between citation faithfulness and citation correctness (also
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called answer faithfulness). We introduced the phenomenon of post-rationalization
of citations, where the model, rather than citing documents based on their use during
answer generation, cites them in a post-hoc manner just for the sake of citing related
information. We showed empirically that post-rationalization is a common phenomenon
in state-of-the-art grounded generation, highlighting the need for further research in this
field. We concluded by answering the research question negatively: RAG citations do
not always faithfully reflect the source of information used in the answer generation
process.

6.2 Impact of this Thesis

6.2.1 Questioning standard assumptions in fair information re-
trieval

Any kind of theoretical framework for fair advice-giving systems is built upon fundamen-
tal assumptions about task definitions, data availability, and measurable characteristics.
For instance, group fair ranking approaches (as discussed in Chapter 2) typically as-
sume complete knowledge of document group membership, merit/relevance scores, and
exposure distributions across ranked results. However, these assumptions often fail to
hold in practice, creating uncertainty about the validity and applicability of existing
approaches.

This thesis addresses this challenge by examining two scenarios where standard
assumptions break down. In Chapter 2, we investigated the case of incomplete knowl-
edge about exposure distributions, demonstrating how fair ranking approaches must be
adapted when this foundational assumption is violated. On the other hand, in Chapter 3,
we explored uncertainty in merit assessment, showing how this uncertainty can actually
be leveraged to design effective fairness mechanisms.

These investigations identify a key area for further research in fair ranking research:
moving beyond the assumption that complete information is available or achievable.
The approaches developed here offer both warnings about current methods’ fragility
and practical alternatives that maintain fairness when foundational assumptions fail.
This shift in perspective is necessary for deploying fair information retrieval systems in
practice, where incomplete information is the norm rather than the exception.

6.2.2 Explaining complex model outputs

The explainability literature has predominantly focused on classification and regression
tasks [152], leaving advice-giving processes such as information access systems rela-
tively underexplored. Explaining advice-giving processes presents distinct challenges
due to the complex nature of their outputs. While classification models can be explained
by identifying factors that increase class probabilities, and regression models through
factors that influence prediction scores, advice-giving systems produce inherently more
complex outputs that resist such straightforward analysis.

Consider ranking models, which generate ordered lists rather than single numerical
values. Early efforts to explain these systems have largely adapted existing classification
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and regression techniques, focusing on pointwise explanations that identify factors
contributing to high ranking scores for individual documents. However, this approach
fundamentally misses the contrastive nature of ranking decisions. A document’s ranking
score carries little meaning when considered in isolation. It gains meaning only when
viewed relative to scores assigned to other documents in the ranking process.

In Chapter 4, we addressed this limitation by advocating for listwise explanations
that directly capture how documents influence each other’s positions in ranking deci-
sions. Rather than explaining why individual documents receive high scores, listwise
explanations reveal the factors responsible for the relative ordering of documents within
the ranked list. Since in past literature a formal definition for explanations of ranking
models is missing, we formally defined listwise explanations and showed how an ex-
planation approach commonly used for other tasks, called SHAP, can be extended to
explain specific aspects of a ranking decision.

This work represents an initial step toward principled explanations for information
access/advice-giving systems with complex outputs, such as ranked lists. We anticipate
that future research will build upon this foundation by establishing clear definitions and
theoretical frameworks that enable systematic approaches to explaining the intricate
outputs of those systems.

6.2.3 Highlighting challenges of self-explanations for advice-gi-
ving systems

While recent literature has devoted considerable attention to the trustworthiness and
faithfulness of self-explanations such as chain-of-thought reasoning [7, 39, 44, 121, 138,
213], the trustworthiness of citations, that are frequently employed in RAG systems to
explain the origin of information, has received comparatively little scrutiny. Although
citation frameworks have traditionally focused on evaluating correctness, this metric
alone fails to guarantee that citations accurately represent their information sources, as
we argued in Chapter 5.

Our work in Chapter 5 provided a first investigation into citation faithfulness, moving
beyond simple content matching to examine whether citations genuinely reflect the
sources of information used during answer generation. We revealed that state-of-the-art
models might fail to provide faithful citations, instead generating them post-hoc through
content or token matching rather than accurately tracing the information flow from
source documents or parametric memory during the generation process.

Our findings highlight critical gaps in current evaluation methodologies that fail
to establish causal links between citations and generated answers, underscoring a fun-
damental challenge in developing trustworthy self-explanations. While our approach,
similar to recent work by Chen et al. [39], examines how input modifications affect both
outputs and explanations, such input-output relationship testing has inherent limitations,
it can identify clearly unfaithful behavior but cannot guarantee that passing these tests
means the model’s actual decision process aligns with the provided explanation. More
promising approaches may emerge from recent research examining the internal mecha-
nisms models use during answer generation. So although our evaluation methodology
successfully exposes flaws in current models, it may prove insufficient for detecting
unfaithful citation behavior in more sophisticated future systems. We therefore view this
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work as an important first, but definitely not final, step toward developing LLM-based
advice-giving systems that faithfully provide information sources through citations
rather than mere post-hoc justifications, setting the foundation for future research on
trustworthy Al systems that users can rely on to verify the information they provide.

6.3 Limitations

6.3.1 Notions and definitions of fairness in information retrieval

Fairness is a multidimensional and complex topic that requires careful consideration
of several key aspects [141]: the exact notion of fairness that should be applied, biases
that might exist in the training data, technical biases that might be introduced through
the model’s functionality or presentation of results, and the definition of potentially
disadvantaged groups.

A significant limitation of current fairness research in IR is its heavy reliance
on theoretical assumptions about what constitutes fairness in real-world applications,
without a general consensus on what notion of fairness is appropriate for what use
case [149, 161].

Take, for instance, the concept of fairness of exposure, which assumes that a ranking
policy is fair when documents or document groups receive adequate exposure. However,
the definition of “adequate” varies considerably. Some approaches advocate for disparate
treatment, where exposure should be proportional to the estimated utility [20], while
other notions of fairness consider more impact oriented metrics, accounting for example
for user interaction metrics like click-through rate [193].

The practical implications of these different approaches become clear when com-
paring two ranking policies: one that places only irrelevant documents from one group
at the top while favoring relevant documents from another group, versus a policy that
distributes similarly relevant documents from both groups evenly. While the first policy
might satisfy certain representational fairness criteria such as disparate treatment, the
second policy offers more meaningful opportunities for both groups to receive user
attention.

Group fairness presents additional challenges, such as choosing appropriate aggrega-
tion functions to measure group utility and exposure. Consider a scenario where a single
high-quality document from one group consistently ranks well and receives substantial
exposure, while other relevant documents from the same group remain hidden from
users. Especially in scenarios where exposure benefits have diminishing returns, as
in hiring scenarios (where one candidate can only fill one job at a time), focusing
visibility on one document while hiding other qualified group members fails to achieve
meaningful group fairness.

While this thesis examined the implications of relaxing two common assumptions
in fair ranking systems, that exposure distributions across ranked lists are known
(Chapter 2) and that document merit can be accurately determined (Chapter 3), our
work, like much of the existing literature, still relies on fundamental assumptions on the
definition of fairness that should be applied, which are developed without substantial
input from social science experts. To enhance the practical applicability of fair IR
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research, closer collaboration with social scientists and stakeholders is essential to better
understand what constitutes fair ranking in real-world contexts and how to implement
fairness in advice-giving systems in practice (see, for example, the work by Green [88]
on uniting social and technical aspects of fairness).

Moving forward, user studies examining both the behavioral impact of fairness
interventions and users’ perceptions of bias in ranked lists could provide valuable
insights into the effectiveness of these approaches. Such research would help bridge the
gap between theoretical fairness measures and their practical implications.

6.3.2 Explanation evaluation in information retrieval

The evaluation of explanations remains a fundamental challenge in the field. Unlike
model performance evaluation, which relies on established benchmarks and metrics, cre-
ating ground truth datasets for “correct explanations” of model processes is particularly
challenging. The complexity is further increased by the multiple aspects of explanations
that require evaluation. While Nauta et al. [152] have identified 12 distinct categories of
evaluation approaches across various machine learning tasks, the IR community still
lacks consensus on which aspects are most crucial and how explanations should be
evaluated.

In this thesis, we primarily focused on evaluating the faithfulness of generated
explanations. In Chapter 4, we used a white box ranker to evaluate explanations
by comparing them against our interpretation of the model, taking advantage of our
understanding of its straightforward decision process. We also adapted two widely-used
tests from other domains, the deletion and preservation checks [152], for ranking tasks.
In Chapter 5, we developed an evaluation approach using adversarial documents to
detect unfaithful behavior in model citations.

However, our evaluation approaches only address a fraction of the relevant aspects,
even within the scope of faithfulness itself. Lyu et al. [139] discuss various concrete
aspects of explanation faithfulness and their corresponding evaluation approaches. To
develop a more comprehensive evaluation framework, future research should explore
how existing evaluation methods from related fields, such as NLP and the broader ML
literature, can be adapted for IR and advice-giving tasks. Additionally, researchers must
identify which explanation aspects are particularly important in this context and may
require developing novel evaluation methods.

As models continue to grow in size and complexity, and new explanation techniques
emerge (such as mechanistic interpretability [18]), we will need to regularly update and
enhance our evaluation frameworks. This ongoing refinement is crucial to ensuring that
explanations serve their intended purpose of supporting decision-making, rather than
generating misleading, unreliable, or unnecessary information.

6.3.3 The impact of explanations on user trust

Another common assumption in explainable Al research is that explanations directly
influence user trust. However, this relationship is complex: a plausible but unfaithful
explanation might increase trust inappropriately [181], while a faithful but counterintu-
itive explanation could decrease trust even when the model’s prediction is reliable [7].
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In Chapter 5, we assumed a similar dynamic with citations, where unfaithful citations
may boost user trust in generated answers — a potentially harmful outcome when the
cited information is hallucinated. To better support users in evaluating system-generated
advice, we need a deeper understanding of the relationship between explanations and
trust in advice-giving systems. This includes investigating how to optimally assist users
through explanations in their information-seeking and decision-making process. Future
research should examine this relationship through well-designed user studies that assess
not only how misleading citations immediately affect user trust, but also their lasting
implications over time.

6.4 Vision and Future Directions

6.4.1 Gaining insight into advice-giving systems through modern
interpretability tools

The landscape of advice-giving systems has undergone significant expansion over the
past decades. While traditional search-based tools continue to serve important roles, the
field has broadened to include systems that leverage large language models through RAG
architectures. As we look toward the future, emerging paradigms such as generative
information retrieval [131] may represent yet another addition to this diverse ecosystem.
Each approach within this expanding landscape brings with it distinct requirements for
explanation and interpretation.

Modern advice-giving systems draw upon methodologies from multiple disciplines
such as natural language processing, information retrieval and question answering.
This interdisciplinary nature presents both challenges and opportunities for the field
of explainable systems. The complexity introduced by combining different model
components necessitates explanations that can address the unique characteristics of each
component while providing coherent insights into the system as a whole. Depending on
how these systems continue to develop, we must be prepared to adapt our explanation
frameworks to match the specific approaches and architectures employed.

The introduction of LLM-based advice-giving systems has brought particular chal-
lenges that demand novel explanation methodologies. While traditional approaches
in explainable information retrieval have largely focused on feature importance and
input-output relationships, the increasing complexity of these newer models calls for
more nuanced explanation techniques. The sensitivity of large language models to
subtle variations in input, combined with the inherent instability in their generation
processes, suggests that understanding internal model mechanisms may necessary to
gain insight into the generation process. In this context, recent advances in mechanis-
tic interpretability offer promising avenues for developing deeper insights into model
behavior and decision-making processes.

Looking ahead, the emergence of generative information retrieval [131] as a com-
petitive paradigm could add yet another dimension to our current ecosystem of advice-
giving systems. If such systems prove capable of leveraging parametric memory more
directly, potentially bypassing the explicit retrieval steps that characterize current RAG
approaches, then established frameworks for citation and source attribution, such as
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those discussed in Chapter 5, may require substantial re-conceptualization. This would
necessitate developing entirely new explanation paradigms focused on assessing the
trustworthiness and provenance of information drawn from parametric knowledge. As
these technological advances continue to reshape the landscape of automated advice-
giving, our approaches to making these systems interpretable and trustworthy must
evolve in tandem, ensuring we maintain the ability to understand and validate their
outputs regardless of the underlying approach.

6.4.2 Toward trustworthy model self-explanations

Self-explanations represent a promising avenue for enhancing the transparency and
trustworthiness of model outputs. Different types of self-explanations provide distinct
windows into how models operate: chain-of-thought explanations reveal the step-by-
step reasoning processes, while citations expose the underlying sources that inform the
generated content. However, both recent literature on chain-of-thought explanations
and our investigation of citations in Chapter 5 demonstrate that these explanations are
not consistently faithful, raising fundamental questions about their reliability.

Ensuring faithfulness in self-explanations presents a significant challenge that calls
for research in two key areas: we need better ways to evaluate how faithful explanations
actually are, and we must explore training approaches that encourage models to generate
more reliable self-explanations. Recent work on reasoning models offers promising
insights. When researchers explicitly train models to develop reasoning capabilities,
the resulting self-explanations tend to be more faithful to the underlying processes.
Building on this finding, we hypothesize that training or fine-tuning models specifically
on attributed generation tasks could lead to similar improvements in citation faithfulness.
However, this remains a hypothesis that will require careful empirical testing to confirm.

While self-explanations and citations certainly have their current limitations, they
also bring several notable benefits to the table. For one, they give us valuable insight into
a model’s information sources without requiring significant computational overhead.
Furthermore, they might enhance model performance analogous to how reasoning
capabilities improve responses to complex queries. Perhaps most importantly, self-
explanations have a key advantage over traditional post-hoc explanation methods. Post
hoc approaches must infer model processes from outside observations. In contrast,
self-explanations are generated using the same model and computational processes
as the original outputs, theoretically enabling more authentic representations of the
model’s information processing.

Moving forward, research should prioritize the development of training paradigms
that ensure faithful model self-explanations. Importantly, training should not target
human interpretations of faithfulness directly, as this approach risks teaching models
to simulate rather than genuinely exhibit faithful behavior. Instead, we advocate for
using rigorous evaluation frameworks to identify training methodologies that naturally
promote faithful self-explanations, similar to how reasoning-focused training simultane-
ously improves both model capabilities and the faithfulness of reasoning chains.
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6.4.3 Advancing fair information retrieval through model explain-
ability

A frequently cited motivation for research on explainable or interpretable models is
their potential to help investigate model biases and fairness issues [15, 53]. In Chapter 4,
we demonstrated this concept using a deliberately biased white box model to showcase
how listwise feature attribution can help examine such biases. While some research
exists on using explainability methods to identify dataset and model biases in various
domains [11, 146, 156], there remains a notable gap in research specifically addressing
real-world applications of IR and recommendation systems. On the other hand, current
fairness research in IR frequently assumes prior knowledge of model biases, including
awareness of marginalized groups and group membership characteristics, which in
the real world cannot necessarily be guaranteed, or might even be impossible due to
legislation forbidding the collection of those characteristics [67]. Moving forward,
research should bridge the gap between interpretability and fairness studies, exploring
how explainability techniques can effectively uncover biased or unfair model behavior
and help ensuring fairness in cases where the group membership is unknown.

6.4.4 Responsible advice-giving as a whole

While existing research, including this thesis, has made significant progress in under-
standing individual aspects of responsible advice-giving systems, less attention has
been paid to how these components work together to create a truly responsible sys-
tem. This thesis examined specific elements, such as fair ranking mechanisms and
explainable LLM interfaces for information presentation. However, an advice-giving
pipeline consists of numerous other crucial components: from data curation and in-
dexing to document retrieval, post-processing steps, and various design choices like
document selection thresholds and interface design. Although developing responsible
and interpretable individual components is valuable, we still lack a comprehensive
understanding of how these elements interact and what risks might emerge when we fail
to consider the system holistically. Moving forward, researchers should adopt a more
integrated approach, examining responsible advice-giving systems as complete entities
and studying their overall impact on end users.
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Summary

As artificial intelligence systems become increasingly integrated into our daily lives,
automated advice-giving systems are transforming how we access information and
make decisions. These systems span diverse applications: hiring assistants that filter
job applications, medical search engines that retrieve medical information based on
patient symptoms, and conversational Al that provides advice through natural language
interactions. While these advances create unprecedented opportunities for information
access, they also raise critical questions about responsible deployment. This thesis
addresses two fundamental challenges in responsible advice-giving: ensuring fairness
across individuals and groups, and enhancing explainability to make systems more
interpretable for both developers and users.

Part I: Fairness in ranking systems. The first part of this thesis examines fairness in
ranking models, challenging two key assumptions that undermine current approaches.

First, we address the widespread assumption that user exposure (i.e., user attention)
over ranked documents is known and predictable. In reality, certain ranking configu-
rations, for example those containing visual outliers, produce unpredictable exposure
patterns. Since including such ranked lists in the probabilistic ranking policy would
prevent us from making meaningful fairness guarantees, we develop a method that
reduces the probability of presenting a ranked list with unknown exposure distribution
in the ranking policy. Our approach significantly outperforms existing baselines in
minimizing rankings with unknown exposure distribution, while maintaining system
utility.

Second, we tackle the assumption that document relevance or merit can be perfectly
estimated. In practice, there is always some uncertainty that the model exhibits in
its predictions. We demonstrate that by allowing ranking adjustments within model
confidence bounds, reordering documents based on ranking scores while respecting
uncertainty levels, we can substantially reduce bias in top-ranked results with minimal
utility loss. This work reveals the potential of leveraging model uncertainty to balance
user utility with responsible Al objectives such as fairness, diversity, and reduced bias.

Part II: Explaining advice-giving processes. The second part of this thesis shifts
focus to the interpretability of advice-giving systems.

We investigate how ranking models can be made more interpretable by extending the
notion of feature attribution explanations, which are commonly used in other domains,
to listwise feature attribution for ranking systems. We introduce RankingSHAP as a
concrete instantiation of this approach, demonstrating competitive performance with
existing methods while offering greater flexibility in examining specific aspects of
ranking decisions.

We then address the interpretability in retrieval-augmented generation (RAG) sys-
tems achieved through citations that are generated along with large language model-
generated answers, aiming to explain the source of a generated piece of information.
We introduce the concept of citation faithfulness, requiring that cited sources actually
influence answer generation, and distinguish it from citation correctness, which merely
requires sources to contain relevant information. Through empirical analysis of a state-
of-the-art RAG model, we demonstrate the prevalence of unfaithful citations and reveal
concerning post-rationalization behaviors where models retrospectively justify their
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outputs.

Conclusion and future directions. This thesis advances responsible advice-giving
across multiple dimensions, yet significant challenges remain. Our work highlights
the critical need for thorough evaluation of proposed approaches and careful examina-
tion of prevailing assumptions in current practices. While we have made meaningful
progress on individual components, achieving truly trustworthy and reliable advice-
giving systems will likely require a more holistic perspective that integrates fairness,
interpretability, and other dimensions of responsible Al deployment.
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Samenvatting

Naarmate kunstmatige intelligentiesystemen steeds meer geintegreerd raken in ons
dagelijks leven, veranderen geautomatiseerde systemen die advies geven de manier
waarop we toegang krijgen tot informatie en beslissingen nemen. Deze systemen
omvatten verschillende toepassingen: systemen in werving en selectie die sollicitaties
filteren, medische zoekmachines die medische informatie ophalen op basis van de
symptomen van een patiént, en conversationele Al die advies geeft via natuurlijke
taalinteracties. Hoewel deze ontwikkelingen ongekende mogelijkheden scheppen voor
informatietoegang, roepen ze ook kritische vragen op over verantwoorde implementatie.
Dit proefschrift behandelt twee fundamentele uitdagingen bij verantwoord advies: het
waarborgen van eerlijkheid tussen individuen en groepen, en het verbeteren van de
uitlegbaarheid om systemen beter interpreteerbaar te maken voor zowel ontwikkelaars
als gebruikers.

Deel I: Eerlijkheid in rangschikkingssystemen. Het eerste deel van dit proefschrift
onderzoekt eerlijkheid in rangschikkingsmodellen en stelt twee belangrijke aannames
ter discussie die de huidige benaderingen ondermijnen.

Ten eerste bespreken we de wijdverbreide aanname dat blootstelling van geordende
lijstje van documenten aan gebruikers (en dus gebruikersaandacht) bekend en voorspel-
baar is. In werkelijkheid produceren bepaalde rangschikkingsconfiguraties, bijvoorbeeld
die met visuele uitschieters, onvoorspelbare blootstellings- en aandachtspatronen.

Omdat het opnemen van dergelijke geordende lijsten in bestaande probabilistische
manieren om documenten te ordenen ons beletten om zinvolle garanties over eerlijk-
heid te geven, ontwikkelen we een nieuwe methode die de kans verkleint dat een
geordende lijst met een onbekende verdeling van blootstelling (en dus aandacht) wordt
gepresenteerd. Onze aanpak presteert aanzienlijk beter dan bestaande benaderingen
in het minimaliseren van geordende lijsten met resultaten waarvan de verdeling van
blootstelling en aandacht onbekend is, terwijl de nuttigheid van het systeem behouden
blijft.

Ten tweede pakken we de aanname aan dat de relevantie of waarde van documenten
perfect kan worden geschat. In de praktijk vertoont een model om documenten te orde-
nen altijd enige onzekerheid in zijn voorspellingen. We tonen aan dat door aanpassingen
toe te staan in de ordening van een model die binnen de betrouwbaarheidsgrenzen
van het model vallen, en documenten te herordenen op basis van scores met inacht-
neming van de onzekerheidsniveaus, we de bias in de hoogst geordende resultaten
aanzienlijk kunnen verminderen met minimaal verlies aan nuttigheid. Deze bijdrage
onthult de mogelijkheden van het benutten van modelonzekerheid om gebruikersnut in
evenwicht te brengen met verantwoorde Al-doelstellingen zoals eerlijkheid, diversiteit,
en verminderde bias.

Deel II: Adviesprocessen uitleggen. Het tweede deel van dit proefschrift verschuift de
aandacht naar de interpreteerbaarheid van adviessystemen.

We onderzoeken hoe rangschikkingsmodellen beter interpreteerbaar kunnen worden
gemaakt door het verklaringen van kenmerkattributie, die vaak in andere domeinen wor-
den gebruikt, uit te breiden naar lijstsgewijs kenmerkattributie voor ordeningssystemen.
We introduceren RankingSHAP als een concrete invulling van deze aanpak, waarbij we
resultaten behalen die concurrerend zijn met bestaande methoden en tegelijkertijd meer
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flexibiliteit verkrijgen om specifieke aspecten van beslissingen over rangschikkingen te
sturen en onderzoeken.

Vervolgens behandelen we interpreteerbaarheid in retrieval-augmented generation
(RAG)-systemen die verkregen door middel van citaties die worden gegenereerd samen
met antwoorden die zijn geproduceerd door grote taalmodellen, met als doel de bron
van een gegenereerd stuk informatie te verklaren. We introduceren het concept van
citatiegetrouwheid, waarbij de geciteerde bronnen daadwerkelijk van invloed (moeten)
zijn op de generatie van antwoorden, en onderscheiden dit van citatiecorrectheid, waarbij
bronnen alleen relevante informatie moeten bevatten. Door middel van een empirische
analyse van een state-of-the-art RAG-model tonen we de prevalentie van ontrouwe
citaties aan en onthullen we relevant post-rationalisatiegedrag waarbij modellen hun
uitkomsten retrospectief rechtvaardigen.

Conclusie en toekomstige richtingen. Dit proefschrift verlegt de grenzen van systemen
die op een verantwoorde manier advies geven op meerdere vlakken, maar er blijven
aanzienlijke uitdagingen bestaan. Ons werk benadrukt de dringende noodzaak van
een grondige evaluatie van voorgestelde benaderingen en een zorgvuldige analyse van
de heersende aannames in de huidige praktijk. Hoewel we op individuele onderdelen
aanzienlijke vooruitgang hebben geboekt, zal het realiseren van echt betrouwbare
systemen die advies geven waarschijnlijk een holistischer perspectief vereisen dat eerlijk-
heid, interpreteerbaarheid, en andere dimensies van verantwoorde Al-implementatie
integreert.
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Zusammenfassung

Mit der zunehmenden Integration von Systemen der kiinstlichen Intelligenzn (KI) in
unser tigliches Leben verdndern automatische Beratungssysteme die Art und Weise,
wie wir auf Informationen zugreifen und Entscheidungen treffen. Diese Systeme
umfassen verschiedene Anwendungen: Einstellungsassistenten, die Stellenbewerbun-
gen filtern, medizinische Suchmaschinen, die medizinische Informationen auf der
Grundlage von Patientensymptomen abrufen, und konversationelle KI, die mithilfe
von natiirlicher Sprachinteraktion Ratschlédge erteilt. Wihrend diese Fortschritte nie
dagewesene Moglichkeiten des Informationszugangs schaffen, werfen sie auch kri-
tische Fragen zum verantwortungsvollen Einsatz auf. Diese Arbeit befasst sich mit
zwei grundlegenden Herausforderungen bei der verantwortungsvollen Erteilung von
Ratschligen: der Gewihrleistung von Gerechtigkeit zwischen Einzelpersonen und Grup-
pen und der Verbesserung der Erkldrbarkeit, um Systeme sowohl fiir Entwickler als
auch fiir Benutzer besser interpretierbar zu machen.

Teil I: Fairness in Rankingsystemen. Der erste Teil dieser Dissertation befasst sich
mit der Gerechtigkeit in Ranking-Modellen (Modellen zur Sortierung von Dokumenten
entsprechend ihrer Relevanz), und stellt zwei zentrale Annahmen in Frage, die aktuelle
Ansitze untergraben.

Zunichst diskutieren wir die weit verbreitete Annahme, dass die Sichtbarkeit
geordneter Dokumentlisten fiir Nutzer (und damit deren Aufmerksamkeit) bekannt
und vorhersehbar sei. In der Realitit fiihren bestimmte Ranking-Konfigurationen,
beispielsweise solche mit visuellen Ausreiflern, zu unvorhersehbaren Sichtbarkeits- und
Aufmerksamkeitsmustern. Da die Einbeziehung solcher geordneten Listen in beste-
hende probabilistische Methoden zur Ordnung von Dokumenten uns daran hindert,
aussagekriftige Garantien hinsichtlich der Fairness zu geben, entwickeln wir eine neue
Methode, die die Wahrscheinlichkeit verringert, dass eine geordnete Liste mit einer
unbekannten Verteilung der Aufmerksamkeit priasentiert wird. Unser Ansatz iibertrifft
bestehende Ansitze bei der Minimierung geordneter Dokumentlisten, bei denen die
Verteilung von Sichtbarkeit und Aufmerksamkeit unbekannt ist, erheblich, wahrend
gleichzeitig die Qualitét des Systems erhalten bleibt.

Zweitens befassen wir uns mit der Annahme, dass die Relevanz oder der Wert von
Dokumenten perfekt geschitzt werden kann. In der Praxis gibt es immer eine gewisse
Unsicherheit, die das Modell in seinen Vorhersagen aufweist. Wir zeigen, dass wir
ungewiinschte thematische Farbungen der Top-Ranking-Ergebnisse bei minimalem
Qualititsverlust erheblich reduzieren konnen, durch Anpassungen der Ordnung der
Dokumente innerhalb der Unsicherheit des Modells. Dies zeigt das Potenzial der
Nutzung von Modellunsicherheiten auf, um den idealen Nutzen fiir den Benutzer
mit verantwortungsvollen KI-Zielen wie Gerechtigkeit, Vielfalt und der reduzierter
unerwiinschter Inhalte zu kombinieren.

Teil II: Erklirung der Prozesse der Ratschlagserteilung. Im zweiten Teil dieser
Dissertation wird der Fokus auf die Interpretierbarkeit von ratgebenden Systemen gelegt.

Wir untersuchen, wie Ranking-Modelle interpretierbarer gemacht werden konnen,
indem wir den Begriff der Wichtigkeit von Merkmalen zur listenleise Wichtigkeit
fiir Ranking-Systeme ausweiten. Wir stellen RankingSHAP als eine konkrete An-
wendung dieses Ansatzes vor, die mit bestehenden Methoden konkurrieren kann und
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gleichzeitig mehr Flexibilitit bei der Untersuchung spezifischer Aspekte von Ranking-
Entscheidungen bietet.

AnschlieBend befassen wir uns mit der Interpretierbarkeit in Retrieval-Augmented
Generation (RAG)-Systemen, die durch Zitate erreicht wird, die zusammen mit grof3en
Sprachmodell-generierten Antworten generiert werden, mit dem Ziel, die Quelle einer
generierten Information zu erkldren. Wir fiihren das Konzept der Zitattreue ein, das vo-
raussetzt, dass zitierte Quellen tatsichlich die Generierung von Antworten beeinflussen,
und unterscheiden es von der Zitatkorrektheit, die lediglich voraussetzt, dass Quellen
relevante Informationen enthalten. Durch die empirische Analyse eines modernen
state-of-the-art RAG-Modells demonstrieren wir die Privalenz von untreuen Zitaten
und zeigen die Tendenz des Modells zur nachtriglichen Rationalisierung, bei der sie
ihre Ergebnisse riickwirkend durch Zitate gerechtfertigt werden.

Schlussfolgerung und zukiinftige Richtung. Diese Dissertation bringt die Grenzen ve-
rantwortungsvoller Beratungssysteme in mehreren Dimensionen voran, dennoch bleiben
weiterhin erhebliche Herausforderungen. Diese Arbeit unterstreicht die Notwendigkeit
einer griindlichen Evaluierung der vorgeschlagenen Ansitze und einer sorgfiltigen
Priifung der vorherrschenden Annahmen in der derzeitigen Praxis. Obwohl wir in
Bezug auf einzelne Komponenten bedeutende Fortschritte erzielt haben, erfordert das
Erreichen wirklich vertrauenswiirdiger und zuverlédssiger Beratungssysteme voraus-
sichtlich eine ganzheitlichere Perspektive, die Gerechtigkeit, Interpretierbarkeit und
andere Dimensionen eines verantwortungsvollen KI-Einsatzes beriicksichtigt.
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