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Abstract: We address the issue of combining explicit background knowledge with pseudo-relevance feedback from
within a document collection. To this end, we use document-level annotations in tandem with generative
language models to generate terms from pseudo-relevant documents and bias the probability estimates of
expansion terms in a principled manner. By applying the knowledge inherent in document annotations, we
aim to control query drift and reap the benefits of automatic query expansion in terms of recall without losing
precision. We consider the parameters which are associated with our modeling and describe ways of estimating
these automatically. We then evaluate our modeling and estimation methods on two test collections, both
provided by the TREC Genomics track.

1 INTRODUCTION

When formulating queries, users of a search engine
“translate” their information need into terms. These
terms are generally a combination of background
knowledge and terms that the user associates with
relevant documents. E.g., as part of her background
knowledge a user knows what kind of synonyms there
are for particular terms, or which terms are related to
her information need. When a user cannot find what
she wants, she may reformulate her query in an iter-
ative manner, a process known as query expansion or
relevance feedback. Automatic query expansion (or
pseudo-relevance feedback) methods are designed to
take this burden from the user and address one of the
issues at stake—looking at an initial result set or ap-
plying background knowledge—automatically. One
of the best known and oldest query expansion meth-
ods is probably Rocchio’s method, in which a set
of top-ranked documents is used to locate additional
terms to add to the query (Rocchio and Salton, 1965).
More recent examples do not only look at documents,
but also at local context for additional query terms
(Xu and Croft, 1996, 2000). A different approach
is taken by Zhai and Lafferty (2001a), who consider
generating terms through pseudo-relevance feedback

as sampling from a generative feedback query model.
Most automatic methods for using background

knowledge in query (re)formulation, utilize structured
databases, thesauri, or ontologies. In these (exten-
sively researched) methods, a query term is mapped
onto a concept and, subsequently, related concepts are
added to the query and possibly reweighed (Voorhees,
1993; Wollersheim and Rahayu, 2005; Zhou et al.,
2007). The relation of the expansion concepts to the
initial query term(s) may be defined by synonymy, hy-
pernymy or any other kind of relation. Most of these
automatic methods report an increase in recall at a
loss of precision, mostly due to a common artifact of
the methods known as query drift.

As of yet there are few methods that combine
background knowledge and pseudo-relevance feed-
back in a principled and transparent manner. Collins-
Thompson and Callan (2005) describe an elaborate
way of combining multiple sources of evidence to
predict relationships between query and vocabulary
terms. The semantic features they investigate are gen-
eral word associations and synonymy relations as de-
fined in WordNet. Cao et al. (2005) describe a more
principled way of integrating WordNet term relation-
ships into statistical language models but, in the end,
they rely mostly on co-occurence data for their esti-



mations.
The statistical language modeling approach to in-

formation retrieval has attracted significant attention
over the last years. The underlying ideas are intuitive
and transparent, and empirical results show that the
approach is competitive. However, pseudo-relevance
feedback in a language modeling framework has thus
far been incorporated mostly in a way that seems con-
tradictory to the essence of the approach: the esti-
mation of models. Building upon the work laid out
by Robertson and Sparck Jones (1976), Lavrenko and
Croft (2001) suggested a way to converge the binary
independence model and a language modeling ap-
proach through a generative model of relevance.

Rather than looking directly at knowledge struc-
tures, we address the issue of combining back-
ground knowledge with pseudo-relevance feedback
from the document collection itself. To this end,
we use document-level annotations in tandem with
generative language models—relevance models, to be
precise—to generate terms from pseudo-relevant doc-
uments and bias the probability estimates of expan-
sion terms in a principled manner. By applying the
knowledge inherent in document annotations, we aim
to control query drift and reap the benefits of auto-
matic query expansion in terms of recall, without los-
ing precision.

Our contributions in this paper are three-fold.
First, we address the question how we can integrate
concepts as found in a thesaurus into a relevance
model framework. Next, we look at the various pa-
rameters which are associated with our model and de-
scribe ways of estimating these automatically. We
then evaluate our model and estimation methods on
two test collections, both provided by the TREC Ge-
nomics track (Hersh et al., 2006).

We build upon the foundations laid out in pre-
vious work (Meij and de Rijke, 2007). Our focus
in the present paper is on automatically estimating
one of the free parameters in our model, thus remov-
ing the need for computationally intensive parameter
sweeps. Additionally, our empirical evaluation goes
beyond earlier work in that we establish an increase in
retrieval effectiveness using multiple test collections
(instead of a single one.)

The remainder of the paper is organized as fol-
lows. In the next section, we describe our model and
the generative language modeling context in which it
is situated. Then, we look at an elegant way of auto-
matically estimating one of the free parameters using
the EM algorithm. In Section 4, we turn to the empir-
ical results of our model and contrast its performance
with regular, state-of-the-art approaches. Next, we
look at the influence of the number of documents used

for the estimations and we end with a concluding sec-
tion.

2 LANGUAGE MODELING

Within information retrieval, language modeling is
a relatively novel approach (Hiemstra, 2001; Kraaij,
2004; Miller et al., 1999; Ponte and Croft, 1998; Zhai,
2002). Generative language modeling originates from
speech recognition, where the modeling of speech ut-
terances is mapped onto textual representations. The
ideas behind it are intuitive and theoretically well-
motivated and the approach provides us with an easily
extendible setting for incorporating the information
captured in document annotations. Before introduc-
ing our novel feedback model, we recall some general
facts about statistical language modeling for IR.

2.1 Generative Language Modeling

Language modeling for IR is centered around the as-
sumption that a query, as issued by a user, is a sam-
ple generated from some underlying term distribution.
The documents in the collection are modeled in a sim-
ilar fashion, and are also regarded as samples from
an unseen term distribution—a generative language
model.

At retrieval time, the language use in documents
is compared with that of the query and the documents
are ranked according to the likelihood of generating
the query. Assuming independence between query
terms, the probability of a document given a query
can be more formally stated using Bayes’ rule:

P(d|Q) ∝ P(d) · ∏
q∈Q

P(q|θd), (1)

where θd is a language model of document d, and the
qi the individual query terms in query Q. The term
P(d) captures the prior belief in a document being rel-
evant, which is usually assumed to be uniform. The
term P(·|θd) is estimated using maximum-likelihood
estimates which, in this case, means using the fre-
quency of a query term in a document: P(q|θd) =
c(q,d)/|d|. Here, c(q,d) indicates the count of term
q in document d and |d| the length of the particular
document. This captures the notion that P(q|θd) is
the relative frequency with which we expect to see
the term q when we repeatedly and randomly sample
terms from this document. The higher this frequency,
the more likely it is that this document will be relevant
to the query.



2.2 Smoothing

It is clear from Eq. 1 that taking the product of term
frequencies has a risk of resulting in a probability
of zero: “unseen” terms will produce a probability
of zero for that particular document. To tackle this
problem, smoothing is usually applied, which assigns
a very small, non-zero probability to unseen words.
Dirichlet smoothing (Chen and Goodman, 1996; Zhai
and Lafferty, 2001b) is formulated as follows:

P(t|θd) =
c(t,d)+µP(t|θC)

|d|+µ
, (2)

where t is a vocabulary term, θC the language model
of a large reference corpus C (e.g., the collection) and
µ a constant by which to tune the influence of the ref-
erence model. When comparing the language model-
ing framework for IR with more well-known TF.IDF
schemes, the application of smoothing has an IDF like
effect (Hiemstra, 1998; Zhai and Lafferty, 2001b).

2.3 Query Models

One deficiency of the query likelihood model is that it
is difficult to naturally incorporate relevance feedback
information to improve ranking accuracy. In particu-
lar, since we model our query in a similar fashion as
the document, it is unclear how the likelihood of an
“expanded query” is to be computed and it is even
harder to allow different query terms to have different
weights. One solution to this problem is to general-
ize the query likelihood model to a measure of dif-
ference between two probability distributions, such
as the Kullback-Leibler divergence (Zhai, 2002; Zhai
and Lafferty, 2001a). Taking this approach, a sec-
ond language model (i.e., the query language model)
is introduced and documents are ranked according to
the difference between the query model and the doc-
ument model. It is easy to show that when the query
language model is estimated with the empirical query
term distribution, documents are ranked in the same
order as the original query likelihood model. The ad-
vantage of this model, though, is the possibility of
casting (pseudo-)relevance feedback as estimating the
query language model differently, viz. based on both
the query and some feedback documents, thus treating
feedback as updating the query model.

2.4 Relevance Models

Relevance models are a special class of language
models, which are used to estimate a distribution θQ
over terms in a query’s vocabulary (Lavrenko and
Croft, 2001). The intuition is that the query and

the set of relevant documents are both samples from
the same (relevant) term distribution. Generative lan-
guage models and relevance models differ in the way
how these distributions are modeled. While genera-
tive language modeling assumes that queries are gen-
erated from documents or vice versa, relevance mod-
els assume that both are generated from an unseen
source—the relevance model.

How is a relevance model created? A set of doc-
uments R, which has been judged relevant to a spe-
cific query, can be used as a model from which terms
are sampled. In the absence of such relevance infor-
mation, an initial retrieval run can be performed and
the top-ranked documents are assumed to be relevant.
Then, the probability of a term being generated from
the relevance model is related to the conditional prob-
ability of observing the term, given that the query
terms q1, . . . ,qn have just been observed (Lavrenko
and Croft, 2001):

P(t|θ̂Q) ≈ P(t|Q) (3)
= P(t|q1, . . . ,qn)

=
P(t,q1, . . . ,qn)
P(q1, . . . ,qn)

.

We follow Lavrenko and Croft’s Method 2, which as-
sumes that the query terms q1, . . . ,qn are independent
of each other, but keep their dependence on t:

P(t,q1, . . . ,qn) = P(t) ·∏
i

P(qi|t). (4)

To estimate the rightmost conditional probability, the
expectation over R is computed:

P(qi|t) = ∑
d∈R

P(θd |t) ·P(qi|θd). (5)

Note that their approach assumes that qi is indepen-
dent of t given θd (Lavrenko and Croft, 2001). The
query prior in Eq. 3 is set to:

P(q1, . . . ,qn) = ∑
t

P(t,q1, . . . ,qn),

and the word prior in Eq. 4 is set to:

P(t) = ∑
d∈R

P(t|θd) ·P(θd).

Combining these equations we obtain

P(t|θ̂Q) ∝

P(t) ·∏
i

∑
d∈R

P(qi|θd) ·P(θd |t), (6)

in which the conditional probability of picking a doc-
ument model θd , given t is defined as:

P(θd |t) =
P(t|θd)P(θd)

P(t)
. (7)

To obtain the estimates for the terms P(t|θd) and
P(Q|θd), smoothed maximum-likelihood techniques
are used, as described earlier.



2.5 Biasing Relevance Models

Our approach extends the relevance modeling ap-
proach, by not only looking at the document models
to estimate a relevance model, but also at thesaurus
terms that are associated with the documents. Sup-
pose we have a collection in which each document is
annotated using terms from a thesaurus or controlled
vocabulary; we then explicitly state that, although qi
is independent of t given θd , the probability of observ-
ing a document model θd is also dependent on the the-
saurus terms m1, . . . ,ml that are associated with that
document. More formally, let M be a set of thesaurus
terms. Then, we define the posterior probability of se-
lecting a document model, given t and m1, . . . ,ml ∈ M
(cf. Eq. 7) as:

P(θd |t,M) =
P(t|θd)P(M|θd)P(θd)

∑θd′
P(t|θd′)P(M|θd′)P(θd′)

, (8)

which yields the following estimation of a term t,
given the relevance model:

P(t|θ̂Q) ∝ (9)

P(t) ·∏
i

∑
d∈R

P(qi|θd) ·P(t|θd)P(m1, . . . ,ml |θd).

For reasons of efficiency, we limit the number of the-
saurus terms m1, . . . , ml used in these estimations.
We select the 20 top-ranked thesaurus terms accord-
ing to the probability of observing a thesaurus term,
given the query: P(mk|Q). To obtain this ranking,
we created a smoothed language model per thesaurus
term by aggregating the documents they are associ-
ated with.

We additionally assume the thesaurus terms to be
independent, so we can express their joint probabil-
ity P(m1, . . . ,ml |θd) as the product of the marginals:
∏

l
k=1 P(mk|θd). Each term P(mk|θd) can be esti-

mated using Bayes’ rule, by determining the follow-
ing posterior distribution, based on documents anno-
tated with that particular term:

P(mk|θd) =
P(θd |mk) ·P(mk)

P(θd)
. (10)

We estimate the prior probability P(mk) of seeing a
thesaurus term as: P(mk) = (|M| · c(mk))−1 for any
given thesaurus term mk, where c(mk) is the total
number of times this thesaurus term is used to cate-
gorize a document and |M| = ∑m∈M c(m). Doing so
ensures that frequently occuring, more general (and
thus less discriminative thesaurus terms) receive a rel-
atively lower probability mass. The term P(θd |mk) is
estimated in a similar fashion: it is 0 if mk is not as-
sociated with d, and the reciprocal of the number of
documents associated with thesaurus term mk other-
wise.

Table 1: Comparison of terms with the highest probability
for topic 173: “How do alpha7 nicotinic receptor subunits
affect ethanol metabolism?” Terms specific to a model are
marked in boldface.

Relevance
models (RM)

receptor
nicotin
subunit

of
acetylcholin

the
alpha7

abstract
alpha

medlin
2003

Thesaurus-biased
models (MM)

receptor
nicotin

of
the

subunit
humans

acetylcholin
animals
nicotinic

study
alpha7

Table 1 shows the difference in terms generated
by standard relevance models versus thesaurus-biased
models on a random topic from the TREC Genomics
2006 test set. This table suggests that the thesaurus-
biased model is able to allocate more probability mass
to more topic-specific terms.

2.6 Clipped Relevance Model

Relevance models are shown to perform better
when they are linearly interpolated with the original
query—a so-called “clipped relevance model” (Kur-
land et al., 2005)—using a mixing weight λ:

P(t|θQ) = λ ·P(t|θ̃Q)+(1−λ) ·P(t|θ̂Q) (11)

= λ · c(t,Q)
|Q|

+(1−λ) ·P(t|θ̂Q).

Our final model is thus composed of an original part
P(t|θ̃Q) and an expanded part P(t|θ̂Q). When λ is
set to 1, the ranking function reduces to the query-
likelihood ranking algorithm described earlier in Sec-
tion 2.1.

3 ESTIMATIONS

Following the previous section, we assume that the
final query model is generated from a mixture of the
terms found in the (pseudo-)relevant documents and
the initial query Q. In order to estimate lambda in
Eq. 11, we approximate the query model space by the
probability estimates of the terms, as they are found
in the (pseudo-)relevant documents. The log of the



Table 2: Ad-hoc retrieval results of the query-likelihood baseline (QL), Relevance model (RM), and MeSH-biased model
(MM), in terms of mean average precision (MAP) and precision@10 (P10). Changes in scores are given relative to the
baseline and the best scores are marked in boldface.

P10 MAP
Coll. QL RM MM QL RM MM
trecgen05 0.369 0.374 1.36% 0.360 -2.44% 0.218 0.220 2.33% 0.241 12.09%
trecgen06 0.450 0.454 0.89% 0.465 3.33% 0.359 0.360 0.28% 0.416 15.88%

likelihood of observing these terms is:

logP(t1, . . . , tn|θQ,λ) = (12)
n

∑
i=1

πi

m

∏
j=1

log
(
(λP(t j|θ̃qi)+(1−λ)P(t j|θ̂qi)

)
,

where πi = P(θ̂q j |θ̃q j). When πi is left free to be es-
timated, it will allocate higher weights to the query
terms which contributed most to the prediction of the
terms found in the relevant documents. The EM al-
gorithm can then be used to find the λ which max-
imizes the (log of the) likelihood (Dempster et al.,
1977; McLachlan and Krishnam, 1997):

λ
∗ = argmax

λ

logP(t1, . . . , tn|θQ). (13)

The following iterative steps can be used to find λ:

π
k+1
i = (14)

πk
i ∏

m
j=1

(
λkP(t j|θ̃qi)+(1−λk)P(t j|θ̂qi

)
∑

n
i′=1 πk

i ∏
m
j=1(λkP(t j|θ̃qi′ )+(1−λk)P(t j|θ̂qi′ )

and

λ
k+1 =

1
m

n

∑
i=1

π
k+1
i

m

∑
j=1

λkP(t j|θ̃qi)
λkP(t j|θ̃qi)+(1−λk)P(t j|θ̂qi

.

4 EXPERIMENTAL SETUP

We now turn to the setup of the experiments used to
determine the effectiveness of our thesaurus-biased
language model and of our estimation methods.

Our experiments are based on the test collec-
tions from the TREC Genomics track 2005 and
2006 (Hersh et al., 2005, 2006). All of the docu-
ments used in our experiments are accessible through
PubMed, a bibliographic database maintained by the
National Library of Medicine (NLM). It contains bib-
liographical records of all documents available in
MedLine. MedLine in turn contains almost all pub-
lications from the major biomedical research areas,
conferences, and journals.

PubMed uses controlled vocabulary terms to cata-
log and index the documents. This vocabulary, called

MeSH (Medical Subject Headings), is a thesaurus
containing 22,997 hierarchically structured concepts,
and is used by trained annotators from the NLM to
assign one or more MeSH terms to every document,
with an average of around 10 MeSH terms per docu-
ment. These MeSH terms are used for the estimations
of our thesaurus-biased models, hence we will further
refer to our model as the MeSH-biased model (MM).
The TREC Genomics 2005 ad-hoc retrieval task fo-

Table 4: Test collections.

Coll. Size Vocab. size
trecgen05 4,591,008 abstracts 800,477,879
trecgen06 162,259 full- docs 1,090,232,994

cused on retrieving abstracts from a 10-year subset of
MedLine, given 50 topics. A novel task and collec-
tion were put forward in the 2006 track. First, given
28 topics, relevant documents needed to be identi-
fied from a full-text document collection and, then,
the relevant passages from these documents were to
be returned. Relevance for the latter year’s track was
measured at three levels: the document, passage and
aspect level. For our current experiments we only use
the judgments at the document level. Table 4 provides
an overview of the characteristics of both collections.

All runs are morphologically normalized as de-
scribed by Huang et al. (2005) and stemmed using
a Porter stemmer. No stopwords were removed; the
smoothing parameter µ is set to 100 and we use the
top-10 ranked documents for all estimations, as de-
tailed in the previous section.

5 RESULTS AND DISCUSSION

We discuss three sets of results. First, we show
that our proposed model outperforms a query like-
lihood, as well a relevance model approach on two
different collections. For these we use the models as
found in Eq. 1 and Eq. 11, respectively. We then take a
closer look at the estimation methods, and show how
the results differ by varying the number of pseudo-
relevant documents used for estimations. We con-
clude with a per-topic analysis of our model.
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Figure 1: Precision-recall graphs comparing relevance models and MeSH-biased models for both collections.

Table 3: Detailed ad-hoc retrieval results of the query-likelihood baseline (QL) versus the MeSH-biased model (MM), in
terms of precision at varying levels of recall. Changes in scores are given relative to the baseline. Statistical significance is
tested using a one-tailed Wilcoxon signed-rank test (???indicates an improvement at the p < 0.001 level, ??at the p < 0.01
level, and ?at the p < 0.05 level.)

trecgen05
recall level QL MM change

0.00 0.577 0.582 0.88% ???

0.10 0.405 0.433 6.77%
0.20 0.327 0.384 17.55% ?

0.30 0.289 0.314 8.70%
0.40 0.252 0.287 13.68% ?

0.50 0.208 0.245 17.78%
0.60 0.177 0.205 15.87%
0.70 0.136 0.157 15.50%
0.80 0.082 0.092 12.91% ??

0.90 0.047 0.057 20.96% ???

1.00 0.008 0.013 66.15% ???

rel.ret. 3010 3205 6.48% ?

rel. 4584 4584

trecgen06
recall level QL MM change

0.00 0.728 0.715 -1.86% ???

0.10 0.648 0.690 6.57% ???

0.20 0.550 0.618 12.25% ??

0.30 0.488 0.543 11.20%
0.40 0.420 0.500 18.96%
0.50 0.390 0.462 18.62%
0.60 0.284 0.353 24.48%
0.70 0.221 0.306 38.78%
0.80 0.158 0.225 42.61%
0.90 0.101 0.173 70.26%
1.00 0.054 0.076 40.66% ???

rel.ret. 1005 1212 20.60%
rel. 1449 1449

5.1 Retrieval Results

In Table 2 we list the results of our model (MM) and
compare it against a query-likelihood baseline (QL)
and a relevance model (RM). We see that MM out-
performs the baseline, as well as state-of-the-art rele-
vance models, when measured in terms of mean aver-
age precision (MAP). Figure 1 further illustrates the
differences between the three approaches for both col-
lections using precision-recall graphs. Table 3 shows
the improvements of our model over the baseline in
terms of precision over varying levels of recall. We
observe that our MeSH-biased model improves pre-
cision at all recall levels, except one. This effect is
especially visible on the 2006 collection, where our
model is able to retrieve over 20% more relevant doc-
uments, while also slightly increasing early precision.

A few comments. First, our baseline performance
(QL) beats the median scores achieved at the 2005 and
2006 editions of the TREC Genomics track; 2005:
0.216, 2006: 0.308 (Hersh et al., 2005, 2006). Also,
the MAP scores of our MeSH-biased model MM are
not among the highest, when compared to all partic-
ipating TREC Genomics systems. However, our re-
sults originate from purely automatic methods, with-
out any elaborate tuning of parameters. Addition-
ally, we do not make use of extensive query expan-
sion techniques for gene names, proteins, and/or dis-
eases, which is common for this application field. The
strength of our model lies in the fact that it uses the
data that is already present in the collection, either ex-
plicitly (the MeSH terms) or implicitly (the associated
term distributions over the vocabulary.)
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Figure 2: Per-topic comparison of the MeSH-biased model with the query likelihood baseline for both collections.

5.2 Estimation

When we look at the best results of our model estab-
lished using a full parameter sweep, we find that the
current, automatic results are slightly worse (Meij and
de Rijke, 2007). The difference is minimal however,
proving the effectiveness of the current estimation ap-
proach. The amount of documents used for the au-
tomatic estimations has a distinct impact on retrieval
effectiveness, as can be seen from Figure 3. Two ob-
servations can be made here. First, our model outper-
forms relevance models in general—on the 2005 col-
lection for the full range of documents used, whilst on
the 2006 collection for a subset. This leads to the next
observation: the optimal number of documents to use
is dependent on the collection at hand.

5.3 Per-topic Analysis

Figure 2 shows a graphical representation of the per-
topic difference between retrieval scores (in terms of
MAP) of our approach and the baseline, ordered de-
creasingly. Two topics seem to be helped most for
both sets; typical for these particular queries is that
they have synonymous terms in the vocabulary, which
are found through the document annotations. This
leads to the view of our model as a natural, seman-
tic “bridge” between an initial query and semantically
related terms. For a more qualitative evaluation of the
found annotations and generated terms, we refer the
interested reader to (Meij and de Rijke, 2007).

6 CONCLUSION

We have presented a novel way of incorporating back-
ground information in relevance models. In our
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Figure 3: Influence of varying the number of documents
used for estimations.

model, the estimation of term probabilities are bi-
ased towards document-level annotations for a given
query. Thus, we are able to naturally leverage the in-
formation that is “encoded” in a document collection
through these annotations. Additionally, we provide
a way of automatically estimating an important free
parameter, one that controls the influence of the ini-
tial query in the resulting query representation. We
have provided the results of an empirical evaluation
on two distinct test collections and show the consis-
tent improvements over a query-likelihood, as well as
a relevance model baseline. When compared to the
baseline, our model is able to increase recall, whilst
increasing early precision at the same time on a col-
lection of full-text documents. On a collection of ab-
stracts, early precision is hurt only slightly.

Future work includes modeling the structure of the
thesaurus that is used to annotate the documents. The
knowledge encapsulated in this structure might pro-
vide an additional performance increase. Addition-
ally, we have assumed that thesaurus terms are inde-



pendent of each other, given a document, while in fact
they may not be. In our future work, we aim to ad-
dress this issue.
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