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Abstract: We describe our participation in the
TREC 2006 Genomics track, in which our main
focus was on query expansion. We hypothe-
sized that applying query expansion techniques
would help us both to identify and retrieve syn-
onymous terms, and to cope with ambiguity. To
this end, we developed several collection-specific
as well as web-based strategies. We also per-
formed post-submission experiments, in which we
compare various retrieval engines, such as Lucene,
Indri, and Lemur, using a simple baseline topic-
set. When indexing entire paragraphs as pseudo-
documents, we find that Lemur is able to achieve
the highest document-, passage-, and aspect-level
scores, using the KL-divergence method and its
default settings. Additionally, we index the col-
lection at a lower level of granularity, by creating
pseudo-documents comprising of individual sen-
tences. When we search these instead of para-
graphs in Lucene, the passage-level scores im-
prove considerably. Finally we note that stemming
improves overall scores by at least 10%.

1 Introduction

In this paper we describe our participation in the TREC 2006
Genomics track. One of our working hypotheses is that find-
ing synonymous terms while, at the same time, coping with
ambiguous terms is essential. We propose several methods,
collection-specific as well as web-based, to identify synony-
mous terms. To counter any possible query drift, we impose
additional constraints on the expansion terms we find.

Additionally, we include the results of post-submission ex-
periments, in which we have evaluated different passage
lengths, stemming, and different retrieval engines.

The remainder of this paper is organized as follows. In
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Section2 we describe our collection preprocessing and pas-
sage identification. Next, in Section3 we introduce the re-
trieval models which we evaluated during this year’s edition
of TREC Genomics. We then elaborate on our proposed
query expansion techniques in Section4, and follow with
a description of our submitted runs in Section5. The results
can be found in Section6, and we summarize our findings in
a concluding section.

2 Experimental Setup

In this section we elaborate on the particular tools and meth-
ods used for indexing and retrieving. We describe the way
we handle passage indentification as well as the way we pre-
process the collection.

2.1 Collection Preprocessing

The 2006 Genomics document collection consists of
162,259 full-text biomedical articles, which were prepro-
cessed as follows:

1. replace HTML entities with their ISO-Latin1 counter-
parts,

2. remove HTML tags,

3. remove top-level tables; these only serve navigational
purposes,

4. remove citations within text,

5. lowercase terms, and

6. remove stopwords.

The used stopword list includes common task-specific terms
such as “figure,” “table,” “view,” “larger,” “version,” “inter-
actions,” “role,” and “contribute.”



2.2 Passage Identification

This year’s Genomics track introduced a novel task. Unlike
previous years, participants were requested to return relevant
passages instead of entire documents and the systems are
judged based on 3 levels of granularity: returned documents,
passages, and aspects. We have chosen to mainly focus on
documents and passages for our participation.

We experimented with various ways of identifying passages,
and for our submissions we decided to consider every sen-
tence as being a passage—which we identify using Ling-
pipe’s sentence extractor [1]. Every sentence gets indexed as
a separate (pseudo-)document and we include positional in-
formation and the originating PubMed ID in the index. The
intuition behind this approach is to yield relatively high pre-
cision, since query terms should appear within the same sen-
tence.

The maximum length of any retrieved passage was delimited
by paragraph tags in the original HTML files. As a compar-
ison, we also indexed every paragraph as a separate pseudo-
document.

3 Retrieval Models

This section describes the models employed by the evalu-
ated retrieval engines. All of our initially submitted runs
were created using Lucene [13] with a multinomial language
modeling extension that we developed in-house [8]. As post-
submission experiments we include the results of using the
default Lucene retrieval model, as well as Lemur and In-
dri [12].

3.1 Lucene – Language Modeling

We estimate a language model for each pseudo-document
and for any given query we rank the documents with respect
to the likelihood that the document language model gener-
ated the query:

P(d|q) ∝ P(d) ·∏
t∈q

P(t|d), (1)

whered is a document andt is a term in queryq. In the
implemented scoring formula the probabilities are reduced
to rank-equivalent logs of probabilities. To account for
data sparseness, we interpolate the likelihoodP(t|d) using
Jelinek-Mercer smoothing [5, 18, 19]. This can be viewed
as estimating the probability

P(d|q) = P(d) ·∏
t∈q

((1−λ) ·P(t|D)+λ ·P(t|d)) , (2)

whereD is the collection. We need to estimate three prob-
abilities: the prior probability of the document,P(d); the
probability of observing a term in a document,P(t|d);

and the probability of observing the term in the collection,
P(t|D). We assume the query terms to be independent, and
use a linear interpolation of a document model and a collec-
tion model to estimate the probability of a query term.

The probabilities are estimated using maximum likelihood
estimates:

P(t|d) =
tf (t,d)
|d|

, (3)

P(t|D) =
df(t,D)

∑t ′∈D df(t ′,D)
, (4)

P(d) =
|d|

∑d′∈D |d′|
, (5)

wheretf (t,d) is the termfrequency of termt in documentd;
df(t) is the count of documents in which termt occurs, and
|d| denotes the length of a documentd [4].

The risk with parameter estimation using maximum likeli-
hood estimates in Equation2, is the underestimation of un-
seen or rare terms and overestimation of frequently occur-
ing ones. Especially when dealing with very short docu-
ments (such as sentences) this bias becomes clearly visible.
To compensate, we smooth our language model in Equa-
tion 2 using collection frequencies rather than document fre-
quencies [18]. The parameterλ is the smoothing parameter,
which can be optimized using training data. Since this is the
first year in which the current collection is being used, such
training data is unavailable. We therefore use the standard
value of 0.15, as described by Hiemstra and Kraaij [6].

3.2 Lemur

We also include Lemur’s KL-divergence language model
based retrieval method in our evaluations. Within that
method, documents are ranked according to the negative
of the divergence of the query language model from the
document language model. We select interpolated Jelinek-
Mercer smoothing and set documentλ to 0.15.

3.3 Indri

The default retrieval method in Indri is based on the combi-
nation of inference networks with language modeling, using
Dirichlet smoothing [9]. Thus, documents are ranked ac-
cording to:

P(t|d) =
t f (t,d)+µP(t|D)

|d|+µ
, (6)

where µ is a free parameter to determine the amount of
smoothing. We only use the #combine operator and setµ
to its default value of 1500.



3.4 Lucene

We also include results of Lucene’s off-the-shelf retrieval
model, i.e., for a collectionD, documentd and queryq:

sim(q,d) =

∑
t∈q

tft,q · idft
normq

·
tft,d · idft
normd

·coordq,d ·weightt,

where

tft,X =
√

freq(t,X),

idft = 1+ log
|D|

freq(t,D)
,

normq =
√

∑
t∈q

tft,q · idft2,

normd =
√

|d|,

coordq,d =
|q∩d|
|q|

.

4 Query Expansion

The fact that there are frequently occuring spelling variations
and synonyms for any given biomedical concept, degrades
the performance of regular adhoc IR techniques. To over-
come this problem, we propose different forms of collection-
specific and online query expansion methods, based on the
hypothesis that proper handling of synonymous terms is es-
sential in biomedical text retrieval. The methods we propose
include using acronyms and their corresponding long forms
from the collection, the matching of related long forms, and
the online lookup of unknown query terms and gene names.

As is common with using query expansion in general, one
is likely to improve recall at the cost of precision [10, 17].
Some of the added synonyms, acronyms, or long forms for a
particular query term might be identical to other biomedical
concepts (e.g., diseases or methods, where the query term is
a gene name). Including all possible expansions in the query
will therefore result in higher recall but also in more noise.
Our intuition is that the high-precision approach to passage
identification, by indexing individual sentences as pseudo-
documents as described in Section2.2, would compensate
for any query drift.

4.1 Query Preprocessing

We use the Genia parser [3, 11] to syntactically parse the
topics and extract all noun phrases (NPs) and headwords,
thus identifying all relevantaspectsfrom the query [2]. All
topics follow a certain topic template, so each contains one
or more biological concepts and processes and some explicit
relationship between them. We identify the biologicalsub-
ject(s)andobject(s)of the query and discard the relationship
term(s).

The resulting query aspects are kept as phrases for subse-
quent query expansion, since phrases are reported to im-
prove retrieval results when compared to single-word index-
ing [14, 15]. We believe this is also the case in biomedical
IR. Finally, we apply the breakpoint algorithm, as introduced
by Huang et al. [7], to the query aspects. In the following
sections we elaborate on our query expansion strategies.

4.2 Corpus-Specific Acronym Identification

We mine acronyms and their corresponding forms directly
from the documents in the collection, using the algorithm
described by Schwartz and Hearst [16]. We adapted their
approach in order to also collect frequency information. All
found acronyms, long forms and frequencies were stored
in a database, with an acronym being defined as a term
with a maximum length of 6 characters and containing at
least one uppercase character. For every query aspect, we
check whether it is an acronym, and proceed with differ-
ent approaches, depending on whether the term is indeed an
acronym.

4.3 Acronyms

If the term is indeed an acronym, we look up all possible
long forms in the database and add all results with a fre-
quency of more than 1 to the query.

In addition, we also look up alternative acronyms for a given
acronym. These are identified as follows: A list was made
for all long forms of every acronym. The most frequent long
form with adifferentacronym is identified and the acronym
is selected for addition to the query. For example, the most
commonly used long form for the term PrnP is “prion protein
gene.” The most commonly used acronym for this long form
is not PrnP, but prp. We hesitated to put the alternative longer
form in the query as well, but chose not to do so.

4.4 Long Forms

If the NP is not an acronym, we check whether ithasone
or more acronyms. Again, all resulting acronyms with a fre-
quency greater than 1 are added to the query.

Acronyms related to a given long form are also searched
for in the database. For all long forms we check if they
occur as a substring in other long forms. If so, thesere-
lated long forms, together with their most frequent acronym,
were returned. As an example “Alzheimer’s disease” pro-
duces “fad” and “Familiar Alzheimer’s disease” as related
acronym and long form respectively.

Finally, for long forms which don’t have a long form in the
database, we turn to Google. These long forms were submit-
ted to the search engine, prefixed with thedefineoperator,
and acronyms that occurred more than once in the snippets



Results.
MAP

Run Model Stemmed Pseudo-documentDocument Passage Aspect
baseline Indri yes paragraph 0.29 0.017 0.20
baseline Indri no paragraph 0.26 0.012 0.16
baseline Lemur yes paragraph 0.36 0.031 0.22
baseline Lemur no paragraph 0.31 0.022 0.18
baseline Lucene no paragraph 0.26 0.027 0.11
baseline Lucene no sentence 0.25 0.048 0.058
baseline Lucene-LM no paragraph 0.30 0.025 0.17
baseline Lucene-LM no sentence 0.30 0.047 0.093
UAmsBaseLine Lucene-LM no paragraph 0.27 0.017 0.097
UAmsBaseLine Lucene-LM no sentence 0.25 0.033 0.060
UAmsExp Lucene-LM no paragraph 0.26 0.020 0.087
UAmsExp Lucene-LM no sentence 0.24 0.042 0.069

Table 1: Results of the evaluated runs we evaluated (best scores in boldface.)

returned were used as query expansion terms, together with
their long forms. This helped us, for example, to find the
acronym BSE for “mad cow disease” and PCD for “apopto-
sis.”

4.5 Breakpoints

We also applied the earlier mentioned breakpoint algorithm
[7] to the found expansion terms. To limit needlessly long
queries, we filter the generated morphological variants based
on the terms in the index—only if a particular variant occurs
in the collection does it get added to the query. For example:
“Prn-P” “Prn P” “Pr P” “Pr-P” are breakpoint alternatives
for “PrnP” but none are selected for addition because none
of these occur in the collection.

4.6 Gene Name Expansion

For Gene names we propose a different algorithm. A gene
name is defined as a long form or an NP that ends in
”gene[s]”. It turns out that all identified acronyms that don’t
have an entry in the database are indeed gene names. We
look these up on BioInformatics.org1 and again mine the
output for (synonymous) acronyms. All those that start with
a bracket or a digit are discarded; the resulting ones are
added to the query.

5 Runs

To get some idea of the relative performance of various re-
trieval models, we evaluate a baseline run using Lucene,
Lemur, Indri, and Lucene with a language modeling exten-
sion. Due to time constraints however, we could not evalu-
ate the query expansion methods from Section4 with every
retrieval model. These were only evaluated using Lucene

1BioInformatics http://bioinformatics.org/textknowledge/
synonym.php

with the language modeling extension, as described in Sec-
tion 3.1. Also, we were unable to index sentences as pseudo-
documents with Indri/Lemur. We did apply Porter’s stem-
ming algorithm with Indri/Lemur.

Using the above mentioned models and indexes, we evaluate
the following runs:

baseline A baseline run, using only the extracted noun
phrases from the original topics.

UAmsBaseLine The same asbaseline, with breakpoint
variant generation, collection-specific acronym, and
long-form expansion.

UAmsExp Same asUAmsBaseLine, with additional query
expansion: substring matching, gene name expansion,
alternative acronyms, and Google define.

6 Results

Table1 displays the results of all evaluated runs (best scores
per metric in boldface). Looking at the baseline runs, we
first note that stemming improves document retrieval effec-
tiveness by more than 10%. The KL-divergence method, as
implemented in Lemur, is able to outperform any other re-
trieval method on the document-level, using mostly default
settings. Lucene, when used out-of-the-box, has the low-
est performance scores when taking only document-level as-
sessments into account. It is however able to achieve the
highest passage-level scores, closely followed by Lucene
with the language modeling extension.

It is too early to dismiss our intuition that the high-
precision approach to passage identification will improve av-
erage precision scores. With the current results, it seems that
indexing sentences instead of entire paragraphs as pseudo-
documents boosts passage-level scores, while at the same
time keeping document-level scores at a reasonable level.
Expanding the queries using the proposed algorithms has

http://bioinformatics.org/textknowledge/synonym.php
http://bioinformatics.org/textknowledge/synonym.php


mixed effects on retrieval effectiveness. They do certainly
not succeed in outperforming the already strong baseline.

When zooming in on the individual document scores, there
are three distinct peaks for topics 160, 163, and 181. These
topics contain “mad cow disease,” “Alzheimer’s disease,”
and “colon cancer,” respectively. As indicated earlier in Sec-
tion 4.4, the use of a generic web search engine helps us to
find the proper acronym for “mad cow disease,” and sub-
string matching helps us to find the more common long form
for “Alzheimer’s disease,” namely “familial Alzheimer’s dis-
ease,” together with its acronym FAD.

We did not pursue any specific goal regarding aspect re-
trieval. However, the aspect scores indicate that stemming
helps, whereas indexing documents at the sentence level cer-
tainly does not.

7 Conclusions

We have described our participation in the TREC 2006 Ge-
nomics track. Our aim this year was to apply query expan-
sion techniques in order to find synonymous terms. First off,
we used a POS tagger to identify noun phrases (oraspects)
in the topics. Next, the identified query aspects were ex-
panded using various query expansion strategies, based on
collection-specific as well as online algorithms. The appli-
cation of these methods however, degraded the strong base-
line. We do still believe that proper handling of synonymous
terms is essential and might further improve the retrieval
scores and we plan to experiment with weighing various ex-
pansion terms to smooth the effect of adding new terms to
the original query.

We used sentence boundaries within the original source doc-
uments as our passage boundaries, under the assumption that
this would yield results with relatively high precision scores.
While this certainly seems to boost passage-level effective-
ness, there is room for improvement, e.g., by merging high-
scoring consecutive sentences. Future experiments will also
include building and evaluating a sentence-level index in In-
dri/Lemur. Finally, tuning various parameters might further
improve the highest scores.
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