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Abstract: We describe our participation in the
TREC 2006 Genomics track, in which our main
focus was on query expansion. We hypothesized
that applying query expansion techniques would
help us both to identify and retrieve synonymous
terms, and to cope with ambiguity. To this end,
we developed several collection-specific as well as
online strategies. Our proposed methods yield a
noticeable improvement in retrieval performance
over the baseline. To counter the negative effects
of query expansion on recall, we introduce con-
junctive Boolean constraints on the query terms
and added expansion terms. When these addi-
tional constraints are imposed, results improve
even further. The improvements in our results are
noticeable on the document, passage, as well as
aspect level.

1 Introduction

In this paper we describe our participation in the TREC 2006
Genomics track. One of our working hypotheses is that find-
ing synonymous terms while, at the same time, coping with
ambiguous terms is essential. We propose several methods,
collection-specific as well as web-based, to identify synony-
mous terms. To counter any possible query drift, we impose
additional constraints on the expansion terms we find.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe our collection and query preprocessing,
passage identification, and the retrieval model employed for
this year’s edition of TREC Genomics. We then elaborate on
our proposed query expansion techniques in Section 3, and
follow with a description of our submitted runs in Section 4.
The results can be found in Section 5, together with a more
in-depth analysis of some individual topics. We summarize
our findings in a concluding section.
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2 Experimental Setup

In this section we elaborate on the particular tools, methods
and models used for indexing and retrieving. All of our runs
are created using Lucene [13] with a Language Modeling ex-
tension that we developed in-house [9]; it uses a multinomial
language model.

2.1 Language Modeling

We estimated a language model for each document in the
collection and for any given query we rank the documents
with respect to the likelihood that the document language
model generated the query:

P(d|q) ∝ P(d) ·∏
t∈q

P(t|d), (1)

whered is a document andt is a term in queryq. In the
implemented scoring formula the probabilities are reduced
to rank-equivalent logs of probabilities. To account for
data sparseness, we interpolate the likelihoodP(t|d) using
Jelinek-Mercer smoothing [6, 19, 20]. This can be viewed
as estimating the probability

P(d|q) = P(d) ·∏
t∈q

((1−λ) ·P(t|D)+λ ·P(t|d)) , (2)

whereD is the collection. We need to estimate three prob-
abilities: the prior probability of the document,P(d); the
probability of observing a term in a document,P(t|d);
and the probability of observing the term in the collection,
P(t|D). We assume the query terms to be independent, and
use a linear interpolation of a document model and a collec-
tion model to estimate the probability of a query term.

The probabilities are estimated using maximum likelihood
estimates:

P(t|d) =
tf (t,d)
|d|

, (3)



P(t|D) =
df(t,D)

∑t ′∈D df(t ′,D)
, (4)

P(d) =
|d|

∑d′∈D |d′|
, (5)

wheretf (t,d) is the termfrequency of termt in documentd;
df(t) is the count of documents in which termt occurs, and
|d| denotes the length of a documentd [4].

2.2 Collection Preprocessing

The 2006 Genomics document collection consists of
162,259 full-text biomedical articles, which were prepro-
cessed as follows:

1. replace HTML entities with their ISO-Latin1 counter-
parts,

2. remove HTML tags,

3. remove top-level tables; these only serve navigational
purposes,

4. remove citations within text,

5. cut-off article before theReferencesor Acknowledge-
mentssection,

6. lowercase terms, and

7. remove stopwords.

We do not apply any form of stemming. The used stopword
list also includes collection-specific common terms such as
“figure,” “table,” “view,” “larger,” “version,” etc.

2.3 Passage Identification

This year’s Genomics track introduced a novel task. Unlike
previous years, participants were requested to return relevant
passages instead of entire documents and the systems are
judged based on 3 levels of granularity: returned documents,
passages, and aspects. We have chosen to mainly focus on
documents and passages for our participation.

We experimented with various ways of identifying passages,
and decided to consider every sentence as being a passage—
which we identify using Lingpipe’s sentence extractor [1].
Every sentence gets indexed as a separate document and we
include positional information and the originating PubMed
ID in the index. The intuition behind it is that this approach
should give us a result which yields relatively high precision,
since query terms should appear within the same sentence.

There are 37.5 million unique sentences, with a mean length
of 14.7 tokens. The distribution is slightly skewed, with a
median of 13 tokens. Figure 1 shows a histogram of the in-
dexed document lengths. The risk with parameter estimation

using maximum likelihood estimates in Equation 2, is the
underestimation of unseen or rare terms and overestimation
of frequently occuring ones. Especially when dealing with
very short documents (such as sentences) this bias becomes
clearly visible.

Figure 1: Histogram of passage lengths.

To compensate, we smooth our language model in Equa-
tion 2 using collection frequencies rather than document fre-
quencies [19]. The parameterλ is the smoothing parameter,
which can be optimized using training data. Since this is the
first year in which the current collection is being used, such
training data is unavailable. We therefore use the standard
value of 0.15, as described by Hiemstra and Kraaij [7].

Singhal et al. [17] have shown that for ad-hoc retrieval, there
is a clear correlation between the a-priori probability of rele-
vance and the length of a document. Passage retrieval, using
sentence boundaries as denominators, is closely related to
XML retrieval. In a sense, the performed passage identifi-
cation makes the extracted sentences ourunits of retrieval.
Kamps et al. [10] confirm the relation between a-priori rele-
vance and XML element length and, additionally, introduce
a length priorβ. We follow their approach and estimate the
prior probability of a sentence being relevant as proportional
to the length of a sentence. Hence, the implemented scoring
formula for a documentd and queryt1, . . . , tn becomes:

s(d, t1, . . . , tn) = β · log

(
∑
t

tf (t,d)
)

+
n

∑
i=1

log

(
1+

λ · tf (ti ,d) ·
(

∑t df(t)
)

(1−λ) ·df(ti) ·
(

∑t tf (t,d)
)) . (6)

Our extension of Lucene includes the tunable length priorβ,
which we set to 2.



Example topic.
Run Query

What is the role of PrnP in mad cow disease?
Aspects: PrnP “mad cow disease”

UAmsBaseLine PrnP “mad cow disease” “prion protein gene” “prion protein” Prn-P “Prn P”
UAmsExp PrnP “mad cow disease” “prion protein gene” “prion protein” Prn-P “Prn P” prp Pr-P PrPC BSE

“bovine spongiform encephalopathy” [expansions]PrnP [expansions]madcowd iseaseetc.
UAmsExpSel (PrnP [expansions]PrnP) AND (“mad cow disease” [expansions]mad cow disease)

Table 1: Topic 160 showing the nature of the various query expansions for our submitted runs. For reasons of brevity, we
replace the full list of expansions for a term with [expansions]term. OR is the default operator between query terms.

2.4 Query Preprocessing

We use the Genia parser [3, 12] to syntactically parse the
topics and extract all noun phrases (NPs) and headwords,
thus identifying all relevantaspectsfrom the query [2]. All
topics follow a certain topic template, so each contains one
or more biological concepts and processes and some explicit
relationship between them. We identify the biologicalsub-
ject(s)andobject(s)of the query and discard the relationship
term(s).

The resulting query aspects are kept as phrases for sub-
sequent query expansion. Phrases are reported to im-
prove retrieval results when compared to single-word index-
ing [14, 15], and we believe this is also the case in biomed-
ical IR. We implemented phrase support in our language
model through ann-gram based index. We elaborate on the
used query expansion algorithms in the next section.

3 Query Expansion

The fact that for any given biomedical concept there are fre-
quently occuring spelling variations and synonyms degrades
the performance of regular adhoc IR techniques. To over-
come this problem, we propose different forms of collection-
specific and online query expansion methods, based on the
hypothesis that proper handling of synonymous terms is es-
sential in biomedical text retrieval.

The methods we propose include using acronyms and their
corresponding long forms from the collection, the matching
of related long forms, and the online lookup of unknown
query terms and gene names. Query expansion is performed
on the basis of the extracted NPs from the query as described
in Section 2.4. We also include the breakpoint algorithm as
introduced by Huang et al. [8]. In the following sections we
elaborate on our query expansion strategies.

As is common with using query expansion in general, one
is likely to improve recall at the cost of precision [11, 18].
Some of the added synonyms, acronyms, or long forms for a
particular query term might be identical to other biomedical
concepts (e.g., diseases or methods, where the query term
is a gene name). Including all possible expansions in the

query will therefore result in higher recall but also in more
noise. Our intuition was that the high-precision approach
to passage identification, as described in Section 2.3, would
compensate for any query drift.

3.1 Corpus-Specific Acronym Identification

We mine acronyms and their corresponding forms directly
from the documents in the collection, using the algorithm
described by Schwartz and Hearst [16]. We adapted their
approach in order to also collect frequency information. All
found acronyms, long forms and frequencies were stored
in a database, with an acronym being defined as a term
with a maximum length of 6 characters and containing at
least one uppercase character. For every query aspect, we
check whether it is an acronym, and proceed with differ-
ent approaches, depending on whether the term is indeed an
acronym.

3.2 Acronyms

If the term is indeed an acronym, we look up all possible
long forms in the database and add all results with a fre-
quency of more than 1 to the query.

In addition, we also look up alternative acronyms for a given
acronym. These are identified as follows: A list was made
for all long forms of every acronym. The most frequent long
form with adifferentacronym is identified and the acronym
is selected for addition to the query. For example, the most
commonly used long form for the term PrnP is “prion protein
gene.” The most commonly used acronym for this long form
is not PrnP, but prp. We hesitated to put the alternative longer
form in the query as well, but chose not to do so.

3.3 Long Forms

If the NP is not an acronym, we check whether ithasone
or more acronyms. Again, all resulting acronyms with a fre-
quency greater than 1 are added to the query.

Acronyms related to a given long form are also searched
for in the database. For all long forms we check if they



Results of the submitted runs.
MAP

Run Document Passage Aspect
UAmsBaseLine 0.1624 0.0226 0.0457
UAmsExp 0.2081 +28.13% 0.0285 +26.31% 0.0495 +8.35%
UAmsExpSel 0.232 +42.36% 0.0484 +114.04% 0.114 +148.90%

Table 2: Results of our submitted runs. Best scores are in boldface and the percentage improvements over the baseline are
indicated.

occur as a substring in other long forms. If so, thesere-
lated long forms, together with their most frequent acronym,
were returned. As an example “Alzheimer’s disease” pro-
duces “fad” and “Familiar Alzheimer’s disease” as related
acronym and long form respectively.

Finally, for long forms which don’t have a long form in the
database, we turn to Google. These long forms were submit-
ted to the search engine, prefixed with thedefineoperator,
and acronyms that occurred more than once in the snippets
returned were used as query expansion terms, together with
their long forms. This helped us, for example, to find the
acronym BSE for “mad cow disease” and PCD for “apopto-
sis.”

3.4 Breakpoints

We implemented the breakpoint algorithm as described by
Huang et al. [8] and used in last year’s TREC Genomics
track. The generated breakpoint alternatives are looked up
in the database in the same fashion as regular acronyms.
Only if something was returned the breakpoint alternative
gets added to the query. For example: “Prn-P” “Prn P” “Pr
P” “Pr-P” are breakpoint alternatives for “PrnP” but none
are selected for addition because none of these occur in the
collection.

3.5 Gene Name Expansion

For Gene names we propose a different algorithm. A gene
name is defined as a long form or an NP that ends in
”gene[s]”. It turns out that all identified acronyms that don’t
have an entry in the database are indeed gene names. We
look these up on BioInformatics.org1 and again mine the
output for (synonymous) acronyms. All those that start with
a bracket or a digit are discarded; the resulting ones are
added to the query.

4 Runs

We submitted the following three automatic runs.

1BioInformatics http://bioinformatics.org/textknowledge/
synonym.php

UAmsBaseLine A baseline run, using collection-specific
acronym and long-form expansion on identified NPs
from the queries and breakpoint variant generation.

UAmsExp Same asUAmsBaseLine, with additional query
expansion: substring matching, gene name expansion,
alternative acronyms, and Google define.

UAmsExpSel Same asUAmsExp, but with imposed restric-
tions on the occurances of query aspects.UAmsExp is
geared towards achieving high recall through a Boolean
OR type of expansion, whilstUAmsExpSel is focused
on achieving high precison. To improve precision, we
put BooleanAND constraints on the identified query as-
pects, as proposed by Hearst [5].

Table 1 shows an example topic, to help clarify the proposed
query expansion techniques.

5 Results

Table 2 displays the results of our submitted runs (best scores
in boldface). Expanding the queries using the proposed algo-
rithms has a clear postive effect on retrieval effectiveness, as
compared to the baseline. The addition of the BooleanAND

constraints is able to improve the results even further. When
compared to the rest of the participants, our best results are
well above the median.

5.1 Topic Analysis

Figure 2 gives a graphical representation of the per-
topic breakdown of the scores of our best perform-
ing run (UAmsExpSel), as compared to our baseline
(UAmsBaseLine). The drop in performance for topics 162
and 170 on all performance measures can be explained
through the generality of the query terms. Topic 162 con-
tains “cancer” and topic 170 contains “endoplasmic reticu-
lum,” which are expanded with equally broad terms. The
retrieved passages are therefore not always on topic.

We also note that our method of identifying passages from
the source documents leaves room for improvement. Query
terms that are in two consecutive sentences, for example,
are not considered to be in the same passage and thus not
retrieved. This effect can be observed in the document scores

http://bioinformatics.org/textknowledge/synonym.php
http://bioinformatics.org/textknowledge/synonym.php
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Figure 2: Per-topic breakdown of the results ofUAmsExpSel,
as compared to the baseline: Document MAP (top), Passage
MAP (middle), and Aspect MAP(bottom).

for the two topics mentioned earlier; the negative impact on
passage and aspect scores for these topics is much lower.
Our choice in determining passage boundaries also has its
effect on the passage scores; the improvements over baseline
are lower here as compared to the improvement in document
scores.

When zooming in on the document scores, there are three
distinct peaks for topics 160, 163, and 181. These top-
ics contain “mad cow disease,” “Alzheimer’s disease,” and
“colon cancer,” respectively. Contrary to the earlier men-
tioned and worse performingbroad terms, each of these
query aspects gets expanded properly. As indicated earlier in
Section 3.3, the use of a generic web search engine helps us
to find the proper acronym for “mad cow disease,” and sub-
string matching helps us to find the more common long form
for “Alzheimer’s disease,” namely “familial Alzheimer’s dis-
ease,” together with its acronym FAD.

We did not pursue any specific goal regarding aspect re-
trieval. However, our overall aspect scores indicate that the
proposed query expansion strategies are also beneficial when
looking only at retrieved aspects.

6 Conclusions

We have described our participation in the TREC 2006 Ge-
nomics track. Our aim this year was to apply query expan-
sion techniques in order to find synonymous terms. First off,
we used a POS tagger to identify noun phrases (oraspects)
in the topics. Next, the identified query aspects were ex-
panded using various query expansion strategies, based on
collection-specific as well as online algorithms. The appli-
cation of these methods yielded a noticeable improvement in
retrieval performance over the baseline.

We used sentence boundaries within the original source doc-
uments as our passage boundaries, under the assumption that
this would yield results with relatively high precision scores.
To counter the negative effects of query expansion on recall
further, we also introduced BooleanAND constraints on the
identified query aspects. Indeed, when these additional con-
straints are imposed, the results improve even more. We be-
lieve, however, that our way of identifying passages leaves
room for improvement and we intend to experiment further
with various forms of passage identification.
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