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Abstract 

Abstract Researchers spent a large amount of their time searching through an ever increasing number of scientific 
articles. Although users of scientific search engines prefer the ranking of results according to the number of citations 
a publication has received, it is never investigated whether this notion of authorativeness could also benefit more 
traditional and objective measures. Is it also an indicator of relevance, given an information need? In this paper, we 
examine the relationship between citation features of a scientific article and its prior probability of actually being 
relevant to some information need. We propose various ways of modeling this relationship and show how this kind of 
contextual information can be incorporated within a language modeling framework. We experiment with three 
document priors, which we evaluate on three distinct sets of queries and two document collections from the TREC 
Genomics track. Empirical results show that two of the proposed priors can significantly improve retrieval 
effectiveness, measured in terms of mean average precision. 

1. Introduction 
The body of scientific literature is growing at a staggering rate. Numerous discoveries are 
disseminated through publications in all fields of modern science. The advent of digital formats 
and the web have further amplified the availability and accessibility of scientific publications. 
This has, in turn, enabled scientists worldwide to learn from each other’s findings more easily and 
more rapidly but makes, on the other hand, literature access an increasingly difficult problem. 
Users in search of specific scientific articles have a plethora of options to choose from. They can 
go to domain- or publisher-specific search engines, such as Medline or Elsevier's ScienceDirect, 
or more general search engines for scientific literature such as Citeseer, Citebase, and Google 
Scholar. The result pages of the systems in the latter category indicate that particular citation 
features are important to the users (e.g., how many times a particular document has been cited). So, 
citation features can enhance retrieval quality as perceived by end-users, by reflecting a 
publication's popularity (Redner, 1998). Amento, Terveen et al. have shown that, within a web 
setting, this is indeed the case (2000). We follow their proposition of separating quality and 
relevance and pose the question whether applying citation-based features also improves retrieval 
effectiveness in more objective measures such as mean average precision? Can we use some 
measure of authorativeness, based on citation features, to improve scientific literature access?  To 
address these questions, we zoom in on publications within the biomedical domain. We explore 
the relationship between relevance of documents for a given set of queries and the number of 
citations they receive, and we experiment with various ways of modeling this relationship. We 
show how knowledge about the bibliographic structure of a document collection can easily be 
incorporated in a retrieval model based on statistical language models. Instead of assuming 
uniform prior probabilities of documents being relevant, we introduce a bias towards more 
often-cited documents. We hypothesize that this bias will actually improve retrieval effectiveness 
in terms of mean average precision (MAP).  
 
For evaluation purposes, we use the collections and relevance judgments made available by the 
TREC Genomics track (Hersh, Cohen et al., 2005). Since we use two distinct document 
collections, we also make observations regarding the influence of the size of the document 
collections on our findings, with the 2006 collection being significantly smaller. Our main 
contribution is the novel application of using the authorativeness of a document, as measured by 
the number of citations it receives, as an indicator of relevance.  



2. Related Work 
Much of the recent related work has focused on utilizing link-based information in a web retrieval 
setting. Within a web setting, importance of documents (web pages) can be captured using 
hyperlink-based information (Kleinberg, 1999; Page, Brin et al., 1998). Both HITS and PageRank 
are based on the assumption that a document which is referenced many times by other documents 
is more important (or authorative). When the referring document is authorative itself, the 
authorativeness of the referred documents increases. Despite the fact that these algorithms 
generally improve the perceived quality of the results of an IR system (Amento, Terveen et al., 
2000; Kleinberg, 1999), the actual improvement in relevance scores for adhoc search is not 
proven (Hawking and Craswell, 2001; Hawking, Voorhees et al., 1999).  
 
Citation indexing was introduced in the 1950s as a means to keep track of references that authors 
put in their bibliographies (Garfield, 1955). It provided a way to analyze the literature and gather 
data on the ``impact'' of authors, organizations, countries, and journals, as well as assessing 
particular areas of research activity and publication. There has been much debate on the relevance 
of the published Impact Factor, with a general conclusion of it being a ``bibliometric tool with 
limited explanatory power'' (Brody, 1995; Dong, Loh et al., 2005; Gowrishankar and Divakar, 
1999; Opthof, 1997). To the best of our knowledge, this is the first time anyone has attempted to 
verify the assumption that authorativeness, as measured through citation features, is indeed a 
contributing factor not only to quality, but to relevance in particular — within the setting of a 
scientific document search task.  
 

3. Background 

3.1 Scale-Free Random Graphs 
Barabási and his colleagues were the first to map the connectedness of the web in 1999 (Barabási 
and Albert, 1999; Barabási, Albert et al., 1999). They noticed that it was a compact network and 
that the distribution of the numbers of connections of its vertices had an unusual fat-tailed form. 
They proposed two possible causes for the emergence of this power law in the frequency of 
connectivity: incremental growth and preferential attachment. Incremental growth refers to 
networks that expand continuously by the addition of new nodes, and thus the gradual increase in 
the size of the network. Preferential attachment refers to the tendency of a new node to connect to 
existing nodes that are already highly connected. These two properties are the building blocks of 
the proposed Barabási-Albert (BA) model. In this model, a vertex is introduced in the network at 
each timestep, with m edges. The probability that a new node k is connected to node i 
is ∑=

j jii kkk )Pr(  (1). Thus, the new vertex is more probable to connect to already highly 

connected or popular vertices (which is why this model is also referred to as the “rich get richer” 
model (Barabási and Albert, 1999). Typically, the majority of vertices have a small number of 
edges and a few highly connected ones are authorative and function as hubs. When ∞→k , the 
probability that node i interacts with k other nodes decays as γ−kk ~)Pr( and thus has no natural 
scale, making the local connectivity distribution scale free. When we assume the discrete variable 
ki to be continuous, it can be shown that the rate tki δδ  at which ki changes over time equals tki 2 . 
Taking the boundary condition that node i was added at time ti, with ko outlinks into account, the 
solution to this equation is of the form: 

       (2)  
 

which yields the expected indegree at time t (Dorogovtsev and Mendes, 2002; Dorogovtsev and 
Mendes, 2003). Later, we will compare this expected number of received citations with the 
actual numbers and use the normalized difference as a document prior. 

,
t
tkk i

oi =



 
a             b 

Figure 1: Distribution of received citations of all documents in the collections (a) and the number of 
received citations versus prior probability of relevance (b), both on a log-log plot. 

 

3.2 Language Modeling 
In our modeling and experimentation we adopt a generative language modeling setting. We 
estimate a multinomial unigram language model for each document in the collection and for any 
given query we rank the documents with respect to the likelihood of a document generating the 
query. To account for data sparseness, we interpolate the this likelihood using Jelinek-Mercer 
smoothing (Hiemstra, 2001; Zaragoza, Hiemstra et al., 2003; Zhai and Lafferty, 2001). We 
assume the query terms to be independent, and use a linear interpolation of a document model and 
a collection model to estimate the probability of each query term t  in query q: 
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where d is a document and D is the collection. We need to estimate three probabilities: the 
probability of observing a term in a document, P(t|d); the probability of observing the term in the 
collection, P(t|D); and the prior probability of the document, P(d). The first two are estimated 
using regular maximum likelihood estimates (Croft and Lafferty, 2003), while the document 
priors provide us with an elegant mechanism for incorporating external sources of evidence. 
Usually, all documents are considered to be equally relevant and a uniform document prior is 
chosen: ||1)( DdPuniform = , where |D| denotes the total number of documents in the collection.  
 

4. Experimental Design 
To assess the effect of introducing document priors based on bibliometric information, we 
perform several experiments, for which we use the retrieval model introduced in the previous 
section. In this section we detail our test collections and describe the sources we accessed to 
gather the required bibliometric data.  
 
Collections PubMed is a service of the U.S. National Library of Medicine (NLM) that indexes 
Medline, the online database of the NLM. The TREC Genomics track is concerned with 
information needs and documents of a biomedical nature — it uses a subset of Medline as its 
document collection(s) (Hersh, Cohen et al., 2005). It is customary within this track to perform 
extensive domain-specific morphological preprocessing of the documents; see, e.g., (Huang, 
Ming et al., 2005). As we want our findings and conclusions to be as generic as possible, we have 
not performed any of these forms of specialized preprocessing for the experiments we present 
here. We use the topics and collections from the TREC Genomics track (2004 - 2006); the 2004 



TREC Genomics document collection was used for both the 2004 and 2005 topic sets and 
contains 4,591,098 abstracts of biomedical articles, with the 2004 and the 2005 topic sets each 
containing 50 queries. For the 2006 Genomics track a new collection was introduced, consisting 
of 162,259 full-text biomedical articles and 28 topics. Additionally, in 2006 passage retrieval was 
introduced as the new task. Participating systems were not only judged on the document level, but 
also on passage and aspect levels. Again, for our findings to be as generic as possible, we only 
consider relevance judgments at the document level.  
 
Bibliometric Data PubMed Central1 is the NLM's free digital archive of biomedical and life 
sciences literature. One of the services it provides is an interface to a citation index of the records 
in MedLine and we use this bibliometric data as a basis for our experiments. We retrieved a total 
of 1,048,423 citing publications for the 2004 collection, whereas we found 84,800 for the 2006 
collection. When an article does not have any bibliometric information, it means it either has not 
received any citations, or that PubMed Central has not indexed it. Given the rate at which new 
articles are published and included in MedLine (Yoo, 2006), the former situation is not 
unthinkable and we believe that the amount of citations we have acquired is representative for the 
task at hand. The number of received citations per document does not follow a normal distribution. 
Indeed, Figure 1a displays the probability distribution from Equation 1 on a log-log plot for both 
collections and the fat-tailed curves typical of a power-law distribution are clearly visible.  
 

5. Estimating Bibliometrical Priors 
To investigate whether bibliometric information can be a useful indicator of the prior probability 
of a document's relevancy, we plot the distribution of number of received citations versus 
relevancy (Figure 1b). From this figure it is clear that a relationship between the number of 
received citations and the prior probability of a document being relevant exists. We now introduce 
three document priors into Equation 3, which are all based on citation features.  
 
Scale Free – Maximum Likelihood Estimation This document prior is based on Equation 1 and 
captures the relative authorativeness of a given document. It estimates the distribution of received 
citations and normalizes the raw counts: where ki(d) denotes the 
number of citations document d receives.  
 
Scale Free There is obviously a temporal aspect to the number of citations a document receives. 
Our intuition is that this number is not only dependent on the quality, but also on the age of a 
particular document, in line with the ideas underlying the BA model introduced in Section 3.1. 
Recent publications are less likely to have a larger number of received citations, simply because it 
takes time for a paper to get noticed and thus cited. Following this idea put forward by (Hauff and 
Azzopardi, 2005), we calculate the expected number of received citations ki

exp(d) for every 
document, using Equation 2. Since we also have the actual number of received citations ki

act(d) 
available, we compare the two and calculate the difference ki

act(d) - ki
exp(d). We normalize the 

differences and use the resulting values as prior Psfn. 
 
Bins We use an equal width interval discretization with 6 bins for this prior (this number is based 
on the heuristic reported by (Dougherty, Kohavi et al., 1995)).  Every bin represents a range of 
received citations, with a value for the prior Pbins. We use leave-one-out cross-validation to 
estimate the value of the prior: for every topic set, we use the relevance judgments of one topic to 
estimate the optimal prior value for every bin and exclude that particular topic from the evaluation. 
We exclude every topic exactly once and take the mean of the resulting scores as the final score.  
 

                                                      
1 PubMed Central, http://www.pubmedcentral.gov 
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 2004 topic set (λ  = 0.05) 2005 topic set (λ  = 0.2) 2006 topic set (λ  = 0.15) 
 MAP Change MAP Change MAP Change 
Baseline 0.2374  0.2115  0.2728  
Pmle 0.2549 +7.37 % *** 0.2362 +11.68 %*** 0.2726 -0.07 % 
Pbins 0.2379 +0.21 % 0.2121 +0.28 %* 0.2860 +4.84 %*** 
Psfn 0.2468 +3.96 % 0.2106 -0.43 % 0.2731 +0.11 % 

Table 1: Experimental results of different methods and topic sets (best scores in boldface). 
 

6. Results and Discussion 
In this section we elaborate on the results presented in Table 1. These results were obtained by 
estimating the various priors on the collection associated with the reported topic set. As a baseline 
we use the query-likelihood model from Equation 3 with a uniform document prior. We fix λ  for 
the various prior experiments, based on the best performing baseline run per topic set. We use a 
Wilcoxon signed-rank test and look for improvements at significance levels 0.95(*), 0.99(**), 
and 0.999(***). Note that the improvements presented here cannot be attributed to a low baseline 
— our baseline scores are well above the median of all participants' scores at the TREC Genomics 
tracks 2004 - 2006. The scale-free network prior Psfn does not lead to any significant 
improvements. It only improves results on the 2004 topics slightly, but not significantly. For the 
2006 topic set, this prior roughly helps as much as it hurts retrieval effectiveness. It seems that the 
modeling assumptions as proposed by (Barabási and Albert, 1999) do not hold true for these 
collections, despite the evidence in favor (Redner, 1998). When we turn to the other bibliometric 
priors, we note the improvement in terms of MAP of up to 11% on the 2005 topic set, using the 
maximum likelihood estimation document prior. This prior yields similar results on the 2004 
topic set, but does not perform well on the 2006 topics. The difference in retrieval effectiveness 
could be caused by the difference in size between the collections, but a more plausible explanation 
can be found in Figure 1b, which shows a less clear relationship between prior probability of 
relevance and the number of citations.  

 
Figure 2: Per-topic breakdown of improvement over baseline of the best performing prior per topic set 

(bars), with the amount of relevant documents per topic included (lines). 
 

The fact that the 2006 collection is much smaller also provides an explanation as to why the 
binned document prior performs better here. The proposed cross-validation method is a way to 
estimate an underlying probability distribution, which is more robust to smaller datasets. This 
does not explain the lower scores for this prior on the 2004 collection however. To gain further 
insight into this phenomenon we also investigated the per-topic scores per prior. The resulting 
plots can be found in Figure 2. The individual topic scores for the Pbins prior actually represent the 
scores of all the other topics, when trained on that particular topic. From this figure it is clear that 
the Pmle prior improves nearly all 2004 and 2005 topics, but has little effect on the 2006 topics. 
Similar behavior can be observed in the opposite direction for the Pbins prior. We believe that the 
shift in task from the 2005 to the 2006 TREC Genomics track may have some influence. The 
estimation of the value for these priors may also be influenced by the distribution of the number of 
relevant documents per topic. When we superimpose the number of relevant documents on the 
earlier presented per-topic difference in retrieval effectiveness (also in Figure 2), we see a slightly 



different distribution between the 2004 and 2006 collections. Contrary to the lessons learned from 
the TREC Web track, which suggest that inlink-type priors work best for named or home page 
finding tasks — with very few relevant documents — this indicates that this proved not to be the 
case with the current task, topics, and collections.  
 

7. Conclusion 
The vastly growing number of scientific publications calls for additional ways to rank documents 
when faced with a particular information need. We have shown how this kind of bibliometric 
information regarding the authorativeness of a scientific article can easily be integrated into a 
language modeling framework and have presented various ways of modeling the relationship 
between relevance and citedness. We have shown that the prior probability of a scientific article 
being relevant can, to some degree, be captured by using citation features. This relationship is 
especially visible on a larger document collection. Two of the specific document priors we 
propose are based on the BA model as introduced in Section 3.1. One of these, Pmle, yields 
consistent and statistically significant improvements on the 2004 collection, but slightly degrades 
when applied to the much smaller 2006 collection. The third prior, Pbins, fails to make significant 
improvements on the larger collection, but does improve results on the smaller 2006 collection in 
part because of the way the relevant documents are distributed among the topics.  
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