
Semantic Characterizations of Navigational XPath

Maarten Marx and Maarten de Rijke

Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands

{marx,mdr}@science.uva.nl

Abstract

We give semantic characterizations of the expressive
power of navigational XPath (a.k.a. Core XPath) in
terms of first order logic. XPath can be used to specify
sets of nodes and sets of paths in an XML document
tree. We consider both uses. For sets of nodes, XPath
is equally expressive as first order logic in two variables.
For paths, XPath can be defined using four simple con-
nectives, which together yield the class of first order
definable relations which are safe for bisimulation. Fur-
thermore, we give a characterization of the XPath ex-
pressible paths in terms of conjunctive queries.

1 Introduction

XPath 1.0 [17] is a variable free language used for se-
lecting nodes from XML documents. XPath plays a cru-
cial role in other XML technologies such as XSLT [21],
XQuery [20] and XML schema constraints [19]. The re-
cently proposed XPath 2.0 language [18] is much more
expressive. It contains variables which are used in if-
then-else, for, and quantified expressions. The available
axis relations are the same in both versions of XPath.
What is missing at present is a clear characterization
of the expressive power of XPath, be it either semanti-
cal or with reference to some well established existing
(logical) formalism. As far as we know, Benedikt, Fan
and Kuper [2] were the first and only to give character-
izations, but only for positive fragments of XPath, and
without considering the sibling axis relations. Their
analysis can rather simply be expanded with the sibling
axis, but adding negation asks for a different approach.
This paper aims at filling this gap.

Characterizations of the kind we are after are useful
in understanding and (re-)designing the language. They
are also useful because they allow us to transfer known
results and techniques to the world of XPath. Vianu [16]
provides several examples to this effect. All charac-
terizations we give with respect to other languages are
constructive and given in terms of translations. An im-
portant issue in such comparisons is the succinctness of
one language with respect to another. We only touch

on this briefly.
We use the abstraction to the logical core of

XPath 1.0 (called Core XPath) developed in [7, 8]. Be-
low we will often speak of XPath instead of Core XPath.
Core XPath is interpreted on XML document tree mod-
els. The central expression in XPath is the location path

axis :: node label [filter],

which, when evaluated at node n, yields an answer set
consisting of nodes n′ such that the axis relation goes
from n to n′, the node tag of n′ is node label , and the
expression filter evaluates to true at n′. Alternatively,
axis :: node label [filter] can be viewed as denoting a bi-
nary relation, consisting of all nodes (n, n′) which stand
in the above relation.

XPath serves two purposes. First and foremost, it
is used to select nodes from a document. This use
is formalized by the notion of answer set. We study
the expressive power of XPath with respect to defin-
ing answer sets in Section 3. Our main result is that
Core XPath is as expressive as first order logic restricted
to two variables in the signature with three binary re-
lations corresponding to the child, descendant and
following sibling axis relations and unary predicates
corresponding to the node tags.

The second use of XPath is as a set of binary atoms
in more expressive languages with variables such as
XQuery. For instance, we might want to select all nodes
x satisfying

∃y(x descendant :: A y ∧(1)

¬ x descendant :: B/descendant :: ∗ y).

That is, the set of all points which start a path without
B nodes ending in an A node. We study this use in
Sections 4 and 5. With respect to the expressive power
of the relations expressed by Core XPath we establish
the following:

1. The set of relations expressible in Core XPath is
closed under intersection but not under comple-
mentation.

2. The Core XPath definable relations are exactly
those that are definable as unions of conjunctive

SIGMOD Record, Vol. 34, No. 2, June 2005 41

queries whose atoms correspond to the XPath axis
relations and to XPath’s filter expressions.

3. The Core XPath definable relations are exactly
those that can be defined from its axis and node-
tag tests by composition, union, and taking the
counterdomain1 of a relation.

The paper is organized as follows. The next section
defines Core XPath. Sections 3 and 4 are about the
expressive power of XPath for selecting sets of nodes,
and selecting sets of paths, respectively. Section 5 es-
tablishes a minimal set of connectives for XPath.

Related work

The paper most closely related to this work is [2], which
characterizes positive XPath without sibling axis as ex-
istential positive first order logic. Similar results, stated
in terms of conjunctive queries are obtained in [9].
Characterizations in terms of automata models have
been given in [3, 15, 13, 14].

Connections with temporal logic have been observed
by [7, 12] which sketch an embedding of the forward
looking fragment of XPath into CTL. [1] exploits em-
beddings of subsets of XPath into computation tree
logic to enable the use of model checking for query eval-
uation. [11] defines an extension of XPath in which ev-
ery first order definable relation can be expressed. Clo-
sure under complementation is the distinguishing prop-
erty of such languages: for expansions of Core XPath,
it is equivalent to having full first order expressivity.
Several authors have considered extensions far beyond
XPath 1.0, trying to capture all of monadic second or-
der logic.

2 Core XPath

[8] proposes a fragment of XPath 1.0 which can be seen
as its logical core, but lacks much of the functional-
ity that accounts for little expressive power. In ef-
fect, it supports all XPath’s axis relations, except for
the attribute and namespace axis relations, it allows
sequencing and taking unions of path expressions and
full booleans in the filter expressions. It is called Core
XPath, also referred to as navigational XPath. A simi-
lar logical abstraction is made in [2]. As the focus of this
paper is expressive power, we discuss XPath restricted
to its logical core.

For the definition of the XPath language and its se-
mantics, we follow the presentation of XPath in [8].
The expressions obey the standard W3C unabbreviated
XPath 1.0 syntax. The semantics is as in [2, 8], in line
with the standard XPath semantics [22].

1The counterdomain of a binary relation R (notation:
∼R) is the set {(x, y) | x = y ∧ ¬∃z xRz}.

Definition 1 The syntax of the Core XPath language
is defined by the grammar in Table 1, where “locpath”
(pronounced as location path) is the start production,
“axis” denotes axis relations and “ntst” denotes tags la-
beling document nodes or the star ‘*’ that matches all
tags (these are called node tests). The “fexpr” will be
called filter expressions after their use as filters in loca-
tion paths. By an XPath expression we always mean a
“locpath.”

The semantics of XPath expressions is given with re-
spect to an XML document modeled as a finite node la-
beled sibling ordered tree2 (tree for short). Each node in
the tree is labeled with a set of primitive symbols from
some alphabet Λ. Sibling ordered trees come with two
binary relations, the child relation, denoted by R↓, and
the immediate right sibling relation, denoted by R→.
Together with their inverses R↑ and R← they are used
to interpret the axis relations. We denote such trees as
first order structures (N, R↓, R→, Pi)i∈Λ.

Each location path denotes a binary relation (a set of
paths). The meaning of the filter expressions is given by
the predicate E(n, fexpr) which assigns a boolean value.
Thus a filter expression fexpr is most naturally viewed
as denoting a set of nodes: all n such that E(n, fexpr) is
true. For examples, we refer to [8]. Given a tree M and
an expression R, the denotation or meaning of R in M

is written as [[R]]
M

. Table 2 contains the definition of
[[·]]

M
.

As discussed, one of the purposes of XPath is to se-
lect sets of nodes. For this purpose, the notion of an
answer set is defined. For R an XPath expression, and
M a model, answerM(R) = {n | ∃n′(n′, n) ∈ [[R]]

M
}.

Thus the answer set of R consists of all nodes which are
reachable by the path R from some point in the tree.

Even Core XPath contains a bit of syntactic sugar.
From Table 2 it is immediately clear that both
following and preceding are definable. Also, the use
of / in front of an expression can be eliminated, as fol-
lows:

/R ≡ ancestor or self :: ∗[not parent :: ∗]/R.

As our analysis considers expressive power, we may
safely assume that these three do not occur in expres-
sions and we do so without mentioning it.

3 The Answer Sets of XPath

We show that on ordered trees, Core XPath is as ex-
pressive as first order logic in two variables over the

2A sibling ordered tree is a structure isomorphic to
(N, R↓, R→) where N is a set of finite sequences of natural
numbers closed under taking initial segments, and for any
sequence s, if s · k ∈ N , then either k = 0 or s · k − 1 ∈ N .
For n, n′ ∈ N , nR↓n

′ holds iff n′ = n · k for k a natural

number; nR→n′ holds iff n = s · k and n′ = s · k + 1.

42 SIGMOD Record, Vol. 34, No. 2, June 2005

locpath ::= axis‘::’ntst | axis‘::’ntst‘[’fexpr‘]’ | ‘/’locpath | locpath‘/’locpath |
locpath ‘|’ locpath

fexpr ::= locpath | not fexpr | fexpr and fexpr | fexpr or fexpr

axis ::= self | child | parent | descendant | descendant or self | ancestor | ancestor or self |
following sibling | preceding sibling | following | preceding.

Table 1: Syntax of Core XPath.

[[axis :: Pi]]M = {(n, n′) | n[[axis]]
M

n′ and Pi(n
′)}

[[axis :: Pi[e]]]M = {(n, n′) | n[[axis]]
M

n′ and Pi(n
′) and EM(n′, e)}

[[/locpath]]
M

= {(n, n′) | (root, n′) ∈ [[locpath]]
M
}

[[locpath/locpath]]
M

= [[locpath]]
M

◦ [[locpath]]
M

[[locpath | locpath]]
M

= [[locpath]]
M

∪ [[locpath]]
M

[[self]]
M

:= {(x, y) | x = y}
[[child]]

M
:= R↓

[[parent]]
M

:= [[child]]
−1

M

[[descendant]]
M

:= [[child]]
+

M

[[descendant or self]]
M

:= [[child]]
∗

M

[[ancestor]]
M

:= [[descendant]]
−1

M

[[ancestor or self]]
M

:= [[descendant or self]]
−1

M

[[following sibling]]
M

:= R+
→

[[preceding sibling]]
M

:= [[following sibling]]
−1

M

[[following]]
M

:= [[ancestor or self]]
M

◦ [[following sibling]]
M

◦ [[descendant or self]]
M

[[preceding]]
M

:= [[ancestor or self]]
M

◦ [[preceding sibling]]
M

◦ [[descendant or self]]
M

EM(n, locpath) = true ⇐⇒ ∃n′ : (n, n′) ∈ [[locpath]]
M

EM(n, fexpr1 and fexpr2) = true ⇐⇒ EM(n, fexpr1) = true and EM(n, fexpr2) = true
EM(n, fexpr1 or fexpr2) = true ⇐⇒ EM(n, fexpr1) = true or EM(n, fexpr2) = true

EM(n, not fexpr) = true ⇐⇒ EM(n, fexpr) = false

Table 2: The semantics of Core XPath.

signature with predicates corresponding to the child,
descendant, and following sibling axis relations.
More precisely, we show that for every XPath expres-
sion R, there exists an XPath filter expression A such
that, on every model M,

(2) answerM(R) = {n | EM(n, A) = true}.

Then, we show that every first order formula φ(x) in
the signature just mentioned is equivalent to an XPath
filter expression A in the sense that for every model M,
and for every node n,

(3) M |= φ(n) if and only if EM(n, A) = true.

First, though, we fix our terminology. We work with
first order logic over node labeled ordered trees in a
signature with unary predicates from Λ = {P1, P2,
. . .} corresponding to the node tags, and with a num-
ber of binary predicates corresponding to “moves” in
a tree. We use the predicates child, descendant and
following sibling. Let FOtree be the first order lan-
guage in this signature. FO2

tree
⊂ FOtree denotes the set

of first order formulas φ(x) in which at most x occurs
free, and which contain at most two variables.

Theorem 2 For every formula φ(x) in FO2
tree

with
unary predicates from Λ, there exists a Core XPath ex-
pression R written with node tags Λ, such that on every
tree M, answerM(R) = {n | M |= φ(n)}, and con-
versely.

Proof. First we show that for any Core XPath ex-
pression R there exists a Core XPath filter expression
A, whose size is linear in the size of R, such that for
each model M,

(2) answerM(R) = {n | EM(n, A) = true}.

Consider an arbitrary XPath expression R. Obtain A
by applying the converse operator (·)−1 as follows:

(S | T)−1 ≡ S−1 | T−1

(S/T)−1 ≡ T−1/S−1

(axis :: Pi[B])−1 ≡ self :: Pi[B]/axis−1 :: ∗,

with axis−1 having the obvious meaning. Then (2)
holds.

Now we can show the easy side of Theorem 2. Let R
be a Core XPath expression and let A = R−1. Apply

SIGMOD Record, Vol. 34, No. 2, June 2005 43

the standard translation well-known from modal logic
(cf. [4]) to A to obtain the desired first order formula.
The translation is just the definition of E from Table 2
written in first order logic.

The hard direction follows more or less directly from
the argument used to show a similar statement for linear
orders, characterizing temporal logic with only unary
temporal connectives by Etessami, Vardi and Wilke [6].
Let φ(x) be the first order formula. We will provide an
XPath filter expression A such that (3) holds. Whence
/descendant or self :: ∗[A] is the desired absolute
XPath expression. The proof is a copy of the one for
linear temporal logic in [6, Theorem 1]. The only real
change needed is in the set of order types: they are
given in the right hand side of Table 3, together with
the needed translations (A′ denotes the translation of
A). The other change is rather cosmetic. For A an
atom, A(x) needs to be translated using the self axis as
self :: A. Thus, for instance, ∃y(y childx∧A(y)) trans-
lates to parent :: ∗ [self :: A]. Translating φ(x), the
result of this process is a filter expression A for which
in any model M, for every node n, EM(n, A) equals true
iff M |= φ(n). qed

We note that, as in [6], the size of the filter expression
is exponential in the size of the first order formula. [6]
shows that this is unavoidable, even finite linear struc-
tures, so also on trees this bound is tight.

The first statement (2) in the above proof shows that
Core XPath is as expressive as its filter expressions.
Interestingly, Core XPath’s filter expressions were in-
troduced already in [5] for exactly the same purpose as
the XPath language: specifying sets of nodes in finite
ordered trees. The only difference is that the language
of [5] does not have the asymmetry between the ver-
tical and the horizontal axis relations: the immediate
left and right sibling relations are also present. [5] pro-
vides a complete axiomatization, in a logic called LOFT
(Logic Of Finite Trees), which might be of interest for
query rewriting.

4 The Paths of XPath

In the previous section, we characterized the answer
sets of XPath. We now turn to the sets of paths that
can be defined in XPath; they too admit an elegant
characterization which we provide here. First, we define
the appropriate first order language.

A conjunctive path query is a conjunctive query of
the form

Q(x, y) :− R1, . . . , Rn, φ1, . . . , φm,

in which the Ri are relations from the signature
{descendant, child, following sibling} and all of

the φi are formulas in FO2
tree

in one free variable. An
example is

Q(x, y) :− z descendantx, z following siblingz′,

z′ descendanty, P1(z), P2(y),

which is equivalent to the XPath expression

ancestor :: P1/following sibling :: ∗/descendant :: P2.

With a union of conjunctive path queries we mean a
disjunction of such queries with all of them the same
two free variables x and y. For example,

descendant :: P2 | parent :: ∗/ancestor :: P1

is equivalent to the union of the two queries

Q1(x, y) : − x descendanty, P2(y).
Q2(x, y) : − z childx, z ancestory, P1(y).

From Theorem 2 and some simple syntactic manipula-
tion we immediately obtain

Proposition 3 Every XPath expression is equivalent
to a union of conjunctive path queries.

The converse also holds, which gives us a characteriza-
tion of the XPath definable sets of paths.

Theorem 4 For every union of conjunctive path
queries Q(x, y) there exists a Core XPath expression
R such that for every model M, {(n, n′) | M |=
Q(n, n′)} = [[R]]

M
.

Proof. By [2] or [9] every positive existential first or-
der formula in two free variables is equivalent to a pos-
itive XPath expression. We can treat the first order
formulas φi in a query as atomic symbols Pi, obtain the
equivalent XPath expression and use (3) to substitute
the Pi by XPath filter expressions which are equivalent
to φi. qed

4.1 Structural Properties of XPath

Benedikt, Fan and Kuper [2] have given an in-depth
analysis of a number of structural properties of frag-
ments of XPath. Their fragments are all positive (no
negations inside the filters) and restricted to the “verti-
cal” axis relations defined along the tree order. All their
fragments allowing filter expressions are closed under
intersection, while none is closed under complementa-
tion. Here, we show that this is also true for full XPath.
From Theorem 4 and Proposition 3 we obtain

Theorem 5 Core XPath is closed under intersections.
That is, for every two Core XPath expressions A, B,
there exists a Core XPath expression C such that on
every model M, [[A]]

M
∩ [[B]]

M
= [[C]]

M
.

44 SIGMOD Record, Vol. 34, No. 2, June 2005

τ(x, y) ∃y(τ(x, y) ∧ A(y))

x = y self :: ∗ [A′]
x child y child :: ∗ [A′]
y childx parent :: ∗ [A′]

x following siblingy following sibling :: ∗ [A′]
y following siblingx preceding sibling :: ∗ [A′]

x descendanty ∧ ¬x child y child :: ∗/descendant :: ∗ [A′]
y descendantx ∧ ¬y childx parent :: ∗/ancestor :: ∗ [A′].

Table 3: Order types and their translation

On the other hand, unfortunately,

Theorem 6 Core XPath is not closed under comple-
mentation.

Proof. Suppose it was. We will derive a contradiction.
Then (1) would be expressible. (1) is equivalent to the
first-order formula

∃y(x descendant y ∧ A(y) ∧

∀z((x descendant z ∧ z descendant y) → ¬B(z))).

A standard argument shows that this set cannot be
specified using less than three variables. This contra-
dicts Theorem 2 which states that the answer set of
every XPath expression is equivalent to a first order
formula in two variables. qed

5 The Connectives of XPath

In this section we look at the connectives of XPath and
argue that they are very well chosen. We disregard the
following and preceding axis relations as well as abso-
lute expressions (those are expressions starting with a
/) as they are just syntactic sugar. What are the con-
nectives of XPath? This question is not trivial. Clearly,
there is composition (‘/’) and union (‘|’) of paths. Then
there is composition with a filter expression (‘[F]’). And
inside the filter expressions all boolean connectives are
allowed. This set can be streamlined as follows. Con-
sider the following definition of path formulas:

(4) R ::= axis | ?Pi | R/R | R|R | ∼R,

for axis one of XPath’s axis relations, Pi a tagname,
and the following meaning for the two new connectives:

[[?Pi]]M = {(x, x) | x is labelled with Pi}
[[∼R]]

M
= {(x, y) | x = y and ¬∃z (x, z) ∈ [[R]]

M
}.

We call this language SCX (short for Short Core
XPath). ?Pi simply tests whether a node has tag Pi.
Thus child :: Pi can be written as child/?Pi. The
unary operator ∼ is sometimes called counterdomain.

For instance, ∼child defines the set of all pairs (x, x)
for x a leaf, and ∼parent the singleton {(root, root)}.

Below we explain why this set of connectives is so
nice. First we show that this definition is equivalent in
a very strong sense to that of XPath.

Theorem 7 There exist linear translations t1, t2 with
t1 : XPath −→ SCX and t2 : SCX −→ XPath such that
for all models M, the following hold:

• for every XPath expression R, [[R]]
M

= [[t1(R)]]
M

,

• for every SCX expression R, [[R]]
M

= [[t2(R)]]
M

.

Proof. Because the counterdomain of a relation R
is definable in XPath as self :: ∗[not R], every relation
defined in (4) can be expressed as an XPath formula.
For the other side, first observe that axis :: Pi and
axis/?Pi are equivalent. As both languages are closed
under composition and union, we only have to show that
all filter expressions are expressible. With the following
equivalences we can extend ? to all filter expressions (cf.
[4, Lemma 2.82]):

?(axis :: Pi) ≡ ∼∼(axis/?Pi)
?(axis :: ∗) ≡ ∼∼(axis/(?Pi | ∼?Pi)

?(axis :: Pi[A]) ≡ ∼∼(axis/?Pi/?A)
?(not A) ≡ ∼?A

?(A and B) ≡ ?A / ?B
?(A or B) ≡ ?A | ?B.

A simple semantic argument shows the correctness of
these equations. qed

So we can conclude that the “true” set of XPath connec-
tives consists of testing a node tag, composition, union
and counterdomain. This set of connectives between
binary relations is closely connected to the notion of
bisimulation, as exemplified in Theorem 8 below. Be-
fore we state the result, we need a couple of definitions.

For P a set of tag names, and R a set of relation
names, let BP,R denote the P, R bisimulation relation.
Let D, D′ be first order models and BP,R ⊆ |D| × |D′|,
with |D| denoting the domain of D. We call BP,R a P,R
bisimulation if, whenever xBP,Ry, then the following
conditions hold, for all relations S ∈ R,

SIGMOD Record, Vol. 34, No. 2, June 2005 45

tag x and y have the same tag names, for all tag names
in P ;

forth if there exists an x′ ∈ D such that xSx′, then
there exists a y′ ∈ D′ such that ySy′ and x′BP,Ry′;

back similarly for y′ ∈ D′.

Let α(x, y) be a first order formula in the signature with
unary predicates P and binary relations R. We say
that α(x, y) is safe for P, R bisimulations if the back
and forth clauses of the bisimulation definition hold for
α(x, y), for all P, R bisimulations. In words, if α(x, y) is
safe for bisimulations, it acts like a morphism with re-
spect to bisimulations. It is easy to see that all relations
defined in (4) are safe for bisimulations respecting the
node tags and the atomic axis relations. The other di-
rection is known as Van Benthem’s safety theorem (see
[4, Theorem 2.83]):

Theorem 8 (Van Benthem) Let α(x, y) be as above.
If α(x, y) is safe for P, R bisimulations it can be defined
by the grammar in (4).

Why is this result so important? XPath is a language
in which we can specify relations between nodes, and in
several applications it is used in this way. Theorems 8
and 7 together guarantee that XPath is in a well defined
sense complete: every relation which is safe for bisimu-
lations respecting node tags and XPath’s axis relations
can be defined in XPath.

6 Conclusions

We have given semantic characterizations of naviga-
tional XPath in terms of natural fragments of first or-
der logic. Besides that, we looked at the connectives of
XPath and argued that they are nicely chosen. We con-
clude that the navigational part of XPath is a very well
designed language. On ordered trees it corresponds to
a natural fragment of first order logic. This holds both
for the sets of nodes and the sets of paths definable in
XPath.

The only negative aspect we discovered concerning
XPath is that it is not closed under complementa-
tion. Thus first order logic is more expressive than
XPath, both in defining sets of nodes and sets of paths.
Marx [10] showed that expanding XPath with condi-
tional axis relations3 yields expressive completeness for
answer sets. Marx [11] shows that the same language is

3A conditional axis relation is of the form
(child :: ntst[fexpr])∗ which denotes the reflexive and tran-
sitive closure of the relation denoted by child :: ntst[fexpr].
Using this we can express the set of nodes in (1) by

self :: ∗[(child :: ∗[not self :: B])∗/child :: A].

also complete for expressing every first order definable
set of paths.

Acknowledgments

We want thank Loredana Afanasiev, Jan Hidders, and
Petrucio Viana for valuable feedback. Maarten Marx
was supported by the Netherlands Organization for
Scientific Research (NWO), under project numbers
612.000.106 and 017.001.190. Maarten de Rijke was
supported by grants from NWO, under project num-
bers 365-20-005, 220-80-001, 612.069.006, 612.000.106,
612.000.207, 612.066.302, 264-70-050, and 017.001.190.

References

[1] L. Afanasiev, M. Francheschet, M. Marx, and M. de Rijke.
CTL Model Checking for Processing Simple XPath Queries.
In Proc. TIME 2004, 2004.

[2] M. Benedikt, W. Fan, and G. Kuper. Structural properties
of XPath fragments. In Proceedings. ICDT 2003, 2003.

[3] G. Bex, S. Maneth, and F. Neven. A formal model for an ex-
pressive fragment of XSLT. Information Systems, 27(1):21–
39, 2002.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[5] P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof
system for finite trees. In CSL’96, pages 86–105, 1996.

[6] K. Etessami, M. Vardi, and Th. Wilke. First-order logic
with two variables and unary temporal logic.

[7] G. Gottlob and C. Koch. Monadic queries over tree-
structured data. In Proc. LICS, Copenhagen, 2002.

[8] G. Gottlob, C. Koch, and R. Pichler. The complexity of
XPath query evaluation. In PODS’03, pages 179–190, 2003.

[9] G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries
over trees. In Proc. PODS, pages 189–200, 2004.

[10] M. Marx. Conditional XPath, the first order complete
XPath dialect. In Proc. PODS’04, pages 13–22, 2004.

[11] M. Marx. First order paths in ordered trees. In T. Eiter
and L. Libkin, editors, Proc. ICDT 2005, volume 3363 of
LNCS, pages 114–128, 2005.

[12] G. Miklau and D. Suciu. Containment and equivalence for
an XPath fragment. In Proc. PODS’02, pages 65–76, 2002.

[13] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformers. In Proc. PODS, pages 11–22. ACM, 2000.

[14] M. Murata. Extended path expressions for XML. In Proc.
PODS, 2001.

[15] F. Neven and T. Schwentick. Expressive and efficient pat-
tern languages for tree-structured data. In Proc. PODS,
pages 145–156. ACM, 2000.

[16] V. Vianu. A Web odyssey: from Codd to XML. In Proc.
PODS, pages 1–15. ACM Press, 2001.

[17] W3C. XML path language (XPath): Version 1.0.
http://www.w3.org/TR/xpath.html.

[18] W3C. XML path language (XPath): Version 2.0.
http://www.w3.org/TR/xpath20/.

[19] W3C. XML schema part 1: Structures.
http://www.w3.org/TR/xmlschema-1.

[20] W3C. XQuery 1.0: A query language for XML.
http://www.w3.org/TR//xquery/.

[21] W3C. XSL transformations language (XSLT): Version 2.0.
http://www.w3.org/TR/xslt20/.

[22] P. Wadler. Two semantics for XPath. Technical report, Bell
Labs, 2000.

46 SIGMOD Record, Vol. 34, No. 2, June 2005

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR//xquery/
http://www.w3.org/TR/xslt20/

