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If a man will begin with certain-
ties, he shall end in doubts; but if
he will be content to begin with
doubts, he shall end in certainties.

Sir Francis Bacon 1
Introduction

The definition of information retrieval (IR), in its broadest sense, is finding rele-
vant information in response to queries issued by users [237, 296]. It is a highly
dynamic discipline with a relatively short but rich history in which many tech-
niques and methods have been proposed towards improving effectiveness, i.e.,
finding more relevant information given a query. In essence, IR subsumes two
highly related activities: indexing (which deals with how information is repre-
sented) and searching (which deals with matching an expression of an informa-
tion need—the query—with indexed information). A schematic overview of an
IR system is provided in Figure 1.1.

1.1 Indexing

In the earliest days, textual documents were the sole unit of retrieval and most
of the initial IR systems were used to search bibliographic databases. Contrary
to many modern-day IR systems, they used information from references to doc-
uments instead of the contents of the documents themselves for searching. This
had two main reasons. First, there was only very limited information storage ca-
pacity available and documents could only be represented by punched data cards.
Information retrieval in that day and age constituted finding cards that had holes
in the right places [157]. As such, documents could only be represented by the
presence of a very limited number of “terms.” Second, small-sized controlled
vocabularies which unambiguously and precisely represented the content of doc-
uments had been in use for a long time in libraries [105]. Obvious vocabularies
of choice were the indexing systems commonly used by libraries, although other
domain-specific thesauri were also used [157]. Documents were treated in the
same fashion as library books; trained annotators would assign to them the terms
by which the documents were to be indexed in the retrieval system.

Later, as computing power and storage space increased, the assigned indexing
terms were gradually replaced by terms that can be found in the actual content
of the documents, i.e., their vocabulary. This development was further acceler-
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Information 
Need Representation Representation Documents

IndexQuery

Document 
Ranking
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Figure 1.1: Schematic representation of an IR system.

ated by a rapidly increasing number of documents and document types that made
manual annotations prohibitively expensive. In the Cranfield experiments, a con-
trolled study was performed to measure the effect of various factors on retrieval
effectiveness [75]. In Cranfield II, the indexing languages constituted the perfor-
mance variable under investigation and the aim was to investigate the retrieval
effectiveness of systems using different indexing languages and methods [74].
Here, it was found that retrieval based on vocabulary terms (or: full-text in-
dexing) performed better than retrieval based on assigned indexing terms. This
finding was later corroborated by Salton [275] who lead the development of the
SMART system in the 1960s [186].

The effectiveness and popularity of indexing using assigned terms and con-
trolled vocabularies further waned, as the size of the documents and collections
grew larger (the Cranfield experiments used only 1,400 documents). Today, most
of the early retrieval systems have been replaced by full-text search systems, with
well-known web search engines including Google, Bing, and Yahoo! as prime ex-
amples. As to search engines using assigned indexing terms, MEDLINE is a prime
example of such an IR system from the 1960s that still exists today [177].

Unlike assigned terms from controlled vocabularies, the terms occurring in a
document are only constrained by the grammar of the language and the imagina-
tion of the author. They are, as such, noisier and more prone to ambiguity. Despite
the popularity of using full-text indexing, the clear semantics and manual labor
involved with assigning indexing terms to documents has many merits, ranging
from enabling browsing facilities of a collection to enabling result list segmenta-
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Central Nervous 
System Diseases
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Central Nervous System Infections  +

Figure 1.2: Excerpt of the MeSH thesaurus, partially showing the concepts below the
concept “Central Nervous System Diseases.”

tion and query refinement [157, 257]. Let’s refer to the broad range of assigned
indexing terms (whether they originate from global classification schemes, the-
sauri, ontologies, or anything else) as concept languages and to the terms them-
selves as concepts. In this thesis, then, concepts are defined to be cognitive units of
meaning that have been formalized in a knowledge structure such as a controlled
vocabulary, thesaurus, or ontology. Furthermore, we impose the restriction that
such concepts should be agreed upon by a number of people (who typically are
domain experts). This definition includes, for example, concepts taken from the-
sauri such as Medical Subject Headings (MeSH), but also Wikipedia articles (as
captured, for example, in the DBpedia knowledge base). It excludes, for example,
user-generated tags (such as those generated through social bookmarking web-
sites), since they are typically agreed upon by only a single user. Figure 1.2 shows
an excerpt of the MeSH thesaurus which will be further introduced in Chapter 3.

Recent semantic web initiatives have sparked a renewed interest in the discus-
sion, development, semantics, and interoperability of concept languages [15, 33,
292]. Berners-Lee et al. [33] define an ontology as a structure of well-defined,
i.e., unambiguous, concepts. Ontologies define objects as well as their relations
and properties, with an accompanying logic allowing inference. The semantic
web, then, is envisaged to be a layer over the current World Wide Web defined
in terms of such concepts. To further this goal, the semantic annotation of web
pages, their contents, or any other kind of resource using concepts that can not
be directly derived from their content is gaining in popularity [6, 110, 251, 306].
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In a way, this is a step “back” towards the controlled vocabularies that were in use
in the early days of IR [292]. However, recent advances in information extraction
have ameliorated the need for manual, labor-intensive mappings. Later in this
thesis, in Chapter 6, we will look at several methods for automatically mapping
queries to concepts. Furthermore, we will also introduce a method that leverages
the manual annotations of documents as well as their full-text representations
to improve end-to-end retrieval performance. As we will see later, manual an-
notations and controlled vocabularies can effectively be used in conjunction with
full-text indexing to improve information access. We will present, implement, and
evaluate various intuitions about leveraging controlled vocabularies and manual
annotations to improve end-to-end retrieval performance by introducing ways of
combining information from documents, concept languages, and relevance as-
sessments.

1.2 Searching

Originating from the binary assignment of controlled vocabulary terms to docu-
ments, all initial IR systems adopted the Boolean model of searching. Here, a
user’s search terms are linked by the Boolean logical operators OR, AND, and
NOT; OR is used to link synonyms or alternatives, AND to link conjunctively, and
NOT to indicate irrelevant terms, i.e., those terms that should not be assigned to
the required documents. Such systems typically return an unordered set of re-
sults, although in 1958 Joyce and Needham [157] already proposed the use of a
notion of term frequency to sort the list of matching documents. They also sug-
gested the use of aggregated terms (where the set of documents containing the
phrase information retrieval is different from the union of the set of documents
containing information and retrieval). The imprecise nature of language (as well
as “relevance”) have led to a number of developments moving away from the
inherently restrictive Boolean model and towards a coordinate-level, ranked out-
put.

A first step was the move towards thesauri that were automatically generated
from the documents’ content [95, 291]. Luhn [194] first addressed automatic
keyword indexing, in which the terms in the documents were directly searchable.
Maron and Kuhns [203] were the first to take a probabilistic view on IR, centered
on the notion of relevance. This introduced a principled notion of term weight-
ing (although Maron and Kuhns [203] assumed that human indexers would as-
sign the initial weights). Via advances in automatic speech recognition and the
probability ranking principle [263], term weighting obtained a principal role in
retrieval models. Current state-of-the-art retrieval approaches employ models of
language to compare queries with documents. In this thesis, we will make ex-
tensive use of a process called query modeling, where the query is represented as
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a language model and various methods and techniques can be used to improve
this model. We will show that incorporating evidence captured in concepts and
concept languages can be applied to significantly improve retrieval performance
over state-of-the-art retrieval methods.

1.3 Motivation

Previous IR approaches have typically used either full-text indexing or indexing
using concepts and few methods exist where the two are combined in a princi-
pled manner. We hypothesize that the knowledge captured in concept languages
and the associations between concepts and texts (for example, in the form of
document-level annotations) can be successfully used to inform IR algorithms.
Such algorithms would be able to match queries and documents not only on a
textual level, but also on a semantic level. Recent advances in the language mod-
eling for IR framework have enabled the use of rich query representations in the
form of query language models. This, in turn, enables the use of the language
associated with concepts to be included in the retrieval model in a principled and
transparent manner.

Note that we do not pursue a research direction that uses concepts in a lan-
guage modeling framework. Instead, we investigate how we can employ the
actual use of concepts as measured by the language that people use when they
discuss them.

Recent developments in the semantic web community, such as DBpedia and
the inception of the Linked Open Data cloud, have enabled the association of texts
with concepts on a large scale. These developments enable us to move beyond
manually assigned concepts in domain-specific contexts and into the general do-
main. In sum, we will show in the remaining chapters of the thesis how we can
successfully apply language modeling techniques in tandem with concepts to im-
prove information access performance.

1.4 Research Questions

The central question governing this thesis is: “How can we leverage concept
languages to improve information access?” In particular, we will be looking at
methods and algorithms to improve the query or its representation using con-
cept languages in the context of generative language models. Instead of creating,
defining, or using such languages directly, however, we will leverage the natural
language use associated with the concepts to improve information access. Our
central research question leads to a set of more specific research questions that
will be answered in the following chapters.
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After we have provided a theoretical and methodological foundation of IR,
we look at the case of using relevance information to improve a user’s query. A
typical method for improving queries is updating the estimate of the language
model of the query, a process known as query modeling. Relevance feedback is a
commonly used mechanism to improve queries and, hence, end-to-end retrieval
performance. It uses relevance assessments (either explicit, implicit, or assumed)
on documents retrieved in response to a query to update the query. Core relevance
feedback models for language modeling include the relevance modeling and the
model-based feedback approach. They both operate under different assumptions
with respect to how to treat the set of feedback documents as well as each individ-
ual feedback document. Therefore, we propose two models that take the middle
ground between these two approaches. Furthermore, an extensive comparison
between these models is lacking, both in experimental terms, i.e., under the same
experimental conditions, and in theoretical terms. We ask:

RQ 1. What are effective ways of using relevance feedback information for query
modeling to improve retrieval performance?

a. Can we develop a relevance feedback model that uses evidence from
both the individual feedback documents and the set of feedback docu-
ments as a whole? How does this model relate to other query modeling
approaches using relevance feedback? Is there any difference when us-
ing explicit relevance feedback instead of pseudo relevance feedback?

b. How do the models perform on different test collections? How robust
are our two novel models on the various parameters query modeling
offers and what behavior can we observe for the related models?

Inspired by relevance feedback methods, we then develop a two-step method that
uses concepts (in the form of document-level annotations) to estimate a concep-
tual language model. In the first step, the query is translated into a conceptual
representation. In a process we call conceptual query modeling, feedback docu-
ments from an initial retrieval run are used to obtain a conceptual query model.
This model represents the user’s information need at the level of concepts rather
than that of the terms entered by the user. In the second step, we translate the
conceptual query model back into a contribution to the textual query model. We
investigate the effectiveness of our conceptual language models by placing them
in the broader context of common retrieval models, including those using rele-
vance feedback information. We organize the following research question around
a number of subquestions.

RQ 2. What are effective ways of using conceptual information for query model-
ing to improve retrieval performance?
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a. What is the relative retrieval effectiveness of our method with respect
to the standard language modeling and conventional pseudo relevance
feedback approach?

b. How portable is our conceptual language model? That is, what are
the results of the model across multiple concept languages and test
collections?

c. Can we say anything about which evaluation measures are helped most
using our model? Is it mainly a recall or precision-enhancing device?

We then move beyond annotated documents and take a closer look at directly
identifying concepts with respect to a user’s query. The research questions we
address are the following.

RQ 3. Can we successfully address the task of mapping search engine queries to
concepts using a combination of information retrieval and machine learning
techniques?

a. What is the best way of handling a query? That is, what is the per-
formance when we map individual n-grams in a query instead of the
query as a whole?

b. As input to the machine learning algorithms we extract and compute a
wide variety of features, pertaining to the query terms, concepts, and
search history. Which type of feature helps most? Which individual
feature is most informative?

c. Machine learning generally comes with a number of parameter set-
tings. We ask: what are the effects of varying these parameters?

After we have looked at mapping queries to concepts, we apply relevance feed-
back techniques to the natural language texts associated with each concept and
obtain query models based on this information The guiding intuition is that, sim-
ilar to our conceptual query models, concepts are best described by the language
use associated with them. In other words, once our algorithm has determined
which concepts are meant by a query, we employ the language use associated
with those concepts to update the query model. We ask:

RQ 4. What are the effects on retrieval performance of applying pseudo relevance
feedback methods to texts associated with concepts that are automatically
mapped from ad hoc queries?

a. What are the differences with respect to pseudo relevance estimations
on the collection? And when the query models are estimated using
pseudo relevance estimations on the concepts’ texts?

b. Is the approach mainly a recall- or precision-enhancing device? Or
does it help other aspects, such as promoting diversity?
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1.5 Main Contributions

The following summarizes the main contributions of this thesis, which adds both
theoretical insights and practical contributions to the body of existing work in the
field.

1. Novel relevance feedback methods — We develop two query modeling
methods for relevance feedback that are based on leveraging the similarity
between feedback documents and the set thereof.

2. Comparison of relevance feedback methods — We provide a comprehen-
sive analysis, evaluation, comparison, and discussion (in both theoretical
and practical terms) of our novel and various other core models for query
modeling using relevance feedback.

3. Concept-based query modeling — We develop a way of using document-
level annotations to improve end-to-end retrieval performance. Our model
naturally generates concept models, which may serve to support, for exam-
ple, interaction tools for users or which can be used to determine semantic
similarity between concepts using the language observed in the documents
associated with the concepts.

4. Novel method for linking queries to concept languages — We develop
and evaluate a novel way of associating concepts with queries that effec-
tively handles arbitrary features. For example, features pertaining to the
query, concepts, search history, etc.

5. Understanding of relevant features for concept identification in queries
— We provide insights why some (groups of features) perform better than
others in the context of linking queries to concepts.

6. Wikipedia-based query modeling — We show that using the linked con-
cepts can be effectively used to improve diversity and ad hoc retrieval effec-
tiveness on two large test collections.

7. State of the art retrieval effectiveness — Through extensive experimental
evaluations on various test collections (including those from the biomedical,
web, social science, and news domains) we validate and analyze our pro-
posed models. In most cases we show consistent and significant improve-
ments over established and state-of-the-art methods on ad hoc retrieval.

1.6 Overview of the Thesis

• Chapter 2 - Related Work — We survey, identify, and describe related work
for leveraging concept languages for information access.
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• Chapter 3 - Experimental Methodology — The basic building blocks per-
taining to the evaluation of information retrieval experiments, the test col-
lections we use in the thesis, and the setting of various parameters are pre-
sented.

• Chapter 4 - Query Modeling Using Feedback Information — We look
at and evaluate various query modeling methods for relevance feedback in
the context of generative language models. We explicate the relation be-
tween two popular models and introduce two novel methods that estimate
a query model using information from each feedback document individually
and combined. While most previous approaches focus either on features of
the entire set or of the individual relevant documents, our models exploit
features of both.

• Chapter 5 - Query Modeling Using Concepts — We then turn to using con-
cept languages to estimate a query model. In this chapter we propose gener-
ative concept models as an extension to query modeling within the language
modeling framework, which leverages manual document annotations using
controlled vocabularies to improve retrieval. By means of relevance feed-
back the original query is translated into a conceptual representation, which
is subsequently used to update the query model.

• Chapter 6 - Linking Queries to Concepts — Next, we take a closer look at
identifying relevant concepts with respect to a user’s query. In the previous
chapter we used existing document annotations and relevance feedback to
obtain concepts for queries. In this chapter we look at how we can apply
supervised machine learning models to this task and compare it to several
baseline methods including a straightforward lexical match and a purely
retrieval based approach.

• Chapter 7 - Query Modeling Using Linked Concepts — In this chapter we
bring techniques from the previous chapters together. We apply the super-
vised machine learning method presented in Chapter 6 to queries associated
with two web-scale test collections. We link each query to Wikipedia arti-
cles and apply the ideas presented in Chapters 4 and 5 to estimate a query
model.

• Chapter 8 - Conclusions and Future Work — Here we summarize our
contributions and describe potential areas for future work.

Chapter 2 and Chapter 3 serve as introductory chapters to the field of informa-
tion retrieval, language modeling for information retrieval, mapping free text to
structured knowledge sources, and experimental evaluation in the context of in-
formation retrieval. We recommend that the reader first get familiarized with the
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material presented there before reading other chapters. Many of the contribu-
tions made in the thesis converge in Chapter 7 and to be able to appreciate the
results presented there, we encourage the reader to start with earlier material,
in particular with Chapter 4 and Chapter 6. In appendix A (See page 179), we
include a nomenclature and list of abbreviations.

1.7 Origins

This thesis is based on the following publications that have arisen as part the the-
sis work. Full details of these papers below can be found in the bibliography. The
models presented in Chapter 4 were introduced in [216, 220] and this chapter is
further based on [214]. The concept-based language models in Chapter 5 were
introduced in [209] and further built upon in [207, 208, 212, 215, 221]. The
work on linking search engine queries to structured knowledge sources in Chap-
ter 6 was published in [219] and expanded in [222]. The work in Chapter 7 is
based on material published in [213]. Finally, material from a number of other
papers, including [26, 126, 138, 210, 217, 218, 227, 317, 338], have been incor-
porated at various points in the thesis.



Study the past, if you would divine
the future.

Confucius 2
Background

This thesis presents novel models and methods to improve information access
using various information sources, including relevance assessments, pseudo rel-
evant documents, (structured) knowledge sources, and Wikipedia. The guiding
intuition is that knowledge captured in the concepts of a concept language can be
successfully employed to improve information access. This chapter serves as an
introduction to related work and provides the foundation upon which the thesis
is built. Related work specific to the various chapters will be introduced in the
respective chapters.

We begin this chapter by recalling basic facts about IR: first, a brief history
of the field will be given. Then, we take a closer look at Generative Language
Modeling for IR in Section 2.2. In Section 2.3 we zoom in on a form of query
transformation that is frequently used in the thesis, a process known as query
modeling. We then discuss typical approaches used to link text to concept lan-
guages.

We postpone until Chapter 3 a discussion of the evaluation methodology em-
ployed in IR in general and in various places in this thesis in particular; that
chapter will also introduce the test collections that will be used in later experi-
ments.

2.1 Information Retrieval

An information retrieval system implements a retrieval model that is used to gen-
erate a ranking of documents for a given query. A retrieval model is itself a formal
representation of the process of matching a query and a document and is often
(but not necessarily) based on a statistical view of language.

As described in the previous chapter, Boolean systems were the first popu-
lar retrieval models. They did not generate document rankings, but returned
sets of documents fulfilling the (Boolean) query. They were superseded by the
vector space model (VSM) [274], which would become the mainstream model
for many years. It is based on a vector space where the dimensions are defined

11
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by the terms in the vocabulary. Queries and documents are represented by vec-
tors and similarity is defined using a distance measure in this space. The most
commonly used distance measure is based on the cosine of the angle between
vectors in the high-dimensional space (although other measures such as the Eu-
clidean distance are also sometimes used). Each component of a vector can take
either binary values or more complex, real values. Examples of the latter in-
clude statistical information such as term frequency (TF) and inverse document
frequency (IDF) [155, 258, 264]. TF and IDF are two notions that are not spe-
cific to VSM, but in common use in most retrieval models. The TF of a term in
a document is defined as the relative frequency of occurrence of that term in the
document. IDF is defined as the (log of the) inverse of the relative frequency
of occurrence of a term in the entire collection. The underlying intuition is that
documents with a high TF for a term are more likely to be relevant to queries
containing this term. Moreover, terms that are infrequent in the collection are
more discriminative and convey more information than frequent ones. Therefore,
a common weighting scheme, called TF.IDF, is a simple multiplication of the two.

Other retrieval models exist, some of which are still in popular use today.
Maron and Kuhns [203] were the first to explicitly incorporate the notion of
relevance in a retrieval model (a broader discussion on “relevance” is given in
Section 3.1) by developing a probabilistic indexing model. They moved beyond
binary indexing of documents (as was common in Boolean systems, where each
indexing term could be either present or absent) and proposed the use of index-
ing weights, that were to be interpreted as probabilities. They considered the
retrieval problem as a problem involving inference where an IR system should
predict which documents in the collection would most probably be relevant to
a query and then rank those documents in descending order by those computed
values of probability of relevance. This idea is highly similar to the Naive Bayes
method, a popular machine learning approach [187]. Given that the output of
their system was a ranked result list, Maron and Kuhns [203] have often been
credited with being the first to move beyond set-based retrieval and introducing
the ranked lists that are still in common use today [313] (although Joyce and
Needham [157] employed a notion of TF to sort the list of matching documents
two years prior).

Robertson and Jones [264] proposed the RSJ model that solely uses IDF with
relevance feedback. The RSJ model (or: probability ranking principle (PRP))
builds upon the ideas presented in Maron and Kuhns [203] and hinges on two
probabilistic models; one for all non-relevant documents and one for all relevant
ones [263, 264]. The PRP model is based on measuring the probability that a
document will be relevant to a user, given a query (note that it does not mea-
sure the degree of relevance [261]). The higher this probability, the more likely
the document is to be relevant to the user. Robertson [263] proves that ranking
documents using the PRP (in which documents are ranked by their decreasing
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probability of relevance) optimizes retrieval performance, under the condition
that these probabilities are properly estimated. As may be clear, effectively es-
timating these relevant and non-relevant models is unsurmountable in practice
and the PRP resorts to various approximation methods.

The PRP model uses a binary representation of terms in documents, which
was generalized to TF information soon after in the 2-Poisson model [122, 266].
Amati and Van Rijsbergen [8] present a generalization of the 2-poisson model,
called the divergence from randomness (DFR) model. It is built around the no-
tion that the amount of information carried by a term in a document is propor-
tional to the divergence of its term frequency within that document with respect
to its frequency in the collection. DFR is inspired by the idea that “good” descrip-
tors of documents (terms or concepts from a controlled vocabulary, for exam-
ple) are those that describe the information content and that have discriminatory
power [38, 325].

The Okapi team developed another, much extended version of the PRP model,
now commonly known as (Okapi) BM25 [156]. It is a handcrafted approximation
of the PRP model and makes effective use of TF and document length. It also
remains a common baseline in IR literature [265]. A relatively new form of model,
known as Language Modeling, appeared in the late 1990s and will be further
introduced in the next section. Lafferty and Zhai [174] note that the PRP model
can be considered rank equivalent to the language modeling approach, although
this has caused some debate in recent literature [43, 83, 195, 259]. After we have
discussed language modeling below we return to this issue in Section 2.2.3.

2.2 Generative Language Modeling for IR

The success of using statistical language models (LMs) to improve automatic
speech recognition (ASR), as well as the practical challenges associated with us-
ing the PRP model inspired several IR researchers to re-cast IR in a generative
probabilistic framework, by representing documents as generative probabilistic
models.

The main task of automatic speech recognition is the transcription of spoken
utterances. An effective and theoretically well-founded way of approaching this
task is by estimating a probabilistic model based on the occurrences of word se-
quences in a particular language [147, 271]. Such models are distributions over
term sequences (or: n-grams, where n indicates the length of each sequence) and
can be used to compute the probability of observing a sequence of terms, by com-
puting the product of the probabilities of observing the individual terms. Then,
when a new piece of audio material A needs to be transcribed, each possible in-
terpretation of each observation is compared to this probabilistic model (the LM)
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and the most likely candidate S is returned:

S∗ = argmax
S

P (S|A) = argmax
S

P (A|S)P (S). (2.1)

Here, P (S) is the language model. S is viewed as having been generated accord-
ing to some probability and transmitted through a noisy channel that transforms S
to A with probability P (A|S). Instead of selecting a single S, this source-channel
model can also be used to rank a set of candidates; this is exactly what happens
in IR, as we will see later.

It is common in ASR to use higher order n-grams, although deriving trigram or
even bigram probabilities is a sparse estimation problem, even with large training
corpora. Higher order n-grams have also been tried for IR but these experiments
were met with limited success; the mainstream approach is to use n-grams of
length 1 (or: unigrams). Ironically, n-gram based language models use very little
knowledge of what language really is. They take no advantage of the fact that
what is being modeled is language—it may as well be a sequence of arbitrary
symbols [271]. Efforts to include syntactic information in n-gram based models
have yielded modest improvements at best [63, 137, 290].

The first published application of language modeling for IR was based on the
multivariate Bernoulli distribution [248], but the simpler multinomial model be-
came the mainstream model [134, 228]. In the multivariate Bernoulli model,
each term position in a document is a vector over the entire vocabulary with all
zeroes, except for a single element (the term) which is set to 1. The multinomial
model, on the other hand, explicitly captures the frequency of occurrence of a
term.

Mccallum and Nigam [204] find that, for text classification using Naive Bayes,
the multivariate Bernoulli model performs well with small vocabulary sizes, but
that the multinomial usually performs better at larger vocabulary sizes. Losada
and Azzopardi [192] observe that for most retrieval tasks (except sentence re-
trieval) the multivariate Bernoulli model is significantly outperformed by the
multinomial model; their analysis reveals that the multivariate Bernoulli model
tends to promote long documents.

However, recent work has addressed some of the shortcomings of using the
multinomial distribution for modeling text [198, 256]. A common argument
against using a multinomial is that it insufficiently captures the “burstiness” of
language. This property of language is derived from the observation that there is
a higher chance of observing a term when it has already been observed before.
Such burstiness also implies a power law distribution, similar to a Zipfian curve
often observed in natural language [201, 360, 361]. Zipf’s law states that, if Fi is
the frequency of the i-th most frequent event, then

Fi ∼
1
iα
, (2.2)
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where α is a constant (as well as the only parameter of the distribution). In
practice this means that there are very few words which occur frequently and
many unusual words. Due to this distribution, the number of distinct words in a
vocabulary does not grow linearly (but sublinearly) with the size of the collection.
Alternative models that try to incorporate this information include the Dirichlet
compound multinomial distribution [348] or the related Hierarchical Pitman-Yor
model [236]. These distributions provide a better model of language use and
the authors show significant improvements over the standard multinomial model.
Sunehag [308] provides an analysis of such approaches and shows that TF.IDF
follows naturally from them.

2.2.1 Query Likelihood

The earliest work in the query likelihood family of approaches can be attributed
to Kalt [158]. He suggests that term probabilities for documents related to a
single topic can be modeled by a single stochastic process; documents related to
different topics would be generated by different stochastic processes. Kalt’s model
treats each document as a sample from a topic language model. Since the prob-
lem he considered was text classification, “queries” were derived from a training
set instead of solicited from actual queries. Kalt’s approach was based on the
maximum likelihood (ML) estimate (which will be introduced below in Eq. 2.4)
and incorporated collection statistics, term frequency, and document length as
integral parts of the model. Although later query likelihood approaches are more
robust in that they consider each document (vs. a group of documents) as being
described by an underlying language model, Kalt’s early work is clearly a precur-
sor to language modeling for information retrieval.

In the multinomial unigram language modeling approach to IR, each docu-
ment D is represented as a multinomial probability distribution P (t|θD) over all
terms t in the vocabulary. At retrieval time, each document is ranked according
to the likelihood of having generated the query, which is why this model is com-
monly referred to as the query likelihood (QL) model. It determines the prob-
ability that the query terms (t ∈ Q) are sampled from the document language
model [134, 229, 240]:

Score(Q,D) = P (D|Q)

= P (D)P (Q|D)
P (Q)

∝ P (D)P (Q|D)
= P (D)

∏
t∈Q

P (t|θD)n(t,Q), (2.3)

where n(t,Q) denotes the count of term t in query Q. The term P (Q) is the same
for all documents and, since it does not influence the ranking of documents for a
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given query, it can safely be ignored for ad hoc search. As is clear from Eq. 2.3,
independence between terms in the query is assumed. Note that this formulation
is exactly the source-channel model described above, only for document rank-
ing. The term P (D) is the prior probability of selecting a document and may be
used to model a document’s higher a priori chance of being relevant [229], for
example based on its authoritativeness or the number of incoming links or cita-
tions [210, 336]. In all the experiments in this thesis we assume this probability
to be uniform, however.

A common way of estimating a document’s generative language model is
through the use of an ML estimate on the contents of the document,

P (t|θ̃D) = n(t,D)
|D|

. (2.4)

Here, |D| indicates the length ofD. It is an essential condition for retrieval models
that are based on measuring the probability of observed data given a reference
generative model, that the reference model is adequately smoothed. Smooth-
ing is applied both to avoid data sparsity (and, hence, zero-frequency) problems
occurring with a maximum likelihood approach (which happens, for example,
when one of the query terms does not appear in the document) and to account
for general and document-specific language use. So, the goal of smoothing is to
account for unseen events (terms) in the documents [65, 356]. Various types of
smoothing have been proposed including discounting techniques such as Laplace,
Good-Turing, or leave-one-out smoothing. These methods add (or subtract) small
amounts of probability mass with varying levels of sophistication. Another type is
interpolation-based smoothing, which adjusts the probabilities of both seen and
unseen events. One interpolation method commonly used in IR is Jelinek-Mercer
smoothing which considers each document to be a mixture of a document-specific
model and a more general background model. Each document model is estimated
using the maximum likelihood estimate of the terms in the document, linearly in-
terpolated with a background language model P (t) [148, 229, 356]:

P (t|θD) = λDP (t|θ̃D) + (1−λD)P (t). (2.5)

Here, P (t) is calculated as the likelihood of observing t in a sufficiently large
corpus, such as the document collection, C:

P (t) = n(t,C)∑
t′ n(t′,C) . (2.6)

In this thesis, we use Bayesian smoothing using a Dirichlet prior which has been
shown to achieve superior performance on a variety of tasks and collections [30,
65, 191, 352, 356] and set:

P (t|θD) = |D|
|D|+µ

P (t|θ̃D) + µ

|D|+µ
P (t), (2.7)
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where µ is a hyperparameter that controls the level of smoothing which is typi-
cally set to the average document length of all documents in the collection.

Various improvements upon this model have been proposed with varying com-
plexity. For example, Shakery and Zhai [281] use a graph-based method to
smooth document models, similar to Mei et al. [206]. Tao et al. [311] use docu-
ment expansion to improve end-to-end retrieval.

2.2.2 KL divergence

Soon after its conception, the query likelihood model was generalized by realizing
that an information need can also be represented as a language model. This way,
a comparison of two language models forms the basis for ranking and, hence,
a more general and flexible retrieval model than query likelihood was obtained.
Several authors have proposed the use of the Kullback-Leibler (KL) divergence for
ranking, since it is a well established measure for the comparison of probability
distributions with some intuitive properties—it always has a non-negative value
and equal distributions receive a zero divergence value [173, 240, 346]. Using KL
divergence, documents are scored by measuring the divergence between a query
model θQ and document model θD. Since we want to assign a high score for
high similarity and a low score for low similarity, the KL divergence is negated for
ranking purposes. More formally, the score for each query-document pair using
the KL divergence retrieval model is:

Score(Q,D) = −KL(θQ||θD)

= −
∑
t∈V

P (t|θQ) log
P (t|θQ)
P (t|θD)

=
∑
t∈V

P (t|θQ) logP (t|θD)−
∑
t∈V

P (t|θQ) logP (t|θQ), (2.8)

where V denotes the set of all terms used in all documents in the collection. KL
divergence is also known as the relative entropy, which is defined as the cross-
entropy of the observed distribution (in this case the query) as if it was generated
by a reference distribution (in this case the document) minus the entropy of the
observed distribution. KL divergence can also be measured in the reverse direc-
tion (also known as document likelihood), but this leads to poorer results for ad
hoc search tasks [180]. The entropy of the query,

∑
t∈V P (t|θQ) logP (t|θQ), is a

query specific constant and can thus be ignored for ranking purposes in the case
of ad hoc retrieval (cf. Section 3.2.1).

When the query model is estimated using the empirical ML estimate on the
original query, i.e.,

P (t|θ̃Q) = n(t,Q)
|Q|

, (2.9)
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it can be shown that documents are ranked in the same order as using the query
likelihood model from Eq. 2.3 [353]. Later in this thesis, we use Eq. 2.8 in con-
junction with Eq. 2.9 as a baseline retrieval model.

Note that a query is a verbal expression of an underlying information need and
the query model (derived from the query) is therefore also only an estimate of this
information need. Given that queries are typically short [300], this initial, crude
estimate can often be improved upon by adding and reweighting terms. Since the
query is modeled in its own fashion using the KL divergence framework, elaborate
ways of estimating or updating the query model may be employed—a procedure
known as query modeling.

In order to obtain a query model that is a better estimate of the informa-
tion need, the initial query P (t|θ̃Q) may be interpolated with the expanded part
P (t|θ̂Q) [24, 172, 267, 354]. Effectively, this reweights the initial query terms
and provides smoothing for the relatively sparse initial sample:

P (t|θQ) = λQP (t|θ̃Q) + (1−λQ)P (t|θ̂Q). (2.10)

Figure 2.1 shows an example of an interpolated query model; query modeling
will be further introduced in Section 2.3. In the remainder of this thesis, we will
use this mechanism to incorporate relevance feedback information (Chapter 4) or
leverage conceptual knowledge in the form of document annotations (Chapter 5)
or in the form of Wikipedia articles (Chapter 7). In Section 2.3 we zoom in
on ways of estimating P (t|θ̂Q). We discuss the issue of setting the smoothing
parameter λQ in Section 3.4.

2.2.3 Relation to Probabilistic Approaches

As indicated above, several researchers have attempted to relate the LM approach
to traditional probabilistic approaches, including the PRP model [83]. Sparck-
Jones and Robertson [295] examine the notion of relevance in both the PRP and
the query likelihood language modeling approach. They identify the following
two distinctions.

1. Although in both approaches a match between terms in the query and a
document implies relevance, the notion of relevance features explicitly in
PRP but is never mentioned in LM.

2. The underlying principle of LM is to identify the ideal document, i.e., the
one that generated the query (as exemplified by the argmax in Eq. 2.1).

Sparck-Jones and Robertson emphasize that the last point implies that retrieval
stops after the document that generated the query is found. Furthermore, this
fact, coupled with simply assuming that query generation and relevance are cor-
related, implies that it is difficult to describe methods such as relevance feedback
(or any method pertaining to relevance) in existing LM approaches.
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Hiemstra and de Vries [135] relate LM to traditional approaches by compar-
ing the QL model presented in [134] with the TF.IDF weighting scheme and the
combination with relevance weighting as done in Okapi BM25. Lafferty and Zhai
[173] and Lavrenko and Croft [183] address the two issues mentioned above by
suggesting new forms of LM for retrieval that are more closely related to the PRP
model and move away from the estimating the query generation probability. Laf-
ferty and Zhai [173] include a binary, latent variable that indicates relevance of
a document with respect to a query. They point out that document length nor-
malization is an issue in PRP but not in LM; another difference is that in LM
we typically have more data for estimation purposes that PRP. Greiff [115] ob-
serves that the main contribution of LM is the recognition of the importance of
parameter estimation in modeling and in the treatment of term frequency as the
manifestation of an underlying probability distribution rather than as the proba-
bility of word occurrence itself. Lavrenko and Croft [183] take a similar view and
explicitly define a latent model of relevance. According to this model, both the
query and the relevant documents are samples from this model. Hiemstra et al.
[136] build upon work presented in [297] and also attempt to bridge the gap
between PRP and LM. They posit that LM should not blindly model language use.
Instead, LM should model what language use distinguishes a relevant document
from the other documents. In Section 2.3.2 we introduce these approaches fur-
ther. In Chapter 4 we evaluate their performance on three distinct test collections.

Another, more recent spin-off of the discussion centers around the notion of
event spaces for probabilistic models [259]. Since LM (and, in particular, the QL
approach) is based on the probability of a query given a document, the event
space would consist of queries in relation to a single, particular document. These
event spaces would therefore be unique to each document. Under this inter-
pretation, the query-likelihood scores of different documents for the same query
would not be comparable because they come from different probability distribu-
tions in different event spaces. In line with the observations above, this implies
that relevance feedback (in the form of documents) for a given query is impos-
sible (although relevant query feedback for a given document would indeed be
feasible [239]). Luk [195] responds to Robertson in a fashion similar to [16] and
proves that, under certain assumptions, the latent variable indicating relevance
introduced by [174] is implicit in the ranking formula. Boscarino and de Vries
[43] reply to Luk in turn and argue that this claim is also problematic. Boscarino
and de Vries state that Luk attempts to solve the issue at the statistical level, while
it should be addressed through a proper selection of priors. All in all, a definitive
bridge between PRP and LM is still missing. Even if the LM approach to IR is
“misusing” some of its fundamental premises, the theoretical and experimental
evidence suggest that the approach does indeed have merit.
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Figure 2.1: Example query model for the topic “poker tournaments,” obtained using
RM-1 (See page 26). The size of a term is proportional to its probability in the query
model.

2.3 Query Modeling

Examining how queries can be transformed to equivalent, potentially better queries
is a theme of recurring interest to the IR community. Such transformations include
expansion of short queries to long queries [242, 327, 345], paraphrasing queries
using an alternative vocabulary [92], mapping unstructured queries to structured
ones [224, 225], identifying key concepts in verbose queries [29], substituting
terms in the query [86], etc.

Multiple types of information source have been considered as input to the
query transformation process. In traditional set-ups, resources such as thesauri
and controlled vocabularies have long been used to address word mismatch prob-
lems [21, 327], whilst other techniques are based on analyzing the local con-
text of a query [345]. In relevance feedback, retrieved documents (possibly with
associated relevance assessments) serve as examples to select additional query
terms from [267]; relevance feedback will be further introduced in Section 2.3.2.
Other types of information sources to be used for query transformations include
recent ones such as using anchor texts or search engine logs for query substi-
tutions [86, 335]. Another recent example is where users complement their
traditional keyword query with additional information, such as example docu-
ments [24], tags [73], images [76, 91], categories [338], or their search his-
tory [20]. The recent interest of the semantic web community regarding models
and methods related to ontologies has also sparked a renewed interest in using
ontological information for query expansion [35, 268].

Query expansion is a form of query transformation that aims to bridge the vo-
cabulary gap between queries and documents by adding and reweighting terms
in the original query; Dang and Croft [86] show that it is more robust than sub-
stituting terms in the query. Figure 2.2 is based on a diagram from [97] and
shows various types of query expansion as well as the various sources of infor-
mation that are commonly used. Query expansion can be local or global [345].
Global query expansion uses global collection statistics or “external” knowledge
sources such as concept languages to enhance the query. Examples of the for-
mer include word associations such as those defined by term co-occurrences or
latent semantic indexing (LSI) [88, 325]. Concepts and lexical-syntactic rela-
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Figure 2.2: Sources for query expansion.

tions as defined in a thesaurus have been used with varying degrees of effective-
ness [21, 57, 97, 209, 252, 268, 321, 327]. Local query expansion methods try
to take into account the context of a query, specifically through looking at a set of
feedback documents. Finkelstein et al. [102] propose to use the local context of
query terms as they appear in documents to locate additional query terms. One
might also consider a user’s history or profile, in order to automatically enrich
queries [168]. Much later, this idea was adopted in a language modeling setting
by Bai and Nie [20]. One could utilize many different sources of information to
improve the estimate of the query model, including external corpora [92], exam-
ple documents [24], amongst others. Lease et al. [184] apply machine learning to
learn which terms to select from verbose queries. Cao et al. [58] use an support
vector machine (SVM) classifier to learn which terms improve retrieval perfor-
mance. He and Ounis [124] use machine learning to select documents for rele-
vance feedback. In the remainder of this section we discuss common approaches
to query modeling, including the translation model, relevance feedback, and term
dependencies. In Chapter 4 we introduce and evaluate new relevance feedback
methods for query modeling. In Chapter 5 we introduce a method that uses
query modeling in conjunction with document annotations for query modeling.
In Chapter 6 we use a machine learning method to map queries to concepts and in
Chapter 7 we use concepts obtained using machine learning for query modeling.

2.3.1 Translation Model

Berger and Lafferty [31] integrate term relationships in the language modeling
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framework using a translation model. They view each term in a query as a trans-
lation from each term in a document, which is modeled as a noisy channel. Here,
each source term has a certain probability of being translated into another term
(including a “self-translation” onto the source term) and each document is then
scored based on the translated terms. More formally,

P (ti|θD) =
∑
j

P (ti|tj)P (tj |θD), (2.11)

where P (ti|tj) is the translation probability of ti to tj . Berger and Lafferty [31]
estimate this relation for pairs of words in the same language by considering each
sentence parallel to the paragraph it contains. In essence, Eq. 2.11 describes a
form of smoothing that uses translation probabilities instead of collection esti-
mates. It also features an inherent query expansion component.

Various other authors have built upon this model. For example, Cao et al.
[57] and Nie et al. [241] incorporate WordNet relations and co-occurrence infor-
mation for query modeling. Jin et al. [150] estimate the probability of using a
query as the title for each document, and Wei and Croft [340] smooth each doc-
ument using a number of topic models obtained using LDA (which is introduced
below). Lalmas et al. [176] use the translation model to leverage information
from lexical entailments. Lavrenko and Croft [183] use the same intuitions to
incorporate relevance feedback information, as we describe in the next section.
Jimeno-Yepes et al. [149] use this model to include semantic information when
ranking documents, with similar intuitions as we present in Chapter 5.

2.3.2 Relevance Feedback

A well-studied source of information for transforming a query is the user, through
relevance feedback [81, 267, 272, 276]: given a query, a set of documents, and
judgments on the documents retrieved for that query, how does a system take
advantage of the judgments in order to transform the original query and retrieve
more documents that will be useful to the user? Despite a history dating back
several decades, relevance feedback is perhaps one of the least understood tech-
niques in IR. Indeed, as demonstrated by the recent launch of a dedicated rel-
evance feedback track at TREC [48], we still lack the definitive answer to this
question.

Relevance feedback is a form of local query expansion that relies on the anal-
ysis of feedback documents, for example obtained through an initial retrieval
run. Three variants with respect to how the judgments are obtained can be
discerned: pseudo, explicit, and implicit relevance feedback. Pseudo relevance
feedback methods assume the top ranked documents to be relevant. It was first
introduced by Croft and Harper [81] and applied in the context of the PRP model
to obtain an alternative for the IDF term weighting function. Explicit relevance
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feedback uses explicit relevance assessments from users [9, 165, 323, 345]. Im-
plicit relevance feedback obtains such assessments indirectly, e.g., from query or
click logs [9, 85, 153], historical queries [283] or by considering user interac-
tions with the system, such as dwell time and scrolling behavior [162]. White
et al. [341] compare implicit relevance feedback (obtained from user interaction
with the system) with explicit relevance feedback and find that the two methods
are statistically indistinguishable.

In a language modeling setting, relevance feedback has been mainly applied to
(re-)estimate query models [175, 181–183, 310], although other approaches such
as document expansion using query feedback also exist [239]. In the remainder of
this section, we detail the various relevance feedback methods for query modeling
that we evaluate and employ in later chapters. First, we consider the simplest
case where the set of relevant documents is considered as a whole. We then
turn to Zhai and Lafferty’s model-based feedback (MBF) [354] and Lavrenko and
Croft’s relevance model (RM) [182]. Figure 4.1 displays these four models using
Bayesian networks, whereas Table 4.1 lists the abbreviations used throughout the
thesis (see page 54).

Maximum Likelihood

If we were able to obtain a complete set of relevance judgments from the user and,
hence, could fully enumerate all documents relevant to a query, we could simply
use the empirical estimate of the terms in those documents to obtain θQ. Given
all sources of information available to the system (the query, assessments, and
documents in the collection), the parameters of this model would fully describe
the information need from the system’s point of view. The joint likelihood of
observing the terms given θQ under this model (again assuming independence
between terms) is:

P (t1, . . . , t|V||θQ) =
|V|∏
i=1

P (ti|R), (2.12)

where R denotes the set of relevant documents. Then, we can use a maximum
likelihood estimate over the documents in R to obtain

P (t|R) = P (t|θ̃R)

=
∑
D∈Rn(t,D)∑

D∈R
∑
t′ n(t′,D) . (2.13)

Below, we refer to this model as maximum likelihood expansion (MLE).
In contrast to this hypothetical case, however, a typical search engine user

would only produce judgments on the relevance status of a small number of doc-
uments, if at all [299]. Even in larger-scale, system-based TREC evaluations, the
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number of assessments per query is still a fraction of the total number of docu-
ments in the collection [50, 52, 288]. So in any realistic scenario, the relevance
of all remaining, non-judged documents is unknown and this fact jeopardizes the
confidence we can put in the model described by Eq. 2.12 to accurately estimate
θQ. This is one of the motivations behind the model proposed by Zhai and Lafferty
[354] that iteratively updates P (t|θQ) by comparing it to a background model of
general English. We further detail their model below.

Besides having a limited number of relevance assessments, not every docu-
ment in R is necessarily entirely relevant to the information need. Ideally, we
would like to weight documents according to their “relative” level of relevance.
We could consider each relevant document as a separate piece of evidence to-
wards the estimation of θQ, instead of assuming full independence as in Eq. 2.13.
Let’s consider the following sampling process to substantiate this intuition. We
pick a relevant document according to some probability and then select a term
from that document. Assuming that each term is generated independently once
we pick a relevant document, the probability of randomly picking a document
and then observing t is

P (t,D|θQ) = P (D|R)P (t|θD). (2.14)

Then, the overall probability of observing all terms can be expressed as a sum of
the marginals:

P (t1, . . . , t|V||θQ) =
∑
D∈R

P (D|R)P (t1, . . . , t|V||D) (2.15)

=
∑
D∈R

P (D|R)
|V|∏
i=1

P (ti|θD).

The key term here is P (D|R); it conveys the probability of selecting D given R or,
slightly paraphrased, the level of relevance of D. Lavrenko and Croft [182] use
this mechanism to obtain a posterior estimate of P (t|θQ), as detailed below. In
Chapter 4 we introduce and evaluate a novel way of estimating both P (D|R) and
P (t|θQ).

Model-based Feedback

Zhai and Lafferty [354] propose a model for pseudo relevance feedback that is
closely related to MLE. Their model also assumes document independence (like
Eq. 2.13), but they consider the set of feedback documents to be a model con-
sisting of a mixture of two components: a model of relevance and a general
background model. More formally:

P (t1, . . . , t|V||R) =
|V|∏
i=1

|R|∏
j=1

{
(1−λR)P (ti|θ̂R) +λRP (ti)

}n(ti,Dj)
. (2.16)
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One can use an estimation method such as expectation maximization (EM) [90]
to maximize the likelihood of the observed data (the relevant documents):

et = (1−λR)P (t|θ̂R)
(1−λR)P (t|θ̂R) +λRP (t)

(2.17)

P (t|θ̂R) =
∑
D∈Rn(t,D)et∑

t′
∑
D∈Rn(t′,D)et′

. (2.18)

After converging, Zhai and Lafferty use P (t|θ̂R) as P (t|θ̂Q) in Eq. 2.10. Like
MLE, this model also discards information pertinent to the individual relevant
documents and only considers the set as a whole. The close relation between the
two models is made visible by entering λR = 0 in Eq. 2.17, which yields et = 1
and, hence, MLE (cf. Eq. 2.13):

P (t|θ̂R) =
∑
D∈Rn(t,D)∑

t′
∑
D∈Rn(t′,D) = n(t,R)∑

t′ n(t′,R) = P (t|θ̃R). (2.19)

Various other researchers have used the intuitions behind MBF for their models.
For example, Tao and Zhai [310] extend MBF and remove the need for the sub-
sequent interpolation of the initial query and θ̂Q (cf. Eq. 2.10), by defining a
conjugate prior Dir({1 +µP (t|θ̃Q)}t∈V) on θQ. Hiemstra et al. [136] follow the
same assumptions as MBF, but propose to model θQ as a three component mixture
by incorporating a separate document model, as described below.

Relevance Models

In contrast to the estimation method used by MBF, the relevance modeling ap-
proach uses relevance feedback information to arrive at a posterior estimate of
θQ [182]. Relevance models are one of the baselines we employ at various points
later in the thesis. They are centered around the notion that there exists a query-
dependent model of relevance; the initial source for estimating the parameters
of this model is the query itself, but relevance feedback information can provide
additional evidence. It is assumed that for every information need there exists
an underlying relevance model and that the query and relevant documents are
random samples from this model. The query model, parametrized by θQ, may be
viewed as an approximation of this model. However, in a typical retrieval setting
improving the estimation of θQ is problematic because we have no or only limited
training data. Lavrenko and Croft [182] discern three situations:

1. when the full set of relevant documents is known;

2. when a partial set of relevant documents is known;

3. when there is only pseudo relevance feedback information.
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In the first and second situation, they define:

P (t1, . . . , t|V||θQ) ∝
|V|∏
i=1

1
|R|

∑
D∈R

λDP (ti|θ̃D) + (1−λD)P (ti). (2.20)

For the first situation (called RM-0), λD is set to 1, which makes this model
equivalent to MBF except for the way it treats the set of relevant documents. MBF
considers the set as a whole, whereas RM considers each document individually.
So, besides using a different estimation method, MBF is highly similar to RM,
except for two assumptions: MBF assumes (i) independence between relevant
documents and (ii) λR 6= 0. In situation 2, λD is set to a value between 0 and 1.

In situation 3, i.e., the case of pseudo relevance feedback where R is a set of
top-ranked documents of which the relevance status is unknown, Lavrenko and
Croft discern two methods (model 1 and model 2). Contrary to situations 1 and
2, these are also dependent on the initial query. Model 2 (RM-2) is defined as:

P (t1, . . . , t|V||θQ)∝
|V|∏
i=1

P (ti)
|Q|∏
j=1

∑
D∈R

P (qj |D)P (D|ti), (2.21)

where

P (t) =
∑
D∈R

P (t|θD)P (D) and P (D|t) = P (t|θD)P (D)∑
D∈RP (t|θD)P (D) . (2.22)

Then we can rewrite Eq. 2.21 into:

P (t1, . . . , t|V||θQ)∝
|V|∏
i=1

|Q|∏
j=1

∑
D∈R

P (qj |D)P (ti|θD)P (D). (2.23)

As is clear from Eq. 2.23, this model considers each relevant document individu-
ally and explicitly takes the initial query into account by first gathering evidence
from each document for a query term and, next, combining the evidence for all
query terms. Model 1 (RM-1), on the other hand, is defined as:

P (t1, . . . , t|V||θQ) ∝
|V|∏
i=1

∑
D∈R

P (ti|θD)P (D|Q)

∝
|V|∏
i=1

∑
D∈R

P (ti|θD)P (D)
|Q|∏
j=1

P (qj |D)

∝
|V|∏
i=1

∑
D∈R

|Q|∏
j=1

P (qj |D)P (ti|θD)P (D). (2.24)
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This restructured equation makes clear that in case of RM-1 the evidence is first
aggregated per query term and subsequently per document. So, RM-1 and RM-2
differ in the way they aggregate evidence of terms co-occuring with the query:
RM-1 first aggregates evidence for all query terms and then sums over the docu-
ments, whilst RM-2 does the opposite. In both RM-1 and RM-2, P (D) is assumed
to be uniform, i.e., P (D) = 1/|R|.

Various extensions and adaptations of relevance models have been proposed
in the literature. Li [188] adds three heuristics to the relevance model estima-
tion, including adding the original query as pseudo-document, adding a docu-
ment length based prior, and discounting a term’s probability based on estimates
on the collection. Diaz and Metzler [92] estimate relevance models on external
corpora and find that this approach helps to reduce noise in the query models; a
finding corroborated by Weerkamp et al. [337]. Balog et al. [24] apply relevance
model estimation methods on example documents provided by the user and find
that their model significantly outperforms several baselines. In [208, 209] we
have biased the relevance model estimations towards concepts assigned to the
documents. This approach was later refined in [221] and will be further intro-
duced in Chapter 5.

Parsimonious Relevance Models

Hiemstra et al. [136] propose an approach to language modeling, called parsimo-
nious relevance models (PRM), that is based on [297]. It hinges on the notion
that language models should not model language blindly, but instead model the
language that distinguishes a relevant document from other documents. Hiem-
stra et al. present an iterative algorithm based on EM that takes away probability
mass from terms that are frequent in a model of general English and gives it to
the terms that are distinct in a document. It re-estimates the document models as
follows:

E-step

et = n(t,D) λDP (t|θ̂D)
(1−λD)P (t) +λDP (t|θ̂D)

,

M-step

P (t|θ̂D) = et∑
t′ et′

, (2.25)

until the estimates do not change significantly anymore. The resulting P (t|θ̂D) is
then used instead of the document model in Eq. 2.8.

In the case of relevance feedback, Hiemstra et al. [136] define a three-level
model, that adds a model of relevance to Eq. 2.25. In this case, each relevant
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document is considered to be a linear interpolation of these three models:

P (t1, . . . , t|V||θ̂D) =
|V|∏
i=1

((1−λ−µ)P (ti) +µP (ti|θR) +λP (ti|θD)) . (2.26)

Given a set of relevant documents, the following iterative algorithm is applied:

E-step

rt = n(t,D) µP (t|θ̂R)
(1−λ−µ)P (t) +µP (t|θ̂R) +λP (t|θ̂D)

,

et = n(t,D) λP (t|θ̂D)
(1−λ−µ)P (t) +µP (t|θ̂R) +λP (t|θ̂D)

,

M-step

P (t|θ̂R) =
∑
D∈R

rt∑
t′ rt′

,

P (t|θ̂D) = et∑
t′ et′

. (2.27)

Hiemstra et al. [136] propose to use P (t|θ̂R) instead of the query model, again
using Eq. 2.8. When a fixed value of µ = 0 is used in Eq. 2.27, it results in RM-0
with parsimonious document models.

Hiemstra et al. [136] find that the size of the posting list for each document
(in which the terms with a non-zero value are stored for each document in an
index) can be greatly reduced, without a significant loss in retrieval performance.
When Eq. 2.27 is evaluated on a routing task (cf. Chapter 3), they find that
retrieval performance is slightly improved over RM-0. They do not find further
improvements when introducing re-estimated document models (i.e., when λ >

0).
In [216] we have proposed a combination of MBF and RM-2 that uses rele-

vance models in conjunction with the estimation methods of MBF. In Chapter 4 we
also include PRM in the comparative performance evaluations. In Chapter 5 we
apply a similar EM algorithm when incorporating document level annotations
during query modeling and find that this step is essential for obtaining significant
improvements.

2.3.3 Term Dependence Models

IR has a long history of attempts to incorporate syntactic information such as term
dependencies, with varying success [291, 294]. All language modeling variations
presented so far are based on the assumption that terms (in both queries and
documents) are independent of each other. Given common knowledge about lan-
guage, such an assumption might seem unrealistic (or even plainly wrong). Var-
ious researchers have attempted folding in syntactic information (ranging from
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n-gram information [229, 290, 301] to using HAL (Hyperspace Analog to Lan-
guage) space [137]). Such efforts have not yet resulted in consistent, significant
improvements however. This fact is commonly attributed to data sparsity in cor-
pora; most of the features (e.g., the n-grams) simply do not occur with sufficient
frequency.

Song and Croft [290] do observe an improved performance for their proposed
general language model that combines bigram language models with Good-Turing
estimates and corpus-based smoothing of unigram probabilities. This form of
smoothing interpolates the probabilities for bigrams with those of unigrams; the
probability of observing the sequence of terms 〈t1, . . . , tn〉 becomes:

P (〈t1, . . . , tn〉) = P (t1)P (t2|t1) . . .P (tn|tn−1), (2.28)

where

P (ti|ti−1) = λP (ti|ti−1) + (1−λ)P (ti). (2.29)

Such back-off bigram language models give a higher probability to documents
containing a bigram from the query as a phrase (e.g. documents containing the
phrase “information retrieval” would obtain a larger probability than documents
containing solely the constituent terms). Srikanth and Srihari [301] build upon
this idea and propose the use of so-called biterms. Biterms are similar in nature
to back-off bigram language models, with the distinction that the constraint of
term ordering is relaxed. Using their method, a document containing the phrase
“retrieval of information” would be assigned the same probability as using the bi-
gram model. Similar intuitions have been applied to query modeling and applying
positional information there has met with improvements in retrieval performance,
especially in terms of precision on larger web collections [224, 232].

2.4 Language Modeling Variations

A number of extensions and variants have been developed for language model-
ing for IR, most of which aim to address the vocabulary gap between queries
and documents. In the previous sections we have seen techniques such as query
modeling and relevance feedback. Other extensions include, but are not limited
to, leveraging document structure, collection structure, and semantics. Other IR
research avenues aim to develop models that use semantic information to im-
prove performance with respect to standard bag-of-word based models. Many of
these approaches aim at concept-based retrieval, but differ in the nature of the
concepts. They range from

• latent topics derived from the document contents (as in latent semantic
indexing (LSI) or latent dirichlet allocation (LDA)),
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• document clusters in the collection, to

• concepts (a priori defined, for example, in linguistic resources such as Word-
Net [21, 57] or structured knowledge sources such as DBpedia [69, 106,
205], as we will see in Chapter 5).

In the following sections we provide an overview of these models.

2.4.1 Topic Models

Building thesauri or other knowledge structures by hand is a very labor-intensive
process. It is also difficult to get people to agree on a certain ordering and struc-
turing of things. Because of this, it seems very attractive to automate this process,
by inferring such structures from text in an unsupervised manner, i.e., without any
human intervention [151, 273, 291, 293]. For instance, a co-occurrence analysis
of the entire collection might be applied to estimate dependencies between vocab-
ulary terms [21, 67, 234]. Turney and Pantel [322] uses a similar method which
is commonly referred to as statistical semantics. Alternatively, term dependencies
may be determined on a query-dependent subset of the collection, such as a set of
initially retrieved documents [224, 235, 345]. These dependencies may then be
employed to locate terms related to the initial query. Spiegel and Bennet already
suggested that dependency information between terms may be used to choose
terms for query expansion [272, 298]. Peat and Willett [243], however, do not
find significant improvements in retrieval performance using such methods for
query expansion.

More recently, various data driven models based on principal component anal-
ysis/singular value decomposition and posterior inferencing methods have caused
a renewed interest in methods for automatically identifying implicit concepts in
text. They capture hidden (latent) themes underlying the collection, much in the
same way as explicit concepts. Unlike explicit topics (such as document or term
annotations—addressed in Section 2.4.2), implicit topics are estimated from the
data and group together terms that frequently occur together in the documents.
The assumption is that in every document collection there exist a number of such
topics and that every document describes some combination of them. The goal,
then, is to apply some form of dimensionality reduction in order to represent doc-
uments as topic mixtures. In sum, topic models are statistical models of text that
assume a hidden space of topics in which the collection is embedded [40]. Topic
models are typically used as a way of expressing the “semantic” properties of a
piece of text [303] and, at the same time, can address the vocabulary mismatch
problem [105].

LSI was an early approach towards extracting term clusters from text [88]. It is
based on applying singular value decomposition to a matrix containing document-
term counts and effectively “collapses” similar terms into groups. probabilistic
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latent semantic indexing (PLSI) evolved from LSI and adds a probabilistic inter-
pretation that is based on a mixture decomposition derived from a latent class
model [139]. Its formulation is very similar to the translation model given in
Eq. 2.11:

P (t|θD) =
∑
z

P (t|z)P (z|D), (2.30)

where z is a latent topic (or: aspect). However, they differ in that in the case
of PLSI P (t|θD) is given and the objective is to learn the probabilities P (t|z) and
P (z|D), i.e., the probability of a term given a topic and the probability of each
topic given a document respectively. Learning is typically accomplished using an
optimization algorithm such as EM [90]. In fact, in Chapter 5, we use a variant
of this model to incorporate explicit topics in the form of document annotations
to improve retrieval performance. PLSI has some issues, the most important of
which being the fact that it is a generative model of the documents it is estimated
on and does not generalize to new documents. This fact is addressed in the LDA
model [40] which is a fully generative approach to language modeling (in fact,
Girolami and Kaban [112] show that PLSI is a maximum a posteriori estimated
LDA model under a uniform Dirichlet prior).

Topic models have been applied in the context of IR [340] and text classifi-
cation [40], among others [193]. Wei and Croft [340] use LDA to apply an ad-
ditional level of language model smoothing. Pu and He [250] use “Independent
Component Analysis” (a topic modeling variant) to determine so-called semantic
clusters, defined by the learned topics. They sample terms for query modeling
using relevance models on these clusters. This intuition is highly similar to our
methods presented in Chapters 5 and 7, although we use explicit topics in the
form of concepts instead of implicit topics.

2.4.2 Concept Models

In this thesis we define concepts to be cognitive units of meaning that have been
formalized in a knowledge structure such as a controlled vocabulary, thesaurus,
or ontology. Furthermore, we impose the restriction that such concepts should be
agreed upon by a number of people (who typically are domain experts). So, this
definition includes concepts taken from thesauri such as MeSH, but also Wiki-
pedia articles (as captured, for example, in the DBpedia knowledge base). More-
over, this definition thus excludes machine-generated concepts (such as topics,
clusters, or topic hierarchies) as well as personal, user generated tags. Initially,
such concepts (taken from a particular knowledge structure, described in some
particular concept language) were used in IR for indexing purposes. The Cran-
field experiments established, however, that retrieval performance using “con-
trolled” indexing terms does not outperform using terms as they appear in the
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documents [74]. However, later studies did not unanimously confirm this con-
clusion [35]. Various researchers continue to look for ways of (automatically)
improving retrieval performance, using either manually or automatically identi-
fied concepts. In order for IR models and methods to leverage concepts from
concept languages, the more general task of (automatically) linking free text to
such concepts needs to be addressed. In this section we zoom in on approaches
related to language modeling and/or IR. In Section 2.5 we discuss the issue from
a more general viewpoint.

One of the first methods for automatically relating concepts with text was
introduced in the 1980s. Giger [111] incorporated a mapping between concepts
from a thesaurus and words as they appear in the collection. The main motivation
was to move beyond text-based retrieval and bridge the semantic gap between the
user and the information retrieval system. His algorithm first defines atomic con-
cepts, which are string-based concept to term mappings. Then, documents are
placed in disjoint groups based on so-called elementary logical conjuncts, which
are defined through the atomic concepts. At retrieval time, the query is parsed
and the sets of documents with the lowest distance to the requested concepts are
returned. His ideas relate to recent work done by Zhou et al. [357, 358], who use
so-called topic signatures to index and retrieve documents. These signatures are
comprised of named entities recognized within each document and query; when
named entities are not available, term pairs are used. The named entity recog-
nition step in [357, 358] is automated and might not be completely accurate;
we suspect that errors in this concept detection process do not strongly affect
retrieval performance because pairs of concepts (topic signatures) are used for
retrieval. Below, in Chapter 5, we rely on manually curated concept annotations,
making the topic signatures superfluous.

Trieschnigg et al. [315] also use named entity recognition to obtain a con-
ceptual representation of queries and documents. They conclude that searching
only with an automatically obtained conceptual representation seriously degrades
retrieval when searching for short documents. Interestingly, the same approach
performs on par with text-only search when larger documents (full-text articles)
are retrieved. Guo et al. [117] perform named entity recognition in queries; they
recognize a single entity in each query and subsequently classify it into one of a
very small set of predefined classes such as “movie” or “video game.” In our con-
cept models (presented in Chapter 5), we do not impose the restriction of having
a single concept per query and, furthermore, our list of candidate concepts is
much larger. Several other approaches have been proposed that link queries to a
limited set of categories. French et al. [104] present an approach that uses map-
pings between noun phrases and concepts for query expansion; to this end they
employ so-called Entry Vocabulary Indexes [109]. These are calculated as a logit-
like function, operating on contingency tables with counts of the number of times
a noun phrase is and is not associated with a concept. The counts are obtained by
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looking at the documents that are annotated with a certain concept, much in the
same way as the approach we present in Chapter 5. Bendersky and Croft [29] use
part-of-speech tagging and a supervised machine learning technique to identify
the “key noun phrases” in verbose natural language queries. Key noun phrases
are phrases that convey the most information in a query and contribute most to
the resulting retrieval performance.

Instead of using part-of-speech tagging, noun phrases, or named entity recog-
nition, Gabrilovich and Markovitch [106] employ document-level annotations, in
the form of Wikipedia articles and categories [205]. They perform semantic in-
terpretation of unrestricted natural language texts by representing meaning in
a high-dimensional space of concepts derived from Wikipedia. In this way, the
strength of association between vocabulary terms and concepts can be quanti-
fied, which can subsequently be used to generate vectors of concepts for a piece
of text—either a document or query. In Chapter 7, we use a similar method
using machine learning and language modeling techniques, to obtain a query
model estimated from Wikipedia articles relevant to the query. This approach
is also similar to the intuitions behind the topic modeling approach described
by Wei [339], that uses Open Directory Project (ODP) concepts in conjunction
with generative language models. Instead of using concept-document associa-
tions, however, she uses an ad hoc approach based on the descriptions of the
concepts in the concept language (in this case, ODP categories). Interestingly, all
of these approaches open up the door to providing conceptual relevance feedback
to users. Instead of suggesting vocabulary terms that are related to the query, we
can now suggest related concepts that can, for example, be used for navigational
purposes [165, 209, 285, 323] or directly for retrieval [254]. Trajkova and Gauch
[314] describe another possible application; their system keeps track of a user’s
history by classifying visited web pages into concepts from the ODP.

Concepts can be recognized at different levels of granularity, either at the
term level, by recognizing concepts in the text, or at the document level, by using
document-level annotations or categories. While the former can be described as
a form of concept-based indexing [178], the latter is more related to text classifi-
cation. Indeed, the mapping of vocabulary terms to concepts as described above
is in fact a text (or concept) classification algorithm [294].

Further examples of mapping queries to conceptual representations can be
found in the area of web query classification. Broder et al. [47] use a pseudo
relevance feedback technique to classify rare queries into a commercial taxonomy
of web queries, with the goal to improve web advertisements. A classifier is used
to classify the highest ranked results, and these classifications are subsequently
used to classify the query by means of voting. We use a similar method to obtain
the conceptual representation of our query described in Section 5.1.1, with the
important difference that all our documents have been manually classified.

Mishne and de Rijke [233] classify queries into taxonomies using category-
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based web services. Shen et al. [282] improve web query classification by map-
ping the query to concepts in an intermediate taxonomy which in turn are linked
to concepts in the target taxonomy. Chen et al. [66] use a taxonomy to sug-
gest keywords. After mapping the seed keywords to a concept hierarchy, content
phrases related to the found concepts are suggested. In Chapter 5, the concepts
are used to update the query model, i.e., to update the probabilities of terms
based on the found concepts rather than the addition of related discrete terms or
phrases.

The use of a conceptual representation obtained from pseudo relevance feed-
back has also been investigated by researchers in the biomedical domain. Srini-
vasan [302] proposes directly adding concepts to an initial query and reports the
largest improvement in retrieval effectiveness when another round of blind rele-
vance feedback on vocabulary terms is applied afterwards. She creates a separate
“concept index” in which tokenized concept labels are used as terms. In this way,
searching using a concept labeled “Stomach cancer” also matches the related, but
clearly different concept “Breast cancer” because they share the word “cancer”.
In our opinion, this obfuscates the added value of using clearly defined concepts;
searching with a textual representation containing the word “cancer” will already
result in matching related concepts. In Section 6.4 we show that this kind of
lexical matching does not perform well. Srinivasan concludes that concepts are
beneficial for retrieval, but remarks that the OHSUMED collection used for evalu-
ation was quite small. Our evaluation in Chapter 5 uses the larger Text Retrieval
Conference (TREC) Genomics test collections and, additionally, investigates the
use of document level annotations in another domain using the Cross-Language
Evaluation Forum (CLEF) Domain Specific test collections (cf. Section 3.3). Ca-
mous et al. [56] also use the annotations of the top-5 retrieved documents to
obtain a conceptual query representation, but incorporate them in a different
fashion. The authors use them to create a new ranked list of documents, which is
subsequently combined with the initially retrieved documents.

In addition to query expansion, various ways of directly improving text-based
retrieval by incorporating concepts or a concept language have been proposed.
For example, the entries from a concept language may be used to define the
indexing terms employed by the retrieval system [280].

2.4.3 Cluster-based Language Models

Work done on cluster-based retrieval can be viewed as a variation on the concept
or topic modeling theme; in those cases, however, the clusters are defined by the
concepts (hard clustering) or the latent topics (soft clustering) that are associated
with the documents in the collection.

Cluster-based language models use document-document similarity to define
coherent subsets of the collection. Document clusters can be construed as seman-
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tically coherent segments, each covering one “concept.” Indeed, Trieschnigg et al.
[318] have shown that a nearest-neighbor clustering approach yields the best per-
formance when classifying documents into MeSH terms. Kurland and Lee [171]
determine overlapping clusters of documents in a collection, which are consid-
ered facets of the collection. They use a language modeling framework in which
their aspect-x algorithm smoothes documents based on the information from the
clusters and the strength of the connection between each document and cluster.
Liu and Croft [189] evaluate both the direct retrieval of clusters and cluster-based
smoothing. Their CBDM model is a mixture between a document model, a col-
lection model, and the cluster each document belongs to, which is able to sig-
nificantly outperform a standard query likelihood baseline. Instead of smoothing
documents, Minker et al. [231] use cluster-based information for query expan-
sion. The authors evaluate their algorithm on several small test collections, with-
out achieving any improvements over the unexpanded queries. More recently,
Lee et al. [185] have shown that detecting clusters in a set of (pseudo-)relevant
documents is helpful for identifying dominant documents for a query and, thus,
for subsequent query expansion, a finding which was corroborated on different
test collections by Kurland [170]. In [126] we show that soft clustering using LDA
can help to significantly improve result diversification performance, i.e., identify-
ing and promoting relevant aspects of a query. These approaches all exploit the
notion that “associations between documents convey information about the rele-
vance of documents to requests” [145]. Indeed, if we have evidence that a given
concept is relevant for a particular query, it is natural to assume that all docu-
ments labeled with this concept have a higher prior probability of being relevant
to the query [325]. This is the main motivating idea for our model presented in
Chapter 5.

2.5 Linking Free Text to Concepts

In the previous section we have introduced IR-related ways of mapping free text
in the form of queries and/or documents to concepts. In this section we focus
on more general solutions to this problem. The approaches we discuss here are
related to several areas of research. These include Semantic Web areas such as
ontology learning, population, and matching and semantic annotation, but also
natural language interfaces to databases.

2.5.1 Natural Language Interfaces to Databases

The first body of related work that we discuss is from the field of natural language
interfaces to databases [351]. For example, BANKS [34], DISCOVER [140], and
DBXplorer [2] allow novice users to query large, complex databases using natu-
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ral language queries. Tata and Lohman [312] propose a similar keyword-based
querying mechanism but with additional aggregation facilities. All of these sys-
tems perform some kind of matching between the input query and either the
database schema itself, the contents of the database, or the graph of tuples cre-
ated by the joins defined on the schema. The actual matching function varies per
system and ranges from determining lexical matches (optionally using regular ex-
pressions or some form of edit distance) to using an inverted index and related
IR techniques [18]. These approaches are very similar to the ones we use to rank
candidate concepts in Chapter 6. Later, we take these two types of matching as
baselines to which we compare our own approach. In contrast to our approach,
none of them apply machine learning.

NAGA is a similar system that is more tied to the semantic web [99, 160].
It uses language modeling intuitions to determine a ranking of possible answer
graphs, based on the frequency of occurrence of terms in the knowledge base.
This scoring mechanism has been shown to perform better than that of BANKS on
various test collections [160]. NAGA does not support approximate matching and
keyword-augmented queries. Our method presented in Chapter 6, on the other
hand, takes as input any unstructured search engine query.

Demidova et al. [89] present the evaluation of a system that maps keyword
queries to structured query templates. The query terms are mapped to spe-
cific places in each template and the templates are subsequently ranked, ex-
plicitly taking diversity into account. They find that applying diversification to
query template ranking achieves a significant reduction of result redundancy.
Kaufmann and Bernstein [161] perform a user study in which they evaluate var-
ious natural language interfaces to structured knowledge bases. Each interface
has a different level of complexity and the task they ask their users to accomplish
is to rewrite a set of factoid and list queries for each interface, with the goal of
answering each question using the contents of the knowledge base. They find that
for this task, the optimal strategy is a combination of structure (in the form of a
fixed set of question beginnings, such as “How many ...” and “Which ...”) and free
text. The task we present in Chapter 6 is more general than the task evaluated
in [161], in that we do not investigate if, how well, or how easily users’ queries
are answered, but whether they are mapped to the right concepts. We postulate
various benefits of these mappings other than to answering questions, such as to
provide contextual suggestions, to start exploring the knowledge base, etc.

2.5.2 Ontology Matching

In ontology matching, relations between concepts from different ontologies are
identified. The Ontology Alignment Evaluation Initiative has addressed this task
since 2008 [59]. Here, participants link a largely unstructured thesaurus to DBpe-
dia. The relations to be obtained are based on a comparison of instances, concept
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labels, semantic structure, or ontological features such as constraints or prop-
erties, sometimes exploiting auxiliary external resources such as WordNet or an
upper ontology [284]. E.g., Wang et al. [334] develop a machine learning tech-
nique to learn the relationship between the similarity of instances and the va-
lidity of mappings between concepts. Other approaches are designed for lexical
comparison of concept labels in the source and target ontology and use neither
semantic structure nor instances (e.g., [304]). Aleksovski et al. [3] use a lexical
comparison of labels to map both the source and the target ontology to a seman-
tically rich external source of background knowledge. This type of matching is
referred to as “lexical matching” and is used in cases where the ontologies do
not have any instances or structure. Lexical matching is very similar to the task
presented in Chapter 6, as we do not have explicit semantic structure in any of
our queries. Indeed, the queries that we use are free text utterances instead of
standardized concept labels, which makes our task intrinsically harder.

2.5.3 Ontology Learning, Ontology Population, and Semantic
Annotation

In the field of ontology learning and population, concepts and/or their instances
are learned from unstructured or semi-structured documents, together with links
between concepts [53]. Well-known examples of ontology learning tools are On-
toGen [103] and TextToOnto [199]. More related to our task is the work done
on semantic annotation, the process of mapping text from unstructured data re-
sources to concepts from ontologies or other sources of structured knowledge. In
the simplest case, this is performed using a lexical match between the labels of
each candidate concept and the contents of the text [94, 142, 200, 217]. A well-
known example of a more elaborate approach is Ontotext’s KIM platform [166].
The KIM platform builds on GATE to detect named entities and to link them to
concepts in an ontology [249]. Entities unknown to the ontology are fed back
into the ontology, thus populating it further. OpenCalais1 provides semantic an-
notations of textual documents by automatically identifying entities, events, and
facts. Each annotation is given a URI that is linked to concepts from the Linked
Open Data (LOD) cloud when possible.

Chemudugunta et al. [64] do not restrict themselves to named entities, but
instead use topic models to link all words in a document to ontological concepts.
Other sub-problems of semantic annotation include sense tagging and word sense
disambiguation [101]. Some of the techniques developed there have fed into au-
tomatic link generation between full-text documents and Wikipedia. For example,
Milne and Witten [230], building on the work of Mihalcea and Csomai [226], de-
pend heavily on contextual information from terms and phrases surrounding the

1http://www.opencalais.com/

http://www.opencalais.com/


38 2. Background

source text to determine the best Wikipedia articles to link to. The authors ap-
ply part-of-speech tagging and develop several ranking procedures for candidate
Wikipedia articles. A key difference with the approach of linking queries to con-
cepts that we present in Chapter 6, is that we utilize much sparser data in the
form of short keyword queries, as opposed to either verbose queries or full-text
documents. Hence, as we will see in Chapter 6, we cannot easily use techniques
such as part-of-speech tagging or lean too heavily on context words for disam-
biguation.

2.6 Summary

In this chapter we have provided a detailed introduction to the background of the
methods and models presented in the remainder of this thesis. In the next chapter
we discuss the experimental methodology that we follow in the thesis as well as
the common experimental environment used in later chapters.



True genius resides in the capacity
for evaluation of uncertain, hazar-
dous, and conflicting information.

Winston Churchill 3
Experimental Methodology

In the previous chapter we have looked at the assumptions, models, and related
work underpinning this thesis. In this chapter we introduce the experimental
methodology generally employed in IR and also adopted in this thesis. We start
by discussing the notion of relevance, detailing standard forms of evaluation, and
significance testing. We then describe the data sets that will be used in later
chapters. We conclude with a section discussing retrieval model parameters.

3.1 Relevance

Central to the evaluation of IR systems is the notion of relevance. Relevance of
a piece of information (be it a web page, document, passage, or anything else)
is measured against an information need of some user. Contextual factors such
as presentation or document style aside [133], determining a topical definition
of an information need is subject to various user-based parameters [159]. For
example, different users may have different backgrounds, their understanding of
the topic might change as they browse through a result list, or they may aim to
solve different tasks. Objectively determining relevance of a piece of information
to an information need is difficult to operationalize. Cool et al. [78], for exam-
ple, studied the real life tasks of writing an essay and found that characteristics
other than topical relevance affect a person’s evaluation of a document’s useful-
ness. This complexity of relevance as an evaluation criterion has been recognized
already by Saracevic [279] and is still pertinent today.

Cooper [79] posits that any valid measure of IR system performance must be
derived from the goal of such a system. Since the goal is to satisfy the information
need of a user, a measure of utility to the user is required. Cooper concludes that
user satisfaction with the results generated by a system is the optimal measure
of performance. These intuitions provide the basis for the user-based approach
to IR system evaluation. According to this view, systems should be evaluated on
how well they provide the information needed by a user. And, in turn, the best
judge of this performance is the person who is going to use the information. De-

39
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spite criticisms [289], researchers committed to a user-centered model of system
evaluation.

The Cranfield experiments sidestepped any issues pertaining to relevance [74,
75, 260]. In Cranfield I, queries were generated from documents and the goal
was to retrieve the document each query was generated from. As such, there was
only a single relevant document to be retrieved for each query. In Cranfield II,
queries were generated in the same way, but each document was now manually
judged for relevance. In a recent study, Kelly et al. [163] report on the results of
a user study. They find that there exists linear relationships between the users’
perception of system performance and the position of relevant documents in a
search results list as well as the total number of retrieved relevant documents;
the number of relevant documents retrieved was a stronger predictor of the users’
evaluation ratings. In the next section we introduce the common methodology
associated with the evaluation of IR systems.

3.2 Evaluation

The evaluation of IR systems has a long tradition, dating back from before the
Cranfield experiments [75, 164, 260]. It is an important part of the experimental
methodology to determine how well IR systems satisfy users’ information needs
and whether some system does this better than another [309, 325]. There are
several publications addressing various aspects of evaluation. Voorhees and Har-
man [332] detail the history of TREC and the evaluation methods used there.
Harman [120] gives an overview of the state of IR evaluation in 1992. More
recently, Robertson [260] provided his personal view on the history of evalua-
tion for IR. Sanderson [277] gives an overview of current methods and practices.
Tague-Sutcliffe [309] defines six elements that comprise the IR process:

1. a document set to be searched (the “collection”),

2. a user need,

3. a query (usually called “topic”),

4. a search strategy,

5. a retrieved list of documents, and

6. relevance judgments (typically referred to as “qrels”).

Typically when doing IR evaluation, the retrieval system is given a verbalization
of the information need (as a query, ranging from a few keywords to a full nar-
rative) which it uses as input to its retrieval algorithm (the “search strategy”, cf.
Section 2.1). The output of this algorithm is a ranked list of documents that may
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then be inspected by the user with the information need. It is common to refer to
the combination of the document collection, topics, and accompanying judgments
as “test collection.”

Ideally, we would like to verify the effectiveness of every system on real life
users. However, as already indicated in the previous section, relevance is not a
deterministic notion and varies per user, task, setting, etc. This, as well as the
prohibitive costs of such evaluations, have resulted in an established tradition of
sampling and pooling methods [121, 362]. Evaluation campaigns such as FIRE,
TREC, CLEF, NTCIR, and INEX provide systematic evaluations on sets of topics
and documents, which are subsequently used to rank IR systems according to their
performance. In order to make the evaluation tractable, pooling of the results of
the participating systems is applied. Here, the top-ranked documents up to a
certain rank are taken from each participating system and judged for relevance.
Although not all documents in the collection are judged for relevance using this
approach, it was found that systems could still be reliably evaluated using this ap-
proach [332]. Moreover, even systems not contributing to the pools could still be
fairly assessed [362]. Whether these findings still hold for every retrieval metric
on very large document collections is a topic of ongoing research [49, 52]. In the
mean time, various alternatives to pooling are investigated [61, 62], as detailed
below. A distinct benefit of such system-based evaluations is the reusability of test
collections, since future systems can be reliably evaluated and compared using
the same assessments [260, 277, 332].

It is common to not evaluate the ranked list itself, but merely the documents
that appear in it. Recent work, however, recognizes that the first thing that a user
sees and interacts with is the list of retrieved documents [22]. Bailey et al. define
a novel evaluation method focusing on this initial interaction and find that it
provides a natural complement to traditional, system-based evaluation methods.

With the recent advent of relatively cheap crowdsourcing possibilities such
as Amazon’s mechanical turk service, a renewed interest in obtaining relatively
cheap, manual relevance assessments for various systems has emerged [5, 7].
Whether such evaluations live up to their premise of cheap, consistent relevance
assessments on a substantial scale is as of yet unclear and in the remainder of this
thesis we use more traditional, established TREC-style evaluations.

In the following sections, we look at typical IR effectiveness metrics used in
this thesis, as well as statistical testing on these measures.

3.2.1 Evaluation Measures

Different search tasks exist, each with a different user model. In all of the cases
presented in this thesis, a user wants to find information on a topic (topic-finding
or ad hoc retrieval). Other cases include users having a specific web page or
document in mind (named-page finding), users looking for an answer to a spe-
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Relevant Non-relevant

Retrieved True positives (tp) False positives (fp)
Not retrieved False negatives (fn) True negatives (tn)

Table 3.1: Contingency table.

cific question (question answering), users looking for relevant experts or entities
(expert/entity finding), or users having a standing information need, where new
documents entering in the collection are to be routed to the users with an interest
in the topic of the document (adaptive filtering). Each of these search tasks calls
for evaluation measures that fit the task. For example, in the case of named-page
finding, there is typically only one relevant document (the one that the user has
in mind). A proper evaluation measure for this task should reward systems that
place that document at the top of the ranking and penalize systems that do not.

Researchers have been considering how to evaluate results originating from
a retrieval system for a number of decades now and the choice of measures and
their analysis remains an active theme of research. Kent et al. [164] were the first
to introduce the notion of recall and precision. These intuitive measures consider
the documents retrieved in response to a user’s query as a set and indicate the
fraction of retrieved documents that are relevant (precision) or the fraction of
relevant documents retrieved (recall) [202]. These measures are best explained
through the use of a contingency (or confusion) table, cf. Table 3.1. In this table,
the documents are split by whether they are retrieved by a system and whether
they are relevant. Precision, then, is defined as:

Precision = tp
tp+ fp

, (3.1)

whereas recall is defined as:

Recall = tp
tp+ fn

. (3.2)

Although precision and recall are set-based measures, they are commonly applied
to ranked lists by truncating the lists at a certain rank. A common visualization of
these measures is to plot precision values at different levels of recall. The resulting
graph is called a precision-recall graph; an example may be found in Figure 5.3
(see page 102).

Given that precision is the ratio of retrieved relevant documents to all doc-
uments retrieved at a given rank, the average precision (AP) is defined as the
average of precisions at the ranks of relevant documents. More formally, for a set
of relevant documents, R:

AP = 1
|R|

∑
d∈R

prec@rank(d), (3.3)
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where |R| equals the size of the set of known relevant documents for this query.
Buckley and Voorhees [49] show that AP is stable; that is, it is able to reliably
identify a difference between two systems when one exists. In later chapters,
our main evaluation measure is AP averaged over a number of queries, called
mean average precision (MAP). These and other measures are obtained using the
trec_eval1 program.

In later chapters we use the following abbreviations for the evaluation mea-
sures:

PX – Precision at rank X. In the case of P1 this indicates the proportion of queries
for which a relevant occurred at rank 1.

R-prec – Precision at rank |R|. If this value equals 1, all relevant documents are
placed at the top of the ranking.

MAP – Mean average precision.

SRX – Success rate at rank X; a binary measure that indicates whether at least
one correct document has been returned in the top-X (when there is no rank
indicated we assume X=5). When averaged over a number of queries it
indicates the proportion of queries for which a relevant document occurred
in the top-X.

MRR – The mean of the reciprocal of the rank of the first relevant document.

RelRet – The number of relevant documents retrieved (measured at rank 1000,
unless indicated otherwise). When this value is expressed as a fraction of
the total number of relevant documents, it is called “recall”, cf. Eq. 3.2.

Of these, MRR, PX, and SRX correspond directly to common user experience since
they measure the presence and/or amount of relevant documents at the top of the
document ranking [262, 286]. Other users, however, may be more interested in
retrieving as many relevant documents as possible and, for them, RelRet might
be more appropriate. As indicated above, MAP has both a precision and a recall
aspect. We will therefore use this measure as our main evaluation metric.

As indicated above, for relatively small document collections it is feasible to
collect relevance assessments on all the documents given a query. For larger col-
lections, it is assumed that the top-ranked documents collected from a variety of
systems form a reliable basis for evaluation. This in turn enables the compar-
isons of systems on the basis of recall, which requires the count of all relevant
documents for a query. As document collections grow, however, these assump-
tions may no longer hold [49, 52]. Therefore, several new measures (typically
based on a form of sampling or bootstrapping) are being developed for such col-
lections [1, 14, 62, 71]. For the largest document collection that we employ later

1See http://trec.nist.gov.

http://trec.nist.gov
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in the thesis (ClueWeb09; introduced in Section 3.3.4), we report these mea-
sures instead of the traditional ones. Specifically, for ClueWeb09, Category B we
report statMAP and statP10 [14], whereas for ClueWeb09, Category A we also
report expected MAP (eMAP), expected R-precision (eR-prec), and expected pre-
cision at rank 10 (eP10) [61, 62]. Systems participating in TREC tracks that use
ClueWeb09 were pooled up until a relatively shallow depth and these measures
are intended to yield the same ranking as traditional measures would have if the
runs had been fully judged.

TREC Web 2009 (a test collection that makes use of the ClueWeb09 document
collection—see below) featured a novel sub-track, aiming to improve diversity in
the result list. The diversity task is similar to the ad hoc retrieval task, but differs
in its judging process and evaluation measures. The goal of this task is to return
documents that together provide complete coverage for a query, while avoiding
excessive redundancy in the result list; the probability of relevance of a document
is conditioned on the documents that appear before it in the result list. Each
topic is therefore structured as a representative set of subtopics (and unknown
to the system). Each subtopic, in turn, is related to a different user need and
documents are judged with respect to the subtopics. The evaluation measures
associated with diversity that we report upon in the thesis are: α-nDCG [71] and
intent aware precision@10 (IA-P@10) [1]. The former is based on normalized
discounted cumulative gain [146] and rewards novelty and diversity in the re-
trieved documents. The parameter α indicates the probability that a user is still
interested in a document, given that subtopic of the current document has al-
ready been covered by the preceding documents. We use the default setting of
α = 0.5. The second measure is similar to precision@10, but incorporates infor-
mation from a taxonomy (the ODP taxonomy in particular) to determine diversity.

3.2.2 Statistical Significance Testing

As indicated earlier in this chapter, relevance assessments are not deterministic
and there is inherent noise in an evaluation. Early work on a small document
collection indicated that a large variance in relevance assessments does not have
a significant influence on average recall and precision [186]. As test collections
grew, however, questions were asked with respect to the validity of this conclusion
on larger and more variable test collections [141].

So, given two systems that produce a ranking of documents for a topic, how
can we determine which one is better than the other? Our method should be
robust and promote the system that is truly better, rather than promoting the one
that performed better by chance. Statistical significance testing plays an impor-
tant role in making this assertion. A significance tests consists of the following
three ingredients [287]:
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1. A test statistic or criterion by which to judge the two systems. Typically, the
mean of a retrieval metric introduced in Section 3.2.1 is used.

2. A distribution of the test statistic given the null hypothesis. The typical null
hypothesis (and the one we use in this thesis) is that there is no difference
between the systems.

3. A significance level that is computed by taking the value of the test statistic
for the systems and determining how likely a large or larger value could
have occurred under the null hypothesis. This probability of the experimen-
tal criterion score given the distribution created by the null hypothesis is
also known as the p-value.

Statistical testing methods that are commonly used for IR include the sign test,
paired Wilcoxon signed rank test, Friedman test, and Student’s t-test [141, 278].
In later chapters (except Chapter 6), we use the paired Wilcoxon signed rank
test [343], although recent work has indicated some potential issues with this
particular test [287]. The null hypothesis of this test is that the results produced
by both systems are sampled from the same distribution; in particular that the me-
dian difference between pairs of observations is zero. It proceeds as follows. First,
it transforms each instance (a pair of observations, i.e., the scores on a retrieval
metric for two systems on a particular topic) into absolute values. Then, zero
differences are removed and the remaining differences are ranked from lowest
to highest. After the signs (that were removed in the first step) are reattributed
to the ranks (hence the name signed rank test), the test statistic is calculated.
For sample sizes greater than 25, a normal approximation to this statistic exists.
Related to this number is the minimum number of topics one needs to assess to
account for the variance in evaluation measures over different topics; 50 topics
has been found to be a suitable minimum by Buckley and Voorhees [49], whereas
Sanderson and Zobel [278] indicate significant improvements on 25 or less topics
does not guarantee that this result will be repeatable on other sets of topics. All of
the topic sets we use later in the thesis consist of at least 25 topics, as we describe
in the next section.

In the thesis, we look for improvements at the p < 0.05 level, indicated with
a ‘*’. All reported p-values are for two-sided tests. In Chapter 6 we compare
multiple methods. There, we use a one-way analysis of variance (ANOVA) test
which is a common test when there are more than two systems or methods to
be compared. It simultaneously tests for differences in the average score of each
method, correcting for the effects of the individual queries. We subsequently use
the Tukey-Kramer test to determine which of the individual pairs are significantly
different. We use a bold-faced font in the result tables to indicate the best per-
forming model in our result tables.
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Documents Terms Concepts

(×106) Size µ σ m µ σ m

TREC Rob 2004 0.5 2 GB 510 871 359 - - -
.GOV2 25 426 GB 956 2723 326 - - -
ClueWeb09 cat. A 500 13.4 TB 748 975 460 - - -
ClueWeb09 cat. B 50 1.5 TB 857 1186 507 - - -

CLEF-DS-07/08 0.17 232 MB 62 42 51 10.1 4.2 10
TREC-GEN-04/05 4.6 20 GB 174 114 171 11.4 5.1 11
TREC-GEN-06 0.16 12 GB 4160 2750 4525 15.1 6.1 15

Table 3.2: Statistics of the document collections used in this thesis. µ and m indi-
cate the average and median number of terms in, or concepts assigned to a docu-
ment respectively and σ the standard deviation. The second group of collections are
domain-specific and contain manually assigned concepts as document annotations.

3.3 Test Collections

The test collections we employ in this thesis are described in the following sec-
tions. We use the Lemur Toolkit for indexing, retrieval, and all language modeling
calculations.1 For all test collections we use only the topic titles as queries. The
test collections described first are used for our experiments in Chapters 4 and 7.
For all of these collections, we remove a modest list of around 400 stopwords.
Our retrieval model presented in Chapter 5 requires collections in which the doc-
uments have been manually annotated with an appropriate concept language.
The test collections that we describe last (CLEF-DS and TREC-GEN) both satisfy
this requirement.

Below we provide a more fine-grained description of each test collection. Ta-
bles 3.2, 3.3, and 3.4 list descriptive statistics from each test collection.

3.3.1 TREC Robust 2004

The first is TREC Robust 2004 (TREC-ROB-04), comprising a relatively small doc-
ument collection and topics which were selected because of their low performance
in the TREC ad hoc task [329]. It is the smallest of all collections used in this the-
sis and contains TREC disks 4 and 5, minus the Congressional Record [329]. The
documents are small news articles from the Financial Times, Federal Register, LA
Times, and Foreign Broadcast Information Service, covering 1989 through 1996.
It is a collection that is routinely used when evaluating the performance of rele-
vance feedback algorithms; 200 of its 250 topics were selected from earlier TREC
ad hoc tracks based on their relatively poor performance and the ineffectiveness

1See http://sourceforge.net/projects/lemur.

http://sourceforge.net/projects/lemur
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of relevance feedback techniques; 50 new topics were developed especially for
the track.

3.3.2 TREC Terabyte 2004–2006

The second document collection is .GOV2, used in the TREC Terabyte, Million
Query, and Relevance Feedback tracks [48, 55]; it contains a crawl of websites
from the .gov domain. The TREC Terabyte track ran from 2004 through 2006
and used the first substantially sized TREC document collection [55]; its goal was
to develop an evaluation methodology for terabyte-scale document collections.
As topic set for this test collection (TREC-TB) we use the combined topics from
all years.

3.3.3 TREC Relevance Feedback 2008

This test collection comprises test data provided by the TREC Relevance Feedback
track, where the task is to retrieve additional relevant documents given a query
and an initial set of relevance assessments [48]. Retrieval is done on the TREC
Terabyte collection (the .GOV2 corpus) using 264 topics taken from earlier TREC
Terabyte and TREC Million Query tracks [4, 55].

For our explicit relevance feedback experiments (TREC-RF-08) we take the 33
TREC Terabyte topics which were selected from the full set of available topics for
an additional round of assessments [48]. A large set of relevance assessments
was provided for these topics (159 relevant documents on average, with a mini-
mum of 50 and a maximum of 338). Participating systems were to return 2500
documents, from which the initially provided relevant documents were removed,
a procedure similar to residual ranking (when performing residual ranking, all
judged documents are removed—instead of only the relevant ones). The resulting
rankings were then pooled and re-assessed. This yielded 55 new relevant docu-
ments on average per topic, with a minimum of 4 and a maximum of 177. We
follow the same setup by keeping only the newly assessed, relevant documents
for evaluation and discard all initially judged documents from the final rankings
in our experiments.

In order to evaluate pseudo relevance feedback on this test collection (TREC-
PRF-08), we use all 264 topics and the combined relevance assessments, i.e., the
“original” pools and the new assessments.

3.3.4 TREC Web 2009

The fourth ad hoc test collection that we use has ClueWeb09 as its document
collection (TREC-WEB-09). It was employed at the TREC 2009 and 2010 Web
Track [72]. It is a large-scale web crawl and contains the largest number of doc-
uments. Two subsets are identified; Category B (that contains over 50,000,000
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Length

With(out) rel. docs µ σ Min. Max.

TREC-ROB-04 249 (1) 2 0.71 1 5
TREC-TB 149 (0) 3 0.88 1 5
TREC-PRF-08 264 (0) 3 1.0 1 8
TREC-RF-08 31 (2) 3 1.0 1 6
TREC-WEB-09 49 (1) 1 0.85 1 4

CLEF-DS-07 25 (0) 4 1.6 2 8
CLEF-DS-08 25 (0) 3 1.7 2 8
TREC-GEN-04 50 (0) 5 3.0 1 16
TREC-GEN-05 49 (1) 5 2.6 2 12
TREC-GEN-06 26 (2) 5 2.5 2 12

Table 3.3: Statistics of the topic sets used in this thesis.

Per topic

Total µ Min. Max.

TREC-ROB-04 17412 70 3 448
TREC-TB 26917 180 4 617
TREC-PRF-08 12639 47 4 457
TREC-RF-08 1723 55 4 177
TREC-WEB-2009 (Cat. A) 5684 116 2 260
TREC-WEB-2009 (Cat. B) 4002 82 2 179

CLEF-DS-07 4530 181 18 497
CLEF-DS-08 2133 85 4 206
TREC-GEN-04 8268 165 1 697
TREC-GEN-05 4584 93 2 709
TREC-GEN-06 1449 55 2 234

Table 3.4: Statistics of the relevant documents per collection used in this thesis.

English web pages) and Category A (that contains over 500,000,000 English web
pages). In 2009, participating runs were evaluated using shallow pools and the
methodology introduced by the TREC Million Query track [4, 61, 62] as intro-
duced above. The 50 ad hoc topics are taken from a web search engine’s query
logs.

3.3.5 CLEF Domain-Specific 2007–2008

The CLEF domain-specific track evaluates retrieval on structured scientific doc-
uments, using bibliographic databases from the social sciences domain as docu-
ment collections [244, 245]. The track emphasizes leveraging the structure of
data in collections (defined by concept languages) to improve retrieval perfor-
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mance. The 2007 (CLEF-DS-07) and 2008 (CLEF-DS-08) tracks use the combined
German Indexing and Retrieval Testdatabase (GIRT) and Cambridge Scientific
Abstracts (CSA) databases as their document collection. The GIRT database con-
tains extracts from two databases maintained by the German Social Science In-
formation Centre from the years 1990–2000. The English GIRT collection is a
pseudo-parallel corpus to the German GIRT collection, providing translated ver-
sions of the German documents (17% of these documents contain an abstract).
For the 2007 domain-specific track, an extract from CSA’s Sociological abstracts
was added, covering the years 1994, 1995, and 1996. Besides the title and ab-
stract, each CSA record also contains subject-describing keywords from the CSA
Thesaurus of Sociological Indexing Terms and classification codes from the Socio-
logical Abstracts classification. In this sub-collection, 94% of the records contains
an abstract. We only use the English mono-lingual topics and relevance assess-
ments, which amounts to a total of 50 test topics. The documents in the collection
contain three separate fields with concepts, we use CLASSIFICATION-TEXT-EN.

3.3.6 TREC Genomics 2004–2006

The document collection for the TREC 2004 and 2005 Genomics ad hoc search
task (TREC-GEN-04 and TREC-GEN-05) consists of a subset of the MEDLINE data-
base [129, 130]. MEDLINE is the bibliographic database maintained by the U.S.
National Library of Medicine (NLM). At the time of writing, it contains over
18.5 million biomedical citations from around 5,500 journals and several hun-
dred thousand records are added each year. Despite the growing availability of
full-text articles on the Web, MEDLINE remains a central access point for biomed-
ical literature. Each MEDLINE record contains free text fields (such as title and
abstract), a number of fields containing other metadata (such as publication date
and journal), and, most important for our model in Chapter 5, terms from the
MeSH thesaurus. We only use the main descriptors, without qualifiers. MeSH
terms are manually assigned to citations by trained annotators from the NLM.
The over 20,000 biomedical concepts in MeSH are organized hierarchically, see
Figure 1.2 for an example. Relationships between concepts are primarily of the
“broader/narrower than” type. The “narrower than” relationship is close to ex-
pressing hypernymy (is a), but can also include meronymy (part of) relations.
One concept is narrower than another if the documents it is assigned to are con-
tained in the set of documents assigned to the broader term. Each MEDLINE
record is annotated with 10–12 MeSH terms on average.

It should be noted that the MeSH thesaurus is not the most appropriate for Ge-
nomics information retrieval, since it covers general biomedical concepts rather
than the specific genomics terminology used in the TREC topics [305]. Despite
this limited coverage, the thesaurus can still be used to improve retrieval effec-
tiveness, as we will show later.
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The document collection for TREC Genomics 2004 and 2005 contains 10 years
of citations covering 1993 to 2004, which amounts to a total of 4,591,008 doc-
uments. All documents have a title, 75.8% contain an abstract and 99% are
annotated with MeSH terms. For the 2004 track, 50 test topics are available, with
an average length of 7 terms, cf. Table 3.3. The 50 topics for 2005 (one of which
has no relevant documents) follow pre-defined templates, so-called Generic Topic
Types. An example of such a template is: “Find articles describing the role of
[gene] in [disease]”, where the topics instantiate the bold-faced terms. The top-
ics in our experiments are derived from the original topic by only selecting the
instantiated terms and discarding the remainder of the template.

The TREC 2006 Genomics track introduced a full-text document collection,
replacing the bibliographical abstracts from the previous years [131]. The docu-
ments in the collection are full-text versions of scientific journal papers. The files
themselves are provided as HTML, including all the journal-specific formatting.
Most of the documents (99%) have a valid Pubmed identifier through which the
accompanying MEDLINE record can be retrieved. We use the MeSH terms as-
signed to the corresponding citation as the annotations of the full-text document.

The 2006 test topics are again based on topic templates and instantiated with
specific genes, diseases or biological processes. Thus, we preprocess them in a
similar fashion as the topics for the TREC Genomics 2005 track, by removing
all the template-specific terms. This test collection has 28 topics, of which 2 do
not have any relevant documents in the collection. The task put forward for this
test collection is to first identify relevant documents and then extract the most
relevant passage(s) from each document; relevance is measured at the document,
passage, and aspect level. We do not perform any passage extraction and only use
the judgments at the document level.1

3.4 Parameter Settings

Bennett et al. [30] find that the level of smoothing has a significant influence
on the resulting retrieval performance and that optimal smoothing parameters
are dependent on the query set as well as the collection. They also observe that
longer queries require more aggressive smoothing, a finding corroborated by Zhai
and Lafferty [355]. In later chapters we need to set values for the smoothing pa-
rameter associated with our retrieval model presented in Chapter 2. In particular,
we set µ (cf. Eq. 2.7 on page 16) to the average length of documents in the
collection.

12007 was the final year of the TREC Genomics track and used the same document collection as
2006. However, in this edition a new task was introduced and because of the different nature of that
task, we do not perform experiments using the 2007 topics.
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Some of the (pseudo) relevance feedback models in use and under investiga-
tion in later chapters require additional parameter settings. The models that we
evaluate have the following parameters in common:

• |VQ| (the number of terms with the highest probability to be included in the
query model),

• |R| (the number of feedback documents used), and

• λQ (the value of the query interpolation factor, cf. Eq. 2.10).

There are various approaches that may be used to estimate these parameters.
One can optimize the set of parameters on one test collection and evaluate on
the other, use some kind of cross-validation, or designate a set of topics as train-
ing topics which are subsequently excluded from the final evaluation. Ideally, we
would like to use a form of gradient ascent on the retrieval metric we aim to op-
timize. None of these measures are continuous, differentiable functions of the set
of parameters, however, and many local optima exist [262]. A possible solution
is to define another function that does have these properties [54], but typically, a
grid or line search is employed to find the optimal values for the parameters, see
e.g. [119, 173, 189, 196, 223, 224, 235, 262, 356]. This is also the approach we
employ in later chapters. While computationally expensive (exponential in the
number of parameters), it does provide us with an upper bound on the retrieval
performance that one might achieve using the described models.

3.5 Summary

In this chapter we have introduced our experimental environment, including the
relevance assessments, evaluation metrics, significance tests, test collections, and
parameter settings. These will serve as the foundation of the experiments upon
which we report in later chapters.





Never question the relevance of
truth, but always question the
truth of relevance.

Craig Bruce 4
Query Modeling Using Relevance Feedback

In Chapter 2 we have introduced various ways of defining and updating a query
model, one of which is through the use of relevance feedback. Here, relevance as-
sessments by the user are employed to improve the estimate of the query model,
return more useful documents to the user, and, hence, improve end-to-end re-
trieval performance. As indicated in Chapter 2, relevance assessments can be
explicit (in the case of judgments by a user), implicit (obtained from observing
user behavior, e.g., in the form of click logs), or absent/assumed (where the
top-ranked documents are used—a method known as blind or pseudo relevance
feedback). In this chapter we focus on two of these types: explicit and pseudo
relevance feedback.

Let’s consider an example to see what aspects play a role in transforming a
query based on a set of feedback documents. Suppose we have such a set of doc-
uments. They may vary in length and, furthermore, they need not be completely
on topic because they may discuss more topics than the ones that are relevant
to the query. While the user’s judgments are at the document level, not all of
the documents’ sections can be assumed to be equally relevant. Some relevance
feedback models attempt to capture the topical structure of individual feedback
documents (“For each feedback document, what is important about it?”). Other
feedback models consider the set of all feedback documents (“Which topics are
shared by the entire set of feedback documents?”). So, some consider each doc-
ument as an independent piece of evidence, whereas others consider the set as a
whole. In the cases where each document is considered independently, different
intuitions exist with respect to how the importance of each should be captured,
as described in Chapter 2, Section 2.3.2. To recap, models that solely look at the
set of feedback documents are maximum-likelihood expansion and model-based
feedback. The relevance modeling approach only looks at individual feedback
documents and is, as such, an example of the first kind.

In this chapter we present two novel relevance feedback models based on
language modeling that use information both from the set as well as from each
individual feedback document to estimate the importance of a single feedback
document. Thus, the models we introduce both use the topical relevance of a

53
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Figure 4.1: Bayesian networks for the models evaluated in this chapter. Top row
from left to right: MLE, MBF, RM-0, and RM-1. Bottom row from left to right: RM-2,
PRM, MLgen, and NLLR. The dashed line indicates an aggregation of documents,
the arrows indicate conditionals, and the normal lines indicate cross-entropy. The
interpolation parameter nodes are omitted for reasons of clarity.

document and the general topic of the set of relevant documents to transform
the original query. The first model (MLgen) compares each feedback document
to the set of feedback documents and estimates its importance as the probability
that the set of feedback documents generated the current one. The second model
(NLLR) uses the log-likelihood ratio between each feedback document and the set
thereof, normalized using the collection, to determine this estimate. Our primary
aim in this chapter is to present and evaluate these models.

Our secondary aim is to compare various popular and well-known relevance
feedback models for query modeling under the same experimental conditions.
We include maximum likelihood expansion (MLE), model-based feedback (MBF),
relevance models (RM-0, RM-1, RM-2), parsimonious relevance models (PRM),
and our two novel models. All of these are listed in Table 4.1 and depicted graph-
ically in Figure 4.1. As can be seen from this table, most of these models were
introduced in Chapter 2; the remaining models, MLgen and NLLR, are described
below. While many relevance feedback models have been studied in isolation,
there has been very limited work on a thorough and systematic comparison using
the same experimental framework. We continue to lack a proper understanding
of the relative strengths and weaknesses of core relevance feedback models pro-
posed in the literature and our goal is to evaluate and compare these to each
other and to our two novel models. To our knowledge, this is the first large-scale
study that has examined the performance of core relevance feedback models for
language modeling using consistent settings across different test collections. Most
earlier studies use different document collections, topic sets, and indexing and re-
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QL Query Likelihood Eq. 2.9
MLE Maximum Likelihood Expansion Eq. 2.12
MBF Model-based Feedback Eq. 2.16
RM-0 Relevance Model 0 Eq. 2.20
RM-1 Relevance Model 1 Eq. 2.24
RM-2 Relevance Model 2 Eq. 2.23
PRM Parsimonious Relevance Models Eq. 2.27, Eq. 4.7
MLgen Generative Maximum Likelihood Eq. 4.1
NLLR Normalized Log-likelihood Ratio Eq. 4.4

Table 4.1: Overview of the relevance feedback algorithms evaluated in this chapter.

trieval settings which prohibit an exhaustive comparative evaluation [182, 354],
whilst others include small, unrealistic test collections [197].

We report on the effectiveness of the relevance feedback models under both
pseudo relevance feedback as well as explicit relevance feedback and do so on
a diverse set of test collections, including newswire documents (TREC Robust
2004), a crawl of the .gov domain (the .GOV2 document collection used in the
TREC Terabyte and TREC Relevance Feedback tracks), and a realistically sized
web collection (ClueWeb09, Category B; used in the TREC Web 2009 track). All
of these test collections were introduced in Section 3.3. Associated with relevance
feedback algorithms are parameter settings such as the number of documents to
use, the number of terms, etc. as introduced in Section 3.4. We also perform a
detailed analysis of the robustness of the models under these parameters.

To summarize, we aim at answering the following main research question in
this chapter:

RQ 1. What are effective ways of using relevance feedback information for query
modeling to improve retrieval performance?

This general research question gives rise to the following subquestions.

RQ 1a. Can we develop a relevance feedback model that uses evidence from
both the individual feedback documents and the set of feedback documents
as a whole? How does this model relate to other query modeling approaches
using relevance feedback? Is there any difference when using explicit rele-
vance feedback instead of pseudo relevance feedback?

RQ 1b. How do the models perform on different test collections? How robust
are our two novel models on the various parameters query modeling offers
and what behavior can we observe for the related models?

Our contributions are as follows.

1. We introduce, evaluate, and discuss two novel query modeling methods
using relevance feedback information.
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2. We provide a comprehensive analysis, evaluation, comparison, and discus-
sion (in both theoretical and practical terms) of our novel and various other
core models for query modeling using relevance feedback.

The remainder of this chapter is organized as follows. We introduce our novel
feedback models in Section 4.1. In Section 4.2 we detail the experimental setup.
In Section 4.3 we discuss the performance and robustness of the models under
pseudo relevance feedback, whereas we consider explicit relevance feedback in
Section 4.4. We end with a concluding section.

4.1 Estimating the Importance of Feedback Documents

In Section 2.3.2 we have introduced core relevance feedback models in the lan-
guage modeling approach to information retrieval (IR). In Eq. 2.14 we have indi-
cated a means by which to emphasize the importance of each individual feedback
document, P (D|R). In this section, we turn to different ways of estimating this
relative importance. When we know (or assume) that a given set of documents,
R = {D1, . . . ,D|R|}, is relevant to a query, we posit that documents therein that
are more similar to R are more topically relevant and should thus receive a higher
probability of being picked. We thus propose two models that base the estimate of
P (D|R) on the divergence between D and R. They are introduced in this section.

4.1.1 MLgen: A Generative Model

The first model rewards documents that contain terms that are frequent in the set
of feedback documents. Using this model, we determine P (D|R) by determining
the generative probability ofD givenR, i.e., the probability that the set of relevant
documents generated the terms in the current document, similar to the query
likelihood approach (cf. Eq. 2.3). More formally:

P (D|R) ∝
∏
t∈D

P (t|θ̃R)n(t,D). (4.1)

Here, P (t|θ̃R) is determined using Eq. 2.13; below, we refer to this model as
MLgen.

4.1.2 Normalized Log-likelihood Ratio

The second method measures the divergence between R and each D by determin-
ing the log-likelihood ratio, normalized by the collection C. Interpreted loosely,
this measure indicates the average surprise of observing document D when we
have R in mind, normalized using a background collection, C. That is, terms
that are “well-explained” by the collection (i.e., that have a high frequency in the
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collection) do not contribute as much to the comparison as terms that are not. It
quantifies how much better one language model is than another in modeling an
observed text in comparison with modeling by a collection model. More formally:

P (D|R) ∝ H(θD,θC)−H(θD,θR)

= Z
∑
t∈V

P (t|θD) log P (t|θR)
P (t|θC) . (4.2)

The measure has the attractive property that it is high for documents for which
H(θD,θC) is high and H(θD,θR) is low. So, in order to receive a high score, doc-
uments should contain specific terminology, i.e., they should be dissimilar from
the collection model but similar to the topical model of relevance. Since we do
not know the actual parameters of θR by which we could calculate this, we use R
as a surrogate and linearly interpolate it with the collection model (cf. Eq. 2.13).
This is similar to the intuitions behind MBF (cf. Eq. 2.16):

P (t|θ̂R) = (1−λR)P (t|θ̃R) +λRP (t|θC). (4.3)

This interpolation also ensures that zero-frequency issues are avoided and that
the sum in Eq. 4.2 is over the same event space for all language models involved.
Then, in order to use this discriminative measure as a probability, we define a
normalization factor Z = 1/

∑
D∈RP (D|R).

Finally, by putting Eq. 2.15 and Eq. 4.2 together, we obtain an estimate of our
expanded query model:

P (t1, . . . , t|V||θQ) =
|V|∏
i=1

∑
D∈R

Z∑
t′∈V

P (t′|θD) log P (t′|θ̂R)
P (t′|θC)

P (ti|θD). (4.4)

This model, to which we refer as NLLR, effectively determines the query model
based on information from each individual relevant document and the most rep-
resentative sample we have of θQ, namely R.

4.1.3 Models Related to MLgen and NLLR

As an aside, other ways of estimating P (D|R) have been proposed. Examples
include simply assuming a uniform distribution, the retrieval score of a doc-
ument (or the inverse thereof), or information from clustered documents [24,
170]. One could also apply machine learning to select documents to use for rele-
vance feedback, and use the machine learner’s confidence level as a substitute for
P (D|R) [124].

The surface form of NLLR seems reminiscent of a model introduced in [60].
Carpineto et al. [60] propose to use the KL-divergence between R and the collec-
tion to select and weight expansion terms for Rocchio feedback [267]. Their
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model is also highly similar to the query clarity score that uses this measure
to predict the difficulty of a query [84]. Besides the fact that we do not use a
VSM, Carpineto et al. also ignore the individual document models by assuming
independence between relevant documents, similar to MLE.

Ponte’s [247] log ratio method is also related to NLLR. He uses the log of the
ratio between a term’s probability given each relevant document and its proba-
bility given the collection, summed over all the relevant documents. However,
Ponte [247] views the query as a set—as opposed to a generative model—and,
moreover, he uses the log ratio only for thresholding the terms to be added to the
initial query.

MBF is related to NLLR in that it also uses information from both the set of
relevant documents and the collection in its estimations, although the estimation
method is different. Moreover, NLLR leverages information from each individual
relevant document. When we apply this intuition underlying NLLR to MBF, we
should let go of the full document independence assumption in MBF and change
the M-step (cf. Eq. 2.18) to:

P (t|θ̂R) = 1
|R|

∑
D∈R

et∑
t′ et′

. (4.5)

Under the assumption that we exclude the collection estimate, we set λR = 0 (cf.
Eq. 2.16) and obtain:

P (t|θ̂R) = 1
|R|

∑
D∈R

n(t,D)∑
t′ n(t′,D) (4.6)

= 1
|R|

∑
D∈R

P (t|θ̃D),

which is a simplified version of NLLR, using a uniform probability of selecting a
document. Moreover, this is in fact the same as the relevance model in situation
1 (when the full set of relevant documents is known, cf. Section 2.3.2): RM-0.

The relevance modeling approach to relevance feedback can be viewed as a
simplification of MLgen and NLLR, since it assumes that each document has an
equal probability of being selected (RM-0) or that this probability is dependent on
the query (RM-1 and RM-2). The latter models explicitly consider the initial query
by first gathering evidence from each document for a query term and, next, com-
bining the evidence for all query terms (RM-2) or vice versa (RM-1), as detailed
in Section 2.3.2. Using the probability that a document generated the query (as
is the case with RM-1 and RM-2) is a much simpler implementation of leveraging
the notion that documents should be weighted according to their “relative” level
of relevance, essentially replacing R in the MLgen and NLLR models with only the
query θ̃Q. And, since the query is quite sparse compared to R, our models avoid
overfitting to obtain an improved estimate.
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4.2 Experimental Setup

We aim to compare the effectiveness of the models listed in Table 4.1, each of
which was introduced in either the preceding section or in Chapter 2. For all mod-
els, we use the resulting query model as estimated query part, θ̂Q, in Eq. 2.10.
All of the models have a number of parameters in common. In this chapter, we
focus on varying these parameters and observing the effect on retrieval effective-
ness. We consider the following parameters: |VQ|, |R|, and λQ. See Section 3.4
for their descriptions. Some of the feedback models under investigation require
additional parameter settings. For MBF, and NLLR (cf. Eqs. 2.16 and 4.3) we set
λR = 0.15 and λR = 0.5 respectively. For PRM (cf. Eq. 2.27), we set µ= 0, which
effectively results in RM-0 estimated on parsimonious document models:

P (t1, . . . , t|V||θQ) ∝
|V|∏
i=1

1
|R|

∑
D∈R

P (ti|θ̂D). (4.7)

In essence, Eq. 4.7 takes the middle ground between RM and MBF; it combines
the estimation method of MBF with the document independence assumption of
RM. For evaluation, we use the following diverse set of test collections

• TREC Robust 2004 (TREC-ROB-04),

• TREC Relevance Feedback 2008 (TREC-RF-2008 and TREC-PRF-08), and

• TREC Web 2009, using the Category B subset (TREC-WEB-09).

These collections were introduced in Section 3.3. The percentages and signifi-
cance tests in the result tables in this chapter indicate the difference with respect
to the baseline—we use a ‘*’ to indicate a significant difference, as detailed in
Section 3.2.2. In the next section we consider retrieval effectiveness using pseudo
relevance feedback and in Section 4.4 we turn to explicit relevance feedback.

4.3 Pseudo Relevance Feedback

In this section we look at the performance of the relevance feedback models using
pseudo relevance feedback, that uses the top ranked documents (which we denote
R̂) as feedback document set. In order to obtain these documents, we perform a
query likelihood (QL) run (cf. Eq. 2.8) that also serves as our baseline.

As to the parameter settings, we initially consider only a limited number
of terms for practical reasons; we use the 10 terms with the highest probabil-
ity, a number that has been shown to be suitable on a number of test collec-
tions [196, 242]. We then perform a grid search over |R̂| and the value of the
query interpolation parameter, λQ. Note that we exclude λQ = 1.0 and |R̂| = 0



60 4. Query Modeling Using Relevance Feedback

from our grid search which makes it possible to obtain “optimal” performance
worse than the baseline. After we have obtained the optimal values for these
parameters we fix them and vary the number of terms with the highest proba-
bility included in the query model, |VQ|. This approach to optimizing param-
eter values is a combination of a line and a grid search over the parameter
space [108, 223, 262], as introduced in Section 3.4. While computationally ex-
pensive, it provides us with an upper bound on the attainable retrieval effective-
ness for each model. Note that, because we initially fix the number of terms,
we may not find the absolute maximum in terms of performance (there might be
cases where a different combination of λQ, |R̂|, and the number of terms obtains
better results).

We continue this section by discussing the experimental results with a fixed
number of terms (Section 4.3.1), followed by a per-topic analysis in Section 4.3.2
and a discussion of the influence of varying |VQ| in Section 4.3.3.

4.3.1 Results and Discussion

Before we report on the experimental results on the three test collections, we note
that, for all test collections, the performance of the baseline run is on par with
results reported in the literature. In particular, for the TREC Robust 2004 track,
our baseline run would have been placed at around the tenth position of all par-
ticipating runs. For TREC Web 2009, the mean performance in terms of statMAP
of all participating runs lies around 0.15. For the TREC Relevance Feedback 2008
test collection (using pseudo relevance feedback), this number is not available
since we use an aggregation of multiple topic sets, with topics from the TREC
Million Query 2007 and the TREC Terabyte 2004–2006 tracks. Furthermore, for
this test collection, we use the relevant documents provided to us by the TREC
Relevance Feedback 2008 track (which are a combination of relevant documents
from (i) the TREC Million Query 2007 track, (ii) the TREC Terabyte 2004–2006
tracks, and (ii) the newly assessed, relevant documents created during the TREC
Relevance Feedback 2008 track). We do note, however, that the mean average
precision (MAP) score of all systems participating in the TREC Terabyte 2004–
2006 tracks is roughly 0.30.

TREC Robust 2004

The results for this test collection are listed in Table 4.2. We observe that, when
compared to the baseline, all models except NLLR significantly improve recall.
Moreover, these models also significantly improve MAP. This finding is common
for relevance feedback algorithms which typically improve recall at the cost of
precision [202, 272]. MLgen obtains highest recall of all models. In Table 4.2,
the parameter settings were chosen such that maximum MAP was obtained for
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P5 P10 MAP RelRet λQ |R̂|

QL 0.442 0.406 0.221 9099 1.0 –
MLE 0.462 +4.5% 0.412 +1.5% 0.257* +16.3% 10287* +13.1% 0.4 10
MBF 0.466 +5.4% 0.422 +3.9% 0.263* +19.0% 10508* +15.5% 0.4 9
RM-0 0.459 +3.8% 0.407 +0.2% 0.261* +18.1% 10390* +14.2% 0.3 10
RM-1 0.457 +3.4% 0.417 +2.7% 0.253* +14.5% 9901* +8.8% 0.5 19
RM-2 0.471* +6.6% 0.422 +3.9% 0.249* +12.7% 9844* +8.2% 0.4 7
PRM 0.446 +0.9% 0.415 +2.2% 0.264* +19.5% 10543* +15.9% 0.4 12
MLgen 0.468 +5.9% 0.417 +2.7% 0.264* +19.5% 10564* +16.1% 0.3 13
NLLR 0.448 +1.4% 0.410 +1.0% 0.224* +1.4% 9087 -0.1% 0.8 9

Table 4.2: Best results (optimized for MAP) of the models contrasted in this chapter
on the TREC-ROB-04 test collection using |VQ|= 10.

P5 P10 MAP RelRet λQ |R̂|

QL 0.442 0.406 0.221 9099 1.0 –
MLE 0.464* +5.0% 0.428* +5.4% 0.245* +10.9% 9824* +8.0% 0.7 3
MBF 0.459 +3.8% 0.429* +5.7% 0.248* +12.2% 9897* +8.8% 0.7 2
RM-0 0.468* +5.9% 0.427* +5.2% 0.246* +11.3% 9823* +8.0% 0.7 6
RM-1 0.465* +5.2% 0.426 +4.9% 0.248* +12.2% 9820* +7.9% 0.6 152
RM-2 0.471* +6.6% 0.428* +5.4% 0.242* +9.5% 9567* +5.1% 0.7 7
PRM 0.465* +5.2% 0.423 +4.2% 0.247* +11.8% 9873* +8.5% 0.7 2
MLgen 0.471* +6.6% 0.430* +5.9% 0.255* +15.4% 10109*+11.1% 0.6 6
NLLR 0.443 +0.2% 0.412 +1.5% 0.223 +0.9% 9083 -0.2% 0.9 3

Table 4.3: Best results (optimized for P10) of the models contrasted in this chapter
on the TREC-ROB-04 test collection using |VQ|= 10.

each model. Because of this, we do not observe any significant improvements in
early precision, except for RM-2. When we look at the best performing parameter
settings when optimizing for P10 (cf. Table 4.3), we obtain different optimal
values. In this case we obtain significant improvements on P10 for all models,
except NLLR, PRM, and RM-1.

When optimizing for MAP, the optimal setting of λQ lies within the range
0.3− 0.5 for all models except NLLR (which has similar results for λQ = 0.4).
When optimizing for P10, λQ lies within the range 0.6−0.7. The optimal number
of feedback documents also differs when optimizing either for MAP or for P10.

Let’s zoom in on the relative performance of each model. Figure 4.2 shows
the performance of all models on TREC-ROB-2004 when an increasing number
of pseudo relevant documents is used to estimate the query model. From this
figure, we observe that all models reach their peak when 5 ≤ |R̂| ≤ 20. Further-
more, all models except NLLR and RM-1 respond similarly to each newly added
document (although there are differences in absolute scores). As seen before,
NLLR is the worst performing model and is unable to improve upon the QL base-
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Figure 4.2: Influence of the size of R̂ on MAP, using pseudo relevant documents on
the TREC-ROB-04 collection with λQ = 0.4 and |VQ|= 10.

line for any number of feedback documents. Interestingly, RM-1 behaves quite
differently from the other models. It shows the most stable behavior by reaching
its peak after about 20 documents and declines only slightly after that. Although
it does not obtain the highest scores, it is robust with respect to the number of
feedback documents used. We also note from this figure that, in order to identify
the best performing relevance feedback model, the number of documents is of
significance. When one would use a fixed number of documents to compare the
various models (as is typically done in earlier work [183, 354]), the choice of
this particular parameter setting determines the ranking of the models in terms
of their performance.

The overall results for the TREC Robust 2004 test collection are partly consis-
tent with most related work on pseudo relevance feedback: in general, pseudo
relevance feedback helps in terms of recall-oriented measures at the cost of pre-
cision. In our case, however, we also improve early precision (and, in most cases
significantly so). When carefully tuned, it is also possible to obtain significant
improvements on early precision, as seen in Table 4.3. In that case, however, the
improvements on recall-oriented measures is less substantial (although in most
cases still significant). Furthermore, most models react similarly to an increasing
number of feedback documents on this test collection.
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P5 P10 MAP RelRet λQ |R̂|

QL 0.405 0.357 0.289 8921 1.0 –
MLE 0.399 -1.5% 0.358 +0.3% 0.295 +2.1% 9044* +1.4% 0.9 1
MBF 0.400 -1.2% 0.362 +1.4% 0.297 +2.8% 8951* +0.3% 0.9 1
RM-0 0.399 -1.5% 0.356 -0.3% 0.295 +2.1% 9122* +2.3% 0.8 3
RM-1 0.410 +1.2% 0.350 -2.0% 0.300 +3.8% 9182* +2.9% 0.8 13
RM-2 0.398 -1.7% 0.358 +0.3% 0.296 +2.4% 9053* +1.5% 0.9 1
PRM 0.410 +1.2% 0.366 +2.5% 0.301* +4.2% 8596* -3.6% 0.9 29
MLgen 0.404 -0.2% 0.358 +0.3% 0.299 +3.5% 9133* +2.4% 0.8 3
NLLR 0.406 +0.2% 0.355 -0.6% 0.292* +1.0% 10156* +13.8% 0.9 2

Table 4.4: Best results (optimized for MAP) of the models contrasted in this chapter
on the TREC-PRF-08 test collection using |VQ|= 10.

P5 P10 MAP RelRet λQ |R̂|

QL 0.405 0.357 0.289 8921 1.0 –
MLE 0.399 -1.5% 0.358 +0.3% 0.295 +2.1% 9044* +1.4% 0.9 1
MBF 0.403 -0.5% 0.362 +1.4% 0.290 +0.3% 9093* +1.9% 0.9 5
RM-0 0.488* +20.5% 0.486* +36.1% 0.276 -4.5% 6491* -27.2% 0.8 10
RM-1 0.413 +2.0% 0.362 +1.4% 0.294* +1.7% 9059* +1.5% 0.9 166
RM-2 0.398 -1.7% 0.358 +0.3% 0.296 +2.4% 9053* +1.5% 0.9 1
PRM 0.414 +2.2% 0.375 +5.0% 0.295* +2.1% 8684* -2.7% 0.9 96
MLgen 0.399 -1.5% 0.358 +0.3% 0.295 +2.1% 9044* +1.4% 0.9 1
NLLR 0.402 -0.7% 0.359 +0.6% 0.285 -1.4% 8866 -0.6% 0.9 9

Table 4.5: Best results (optimized for P10) of the models contrasted in this chapter
on the TREC-PRF-08 test collection using |VQ|= 10.

TREC Relevance Feedback 2008

Table 4.4 shows the results on the TREC-PRF-08 test collection (optimized for
MAP). This test collection contains the largest topic set (with 264 queries, cf.
Section 3.3). Here, the story is different from that for TREC Robust. All models
obtain a significant improvement in recall over the baseline. NLLR and PRM are
the only models, however, that also achieve a significant improvement in terms of
MAP, albeit a small one. None of the models achieve a significant improvement
on the early precision measures. The optimal value for λQ is again very similar
for all models, with a range of 0.8− 0.9. This value indicates that a relatively
large part of the probability mass is put towards the initial query. This in turn is
an explanation for the relatively small differences in absolute retrieval scores as
compared to the baseline.

When optimized for P10 (cf. Table 4.5), RM-0 is the only model to obtain sub-
stantial and significant improvements over the baseline in terms of early precision.
It does so at the cost of recall and MAP, however, yielding the only significantly



64 4. Query Modeling Using Relevance Feedback

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

 0  20  40  60  80  100

M
A

P

Pseudo Relevant Documents

QL
MLE
MBF

RM-0
RM-1
RM-2
PRM

MLgen
NLLR

Figure 4.3: Influence of the size of R̂ on MAP, using pseudo relevant documents on
the TREC-PRF-08 collection with λQ = 0.9 and |VQ|= 10.

worse performance. This is an interesting finding since RM-0 does not take the
query or the set of feedback documents into account; it is therefore quickly com-
puted. The optimal value for λQ when optimizing for P10 is roughly the same as
when optimizing for MAP; only the optimal number of employed feedback doc-
uments is different. Furthermore, RM-2, MLE, and MLgen perform very similar.
This is not surprising, since the they all base their query model on the same, sin-
gle feedback document and, in that particular case, RM-0 is equivalent to MLgen.
RM-2 also blends in the probability of the query given the document, causing 9
more relevant documents to be retrieved. On the other hand, RM-1 and PRM
obtain their highest P10 scores with substantially more feedback documents.

Figure 4.3 again shows the effect of varying the amount of pseudo relevant
documents, although this time on the TREC-PRF-08 test collection. From this
figure, we first note that the models react differently to an increasing number
of feedback documents on this test collection. RM-1 is again most robust. It
outperforms all other models (except PRM) on almost any number of feedback
documents; it is only slightly outperformed by MBF for low numbers of feedback
documents. On this collection, re-estimating the document models by applying
PRM offers the best performance in terms of MAP when more than 20 feedback
documents are used. MBF is the worst performing model on this test collection,
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statP10 statMAP λQ |R̂|

QL 0.328 0.148 1.0 –
MLE 0.312 -4.9% 0.177 +19.6% 0.4 1
MBF 0.335 +2.1% 0.167 +12.8% 0.8 1
RM-0 0.312 -4.9% 0.177 +19.6% 0.4 1
RM-1 0.312 -4.9% 0.177 +19.6% 0.4 1
RM-2 0.341 +4.0% 0.175 +18.2% 0.4 1
PRM 0.386 +17.7% 0.175 +18.2% 0.6 54
MLgen 0.312 -4.9% 0.177 +19.6% 0.4 1
NLLR 0.328 0.0% 0.148 0.0% 0.9 10

Table 4.6: Best results (optimized for statMAP) of the models contrasted in this
chapter on the TREC-WEB-09 test collection using |VQ|= 10.

statP10 statMAP λQ |R̂|

QL 0.328 0.148 1.0 –
MLE 0.346 +5.5% 0.146* -1.4% 0.1 3
MBF 0.338 +3.0% 0.157 +6.1% 0.7 150
RM-0 0.350 +6.7% 0.159 +7.4% 0.3 53
RM-1 0.364 +11.0% 0.159 +7.4% 0.3 76
RM-2 0.373 +13.7% 0.150 +1.4% 0.1 2
PRM 0.510* +55.5% 0.157 +6.1% 0.6 80
MLgen 0.393 +19.8% 0.159 +7.4% 0.4 89
NLLR 0.389 +18.6% 0.140 -5.4% 0.6 168

Table 4.7: Best results (optimized for statP10) of the models contrasted in this chap-
ter on the TREC-WEB-09 test collection using |VQ|= 10.

whereas RM-0, RM-2, and MLgen perform similar to, or slightly worse than the
baseline (with MLgen outperforming the other two models).

In sum, despite having a large number of topics and documents, we obtain
only minor improvements on the TREC-PRF-08 test collection. In part, this is
caused by the type of collection. Unlike TREC Robust, this collection consists of
unedited web pages which may contain significant amounts of noise. For exam-
ple, layout related terms may erroneously end up in content fields (due to the
web crawler or the author of a page). Other examples include typos or other
grammatical errors. Such noise does not appear in the edited and moderated
content that makes up the TREC Robust document collection. RM-1 again shows
to be stable, whereas PRM again obtains the highest MAP scores (although recall
is significantly worse than the baseline).

TREC Web 2009

In Table 4.6, we show the best results obtained in terms of statMAP on the TREC-
WEB-09 test collection. We observe that pseudo relevance feedback on this col-
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Figure 4.4: Influence of the size of R̂ on statP10, using pseudo relevant documents
on the TREC-WEB-09 collection with λQ = 0.6 and |VQ|= 10.

lection does not perform well for all models; none of them obtains a significant
improvement over the baseline on any evaluation metric. PRM is able to obtain a
substantial (although not significant improvement), but requires a large number
of feedback documents. Applying NLLR does not make any difference in terms of
statMAP with the baseline, for any setting of λQ or any number of feedback docu-
ments. All versions of the relevance model again base their estimation on a single
document which, in turn, leads to equal scores (and a performance in terms of
statP10 that is worse than the baseline). As to the optimal value of λQ, PRM is
the odd one out. MBF behaves similarly to NLLR, as do the relevance modeling
variations, MLE, and MLgen.

Table 4.7 shows the results when optimized for statP10. From this table we
observe that only PRM is able to obtain a significant improvement over the base-
line, again using a large number of documents. In terms of statP10, all other
models improve over the baseline as well, although not significantly so. We also
note the large variation in the optimal number of feedback documents and in the
optimal setting of λQ. As to statMAP in this case, most models improve slightly
over the baseline; NLLR and MLE obtain statMAP values worse than the baseline
(and, in the case of MLE even significantly so).

In Figure 4.4 we display the influence of the number of feedback documents
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on statP10 for TREC-WEB-09 and λQ = 0.6. First we note the variance as single
feedback documents are added. This is in part due to the small number of topics
as compared to the TREC-ROB-04 and TREC-PRF-08 test collections. For this
setting of λQ, most models obtain statP10 values that are close to the baseline.
As was clear from the results tables, PRM outperforms the other models, followed
by MLgen when |R̂| > 30. From this figure it is clear why PRM obtained the
substantial improvements indicated above; when using more than 50 feedback
documents, this model outperforms all the other models.

The main reason for the retrieval performance obtained on this test collection
is that it is a large web collection. Unlike the TREC-PRF-08 collection (which
was restricted to web pages from the .gov domain), this document collection is
a representative sample of the full Web. Therefore, it contains quite some noise
in the form of spam pages, strange terms, etc. In the case of pseudo relevance
feedback, spam pages are treated just like any other. However, the content of
most of these is either extremely focused (e.g., to promote or encourage you to
buy some product) or extremely varied (e.g., in order to appear in search engine
rankings for many queries). These factors influence the query models that are
estimated from such documents.

One can assume that on governmental web pages (such as found in the TREC-
PRF-08 test collection) there exists at least some kind of moderation on the con-
tents. Having a document collection containing any web page, however, means
that most of the documents are unmoderated. Hence, such uninformative terms
might acquire a probability mass under some models. Judging by the results,
PRM is the only model that is able to correct for this phenomenon. Interestingly,
MBF (which uses a similar EM-based update algorithm on the set of feedback
documents) only performs similar to the baseline on this test collection.

Upshot

We obtain improvements over the baseline on all test collections using most mod-
els with a fixed number of terms and with the right number of feedback docu-
ments. This finding confirms those from related work (see e.g., [70, 196]) on
a much larger set of test collections. On TREC Robust we observe that all but
two models behave similarly when more pseudo relevant documents are used.
RM-1 is most robust on this test collection in that respect; its performance does
not change much with a varying number of feedback documents. The picture on
TREC-PRF-08 is slightly different. Here, PRM obtains the highest absolute scores.
RM-1 is still the most robust with respect to the number of terms. All other models
only improve slightly over the baseline when using a small number of feedback
documents. On the TREC Web 2009 test collection, we obtain only modest, non-
significant improvements in terms of statMAP. Early precision (as measured by
statP10), on the other hand, does significantly improve in the case of PRM. So,
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(c) TREC-PRF-08 – all documents
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(d) TREC-PRF-08 – relevant documents
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(f) TREC-WEB-09 – relevant documents

Figure 4.5: Histograms of the document lengths on the test collections employed in
this chapter. The “all-documents” plots have been cropped to match the dimensions
of the “relevant documents” plots.

we can conclude from the results presented so far that the test collection has a
definitive influence on the level of improvement provided by pseudo relevance
feedback.

Furthermore, from the relative results between test collections, we have hy-
pothesized that the level of noise in the documents influence the query models
generated from them. Indeed, related work has shown that selecting terms from
different document representations (be it, e.g., from structural elements [150],
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from referring documents [86], or from both [333]) or from contextual factors
such as the number of inlinks [45] helps retrieval performance. We conclude
that reducing the amount of noise by leveraging such information would help to
further improve the performance resulting from relevance feedback.

But these are not the only factors. For query modeling using relevance feed-
back to be successful, the terms that receive most probability mass should be
“coherent,” that is, they should reinforce each other (as opposed to finding a
single, excellent term) [242]. In order to find such terms, it helps when the doc-
uments have a dedicated interest in a topic [125]. Ideally, one would like to
select those feedback documents that are both most coherent and most relevant
to the query [124, 235]. Especially on the larger test collections (TREC-PRF-08
and TREC-WEB-09), we see that the models that solely make use of the set of
feedback documents (MLE and MBF) perform worse than their counterparts. We
conclude that, on these collections, it helps to mix the evidence brought in by each
individual feedback document as well as the set thereof to determine which terms
are coherent. The notion that the largest benefit from query modeling using rele-
vance feedback is to be obtained when the feedback documents show a dedicated
interest in a topic or, consequently, the terms in the query models are cohesive,
is something we exploit in the next chapter. There, we use concepts assigned to
documents to focus the query model estimations on a subset of coherent, relevant
to the query.

Fang et al. [100] observe that “if all the query terms are discriminative words,
the KL-divergence method will assign a higher score to a longer document. If
there are common terms, however, longer documents are penalized.” This implies
two things. First, that if a relevance feedback model (such as MBF or PRM) em-
phasizes discriminative terms, i.e., those that occur infrequently in the collection,
then they are more likely to rank longer documents higher. It also implies that the
length of the (relevant) documents is of influence on the retrieval performance.
Figure 4.5 shows the distribution of document lengths for all documents as well
as only the relevant documents on the different test collections. The histograms
first provide a clear indication that the TREC-ROB-04 documents are the shortest
of all test collections. They further show that most of the relevant documents for
TREC Robust 2004 are relatively short. TREC-PRF-08 and TREC Web 2009, on
the other hand, have a much larger spread. Hence, this is a partial explanation
why PRM outperforms the other models on TREC-PRF-08 and TREC-WEB-09. It
does not explain why the same effect isn’t visible for MBF, however.

4.3.2 Per-topic Results

Relevance feedback models are typically associated with a large variance in per-
formance per topic. For some topics it improves results substantially, whereas for
others it hurts [70, 272]. In this section, we look at the per-topic performance of
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Figure 4.6: Per-topic breakdown of the improvement of the models over the QL base-
line on the TREC-ROB-04 test collection on MAP using |VQ|= 10 and the parameter
settings optimized for MAP (cf. Table 4.2).
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Figure 4.7: Per-topic breakdown of the improvement of the models over the QL base-
line on the TREC-PRF-08 test collection on MAP using |VQ| = 10 and the parameter
settings optimized for MAP (cf. Table 4.4).
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Figure 4.8: Per-topic breakdown of the improvement of the models over the QL
baseline on the TREC-WEB-09 test collection on statMAP using |VQ| = 10 and the
parameter settings optimized for MAP (cf. Table 4.6).
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the models. We take the values for λQ and |R̂| that optimize MAP for each model
(listed in the tables above) and plot the difference with the baseline in terms of
AP (“∆AP”). We sort the topics by decreasing ∆AP; a positive value in these plots
indicates an improvement over the baseline for that particular topic.

Figure 4.6 shows a per-topic plot of the difference of each model compared
to the baseline for the TREC Robust 2004 test collection. From these figures we
observe that, for all models except NLLR, the number of topics that are improved
over the baseline is larger than the number of topics with a worse performance.
Since the documents in this collection are short and focused, all models generally
pick up related, relevant terms. There are some topics that are difficult, however.
RM-0, RM-2, PRM, and MLgen all have difficulties with topic #308 (“implant
dentistry”). The terms that are introduced for all of these models are mostly
related to the query term “implant” instead of dental implants. Another difficult
topic is #630 (“gulf war syndrome”). Although most terms are related to the Gulf
war, there are also terms that are related to war (or wars) in general.

Figure 4.7 shows the results for TREC-PRF-08. On this test collection, we first
note that—judging by the area under the curve—the performance of all models
is closer to the baseline as for TREC Robust 2004. This is in line with the ob-
servation made in the previous section, where we noted that the optimal value
lies around λQ = 0.9. This in turn means that the generated query models are
close to the original query, i.e., the baseline. Furthermore, most models have
difficulty with the same topic. In particular, topic #8218 (“marfan syndrome in-
fants”) yields the worst relative performance for MBF, MLgen, PRM, RM-1, and
RM-0. Marfan’s syndrome is a genetic disorder of the connective tissue. Most of
the models, however, erroneously focus on the terms “infants” and “syndrome,”
causing a decline in retrieval performance. Conversely, most models are helped
on topic #3554 (“what specific blood tests test for celiac disease or sprue”) and
#2106 (“arizona parkways”). For both topics, almost all models identify related,
relevant terms and improve upon the baseline. PRM performs particularly well
on topic #6010 (“wind farms in new mexico”). Here, most terms included in the
query model are relevant, including such examples as “turbin,” “kilowatt,” and
“megawatt.” These terms are infrequent in the collection, causing them to obtain
substantial probability mass.

In Figure 4.8 we show the per-topic differences for TREC-WEB-09. The first
obvious observation is that this test collection has the smallest amount of topics.
For all models, the number of topics that are helped roughly equal the number
of topics that are not. For most models, however, the absolute improvements are
larger. Especially topic #16 (“arizona game and fish”) is helped. This can be
attributed to the fact that all but two models use a single feedback document to
obtain optimal retrieval performance (cf. Table 4.6). In the case of this particular
topic, the first feedback document is a relevant one.

To summarize, we have observed that for TREC Robust most (but not all)



74 4. Query Modeling Using Relevance Feedback

topics are helped using pseudo relevance feedback. On the TREC-PRF-08 test
collection, the fraction of topics helped roughly equals the number of topics that
are hurt, mainly due to the nature of the documents in the collection. This phe-
nomenon is also visible on ClueWeb09, although in this case there are more topics
that are helped substantially than those that are hurt.

All of the experiments so far have used a fixed number of terms in the query
models. Ogilvie et al. [242] show that varying this number can have significant
effects on retrieval performance. Therefore we zoom on this parameter setting in
the next section.

4.3.3 Number of Terms in the Query Models

In the previous sections we have fixed the number of terms in the query models,
|VQ|, to a maximum, considering only the ten terms with the highest probability
for inclusion in the query model. The fewer terms you use, the fewer lookups
need to be performed in the index. Reducing or optimizing this number is there-
fore interesting from an efficiency point of view. Furthermore, the number of
terms may also influence the end-to-end retrieval performance. In this section we
discuss the influence of varying this parameter setting. In particular, we fix λQ
and |R̂| and report retrieval performance for incremental values of |VQ|, similar
to the graphs presented in Section 4.3.1.

Figure 4.9(a) shows the results of varying the number of terms on the TREC
Robust 2004 test collection. We note that all models except NLLR show similar
behavior when more terms are included. The optimal number of terms lies in the
interval 10− 30 and performance degrades slightly after that. In absolute terms,
PRM and MLgen obtain the best MAP scores. NLLR again does not perform well;
its performance is below the baseline on all settings. Although it does not ob-
tain the highest MAP scores overall, MBF is most robust to varying the number of
terms. Including more than 10 terms does not influence its retrieval performance.
For this test collection, the model typically converges at around 15 terms, causing
this behavior. In contrast, PRM also re-estimates the language models from feed-
back documents. In this case, however, the terms from each individual feedback
document model are aggregated to obtain the query model.

In Figure 4.9(b) we show the results on TREC-PRF-08. Here, we again observe
that the models respond similarly to an increasing amount of terms. We also note
that the absolute differences between the performance of the baseline and the
models is small. NLLR improves slightly over the baseline. PRM again obtains
the highest scores overall. On this test collection, the ranking of the relevance
feedback models in terms of their performance is roughly independent of the
number of terms. In other words, selecting the right model is more important
than setting the right number of terms to obtain the best retrieval performance.



4.3. Pseudo Relevance Feedback 75

0.180

0.190

0.200

0.210

0.220

0.230

0.240

0.250

0.260

0.270

 0  10  20  30  40  50  60  70  80  90  100

M
A

P

Number of Terms

QL
MLE
MBF

RM-0
RM-1
RM-2
PRM

MLgen
NLLR

(a) TREC-ROB-04 (λQ = 0.4 and |R̂|= 12).

0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

 0  10  20  30  40  50  60  70  80  90  100

M
A

P

Number of Terms

QL
MLE
MBF

RM-0
RM-1
RM-2
PRM

MLgen
NLLR

(b) TREC-PRF-08 (λQ = 0.9 and |R̂|= 3).

0.100

0.110

0.120

0.130

0.140

0.150

0.160

0.170

 0  10  20  30  40  50  60  70  80  90  100

s
ta

tM
A

P

Number of Terms

QL
MLE
MBF

RM-0
RM-1
RM-2
PRM

MLgen
NLLR

(c) TREC-WEB-09 (λQ = 0.7 and |R̂|= 60).

Figure 4.9: Influence of the size of |VQ| on (stat)MAP, using pseudo relevant docu-
ments.
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The results for TREC Web 2009 are shown in Figure 4.9(c). We observe that
RM-2 and NLLR both perform worse than the baseline on this test collection.
Only when including more than 80 terms does RM-2 perform comparably to the
baseline. MLgen and PRM obtain highest retrieval performance using any number
of terms. MLgen reaches it peak at around 30 terms; PRM already after 10 terms.
RM-0, MLE, and RM-1 perform very similarly and only improve slightly upon the
baseline.

In sum, we observe that for all test collections and models, the optimal num-
ber of terms to include in the query model lies between 10 and 30. This finding is
in line with earlier work (see e.g. [119, 196]) and thus confirms those findings a
much larger and diverse set of test collections. Varying the number of terms has
an effect on the retrieval performance, albeit limited. The effects are certainly
not as pronounced as when varying the number of feedback documents. Further-
more, the ranking of the various models in terms of their retrieval performance is
relatively stable across all values for |VQ| for all test collections.

4.4 Explicit Relevance Feedback

In this section we present the results of applying the models to explicit relevance
feedback. We make use of the TREC Relevance Feedback 2008 test collection as
described in Chapter 3 and we follow the same approach as in Section 4.3. In this
case, however, we remove the non-relevant documents from the list of initially
retrieved documents. Furthermore, we append to this list the relevant documents
that were not retrieved, ordered by their QL score with respect to the query, until
a maximum of 200.

Recall that for the TREC Relevance Feedback track, an additional round of
relevance assessments was performed, based on the pooled submissions of the
participants from which the known relevant documents were removed. We use
these novel assessments for evaluation. Because of this, the results presented here
are not directly comparable to the results presented in the previous section for the
TREC-PRF-08 test collection.

We explore the behavior of our two novel models, MLgen and NLLR, in de-
tail and examine the results of the other methods which focus solely on the two
distinct features that our models combine: the set of relevant documents and
the individual documents that it comprises. We also zoom in on each model’s
performance on individual topics. Then, since these experiments require explicit
relevance assessments, we take a user-oriented view and turn to the number of
relevant documents. Recall from Section 3.2 that we use a large number of rel-
evant documents available to us (around 150 documents per query on average).
Clearly, such numbers are not indicative of the effort an average user is willing to
spend. Therefore, we will incrementally add documents to R̂ (where R̂⊆R) and
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P5 P10 MAP RelRet λQ |R̂|

QL 0.245 0.242 0.131 1030 1.0 –
MLE 0.361* +47.3% 0.336* +38.8% 0.194* +48.1% 1217* +18.2% 0.4 110
MBF 0.338 +38.0% 0.321* +32.6% 0.175* +33.6% 1162* +12.8% 0.6 95
RM-0 0.394* +60.8% 0.355* +46.7% 0.215* +64.1% 1258* +22.1% 0.3 132
RM-1 0.348 +42.0% 0.352 +45.5% 0.198* +51.1% 1278* +24.1% 0.3 40
RM-2 0.368 +50.2% 0.358* +47.9% 0.208* +58.8% 1342* +30.3% 0.4 66
PRM 0.414* +69.0% 0.372* +53.7% 0.212* +61.8% 1238* +20.2% 0.6 18
MLgen 0.374 +52.7% 0.342* +41.3% 0.214* +63.4% 1288* +25.0% 0.4 60
NLLR 0.432* +76.3% 0.374* +54.5% 0.230* +75.6% 1333* +29.4% 0.4 200

Table 4.8: Best results (optimized for MAP) of the models contrasted in this chapter
on the TREC-RF-08 test collection using |VQ|= 10.

P5 P10 MAP RelRet λQ |R̂|

QL 0.245 0.242 0.131 1030 1.0 –
MLE 0.342 +39.6% 0.355* +46.7% 0.185* +41.2% 1181 +14.7% 0.3 109
MBF 0.379* +54.7% 0.335* +38.4% 0.174* +32.8% 1159* +12.5% 0.6 71
RM-0 0.374 +52.7% 0.390* +61.2% 0.191* +45.8% 1218* +18.3% 0.2 33
RM-1 0.374 +52.7% 0.364* +50.4% 0.185* +41.2% 1216 +18.1% 0.1 23
RM-2 0.394* +60.8% 0.368* +52.1% 0.195* +48.9% 1314* +27.6% 0.3 200
PRM 0.386* +57.6% 0.397* +64.0% 0.203* +55.0% 1195* +16.0% 0.6 200
MLgen 0.348 +42.0% 0.384* +58.7% 0.200* +52.7% 1265* +22.8% 0.3 38
NLLR 0.419* +71.0% 0.394* +62.8% 0.220* +67.9% 1358* +31.8% 0.5 200

Table 4.9: Best results (optimized for P10) of the models contrasted in this chapter
on the TREC-RF-08 test collection using |VQ|= 10.

look at the resulting retrieval performance in order to determine how many rele-
vant documents need to be identified to arrive at a stable retrieval performance.
We conclude this section by determining the optimal number of terms to use for
explicit relevance feedback.

4.4.1 Experimental Results

First, we look at the results when using all known relevant documents (up to a
maximum of 200). Tables 4.8 and 4.9 show the experimental results of applying
the various approaches for estimating P (t|θQ); Table 4.8 shows the results when
optimizing for MAP, Table 4.9 when optimzing P10. As indicated earlier, these
results are obtained using the full set of judged relevant documents for estimation
and subsequently removing these from the rankings.

First, we observe that the query-likelihood results are on par with the median
of all submitted runs for the TREC Relevance Feedback track [48] and all models
improve over this baseline. If we would have submitted the results of the NLLR
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model, it would have ended up in the top-3 for this particular category. The RM-2
run would have been placed at around rank 7.

Since these results are obtained using the full set of relevance assessments,
one might expect that the MLE achieves high scores, because this set should be
representative of the information need. Contrary to this intuition, however, the
MLE approach does not achieve the highest performance when new relevant doc-
uments are to be retrieved; a finding in line with observations made by Buckley
et al. [52]. MBF (which re-estimates the MLE model) mainly has a precision-
enhancing effect: recall and MAP are hurt using this approach when compared
against MLE.

A precision enhancing effect is also visible when using NLLR and RM. Indeed,
NLLR achieves the highest scores overall, except for the number of relevant re-
trieved documents (RM-2 retrieves 9 relevant documents more). NLLR obtains a
significant 75.6% improvement in terms of MAP over the baseline.

We further note that PRM and MBF share the same optimal setting for λQ.
The remaining models obtain optimal results using 0.3≤ λQ ≤ 0.4. The number of
documents needed to arrive at an optimal performance varies greatly per model.
In Section 4.4.3 we further discuss this particular parameter settings.

Table 4.9 shows the results when optimizing for P10. In this case, PRM slightly
outperforms NLLR terms of P10. All models again significantly outperform the
baseline, in terms of both P10 and MAP. In this case, however, the value of λQ for
all models except PRM and MBF is slightly lower. PRM and MBF have the same
setting and merely use a different number of documents.

An interesting thing to note is that NLLR performs much better using explicit
relevance feedback than when using pseudo relevance feedback. In Section 4.3
we have observed that using this model on the TREC Robust and TREC Web
collections typically resulted in a performance below the baseline. On the TREC-
PRF-08 test collection, however, this model slightly improved over the baseline
when using the right parameter settings, cf. Figure 4.9(b). Since the TREC-
RF-08 test collection uses the same document collection as TREC-PRF-08 and a
subset of its topics, we conclude that NLLR is better suited towards this collection.
Furthermore, we are now dealing with explicit relevance feedback and the fact
that NLLR outperforms all other models may be attributed to this fact; as there
are no non-relevant documents in the set of feedback documents, we hypothesize
that the estimation method of NLLR performs better than in the case of pseudo
relevance feedback.

4.4.2 Per-topic Results

Table 4.10 shows query models for three example topics. It is clear that the base-
line distributes the probability mass evenly across all the terms in the topics. MLE
sometimes picks op “noisy” terms (cf. topic #814), whose probability MBF prop-
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Figure 4.10: Per-topic breakdown of the improvement over the QL baseline in terms
of AP (topics sorted in decreasing order of ∆AP) with λQ = 0.4 and |VQ|= 10.
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Model Topic #708 Topic #766 Topic #814

QL 0.3333 sourc 0.5000 smuggl 0.5000 flood
0.3333 decor 0.5000 diamond 0.5000 johnstown
0.3333 slate

MLE 0.2125 slate 0.2723 diamond 0.2992 flood
0.1333 sourc 0.2000 smuggl 0.2357 johnstown
0.1333 decor 0.0837 drug 0.1455 0
0.0975 stone 0.0700 state 0.0701 dam

MBF 0.3164 slate 0.3718 diamond 0.3060 flood
0.1448 stone 0.2374 smuggl 0.2944 johnstown
0.1333 sourc 0.0604 launder 0.0966 dv
0.1333 decor 0.0586 leon 0.0891 dam

RM-0 0.2241 slate 0.3555 diamond 0.3498 flood
0.1333 sourc 0.2000 smuggl 0.2831 johnstown
0.1333 decor 0.0656 state 0.0801 dam
0.0980 stone 0.0571 trade 0.0534 club

RM-1 0.3509 slate 0.3977 diamond 0.3146 flood
0.1333 sourc 0.2000 smuggl 0.2923 johnstown
0.1333 decor 0.0732 sierra 0.0677 noaa
0.0969 roof 0.0648 leon 0.0541 histor

RM-2 0.4214 slate 0.4237 diamond 0.3405 johnstown
0.1333 sourc 0.2000 smuggl 0.2957 flood
0.1333 decor 0.1093 kimberlei 0.0490 1889
0.0502 dmr 0.0498 spokesman 0.0472 photograph

PRM 0.2749 slate 0.4853 diamond 0.3364 johnstown
0.1546 stone 0.2000 smuggl 0.3363 flood
0.1333 sourc 0.0646 leon 0.0685 dam
0.1333 decor 0.0634 sierra 0.0579 conemaugh

MLgen 0.2155 slate 0.3558 diamond 0.3680 flood
0.1333 sourc 0.2000 smuggl 0.2731 johnstown
0.1333 decor 0.0611 state 0.0787 dam
0.1008 stone 0.0552 trade 0.0613 water

NLLR 0.2439 slate 0.3569 diamond 0.3338 flood
0.1333 sourc 0.2000 smuggl 0.2812 johnstown
0.1333 decor 0.0685 state 0.0813 dam
0.1105 stone 0.0561 trade 0.0583 club

Table 4.10: Stemmed terms with the highest probability for each model using all
available relevant documents with λQ = 0.4 and |VQ|= 10 for the topics #708 (“dec-
orative slate sources”), #766 (“diamond smuggling”), and #814 (“johnstown flood”).

erly re-estimates. MBF does pick up the term ‘dv’ for this topic, which seems to
occur more frequently in the relevant documents than the collection (and which
is why MBF assigns a high probability). For topic #814, RM-1 and RM-2 are the
only models that do not pick up ‘dam’, which seems a reasonable term given the
topic. PRM is the only model that picks up ‘Conemaugh,’ which is the name of
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lake the dam was holding back.
Figure 4.10 shows a per-topic breakdown of the relative performance of the

various models with respect to the baseline. Topic #808 (“north korean counter-
feiting”) seems a particularly difficult topic and the retrieval performance is worst
on this topic for all employed query models (although there are 530 judged rel-
evant and 330 new relevant documents available). All query models emphasize
different aspects of the feedback documents, ranging from drugs to other kinds of
trafficking. We further note that most models select the same terms, albeit with a
different probability. RM-0 shows only minor differences with MLgen in the terms
they assign the highest probability.

In general, NLLR is able to substantially improve over the baseline on a larger
number of topics than the other methods. RM-2 works best for topic #766, on
which NLLR also performs very well (this topic is the second from the left for
NLLR). MBF and MLE improve most on topic #814. Interestingly, this topic is
also helped a lot by NLLR (this topic is the first from the left for NLLR), but not
by RM. These observations provide evidence that NLLR is indeed able to reap the
benefits both of the individual relevant documents (like RM) and of the set as
a whole (like MBF, MLE, and MLgen). Out of the various relevance modeling
approaches, RM-0 performs best. This finding is in line with observations made
by Lavrenko and Croft [182], who specifically design this relevance modeling
variant to be used with explicit relevance feedback. In contrast, PRM (which
is RM-0 applied to re-estimated document models) performs slightly worse than
RM-0. Most notably, topic #766 (“diamond smuggling”) is helped to a much
smaller extent using PRM. It turns out that PRM picks up terms that are highly
discriminative (such as “liberia” and “angola”) but that do not contribute much
towards identifying relevant documents.

4.4.3 Number of Relevant Documents

Intuitively, using a large sample of known relevant documents to determine the
parameters of θQ means that we can be fairly certain in the predictive quality
of the employed estimation method. But how many documents would we need
to arrive at a stable retrieval performance? In order to answer this question, we
select an increasing amount of relevant documents R̂ from the QL run, ranked by
their retrieval score. For each increment we estimate new query models and use
them to determine the resulting retrieval performance. Note that we still remove
all the judged relevant documents, i.e., the full set R, from the resulting rankings
in order to make the obtained retrieval results comparable those described in
Section 4.3. This experiment corresponds to a user selecting relevant documents
from a result list, in order to further improve the results. By determining the
relationship between retrieval performance and |R̂|, we can quantify how many
documents a user should judge in order to arrive at a stable retrieval performance.
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Figure 4.11: Influence of the size of R̂ on retrieval performance using explicit rele-
vance feedback, with λQ = 0.4 and |VQ|= 10.

Figure 4.11 shows the retrieval performance at increasing amounts of rel-
evance information. Again, NLLR achieves the highest absolute MAP scores,
whereas MBF performs the worst. We observe that all models have a very steep
increase in MAP between 1 and 5 relevant documents. This means that that the
biggest relative improvement is gained when a user identifies only a small number
of relevant documents. Moreover, this improvement is a very conservative esti-
mate, since the full set of initially judged relevant documents is removed and we
only look at newly retrieved relevant documents. We also observe that all models
respond roughly similarly to the amount of relevant documents; the more doc-
uments are used, the higher the resulting retrieval performance. MBF and PRM
are sensitive to which documents are added. Both models show considerable
variation in MAP at certain intervals. MLgen responds similarly to RM-0 when
adding more feedback documents. RM-2 also, although its results are slightly
worse. RM-1 again shows different behavior, stabilizing its performance after 90
feedback documents.

4.4.4 Number of Terms in the Query Models

So far we created rather conservative query models which consisted of only 10
terms with the highest probability. In this section, we consider this parameter
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Figure 4.12: Influence of the size of |VQ| on MAP and P10, using explicit relevance
feedback and λQ = 0.4.

under explicit relevance feedback in more detail.
Figure 4.12 shows the effects of varying the number of terms for λQ = 0.4 in

terms of both MAP and P10. In terms of MAP, we observe that PRM is highly
sensitive to the number of terms included in the query model. NLLR only outper-
forms this model on MAP using |VQ|< 20. Furthermore, we note that, in terms of
MAP, all models except PRM obtain close-to-optimal performance when at least
10 terms are used. MBF performs worst of all models except for the baseline. As
to P10, PRM is equal to or outperforms NLLR on any number of terms used. PRM
and RM-1 only reach their optimal performance when |VQ| = 30. MBF is again
at the bottom of the spectrum, although its performance is in this case closely
matched by that of MLE and RM-1.

4.4.5 Upshot

Buckley et al. [51] find that, using the vector space model in a TREC routing task,
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there exists a linear relationship between the log of the number of terms added to
a query and the resulting retrieval effectiveness (and they find the same kind of
relationship between the log of the number of documents used for relevance feed-
back and retrieval effectiveness). The maximum improvement they obtain ranges
from 19% to 38% (the latter obtained using 5000 explicitly relevant documents
and adding 4000 terms). We do not observe such relationships on ad hoc retrieval
for this test collection, neither for the number of documents, nor for the number
of terms. We do find consistent increases in performance using explicit relevance
feedback for all models. We conclude, therefore, that acquiring explicit relevance
assessments from users can substantially and significantly improve retrieval per-
formance using any model. NLLR and PRM, however, obtain the highest retrieval
scores of all models evaluated in this chapter.

4.5 Summary and Conclusions

Relevance assessments by a user are an important and valuable source of infor-
mation for retrieval. In a language modeling setting, various methods have been
proposed to estimate query models from them. In this chapter we have consid-
ered several core relevance feedback approaches for query modeling. Some of
these models base their estimations on the set of feedback documents, whereas
others base them on each individual document. We have presented two novel
query modeling methods that incorporate both sources of evidence in a princi-
pled manner. One of them, MLgen, employs the probability that the set of rele-
vant documents generated the individual documents. The other, NLLR, leverages
the distance between each relevant document and the set of relevant documents
to inform the query model estimates and, as such, it is more general than meth-
ods proposed before. Our chief aim in this chapter was to present, analyze, and
evaluate these two novel models. Our second aim was to present a thorough eval-
uation of various core relevance feedback models for language modeling under
the same experimental conditions on a variety of test collections.

From performing a large number of experiments on four test collections using
the same experimental conditions, we have arrived at a number of conclusions.
First, under pseudo relevance feedback, there is a large variance in the resulting
retrieval performance for different amounts of pseudo relevant documents, most
notably on large, noisy collections, such as .GOV2 and ClueWeb09. The same
effect, although less pronounced, is observed for the number of terms that are
included in the query models. It is typical to compare retrieval performance of
relevance feedback models using a fixed setting of documents and terms. Given
the results presented in this chapter, however, this strategy is not recommended
since the relative performance might change considerably for small changes in
the values for these parameters. We have also concluded that the test collection
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itself is of influence on the relative performance of the models; there is no sin-
gle model that outperforms the others on all test collections. Furthermore, the
optimal values for λQ, |R̂|, and |VQ| also varies between test collections. More-
over, we have found that the optimal values for these parameters vary when one
optimizes either for early precision or for MAP. On the TREC Robust 2004 test col-
lection, a collection commonly used when evaluating pseudo relevance feedback
models, we find that the models under investigation behave very differently than
on the more realistically sized web collections. Furthermore, on TREC Robust
2004 most models behave very similarly when varying the parameter settings we
have investigated in this chapter. We found that RM-1 has the most robust per-
formance. That is, although this model does not obtain the highest performance,
it is only moderately sensitive to the various parameter settings and the terms it
includes in the query models are changed only slightly when these values change.
This stability is caused by the way RM-1 gathers evidence. First, it aggregates rele-
vance feedback information per query term, after which it looks at the documents.
Hence, the query terms function as a kind of “filter,” primarily causing the query
terms to be reweighted. The novel models we presented earlier in this chapter,
MLgen and NLLR, perform quite differently on pseudo relevance feedback. NLLR
only slightly outperforms the baseline on TREC-PRF-08 and is substantially worse
on the other test collections. MLgen, on the other hand, obtains close to the best
performance on both TREC-PRF-08 and TREC-WEB-09.

As to the observations made when using explicit relevance feedback, here we
found that the variance with respect to the number of feedback documents is
much less pronounced. We also find that explicit relevance feedback does not
unanimously help; some topics are hurt, whilst others are helped. This is a com-
mon finding when using pseudo relevance feedback, but the experimental results
presented in this chapter have shown that this is also the case for explicit rele-
vance feedback. However, when averaged over a number of topics, we find that
all relevance feedback models improve over a QL baseline when using explicit
relevance feedback information. The NLLR and PRM models obtain the highest
performance using explicit relevance feedback, although MLgen and RM-0 also
fare well.

Let’s turn to the research question formulated earlier in this chapter.

RQ 1. What are effective ways of using relevance feedback information for query
modeling to improve retrieval performance?

Using extensive experiments on three test collections (for pseudo relevance feed-
back) and one test collection (for explicit relevance feedback), we found that
using relevance feedback models yields substantial, and in most cases significant,
improvements over the baseline. In particular, we found that the PRM model
obtains the highest scores on most test collections. Furthermore, we found that
RM-1 yields the most robust performance (i.e., being the least sensitive to various
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parameter settings) under pseudo relevance feedback on two test collections. Fi-
nally, our proposed NLLR model is particularly suited for use in combination with
explicit relevance feedback.

This general research question gave rise to the following subquestions.

RQ 1a. Can we develop a relevance feedback model that uses evidence from
both the individual feedback documents and the set of feedback documents
as a whole? How does this model relate to other query modeling approaches
using relevance feedback? Is there any difference when using explicit rele-
vance feedback instead of pseudo relevance feedback?

We have presented two novel models that aim to make use of both of these
sources of information and have compared to a number of other, established rele-
vance feedback models for query modeling. In theoretical terms, we have shown
that these related methods can be considered special cases of NLLR which, un-
der explicit relevance feedback, is able to reap the benefits of all the methods it
subsumes. Using pseudo relevant feedback documents, the performance of our
models leaves room for improvement. Under explicit relevance feedback, how-
ever, we have shown that NLLR is particularly suitable for use in conjunction with
this type of feedback. The other proposed model, MLgen, behaves similar to the
related models, both under explicit and pseudo relevance feedback.

RQ 1b. How do the models perform on different test collections? How robust
are our two novel models on the various parameters query modeling offers
and what behavior can we observe for the related models?

We have found that there exists a large variance in the performance of all evalu-
ated models on different test collections. Furthermore, the number of documents
used for estimation and the number of terms included in the query models exhibit
a considerable influence on the retrieval performance. Properly optimizing these
parameters (either for recall- or precision-oriented measures) yields substantial
and mostly significant improvements on the measure optimizing for.

In the next chapter, we introduce and evaluate a query modeling approach
for annotated documents, i.e., documents annotated using concepts. This novel
method builds upon the intuitions behind the relevance modeling approach, as
well as MBF and PRM. Using our two-step method, we find that using infor-
mation from the annotations helps to significantly improve end-to-end retrieval
performance. After we have presented a method for linking queries to concepts
in Chapter 6, we turn to using these concepts for query modeling (again using
relevance feedback techniques) in Chapter 7.



I only look at pictures.
Andy Warhol 5

Query Modeling Using Concepts

In the previous chapter we have looked at how to use explicit and pseudo rele-
vance information to obtain an improved estimate of the query model and, hence,
improved retrieval performance. The documents used there were newswire docu-
ments and web pages. What if the documents are annotated, e.g., using concepts?
Can we utilize the knowledge captured by those annotations to further improve
retrieval effectiveness? In this chapter we introduce and evaluate a model that
leverages document-level annotations for query modeling.

Explicit (and often manually curated) knowledge is routinely added to docu-
ments for a variety of reasons, e.g., to increase their findability or to aid navigation
of the collection to which they belong. It is typically expressed in a meta-language
and can be either formal (e.g., in the form of a thesaurus or ontology [157]) or
more informal (e.g., in the form of user-generated tags [238, 269]). Annotations
of the formal kind may be found in a broad range of domains and a variety of doc-
ument types. News articles, for example, can be annotated with concepts from
the NewsCodes taxonomies provided by the International Press Telecommunica-
tion Council (IPTC) [319]. Another example is the annotation of bibliographic
records with indexing terms from a controlled vocabulary. In the biomedical do-
main, citations in the MEDLINE database are manually indexed with concepts
from the Medical Subject Headings (MeSH) thesaurus.1 As indicated earlier, we
refer to the broad range of formal meta-languages as concept languages and to
their vocabulary terms as concepts. Figure 1.2 shows an excerpt from MeSH. Ta-
bles 5.1 and 5.2 show two examples of document-concept annotations from the
two test collections that we use and that were introduced in Section 3.3.

In order to use concept languages for query modeling, we develop a two-step
translation-based method. In the first step, an information need (as expressed
in a textual query) is translated into a conceptual representation. In a process
we call conceptual query modeling, feedback documents from an initial retrieval
run are used to obtain a conceptual query model; this model represents the user’s
information need at the level of concepts rather than that of the terms entered

1See http://www.nlm.nih.gov/mesh.
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by the user. The intuition behind this step is that this conceptual representation
provides a less ambiguous representation of the information need. In contrast to
traditional textual relevance feedback, where query refinement is biased towards
terms occurring in the initial query, this intermediate conceptual representation is
less dependent on the original query words. On its own, this explicit conceptual
representation can be used to aid retrieval, for example by suggesting relevant
concepts to the user [165, 209, 285, 323] or by matching it to a conceptual rep-
resentation of, or the annotations associated with the documents [254, 318].

In the second step, we translate the conceptual query model back into a con-
tribution to the textual query model. We hypothesize that, since the textual rep-
resentation of documents is more detailed than its conceptual representation,1

retrieving information with a textual query representation translated from a con-
ceptual form, will result in better retrieval performance than strictly matching
with concepts only. Essential to these two translation steps is the estimation of a
query model, both for terms and for concepts. The textual query should be cap-
tured by a small set of specific concepts and the conceptual query model should
be translated to specific textual terms. To achieve this, we employ an expectation
maximization algorithm inspired by parsimonious language models [136].

In this chapter we introduce and investigate our method for using document
annotations for query modeling as formulated in our RQ 2:

RQ 2. What are effective ways of using conceptual information for query model-
ing to improve retrieval performance?

To estimate a conceptual query model we propose a method that looks at the
top-ranked documents in an initially retrieved set. In order to assess the effec-
tiveness of this step, we compare the results of using these concepts with a stan-
dard language modeling approach. Moreover, since this method relies on pseudo
relevant documents from an initial retrieval run, we also compare the results of
our conceptual query models to another, established pseudo relevance feedback
algorithm based on relevance models. We ask:

RQ 2a. What is the relative retrieval effectiveness of this method with respect to
the standard language modeling and conventional pseudo relevance feed-
back approach?

RQ 2b. How portable is our conceptual language model? That is, what are the
results of the model across multiple concept languages and test collections?

RQ 2c. Can we say anything about which evaluation measures are helped most
using our model? Is it mainly a recall or a precision-enhancing device?

1A document is typically represented by far more terms than concepts.
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Document text [CSASA-1-EN-9600048] Concept annotations

Immigration and Economic Dependence in the
U.S.: Approaches to Presenting Logistic Regres-
sion Results. Logistic regression models are
found increasingly in the social science liter-
ature, but the coefficients can be difficult to
interpret for novice users. Strategies are dis-
cussed that can enhance the substantive inter-
pretation of logistic regression results. . . .

UNITED STATES OF AMERICA
IMMIGRANTS
CITIZENS
BENEFITS
SOCIAL SECURITY
REGRESSION ANALYSIS

Table 5.1: Example of a document (title and part of abstract) from the CLEF-DS test
collection, annotated with SA concepts.

Document text [PMID: 10077651] Concept annotations

Mechanism of increased iron absorption in
murine model of hereditary hemochromato-
sis: increased duodenal expression of the iron
transporter DMT1. Hereditary hemochromato-
sis (HH) is a common autosomal recessive
disorder characterized by tissue iron deposi-
tion secondary to excessive dietary iron absorp-
tion. We recently reported that HFE, the pro-
tein defective in HH, was physically associated
with the transferrin receptor (TfR) in duode-
nal crypt cells and proposed that mutations in
HFE attenuate the uptake of transferrin-bound
iron from plasma by duodenal crypt cells, lead-
ing to up-regulation of transporters for dietary
iron. . . .

ANIMALS
CARRIER PROTEINS
CATION TRANSPORT PROTEINS
DUODENUM
HEMOCHROMATOSIS
IRON
IRON-BINDING PROTEINS
MICE
MUTATION

Table 5.2: Example of a document (title and part of abstract) from the TREC-GEN-04
annotated with MeSH concepts.

The remainder of this chapter is organized as follows. We introduce conceptual
language models in Section 5.1. We then describe our experimental setup in Sec-
tion 5.2 and report on the outcomes of our experimental evaluation and discuss
our findings in Section 5.3. We end with a concluding section.

5.1 Conceptual Language Models

Our goal is to utilize the knowledge captured using concepts from a concept lan-
guage to enhance the estimation of the query model θQ. To this end, we use the
concepts as a pivot language in a double translation [169], similar to the method
proposed by Berger and Lafferty [31] that was discussed in Section 2.3.1. The
approach presented by French et al. [104] is also related to ours. They propose
a heuristic method of associating terms with concepts. Our approach, however,

http://www.ncbi.nlm.nih.gov/pubmed/10077651
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Figure 5.1: Dependence network for our conceptual language models.

utilizes the concepts that are associated with a query to find terms related to these
concepts in order to estimate the expanded part of the query model, P (t|θ̂Q) (cf.
Eq. 2.10). Figure 5.1 shows a graphical representation of the dependencies of this
process.
In words, first we translate the query Q into a set of relevant concepts, C =
{c1, . . . , ck}. Next, the vocabulary terms associated with the concepts are con-
sidered as possible terms to include in the query model and we marginalize out
the concepts. More formally, we determine

P (t|θ̂Q) =
∑
c∈C

P (t|c)P (c|Q), (5.1)

where we assume that the probability of selecting a term is only dependent on
the concept once we have selected that concept for the query.

Two components need to be estimated: P (t|c), to which we refer as a genera-
tive concept model, and P (c|Q), to which we refer as a conceptual query model.
As to the former, we will need to associate terms with concepts in the con-
cept language. While the concepts may be directly usable for retrieving docu-
ments [128, 302, 318], we associate each concept with a weighted set of most
characteristic terms using a multinomial unigram model. To this end we consider
the documents that are annotated with concept c as bridges between the con-
cept and terms, by representing concepts as multinomial distributions over terms,
P (t|c). Generative concept models will be detailed further in Section 5.1.2 below.

The second component—the conceptual query model P (c|Q)—is a distribu-
tion over concepts specific to the query. In some settings, concepts are provided
with a query or as part of a query, see, e.g., the PubMed search interface [132],
some early Text Retrieval Conference (TREC) adhoc tracks (6, 7, and 8 in particu-
lar), and the Initiative for the Evaluation of XML Retrieval (INEX) Entity Ranking
track, where Wikipedia categories are used [87]. If this is not the case, however,
we may leverage the document annotations to approximate this step: this is what
we do in the next section.
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5.1.1 Conceptual Query Modeling

We now turn to defining P (c|Q), the conceptual query model. Contrary to the
alternatives mentioned at the end of the previous section, in a typical IR setting
concepts are not provided with a query and need to be inferred, estimated, or rec-
ognized [339, 358]. In this chapter, we formulate the estimation of concepts rel-
evant to a query in a standard language modeling manner, by determining which
concepts are most likely given documents relevant to the query. Alternatively,
we could involve the end user and ask which documents, associated concepts,
or terms are relevant. Since we do not have access to such assessments we use
pseudo relevance methods. In recent work and using the same framework, dif-
ferent approaches of estimating a conceptual query model have been studied and
it was concluded that using feedback documents is far more effective than using,
e.g., string matching methods that try to recognize concepts in the query [318].
In the next chapter this finding is confirmed, albeit using a different setting and
test collection.

Like Lavrenko and Croft [183], we view the process of obtaining a concep-
tual query model as a sampling process from a number of representative sources.
The user has a notion of documents satisfying her information need, randomly
selects one of these, and samples a concept from its representation. Hence, the
conceptual query model is defined as follows:

P (c|Q) =
∑
D∈R

P (c|D)P (D|Q). (5.2)

Here, R is a set of pseudo relevant documents returned by an initial retrieval run
using the textual query; P (c|D) is the concept language model of the document,
the estimation of which is discussed in the next section. We assume that the prob-
ability of observing a concept is independent of the query once we have selected
a document given the query, i.e., P (c|D,Q) = P (c|D). The term P (D|Q) denotes
the probability that document D is chosen given Q, which is obtained using the
retrieval scores, viz. Eq. 2.8.

We assume that pseudo relevant documents are a good source from which
we can sample the conceptual query model. Indeed, manual inspection shows
that they are annotated with many relevant concepts, but also that they, despite
being related to the query, contain a lot of noise: some concepts occur in many
documents and are not very informative. Sampling from the maximum likelihood
estimate for these documents would thus result in very general conceptual query
models. Therefore, to re-estimate the probability mass of the concepts in the
sampling process, we use a parsimonious language model. In the next section we
detail how re-estimation is performed.

Table 5.3 illustrates the difference between a maximum likelihood estima-
tion and a parsimonious estimation. It shows the concepts (in this case MeSH
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P (c|D) estimated using MLE

ALZHEIMER DISEASE

HUMANS

MEMBRANE PROTEINS

AMYLOID BETA-PROTEIN

AMYLOID BETA-PROTEIN, PRECURSOR

RESEARCH SUPPORT, U.S. GOV ’T, P.H.S.

P (c|D) estimated using Eq. 5.10

PRESENILIN-1
PRESENILIN-2
ALZHEIMER DISEASE

AMYLOID PRECURSOR, PROTEIN SECRETASES

MEMBRANE PROTEINS

AMYLOID BETA-PROTEIN, PRECURSOR

Table 5.3: A comparison of the concepts with the highest probability P (c|Q) (cf.
Eq. 5.2) for the TREC Genomics topic: “How do mutations in the Presenilin-1 gene
affect Alzheimer’s disease.” The two columns show the difference between using
MLE on the concepts associated with the documents to determine P (c|D), or the EM
algorithm given in Eq. 5.10. Unique concepts are marked in boldface.

terms) with the highest probability for topic 186 from the TREC Genomics 2006
test collection. The conceptual query model based on the parsimonious docu-
ment models contains more specific—and thus more useful—concepts, such as
PRESENILIN-1 and PRESENILIN-2. The model based on maximum likelihood esti-
mates includes more general concepts such as HUMANS, which are relevant but
too general to be useful for searching.

5.1.2 Generative Concept Models

Given Eq. 5.1, our goal is to arrive at a probability distribution P (t|c) over vo-
cabulary terms for each concept in the concept language used for annotating the
documents. We determine the strength of the association between a term and
a concept by looking at the annotations made by the trained annotators who
have labeled the documents. In the end, this method defines the parameters of
a generative language model for each concept: a generative concept model. We
determine P (t|c), i.e., the strength of association between a concept c and a term
t, by determining the probability of observing t given c. Concepts that are used
to annotate documents may have different characteristics from other parts of a
document, such as title and content. Annotations are selected by human indexers
from a concept language while the remaining content consists of free text. Since
the terms that make up the document are “generated” using a different process
than the concepts, we may assume that t and c are independent and identical
samples given a document D in (or with) which they occur. So, the probability of
observing both t and c is:

P (t,c) =
∑
D

P (D)P (c, t|D) =
∑

D∈DC

P (D)P (t|D)P (c|D), (5.3)
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P (t|D) estimated using MLE

0.061 the
0.054 of
0.045 indian
0.038 ethnic
0.028 in
0.028 american
0.021 a
0.021 renew
0.019 cultur
0.017 ident

P (t|D) estimated using Eq. 5.9

0.54 indian
0.46 ethnic

Table 5.4: Top 10 stemmed terms for the document model belonging to document
CSASA-1-EN-9706464 (entitled “American indian ethnic renewal: red power and the
resurgence of identity and culture.”) from the CLEF-DS test collection.

where DC denotes the set of documents annotated with concept c. We assume
each document to have a uniform prior probability of being selected and obtain:

P (t|c) = P (t,c)
P (c) (5.4)

=
∑
D∈DC P (D)P (t|D)P (c|D)

P (c)

∝ 1
P (c)

∑
D∈DC

P (t|D)P (c|D).

Hence, it remains to define three terms: P (c), P (t|D), and P (c|D). First, the
term P (c)−1 functions as a penalty for frequently occurring and thus relatively
non-informative concepts. We estimate this term using MLE on the document
collection:

P (c) =
∑
D n(c,D)∑

c′
∑
D′ n(c′,D′) , (5.5)

where n(c,D) is the number of times documentD is labeled with concept c (which
is typically 1).

Next we turn to P (x|D), for x ∈ {t,c}. The size of these models (in terms of
the number of words or the number of concepts that receive a non-zero proba-
bility) may be quite large, e.g., in the case of a large document collection or in
the case of frequently occurring concepts. Moreover, as exemplified above, not
all of the observed events (where events are either terms or concepts) are equally
informative. Some may be common, whilst others may describe the general do-
main of the document. Earlier in the thesis, we have noted that it is common
to consider each document as a mixture of document-specific and more general
terms (cf. Eq. 2.5); we now generalize this statement to also include concepts.



94 5. Query Modeling Using Concepts

Further, given this assumption, we may update each document model by reducing
the amount and probability mass of non-specific events. We do so by iteratively
adjusting the individual probabilities in each document, based on a comparison
with a large reference corpus such as the collection. More formally, we maximize
the posterior probability of D after observing x:

P (D|x) = λxP (x|D)
(1−λx)P (x) +λxP (x|D) . (5.6)

Note that λx may be set differently for D (Eq. 2.5) and C. For these estimations,
we fix λC = λD = 0.15 based on [136, 211, 215]. We then apply the following
EM algorithm until the estimates do not change significantly anymore:

E-step: ex = P (D|x) = λCP (x|D)
(1−λC)P (x) +λCP (x|D) (5.7)

M-step: PC(x|D) = n(x,D)ex∑
x′ n(x′,D)ex′

. (5.8)

This updating mechanism enables more specific events, i.e., events that are not
well-explained by the background model, to receive more probability mass, mak-
ing the resulting document model more specific. After the EM algorithm has con-
verged, we remove those events with a probability lower than a certain threshold
δ. Thus, the resulting document model for terms, P (t|θ̂D), to be used as P (t|D)
in Eq. 5.4 is given by:

P (t|θ̂D) =
{
ZDt ·PC(t|D) if t ∈D and PC(t|D)> δt
0 otherwise,

(5.9)

where ZDt is a document-specific normalization factor: ZDt = 1/
∑
tPC(t|D).

Table 5.4 provides an example of the effects of applying Eq. 5.9 on a document
from the CLEF-DS document collection (that will be introduced in Section 5.2).
Similarly, the resulting document model for concepts, P (c|θ̂D), to be used for
P (c|D) in Eq. 5.4, is given by:

P (c|θ̂D) =
{
ZDc ·PC(c|D) if c ∈D and PC(c|D)> δc
0 otherwise,

(5.10)

where ZDc is a document-specific normalization factor: ZDc = 1/
∑
cPC(c|D).

Table 5.3 provides an example of the effects of applying Eq. 5.10 on a topic from
the TREC document collection (that will be introduced in Section 5.2). For the
experiments in this chapter we fix δt = δc = 0.01.

5.2 Experimental Setup

To answer the research questions specified in the introduction to this chapter,
we set up a number of experiments in which we compare our conceptual lan-
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Parameter Description

λQ Eq. 2.10 Interpolation between initial query and expanded query part
|R| Eq. 2.23 and Eq. 5.2 The size of the set of pseudo relevant documents
|VQ| Eq. 2.23 and Eq. 5.4 The number of terms to use, either for the expanded query part or

for each concept
|C| Eq. 5.1 The number of concepts to use for the conceptual query represen-

tation

Table 5.5: Free parameters in the models described in the previous sections.

guage models with other retrieval approaches. Below, we describe the baseline
approaches that we use for comparison, our experimental environment, and esti-
mation methods. In Section 5.3, we turn to the results of our experiments. The
test collections we employ in this chapter have been introduced in Section 3.3.

5.2.1 Parameter Estimation

Given the models introduced in the previous sections, we have a number of pa-
rameters that need to be set (cf. Section 3.4). Table 5.5 summarizes the parame-
ters that we need to set.

There are various approaches that may be used to estimate these parameters.
We choose to optimize the parameter values by determining the mean average
precision for each set of parameters, i.e., a grid search [223, 262], and show the
results of the best performing settings. For λQ we sweep in the interval [0,1] with
increments of 0.1. The other parameters are investigated in the range [1,10] with
increments of 1. We determine the MAP scores on the same topics that we present
results for, similar to [173, 189, 224, 235, 356]. While computationally expensive
(exponential in the number of parameters), it provides us with an upper bound
on the attainable retrieval performance using the described models.

5.2.2 Complexity and Implementation

As to the complexity of our methods, we need to calculate two terms additional to
the standard language modeling estimations [173]: the generative concept mod-
els (offline) and the conceptual query model (online). The former is most time-
consuming, with a maximum complexity per concept proportional to the number
of terms in the vocabulary, the number of documents annotated with the concept,
and the number of EM iterations. The advantage of this step, however, is that it
can be performed offline. Determining a conceptual query model is, in terms of
efficiency, comparable to standard pseudo relevance feedback approaches except
for the addition of the number of EM iterations.
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QL RM EC GC

0.500 citi 0.272 citi 0.250 urban 0.216 citi
0.500 shrink 0.250 shrink sociology 0.200 shrink

0.024 of 0.250 urban 0.164 urban
0.024 develop planning 0.090 town
0.015 popul 0.250 town 0.089 develop
0.014 town planning 0.083 plan
0.010 economi 0.250 town 0.047 hous
0.009 sociolog development 0.040 sociolog

Table 5.6: Concepts or stemmed terms with the highest probability in the query
models for the CLEF Domain-specific topic “Shrinking cities” generated by the query
likelihood baseline (QL; Eq. 2.9), relevance model (RM; Eq. 2.23), conceptual query
model (EC; Eq. 5.2), and the conceptual language models (GC; Eq. 5.1).

5.2.3 Baselines

We use two baseline retrieval approaches for comparison purposes. Table 5.6
shows an example of the generated query models for these baseline approaches
and the CLEF-DS-08 query “Shrinking cities.” As our first baseline, we employ
a run based on the KL divergence retrieval method and set λQ = 1. This uses
only the information from the initial, textual query and amounts to performing
retrieval using query likelihood, as was detailed in Chapter 2. All the results
on which we report in this chapter use this baseline as their initially retrieved
document set.

Since our concept language models also rely on pseudo relevance feedback
(PRF), we use the text-based PRF method introduced in Chapter 2 (RM-2, cf.
Eq. 2.23) as another baseline. The functional form of our conceptual query model
is reminiscent of RM-1 (cf. Eq. 2.24) and we also evaluated RM-1 as a text-
based pseudo relevance feedback baseline. We found that its performance was
inferior to RM-2 on all test collections—a finding in line with results obtained by
Lavrenko and Croft [183], other researchers [23, 197], as well as our own (on
all the test collections we evaluated in Chapter 4). Consequently, we use RM-2 in
our experiments (labeled as “RM” in the remainder of this chapter) and refrain
from mentioning the results of RM-1.

5.3 Results and Discussion

Now that we have detailed our conceptual language modeling approach (Sec-
tion 5.1) and laid out the experimental environment (Section 5.2), we present
the results of the experiments aimed at answering this chapter’s main research
questions. First, we look at the performance of the query likelihood model that
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QL RM

CLEF-DS-07 RelRet/TotalRel 2289/4530 2430/4530 +6.2%
P5 0.5120 0.5440 +6.2%
P10 0.5080 0.5040 -0.8%
MAP 0.1952 0.2061 +5.6%

CLEF-DS-08 RelRet/TotalRel 1468/2133 1473/2133 +0.3%
P5 0.5280 0.5680 +7.6%
P10 0.4680 0.4800 +2.6%
MAP 0.2819 0.2856 +1.3%

TREC-GEN-04 RelRet/TotalRel 3847/8268 4205/8268 +9.3%*
P5 0.5160 0.5680 +10.1%
P10 0.4800 0.5340 +11.2%*
MAP 0.2856 0.3306 +15.8%*

TREC-GEN-05 RelRet/TotalRel 2825/4584 3031/4584 +7.3%*
P5 0.4122 0.4163 +1.0%
P10 0.3776 0.3857 +2.1%
MAP 0.2153 0.2368 +10.0%

TREC-GEN-06 RelRet/TotalRel 1078/1449 1160/1449 +7.6%
P5 0.4154 0.4308 +3.7%
P10 0.4154 0.4346 +4.6%
MAP 0.2731 0.2993 +9.6%*

Table 5.7: Results of the baselines: QL and the best performing run using RM, model
2. The right-most column indicates the relative difference between the query likeli-
hood and relevance model scores.

we use as our baseline. We emphasize that the other models that we evaluate use
the initial ranking from the query likelihood model as a set of pseudo relevant
documents. We then look at the results of applying RM. Next, we evaluate the
results of using the conceptual language models as described in Section 5.1, using
the conceptual query models and the generative concept models in conjunction.

Further, we perform an ablation study by zooming in on the results after
removing each component in the conceptual language models. First, we con-
sider the generative concept models that we use to translate the conceptual query
model to free-text terms. We look at the results of using MLE, i.e., without apply-
ing the EM algorithm described in Section 5.1.2. Second, since each document
in our collections has associated concepts, we use the conceptual query model
in conjunction with the initial query for retrieval, as detailed in Section 5.3.2.
Finally, we look at the sensitivity of our model with respect to the individual pa-
rameter settings and zoom out in order to see whether we can relate collection-
specific properties with the reported results.
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(a) CLEF-DS-07 – MAP
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(b) CLEF-DS-07 – P5
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(c) CLEF-DS-07 – P10
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(d) CLEF-DS-08 – MAP
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(e) CLEF-DS-08 – P5
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(f) CLEF-DS-08 – P10
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(g) TREC-GEN-04 – MAP
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(h) TREC-GEN-04 – P5
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(i) TREC-GEN-04 – P10
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(j) TREC-GEN-05 – MAP
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(k) TREC-GEN-05 – P5
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(l) TREC-GEN-05 – P10
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(m) TREC-GEN-06 – MAP
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(n) TREC-GEN-06 – P5
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(o) TREC-GEN-06 – P10

Figure 5.2: Per-topic breakdown of the improvement of conceptual language models
over the QL baseline for all test collections, on various evaluation measures and sorted
in decreasing order. A positive value indicates an improvement over the baseline. The
vertical labels indicate the topic identifiers.
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QL GC

CLEF-DS-07 RelRet/TotalRel 2289/4530 2596/4530 +13.4%*
P5 0.5120 0.5520 +7.8%
P10 0.5080 0.4920 -3.1%
MAP 0.1952 0.2315 +18.6%*

CLEF-DS-08 RelRet/TotalRel 1468/2133 1602/2133 +9.1%*
P5 0.5280 0.4880 -7.6%
P10 0.4680 0.4840 +3.4%
MAP 0.2819 0.2991 +6.1%

TREC-GEN-04 RelRet/TotalRel 3847/8268 4022/8268 +4.5%
P5 0.5160 0.5560 +7.8%
P10 0.4800 0.5000 +4.2%
MAP 0.2856 0.3045 +6.6%*

TREC-GEN-05 RelRet/TotalRel 2825/4584 3330/4584 +17.9%
P5 0.4122 0.4245 +3.0%
P10 0.3776 0.3776 0.0%
MAP 0.2153 0.2338 +8.6%

TREC-GEN-06 RelRet/TotalRel 1078/1449 1244/1449 +15.4%
P5 0.4154 0.4538 +9.2%
P10 0.4154 0.4077 -1.9%
MAP 0.2731 0.3182 +16.5%*

Table 5.8: Results of the baseline (QL) and the conceptual language model (GC).

5.3.1 Baselines

Table 5.7 shows the results of the query likelihood model as well as the relevance
model—both of which were introduced in Section 2.3—on the five test collections
that we consider in this chapter.

Query likelihood

This model (abbreviated by QL) uses MLE on the initial query to build a query
model, by distributing the probability mass evenly among the terms in the topic,
cf. Eq. 2.9. First, we note that the results obtained for the query likelihood
model are comparable to or better than the mean results of all the participating
groups in the respective TREC Genomics [129–131] and CLEF Domain-specific
tracks [244, 245]. As to the TREC Genomics test collections, we do not perform
any of the elaborate and knowledge-intensive preprocessing of the queries and/or
documents that is common in this domain [316]. Even without applying such ex-
plicit domain-specific knowledge, our baseline outperforms many systems that
do.
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Relevance Models

The runs based on relevance models (abbreviated by RM) use the retrieved docu-
ments from the query likelihood run to construct an improved query model which
is subsequently used for retrieval. The optimal parameter settings for the rel-
evance model, with which we obtain these results are determined in the same
fashion as for our conceptual language models, i.e., we sweep over all possible
values for λQ (cf. Eq. 2.10) and try varying numbers of documents and terms to
find the optimal performance in terms of MAP.

Table 5.7 shows the results of the baseline QL model and the RM model. We
observe that, on the CLEF collections, the RM runs show improvements over the
baseline in terms of mean average precision (+6% and +1% for the 2007 and
2008 collection, respectively), average recall (+6% and +0.3%) and early pre-
cision (precision@5 (P5): +6%, +8%). None of these differences is significant,
however. Results on the individual CLEF-DS-07 topics show that 3 of the topics
substantially increase average precision (a difference of more than 0.05), whereas
only 1 topic decreases. The number of CLEF-DS-08 topics which improve in terms
of average precision is about the same as the number which are hurt, causing the
modest improvement.

The RM runs on the TREC Genomics collections do show significant differ-
ences compared to the QL baseline. For the 2004 query set, average precision
(+17%), recall (+9%) and early precision (P10: +12%) increase significantly.
TREC-GEN-06 shows a larger significant improvement on mean average precision
(10%). Recall and precision show improvements although they are not signifi-
cant. Similar to the CLEF collections, TREC-GEN-05 shows a positive difference
on average but, besides recall, none of the changes are significant. The increase
in mean average precision on the TREC 2005 topics can be mainly attributed to a
single topic which strongly benefits from using relevance models.

These findings regarding pseudo relevance feedback using relevance models,
i.e., where some topics are helped and some topics are hurt, are often found when
applying pseudo relevance feedback.

5.3.2 Conceptual Language Models

We now turn to the results of the conceptual language model presented in Sec-
tion 5.1. Recall that this model consists of three steps. First, each query is mapped
onto a conceptual query model, i.e., a distribution over concepts relevant to the
query using Eq. 5.2. The concepts found are then translated back to terms using
Eq. 5.4 in conjunction with the EM algorithm from Eq. 5.7.

In the first subsection we discuss the results of applying all the steps in our
conceptual language model (GC; Section 5.1). Then, in the following subsections,
we will perform an ablation study and discuss the results of not applying the EM
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RM GC

CLEF-DS-07 RelRet/TotalRel 2430/4530 2596/4530 +6.8%*
P5 0.5440 0.5520 +1.5%
P10 0.5040 0.4920 -2.4%
MAP 0.2061 0.2315 +12.3%

CLEF-DS-08 RelRet/TotalRel 1473/2133 1602/2133 +8.8%*
P5 0.5680 0.4880 -14.1%
P10 0.4800 0.4840 +0.8%
MAP 0.2856 0.2991 +4.7%

TREC-GEN-04 RelRet/TotalRel 4205/8268 4022/8268 -4.4%
P5 0.5680 0.5560 -2.1%
P10 0.5340 0.5000 -6.4%*
MAP 0.3306 0.3045 -7.9%*

TREC-GEN-05 RelRet/TotalRel 3031/4584 3330/4584 +9.9%
P5 0.4163 0.4245 +2.0%
P10 0.3857 0.3776 -2.1%
MAP 0.2368 0.2338 -1.3%

TREC-GEN-06 RelRet/TotalRel 1160/1449 1244/1449 +7.2%
P5 0.4308 0.4538 +5.3%
P10 0.4346 0.4077 -6.2%
MAP 0.2993 0.3182 +6.3%*

Table 5.9: Results of the relevance model (RM) versus conceptual language models
(GC).

algorithm (MLGC; Section 5.3.2) and not translating the found concepts using
generative concept models (EC; Section 5.3.2). Example query models for GC
and EC can be found in Table 5.6 for the CLEF topic “Shrinking cities.”

Results

In this section we present the results of using every step of the conceptual lan-
guage model (abbreviated GC) we detailed in Section 5.1. Table 5.8 lists the
results of the concept language models. The results for the two CLEF collections
show that the GC model can result in a significant improvement in recall over the
query likelihood approach: 13% and 9% more relevant documents are returned
for CLEF-DS-07 and CLEF-DS-08, respectively. Figure 5.3 shows the precision-
recall graphs for our conceptual language model, versus the query likelihood base-
line and relevance models. The precision-recall curve of the CLEF-DS-07 query set
shows improved precision over almost the whole recall range. The CLEF-DS-08
runs shows improved precision between recall levels 0.7 and 0.8, making up for
the loss of initial precision. Overall, both CLEF test collections show improve-
ments in mean average precision (19% and 6% respectively), but only the results
on CLEF-DS-07 are significantly different. We note that the RM approach was
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Figure 5.3: Precision-recall plots for all evaluated test collections.

unable to achieve a significant difference against the query likelihood baseline on
these test collections and measures.

The three TREC Genomics test collections show a less consistent behavior.
In terms of mean average precision, the TREC-GEN-04 and TREC-GEN-06 col-
lections show significant improvements in favor of the GC model (+6.6% and
+15.4% respectively). The TREC-GEN-05 topics also show substantial improve-
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ments between the query likelihood and GC model, although these changes are
not significant. Figure 5.2 shows a per-topic analysis of the difference of the GC
model with respect to the QL baseline; a positive value in these graphs indicates
that the GC model outperformed the QL baseline. For TREC-GEN-05, it shows
that half of the topics benefit from applying the GC model and the other half is
actually hurt. This is what causes the difference to be non-significant. The overall
increase in average precision measured over all the topics, however, is larger than
its loss.

From a further look on the per-topic plots, we can observe that, in terms of
MAP, more topics are helped than hurt for all the other test collections. The early
precision plots show a less clear picture. The ratio between the number of topics
that improve P5 versus topics that worsen is about 1.5, averaged over all test
collections. The average number of topics which P10 scores increase is about the
same as the number of topics for which they decrease.

A more in-depth analysis of the terms that are introduced provides more in-
sight into when and where the GC model improves or hurts retrieval. We observe
that when the initial textual query is not specific, the resulting set of feedback doc-
uments is unfocused. Hence, fairly general and uninformative words are added
to the query model and it fails to achieve higher retrieval performance. Another
reason for poor performance is that particular aspects in the original query are
overemphasized in the updated query model, resulting in query drift. For exam-
ple, the CLEF-DS-08 topic #210 entitled “Establishment of new businesses after
the reunification” results in expansion terms related to the aspect “Establishment
of new businesses,” such as “entrepreneur” and “entrepreneurship,” but fails to in-
clude words related to the “reunification” aspect. When the updated query model
is a balanced expansion of the original query, i.e., when it does include expansion
terms for all aspects of the query, the GC model show improved results.

Overall, we see that our conceptual language model mainly has a recall en-
hancing effect, indicated by the significant increases in MAP for the CLEF-DS-07
and TREC-GEN-06 test collections and the significant increases in recall on both
CLEF topic sets.

Table 5.9 shows a comparison between the GC and the RM model. When com-
paring these results, we find significant improvements in terms of recall on the
CLEF test collections. On the TREC-GEN-04 and TREC-GEN-06 topic set we find a
significant improvement in terms of MAP. The results on the TREC Genomics 2004
and 2005 topic sets indicate that the GC model performs comparably (TREC-GEN-
05) or slightly worse (TREC-GEN-04). We believe the latter result is caused by
the fixed setting of δt in Eq. 5.9 in conjunction with the rather small average
document length and the large number of documents in this particular document
collection.

Unlike the relevance model, the GC model provides a weighted set of concepts
in the form of a conceptual query model. Besides the possibility of suggesting
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MLGC GC

CLEF-DS-07 RelRet/TotalRel 2596/4530 2596/4530 0.0%
P5 0.5520 0.5520 0.0%
P10 0.4760 0.4920 +3.4%
MAP 0.2311 0.2315 +0.2%

CLEF-DS-08 RelRet/TotalRel 1566/2133 1602/2133 +2.3% *
P5 0.5120 0.4880 -4.7%
P10 0.4960 0.4840 -2.4%
MAP 0.2853 0.2991 +4.8%

TREC-GEN-04 RelRet/TotalRel 3973/8268 4022/8268 +1.2%
P5 0.5360 0.5560 +3.7%
P10 0.4960 0.5000 +0.8%
MAP 0.2989 0.3045 +1.9%

TREC-GEN-05 RelRet/TotalRel 2887/4584 3330/4584 +15.3%
P5 0.4163 0.4245 +2.0%
P10 0.3571 0.3776 +5.7%
MAP 0.2174 0.2338 +7.5%

TREC-GEN-06 RelRet/TotalRel 1118/1449 1244/1449 +11.3%
P5 0.4231 0.4538 +7.3%
P10 0.4192 0.4077 -2.7%
MAP 0.2863 0.3182 +11.1%

Table 5.10: Results of the conceptual language models in conjunction with the EM
algorithm (GC) described in Section 5.1 versus without (MLGC).

these to the user, we hypothesize that the results of applying the remaining steps
in our conceptual language models after a user has selected the concepts most
relevant to his query would improve retrieval effectiveness. Since we do not
have relevant concepts for our current topics, we consider the verification of this
hypothesis a topic for future work.

In the following subsections, we look at the results of not using the EM algo-
rithm in the generative concept models and directly using the conceptual query
models for retrieval.

Maximum Likelihood-based Generative Concept Models

In this subsection, we investigate the added value of using the EM algorithm de-
scribed in Section 5.1.2, by comparing a maximum likelihood based GC model
(named MLGC) to the GC model shown in the previous section. Table 5.10 shows
the results of this method. We observe that applying the EM algorithm improves
overall retrieval effectiveness compared to the MLGC model, although not sig-
nificantly, and only in terms of recall and MAP. Only the number of relevant
retrieved documents for the CLEF-DS-08 improves significantly when using the
EM algorithm.



5.3. Results and Discussion 105

EC GC

CLEF-DS-07 RelRet/TotalRel 2448/4530 2596/4530 +6.0%
P5 0.5040 0.5520 +9.5%
P10 0.5080 0.4920 -3.1%
MAP 0.2104 0.2315 +10.0%

CLEF-DS-08 RelRet/TotalRel 1485/2133 1602/2133 +7.9%*
P5 0.5120 0.4880 -4.7%
P10 0.4880 0.4840 -0.8%
MAP 0.2894 0.2991 +3.4%

TREC-GEN-04 RelRet/TotalRel 4221/8268 4022/8268 -4.7%
P5 0.5480 0.5560 +1.5%
P10 0.5240 0.5000 -4.6%
MAP 0.3146 0.3045 -3.2%

TREC-GEN-05 RelRet/TotalRel 2916/4584 3330/4584 +14.2%
P5 0.4082 0.4245 +4.0%
P10 0.3776 0.3776 0.0%
MAP 0.2295 0.2338 +1.9%

TREC-GEN-06 RelRet/TotalRel 1171/1449 1244/1449 +6.2%
P5 0.4231 0.4538 +7.3%
P10 0.4000 0.4077 +1.9%
MAP 0.2927 0.3182 +8.7%

Table 5.11: Results of the conceptual language models (GC) versus using the found
concepts directly (EC).

The topics that are helped most by the application of the EM algorithm—in
terms of an absolute gain in MAP—include TREC-GEN-05 topic #146: “Provide
information about Mutations of presenilin-1 gene and its/their biological impact
in Alzheimer’s disease” (increased MAP by 0.51) and TREC-GEN-06 topic #160
“What is the role of PrnP in mad cow disease?” (increased MAP by 0.52). A closer
look at the intermediate results for these topics reveals two things. In the first
topic, the GC model introduces the term “PRP”, which is a synonym for “PrnP.”
The second topic shows that the GC model introduces three new terms which do
not seem directly relevant to the query, but are able to boost MAP substantially.

Explicit Conceptual Query Models

In Section 5.1.1 we introduced a method for acquiring a weighted set of concepts
for a query, by translating a textual query to a conceptual representation. In this
section, we evaluate the results of using the conceptual query model (abbreviated
EC) directly, i.e., using it in combination with the original textual representation
to estimate the relevance of a document. Since all the documents in the test
collections used in this chapter have two representations (terms and concepts),
we can use both disjunctively for retrieval [254]. So, instead of interpolating the
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query model and using the result for retrieval, we interpolate the scores of each
individual component as follows.

Score(Q,D) = (1−λQ) ·−KL(θ̃Q||θD) +λQ ·−KL(θC ||θD). (5.11)

Here, the first term is the regular query-likelihood score. The second term is the
score obtained from matching the conceptual query model with the conceptual
representation of each document:

−KL(θC ||θD) = −
∑
c

P (c|θC) log P (c|θC)
P (c|θD)

∝
∑
c

P (c|θC) logP (c|θD), (5.12)

where P (c|θC) = P (c|Q) (Eq. 5.2 q.v.). In effect, this drops the dependence be-
tween t and c (see Figure 5.1) and considers the concepts as regular indexing
terms.

Thus, the EC model uses an explicit conceptual representation in combination
with the textual representation for searching documents and, similar to the ap-
proaches described in the previous subsections, the EC approach uses the same
feedback documents for improving the query. However, instead of sampling terms
from these documents, we now use their associated concepts.

When we look at the results as compared to the GC model as depicted in
Table 5.11, we find marginal differences. Only recall on the CLEF-DS-08 topic
set is significantly different from the run based on conceptual language models.
In comparison to the query likelihood baseline (cf. Table 5.7 and Table 5.11),
the EC model shows similar improvements as the relevance models. The runs on
the CLEF collections show small, statistically insignificant improvements in mean
average precision, recall and initial precision. The EC model, when applied to the
TREC Genomics collections, shows significant improvements for the 2004 and
2006 collection with respect to the QL baseline.

Before turning to the answers to our research questions based on the results
in this section, we present a brief analysis of the parameter sensitivity of our
conceptual language model.

5.4 Parameter Sensitivity Analysis

Both our conceptual language model and the relevance model have a number of
parameters that need to be set, as introduced in Section 5.2.1. In this section
we describe the optimal settings for each model and explore the sensitivity of the
results to changes in the settings. Similar to related work (e.g., [98, 196, 354],
we did not evaluate |R|, |VQ|> 10. Even given this restriction, the obtained results
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Figure 5.4: Results of varying λQ on retrieval effectiveness on all test collections
evaluated in this chapter.

are clear improvements and further improvements may be obtained with an even
larger set of terms or documents.

Table 5.12 lists the optimal parameter settings for the relevance model per test
collection and we observe that the setting of the optimal value for λQ is dependent
on the document collection. Table 5.13 lists the optimal parameter values for the
conceptual language model. Again we observe that the optimal value for λQ
is dependent on the document collection. We zoom in on the sensitivity of the
results of the conceptual language model towards the setting of λQ, by displaying
the effect of varying λQ on MAP (Figure 5.4a) and P5 (Figure 5.4b). We observe
that the curves follow a similar pattern for the CLEF document collection and
for both measures, with both maxima lying around λQ = 0.3. The TREC-GEN-04
and TREC-GEN-05 topics—which both use the TREC 2004 document collection—
follow a less similar pattern, although their maximum MAP scores have a similar
corresponding λQ value. The TREC-GEN-06 and the CLEF-DS-2007 topics show
the largest relative improvement (both nearly 20% improvement over the query
likelihood in terms of MAP, i.e., when λQ = 0). We also observe that selecting
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λQ |R| |VQ|

CLEF-DS-07 0.5 7 8
CLEF-DS-08 0.7 10 7

TREC-GEN-04 0.5 7 10
TREC-GEN-05 0.5 3 6

TREC-GEN-06 0.4 4 10

Table 5.12: Free parameters in the relevance model described in Section 2.3. See
Table 5.5 for a description of each parameter.

|C| λQ |R| |VQ|

CLEF-DS-07 8 0.3 7 4
CLEF-DS-08 4 0.3 3 5

TREC-GEN-04 9 0.1 10 10
TREC-GEN-05 10 0.1 9 5

TREC-GEN-06 3 0.4 6 2

Table 5.13: Free parameters for the conceptual language models. See Table 5.5 for a
description of each parameter.

the best value for λQ based on the highest MAP scores does not necessarily lead
to the highest score in terms of early precision. Interestingly, the TREC-GEN-06
topics reach roughly the same P5 scores for the query likelihood model as when
we would only use the terms suggested by the conceptual language model.

5.5 Summary and Conclusions

In this chapter we have introduced and investigated conceptual language mod-
els and we have shown that knowledge captured using concepts from a concept
language can be effectively used to improve full-text, ad hoc retrieval. In our
method, the original textual query is translated to a conceptual query model and,
by means of generative concept models this conceptual query model is used to up-
date the textual query model. The motivation behind this dual translation is that
an explicit conceptual representation of the information need can be used to de-
rive related terms which are less dependent on the original query text. In both
translation steps we have applied an EM algorithm to improve model estimation.

In this chapter we have addressed RQ 2 and its subquestions by using an
extensive set of experiments on five test collections from two domains.

RQ 2. What are effective ways of using conceptual information for query model-
ing to improve retrieval performance?
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We have used the EM algorithm to re-estimate textual and conceptual document
models. These models are used in the process of determining a conceptual query
model based on pseudo relevant documents and for determining the translation
probabilities from concepts to text. This element is essential in order to achieve
good performance, since it makes sure that the language models only generate
content-bearing terms. Moreover, since the resulting terms and concepts are
more specific than without EM-based re-estimation, we believe they would be
useful for presenting as suggestions to a user. We find that, although each step in
our method of applying conceptual language models is not significantly different
from the other, the full model is able to significantly outperform both a standard
language modeling and a relevance modeling approach.

To estimate a conceptual query model we propose a method that looks at
the top-ranked documents in an initially retrieved set. In order to assess the
effectiveness of this step, we compare the results of using these concepts with
a standard language modeling approach. Moreover, since this method relies on
pseudo relevant documents from an initial retrieval run, we also compare the
results of our conceptual query models to another, established pseudo relevance
feedback algorithm based on relevance models. We asked:

RQ 2a. What is the relative retrieval effectiveness of this method with respect to
the standard language modeling and conventional pseudo relevance feed-
back approach?

We have found that the conceptual language models yield significant improve-
ments over a query likelihood baseline on all the evaluated measures. When
compared to relevance models and using the same pseudo relevant documents,
conceptual language models show a significant improvement in terms of MAP on
two test collections, as well as a significant increase in recall on two other test col-
lections. On the remaining measures, it gives similar improvements as relevance
models.

RQ 2b. How portable is our conceptual language model? That is, what are the
results of the model across multiple concept languages and test collections?

As to the portability of our models, the usefulness of the proposed approach has
been evaluated in two domains, social sciences and genomics, each with differ-
ent types of documents and their own concept vocabularies. Despite these large
differences, the concept-based feedback shows consistent improvements. It is in-
teresting to note that while a thesaurus might be limited in representing specific
information needs, it can still be used to improve retrieval effectiveness. The
MeSH thesaurus can, be used to improve genomics information retrieval despite
its general biomedical coverage. The annotations of the CLEF collections seems
to fit the information needs better, resulting in even better retrieval performance
in the social sciences domain.
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RQ 2c. Can we say anything about which evaluation measures are helped most
using our model? Is it mainly a recall or precision-enhancing device?

We have observed a significant improvement in terms of recall on all collections,
which is in line with results obtained from relevance feedback methods in general.
On the TREC collections, however, we have also observed a significant increase
in early precision. As such, our method is both a recall enhancing device and a
precision enhancing device.

In sum, we have shown that conceptual language models (using the docu-
ment annotations as a pivot language) can improve text-based retrieval, both
with and without conventional pseudo relevance feedback. We have observed
that solely using the document annotations for expansion does not significantly
improve retrieval results. These two findings confirm conclusions from earlier
work; Srinivasan [302], for example, also concludes that only using MeSH terms
for expansion is not effective. Hersh et al. [127] also find that mapping queries
to a knowledge structure (the UMLS Metathesaurus in their case, of which MeSH
is a part) during indexing does not aid retrieval effectiveness. Yang and Chute
[349], on the other hand, do find improvements when using the same knowledge
structure. In more recent work, Liu [190] performed a user study in which he
compared users’ interaction with a query reformulation interface using biomedi-
cal abstracts with and without the associated MeSH terms. He finds that MeSH
terms are more useful for domain experts than for search experts for obtaining
early precision. As to the reason for this, he speculates that non-experts lack suf-
ficient knowledge of the domain to understand and therefore make use of the
MeSH terms. Using conceptual query models, we are able to move the burden of
locating appropriate conceptual annotations from the user to the system, without
compromising retrieval performance. In the next chapter we use machine learn-
ing to obtain a different way of automatically identifying relevant concepts given
a query.

Besides using conceptual query models to improve retrieval as we did in this
chapter, the generated concepts may also be used as conceptual suggestions or
feedback to the user. Here we have obtained these models using pseudo rele-
vance feedback techniques; in the next chapter we consider the task of mapping
queries to concepts in a different context and without annotated documents. Fur-
thermore, the queries we use there are general domain queries and, hence, we
map them to a more general knowledge structure, i.e., DBpedia.

In Chapter 7 we take the mapping method presented in the next chapter and
use the linked concepts for each query to update the query model. To this end, we
apply several of the intuitions behind the conceptual language models presented
and evaluated in this chapter.
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Linking Queries to Concepts

In Chapter 5 we have used annotated documents to obtain a conceptual repre-
sentation of a query model: a conceptual query model. As we have seen there,
leveraging textual observations associated with concepts during query modeling
significantly improves end-to-end retrieval performance. In this chapter we fur-
ther investigate the process of mapping queries to concepts, a procedure we call
conceptual mapping. We do so in a more general context, by linking large numbers
of actual search engine queries (taken from a transaction log) to DBpedia [15],
which is an ontology extracted from Wikipedia. The methods presented and eval-
uated in this chapter serve as a precursor to the next chapter. There, we evaluate
retrieval performance when using the natural language text associated with con-
cepts that are obtained using the methods presented here.

Performing a conceptual mapping between queries to concepts could serve
several purposes. For one, in the case of a collection of documents annotated
using concepts, the obtained concepts may be used to match the documents to the
query. They may also be used to obtain a contribution to the textual query model,
similar to the method presented in the preceding chapter. Furthermore, such
mappings may serve to retrieve concepts themselves. The INEX Entity Ranking
track, for example, provides a use-case for retrieving entities (which are defined
as Wikipedia articles). As we have seen in Chapter 2, other uses for conceptual
mappings also include natural language interfaces to databases or knowledge
repositories.

Conceptually mapping queries is not only interesting from an IR point of view,
but also has clear benefits for the semantic web (SW) community in that it pro-
vides an easy access method into the Linked Open Data (LOD) cloud (of which
DBpedia is a part—cf. Figure 6.1). A significant task towards building and main-
taining the semantic web is link generation. Links allow a person or machine to
explore and understand the web of data more easily: when you have linked data,
you can find related data [32]. The LOD [32, 36, 37] initiative extends the web
by publishing various open data sets and by setting links between items (or con-
cepts) from different data sources in a (semi-)automated fashion [15, 27, 307].
The resulting data commons is termed the Linked Open Data cloud, and provides

111
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Figure 6.1: The knowledge sources comprising the LOD cloud.

a key ingredient for realizing the semantic web. At the time of writing, the LOD
cloud contains millions of concepts from over one hundred structured data sets.

Unstructured data resources—such as textual documents or queries submit-
ted to a search engine—can be enriched by mapping their content to structured
knowledge repositories like the LOD cloud. This type of enrichment may serve
multiple goals, such as explicit anchoring of the data resources in background
knowledge or ontology learning and population. The former enables new forms
of intelligent search and browsing; authors or readers of a piece of text may find
mappings to the LOD cloud to supply useful pointers, for example, to concepts
capturing or relating to the contents of the document. In ontology learning ap-
plications, mappings may be used to learn new concepts or relations between
them [324]. Recently, data-driven methods have been proposed to map phrases
appearing in full-text documents to Wikipedia articles. For example, Mihalcea
and Csomai [226] propose incorporating linguistic features in a machine learn-
ing framework to map phrases in full-text documents to Wikipedia articles—this
approach is further improved upon by Milne and Witten [230]. Because of the
connection between Wikipedia and DBpedia [15], such data-driven linking meth-
ods help us to establish links between textual documents and the LOD cloud, with
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DBpedia being one of the key interlinking hubs in the cloud. Indeed, we consider
DBpedia to be an integral part of and, as such, a perfect entry point into the LOD
cloud.

Search engine queries are one type of unstructured data that could bene-
fit from being mapped to a structured knowledge base such as DBpedia. Se-
mantic mappings of this kind can be used to support users in their search and
browsing activities, for example by (i) helping the user acquire contextual infor-
mation, (ii) suggesting related concepts or associated terms that may be used
for search, and (iii) providing valuable navigational suggestions. In the context
of web search, various methods exist for helping the user formulate his or her
queries [10, 144, 217]. For example, the Yahoo! search interface features a
so-called “searchassist,” that suggests important phrases in response to a query.
While these suggestions inherit natural language semantics, they lack any for-
mal semantics, however, which we address in this chapter by mapping queries to
DBpedia concepts. In the case of a specialized search engine with accompany-
ing knowledge base, automatic mappings between natural language queries and
concepts aid the user in exploring the contents of both the collection and the
knowledge base [41]. They can also help a novice user understand the structure
and specific nomenclature of the domain. Furthermore, when the items to be
retrieved are also annotated (e.g., using concepts from the LOD cloud through
RDFa, microformats, or any other kind of annotation framework), the semantic
mappings on the queries can be used to facilitate matching at the semantic level
or an advanced form of query-based faceted result presentation. This can partly
be achieved by simply using a richer indexing strategy of the items in the col-
lection together with conventional querying mechanisms. Generating conceptual
mappings for the queries, however, can improve the matching and help clarify the
structure of the domain to the end user.

Once a conceptual mapping has been established, the links between a query
and a knowledge repository can be used to create semantic profiles of users based
on the queries they issue. They can also be exploited to enrich items in the LOD
cloud, for instance by viewing a query as a (user-generated) annotation of the
items it has been linked to, similar to the way in which a query can be used to label
images that a user clicks on as the result of a search [320]. As we have shown
in [227], this type of annotation can, for example, be used to discover aspects or
facets of concepts. In this chapter, we focus on the task of automatically mapping
free text search engine queries to the LOD cloud, in particular DBpedia. As an
example of the task, consider the query “obama white house.” The query mapping
algorithm we envision should return links to the concepts labeled BARACK OBAMA

and WHITE HOUSE.
Queries submitted to a search engine are particularly challenging to map to

structured knowledge repositories, as they tend to consist of only a few terms and
are much shorter than typical text documents [144, 300]. Their limited length
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implies that we have far less context than in regular text documents. Hence, we
cannot use previously established approaches that rely on context such as shallow
parsing or part-of-speech tagging [226]. To address these issues, we propose a
novel method that leverages the textual representation of each concept as well
as query-based and concept-based features in a machine learning framework. At
the same time, working with search engine queries entails that we do have search
history information available that provides a form of contextual anchoring. In
this chapter, we employ this query-specific kind of context as a separate type of
feature.

Our approach to conceptual mapping of queries to concepts can be summa-
rized as follows. First, given a query, we use language modeling for IR to retrieve
the most relevant concepts as potential targets for mapping. We then use super-
vised machine learning methods to decide which of the retrieved concepts should
be mapped and which should be discarded. In order to train the machine learner,
we examined close to 1000 search engine queries and manually mapped over 600
of these to relevant concepts in DBpedia.1

The research questions we address in this chapter are the following.

RQ 3. Can we successfully address the task of mapping search engine queries to
concepts using a combination of information retrieval and machine learn-
ing techniques? A typical approach for mapping text to concepts is to apply
some form of lexical matching between concept labels and terms, typically us-
ing the context of the text for disambiguation purposes. What are the results
of applying this method to our task? What are the results when using a purely
retrieval-based approach? How do these results compare to those of our pro-
posed method?

a. What is the best way of handling a query? That is, what is the per-
formance when we map individual n-grams in a query instead of the
query as a whole?

b. As input to the machine learning algorithms we extract and compute a
wide variety of features, pertaining to the query terms, concepts, and
search history. Which type of feature helps most? Which individual
feature is most informative?

c. Machine learning generally comes with a number of parameter set-
tings. We ask: what are the effects of varying these parameters? What
are the effects of varying the size of the training set, the fraction of positive
examples, as well as any algorithm-specific parameters? Furthermore, we
provide the machine learning step with a small set of candidate concepts.
What are the effects of varying the size of this set?

1The queries, assessments, and extracted features are publicly available for download at
http://ilps.science.uva.nl/resources/jws10_annotations.

http://ilps.science.uva.nl/resources/jws10_annotations
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Property Value

rdfs:comment Barack Hussein Obama II (born August 4, 1961) is the 44th
and current President of the United States. He is the first
African American to hold the office. Obama previously served
as the junior United States Senator from Illinois, from January
2005 until he resigned after his election to the presidency in
November 2008.

dbpprop:abstract Barack Hussein Obama II (born August 4, 1961) is the 44th
and current President of the United States. He is the first
African American to hold the office. Obama previously served
as the junior United States Senator from Illinois, from January
2005 until he resigned after his election to the presidency in
November 2008. Originally from Hawaii, Obama is a graduate
of Columbia University and Harvard Law School, where he
was the president of the Harvard Law Review and where he
received a doctorate in law. He was a community organizer
[. . . ]

Table 6.1: Example DBpedia representation of the concept BARACK OBAMA.

Our main contributions are as follows. We propose and evaluate two variations
of a novel and effective approach for mapping queries to DBpedia and, hence,
the LOD cloud. We accompany this with an extensive analysis of the results, of
the robustness of our methods, and of the contributions of the features used. We
also facilitate future work on the problem by making our used resources publicly
available.

The remainder of this chapter is structured as follows. Sections 6.1 and 6.2
detail the query mapping task and our approach. Our experimental setup is de-
scribed in Section 6.3 and our results are presented in Section 6.4. Section 6.5
follows with a discussion and detailed analysis of the results and we end with a
concluding section.

6.1 The Task

The query mapping task that we address in this chapter is the following. Given a
query submitted to a search engine, identify the concepts that are intended by the
user issuing the query, where the concepts are taken from a structured knowledge
base. We address our task in the setting of a digital archive, specifically, the
Netherlands Institute for Sound and Vision (“Sound and Vision”). Sound and
Vision maintains a large digital audiovisual collection, currently containing over
a million objects and updated daily with new television and radio broadcasts.
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Barack Obama

Barack Obama

44th President of the United States
Incumbent

Assumed office 
January 20, 2009

Vice President Joe Biden

Preceded by George W. Bush

United States Senator
from Illinois

In office
January 3, 2005 – November 16, 2008

Preceded by Peter Fitzgerald

Succeeded by Roland Burris

Member of the Illinois Senate
from the 13th district

In office
January 8, 1997 – November 4, 2004

Preceded by Alice Palmer

Succeeded by Kwame Raoul

Born August 4, 1961 (age 49)[1]

Honolulu, Hawaii, United
States[2]

Political party Democratic

From Wikipedia, the free encyclopedia

"Barack" and "Obama" redirect here. For other uses, see Barack (disambiguation) and Obama (disambiguation).

Barack Hussein Obama II ( i /bəˈrɑːk huːˈseɪn oʊˈbɑːmə/; born August 4, 1961) is the 44th and current President of the United States. He
is the first African American to hold the office. Obama previously served as a United States Senator from Illinois, from January 2005 until he
resigned after his election to the presidency in November 2008.

A native of Honolulu, Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he was the president of the
Harvard Law Review. He was a community organizer in Chicago before earning his law degree. He worked as a civil rights attorney in
Chicago and taught constitutional law at the University of Chicago Law School from 1992 to 2004.

Obama served three terms in the Illinois Senate from 1997 to 2004. Following an unsuccessful bid for a seat in the U.S. House of
Representatives in 2000, he ran for United States Senate in 2004. Several events brought him to national attention during the campaign,
including his victory in the March 2004 Democratic primary and his keynote address at the Democratic National Convention in July 2004. He
won election to the U.S. Senate in November 2004. His presidential campaign began in February 2007, and after a close campaign in the
2008 Democratic Party presidential primaries against Hillary Rodham Clinton, he won his party's nomination. In the 2008 general election,
he defeated Republican nominee John McCain and was inaugurated as president on January 20, 2009.

As president, Obama signed economic stimulus legislation in the form of the American Recovery and Reinvestment Act in February 2009.
Other domestic policy initiatives include the Patient Protection and Affordable Care Act, a major piece of health care reform legislation
which he signed into law in March 2010, and the Dodd-Frank Wall Street Reform and Consumer Protection Act, which forms part of his
financial regulatory reform efforts, which he signed in July 2010. In foreign policy, Obama began a gradual withdrawal of troops from Iraq,
increased troop levels in Afghanistan, and signed an arms control treaty with Russia. On October 8, 2009, Obama was named the 2009
Nobel Peace Prize laureate.
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Figure 6.2: Screen dump of the Wikipedia article associated with BARACK OBAMA.

Users of the archive’s search facilities consist primarily of media professionals
who use the online search interface to locate audiovisual items to be used in
new programs such as documentaries and news reviews. The contents of the
audiovisual items are diverse and cover a wide range of topics, people, places,
and more. Furthermore, a significant part (around 50%) of the query terms are
informational; consisting of either general keywords or proper names [142].

Because of its central role in the LOD initiative, our knowledge source of
choice for semantic query suggestion is DBpedia. Thus, in practical terms, the
task we are facing is: given a query (within a session, for a given user), produce
a ranked list of concepts from DBpedia that are intended by the query. These
concepts can then be used, for example, to suggest relevant multimedia items as-
sociated with each concept, to suggest linked geodata from the LOD cloud, or to
suggest contextual information, such as text snippets from a Wikipedia article.

6.2 Approach

Our approach for mapping search engine queries to concepts consists of two
stages. In the first stage, we select a set of candidate concepts. In the second
stage, we use supervised machine learning to classify each candidate concept as
being intended by the query or not.

In order to find candidate concepts in the first stage, we leverage the textual
descriptions (rdfs:comment and/or dbpprop:abstract in the case of DBpedia)
of the concepts as each description of a concept may contain related words, syn-
onyms, or alternative terms that refer to the concept. An example is given in
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N-gram (Q) Candidate concepts

obama white house WHITE HOUSE; WHITE HOUSE STATION; PRESIDENT COOLIDGE;
SENSATION WHITE

obama white MICHELLE OBAMA; BARACK OBAMA; DEMOCRATIC PRE-ELECTIONS 2008;
JANUARY 17

white house WHITE HOUSE; WHITE HOUSE STATION; SENSATION WHITE;
PRESIDENT COOLIDGE

obama BARACK OBAMA; MICHELLE OBAMA; PRESIDENTIAL ELECTIONS 2008;
HILLARY CLINTON

white COLONEL WHITE; EDWARD WHITE; WHITE COUNTY;
WHITE PLAINS ROAD LINE

house HOUSE; ROYAL OPERA HOUSE; SYDNEY OPERA HOUSE; FULL HOUSE

Table 6.2: An example of generating n-grams for the query “obama white house” and
retrieved candidate concepts, ranked by retrieval score. Correct concepts in boldface.

Table 6.1, while the Wikipedia article it is extracted from is shown in Figure 6.2.
From this example it is clear that the use of such properties for retrieval improves
recall (we find BARACK OBAMA using the terms “President of the United States”)
at the cost of precision (we also find BARACK OBAMA when searching for “John
McCain”). In order to use the concept descriptions, we adopt a language modeling
for information retrieval framework to create a ranked list of candidate concepts.
This framework will be further introduced in Section 6.2.1.

Since we are dealing with an ontology extracted from Wikipedia, we have
several options with respect to which textual representation(s) we use. Natural
possibilities include: (i) the title of the article (similar to a lexical matching ap-
proach where only the rdfs:label is used), (ii) the first sentence or paragraph
of an article (where a definition should be provided according to the Wikipedia
guidelines [342]), (iii) the full text of the article, (iv) the anchor texts of the in-
coming hyperlinks from other articles, and (v) a combination of any of these. For
our experiments we aim to maximize recall and use the combination of all avail-
able fields with or without the incoming anchor texts. In Section 6.5.2 we discuss
the relative performance of each field and of their combinations.

For the first stage, we also vary the way we handle the query. In the simplest
case, we take the query as is and retrieve concepts for the query in its entirety.
As an alternative, we consider extracting all possible n-grams from the query,
generating a ranked list for each, and merging the results. An example of what
happens when we vary the query representation is given in Table 6.2 for the query
“obama white house.” From this example it is clear why we differentiate between
the two ways of representing the query. If we simply use the full query on its own
(first row), we miss the relevant concept BARACK OBAMA. However, as can be
seen from the last two rows, considering all n-grams also introduces noise.

In the second stage, a supervised machine learning approach is used to clas-
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sify each candidate concept as either relevant or non-relevant or, in other words,
to decide which of the candidate concepts from the first stage should be kept as
viable concepts for the query in question. In order to create training material for
the machine learning algorithms, we asked human annotators to assess search en-
gine queries and manually map them to relevant DBpedia concepts. More details
about the test collection and manual annotations are provided in Section 6.3. The
machine learning algorithms we consider are Naive Bayes, Decision Trees, and
Support Vector Machines [326, 344] which are further detailed in Section 6.2.2.
As input for the machine learning algorithms we need to extract a number of fea-
tures. We consider features pertaining to the query, concept, their combination,
and the session in which the query appears; these are specified in Section 6.2.3.

6.2.1 Ranking Concepts

We base our concept ranking framework within the language modeling paradigm
as introduced in Chapter 2. For the n-gram based scoring method, we extract
all n-grams from each query Q (where 1 ≤ n ≤ |Q|) and create a ranked list
of concepts for each individual n-gram, Q. For the full query based reranking
approach, we use the same method but add the additional constraint that n= |Q|.
The problem of ranking DBpedia concepts given Q can then be formulated as
follows. Each concept c should be ranked according to the probability P (c|Q)
that it was generated by the n-gram, which can be rewritten using Bayes’ rule as:

P (c|Q) = P (Q|c)P (c)
P (Q) . (6.1)

Here, for a fixed n-gram Q, the term P (Q) is the same for all concepts and can
be ignored for ranking purposes. The term P (c) indicates the prior probability
of selecting a concept, which we assume to be uniform. Assuming independence
between the individual terms q ∈Q (cf. Eq. 2.3) we obtain

P (c|Q) ∝ P (c)
∏
q∈Q

P (q|c)n(q,Q), (6.2)

where the probability P (q|c) is determined by looking at the textual relations as
illustrated in Table 6.1. It is smoothed using Bayes smoothing with a Dirichlet
prior (cf. Eq. 2.7).

6.2.2 Learning to Select Concepts

Once we have obtained a ranked list of possible concepts for each n-gram, we
turn to concept selection. In this stage we need to decide which of the candidate
concepts are most viable. We use a supervised machine learning approach that
takes as input a set of labeled examples (query to concept mappings) and sev-
eral features of these examples (detailed below). More formally, each query Q is
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N-gram features

LEN(Q) = |Q| Number of terms in the phrase Q
IDF(Q) Inverse document frequency of Q
WIG(Q) Weighted information gain using top-5 retrieved concepts
QE(Q) Number of times Q appeared as whole query in the query log
QP(Q) Number of times Q appeared as partial query in the query log
QEQP(Q) Ratio between QE and QP
SNIL(Q) Does a sub-n-gram of Q fully match with any concept label?
SNCL(Q) Is a sub-n-gram of Q contained in any concept label?

Concept features

INLINKS(c) The number of concepts linking to c
OUTLINKS(c) The number of concepts linking from c

GEN(c) Function of depth of c in the SKOS category hierarchy [230]
CAT(c) Number of associated categories
REDIRECT(c) Number of redirect pages linking to c

N-gram + concept features

TF(c,Q) =
n(Q,c)
|c|

Relative phrase frequency of Q in c, normalized by length of c

TFf (c,Q) =
n(Q,c,f)
|f |

Relative phrase frequency of Q in representation f of c,
normalized by length of f

POSn(c,Q) = posn(Q)/|c| Position of nth occurrence of Q in c, normalized by length of c
SPR(c,Q) Spread (distance between the last and first occurrences of Q in c)
TF · IDF(c,Q) The importance of Q for c
RIDF(c,Q) Residual IDF (difference between expected and observed IDF)
χ2(c,Q) χ2 test of independence between Q in c and in collection Coll
QCT(c,Q) Does q contain the label of c?
TCQ(c,Q) Does the label of c contain q?
TEQ(c,Q) Does the label of c equal q?
SCORE(c,Q) Retrieval score of c w.r.t. Q
RANK(c,Q) Retrieval rank of c w.r.t. Q

History features

CCIH(c) Number of occurrences of label of c appears as query in history
CCCH(c) Number of occurrences of label of c appears in any query in history
CIHH(c) Number of times c is retrieved as result for any query in history
CCIHH(c) Number of times label of c equals title of any result for any query in history
CCCHH(c) Number of times title of any result for any query in history contains label of c
QCIHH(Q) Number of times title of any result for any query in history equals Q
QCCHH(Q) Number of times title of any result for any query in history contains Q
QCIH(Q) Number of times Q appears as query in history
QCCH(Q) Number of times Q appears in any query in history

Table 6.3: Features used, grouped by type. Detailed descriptions in Section 6.2.3.

associated with a ranked list of concepts c and a set of associated relevance as-
sessments for the concepts. The latter is created by considering all concepts that
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any annotator used to map Q to c. If a concept was not selected by any of the
annotators, we consider it to be non-relevant for Q. Then, for each query in the
set of annotated queries, we consider each combination of n-gram Q and concept
c an instance for which we create a feature vector.

The goal of the machine learning algorithm is to learn a function that outputs
a relevance status for any new n-gram and concept pair given a feature vector
of this new instance. We choose to compare a naive bayes (NB) classifier, with
a support vector machine (SVM) classifier and a decision tree classifier (J48)—a
set representative of the state-of-the-art in classification. These algorithms will be
further introduced in Section 6.3.3.

6.2.3 Features Used

We employ several types of features, each associated with either an n-gram, con-
cept, their combination, or the search history. Unless indicated otherwise, when
determining the features, we consider any consecutive terms in Q as a phrase,
that is, we do not assume term independence.

N-gram Features

These features are based on information from an n-gram and are listed in Ta-
ble 6.3 (first group). IDF(Q) indicates the relative number of concepts in which
Q occurs, which is defined as IDF(Q) = log(|Coll|/df (Q)), where |Coll| indicates
the total number of concepts and df (Q) the number of concepts in which Q oc-
curs [18]. WIG(Q) indicates the weighted information gain, which was proposed
by Zhou and Croft [359] as a predictor of the retrieval performance of a query.
It uses the set of all candidate concepts retrieved for this n-gram, CQ, and deter-
mines the relative probability of Q occurring in these documents as compared to
the collection. Formally:

WIG(Q) =
1
|CQ|

∑
c∈CQ log(P (Q|c))− log(P (Q))

logP (Q) .

QE(Q) and QP(Q) indicate the number of times the n-gram Q appears in the
entire query logs as a complete or partial query respectively.

Concept Features

Table 6.3 (second group) lists the features related to a DBpedia concept. This set
of features is related to the knowledge we have of the candidate concept, such
as the number of other concepts linking to or from it, the number of associated
categories (the count of the DBpedia property skos:subject), and the number
of redirect pages pointing to it (the DBpedia property dbpprop:redirect).



6.3. Experimental Setup 121

N-gram + Concept Features

This set of features considers the combination of an n-gram and a concept (Ta-
ble 6.3, third group). We consider the relative frequency of occurrence of the
n-gram as a phrase in the Wikipedia article corresponding to the concept, in the
separate document representations (title, content, anchor texts, first sentence,
and first paragraph of the Wikipedia article), the position of the first occurrence
of the n-gram, the distance between the first and last occurrence, and various
IR-based measures [18]. Of these, RIDF [68] is the difference between expected
and observed IDF for a concept, which is defined as

RIDF(c,Q) = log
(
|Coll|
df (Q)

)
+ log

(
1− exp

(
−n(Q,Coll)
|Coll|

))
.

We also consider whether the label of the concept (rdfs:label) matchesQ in any
way and we include the retrieval score and rank as determined by using Eq. 6.2.

History Features

Finally, we consider features based on the previous queries that were issued in
the same session (Table 6.3, fourth group). These features indicate whether the
current candidate concept or n-gram occurs (partially) in the previously issued
queries or retrieved candidate concepts respectively.

In Section 6.4 we compare the effectiveness of the feature types listed above
for our task, whilst in Section 6.5.5 we discuss the relative importance of each
individual feature.

6.3 Experimental Setup

In this section we introduce the experimental environment and the experiments
that we perform to answer the research questions for this chapter. We start by
detailing our data sets and then introduce our evaluation methods and manual
assessments.

6.3.1 Data

Two main types of data are needed for our experiments, namely search engine
queries and a structured knowledge repository. We have access to a set of 264,503
queries issued between 18 November 2008 to 15 May 2009 to the audiovisual cat-
alog maintained by Sound and Vision. Sound and Vision logs the actions of users
on the site, generating session identifiers and time stamps. This allows for a series
of consecutive queries to be linked to a single search session, where a session is
identified using a session cookie. A session is terminated once the user closes the



122 6. Linking Queries to Concepts

Session ID Query ID Query (Q)

jyq4navmztg 715681456 santa claus canada
jyq4navmztg 715681569 santa claus emigrants
jyq4navmztg 715681598 santa claus australia
jyq4navmztg 715681633 christmas sun
jyq4navmztg 715681789 christmas australia
jyq4navmztg 715681896 christmas new zealand
jyq4navmztg 715681952 christmas overseas

Table 6.4: An example of queries issued in a (partial) session, translated to English.

Figure 6.3: Screen dump of the web interface the annotators used to manually link
queries to concepts. On the left the sessions, in the middle a full-text retrieval inter-
face, and on the right the made annotations.

browser. This data set is analyzed and described more fully in [142], an example
is given in Table 6.4. All queries are Dutch language queries (although we empha-
size that nothing in our approach is language dependent). As the “history” of a
query, we take all queries previously issued in the same user session. The DBpedia
version we use is the most recently issued Dutch language release (3.2). We also
downloaded the Wikipedia dump from which this DBpedia version was created
(dump date 20080609); this dump is used for all our text-based processing steps
and features.

6.3.2 Training Data

For training and testing purposes, five assessors were asked to manually map
queries to DBpedia concepts using the interface depicted in Figure 6.3. The asses-
sors were presented with a list of sessions and the queries in them. Once a session
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had been selected, they were asked to find the most relevant DBpedia concepts
(in the context of the session) for each query therein. Our assessors were able
to search through Wikipedia using the fields described in Section 6.2.1. Besides
indicating relevant concepts, the assessors could also indicate whether a query
was ambiguous, contained a typographical error, or whether they were unable to
find any relevant concept at all. For our experiments, we removed all the assessed
queries in these “anomalous” categories and were left with a total of 629 assessed
queries (out of 998 in total) in 193 randomly selected sessions. In our experi-
ments we primarily focus on evaluating the actual mappings to the LOD cloud
and discard queries which the assessors deemed too anomalous to confidently
map to any concept. In this subset, the average query length is 2.14 terms per
query and each query has 1.34 concepts annotated on average. In Section 6.5.1
we report on the inter-annotator agreement.

6.3.3 Parameters

As to retrieval, we use the entire Wikipedia document collection as background
corpus and set µ to the average length of a Wikipedia article [356], i.e., µ = 315
(cf. Eq. 2.7). Initially, we select the 5 highest ranked concepts as input for the
concept selection stage. In Section 6.5.3 we report on the influence of varying the
number of highest ranked concepts used as input.

As indicated earlier in Section 6.2.2, we use the following three supervised
machine learning algorithms for the concept selection stage: J48, Naive Bayes
and Support Vector Machines. The implementations are taken from the Weka
machine learning toolkit [344]. J48 is a decision tree algorithm and the Weka
implementation of C4.5 [253]. The Naive Bayes classifier uses the training data
to estimate the probability that an instance belongs to the target class, given the
presence of each feature. By assuming independence between the features these
probabilities can be combined to calculate the probability of the target class given
all features [154]. SVM uses a sequential minimal optimization algorithm to
minimize the distance between the hyperplanes which best separate the instances
belonging to different classes, as described in [246]. In the experiments in the
next section we use a linear kernel. In Section 6.5.3 we discuss the influence of
different parameter settings to see whether fine-grained parameter tuning of the
algorithms has any significant impact on the end results.

6.3.4 Testing and Evaluation

We define the mapping of search engine queries to the LOD cloud as a ranking
problem. The system that implements a solution to this problem has to return
a ranked list of concepts for a given input query, where a higher rank indicates
a higher degree of relevance of the concept to the query. The best performing
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method puts the most relevant concepts towards the top of the ranking. The
assessments described above are used to determine the relevance status of each
of the concepts with respect to a query. We employ several measures that were
introduced in Chapter 3.

To verify the generalizability of our approach, we perform 10-fold cross vali-
dation [344]. This also reduces the possibility of errors being caused by artifacts
in the data. Thus, we use 90% of the annotated queries for training and vali-
dation and the remainder for testing in each of the folds. The reported scores
are averaged over all folds, and all evaluation measures are averaged over the
queries used for testing. In Section 6.5.3 we discuss what happens when we vary
the size of the folds. For determining the statistical significance of the observed
differences between runs we use a one-way ANOVA test to determine if there is a
significant difference (p≤ 0.05) as introduced in Section 3.2.2.

6.4 Results

In the remainder of this section we report on the experimental results and use
them to answer the research questions for this chapter. Here, we compare the
following approaches for mapping queries to DBpedia:

(i) a baseline that retrieves only those concepts whose label lexically matches
the query,

(ii) a retrieval baseline that retrieves concepts based solely on their textual repre-
sentation in the form of the associated Wikipedia article with varying textual
fields,

(iii) n-gram based reranking that extracts all n-grams from the query and uses
machine learning to identify the best concepts, and

(iv) full query based reranking that does not extract n-grams, but calculates fea-
ture vectors based on the full query and uses machine learning to identify
the best concepts.

In the next section we further analyze the results along multiple dimensions, in-
cluding the effects of varying the number of retrieved concepts in the first stage,
varying parameters in the machine learning models, the most informative indi-
vidual features and types, and the kind of errors that are made by the machine
learning algorithms.

6.4.1 Lexical Match

As our first baseline we consider a simple heuristic which is commonly used [12,
28, 94, 114, 142, 200]. For this baseline we select concepts that lexically match
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QCL QCL-LCQ QCL-LSO

JOSEPH HAYDN JOSEPH HAYDN JOSEPH HAYDN

JOSEPH JOSEPH HAYDN OPERAS

JOSEPH HAYDN SYMPHONIES

Table 6.5: An example of the concepts obtained using various lexical matching con-
straints for the query “joseph haydn” (translated to English). In this case, the annota-
tors only linked the concept JOSEPH HAYDN.

the query, subject to various constraints. This returns concepts where consecutive
terms in the rdfs:label are contained in the query or vice versa. An example
for the query “joseph haydn” is given in Table 6.5. We then rank the concepts
based on the language modeling score of their associated Wikipedia article given
the query (cf. Eq. 6.2).

P1 R-prec Recall MRR SR

QCL 0.3956 0.3140 0.4282 0.4117 0.4882
QCL-LCQ 0.4286 0.3485 0.4881 0.4564 0.5479
QCL-LSO 0.4160 0.2747 0.3435 0.3775 0.4160

oracle 0.5808 0.4560 0.5902 0.5380 0.6672

Table 6.6: Lexical match baseline results using lexical matching between labels and
query to select concepts.

Table 6.6 shows the scores when using lexical matching for mapping search en-
gine queries. The results in the first row are obtained by only considering the
concepts whose label is contained in the query (QCL). This is a frequently taken
but naive approach and does not perform well, achieving a P1 score of under
40%. The second row relaxes this constraint and also selects concepts where
the query is contained in the concept label (QCL-LCQ). This improves the perfor-
mance somewhat.

One issue these approaches might have, however, is that they might match
parts of compound terms. For example, the query “brooklyn bridge” might not
only match the concept BROOKLYN BRIDGE but also the concepts BROOKLYN and
BRIDGE. The approach taken for the third row (QCL-LSO) therefore extracts all
n-grams from the query, sorts them by the number of terms, and checks whether
the label is contained in each of them. If a match is found, the remaining, smaller
n-grams are skipped.

The last row (“oracle”) shows the results when we initially select all concepts
whose terms in the label matches with any part of the query. Then, we keep only
those concepts that were annotated by the assessors. As such, the performance
of this run indicates the upper bound on the performance that lexical matching
might obtain. From these scores we conclude that, although lexical matching
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is a common approach for matching unstructured text with structured data, it
does not perform well for our task and we need to consider additional kinds of
information pertaining to each concept.

6.4.2 Retrieval Only

As our second baseline, we take the entire query as issued by the user and em-
ploy Eq. 6.2 to rank DBpedia concepts based on their textual representation; this
technique is similar to using a search engine and performing a search within
Wikipedia. We use either the textual contents of the Wikipedia article (“content-
only”—which includes only the article’s text) or a combination of the article’s text,
the title, and the anchor texts of incoming links (“full text”).

P1 R-prec Recall MRR SR

full text 0.5636 0.5216 0.6768 0.6400 0.7535
content-only 0.5510 0.5134 0.6632 0.6252 0.7363

Table 6.7: Results for the retrieval only baseline which ranks concepts using the entire
query Q and either the content of the Wikipedia article or the full text associated with
each DBpedia concept (including title and anchor texts of incoming hyperlinks).

Table 6.7 shows the results of this method. We note that including the title and
anchor texts of the incoming links results in improved retrieval performance over-
all. This is a strong baseline; on average, over 65% of the relevant concepts are
correctly identified in the top-5 and, furthermore, over 55% of the relevant con-
cepts are retrieved at rank 1. The success rate indicates that for 75% of the queries
at least one relevant concept is retrieved in the top-5. In Section 6.5.2 we further
discuss the relative performance of each textual representation as well as various
combinations.

6.4.3 N-gram based Concept Selection

Table 6.8 (last row) shows the concepts obtained for the second baseline and the
query “challenger wubbo ockels.” Here, two relevant concepts are retrieved at
ranks 1 and 4. When we look at the same results for all possible n-grams in the
query, however, one of the relevant concepts is retrieved at the first position for
each n-gram. This example and the one given earlier in Table 6.2 suggest that
it will be beneficial to consider all possible n-grams in the query. In this section
we report on the results of extracting n-grams from the query, generating fea-
tures for each, and subsequently applying machine learning algorithms to decide
which of the suggested concepts to keep. The features used here are described in
Section 6.2.2.
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N-gram Candidate concepts

challenger SPACE SHUTTLE CHALLENGER; CHALLENGER; BOMBARDIER CHALLENGER;
STS-61-A; STS-9

wubbo WUBBO OCKELS; SPACELAB; CANON OF GRONINGEN; SUPERBUS;
ANDRÉ KUIPERS

ockels WUBBO OCKELS; SPACELAB; SUPERBUS; CANON OF GRONINGEN;
ANDRÉ KUIPERS

challenger wubbo WUBBO OCKELS; STS-61-A; SPACE SHUTTLE CHALLENGER; SPACELAB;
STS-9

wubbo ockels WUBBO OCKELS; SPACELAB; SUPERBUS; CANON OF GRONINGEN;
ANDRÉ KUIPERS

challenger wubbo ockels WUBBO OCKELS; STS-61-A; SPACELAB; SPACE SHUTTLE CHALLENGER;
STS-9

Table 6.8: An example of the concepts obtained when using retrieval only for the
n-grams in the query “challenger wubbo ockels” (translated to English), ranked by re-
trieval score. Concepts annotated by the human annotators for this query in boldface.

P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.6586 ◦ 0.5648 ◦ 0.7253 ◦ 0.7348 N 0.7989 ◦

NB 0.4494 HH 0.4088 HH 0.6948 ◦◦ 0.7278 ◦◦ 0.7710 ◦◦

SVM 0.7998 NNN 0.6718 N◦N 0.7556 ◦◦◦ 0.8131 N◦◦ 0.8240 ◦◦◦

Table 6.9: Results for n-gram based concept selection. N H and ◦ indicate that a
score is significantly better, worse, or statistically indistinguishable respectively. The
leftmost symbol represents the difference with the baseline, the next with the J48
run, and the rightmost with the NB run.

Table 6.9 shows the results of applying the machine learning algorithms on the
extracted n-gram features. We note that J48 and SVM are able to improve upon
the baseline results from the previous section, according to all metrics. The Naive
Bayes classifier performs worse than the baseline in terms of P1 and R-precision.
SVM clearly outperforms the other algorithms and is able to obtain scores that are
very high, significantly better than the baseline on all metrics. Interestingly, we
see that the use of n-gram based reranking has both a precision enhancing effect
for J48 and SVM (the P1 and MRR scores go up) and a recall enhancing effect.

6.4.4 Full Query-based Concept Selection

Next, we turn to a comparison of n-gram based and full-query based concept
selection. Using the full-query based concept selection method, we take each
query as is (an example is given in the last row of Table 6.8) and generate a
single ranking to which we apply the machine learning models.
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P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.7152N 0.5857◦ 0.6597◦ 0.6877◦ 0.7317◦

NB 0.6925N◦ 0.5897◦◦ 0.6865◦◦ 0.6989◦◦ 0.7626◦◦

SVM 0.8833NNN 0.8666NNN 0.8975NNN 0.8406NNN 0.9053NNN

Table 6.10: Results for full query-based concept selection.

Table 6.10 shows the results when only the full query is used to generate a ranked
list of concepts. We again observe that SVM significantly outperforms J48, NB,
and the baseline. For both the J48 and NB classifiers we see a significant increase
in precision (P1). Naive Bayes, for which precision was significantly worse than
all other methods on n-gram based concept selection, performs significantly bet-
ter than the other machine learning algorithms using full query reranking. The
increase in precision comes at a loss in recall for NB. The MRR scores for J48 are
no longer significantly higher than the baseline. Both J48 and NB produce fewer
false positives when classifying full query data instead of n-gram based query
data. This means that fewer incorrect concepts end up in the ranking which in
turn results in a higher precision.

Interestingly, this increase in precision is not accompanied by a loss in recall.
In particular, the SVM classifier is able to distinguish between correct and incor-
rect concepts when used on the full query data. These scores are the highest
obtained so far and this approach is able to return almost 90% of all relevant con-
cepts. This result is very encouraging and shows that the approach taken handles
the mapping of search engine queries to the LOD cloud extremely well.

6.5 Discussion

In this section, we further analyze the results presented in the previous section
and answer the remaining research questions. We first look at the inter-annotator
agreement between the assessors. We then turn to the performance of the dif-
ferent textual representations of the Wikipedia content that we use. Further, we
consider the robustness of the performance of our methods with respect to vari-
ous parameter settings, provide an analysis of the influence of the feature types
on the end results, and also report on the informativeness of the individual fea-
tures. We conclude with an error analysis to see which queries are intrinsically
difficult to map to the DBpedia portion of the LOD cloud.

Unless indicated otherwise, all results on which we report in this section use
the best performing approach from the previous section, i.e., the SVM classifier
with a linear kernel using the full queries (with ten-fold cross-validation when
applicable).
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P1 R-prec Recall MRR SR

full text 0.5636 0.5216 0.6768 0.6400 0.7535
content 0.5510 0.5134 0.6632 0.6252 0.7363
title 0.5651 0.5286 0.6523 0.6368 0.7363
anchor 0.6122 0.5676 0.7219 0.6922 0.8038
first sentence 0.5495 0.5106 0.6523 0.6203 0.7268
first paragraph 0.5447 0.5048 0.6454 0.6159 0.7190
title + content 0.5604 0.5200 0.6750 0.6357 0.7535
title + anchor 0.5934 0.5621 0.7164 0.6792 0.7991
title + content + anchor 0.5714 0.5302 0.6925 0.6514 0.7724
title + 1st sentence + anchor 0.5856 0.5456 0.6965 0.6623 0.7755
title + 1st paragraph + anchor 0.5777 0.5370 0.6985 0.6566 0.7771

Table 6.11: Results of ranking concepts based on the full query using different textual
representations of the Wikipedia article associated with each DBpedia concept.

6.5.1 Inter-annotator Agreement

To assess the agreement between annotators, we randomly selected 50 sessions
from the query log for judging by all annotators. We consider each query-concept
pair to be an item of analysis for which each annotator expresses a judgment (“a
good mapping” or “not a good mapping”) and on which the annotators may or
may not agree. However, our annotation tool does not produce any explicit labels
of query-concept pairs as being “incorrect,” since only positive (“correct”) judg-
ments are generated by the mappings. Determining the inter-annotator agree-
ment on these positive judgments alone might bias the results and we adopt a
modified approach to account for the missing non-relevance information, as we
will now explain.

We follow the same setup as used for the results presented earlier by con-
sidering 5 concepts per query. In this case, the 5 concepts were sampled such
that at least 3 were mapped (judged correct) by at least one of the annotators;
the remaining concepts were randomly selected from the incorrect concepts. We
deem a concept “incorrect” for a query if the query was not mapped to the con-
cept by any annotator. For the queries where fewer than 3 correct concepts were
identified, we increased the number of incorrect concepts to keep the total at 5.
The rationale behind this approach is that each annotator looks at at least 5 con-
cepts and selects the relevant ones. The measure of inter-annotator agreement
that we are interested in is determined, then, on these 5 concepts per query. Also
similar to the results reported earlier, we remove the queries in the “anomalous”
categories.

The value for Cohen’s κ is 0.5111, which indicates fair overall agreement (κ
ranges from –1 for complete disagreement to +1 for complete agreement) [13,
77, 179]. Krippendorf’s α is another statistic for measuring inter-annotator agree-
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ment that takes into account the probability that observed variability is due to
chance. Moreover, it does not require that each annotator annotates each docu-
ment [13, 123]. The value of α is 0.5213. As with the κ value, this indicates a fair
agreement between annotators. It is less, however, than the level recommended
by Krippendorff for reliable data (α = 0.8) or for tentative reliability (α = 0.667).
The values we obtain for α and κ are therefore an indication as to the nature of
relevance with respect to our task. What one person deems a viable mapping
given his or her background, another might find not relevant. Voorhees [328]
has shown, however, that moderate inter-annotator agreement can still yield re-
liable comparisons between approaches (in her case TREC information retrieval
runs, in our case different approaches to the mapping task) that are stable when
one set of assessments is substituted for another. This means that, although the
absolute inter-annotator scores indicate a fair agreement, the system results and
comparisons thereof that we obtain are valid.

6.5.2 Textual Concept Representations

One of our baselines ranks concepts based on the full textual representation of
each DBpedia concept, as described in Section 6.4.1. Instead of using the full
text, we evaluate what the results are when we rank concepts based on each indi-
vidual textual representation and based on combinations of fields. Table 6.11 lists
the results. As per the Wikipedia authoring guidelines [342], the first sentence
and paragraph should serve as an introduction to, and summary of, the important
aspects of the contents of the article. In Table 6.11, we have also included these
fields. From the table we observe that the anchor texts emerge as the best descrip-
tor of each concept and using this field on its own obtains the highest absolute
retrieval performance. However, the highest scores obtained using this approach
are still significantly lower than the best performing machine learning method
reported on earlier.

6.5.3 Robustness

Next, we discuss the robustness of our approach. Specifically, we investigate the
effects of varying the number of retrieved concepts in the first stage, of varying
the size of the folds, of balancing the relative amount of positive and negative
examples in the training data, and the effect of varying parameters in the machine
learning models.

Number of Concepts

The results in Section 6.4 were obtained by selecting the top 5 concepts from
the first stage for each query, under the assumption that 5 concepts would give a
good balance between recall and precision (motivated by the fact there are 1.34
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Figure 6.4: Plot of results when varying the number of concepts, K, used as input
for the concept selection stage on performance. Note the log scale on the x-axis.

concepts annotated per query on average). Our intuition was that, even if the
initial stage did not place a relevant concept at rank 1, the concept selection stage
could still consider this concept as a candidate (given that it appeared somewhere
in the top 5). We now test this assumption by varying the number of concepts
returned for each query.
Figure 6.4 shows the effect of varying the number of retrieved concepts (K) in
the first stage on various retrieval measures. On nearly all metrics the best per-
formance is achieved when using the top 3 concepts from the initial stage for
concept selection, although the absolute difference between using 3 and 5 terms
is minimal for most measures. As we have observed above, most relevant con-
cepts are already ranked very high by the initial stage. Further, from the figure
we conclude that using only the top 1 is not enough and results in the worst per-
formance. In general, one might expect recall to improve when the number of
concepts grows. However, since each query only has 1.34 concepts annotated on
average, recall can not improve much when considering larger numbers of can-
didate concepts. Finally, increasing the number of concepts mainly increases the
number of non-relevant concepts in the training data, which may result in a bias
towards classifying concepts as not relevant by a machine learning algorithm.

Balancing the Training Set

Machine learning algorithms are sensitive to the distribution of positive and neg-
ative instances in the training set. The results reported so far do not perform any
kind of resampling of the training data and take the distribution of the class labels
(whether the current concept is selected by the assessors) as is.
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P1 R-prec Recall MRR SR

balanced 0.5777 0.4383 0.5436 0.5960 0.6150
random sampling 0.8833 0.8666 0.8975 0.8406 0.9053

Table 6.12: Comparison of sampling methods.

In order to determine whether reducing the number of non-relevant concepts in
the training data has a positive effect on the performance, we experiment using
a balanced and a randomly distributed training set. The balanced set reduces the
number of negative examples such that the training set contains as many positive
examples as negative examples. On the other hand, the random sampled set
follows the empirical distribution in the data. Table 6.12 shows that balancing
the training set causes performance to drop. We thus conclude that including a
larger number of negative examples has a positive effect on retrieval performance
and that there is no need to perform any kind of balancing for our task.

Splitting the Data

Ideally, the training set used to train the machine learning algorithms is large
enough to learn a model of the data that is sufficiently discriminative; also, a test
set should be large enough to test whether the model generalizes well to unseen
instances.

P1 R-prec Recall MRR SR

50-50 0.8809 0.8601 0.8927 0.8338 0.9016
75-25 0.8812 0.8599 0.8927 0.8344 0.9015
90-10 0.8833 0.8666 0.8975 0.8406 0.9053

Table 6.13: Comparison of using different sizes for the training and test sets used for
cross-validation. A 50-50 split uses the smallest training set (training and test set are
equally sized), a 75-25 split uses 75% for training and 25% for testing, a 90-10 split
uses 90% for training and 10% for testing.

Table 6.13 shows the results when we vary the size of the folds used for cross-
validation using the SVM classifier on the full query based concept selection.
Here, we compare the 90-10 split reported on above so far with a 50-50 and a
75-25 split. From this table we observe that there is no significant difference be-
tween the results on various splits. In practical terms this means that the amount
of training data can be greatly reduced, without a significant loss in performance.
This in turn means that the labor-intensive, human effort of creating annotations
can be limited to a few hundred annotations in order to achieve good perfor-
mance.
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Machine Learning Model Parameters

Next, we look at important parameters of the three machine learning algorithms
we evaluate.

P1 R-prec Recall MRR SR

Full query based concept selection

linear 0.8833 0.8666 0.8975 0.8406 0.9053
gaussian 0.8833 0.8666 0.8975 0.8406 0.9053
polynomial 0.8738 0.7859 0.8415 0.8364 0.8876

N-gram based concept selection

linear 0.7998 0.6718 0.7556 0.8131 0.8240
gaussian 0.8241 0.6655 0.7849 0.8316 0.8641
polynomial 0.7967 0.6251 0.7660 0.8205 0.8589

Table 6.14: Comparison of using different kernels for the SVM machine learning
algorithm.

Table 6.14 shows the results of using different kernels for the SVM classifier,
specifically a linear, a gaussian, and a polynomial kernel. On the full query data
there is no difference between the linear and gaussian kernel and on the n-gram
data there is only a small difference. The polynomial kernel performs the worst in
both cases, but again the difference is insignificant as compared to the results at-
tained using the other kernels. The values listed in Table 6.14 are obtained using
the optimal parameter settings for the kernels. Figure 6.5 (b) shows a sweep of
the complexity parameter for the gaussian kernel. A higher degree of complexity
penalizes non-separable points and leads to overfitting, while if the value is too
low SVM is unable to learn a discriminative model. For the polynomial kernel we
limited our experiments to a second order kernel, as the increase in training times
on higher order kernels made further experimentation prohibitive. The fact that
there is little difference between the results of using various kernels shows that,
for the purpose of reranking queries, a simple linear model is enough to achieve
optimal or close to optimal performance. A more complex model leads to limited
or no improvement and increased training times.

Table 6.15 shows the results of binning versus kernel density estimation (us-
ing a gaussian kernel). As was the case with SVM, there is only a small difference
between the results on the full query data. The results on the n-gram data do
show a difference; binning performs better in terms of recall while kernel den-
sity estimation achieves higher precision, which is probably caused by the kernel
method overfitting the data.

Figure 6.5 (a) shows the effect of varying the level of pruning for the J48 al-
gorithm on the full query data, where a low number relates to more aggressive
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P1 R-prec Recall MRR SR

Full query based concept selection

binning 0.6925 0.5897 0.6865 0.6989 0.7626
kernel 0.6897 0.5973 0.6882 0.6836 0.7455

N-gram based concept selection

binning 0.4494 0.4088 0.6948 0.7278 0.7710
kernel 0.5944 0.3236 0.4884 0.5946 0.6445

Table 6.15: Comparison of using different probability density estimation methods for
the NB classifier.
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Figure 6.5: (a) The effect of adjusting the complexity parameter for SVM with a
gaussian kernel. Note that the x-axis is on a log scale. (b) The effect of adjusting
the pruning parameter for the J48 learning algorithm. A lower number means more
aggressive pruning.

pruning. We observe that more agressive pruning leads to slightly better perfor-
mance over the standard level (0.25), but not significantly so.

An exploration of the machine learning model parameters shows that SVM is
the best classifier for our task: even with optimized parameters the Naive Bayes
and J48 classifiers do not achieve better results.

6.5.4 Feature Types

In Section 6.2.3 we identified four groups of features, relating to the n-gram
(“N”), concept (“C”), their combination (“N+C”), or the session history (“H”).
We will now zoom in on the performance of these groups. To this end we perform
an ablation experiment, where each of these groups is removed from the training
data.
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Excluded
feature types P1 R-prec Recall MRR SR

– 0.7998 0.6718 0.7556 0.8131 0.8240
H 0.6848◦ 0.5600◦ 0.6285◦ 0.6902◦ 0.6957◦

C 0.4844◦◦ 0.3895H◦ 0.4383H◦ 0.4875H◦ 0.4906H◦

H; C 0.2233HH◦ 0.1233HH◦ 0.1733HH◦ 0.2233HH◦ 0.2233HH◦

Table 6.16: Results of removing specific feature types from the training data for the
SVM classifier and n-gram based concept selection. H and ◦ indicate that a score is
significantly worse or statistically indistinguishable respectively. The leftmost symbol
represents the difference with the all features run, the next with the without history
features run, and the rightmost symbol the without concept features run.

Excluded
feature types P1 R-prec Recall MRR SR

– 0.8833 0.8666 0.8975 0.8406 0.9053
H; C 0.8833◦ 0.8666◦ 0.8975◦ 0.8406◦ 0.9053◦

N; N+C 0.1000H 0.0000H 0.0500H 0.1000H 0.1000H

N+C 0.0556H◦ 0.0222H◦ 0.0370H◦ 0.0556H◦ 0.0556H◦

H; N+C 0.0333H◦◦ 0.0000H◦◦ 0.0167H◦◦ 0.0333H◦◦ 0.0333H◦◦

Table 6.17: Results of removing specific feature types for the SVM classifier and
full query based concept selection. Not all possible combinations are included in
the results; all unlisted combinations have either scores of zero or the same score as
when using all feature types. The leftmost symbol represents the difference with the
all features run, the next with the without n-gram+concept and n-gram features run,
and the rightmost symbol the without n-gram+concept features run.

N-gram based Concept Selection

Table 6.16 shows the results using n-gram based concept selection. It turns out
that both the n-gram specific and n-gram + concept specific features are required
for successful classification: when these groups are removed, none of the relevant
concepts are identified. From this table we further observe that removing the
history features results in a drop in performance, albeit a small one. When the
concept features are removed, the resulting performance drops even further and
their combined removal yields very low scores. So, although some feature types
contribute more to the final performance, each is needed to arrive at the highest
scores.

Full-query Based Concept Selection

Table 6.17 shows the results using full-query based concept selection. In this case,
the effect of removing both history and concept based features does not influence
the results at all. This can in part be explained by the fact that most history fea-
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tures are based on the counts of the query in various parts of the session. Since we
now have a single n-gram (the full query), these counts turn into binary features
and may therefore be less discriminative. This is in stark contrast with the n-gram
based features that do have a significant effect on performance on all metrics.
Similar to the n-gram based data, these features are essential for full query based
concept selection. Finally, we observe that there are some dependencies among
the types of features. When we remove both the n-gram+concept features and
the history features, the performance is worse than when we remove only the
n-gram+concept features (although not significantly so).

Upshot

In sum, all feature types contribute to the performance in the case of n-gram
based concept selection. The highest scores are obtained, however, using full
query based concept selection. In this case, the history and concept based features
do not contribute to the results.

6.5.5 Feature Selection

Several methods exist for automatically determining the most informative fea-
tures given training instances and their class labels. In this section we report on
using an information gain based algorithm for feature selection [350].

N-gram based concept selection Full query based concept selection

0.119 RANK(c,Q) 0.190 RANK(c,Q)
0.107 ID 0.108 TEQ(c,Q)
0.052 INLINKS(c) 0.080 INLINKS(c)
0.040 TFanchor(c,Q) 0.056 ID
0.038 OUTLINKS(c) 0.041 OUTLINKS(c)
0.037 TFtitle(c,Q) 0.033 SCORE(c,Q)
0.031 TEQ(c,Q) 0.025 REDIRECT(c)

Table 6.18: Results of calculating the information gain with respect to the class label
for all features (truncated after 7 features). The higher this score, the more informa-
tive a feature is.

Table 6.18 shows the features with the highest information gain values for both n-
gram and full query based reranking. The rank at which the retrieval framework
puts a concept with respect to an n-gram is most informative. Also, the number
of in- and outlinks, and whether the n-gram matches the concept’s label are good
indicators of the relevance status of a concept. ID is the internal identifier of each
concept and not a feature that we explicitly implemented. However, it turns out
that some DBpedia concepts have a higher a priori probability of getting selected.
Indeed, in our manually created assessments 854 concepts are identified, 505
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of which are unique; some of the repetitions are caused because of a persisting
information need in the user sessions: when a user rewrites her query by adding
or changing part of the query, the remaining concepts remain the same and were
annotated as such.

For n-gram based concept selection, the number of in- and outlinks, rank,
ID, and whether the concept label equals the query are also strong indicators
of relevance for given phrase and concept. Added to these, however, are the
frequency of the n-gram in the title or in the anchor texts in this case.

6.5.6 Error Analysis

Finally, we provide an analysis of the errors that were made by the machine learn-
ing algorithms. To this end, we first examine the relationship between mapping
performance and the frequency of the query in the entire query log. We separate
all queries in two groups, one for those queries where our approach successfully
mapped concepts and one where it failed. In the first group, the average query
frequency is 23 (median 2, std. dev. 85.6). In the second group, the average
frequency is 6 (median 1, std. dev. 19.5). So, although it seems our approach
works best for frequently occurring queries, the high standard deviation indicates
that the frequencies are spread out over a large range of values.

Table 6.19 shows examples of correctly and incorrectly mapped queries, to-
gether with their relative frequency of occurrence in the entire query log. This
table provides further indication that the frequency of a query is not a determin-
ing factor in the successful outcome of our method. Rather, it is the retrieval
framework that puts concepts that contain query terms with a relatively high fre-
quency in the top of the ranking. For example, besides being the queen of the
Netherlands, Beatrix is also the name of one of the characters in the movie Kill
Bill.

To further investigate the errors being made, we have manually inspected the
output of the algorithms and classified the errors into several classes. Since we
formulate the mapping search engine queries to LOD task as a ranking problem,
we are primarily interested in the false positives—these are the concepts the clas-
sifier identified as correct for a query but which the annotators did not select. The
classes in which the classifiers make the most mistakes are:

• ambiguous (5%) A query may map to more than one concept and the an-
notators did not explicitly mark the query as being ambiguous.

• match with term in content (15%) Part of the query occurs frequently
in the textual representation of the concept, while the concept itself is not
relevant. For example, the query “red lobster” matches with the concept
RED CROSS.
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Freq. (×10−4) Query Mapped concepts

Well performing queries

64.0 % wouter bos WOUTER BOS

18.9 % moon landing MOON LANDING

2.22 % vietnam war VIETNAM WAR

1.67 % simple minds SIMPLE MINDS

1.11 % spoetnik SPOETNIK

1.11 % sarkozy agriculture NICOLAS SARKOZY; AGRICULTURE

0.557 % universal soldier UNIVERSAL SOLDIER

Poorly performing queries

57.9 % gaza DOROTHEUS OF GAZA

2.78 % wedding beatrix KILL BILL; WILLEM OF LUXEMBURG;
MASAKO OWADA

1.11 % poverty netherlands 1940s 1940-1949; IMMIGRATION POLICY;
MEXICAN MIRACLE

0.557 % poverty thirties 1930-1939; HUMAN DEVELOPMENT INDEX

0.557 % rabin funeral BILL CLINTON; HUSSEIN OF JORDAN

0.557 % eurovision songfestival 1975 EUROVISION SONGFESTIVAL;
MELODIFESTIVALEN 1975

0.557 % cold war netherlands COLD WAR; WATCHTOWER; WESTERN BLOC

Table 6.19: Examples of correctly and incorrectly mapped queries (translated to En-
glish), with their relative frequency of occurrence in the entire query log. Concepts
annotated by the human annotators in boldface. Wouter Bos is a Dutch politician and
Beatrix is the Dutch queen.

• substring (4%) In this case a substring of the query is matched to a con-
cept, for example the concept BROOKLYN is selected for the query “brooklyn
bridge.” While this might be considered an interesting suggestion, it is in-
correct since the annotators did not label it so.

• too specific—child selected (10%) A narrower concept is selected where
the broader is correct. For example, when the concept EUROVISION SONGFES-
TIVAL 1975 is selected for the query “songfestival.”

• too broad—parent selected (6%) The inverse of the previous case. For ex-
ample, the concept EUROVISION is selected for the query “eurovision songfes-
tival 2008.”

• related (10%) A related concept is selected. For example when the concept
CUBA CRISIS is selected for the query “cuba kennedy.” Another example is
the concept INDUSTRIAL DESIGN for the query “walking frame.”

• sibling (4%) A sibling is selected, e.g., EUROVISION SONGFESTIVAL 1975
instead of EUROVISION SONGFESTIVAL 2008.
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• same concept, different label (6%) When there is more than one applica-
ble concept for the query and the annotators used only one, e.g., in the case
of NEW YORK and NEW YORK CITY.

• erroneous (25%) The final category is where the classifiers selected the
right concept, but it was missed by the annotators.

From these classes we conclude that the largest part of the errors are not at-
tributable to the machine learning algorithms but rather to incomplete or imper-
fect human annotations. Another class of interesting errors is related to the IR
framework we use. This sometimes produces “fuzzy” matches when the textual
representation of the concept contains the query terms with a high frequency
(e.g., selecting CUBA CRISIS for the query “cuba kennedy”). Some of these errors
are not wrong per se, but interesting since they do provide mappings to related
concepts. Marking them as wrong is partly an artifact of our evaluation method-
ology, which determines a priori which concepts are relevant to which queries,
so as to ensure the reusability our evaluation resources. We have chosen this ap-
proach also for practical reasons, since the same annotations are used to generate
the training data for the machine learners. In future work, we intend to perform a
large-scale post-hoc evaluation in which we directly evaluate the generated map-
pings to the LOD cloud.

6.6 Summary and Conclusions

In this chapter we have introduced the task of mapping search engine queries to
the LOD cloud and presented a method that uses supervised machine learning
methods to learn which concepts are used in a query. We consider DBpedia to
be an integral part of, and interlinking hub for, the LOD cloud, which is why we
focused our efforts on mapping queries to this ontology.

Our approach first retrieves and ranks candidate concepts using a framework
based on language modeling for information retrieval. We then extract query,
concept, and history-specific feature vectors for these candidate concepts. Using
manually created annotations we inform a machine learning algorithm, which
then learns how to best select candidate concepts given an input query.

Our results were obtained using the Dutch version of DBpedia and queries
from a log of the Netherlands Institute for Sound and Vision. Although these re-
sources are in Dutch, the framework we have presented is language-independent.
Moreover, the approach is also generic in that several of the employed features
can be used with ontologies other than DBpedia.

In this chapter we have reported upon extensive analyses to answer the fol-
lowing research questions.
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RQ 3. Can we successfully address the task of mapping search engine queries to
concepts using a combination of information retrieval and machine learn-
ing techniques? A typical approach for mapping text to concepts is to apply
some form of lexical matching between concept labels and terms, typically us-
ing the context of the text for disambiguation purposes. What are the results
of applying this method to our task? What are the results when using a purely
retrieval-based approach? How do these results compare to those of our pro-
posed method?

Our best performance was obtained using Support Vector Machines and features
extracted from the full input queries. The best performing run was able to locate
almost 90% of the relevant concepts on average. Moreover, this particular run
achieved a precision@1 of 89%, meaning that for this percentage of queries the
first suggested concept was relevant.1 We find that simply performing a lexical
match between the queries and concepts did not perform well and neither did us-
ing retrieval alone, i.e., omitting the concept selection stage. When applying our
proposed method, we found significant improvements over these baselines and
the best approach incorporates both information retrieval and machine learning
techniques. In sum, we have shown that search engine queries can be successfully
mapped to concepts from the Linked Open Data Cloud.

RQ 3a. What is the best way of handling a query? That is, what is the perfor-
mance when we map individual n-grams in a query instead of the query as
a whole?

The best way of handling query terms is to model them not as separate n-grams,
but as a single unit—a finding also interesting from an efficiency viewpoint, since
the number of n-grams is quadratic in the length of the query.

RQ 3b. As input to the machine learning algorithms we extract and compute a
wide variety of features, pertaining to the query terms, concepts, and search
history. Which type of feature helps most? Which individual feature is most
informative?

As became clear from Table 6.16 and 6.18, DBpedia related features such as in-
links and outlinks and redirects were helpful. We also found that features per-
taining to both the concept and query (such as the term frequency of the query in
various textual representations of the concepts) were essential in obtaining good
classification performance. Such information may not exist in other ontologies.

1Our results can be partially explained by the fact that we have decided to focus on the quality
of the suggested concepts and as such removed “anomalous” queries from the evaluation, i.e., queries
with typos or that were too ambiguous or vague for human assessors to be able to assign a concept to.
Ideally, one would have a classifier at the very start of the query linking process which would predict
whether a query falls in one of these categories. Implementing and evaluating such a classifier is an
interesting—and challenging—research topic in itself but falls beyond the scope of this thesis.
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RQ 3c. Machine learning generally comes with a number of parameter settings.
We ask: what are the effects of varying these parameters? What are the
effects of varying the size of the training set, the fraction of positive examples,
as well as any algorithm-specific parameters? Furthermore, we provide the
machine learning step with a small set of candidate concepts. What are the
effects of varying the size of this set?

With respect to the machine learning algorithms, we find that reducing the quan-
tity of training material caused only a marginal decline in performance. This
means, in practical terms, that the amount of labor-intensive human annotations
can be greatly reduced. Furthermore, our results indicate that the performance is
relatively insensitive to the setting of various machine learning model parameters;
optimizing these will improve the absolute scores but not change the ranking of
machine learning models (when ranked by their performance). As to the size of
the initial concept ranking that is given as input to the machine learning model,
we find that the optimal number is three; the performance declines above this
value.

The concepts suggested by our method may be used to provide contextual
information, related concepts, navigational suggestions, or an entry point into
the Linked Open Data cloud. We have shown that the optimal way of obtaining
such conceptual mappings between queries and concepts involves both concept
ranking and filtering. This approach outperforms other ones, including lexical
matching and using retrieval alone. However, the queries we have used in this
chapter are specific to the given system and domain. Although the concepts we
link to are taken from the general domain, the used queries raise questions about
the generalizability of the results when queries are taken from other, broader do-
mains. In the next chapter we address this issue, by applying the same approach
to query sets taken from the TREC evaluation campaign, including a set of queries
taken from a commercial web search engine’s query log. There, we use them for
query modeling, by sampling terms from the Wikipedia articles associated with
the mapped concepts using the same method as the one presented in Chapter 5.
Furthermore, we also compare the performance with an approach using solely
relevance feedback methods, as detailed in Chapter 4.





There are very few things that
are purely conceptual without any
hard content.

Kevin Bacon 7
Query Modeling Using Linked Concepts

In previous chapters we have seen various ways of updating the estimate of a
query model, for example through the use of feedback information (Chapter 4)
or conceptual document annotations (Chapter 5). In essence, these approaches
are a form of data fusion, where information from multiple sources is combined to
influence a document ranking. Such fusion methods exist in a number of related
tasks. For example, in web retrieval it is common to take into account anchor texts
or some function of the web graph [45]. In multimedia environments, different
modalities (text, video, speech, etc.) need to be combined. In cross-lingual IR,
where the queries and documents are stated in different languages, evidence from
multiple languages is merged to obtain a final ranking. In our query modeling
case, we have combined evidence from either top-ranked or relevant documents
and the initial query. In Chapter 5 we have added to this concepts in the form
of document annotations. In Chapter 6 we have linked domain-restricted queries
to DBpedia and the question arose “Can we apply the semantic analysis based
on Linked Open Data (LOD) to the open domain?” Furthermore, can we apply
these linked concepts for retrieval, using the ideas presented in Chapter 4 and
Chapter 5?

Looking from a different angle, there have been several developments in web
search over the last 20 years [19, 300]. Initially, web pages were ranked solely
based on term frequency (TF) and inverse document frequency (IDF) of the terms
a user entered in her query. Later, this was enriched with “off-page” informa-
tion, such as information from the web graph, anchortext, and related hyper-
links and from user behavior such as clicks or dwell time [45, 152]. Most re-
cently, as users are visiting the search engines for more diverse reasons [300],
the major web search engines are also moving towards semantically informed
responses, aiming to interpret a user’s intent and answer the information need
behind the query [19]—whether the search engines “follow” changing user be-
havior or whether users adapt to new functionalities offered by search engines
does not really matter for this discussion [143]. Aiming to answer informa-
tion needs instead of queries involves rather low-level enhancements such as
spelling correction, but also more fine-grained user interface enhancements such

143
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as query suggestions [9]. A prime example is the Yahoo! query formulation tool
called searchassist that we have mentioned as an example in the previous chap-
ter. In [217] we have shown that blending in conceptual information in the query
suggestion process can improve such suggestions, especially for rare, infrequent
queries. Moving more towards determining the meaning of queries (or, indeed,
the information needs behind them), current enhancements include determining
the task the user aims to solve [46, 270] or determining the type of information
that is being sought (through so-called verticals—which are typically defined as
“domain-specific subcollections”) [11, 93]. Another way of attempting to answer
the information need behind the query is through semantic analysis, for example
by (semi-automatic) expansion of the query using synonyms [113]. Other ap-
proaches aim to infer the semantics behind the queries that are submitted [42].

Even other approaches try to understand the “things” that are being sought.
For example, using the approach presented by Gabrilovich and Markovitch [107],
we can obtain a mapping of free text to concepts (in the form of Wikipedia arti-
cles); the same ideas are applied in a more general sense by Turney and Pantel
[322]. Medelyan et al. [205] present a comprehensive overview of approaches
making use of Wikipedia to extract and make use of the concepts, relations, facts,
and descriptions found in Wikipedia.

One of the current goals of the semantic web (in particular the LOD cloud or
“web of data”) is to expose, share, and connect data [32, 37]. For this, it uses
URIs to identify concepts and provides means by which to describe the concepts
themselves as well as any possible relationships with other concepts. One of the
current goals of major search engines is very similar: to move beyond a web
of pages towards gathering and exposing web-derived knowledge and a “web
of things” instead [19]. Indeed, in this chapter we explore what happens when
we apply the semantic analysis method from Chapter 6, that links queries to a
semantic “backbone,” (in the form of concepts in a concept language). We do
so in order to “understand” open domain queries and to estimate query models
based on this conceptual information.

In particular, we take the best performing machine learning method from the
previous chapter and map queries from the open domain to DBpedia concepts.
Then, we apply the most robust relevance feedback method, relevance model
1 (RM-1), from Chapter 4 to the Wikipedia articles associated with the found
DBpedia concepts to estimate a query model. The guiding intuition is that, similar
to our conceptual query models, concepts are best described by the language
use associated with them. In other words, once our algorithm has determined
which concepts are meant by a query, we employ the language use associated
with those concepts to update the query model. We compare the performance of
this approach to pseudo relevance feedback on the collection (in the same way as
presented in Chapter 4) and to pseudo relevance feedback on Wikipedia (similar
to the way we obtain conceptual query models in Chapter 5).



7.1. Linking queries to Wikipedia 145

The research questions we address in this chapter are as follows.

RQ 4. What are the effects on retrieval performance of applying pseudo relevance
feedback methods to texts associated with concepts that are automatically
mapped from ad hoc queries?

a. What are the differences with respect to pseudo relevance estimations
on the collection? And when the query models are estimated using
pseudo relevance estimations on the concepts’ texts?

b. Is the approach mainly a recall- or precision-enhancing device? Or
does it help other aspects, such as promoting diversity?

The main contribution presented in this chapter is to provide an indication to
what extent the LOD-based semantic analysis presented in the previous chapter
can be applied for query modeling in the open domain. In this chapter, we there-
fore make use of the TREC Terabyte 2004–2006 (TREC-TB) and TREC Web 2009,
Category A (TREC-WEB-09) test collections as introduced in Section 3.3. Recall
that TREC Terabyte uses the .GOV2 document collection, a large crawl of the .gov
domain. TREC Web 2009 uses the ClueWeb09 document collection, a realistically
sized web collection. In the experiments in this chapter we use the largest subset,
Category A. The topics associated with the TREC Web 2009 test collection are
taken from a search engine’s log and representative of queries submitted to a web
search engine.

We continue this chapter in Section 7.1 by introducing our method for ob-
taining DBpedia concepts from ad hoc queries. In Section 7.2 we detail how we
estimate the query models as well as the experimental setup used. We discuss
results in Section 7.3 and end with a concluding section.

7.1 Linking queries to Wikipedia

To be able to derive query models based on the concepts meant by the query, we
first need to link queries to concepts (in the form of Wikipedia articles or, equiv-
alently, DBpedia concepts). To this end, we follow the approach from Chapter 6,
which maps queries to DBpedia concepts. In this case, however, we subsequently
apply query modeling. We take the best performing settings from that chapter,
i.e., SVM with a polynomial kernel using full queries. Instead of using the Sound
and Vision dataset, however, we employ two ad hoc TREC test collections in tan-
dem with a dump of the English version of Wikipedia (dump date 20090920).

In order to classify concepts as being relevant to a query, the approach uses
manual query-to-concept annotations to train the SVM model. During testing, a
retrieval run is performed on Wikipedia for new, unseen queries. The results of
which are then classified using the learned model. The output of this step is a
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(a) Topic #42 (“music man”). (b) Topic #39 (“disneyland hotel”).

Figure 7.1: Example query models. The size of a term is proportional to its probabil-
ity in the query model.

label for each concept, indicating whether it is relevant or not. This dichotomy
represents our binary classification problem.

Wikipedia and supervised machine learning have previously been used to se-
lect optimal terms to include in the query model [347]. We, however, are inter-
ested in selecting those concepts that best describe the query and use those to
sample terms from. This is similar to the unsupervised manner used, e.g., in the
context of retrieving blogs [337]. Such approaches are completely unsupervised
in that they only consider a fixed number of pseudo relevant Wikipedia articles.
As we will see below, focusing this set using machine learning improves overall
retrieval performance.

The features that we use include those pertaining to the query, the Wikipedia
article, and their combination. See Section 6.2.3 for an extensive description of
each. Since we are using ad hoc test collections in this case, we do not have ses-
sion information and omit the history-based features. In order to obtain training
data, we have asked 4 annotators to manually identify all relevant Wikipedia arti-
cles for queries in the same fashion as presented in the previous chapter. The av-
erage number of Wikipedia articles the annotators identified per query is around
2 for both collections. The average number of articles identified as relevant per
query by SVM is slightly different between the test collections, with 1.6 for TREC
Terabyte and 2.7 for TREC Web 2009. This seems to be due to the differences in
queries; the TREC Web queries are shorter and, thus, more prone to ambiguity.

Let’s look at some examples. Table 7.1 shows examples of concepts that are
identified by the SVM model on the TREC Web 2009 test collection. We first
observe that, as pointed out above, the queries themselves are short and ambigu-
ous. For query (#48) “wilson antenna,” it predicts ROBERT WOODROW WILSON

as the only relevant concept, classifying concepts such as MOUNT WILSON (CAL-
IFORNIA) as not relevant. For the query “the music man” (#42) it identifies the
company, song, film, and musical which indicates the inherent ambiguity that is
typical for many web queries. The same effect can be observed for the query
“disneyland hotel” (#39) with concepts TOKYO DISNEYLAND HOTEL, DISNEYLAND
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Topic # Query Concepts

2 french lick resort and casino FRENCH LICK RESORT CASINO

FRENCH LICK, INDIANA

13 map MAP

TOPOGRAPHIC MAP

WORLD MAP

THE NATIONAL MAP

14 dinosaurs DINOSAURS

HARRY AND HIS BUCKET FULL OF DINOSAURS

WALKING WITH DINOSAURS

15 espn sports ESPN STAR SPORTS

ESPN
ESPN ON ABC

16 arizona game and fish ARIZONA GAME AND FISH DEPARTMENT

LIST OF LAKES IN ARIZONA

17 poker tournaments POKER TOURNAMENT

ULTIMATE POKER CHALLENGE

23 yahoo YAHOO!
YAHOO! MUSIC

YAHOO! NEWS

24 diversity SPECIES DIVERSITY

GENETIC DIVERSITY

CULTURAL DIVERSITY

26 lower heart rate HEART RATE

HEART RATE VARIABILITY

DOPPLER FETAL MONITOR

28 inuyasha INUYASHA

LIST OF INUYASHA EPISODES

LIST OF INUYASHA CHARACTERS

39 disneyland hotel DISNEYLAND HOTEL (CALIFORNIA)
DISNEYLAND HOTEL (PARIS)
TOKYO DISNEYLAND HOTEL

41 orange county convention center ORANGE COUNTY CONVENTION CENTER

ORANGE COUNTY, CALIFORNIA

LIST OF CONVENTION & EXHIBITION CENTERS

42 the music man THE MUSIC MAN

THE MUSIC MAN (1962 FILM)
MUSIC MAN

THE MUSIC MAN (SONG)

45 solar panels PHOTOVOLTAIC MODULE

48 wilson antenna ROBERT WOODROW WILSON

49 flame designs FLAME OF RECCA

GEORDIE LAMP

Table 7.1: Examples of topics automatically linked to concepts on the TREC Web
2009 test collection.
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HOTEL (CALIFORNIA), and DISNEYLAND HOTEL (PARIS). There are also mistakes,
however, such as predicting the concepts FLAME OF RECCA and GEORDIE LAMP for
the query (#49) “flame designs.” The first concept is a Japanese manga series,
whereas ‘Geordie’ was the nickname of the designer of the mine lamp that served
as a solution to explosions due to firedamp in coal mines.

In the next stage, we take the predicted concepts for each query and estimate
query models from the Wikipedia article associated with each concept. For this,
we adopt the language modeling approach detailed in Section 2.2.2 and as query
model we use the linear interpolation from Eq. 2.10. Recall that there, P (t|θ̃Q)
indicates the empirical estimate on the initial query and P (t|θ̂Q) the expanded
part. In Chapter 4, relevance model 1 (RM-1, cf. Eq. 2.24) had the most robust
performance. We therefore use this model to obtain P (t|θ̂Q) and estimate it on
the contents of the Wikipedia articles associated with the concepts. In essence,
this method is similar to the one we presented in Chapter 5. There, we used
conceptual document annotations to (i) obtain a conceptual representation of
each query and to (ii) “translate” the found concepts to vocabulary terms. In
this chapter, we use the learned SVM model to obtain the first step. Since each
concept is now associated with a single document (the Wikipedia article), we use
those to update the estimate of the query model.

Figure 7.1 shows two example query models for topics #42 and #39 from
the TREC Web 2009 test collection. We note that the initial query terms receive
the largest probability mass and that the terms that are introduced seem mostly
related to the topic.

7.2 Experimental Setup

To determine whether the automatically identified concepts are a useful resource
to improve retrieval performance by updating the query model, we compare our
approach (WP-SVM) against a query likelihood (QL) baseline and against RM-
1 estimated on pseudo relevant documents. In particular, we obtain the set of
pseudo relevant documents in three ways:

1. on the collection (“normal” pseudo relevance feedback—similar to the ap-
proach presented in Chapter 4),

2. on Wikipedia (similar to the approach presented in Chapter 5 as well as
so-called “external expansion” [92, 337]), and

3. on automatically linked Wikipedia articles (linked using the approach from
Chapter 6), as introduced in the previous section.

So, as reference, we use either the collection (RM (C)) or top-ranked Wikipedia
articles (RM (WP)) for query modeling. RM (WP) is obtained using a full-text in-
dex of Wikipedia, containing all the fields introduced in the previous chapter and
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including within-Wikipedia anchortexts and titles. For both RM (WP) and RM (C)
we use the top 10 retrieved documents and include the 10 terms with the highest
probability in P (t|θ̂Q), similar to the experimental setup used in Chapter 4 (there,
on the TREC-PRF-08 collection, RM-1 obtained its highest retrieval performance
when 10 terms were used).

To train the SVM model, we split the topic set of each test collection in a
training and test set. For TREC Terabyte 2004–2006, we have 149 topics of which
74 are used for training and 75 for testing. For TREC Web 2009 we have 50 topics
and use 5-fold cross validation [344]. Similar to the experiments presented in
Chapter 4 and described in Section 3.4 (cf. page 50), we perform a line search of
the parameter space to determine the optimal value for λQ.

7.3 Results and Discussion

Before we report on the experimental results, we first note the performance of
results reported in the literature on the test collections employed in this chapter.
For the TREC Terabyte test collection, this number is not available since we (i)
use an aggregation of the topic sets from all TREC Terabyte 2004–2006 tracks
and (ii) split this new topic set in a training and test set. We do note, however,
that the average MAP score of all systems participating in the TREC Terabyte
2004–2006 tracks is roughly 0.30. For TREC Web 2009, we cannot compare our
absolute scores with those presented in the literature, since we use the mtc-eval
evaluation methodology [61]. Hence, we determine the probability of relevance
for each unjudged document retrieved by the runs presented in this chapter using
the expert tool.1

Table 7.2 lists the results on the TREC Terabyte test collection, optimized for
MAP. Here, applying RM-1 to pseudo relevant documents from the collection
yields highest MAP, although the difference with respect to the MAP values for
RM (WP) and WP-SVM is very small. All models obtain significant improvements
over the baseline in terms of MAP. When the query models are estimated on
Wikipedia, the highest mean reciprocal rank (MRR) is obtained, with WP-SVM
following closely; only WP-SVM and RM (WP) obtain significant improvements
in terms of MRR and recall. WP-SVM retrieves the most relevant documents of
all the models on this collection. Interestingly, it also obtains the highest early
precision.

Figure 7.2 shows a per-topic plot of the performance of WP-SVM relative to
the baseline (a positive value indicates an improvement over the baseline). The
first thing to note is that there are a number of topics that are neither helped nor
hurt. One of the properties of the conceptual mapping approach is that the SVM
may decide that none of the candidate concepts are relevant. The query model is

1See http://ir.cis.udel.edu/~carteret/downloads.html.

http://ir.cis.udel.edu/~carteret/downloads.html
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λQ P10 RelRet MRR MAP

QL 0.0 0.439 0% 6965 0% 0.631 0% 0.228 0%
RM (C) 0.3 0.515* +17% 7872* +13% 0.623 -1% 0.294* +29%
RM (WP) 0.2 0.527* +20% 7836* +13% 0.713* +13% 0.287* +26%
WP-SVM 0.2 0.532* +21% 7902* +13% 0.711* +13% 0.286* +25%

Table 7.2: Results on the TREC Terabyte test collection, optimized for MAP.
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Figure 7.2: Per-topic breakdown of the improvement of WP-SVM over the QL baseline
on the TREC Terabyte test collection.

left as is in that case, yielding the same performance as the baseline. This is the
case for 30 out of the 75 TREC Terabyte topics. We further observe that, although
about as many topics are helped as hurt in terms of MAP, there are more topics
that are helped more using WP-SVM on early precision. So, in those cases where
concepts are identified, early precision is helped most.

Topic #847 (“Portugal World War II”) is a topic that is hurt when applying
WP-SVM. Here, the two concepts that are returned (LIST OF MILITARY VEHICLES

and LIST OF SHIPWRECKS IN 1943) are vaguely related but not relevant to the
query. Topics that are helped using WP-SVM include “train station security mea-
sures” (#711), caused by the suggested concept SECURITY ON THE MASS RAPID

TRANSIT. Another topic that is helped on this test collection is topic #733 “Airline
overbooking”. Here, the concept AIRLINE is the only suggestion. For topic #849
(“Scalable Vector Graphics”), the concepts SCALABLE VECTOR GRAPHICS and VEC-
TOR GRAPHICS are returned, causing 42 more relevant documents to be returned.
These findings provide evidence that Wikipedia is a useful resource for query
modeling; the approach functions as both a recall- and a precision-enhancing de-
vice.

As to TREC Web 2009, Table 7.3 shows the results on this test collection, using
mtc-eval measures [61], which were introduced in Chapter 3. On this collection
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λQ eP10 eR-prec eMAP

QL 1.0 0.077 0% 0.272 0% 0.127 0%
RM (C) 0.5 0.070 -9% 0.278 +2% 0.130 +2%
RM (WP) 0.5 0.082* +6% 0.268* -1% 0.123* -3%
WP-SVM 0.0 0.241* +213% 0.348* +28% 0.193* +52%

Table 7.3: Results on the TREC Web test collection (Category A), optimized for eMAP.
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Figure 7.3: Per-topic breakdown of the improvement of WP-SVM over the QL baseline
on the TREC Web test collection using ad hoc measures.

of web pages, we observe that merely relying on the baseline approach yields
very low retrieval performance. Applying pseudo relevance feedback on the col-
lection does not help; in fact, retrieval performance in terms of early precision is
degraded in that case.

When estimating a relevance model from Wikipedia (RM (WP)), we find a
slight decrease in terms of eMAP. It does yield a significant improvement in terms
of eP10, however. Moreover, in this case, eR-prec is also significantly improved.
WP-SVM improves the performance on all metrics. Interestingly, the best results
here are obtained when λQ = 1.0, i.e., when all probability mass is given to the
expanded query part.

Figure 7.3 again shows per-topic plots, this time for the TREC Web test collec-
tion. From these plots it is clear that WP-SVM helps to substantially improve early
precision on this test collection; eMAP is also improved over almost all topics.
Topics that are helped most include #46 (“alexian brothers hospital”—caused by
the concepts ALEXIANS and LIST OF HOSPITALS IN ILLINOIS) and #25 (“euclid”—
caused by the single matching concept EUCLID). Topic #12 (“djs”) is hurt most
in terms of eP10 and is the only topic that is hurt on eMAP. Here, three DJs are
identified as concepts (QUAD CITY DJ’S, PLUMP DJS, and SOULWAX) but they do
not help to improve on early precision. In sum, the results presented so far in-
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λQ IA-P@10 α-nDCG@10

QL 1.0 0.017 0% 0.041 0%
RM (C) 0.5 0.013 -24% 0.032* -22%
RM (WP) 0.5 0.016 -6% 0.038 -7%
WP-SVM 0.6 0.035 +106% 0.065 +59%

Table 7.4: Results on the TREC Web test collection in terms of diversity, optimized
for α-NDCG@10.

dicate that supervised query modeling using Wikipedia is helpful for large, noisy
collections.

The TREC Web 2009 track featured a sub-track in which the aim was to im-
prove upon diversity in the document ranking, as introduced in Chapter 3. Recall
that diversity aims to reward those document rankings in which documents that
are related to subtopics of the query appear at the top. Moreover, rankings that
retrieve documents relating to many subtopics are preferred to those that cover
fewer subtopics. The subtopics for the TREC Web 2009 track are based on in-
formation extracted from the logs of a commercial search engine and roughly
balanced in terms of popularity. When we evaluate WP-SVM on the TREC Web
2009 collection using the diversity track’s measures, cf. Table 7.4, we arrive at the
same picture as for ad hoc retrieval.1 Pseudo relevance feedback on the collection
hurts diversity using both measures. We observe the same results, although to a
lesser extent, when applying pseudo relevance feedback on Wikipedia. When we
use WP-SVM, however, the diversity of the document rankings is improved, as
measured by both IA-P@10 and α-nDCG@10, although not significantly so.

Figure 7.4 shows per-topic plots of the diversity measures, comparing the
baseline to WP-SVM. From these plots it is clear why we do not obtain signifi-
cant improvements; diversity is only helped on a small number of topics. Topic
#49 (“flame designs”) is the only topic that is hurt. For this topic, the concepts
FLAME OF RECCA and GEORDIE LAMP are retrieved. Both do not seem relevant
to the topic, causing the decline in terms of diversity performance. In contrast,
topics #1 (“obama family tree”) and #46 (“alexian brothers hospital”) are exam-
ples of topics that are helped. For the first, the concepts FAMILY TREE, MICHELLE

OBAMA, and RULERS OF RUSSIA FAMILY TREE are identified. For the second, the
concepts ALEXIANS and LIST OF HOSPITALS IN ILLINOIS are identified. In both
cases, each concept refers to a different aspect of the query. Hence, the estimated
query models are also diverse in these aspects which in turn helps to improve di-

1The absolute values shown in Table 7.4 are low as compared to those obtained by the participants
of that particular track (the median IA-P@10 score lies around 0.054). We note, however, that the
runs presented in this chapter do not incorporate any information pertaining to the graph structure
associated with the web pages, nor do they explicitly incorporate diversity information [126, 167].
The method presented here may be applied in conjunction with any diversity-improving algorithm.
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Figure 7.4: Per-topic breakdown of the improvement of WP-SVM over the QL baseline
on the TREC Web test collection using diversity measures.

versity in the resulting document ranking. These findings, in conjunction with the
examples provided earlier, indicate that our query modeling approach caters for
multiple interpretations of the query since prominent terms from the Wikipedia
article associated with each identified concept are included in the query model.

7.4 Summary and Conclusions

In this chapter we have presented a query modeling method that brings together
intuitions from the preceding chapters. It proceeds by using the conceptual map-
ping approach from Chapter 6 to map open domain queries to DBpedia. Next, we
use the natural language associated with each concept (in the form of the text of
the accompanying Wikipedia article) to estimate a query model. This approach
serves as a means to (i) understanding a query, by identifying concepts meant
by it and (ii) leveraging the natural language associated with those concepts to
improve end-to-end retrieval performance.

The research questions we have addressed in this chapter are as follows.

RQ 4. What are the effects on retrieval performance of applying pseudo relevance
feedback methods to texts associated with concepts that are automatically
mapped from ad hoc queries?

On a relatively small web collection, we have found small but significant improve-
ments over a query likelihood baseline. On a much larger web corpus, we have
achieved improvements on all metrics, whether precision or recall oriented, es-
pecially when relying exclusively on externally derived contributions to the query
model. In some cases, the concept selection stage does not classify any concepts
as being relevant to the query, which results in obtaining the same performance
as the baseline. Averaged over all topics, however, the estimated query models
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using the found concepts result in significantly improved retrieval performance in
terms of precision.

RQ 4a. What are the differences with respect to pseudo relevance estimations
on the collection? And when the query models are estimated using pseudo
relevance estimations on the concepts’ texts?

On the TREC Terabyte collection, we have found improvements of our model
over RM-1 estimated on pseudo relevant documents from the collection in terms
of both recall and early precision. When estimated on the concepts’ texts, we
have observed that RM-1 yields the highest MRR (although only slightly better
than WP-SVM).

On the TREC Web 2009 test collection, we have found that our approach
improves over pseudo relevance feedback on all measures. Applying pseudo rele-
vance feedback for query modeling does not seem to help on this test collection,
neither when estimated on documents from the collection, nor when estimated
on Wikipedia. In the latter case, early precision is slightly (and significantly)
improved over the baseline, whereas eMAP is significantly worse.

RQ 4b. Is the approach mainly a recall- or precision-enhancing device? Or does
it help other aspects, such as promoting diversity?

On the TREC Terabyte test collection, we have found significant increases in terms
of both recall and early precision; a finding corroborated on the TREC Web test
collection. There, we have observed substantial gains in terms of both traditional
metrics and diversity measures. When considering diversity, we have observed
major improvements using our approach.

In sum, we have shown that employing the texts associated with automat-
ically identified concepts for query modeling can improve end-to-end retrieval
performance. This effect is most notable on a recent, realistically sized document
collection of crawled web pages. Using diversity measures put forward on that
test collection, we have also noted that WP-SVM is able to substantially improve
the diversity of the result list.



Problems cannot be solved
by the same level of awareness
that created them.

Albert Einstein 8
Conclusions

As a starting point for the thesis we observed that common IR approaches have
typically used either full-text indexing or indexing using concepts and, moreover,
that few methods exist where the two are combined in a principled manner. Re-
cent advances in the language modeling for IR framework have enabled the use
of rich query representations in the form of query language models. This, in turn,
has enabled the use of the natural language associated with concepts to be in-
cluded in the retrieval model in a principled and transparent manner. We have
investigated how we can employ the actual use of concepts as measured by the
natural language that people use when they discuss them. Furthermore, recent
developments in the semantic web community, such as DBpedia and the inception
of the Linked Open Data cloud, have enabled the association of texts with con-
cepts on a large scale. These developments enable us to move beyond manually
assigned concepts in domain-specific contexts and into the general domain.

The main motivation for this thesis has been to verify whether knowledge
captured in concept languages and the associations between concepts and natu-
ral language texts can be successfully used to inform IR algorithms and improve
information access. Such algorithms are able to match queries and documents
not only on a textual, but also on a semantic level. We present and evaluate sev-
eral models and methods and perform and report on extensive experiments. In
sum, we have shown that employing the (natural) language use associated with
concepts can successfully and significantly improve information access.

In the remainder of this chapter we conclude the thesis. We first answer the
research questions governing the preceding chapters (Section 8.1) and then con-
clude the thesis by discussing several directions for future work.

8.1 Main Findings

The general question governing this thesis has been: “How can we leverage con-
ceptual knowledge in the language modeling framework to improve information
access?” We have approached this question as a query modeling problem. That
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is, we have looked at methods and algorithms to improve textual queries or their
representations using concept languages in the context of generative language
models. This main question has lead us to formulate five main research questions
listed in Section 1.4 which have been answered in the previous chapters. In this
section we recall the answers.

We have started the thesis with an overview of current approaches to informa-
tion retrieval, concept languages, and their combination (Chapters 2 and 3). We
have zoomed in on a technique called query modeling, with which the informa-
tion need of a user can be captured more thoroughly than solely using the initial
query.

In Chapter 4, we have employed pseudo and explicit user feedback in the form
of relevance ratings at the document level to improve the estimation of the query
model. The first research question thus dealt with relevance feedback methods
for query modeling. We asked:

RQ 1. What are effective ways of using relevance feedback information for query
modeling to improve retrieval performance?

We have presented two query modeling methods for relevance feedback that
are based on leveraging the similarity between feedback documents and the set
thereof. By providing a comprehensive analysis, evaluation, comparison, and dis-
cussion (in both theoretical and practical terms) of our novel and various other
core models for query modeling using relevance feedback, we have shown that
all the models we have evaluated are able to improve upon a baseline without
relevance feedback in the case of explicit relevance feedback. One of our pro-
posed models (NLLR) is particularly suited when explicit relevance assessments
are available. In the case of pseudo relevance feedback, we have observed that
RM-1 is the most robust model. Parsimonious relevance models, on the other
hand, perform very well on large, noisy collections. We have further found that, in
the case of pseudo relevance feedback, there exists a large variance in the result-
ing retrieval performance for different amounts of pseudo relevant documents,
most notably on large, noisy collections. We have also concluded that the test
collection itself is of influence on the relative performance of the models; there
is no single model that outperforms the others on all test collections. As to the
observations made when using explicit relevance feedback, here we found that
the variance with respect to the number of feedback documents is much less pro-
nounced. Furthermore, one of the two novel methods we introduce consequently
outperforms the other models.

Inspired by relevance feedback methods, we then developed a two-step method
in Chapter 5 that uses concepts to estimate a conceptual query model. Here, we
moved beyond the lexical level by introducing an automatic method for generat-
ing a conceptual representation of a query and subsequently using this represen-
tation to improve end-to-end retrieval. We asked
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RQ 2. What are effective ways of using conceptual information for query model-
ing to improve retrieval performance?

We have introduced a novel way of using document-level annotations in the form
of concepts to improve end-to-end retrieval performance. We have found that our
proposed method obtained the highest performance of all evaluated models. We
have concluded that, although each step in our method of applying conceptual
language models is not significantly different from the other, the full model is
able to significantly outperform both a standard language modeling and a pseudo
relevance feedback approach.

After that, in Chapter 6, we have considered DBpedia as a concept language,
in which case each Wikipedia article constitutes a concept. Here, we have turned
to a different way of obtaining concepts pertinent to a user’s query based on
supervised machine learning. The research question was:

RQ 3. Can we successfully address the task of mapping search engine queries to
concepts using a combination of information retrieval and machine learning
techniques?

We have developed a novel way of associating concepts with queries that can
effectively handle arbitrary features and answered this question in the affirmative.
We have concluded that our proposed approach significantly outperforms other
methods, including commonly used methods based on a lexical matching between
query terms and concept labels.

In the next chapter (Chapter 7), we have moved to the open domain and
brought together the ideas presented in all preceding chapters. We have taken
the conceptual mapping approach from Chapter 6 to obtain DBpedia concepts.
Next, we have used the natural language text associated with each concept (in the
form of the accompanying Wikipedia article) to estimate a query model, similar to
the conceptual language models presented in Chapter 5. The associated research
question was:

RQ 4. What are the effects on retrieval performance of applying pseudo relevance
feedback methods to texts associated with concepts that are automatically
mapped from ad hoc queries?

We have found that the conceptual mapping method presented in Chapter 6 trans-
fers well to the open domain; the linked concepts seem reasonable and the esti-
mated query models are to the point. When evaluated, we have concluded that
our novel method is able to improve recall, precision, and diversity metrics on
two large web collections.
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8.2 Implications for Future Work

There exist several unexplored avenues of research that are either opened or have
not yet been fully addressed by the work presented in this thesis. Here we list
these, in no particular order.

In Chapters 4, 5, and 7, we have measured the “quality” of query models
by their resulting retrieval performance. While one could argue that improving
end-to-end retrieval performance should be the ultimate goal of improving query
model estimations, other ways by which to explicitly measure the quality of the
query models themselves should be investigated. Examples of such measures
would include perplexity measures or scores related to query clarity [84]. What
existing measures cannot account for, however, is an intrinsic measure of diversity
with which different topical aspects of a query model could be quantified.

In Chapter 7 we have used a mapping from queries to concepts to automat-
ically estimate query models and shown that this resulted in improved retrieval
performance. Besides having the potential of automatically improving the re-
trieval performance on certain topics we believe that, similar to our observations
in Chapter 5, the biggest improvements may be realized when a user selects the
most relevant concepts. Future work should indicate if this is a valid assumption
and whether such conceptual representations are appreciated by and useful to an
end user.

In Chapters 5 and 6 we have obtained an explicit conceptual representation
of the query. Several ideas may be employed to improve the performance of this
step. For example, a form of query segmentation could be used to identify signifi-
cant phrases in the queries [118]. Such information could then be used to inform
the conceptual mapping process. Additional features can also be added, for ex-
ample structural ones such as those pertaining to the structure of the ontology.
Although we have found that the method presented in Chapter 6 obtained con-
vincing results and improvements over the two baselines, we believe that further
improvements may be obtained by considering the graph structure of DBpedia (or
the LOD cloud in general). One example of such an improvement could be to use
the candidate concepts and the graph structure to “zoom in” on a relevant sub-
graph of the knowledge structure. This information could subsequently be used
for disambiguation purposes, by determining the concepts closest to or contained
in this graph. Indeed, in the work presented in this thesis, we have not made any
explicit use of any relations (known, discovered, or otherwise) between concepts.
In [317] we have introduced a method which uses language modeling estimations
to determine the relatedness of two concepts, an approach which is taken further
by Trieschnigg et al. [318]. Such estimations effectively “anchor” the perceived
meaning of concepts in the language use surrounding each concept and we be-
lieve that this avenue of research deserves further investigation when mapping
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queries to concepts. Furthermore, related concepts may also be used to perform
a kind of “semantic smoothing,” in the context of our proposed conceptual query
models.

Our task definition in Chapter 6 required fairly strict matches between the
queries and DBpedia concepts, comparable to finding skos:exactMatch or even
owl:equivalentClass relations in an ontology matching task. However, our task
can also be interpreted in a more liberal sense, where not only exact matches but
also semantically related concepts are suggested [26, 218]. For example, when
a query contains a book title that is not represented by a concept in DBpedia,
we could suggest its author (assuming the book title is mentioned in the author’s
Wikipedia page). Similarly, instances for which no concept is found can be linked
to a more general concept. We believe that our approach can be adapted to
incorporate such semantically related general instances of a specific concept could
be defined as a correct concept for mapping.

One other aspect that we intend to investigate in the context of Chapter 6 is
how to incorporate information from other parts of the LOD cloud. Our current
approach has focused on DBpedia, which might be too limited for some queries.
We have shown in [26] that, although DBpedia covers the open domain well, it
does not exhaustively cover entity-related information. Future work should indi-
cate whether traversing links to other, connected knowledge repositories would
yield additional relevant concepts. It would also be interesting to consider more
“noisy” types of concept languages that were excluded from the thesis, such as
Twitter hashtags or del.icio.us tags [96]. Another interesting angle would be to
consider a form of automatic keyphrase extraction in this context [116, 220]. Re-
cent research into supervised topic models and labeled LDA [39, 255], as well as
work done for word sense disambiguation [44] and topic identification [80] could
also provide an interesting link between observed text and concept languages.

Furthermore, another abstraction layer may be imposed upon concepts in the
form of concept types. Examples of such types are sets of Wikipedia articles,
grouped together by a common category or by a shared infobox. In previous
work we have shown that information pertaining to such concept types can be
useful for generating query suggestions for rare or unseen queries [217, 218]
and query log analysis [227]. In this thesis we have solely looked at concepts
in their own right, discarding any potential type-based information. If and how
this kind of information can be used to improve ad hoc retrieval is an interesting
continuation of work presented in the thesis.

Recently, several evaluation campaigns have started to investigate methods for
retrieving entities, a task known as entity finding [25, 87]. Both of these define
entities as Wikipedia articles, much in the same way as we have used Wikipedia
articles as concepts. So, phrased in this way, the goal is not to use Wikipedia based
information for ad hoc retrieval but rather the other way around: use documents
as evidence towards concept retrieval. Some of the models presented in this
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thesis (for example those presented in Chapter 6) can be modified or applied
to this new task. Another interesting application would be so-called undirected
informational queries [270], where the information need is “open” and the user
is solely interested in learning more on a certain topic. We are currently only
taking the first steps in these new directions and future work should indicate in
which ways the methods and models developed in the thesis can be applied to
such tasks.

Finally, answering information needs which contain an explicit relationship
type between concepts is a current research topic, as witnessed by a dedicated
task at the recently launched TREC Entity Track. As we have shown in [26], this
particular task is currently one of the best candidates for developing techniques
which will bridge the gap between semantic web technologies and information
retrieval. In [26] we further show that both semantic web and IR approaches fair
well on the task of related entity finding, with each yielding unique sets of rele-
vant results. We have argued then and maintain the position now that semantic
web and IR are two sides of the same coin. Especially with the advent of DBpedia,
YAGO, and, more generically, the LOD cloud, semantic web requires IR techniques
and methodologies for handling the growing volumes of data, whereas IR needs
a form of semantic anchoring of the obtained results.



Bibliography

[1] Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. (2009). Diversifying search results. In
WSDM ’09: Proceedings of the Second ACM International Conference on Web Search and Data Mining,
pages 5–14, New York, NY, USA. ACM. (Cited on Pages 43 and 44.)

[2] Agrawal, S., Chaudhuri, S., and Das, G. (2002). Dbxplorer: A system for keyword-based search
over relational databases. In Proceedings of the 18th International Conference on Data Engineering,
pages 5–16. (Cited on Page 35.)

[3] Aleksovski, Z., Klein, M. C. A., ten Kate, W., and van Harmelen, F. (2006). Matching unstructured
vocabularies using a background ontology. In Managing Knowledge in a World of Networks, 15th
International Conference, EKAW 2006, pages 182–197. (Cited on Page 37.)

[4] Allan, J., Carterette, B., Dachev, B., Aslam, J. A., Pavlu, V., and Kanoulas, E. (2007). Million
query track 2007 overview. In E. M. Voorhees and L. P. Buckland, editors, TREC, volume Special
Publication 500-274. National Institute of Standards and Technology (NIST). (Cited on Pages 47
and 48.)

[5] Alonso, O. and Mizzaro, S. (2009). Can we get rid of TREC assessors? using mechanical turk for
relevance assessment. In SIGIR 2009 Workshop on The Future of IR Evaluation. (Cited on Page 41.)

[6] Alonso, O. and Zaragoza, H. (2010). Special issue on semantic annotations in information re-
trieval. Information Processing and Management, 46(4), 381–382. (Cited on Page 3.)

[7] Alonso, O., Rose, D. E., and Stewart, B. (2008). Crowdsourcing for relevance evaluation. SIGIR
Forum, 42(2), 9–15. (Cited on Page 41.)

[8] Amati, G. and Van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM Trans. Inf. Syst., 20(4), 357–389. (Cited on
Page 13.)

[9] Anick, P. (2003). Using terminological feedback for web search refinement: a log-based study.
In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 88–95, New York, NY, USA. ACM. (Cited on Pages 23
and 144.)

[10] Anick, P. and Kantamneni, R. G. (2008). A longitudinal study of real-time search assistance
adoption. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 701–702. (Cited on Page 113.)

[11] Arguello, J., Diaz, F., Callan, J., and Crespo, J.-F. (2009). Sources of evidence for vertical
selection. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 315–322, New York, NY, USA. ACM. (Cited on
Page 144.)

[12] Aronson, A. R. (1994). Exploiting a large thesaurus for information retrieval. In J.-L. Funck-
Brentano and F. Seitz, editors, RIAO, pages 197–217. CID. (Cited on Page 124.)

[13] Artstein, R. and Poesio, M. (2008). Inter-coder agreement for computational linguistics. Comput.
Linguist., 34(4), 555–596. (Cited on Pages 129 and 130.)

[14] Aslam, J. A., Pavlu, V., and Yilmaz, E. (2006). A statistical method for system evaluation using
incomplete judgments. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 541–548, New York, NY,
USA. ACM. (Cited on Pages 43 and 44.)

[15] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007). DBpedia: A
nucleus for a web of open data. In Proceedings of 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference (ISWC+ASWC 2007), pages 722–735. (Cited on Pages 3, 111,
and 112.)

[16] Azzopardi, L. and Roelleke, T. (2007). Explicitly considering relevance within the language

161



162 Bibliography

modeling framework. In ICTIR ’07: Proceedings of the 1st International Conference on Theory of
Information Retrieval, pages 125–134. (Cited on Page 19.)

[17] Azzopardi, L., Kazai, G., Robertson, S. E., Rüger, S. M., Shokouhi, M., Song, D., and Yilmaz,
E., editors (2009). Advances in Information Retrieval Theory, Second International Conference on
the Theory of Information Retrieval, ICTIR 2009, volume 5766 of Lecture Notes in Computer Science.
Springer. (Cited on Pages 163 and 168.)

[18] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley.
(Cited on Pages 36, 120, and 121.)

[19] Baeza-Yates, R., Broder, A., Maarek, Y., and Raghavan, P. (2010). The new frontiers of web
search: going beyond the 10 blue links. In D. Harper and P. Schäuble, editors, 33rd Annual ACM
SIGIR Conference: SIGIR 2010 Industry Track. Presented at the SIGIR 2010 Industry Track. (Cited
on Pages 143 and 144.)

[20] Bai, J. and Nie, J.-Y. (2008). Adapting information retrieval to query contexts. Information
Processing and Management, 44(6), 1901–1922. (Cited on Pages 20 and 21.)

[21] Bai, J., Song, D., Bruza, P., Nie, J.-Y., and Cao, G. (2005). Query expansion using term rela-
tionships in language models for information retrieval. In CIKM ’05: Proceedings of the 14th ACM
international conference on Information and knowledge management, pages 688–695, New York, NY,
USA. ACM Press. (Cited on Pages 20, 21, and 30.)

[22] Bailey, P., Craswell, N., White, R., Chen, L., Satyanarayana, A., and Tahaghoghi, S. M. M.
(2010). Evaluating search systems using result page context. In IIIX ’10: Proceedings of the fourth
international symposium on Information interaction in context. (Cited on Page 41.)

[23] Balog, K. (2008). People Search in the Enterprise. Ph.D. thesis, University of Amsterdam. (Cited
on Page 96.)

[24] Balog, K., Weerkamp, W., and de Rijke, M. (2008). A few examples go a long way: constructing
query models from elaborate query formulations. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information retrieval, pages
371–378, New York, NY, USA. ACM. (Cited on Pages 18, 20, 21, 27, and 57.)

[25] Balog, K., de Vries, A. P., Serdyukov, P., Thomas, P., and Westerveld, T. (2009). Overview of the
TREC 2009 entity track. In [331]. (Cited on Page 159.)

[26] Balog, K., Meij, E., and de Rijke, M. (2010). Entity search: Building bridges between two worlds.
In Proceedings of the Workshop on Semantic Search (SemSearch 2010) at the 19th International
World Wide Web Conference (WWW 2010). (Cited on Pages 10, 159, and 160.)

[27] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007). Open in-
formation extraction from the web. In M. M. Veloso, editor, IJCAI, pages 2670–2676. (Cited on
Page 111.)

[28] Beitzel, S. M., Jensen, E. C., Lewis, D. D., Chowdhury, A., and Frieder, O. (2007). Automatic
classification of web queries using very large unlabeled query logs. ACM Trans. Inf. Syst., 25(2), 9.
(Cited on Page 124.)

[29] Bendersky, M. and Croft, W. B. (2008). Discovering key concepts in verbose queries. In SIGIR
’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development
in information retrieval, pages 491–498, New York, NY, USA. ACM. (Cited on Pages 20 and 33.)

[30] Bennett, G., Scholer, F., and Uitdenbogerd, A. (2007). A comparative study of probabilistic and
language models for information retrieval. In ADC ’08: Proceedings of the nineteenth conference
on Australasian database, pages 65–74, Darlinghurst, Australia, Australia. Australian Computer
Society, Inc. (Cited on Pages 16 and 50.)

[31] Berger, A. and Lafferty, J. (1999). Information retrieval as statistical translation. In SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, pages 222–229, New York, NY, USA. ACM. (Cited on Pages 21, 22, and 89.)

[32] Berners-Lee, T. (2009). Linked Data – Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html [Online; accessed August 2010]. (Cited on Pages 111 and 144.)

[33] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American.
(Cited on Page 3.)

[34] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S. (2002). Keyword search-
ing and browsing in databases using banks. In Proceedings of the 18th International Conference on
Data Engineering, pages 431–440. (Cited on Page 35.)

[35] Bhogal, J., Macfarlane, A., and Smith, P. (2007). A review of ontology based query expansion.
Information Processing and Management, 43(4), 866–886. (Cited on Pages 20 and 32.)

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html


Bibliography 163

[36] Bizer, C., Heath, T., Idehen, K., and Berners-Lee, T. (2008). Linked data on the web. In WWW
’08: Proceeding of the 17th international conference on World Wide Web, pages 1265–1266. (Cited
on Page 111.)

[37] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(3), 1–22. (Cited on Pages 111
and 144.)

[38] Blair, D. C. (2003). Information retrieval and the philosophy of language. Annual Review of
Information Science and Technology, 37, 3–50. (Cited on Page 13.)

[39] Blei, D. M. and Mcauliffe, J. D. (2007). Supervised topic models. In Advances in Neural Infor-
mation Processing Systems 21. (Cited on Page 159.)

[40] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3, 993–1022. (Cited on Pages 30 and 31.)

[41] Blocks, D., Binding, C., Cunliffe, D., and Tudhope, D. (2002). Qualitative evaluation of
thesaurus-based retrieval. In ECDL ’02: Proceedings of the 6th European Conference on Research
and Advanced Technology for Digital Libraries, pages 346–361. (Cited on Page 113.)

[42] Bordino, I., Castillo, C., Donato, D., and Gionis, A. (2010). Query similarity by projecting
the query-flow graph. In SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, pages 515–522, New York, NY, USA. ACM.
(Cited on Page 144.)

[43] Boscarino, C. and de Vries, A. P. (2009). Prior information and the determination of event
spaces in probabilistic information retrieval models. In [17], pages 257–264. (Cited on Pages 13
and 19.)

[44] Boyd-Graber, J. L., Blei, D. M., and Zhu, X. (2007). A topic model for word sense disambiguation.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 1024–1033. (Cited on Page 159.)

[45] Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7), 107–117. (Cited on Pages 69 and 143.)

[46] Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3–10. (Cited on Page 144.)
[47] Broder, A. Z., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., and Zhang, T. (2007).

Robust classification of rare queries using web knowledge. In SIGIR ’07. (Cited on Page 33.)
[48] Buckley, C. and Robertson, S. (2008). Relevance feedback track overview: TREC 2008. In [331].

(Cited on Pages 22, 47, and 77.)
[49] Buckley, C. and Voorhees, E. M. (2000). Evaluating evaluation measure stability. In SIGIR ’00:

Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, pages 33–40, New York, NY, USA. ACM. (Cited on Pages 41, 43, and 45.)

[50] Buckley, C. and Voorhees, E. M. (2004). Retrieval evaluation with incomplete information.
In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 25–32, New York, NY, USA. ACM. (Cited on Page 24.)

[51] Buckley, C., Salton, G., and Allan, J. (1994). The effect of adding relevance information in a
relevance feedback environment. In SIGIR ’94: Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 292–300, New York,
NY, USA. Springer-Verlag New York, Inc. (Cited on Page 83.)

[52] Buckley, C., Dimmick, D., Soboroff, I., and Voorhees, E. (2007). Bias and the limits of pooling
for large collections. Information Retrieval, 10(6), 491–508. (Cited on Pages 24, 41, 43, and 78.)

[53] Buitelaar, P., Cimiano, P., and Magnini, B. (2005). Ontology Learning from Text: Methods, Eval-
uation and Applications. IOS Press. (Cited on Page 37.)

[54] Burges, C. J. C., Ragno, R., and Le, Q. V. (2006). Learning to rank with nonsmooth cost func-
tions. In B. Schölkopf, J. C. Platt, T. Hoffman, B. Schölkopf, J. C. Platt, and T. Hoffman, editors,
NIPS, pages 193–200. MIT Press. (Cited on Page 51.)

[55] Büttcher, S., Clarke, C. L. A., and Soboroff, I. (2006). The TREC 2006 terabyte track. In [330].
(Cited on Page 47.)

[56] Camous, F., Blott, S., and Smeaton, A. F. (2006). On combining MeSH and text searches to
improve the retrieval of Medline documents. In Proceedings of the Third Conference en Recherche
d’Informations et Applications (CORIA). (Cited on Page 34.)

[57] Cao, G., Nie, J.-Y., and Bai, J. (2005). Integrating word relationships into language models.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 298–305, New York, NY, USA. ACM. (Cited on Pages 21,



164 Bibliography

22, and 30.)
[58] Cao, G., Nie, J.-Y., Gao, J., and Robertson, S. (2008). Selecting good expansion terms for

pseudo-relevance feedback. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 243–250, New York, NY,
USA. ACM. (Cited on Page 21.)

[59] Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaisé, V., Meilicke, C., Pane,
J., , Shvaiko, P., Stuckenschmidt, H., Šváb, O., and Svátek, V. (2008). Results of the ontology
alignment evaluation initiative 2008. In The Third International Workshop on Ontology Matching
at ISWC, pages 73–120. (Cited on Page 36.)

[60] Carpineto, C., de Mori, R., Romano, G., and Bigi, B. (2001). An information-theoretic approach
to automatic query expansion. ACM Trans. Inf. Syst., 19(1), 1–27. (Cited on Pages 57 and 58.)

[61] Carterette, B., Allan, J., and Sitaraman, R. (2006). Minimal test collections for retrieval evalu-
ation. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 268–275, New York, NY, USA. ACM. (Cited on
Pages 41, 44, 48, 149, and 150.)

[62] Carterette, B., Pavlu, V., Kanoulas, E., Aslam, J. A., and Allan, J. (2008). Evaluation over thou-
sands of queries. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, pages 651–658, New York, NY, USA. ACM.
(Cited on Pages 41, 43, 44, and 48.)

[63] Chelba, C. and Jelinek, F. (1998). Exploiting syntactic structure for language modeling. In
ACL-36: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, pages 225–231. (Cited on Page 14.)

[64] Chemudugunta, C., Holloway, A., Smyth, P., and Steyvers, M. (2008). Modeling documents by
combining semantic concepts with unsupervised statistical learning. In ISWC ’08: Proceedings of
the 7th International Semantic Web Conference, pages 229–244. (Cited on Page 37.)

[65] Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques for language
modeling. In Proceedings of the 34th annual meeting on Association for Computational Linguis-
tics, pages 310–318, Morristown, NJ, USA. Association for Computational Linguistics. (Cited on
Page 16.)

[66] Chen, Y., Xue, G.-R., and Yu, Y. (2008). Advertising keyword suggestion based on concept
hierarchy. In WSDM ’08: Proceedings of the international conference on Web search and web data
mining, pages 251–260, New York, NY, USA. ACM. (Cited on Page 34.)

[67] Chung, Y. (2004). Optimization of some factors affecting the performance of query expansion.
Information Processing and Management, 40(6), 891–917. (Cited on Page 30.)

[68] Church, K. W. and Gale, W. A. (1995). Inverse document frequency (IDF): A measure of devi-
ations from poisson. In Proc. Third Workshop on Very Large Corpora, pages 121–130. (Cited on
Page 121.)

[69] Cimiano, P., Schultz, A., Sizov, S., Sorg, P., and Staab, S. (2009). Explicit versus latent concept
models for cross-language information retrieval. In IJCAI’09: Proceedings of the 21st international
jont conference on Artifical intelligence, pages 1513–1518, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc. (Cited on Page 30.)

[70] Clarke, C., Cormack, G., Lynam, T., Buckley, C., and Harman, D. (2009). Swapping documents
and terms. Information Retrieval, 12(6), 680–694. (Cited on Pages 67 and 69.)

[71] Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher, S., and MacKin-
non, I. (2008). Novelty and diversity in information retrieval evaluation. In SIGIR ’08: Proceedings
of the 31st annual international ACM SIGIR conference on Research and development in information
retrieval, pages 659–666, New York, NY, USA. ACM. (Cited on Pages 43 and 44.)

[72] Clarke, C. L. A., Craswell, N., and Soboroff, I. (2010). Overview of the TREC 2009 web track.
In [331]. (Cited on Page 47.)

[73] Clements, M., de Vries, A. P., and Reinders, M. J. T. (2010). The influence of personalization on
tag query length in social media search. Information Processing and Management, 46(4), 403–412.
(Cited on Page 20.)

[74] Cleverdon, C. W. (1966). The effect of variations in relevance assessments in comparative
experimental tests of index languages. Technical Report 3, Cranfield Institute of Technology, UK.
(Cited on Pages 2, 32, and 40.)

[75] Cleverdon, C. W., Mills, J., and Keen, M. (1966). Factors determining the performance of
indexing systems. In ASLIB Cranfield project, Cranfield. (Cited on Pages 2 and 40.)



Bibliography 165

[76] Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T., Jensen, J., and Hersh, W.
(2005). The CLEF 2005 Cross-Language Image Retrieval Track. In CLEF 2005 Working Notes.
(Cited on Page 20.)

[77] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1), 37–46. (Cited on Page 129.)

[78] Cool, C., Belkin, N., Erieder, ., and Kantor, P. (1993). Characteristics of texts affecting relevance
judgments. In Proceedings of the 14th National Online Meeting, pages 77–84. (Cited on Page 39.)

[79] Cooper, W. S. (1973). On selecting a measure of retrieval effectiveness. part i. the "subjective"
philosophy of evaluation; Part II. implementation of the philosophy. Journal of the American Society
for Information Science, 24, 87–100; 413–424. (Cited on Page 39.)

[80] Coursey, K., Mihalcea, R., and Moen, W. (2009). Using encyclopedic knowledge for automatic
topic identification. In CoNLL ’09: Proceedings of the Thirteenth Conference on Computational Nat-
ural Language Learning, pages 210–218. (Cited on Page 159.)

[81] Croft, B. W. and Harper, D. J. (1979). Using probabilistic models of document retrieval without
relevance information. Journal of Documentation, 35(4), 285–295. (Cited on Page 22.)

[82] Croft, B. W. and Lafferty, J., editors (2003). Language Modeling for Information Retrieval, vol-
ume 1. Kluwer. (Cited on Pages 170 and 175.)

[83] Croft, B. W., Callan, J., and Lafferty, J. (2001). Workshop on language modeling and information
retrieval. SIGIR Forum, 35(1), 4–6. (Cited on Pages 13 and 18.)

[84] Cronen-Townsend, S., Zhou, Y., and Croft, W. B. (2002). Predicting query performance. In SIGIR
’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 299–306, New York, NY, USA. ACM. (Cited on Pages 58 and 158.)

[85] Cui, H., Wen, J.-R., Nie, J.-Y., and Ma, W.-Y. (2002). Probabilistic query expansion using query
logs. In WWW ’02: Proceedings of the 11th international conference on World Wide Web, pages
325–332. (Cited on Page 23.)

[86] Dang, V. and Croft, B. W. (2010). Query reformulation using anchor text. In WSDM ’10:
Proceedings of the third ACM international conference on Web search and data mining, pages 41–50,
New York, NY, USA. ACM. (Cited on Pages 20 and 69.)

[87] de Vries, A. P., Vercoustre, A.-M., Thom, J. A., Craswell, N., and Lalmas, M. (2007). Overview
of the INEX 2007 Entity Ranking Track. In Focused Access to XML Documents, 6th International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX, pages 245–251. (Cited on
Pages 90 and 159.)

[88] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–
407. (Cited on Pages 20 and 30.)

[89] Demidova, E., Fankhauser, P., Zhou, X., and Nejdl, W. (2010). Divq: diversification for key-
word search over structured databases. In SIGIR ’10: Proceeding of the 33rd international ACM
SIGIR conference on Research and development in information retrieval, pages 331–338. (Cited on
Page 36.)

[90] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1),
1–38. (Cited on Pages 25 and 31.)

[91] Deselaers, T., Weyand, T., Keysers, D., Macherey, W., and Ney, H. (2005). FIRE in ImageCLEF
2005: Combining Content-based Image Retrieval with Textual Information Retrieval. In CLEF 2005
Working Notes. (Cited on Page 20.)

[92] Diaz, F. and Metzler, D. (2006). Improving the estimation of relevance models using large
external corpora. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 154–161, New York, NY, USA. ACM
Press. (Cited on Pages 20, 21, 27, and 148.)

[93] Diemert, E. and Vandelle, G. (2009). Unsupervised query categorization using automatically-
built concept graphs. In WWW ’09: Proceedings of the 18th international conference on World wide
web, pages 461–470, New York, NY, USA. ACM. (Cited on Page 144.)

[94] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan, S.,
Tomkins, A., Tomlin, J., and Zien, J. (2003). Semtag and seeker: Bootstrapping the semantic web
via automated semantic annotation. In Proceedings of the 12th international conference on World
Wide Web, pages 178–186. (Cited on Pages 37 and 124.)

[95] Doyle, L. (1962). Indexing and abstracting by association. American Documentation, 13(4),



166 Bibliography

378–390. (Cited on Page 4.)
[96] Efron, M. (2010). Hashtag retrieval in a microblogging environment. In SIGIR ’10: Proceeding of

the 33rd international ACM SIGIR conference on Research and development in information retrieval,
pages 787–788. (Cited on Page 159.)

[97] Efthimiadis, E. N. (1996). Query expansion. Annual Review of Information Systems and Technol-
ogy (ARIST), 31, 121–187. (Cited on Pages 20 and 21.)

[98] Eguchi, K. and Croft, W. B. (2006). Boosting relevance model performance with query term
dependence. In CIKM ’06: Proceedings of the 15th ACM international conference on Information and
knowledge management, pages 792–793, New York, NY, USA. ACM. (Cited on Page 106.)

[99] Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., and Weikum, G. (2009). Language-
model-based ranking for queries on RDF-graphs. In CIKM ’09: Proceeding of the 18th ACM confer-
ence on Information and knowledge management, pages 977–986. ACM. (Cited on Page 36.)

[100] Fang, H., Tao, T., and Zhai, C. (2004). A formal study of information retrieval heuristics.
In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 49–56, New York, NY, USA. ACM. (Cited on Page 69.)

[101] Fellbaum, C., Palmer, M., Dang, H. T., Delfs, L., and Wolf, S. (2001). Manual and automatic
semantic annotation with wordnet. In WordNet and Other Lexical Resources, pages 3–10. (Cited on
Page 37.)

[102] Finkelstein, L. E. V., Gabrilovich, E., Matias, Y., Rivlin, E. H. U. D., Solan, Z. A. C. H., Wolf-
man, G. A. D. I., and Ruppin, E. (2002). Placing search in context: the concept revisited. ACM
Transactions on Information Systems, 20(1), 116–131. (Cited on Page 21.)

[103] Fortuna, B., Grobelnik, M., and Mladenic, D. (2007). Ontogen: semi-automatic ontology editor.
In Proceedings of the 2007 conference on Human interface, pages 309–318. (Cited on Page 37.)

[104] French, J. C., Powell, A. L., Gey, F., and Perelman, N. (2002). Exploiting manual indexing
to improve collection selection and retrieval effectiveness. Information Retrieval, 5(4), 323–351.
(Cited on Pages 32 and 89.)

[105] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The vocabulary
problem in human-system communication. Commun. ACM, 30(11), 964–971. (Cited on Pages 1
and 30.)

[106] Gabrilovich, E. and Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. In IJCAI’07: Proceedings of the 20th international joint conference
on Artifical intelligence, pages 1606–1611, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc. (Cited on Pages 30 and 33.)

[107] Gabrilovich, E. and Markovitch, S. (2009). Wikipedia-based semantic interpretation for natural
language processing. J. Artif. Intell. Res. (JAIR), 34, 443–498. (Cited on Page 144.)

[108] Gao, J., Qi, H., Xia, X., and Nie, J.-Y. (2005). Linear discriminant model for information
retrieval. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 290–297, New York, NY, USA. ACM. (Cited
on Page 60.)

[109] Gey, F., Buckland, M., Chen, A., and Larson, R. (2001). Entry vocabulary: a technology to en-
hance digital search. In HLT ’01: Proceedings of the first international conference on Human language
technology research, pages 1–5, Morristown, NJ, USA. Association for Computational Linguistics.
(Cited on Page 32.)

[110] Ghani, R., Jones, R., Mladenic, D., Nigam, K., and Slattery, S. (2000). Data mining on sym-
bolic knowledge extracted from the web. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000), Workshop on Text Mining. (Cited on Page 3.)

[111] Giger, H. P. (1988). Concept based retrieval in classical IR systems. In SIGIR ’88: Proceedings
of the 11th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 275–289, New York, NY, USA. ACM. (Cited on Page 32.)

[112] Girolami, M. and Kaban, A. (2003). On an equivalence between PLSI and LDA. In SIGIR ’03:
Proceedings of the 26th annual international ACM SIGIR conference on Research and development in
informaion retrieval, pages 433–434, New York, NY, USA. ACM Press. (Cited on Page 31.)

[113] Google (2010). Google search basics: Advanced Search. http://www.google.com/support/
websearch/bin/answer.py?answer=35890&&hl=en [Online; accessed August 2010]. (Cited on
Page 144.)

[114] Gray, A. J. G., Gray, N., Hall, C. W., and Ounis, I. (2010). Finding the right term: Retrieving
and exploring semantic concepts in astronomical vocabularies. Information Processing and Man-

http://www.google.com/support/websearch/bin/answer.py?answer=35890&&hl=en
http://www.google.com/support/websearch/bin/answer.py?answer=35890&&hl=en


Bibliography 167

agement, 46(4), 470–478. (Cited on Page 124.)
[115] Greiff, W. R. (2001). Is it the language model in language modeling? In J. Callan, B. W.

Croft, and J. Lafferty, editors, Workshop on Language Modeling and Information Retrieval. (Cited
on Page 19.)

[116] Grineva, M., Grinev, M., and Lizorkin, D. (2009). Extracting key terms from noisy and mul-
titheme documents. In WWW ’09: Proceedings of the 18th international conference on World wide
web, pages 661–670. (Cited on Page 159.)

[117] Guo, J., Xu, G., Cheng, X., and Li, H. (2009). Named entity recognition in query. In SIGIR
’09: 32nd annual international ACM SIGIR conference on Research and development in information
retrieval, pages 267–274. (Cited on Page 32.)

[118] Hagen, M., Potthast, M., Stein, B., and Braeutigam, C. (2010). The power of naive query
segmentation. In SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference on Research
and development in information retrieval, pages 797–798. (Cited on Page 158.)

[119] Harman, D. (1988). Towards interactive query expansion. In SIGIR ’88: Proceedings of the 11th
annual international ACM SIGIR conference on Research and development in information retrieval,
pages 321–331, New York, NY, USA. ACM. (Cited on Pages 51 and 76.)

[120] Harman, D. (1992). Evaluation issues in information retrieval. Information Processing and
Management, 28(4), 439–440. (Cited on Page 40.)

[121] Harman, D. (1993). Overview of the First Text REtrieval Conference. In R. Korfhage, E. M.
Rasmussen, and P. Willett, editors, SIGIR, pages 36–47, Pittsburgh, PA. ACM. (Cited on Page 41.)

[122] Harter, S. (1975). A probabilistic approach to automatic keyword indexing. Journal of the
American Society for Information Science, 26(5). (Cited on Page 13.)

[123] Hayes, A. and Krippendorf, K. (2007). Answering the call for a standard reliability measure for
coding data. Communication Methods and Measures, 1(1), 77–89. (Cited on Page 130.)

[124] He, B. and Ounis, I. (2009a). Finding good feedback documents. In CIKM ’09: Proceeding of
the 18th ACM conference on Information and knowledge management, pages 2011–2014, New York,
NY, USA. ACM. (Cited on Pages 21, 57, and 69.)

[125] He, B. and Ounis, I. (2009b). Studying query expansion effectiveness. In ECIR ’09: Proceedings
of the 31th European Conference on IR Research on Advances in Information Retrieval, pages 611–
619, Berlin, Heidelberg. Springer-Verlag. (Cited on Page 69.)

[126] He, J., Meij, E., and de Rijke, M. (In Press, Accepted Manuscript). Result diversification based
on query-specific cluster ranking. Journal of the American Society for Information Science and Tech-
nology. (Cited on Pages 10, 35, and 152.)

[127] Hersh, W. R., Hickam, D., and Leone, T. (1992). Words, concepts, or both: Optimal indexing
units for automated information retrieval. In Proc. 16th Annu. Symp. Comput. Appl. Med. Care,
pages 644–848. (Cited on Page 110.)

[128] Hersh, W. R., Hickam, D. H., Haynes, R. B., and McKibbon, K. A. (1994). A performance
and failure analysis of SAPHIRE with a MEDLINE test collection. Journal of the American Medical
Informatics Association : JAMIA, 1(1), 51–60. (Cited on Page 90.)

[129] Hersh, W. R., Bhupatiraju, R. T., Ross, L., Cohen, A. M., Kraemer, D., and Johnson, P. (2004).
TREC 2004 genomics track overview. In E. M. Voorhees and L. P. Buckland, editors, TREC, volume
Special Publication 500-261. National Institute of Standards and Technology (NIST). (Cited on
Pages 49 and 99.)

[130] Hersh, W. R., Cohen, A. M., Yang, J., Bhupatiraju, R. T., Roberts, P. M., and Hearst, M. A.
(2005). TREC 2005 genomics track overview. In E. M. Voorhees and L. P. Buckland, editors,
TREC, volume Special Publication 500-266. National Institute of Standards and Technology (NIST).
(Cited on Page 49.)

[131] Hersh, W. R., Cohen, A. M., Roberts, P. M., and Rekapalli, H. K. (2006). TREC 2006 genomics
track overview. In [330]. (Cited on Pages 50 and 99.)

[132] Herskovic, J. R., Tanaka, L. Y., Hersh, W., and Bernstam, E. V. (2007). A day in the life of
PubMed: analysis of a typical day’s query log. J Am Med Inform Assoc, 14(2), 212–220. (Cited on
Page 90.)

[133] Hewins, E. T. (1990). Information need and use studies. Annual Review of Information Science
and Technology, 25, 145–172. (Cited on Page 39.)

[134] Hiemstra, D. (1998). A linguistically motivated probabilistic model of information retrieval. In
ECDL ’98: Proceedings of the Second European Conference on Research and Advanced Technology for
Digital Libraries, pages 569–584, London, UK. Springer-Verlag. (Cited on Pages 14, 15, and 19.)



168 Bibliography

[135] Hiemstra, D. and de Vries, A. P. (2000). Relating the new language models of information
retrieval to the traditional retrieval models. Technical Report CTIT Technical Report TR-CTIT-00-0,
Centre for Telematics and Information Technology, University of Twente. (Cited on Page 19.)

[136] Hiemstra, D., Robertson, S., and Zaragoza, H. (2004). Parsimonious language models for infor-
mation retrieval. In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 178–185, New York, NY, USA. ACM.
(Cited on Pages 19, 25, 27, 28, 88, and 94.)

[137] Hoenkamp, E., Bruza, P., Song, D., and Huang, Q. (2009). An effective approach to verbose
queries using a limited dependencies language model. In [17], pages 116–127. (Cited on Pages 14
and 29.)

[138] Hofmann, K., Tsagkias, M., Meij, E., and de Rijke, M. (2009). The impact of document structure
on keyphrase extraction. In CIKM ’09: Proceeding of the 18th ACM conference on Information and
knowledge management, pages 1725–1728, New York, NY, USA. ACM. (Cited on Page 10.)

[139] Hofmann, T. (1999). Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of
the 22nd annual international ACM SIGIR conference on Research and development in information
retrieval, pages 50–57. ACM Press. (Cited on Page 31.)

[140] Hristidis, V. and Papakonstantinou, Y. (2002). Discover: Keyword search in relational
databases. In VLDB, pages 670–681. Morgan Kaufmann. (Cited on Page 35.)

[141] Hull, D. (1993). Using statistical testing in the evaluation of retrieval experiments. In SIGIR
’93: Proceedings of the 16th annual international ACM SIGIR conference on Research and development
in information retrieval. (Cited on Pages 44 and 45.)

[142] Huurnink, B., Hollink, L., van den Heuvel, W., and de Rijke, M. (2010). Search behavior of
media professionals at an audiovisual archive: A transaction log analysis. Journal of the American
Society for Information Science and Technology, 61(6), 1180–1197. (Cited on Pages 37, 116, 122,
and 124.)

[143] Jansen, B. J. and Spink, A. (2006). How are we searching the world wide web? a comparison
of nine search engine transaction logs. Information Processing and Management, 42(1), 248 – 263.
Formal Methods for Information Retrieval. (Cited on Page 143.)

[144] Jansen, B. J., Spink, A., and Saracevic, T. (2000). Real life, real users, and real needs: a study
and analysis of user queries on the web. Information Processing and Management, 36(2), 207–227.
(Cited on Page 113.)

[145] Jardine, N. and van Rijsbergen, C. J. (1971). The use of hierarchic clustering in information
retrieval. Information Storage and Retrieval, 7(5), 217–240. (Cited on Page 35.)

[146] Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4), 422–446. (Cited on Page 44.)

[147] Jelinek, F. (1990). Self-organized language modeling for speech recognition. Readings in speech
recognition, pages 450–506. (Cited on Page 13.)

[148] Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of markov source parameters
from sparse data. In Workshop Pattern Recognition in Practice. (Cited on Page 16.)

[149] Jimeno-Yepes, A., Berlanga-Llavori, R., and Rebholz-Schuhmann, D. (2010). Ontology refine-
ment for improved information retrieval. Information Processing and Management, 46(4), 426–435.
(Cited on Page 22.)

[150] Jin, R., Hauptmann, A. G., and Zhai, C. X. (2002). Title language model for information
retrieval. In SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. (Cited on Pages 22 and 68.)

[151] Jing, Y. and Croft (1994). An association thesaurus for information retrieval. In Proceedings of
RIAO ’94. (Cited on Page 30.)

[152] Joachims, T. (2002). Optimizing search engines using clickthrough data. In KDD ’02: Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 133–142, New York, NY, USA. ACM Press. (Cited on Page 143.)

[153] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., and Gay, G. (2007). Evaluating
the accuracy of implicit feedback from clicks and query reformulations in web search. ACM Trans.
Inf. Syst., 25(2), 7. (Cited on Page 23.)

[154] John, G. H. and Langley, P. (1995). Estimating continuous distributions in bayesian classifiers.
In UAI ’95: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
pages 338–345. (Cited on Page 123.)

[155] Jones, K. S. (2004). A statistical interpretation of term specificity and its application in re-



Bibliography 169

trieval. Journal of Documentation, 60(5), 493–502. (Cited on Page 12.)
[156] Jones, K. S., Walker, S., and Robertson, S. E. (2000). A probabilistic model of information

retrieval: development and comparative experiments. Information Processing and Management,
36(6), 779–808. (Cited on Page 13.)

[157] Joyce, T. and Needham, R. M. (1958). The thesaurus approach to information retrieval. Amer-
ican Documentation, 9(3), 192–197. (Cited on Pages 1, 3, 4, 12, and 87.)

[158] Kalt, T. (1996). A new probabilistic model of text classification and retrieval. Technical Report
UM-CS-1998-018, University of Massachusetts, Amherst, Massachusetts. (Cited on Page 15.)

[159] Kamps, J., Lalmas, M., and Larsen, B. (2009). Evaluation in context. In M. Agosti, J. L.
Borbinha, S. Kapidakis, C. Papatheodorou, and G. Tsakonas, editors, ECDL, volume 5714 of Lecture
Notes in Computer Science, pages 339–351. Springer. (Cited on Page 39.)

[160] Kasneci, G., Suchanek, F. M., Ifrim, G., Ramanath, M., and Weikum, G. (2008). Naga: Search-
ing and ranking knowledge. In ICDE, pages 953–962. IEEE. (Cited on Page 36.)

[161] Kaufmann, E. and Bernstein, A. (In Press, Accepted Manuscript). Evaluating the usability of
natural language query languages and interfaces to semantic web knowledge bases. Web Semantics:
Science, Services and Agents on the World Wide Web, pages –. (Cited on Page 36.)

[162] Kelly, D. and Belkin, N. J. (2001). Reading time, scrolling and interaction: exploring implicit
sources of user preferences for relevance feedback. In SIGIR ’01: Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information retrieval, pages
408–409. (Cited on Page 23.)

[163] Kelly, D., Fu, X., and Shah, C. (2010). Effects of position and number of relevant documents
retrieved on users’ evaluations of system performance. ACM Trans. Inf. Syst., 28(2), 1–29. (Cited
on Page 40.)

[164] Kent, A., Berry, M. M., Luehrs, and Perry, J. W. (1955). Machine literature searching VIII,
operational criteria for designing information retrieval systems. American Documentation, 6(2),
93–101. (Cited on Pages 40 and 42.)

[165] Keskustalo, H., Järvelin, K., and Pirkola, A. (2008). Evaluating the effectiveness of relevance
feedback based on a user simulation model: effects of a user scenario on cumulated gain value.
Information Retrieval, 11(3), 209–228. (Cited on Pages 23, 33, and 88.)

[166] Kiryakov, A., Popov, B., Terziev, I., Manov, D., and Ognyanoff, D. (2004). Semantic annotation,
indexing, and retrieval. Web Semantics: Science, Services and Agents on the World Wide Web, 2(1),
49–79. (Cited on Page 37.)

[167] Koolen, M. and Kamps, J. (2010). The importance of anchor text for ad hoc search revisited. In
SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference on Research and development
in information retrieval, pages 122–129, New York, NY, USA. ACM. (Cited on Page 152.)

[168] Korfhage, R. R. (1984). Query enhancement by user profiles. In SIGIR ’84: Proceedings of
the 7th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 111–121, Swinton, UK, UK. British Computer Society. (Cited on Page 21.)

[169] Kraaij, W. and de Jong, F. (2004). Transitive probabilistic CLIR models. In Proceedings of RIAO
’04. (Cited on Page 89.)

[170] Kurland, O. (2008). The opposite of smoothing: a language model approach to ranking query-
specific document clusters. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 171–178, New York, NY,
USA. ACM. (Cited on Pages 35 and 57.)

[171] Kurland, O. and Lee, L. (2004). Corpus structure, language models, and ad hoc information
retrieval. In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 194–201, New York, NY, USA. ACM. (Cited
on Page 35.)

[172] Kurland, O., Lee, L., and Domshlak, C. (2005). Better than the real thing?: iterative pseudo-
query processing using cluster-based language models. In SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information retrieval, pages 19–
26, New York, NY, USA. ACM. (Cited on Page 18.)

[173] Lafferty, J. and Zhai, C. (2001). Document language models, query models, and risk mini-
mization for information retrieval. In SIGIR ’01: Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 111–119, New York,
NY, USA. ACM. (Cited on Pages 17, 19, 51, and 95.)

[174] Lafferty, J. and Zhai, C. (2003a). Probabilistic relevance models based on document and query



170 Bibliography

generation. Language Modeling for Information Retrieval. (Cited on Pages 13 and 19.)
[175] Lafferty, J. and Zhai, C. (2003b). Probabilistic relevance models based on document and query

generation. In Language Modeling for Information Retrieval. Springer. (Cited on Page 23.)
[176] Lalmas, M., MacFarlane, A., Rüger, S. M., Tombros, A., Tsikrika, T., and Yavlinsky, A., editors

(2006). Advances in Information Retrieval, 28th European Conference on IR Research, ECIR 2006,
London, UK, April 10-12, 2006, Proceedings, volume 3936 of Lecture Notes in Computer Science.
Springer. (Cited on Page 22.)

[177] Lancaster, F. (1969). MEDLARS: report on the evaluation of its operating efficiency. American
Documentation, 20(2), 119–148. (Cited on Page 2.)

[178] Lancaster, W. F. (1982). Information Retrieval Systems: Characteristics, Testing and Evaluation.
Wiley Interscience. (Cited on Page 33.)

[179] Landis, R. J. and Koch, G. G. (1977). The measurement of observer agreement for categorical
data. Biometrics, 33(1), 159–174. (Cited on Page 129.)

[180] Lavrenko, V. (2004). A Generative Theory of Relevance. Ph.D. thesis, University of Mas-
sachusettes. (Cited on Page 17.)

[181] Lavrenko, V. (2008). A Generative Theory of Relevance. Springer Publishing Company, Incorpo-
rated. (Cited on Page 23.)

[182] Lavrenko, V. and Croft, B. W. (2003). Relevance models in information retrieval. In [82],
pages 11–54. (Cited on Pages 23, 24, 25, 26, 55, and 81.)

[183] Lavrenko, V. and Croft, W. B. (2001). Relevance based language models. In SIGIR ’01: Pro-
ceedings of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 120–127, New York, NY, USA. ACM. (Cited on Pages 19, 22, 23, 62,
91, and 96.)

[184] Lease, M., Allan, J., and Croft, W. B. (2009). Regression rank: Learning to meet the opportunity
of descriptive queries. In M. Boughanem, C. Berrut, J. Mothe, and C. Soulé-Dupuy, editors, ECIR,
volume 5478 of Lecture Notes in Computer Science, pages 90–101. Springer. (Cited on Page 21.)

[185] Lee, K. S., Croft, W. B., and Allan, J. (2008). A cluster-based resampling method for pseudo-
relevance feedback. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, pages 235–242, New York, NY, USA. ACM.
(Cited on Page 35.)

[186] Lesk, M. and Salton, G. (1968). Relevance assessments and retrieval system evaluation. Infor-
mation Storage and Retrieval, 4, 343–359. (Cited on Pages 2 and 44.)

[187] Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption in information
retrieval. In ECML ’98: Proceedings of the 10th European Conference on Machine Learning, pages
4–15. (Cited on Page 12.)

[188] Li, X. (2008). A new robust relevance model in the language model framework. Information
Processing and Management, 44(3), 991 – 1007. (Cited on Page 27.)

[189] Liu, X. and Croft, W. B. (2004). Cluster-based retrieval using language models. In SIGIR ’04:
Proceedings of the 27th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 186–193, New York, NY, USA. ACM. (Cited on Pages 35, 51, and 95.)

[190] Liu, Y.-H. (2009). The impact of MeSH (Medical Subject Headings) terms on information seeking
effectiveness. Ph.D. thesis, Rutgers, The State University of New Jersey. (Cited on Page 110.)

[191] Losada, D. and Azzopardi, L. (2008a). An analysis on document length retrieval trends in
language modeling smoothing. Information Retrieval, 11(2), 109–138. (Cited on Page 16.)

[192] Losada, D. E. and Azzopardi, L. (2008b). Assessing multivariate bernoulli models for informa-
tion retrieval. ACM Trans. Inf. Syst., 26(3), 1–46. (Cited on Page 14.)

[193] Lu, Y., Mei, Q., and Zhai, C. (2010). Investigating task performance of probabilistic topic mod-
els: an empirical study of PLSA and LDA. Information Retrieval, pages 1–26. (Cited on Page 31.)

[194] Luhn, H. P. (1961). The automatic derivation of information retrieval encodements from
machine-readable texts. Information Retrieval and Machine Translation, 3(1), 1021–1028. (Cited
on Page 4.)

[195] Luk, R. W. (2008). On event space and rank equivalence between probabilistic retrieval mod-
els. Information Retrieval, 11(6), 539–561. (Cited on Pages 13 and 19.)

[196] Lundquist, C., Grossman, D. A., and Frieder, O. (1997). Improving relevance feedback in the
vector space model. In CIKM ’97: Proceedings of the sixth international conference on Information
and knowledge management, pages 16–23, New York, NY, USA. ACM. (Cited on Pages 51, 59, 67,
76, and 106.)



Bibliography 171

[197] Lv, Y. and Zhai, C. (2009). A comparative study of methods for estimating query language
models with pseudo feedback. In CIKM ’09: Proceeding of the 18th ACM conference on Information
and knowledge management, pages 1895–1898, New York, NY, USA. ACM. (Cited on Pages 55
and 96.)

[198] Madsen, R. E., Kauchak, D., and Elkan, C. (2005). Modeling word burstiness using the Dirichlet
distribution. In ICML ’05: Proceedings of the 22nd international conference on Machine learning,
pages 545–552, New York, NY, USA. ACM. (Cited on Page 14.)

[199] Maedche, A. and Volz, R. (2001). The ontology extraction maintenance framework text-to-
onto. Proceedings of the IEEE International Conference on Data Mining. (Cited on Page 37.)

[200] Malaisé, V., Gazendam, L., and Brugman, H. (2007). Disambiguating automatic semantic
annotation based on a thesaurus structure. TALN 2007: Actes de la 14e conférence sur le Traitement
Automatique des Langues Naturelles. (Cited on Pages 37 and 124.)

[201] Manning, C. D. and Schuetze, H. (1999). Foundations of Statistical Natural Language Processing.
The MIT Press. (Cited on Page 14.)

[202] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press. (Cited on Pages 42 and 60.)

[203] Maron, M. E. and Kuhns, J. L. (1960). On relevance, probabilistic indexing and information
retrieval. J. ACM, 7(3), 216–244. (Cited on Pages 4 and 12.)

[204] Mccallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text clas-
sification. In Proc. AAAI-98 Workshop on Learning for Text Categorization, pages 41–48. (Cited on
Page 14.)

[205] Medelyan, O., Milne, D., Legg, C., and Witten, I. H. (2009). Mining meaning from Wiki-
pedia. International Journal of Human-Computer Studies, 67(9), 716–754. (Cited on Pages 30, 33,
and 144.)

[206] Mei, Q., Zhang, D., and Zhai, C. (2008). A general optimization framework for smoothing
language models on graph structures. In SIGIR ’08: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval, pages 611–618, New
York, NY, USA. ACM. (Cited on Page 17.)

[207] Meij, E. (2008). Towards a combined model for search and navigation of annotated documents.
In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, page 898, New York, NY, USA. ACM. (Cited on Page 10.)

[208] Meij, E. and de Rijke, M. (2007a). Integrating Conceptual Knowledge into Relevance Models:
A Model and Estimation Method. In ICTIR ’07: Proceedings of the 1st International Conference on
Theory of Information Retrieval. (Cited on Pages 10 and 27.)

[209] Meij, E. and de Rijke, M. (2007b). Thesaurus-based feedback to support mixed search and
browsing environments. In L. Kovács, N. Fuhr, and C. Meghini, editors, ECDL, volume 4675 of
Lecture Notes in Computer Science, pages 247–258. Springer. (Cited on Pages 10, 21, 27, 33,
and 88.)

[210] Meij, E. and de Rijke, M. (2007c). Using prior information derived from citations in literature
search. In D. Evans, S. Furui, and C. Soulé-Dupuy, editors, RIAO. CID. (Cited on Pages 10 and 16.)

[211] Meij, E. and de Rijke, M. (2008). The University of Amsterdam at the CLEF 2008 Domain
Specific Track - parsimonious relevance and concept models. In CLEF ’08 Working Notes. (Cited on
Page 94.)

[212] Meij, E. and de Rijke, M. (2009). Concept models for domain-specific search. In CLEF’08: Pro-
ceedings of the 9th Cross-language evaluation forum conference on Evaluating systems for multilingual
and multimodal information access, pages 207–214, Berlin, Heidelberg. Springer-Verlag. (Cited on
Page 10.)

[213] Meij, E. and de Rijke, M. (2010). Supervised query modeling using Wikipedia. In SIGIR
’10: Proceeding of the 33rd international ACM SIGIR conference on Research and development in
information retrieval, pages 875–876, New York, NY, USA. ACM. (Cited on Page 10.)

[214] Meij, E. and de Rijke, M. (Submitted). A comparative study of relevance feedback methods for
query modeling. Information Retrieval. (Cited on Page 10.)

[215] Meij, E., Trieschnigg, D., de Rijke, M., and Kraaij, W. (2008a). Parsimonious concept modeling.
In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 815–816, New York, NY, USA. ACM. (Cited on Pages 10
and 94.)

[216] Meij, E., Weerkamp, W., Balog, K., and de Rijke, M. (2008b). Parsimonious relevance models.



172 Bibliography

In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 817–818, New York, NY, USA. ACM. (Cited on Pages 10
and 28.)

[217] Meij, E., Mika, P., and Zaragoza, H. (2009a). An evaluation of entity and frequency based query
completion methods. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages 678–679, New York, NY, USA. ACM. (Cited
on Pages 10, 37, 113, 144, and 159.)

[218] Meij, E., Mika, P., and Zaragoza, H. (2009b). Investigating the demand side of semantic search
through query log analysis. In Proceedings of the Workshop on Semantic Search (SemSearch 2009)
at the 18th International World Wide Web Conference (WWW 2009), pages 2–5. (Cited on Pages 10
and 159.)

[219] Meij, E., Bron, M., Huurnink, B., Hollink, L., and de Rijke, M. (2009c). Learning semantic
query suggestions. In ISWC ’09: Proceedings of the 8th International Conference on The Semantic
Web, pages 424–440. (Cited on Page 10.)

[220] Meij, E., Weerkamp, W., and de Rijke, M. (2009d). A query model based on normalized log-
likelihood. In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge
management, pages 1903–1906, New York, NY, USA. ACM. (Cited on Pages 10 and 159.)

[221] Meij, E., Trieschnigg, D., de Rijke, M., and Kraaij, W. (2010). Conceptual language models for
domain-specific retrieval. Inf. Process. Manage., 46(4), 448–469. (Cited on Pages 10 and 27.)

[222] Meij, E., Bron, M., Hollink, L., Huurnink, B., and de Rijke, M. (Accepted subject to revisions).
Mapping queries to the linked open data cloud: A case study using DBpedia. Web Semantics:
Science, Services and Agents on the World Wide Web. (Cited on Page 10.)

[223] Metzler, D. (2005). Direct maximization of rank-based metrics. Technical report, University of
Massachusetts, Amherst. (Cited on Pages 51, 60, and 95.)

[224] Metzler, D. and Croft, W. B. (2005). A markov random field model for term dependencies.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 472–479, New York, NY, USA. ACM. (Cited on Pages 20,
29, 30, 51, and 95.)

[225] Metzler, D. and Croft, W. B. (2007). Latent concept expansion using markov random fields.
In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 311–318, New York, NY, USA. ACM. (Cited on Page 20.)

[226] Mihalcea, R. and Csomai, A. (2007). Wikify!: Linking documents to encyclopedic knowledge.
In CIKM ’07: Proceedings of the sixteenth ACM conference on Conference on information and knowl-
edge management, pages 233–242. (Cited on Pages 37, 112, and 114.)

[227] Mika, P., Meij, E., and Zaragoza, H. (2009). Investigating the semantic gap through query
log analysis. In ISWC ’09: Proceedings of the 8th International Semantic Web Conference, pages
441–455. (Cited on Pages 10, 113, and 159.)

[228] Miller, D. R. H., Leek, T., and Schwartz, R. M. (1999a). BBN at TREC-7: Using hidden markov
models for information retrieval. In TREC ’99. (Cited on Page 14.)

[229] Miller, D. R. H., Leek, T., and Schwartz, R. M. (1999b). A hidden markov model information
retrieval system. In SIGIR ’99. (Cited on Pages 15, 16, and 29.)

[230] Milne, D. and Witten, I. H. (2008). Learning to link with Wikipedia. In CIKM ’08: Proceedings
of the 17th ACM conference on Information and knowledge management, pages 509–518. (Cited on
Pages 37, 112, and 119.)

[231] Minker, J., Wilson, G. A., and Zimmerman, B. H. (1972). An evaluation of query expansion by
the addition of clustered terms for a document retrieval system. Information Storage and Retrieval,
8(6), 329–348. (Cited on Page 35.)

[232] Mishne, G. and de Rijke, M. (2005). Boosting web retrieval through query operations. In D. E.
Losada and J. M. Fernández-Luna, editors, ECIR, volume 3408 of Lecture Notes in Computer Science,
pages 502–516. Springer. (Cited on Page 29.)

[233] Mishne, G. and de Rijke, M. (2006). A study of blog search. In ECIR ’06: Proceedings of the
28th European Conference on Information Retrieval, pages 289–301. (Cited on Page 33.)

[234] Mitchell, J. and Lapata, M. (2009). Language models based on semantic composition. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP
2009, pages 430–439. (Cited on Page 30.)

[235] Mitra, M., Singhal, A., and Buckley, C. (1998). Improving automatic query expansion. In SIGIR
’98: Proceedings of the 21st annual international ACM SIGIR conference on Research and development



Bibliography 173

in information retrieval, pages 206–214, New York, NY, USA. ACM. (Cited on Pages 30, 51, 69,
and 95.)

[236] Momtazi, S. and Klakow, D. (2010). Hierarchical Pitman-Yor language model for information
retrieval. In SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 793–794. (Cited on Page 15.)

[237] Mooers, C. N. (1952). Information retrieval viewed as temporal signaling. In Proceedings of
the International Congress of Mathematicians, pages 572–573. (Cited on Page 1.)

[238] Morrison, P. J. (2008). Tagging and searching: Search retrieval effectiveness of folksonomies
on the world wide web. Information Processing and Management, 44(4), 1562 – 1579. (Cited on
Page 87.)

[239] Nallapati, R., Croft, B., and Allan, J. (2003). Relevant query feedback in statistical language
modeling. In CIKM ’03: Proceedings of the twelfth international conference on Information and
knowledge management, pages 560–563, New York, NY, USA. ACM. (Cited on Pages 19 and 23.)

[240] Ng, K. (2001). A maximum likelihood ratio information retrieval model. In Proceedings of the
9th Text Retrieval Conference (TREC 2000). (Cited on Pages 15 and 17.)

[241] Nie, J.-Y., Cao, G., and Bai, J. (2006). Inferential language models for information retrieval.
ACM Transactions on Asian Language Information Processing (TALIP), 5(4), 296–322. (Cited on
Page 22.)

[242] Ogilvie, P., Voorhees, E., and Callan, J. (2009). On the number of terms used in automatic
query expansion. Information Retrieval, 12(6), 666–679. (Cited on Pages 20, 59, 69, and 74.)

[243] Peat, H. J. and Willett, P. (1991). The limitations of term co-occurrence data for query expan-
sion in document retrieval systems. Journal of the American Society for Information Science, 42(5),
378–383. (Cited on Page 30.)

[244] Petras, V. and Baerisch, S. (2008). The domain-specific track at CLEF 2008. In CLEF ’08
Working Notes. (Cited on Pages 48 and 99.)

[245] Petras, V., Baerisch, S., and Stempfhuber, M. (2007). The domain-specific track at CLEF 2007.
In CLEF ’07. (Cited on Pages 48 and 99.)

[246] Platt, J. C. (1999). Fast training of support vector machines using sequential minimal opti-
mization. In Advances in kernel methods: support vector learning, pages 185–208. MIT Press. (Cited
on Page 123.)

[247] Ponte, J. (2000). Language models for relevance feedback. In Advances in Information Retrieval,
pages 73–95. Kluwer Academic. (Cited on Page 58.)

[248] Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information retrieval.
In SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 275–281, New York, NY, USA. ACM. (Cited on Page 14.)

[249] Popov, B., Kiryakov, A., Manov, D., Kirilov, A., Ognyanoff, D., and Goranov, M. (2003). To-
wards semantic web information extraction. In Human Language Technologies Workshop at the 2nd
International Semantic Web Conference (ISWC2003), pages 2–22. (Cited on Page 37.)

[250] Pu, Q. and He, D. (2009). Pseudo relevance feedback using semantic clustering in relevance
language model. In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge
management, pages 1931–1934, New York, NY, USA. ACM. (Cited on Page 31.)

[251] Qi, X. and Davison, B. D. (2009). Web page classification: Features and algorithms. ACM
Comput. Surv., 41(2), 1–31. (Cited on Page 3.)

[252] Qiu, Y. and Frei, H.-P. (1993). Concept based query expansion. In SIGIR ’93: Proceedings of
the 16th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 160–169, New York, NY, USA. ACM. (Cited on Page 21.)

[253] Quinlan, R. J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann. (Cited on
Page 123.)

[254] Rajashekar, T. B. and Croft, W. B. (1995). Combining automatic and manual index represen-
tations in probabilistic retrieval. J. Am. Soc. Inf. Sci., 46(4), 272–283. (Cited on Pages 33, 88,
and 105.)

[255] Ramage, D., Hall, D., Nallapati, R., and Manning, C. D. (2009). Labeled lda: a supervised
topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2009, pages 248–256, Morristown,
NJ, USA. Association for Computational Linguistics. (Cited on Page 159.)

[256] Rennie, J. D. M., Teevan, J., and Karger, D. R. (2003). Tackling the poor assumptions of naive
bayes text classifiers. In ICML ’03: In Proceedings of the 20th International Conference on Machine



174 Bibliography

Learning, pages 616–623. (Cited on Page 14.)
[257] Roberts, N. (1 January 1984). The pre-history of the information retrieval thesaurus. Journal

of Documentation, 40, 271–285(15). (Cited on Page 3.)
[258] Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments

for idf. Journal of Documentation, 60(5), 503–520. (Cited on Page 12.)
[259] Robertson, S. (2005). On event spaces and probabilistic models in information retrieval. In-

formation Retrieval, 8(2), 319–329. (Cited on Pages 13 and 19.)
[260] Robertson, S. (2008). On the history of evaluation in ir. Journal of Information Science, 34(4),

439–456. (Cited on Pages 40 and 41.)
[261] Robertson, S. and Belkin, N. (1978). Ranking in principle. Journal of Documentation, 34(2),

93–100. (Cited on Page 12.)
[262] Robertson, S. and Zaragoza, H. (2007). On rank-based effectiveness measures and optimiza-

tion. Information Retrieval, 10(3), 321–339. (Cited on Pages 43, 51, 60, and 95.)
[263] Robertson, S. E. (1977). The probability ranking principle in ir. Journal of Documentation,

33(4), 294–304. (Cited on Pages 4 and 12.)
[264] Robertson, S. E. and Jones, K. S. (1976). Relevance weighting of search terms. Journal of the

American Society for Information Science, 27(3), 129–146. (Cited on Page 12.)
[265] Robertson, S. E. and Walker, S. (1994). Some simple effective approximations to the 2-poisson

model for probabilistic weighted retrieval. In SIGIR ’94: Proceedings of the 17th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval, pages 232–241.
(Cited on Page 13.)

[266] Robertson, S. E., van Rijsbergen, C. J., and Porter, M. F. (1981). Probabilistic models of in-
dexing and searching. In SIGIR ’80: Proceedings of the 3rd annual ACM conference on Research and
development in information retrieval, pages 35–56. (Cited on Page 13.)

[267] Rocchio, J. (1971). Relevance feedback in information retrieval. In [274]. (Cited on Pages 18,
20, 22, and 57.)

[268] Rocha, C., Schwabe, D., and Aragao, M. P. (2004). A hybrid approach for searching in the
semantic web. In WWW ’04. (Cited on Pages 20 and 21.)

[269] Rorissa, A. (2010). A comparative study of Flickr tags and index terms in a general image
collection. J. Am. Soc. Inf. Sci., 61(11), 2230–2242. (Cited on Page 87.)

[270] Rose, D. E. and Levinson, D. (2004). Understanding user goals in web search. In WWW ’04:
Proceedings of the 13th international conference on World Wide Web, pages 13–19, New York, NY,
USA. ACM. (Cited on Pages 144 and 160.)

[271] Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go from
here. Proc. IEEE, 88(8), 1270–1278. (Cited on Pages 13 and 14.)

[272] Ruthven, I. and Lalmas, M. (2003). A survey on the use of relevance feedback for information
access systems. Knowl. Eng. Rev., 18(2), 95–145. (Cited on Pages 22, 30, 60, and 69.)

[273] Salton, G. (1971a). Information analysis and dictionary construction. In [274]. (Cited on
Page 30.)

[274] Salton, G., editor (1971b). The SMART Retrieval System: Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs, NJ. (Cited on Pages 11 and 174.)

[275] Salton, G. (1996). A new horizon for information science. Journal of the American Society for
Information Science, 47(4). (Cited on Page 2.)

[276] Salton, G. and Buckley, C. (1990). Improving retrieval performance by relevance feedback.
JASIST, 41(4), 288–297. (Cited on Page 22.)

[277] Sanderson, M. (2010). Test collection based evaluation of information retrieval systems. Foun-
dations and Trends in Information Retrieval, 4(4), 247–375. (Cited on Pages 40 and 41.)

[278] Sanderson, M. and Zobel, J. (2005). Information retrieval system evaluation: effort, sensitivity,
and reliability. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 162–169, New York, NY, USA. ACM. (Cited
on Page 45.)

[279] Saracevic, T. (1975). Relevance: A review of and a framework for the thinking on the notion
in information science. Journal of the American Society for Information Science, 26(6), 321–343.
(Cited on Page 39.)

[280] Savoy, J. (2005). Bibliographic database access using free-text and controlled vocabulary: an
evaluation. Information Processing and Management, 41(4), 873–890. (Cited on Page 34.)



Bibliography 175

[281] Shakery, A. and Zhai, C. (2008). Smoothing document language models with probabilistic
term count propagation. Information Retrieval, 11(2), 139–164. (Cited on Page 17.)

[282] Shen, D., Sun, J.-T., Yang, Q., and Chen, Z. (2006). Building bridges for web query classifica-
tion. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 131–138, New York, NY, USA. ACM. (Cited on
Page 34.)

[283] Shen, X., Tan, B., and Zhai, C. (2005). Context-sensitive information retrieval using implicit
feedback. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 43–50, New York, NY, USA. ACM. (Cited
on Page 23.)

[284] Shvaiko, P. and Euzenat, J. (2005). A survey of schema-based matching approaches. Journal
on Data Semantics, 4(3730), 146–171. (Cited on Page 37.)

[285] Silveira, M. L. and Ribeiro-Neto, B. (2004). Concept-based ranking: a case study in the juridical
domain. Information Processing and Management, 40(5), 791–805. (Cited on Pages 33 and 88.)

[286] Smucker, M. D. and Jethani, C. P. (2010). Impact of retrieval precision on perceived difficulty
and other user measures. In HCIR 2010: the fourth international workshop on human-computer
interaction and information retrieval (HCIR ’10). (Cited on Page 43.)

[287] Smucker, M. D., Allan, J., and Carterette, B. (2007). A comparison of statistical significance
tests for information retrieval evaluation. In CIKM ’07: Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management. (Cited on Pages 44 and 45.)

[288] Soboroff, I. (2007). A comparison of pooled and sampled relevance judgments. In SIGIR ’07:
Proceedings of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 785–786, New York, NY, USA. ACM. (Cited on Page 24.)

[289] Soergel, D. (1976). Is user satisfaction a hobgoblin? Journal of the American Society for
Information Science, 27(4), 256–259. (Cited on Page 40.)

[290] Song, F. and Croft, W. B. (1999). A general language model for information retrieval. In CIKM
’99: Proceedings of the eighth international conference on Information and knowledge management.
(Cited on Pages 14 and 29.)

[291] Sparck-Jones, K. (1971). Automatic keyword classification for information retrieval. Archon
Books. (Cited on Pages 4, 28, and 30.)

[292] Sparck Jones, K. (2004). What’s new about the semantic web?: some questions. SIGIR Forum,
38(2), 18–23. (Cited on Pages 3 and 4.)

[293] Sparck-Jones, K. and Jackson, D. M. (1970). The use of automatically-obtained keyword classi-
fications for information retrieval. Information Processing and Management, 5(1), 175–201. (Cited
on Page 30.)

[294] Sparck-Jones, K. and Needham, R. M. (1968). Automatic term classification and retrieval.
Information Processing and Management, 4(1), 91–100. (Cited on Pages 28 and 33.)

[295] Sparck-Jones, K. and Robertson, S. (2001). LM vs. PM: Where is the relevance? In J. Callan,
B. W. Croft, and J. Lafferty, editors, Workshop on Language Modeling and Information Retrieval.
(Cited on Page 18.)

[296] Sparck Jones, K. and Willett, P., editors (1997). Readings in information retrieval. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. (Cited on Page 1.)

[297] Sparck-Jones, K., Robertson, S. E., and Hiemstra, D. (2003). language modeling and relevance,
pages 57–71. Volume 1 of [82]. (Cited on Pages 19 and 27.)

[298] Spiegel, J. and Bennett, E. (1964). A modified statistical association procedure for automatic
document content analysis and retrieval. In M. Stevens, V. Guiliano, and L. Heilprin, editors,
Statistical Association Methods For Mechanized Documentation. (Cited on Page 30.)

[299] Spink, A., Jansen, B. J., and Ozmultu, C. H. (2000). Use of query reformulation and relevance
feedback by excite users. Internet Research: Electronic Networking Applications and Policy, 10(4),
317–328. (Cited on Page 23.)

[300] Spink, A., Jansen, B. J., Wolfram, D., and Saracevic, T. (2002). From e-sex to e-commerce:
Web search changes. IEEE Computer, 35(3), 107–109. (Cited on Pages 18, 113, and 143.)

[301] Srikanth, M. and Srihari, R. (2002). Biterm language models for document retrieval. In SIGIR
’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 425–426. (Cited on Page 29.)

[302] Srinivasan, P. (1996). Query expansion and MEDLINE. Information Processing and Manage-
ment, 32(4), 431–443. (Cited on Pages 34, 90, and 110.)



176 Bibliography

[303] Steyvers, M. and Griffiths, T. (2007). Probabilistic topic models. In T. K. Landauer, D. S.
Mcnamara, S. Dennis, and W. Kintsch, editors, Handbook of Latent Semantic Analysis, pages 427–
448, Mahwah, NJ. Lawrence Erlbaum Associates. (Cited on Page 30.)

[304] Stoilos, G., Stamou, G. B., and Kollias, S. D. (2005). A string metric for ontology alignment. In
ISWC ’05: Proceedings of the 4th International Semantic Web Conference, pages 624–637. (Cited on
Page 37.)

[305] Stokes, N., Li, Y., Cavedon, L., and Zobel, J. (2009). Exploring criteria for successful query
expansion in the genomic domain. Information Retrieval, 12(1), 17–50. (Cited on Page 49.)

[306] Stumme, G., Hotho, A., and Berendt, B. (2006). Semantic web mining: State of the art and
future directions. Web Semantics: Science, Services and Agents on the World Wide Web, 4(2), 124–
143. (Cited on Page 3.)

[307] Suchanek, F. M., Kasneci, G., and Weikum, G. (2008). Yago: A large ontology from Wikipedia
and wordnet. Web Semantics: Science, Services and Agents on the World Wide Web, 6(3), 203 – 217.
(Cited on Page 111.)

[308] Sunehag, P. (2007). Using two-stage conditional word frequency models to model word bursti-
ness and motivating TF-IDF. In M. Mella and X. Shan, editors, Conference for Artificial Intelligence
and Statistics, pages 8–16. (Cited on Page 15.)

[309] Tague-Sutcliffe, J. M. (1996). Some perspectives on the evaluation of information retrieval
systems. J. Am. Soc. Inf. Sci., 47(1), 1–3. (Cited on Page 40.)

[310] Tao, T. and Zhai, C. (2006). Regularized estimation of mixture models for robust pseudo-
relevance feedback. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 162–169, New York, NY, USA. ACM.
(Cited on Pages 23 and 25.)

[311] Tao, T., Wang, X., Mei, Q., and Zhai, C. (2006). Language model information retrieval with
document expansion. In Proceedings of the main conference on Human Language Technology Confer-
ence of the North American Chapter of the Association of Computational Linguistics, pages 407–414,
Morristown, NJ, USA. Association for Computational Linguistics. (Cited on Page 17.)

[312] Tata, S. and Lohman, G. M. (2008). SQAK: doing more with keywords. In SIGMOD Conference,
pages 889–902. ACM. (Cited on Page 36.)

[313] Thompson, P. (2008). Looking back: On relevance, probabilistic indexing and information
retrieval. Information Processing and Management, 44(2), 963–970. (Cited on Page 12.)

[314] Trajkova, J. and Gauch, S. (2004). Improving ontology-based user profiles. In Proceedings of
RIAO ’04. (Cited on Page 33.)

[315] Trieschnigg, D., Kraaij, W., and Schuemie, M. (2006). Concept based passage retrieval for
genomics literature. In [330]. (Cited on Page 32.)

[316] Trieschnigg, D., Kraaij, W., and de Jong, F. (2007). The influence of basic tokenization on
biomedical document retrieval. In SIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 803–804, New York,
NY, USA. ACM. (Cited on Page 99.)

[317] Trieschnigg, D., Meij, E., de Rijke, M., and Kraaij, W. (2008). Measuring concept relatedness
using language models. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 823–824, New York, NY,
USA. ACM. (Cited on Pages 10 and 158.)

[318] Trieschnigg, D., Pezik, P., Lee, V., Kraaij, W., de Jong, F., and Rebholz-Schuhmann, D. (2009).
MeSH Up: Effective MeSH text classification and improved document retrieval. Bioinformatics,
25(11), 1412–1418. (Cited on Pages 35, 88, 90, 91, and 158.)

[319] Troncy, R. (2008). Bringing the IPTC News Architecture into the Semantic Web. In A. P.
Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan, editors,
International Semantic Web Conference, volume 5318 of Lecture Notes in Computer Science, pages
483–498. Springer. (Cited on Page 87.)

[320] Tsikrika, T., Diou, C., de Vries, A., and Delopoulos, A. (2009). Image annotation using click-
through data. In CIVR ’09: Proceeding of the ACM International Conference on Image and Video
Retrieval, pages 1–8. (Cited on Page 113.)

[321] Tudhope, Douglas, Binding, Ceri, Blocks, Dorothee, Cunliffe, and Daniel (2006). Query expan-
sion via conceptual distance in thesaurus indexed collections. Journal of Documentation, 62(4),
509–533. (Cited on Page 21.)

[322] Turney, P. and Pantel, P. (2010). From frequency to meaning: Vector space models of semantics.



Bibliography 177

Journal of Artificial Intelligence Research, 37, 141–188. (Cited on Pages 30 and 144.)
[323] Vakkari, P., Jones, S., Macfarlane, A., and Sormunen, E. (2004). Query exhaustivity, relevance

feedback and search success in automatic and interactive query expansion. Journal of Documenta-
tion, 60(2), 109–127. (Cited on Pages 23, 33, and 88.)

[324] van Hage, W. R., de Rijke, M., and Marx, M. (2004). Information retrieval support for ontology
construction and use. In ISWC ’04: Proceedings of the 3rd International Semantic Web Conference,
pages 518–533. (Cited on Page 112.)

[325] Van Rijsbergen, C. J. (1979). Information Retrieval, 2nd edition. Dept. of Computer Science,
University of Glasgow. (Cited on Pages 13, 20, 35, and 40.)

[326] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag. (Cited on
Page 118.)

[327] Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. In SIGIR ’94: Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 61–69, New York, NY, USA. Springer-Verlag New York, Inc. (Cited on
Pages 20 and 21.)

[328] Voorhees, E. M. (2000). Variations in relevance judgments and the measurement of retrieval
effectiveness. Information Processing and Management, 36(5), 697–716. (Cited on Page 130.)

[329] Voorhees, E. M. (2005). The TREC Robust retrieval track. SIGIR Forum, 39(1), 11–20. (Cited
on Page 46.)

[330] Voorhees, E. M. and Buckland, L. P., editors (2006). Proceedings of the Fifteenth Text REtrieval
Conference, TREC 2006, Gaithersburg, Maryland, November 14-17, 2006, volume Special Publica-
tion 500-272. National Institute of Standards and Technology (NIST). (Cited on Pages 163, 167,
and 176.)

[331] Voorhees, E. M. and Buckland, L. P., editors (2009). Proceedings of The Eighteenth Text RE-
trieval Conference, TREC 2009, Gaithersburg, Maryland, USA, November 2009. National Institute of
Standards and Technology (NIST). (Cited on Pages 162, 163, and 164.)

[332] Voorhees, E. M. and Harman, D. K. (2005). TREC: Experiment and Evaluation in Information
Retrieval. MIT Press. (Cited on Pages 40 and 41.)

[333] Wang, K., Li, X., and Gao, J. (2010). Multi-style language model for web scale information
retrieval. In SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 467–474, New York, NY, USA. ACM. (Cited on Page 69.)

[334] Wang, S., Englebienne, G., and Schlobach, S. (2008). Learning concept mappings from in-
stance similarity. In ISWC ’08: Proceedings of the 7th International Conference on The Semantic Web,
pages 339–355. (Cited on Page 37.)

[335] Wang, X. and Zhai, C. (2008). Mining term association patterns from search logs for effective
query reformulation. In CIKM ’08: Proceeding of the 17th ACM conference on Information and
knowledge management, pages 479–488, New York, NY, USA. ACM. (Cited on Page 20.)

[336] Weerkamp, W. and de Rijke, M. (2008). Credibility improves topical blog post retrieval. In
ACL, pages 923–931. The Association for Computer Linguistics. (Cited on Page 16.)

[337] Weerkamp, W., Balog, K., and de Rijke, M. (2009a). A generative blog post retrieval model
that uses query expansion based on external collections. In ACL-ICNLP 2009. (Cited on Pages 27,
146, and 148.)

[338] Weerkamp, W., Balog, K., and Meij, E. J. (2009b). A generative language modeling approach
for ranking entities. In Advances in Focused Retrieval. (Cited on Pages 10 and 20.)

[339] Wei, X. (2007). Topic Models in Information Retrieval. Ph.D. thesis, University of Massachusetts.
(Cited on Pages 33 and 91.)

[340] Wei, X. and Croft, W. B. (2006). LDA-based document models for ad-hoc retrieval. In SIGIR
’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 178–185, New York, NY, USA. ACM. (Cited on Pages 22 and 31.)

[341] White, R. W., Ruthven, I., Jose, J. M., and Rijsbergen, C. J. V. (2005). Evaluating implicit
feedback models using searcher simulations. ACM Trans. Inf. Syst., 23(3), 325–361. (Cited on
Page 23.)

[342] Wikipedia (2010). Wikipedia:Manual of Style (lead section). http://en.wikipedia.org/
wiki/wikipedia:Lead_section [Online; accessed August 2010]. (Cited on Pages 117 and 130.)

[343] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6),
80–83. (Cited on Page 45.)

[344] Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Tech-

http://en.wikipedia.org/wiki/wikipedia:Lead_section
http://en.wikipedia.org/wiki/wikipedia:Lead_section


178 Bibliography

niques. Morgan Kaufmann. (Cited on Pages 118, 123, 124, and 149.)
[345] Xu, J. and Croft, W. B. (1996). Query expansion using local and global document analysis.

In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 4–11, New York, NY, USA. ACM. (Cited on Pages 20,
23, and 30.)

[346] Xu, J. and Croft, W. B. (1999). Cluster-based language models for distributed retrieval. In
SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 254–261, New York, NY, USA. ACM. (Cited on Page 17.)

[347] Xu, Y., Jones, G. J., and Wang, B. (2009). Query dependent pseudo-relevance feedback based
on Wikipedia. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on Re-
search and development in information retrieval, pages 59–66, New York, NY, USA. ACM. (Cited on
Page 146.)

[348] Xu, Z. and Akella, R. (2010). Improving probabilistic information retrieval by modeling bursti-
ness of words. Information Processing and Management, 46(2), 143–158. (Cited on Page 15.)

[349] Yang, Y. and Chute, C. G. (1993). Words or concepts: the features of indexing units and
their optimal use in information retrieval. Proc. 17th Annu. Symp. Comput. Appl. Med. Care, pages
685–689. (Cited on Page 110.)

[350] Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text catego-
rization. In ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning,
pages 412–420. (Cited on Page 136.)

[351] Yu, J. X., Qin, L., and Chang, L. (2010). Keyword search in relational databases: A survey. IEEE
Data Eng. Bull. Special Issue on Keyword Search, 33(1), 67–78. (Cited on Page 35.)

[352] Zaragoza, H., Hiemstra, D., and Tipping, M. (2003). Bayesian extension to the language model
for ad hoc information retrieval. In SIGIR ’03: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval, pages 4–9, New York, NY,
USA. ACM Press. (Cited on Page 16.)

[353] Zhai, C. (2002). Risk Minimization and Language Modeling in Text Retrieval. Ph.D. thesis,
Carnegie Mellon University. (Cited on Page 18.)

[354] Zhai, C. and Lafferty, J. (2001). Model-based feedback in the language modeling approach to
information retrieval. In CIKM ’01: Proceedings of the tenth international conference on Information
and knowledge management, pages 403–410, New York, NY, USA. ACM. (Cited on Pages 18, 23,
24, 25, 55, 62, and 106.)

[355] Zhai, C. and Lafferty, J. (2002). Two-stage language models for information retrieval. In SIGIR
’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 49–56, New York, NY, USA. ACM. (Cited on Page 50.)

[356] Zhai, C. and Lafferty, J. (2004). A study of smoothing methods for language models applied to
information retrieval. ACM Trans. Inf. Syst., 22(2), 179–214. (Cited on Pages 16, 51, 95, and 123.)

[357] Zhou, X., Hu, X., Zhang, X., Lin, X., and Song, I.-Y. (2006). Context-sensitive semantic smooth-
ing for the language modeling approach to genomic ir. In SIGIR ’06. (Cited on Page 32.)

[358] Zhou, X., Hu, X., and Zhang, X. (2007). Topic signature language models for ad hoc retrieval.
IEEE Transactions on Knowledge and Data Engineering, 19(9), 1276–1287. (Cited on Pages 32
and 91.)

[359] Zhou, Y. and Croft, B. W. (2007). Query performance prediction in web search environments.
In SIGIR ’07: 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 543–550. (Cited on Page 120.)

[360] Zipf, G. K. (1929). Relative frequency as a determinant of phonetic change. Harvard Studies in
Classical Philology, 15, 1–95. (Cited on Page 14.)

[361] Zipf, G. K. (1932). Selective Studies and the Principle of Relative Frequency in Language. Harvard
University Press. (Cited on Page 14.)

[362] Zobel, J. (1998). How reliable are the results of large-scale information retrieval experiments?
In SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 307–314, New York, NY, USA. ACM. (Cited on Page 41.)



A
Nomenclature

Abbreviations

AP average precision
ASR automatic speech recognition
CLEF Cross-Language Evaluation Forum
CSA Cambridge Scientific Abstracts
DFR divergence from randomness
EM expectation maximization
eMAP expected MAP
eR-prec expected R-precision
eP10 expected precision at rank 10
ESA explicit semantic analysis
INEX Initiative for the Evaluation of XML Retrieval
GIRT German Indexing and Retrieval Testdatabase
IDF inverse document frequency
IR information retrieval
LDA latent dirichlet allocation
LM language model
LOD Linked Open Data
LSA latent semantic analysis
LSI latent semantic indexing
MAP mean average precision
MBF model-based feedback
MeSH Medical Subject Headings
MLE maximum likelihood expansion
ML maximum likelihood
MRR mean reciprocal rank
NB naive bayes
NDCG normalized discounted cumulative gain
NLLR normalized log-likelihood ratio
NLM U.S. National Library of Medicine
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NTCIR NII Test Collection for IR Systems
ODP Open Directory Project
P5 precision@5
P10 precision@10
PLSI probabilistic latent semantic indexing
PRP probability ranking principle
PRF pseudo relevance feedback
QL query likelihood
RM relevance model
R-prec R-precision
SA Sociological Abstracts
SW semantic web
SVM support vector machine
TF term frequency
TREC Text Retrieval Conference
VSM vector space model
WSD word sense disambiguation

Nomenclature

θx a model of x, where x refers to the type of model.
θ̃ a model, estimated using maximum likelihood.
θ̂ a re-estimated model.
c a concept.
D a document.
t a term.
Q a query.

Definitions

Concept a cognitive unit of meaning that has been agreed upon and formalized
in a knowledge structure such as a controlled vocabulary, thesaurus, or on-
tology.

Concept language the concepts used to define and describe a knowledge struc-
ture, for example, an ontology, thesaurus, or controlled vocabulary.

Conceptual query model a conceptual model of a query, i.e., a distribution over
concepts relevant to a query.

Generative concept model a language model over vocabulary terms associated
with a concept.

Conceptual mapping an unweighted mapping between queries and concepts.



Samenvatting

Sinds de jaren vijftig van de vorige eeuw geniet het vakgebied van information
retrieval een toenemende interesse. Al sinds het ontstaan wordt er veel onder-
zoek gedaan naar het vinden van optimale manieren om documenten en zoekvra-
gen te representeren en naar algoritmes om de twee met elkaar te vergelijken.
In gevallen waar expliciete semantische informatie beschikbaar is, bijvoorbeeld
in de vorm van documentannotaties, kunnen dergelijke vergelijkingsalgoritmes
geïnformeerd worden door gebruik te maken van de concept talen waarin de
semantische informatie beschreven is. Dergelijke algoritmes kunnen derhalve
zoekvragen en documenten met elkaar vergelijken op basis van zowel tekstuele
als semantische evidentie.

Recente inzichten hebben het mogelijk gemaakt om zoekvragen op een gede-
tailleerde manier te representeren door middel van taalmodellen. Dit leidt er
vervolgens toe dat we taalobservaties die geassocieerd zijn met concepten op een
principiële en transparante manier in het vergelijkingsmodel kunnen verwerken.
Ontwikkelingen in het vakgebied van het semantische web, zoals bijvoorbeeld het
Linked Open Data initiatief, maken het mogelijk om op grote schaal tekst te asso-
ciëren met concepten. Deze twee ontwikkelingen samengenomen zorgen ervoor
dat we niet slechts handmatig toegekende concepten in een domein-specifieke
context kunnen inzetten, maar ook concepten uit het algemene domein kunnen
gebruiken.

Dit proefschrift onderzoekt hoe informatie-ontsluiting verbeterd kan worden
door gebruik te maken van taalobservaties rondom concepten en te kijken naar
de taal die mensen gebruiken als ze de concepten bespreken. De belangrijk-
ste bijdrage ligt in een verzameling modellen en methodes die de gebruiker in
staat stellen informatie op een conceptueel niveau te ontsluiten. Door middel van
uitvoerige experimenten wordt een gedetailleerde verkenning en analyse van de
effectiviteit van de voorgestelde modellen en methodes verkregen. De empirische
resultaten laten zien dat een combinatie van top-down conceptuele informatie en
bottom-up statistische informatie de optimale resultaten verkrijgt op een breed
scala aan taken en collecties.
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