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Abstract
Generative information retrieval (GenIR) is a promising neural re-
trieval paradigm that formulates document retrieval as a document
identifier (docid) generation task, allowing for end-to-end optimiza-
tion toward a unified global retrieval objective. However, existing
GenIR models suffer from token-level misalignment, where models
trained to predict the next token often fail to capture document-level
relevance effectively. While reinforcement learning-based methods,
such as reinforcement learning from relevance feedback (RLRF),
aim to address this misalignment through reward modeling, they
introduce significant complexity, requiring the optimization of an
auxiliary reward function followed by reinforcement fine-tuning,
which is computationally expensive and often unstable. To ad-
dress these challenges, we propose direct document relevance opti-
mization (DDRO), which aligns token-level docid generation with
document-level relevance estimation through direct optimization
via pairwise ranking, eliminating the need for explicit rewardmodel-
ing and reinforcement learning. Experimental results on benchmark
datasets, including MS MARCO document and Natural Questions,
show that DDRO outperforms reinforcement learning-based meth-
ods, achieving a 7.4% improvement inMRR@10 for MSMARCO and
a 19.9% improvement for Natural Questions. These findings high-
light DDRO’s potential to enhance retrieval effectiveness with a
simplified optimization approach. By framing alignment as a direct
optimization problem, DDRO simplifies the ranking optimization
pipeline of GenIR models while offering a viable alternative to
reinforcement learning-based methods.
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1 Introduction
Building on the success of transformer-based pre-trained language
models, recent research has explored various neural retrieval ap-
proaches [69]: learned sparse retrieval [17, 18], dense retrieval
[22, 68, 72, 73], and cross-encoders [37]. A new paradigm has re-
cently been added to this palette, generative information retrieval
(GenIR) [34, 60]. This approach uses pre-trained encoder-decoder
models as differentiable search indexes (DSI). It has inspired the de-
velopment of several models [4, 33, 43, 50, 52–55, 64, 70, 71, 79, 80]
Generative information retrieval. GenIR models represent doc-
uments as sequences of unique document identifiers (docids), gen-
erated autoregressively, where each token is conditioned on the
query encoding and previously generated tokens. The generation
process is controlled through (constrained) beam search [33, 60,
64, 70, 71, 80]. Docids could be predefined and remain static dur-
ing training, making their careful design crucial for optimal re-
trieval performance [58]. We classify docids into two categories
based on their generation methodology and abstraction level. The
first category, referred to as content-derived docids, includes iden-
tifiers that are extracted directly from document elements such
as titles [12, 13, 16, 25, 51, 56, 57, 59], n-grams [4, 11, 28, 29, 65],
URLs [43, 76, 79, 82], and key terms [75]. These docids preserve
surface-level textual characteristics and are closely tied to the orig-
inal document content. In contrast, the second category, termed
computationally-generated are derived using techniques like quan-
tization [10, 42, 70, 71, 79] or hierarchical clustering algorithms
[33, 48, 60, 64] to encode deeper semantics by abstracting raw doc-
ument content into conceptual features.

During training, GenIR models learn to associate document text
with corresponding docids, embedding semantic information di-
rectly into its parameters. During retrieval, docids are sequentially
generated based on learned representations. By unifying indexing
and retrieval within a transformer-based architecture, these models
optimize both processes simultaneously [34, 60].
Challenges in GenIR. Despite recent advancements, GenIR mod-
els face key limitations that hinder their effectiveness. These models
typically rely on an auto-regressive loss function that optimizes
the generation of individual docid tokens. However, this token-
level optimization approach does not align with the broader goal
of ranking tasks, which requires assessing the overall relevance of
a document to the query. As a result, this misalignment often leads
to suboptimal ranking performance. To address these challenges, it
is crucial to align token generation with document-level relevance
estimation to ensure more accurate, well-rounded retrieval outcomes.
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Direct document-level relevance optimization. Existing ap-
proaches aimed at aligning token-level docid generation with docu-
ment-level relevance estimation, such as reinforcement learning
from relevance feedback (RLRF), use reinforcement learning to
align predictions with relevance judgments through reward mod-
eling [76]. However, RLRF introduces significant complexity, re-
quiring the optimization of an auxiliary reward function followed
by reinforcement fine-tuning, which is computationally expensive
and often unstable. To address these challenges, we introduce a
direct document relevance optimization (DDRO) method that em-
ploys a pairwise ranking approach into GenIR models to improve
document retrieval performance.

Our approach has two key phases. (i) First, we employ supervised
fine-tuning (SFT) to train a language model (LM) capable of gen-
erating docids that are most relevant to a given query. (ii) Next,
we directly refine the model through pairwise ranking, where the
model learns to differentiate between relevant and irrelevant do-
cids for a specific query based on labeled data. This refinement
ensures that the retrieval system ranks documents based on their
relevance, aligning the model more closely with the query. The
SFT phase serves as a pretraining step, aligning the model with
initial relevance signals from training data and providing a strong
foundation for the pairwise ranker to further fine-tune document
ranking effectiveness.

Experiments conducted on the MS MARCO document rank-
ing [3] and Natural Questions (NQ) [23] benchmarks demonstrate
the effectiveness of DDRO in improving retrieval accuracy, outper-
forming multiple baselines. Moreover, DDRO maintains compet-
itive performance with established baselines on broader metrics
like R@10, demonstrating robustness across evaluation criteria.
An ablation study further highlights the contributions of pairwise
ranking optimization to the observed performance improvements.
Main contributions. We introduce direct document relevance
optimization (DDRO), a pairwise ranking approach that aligns do-
cid generation with document-level relevance judgments. This ap-
proach ensures that docids are generated not only based on token-
level likelihood but also according to their relevance to the user’s
query. DDRO unifies training objectives within a single framework,
optimizing directly for document-level relevance. Experimental re-
sults demonstrate improvements in retrieval accuracy, highlighting
the effectiveness of the proposed approach in enhancing generative
retrieval models for relevance-based ranking.
Reproducibility. To promote reproducibility in GenIR, we open-
source our codebase and make checkpoints publicly available.1

2 Related Work
Reward modeling. Recent efforts in GenIR have sought to bridge
the gap between token-level optimization and document-level rele-
vance. GenRRL [76] addresses this issue using RLRF to align docid
generation with query relevance. While effective, this approach
requires a robust reward model training and reinforcement learn-
ing fine-tuning, both of which are resource-intensive and prone to
instability. Developing a reliable reward model demands substan-
tial labeled data, and reinforcement learning fine-tuning involves
1https://github.com/kidist-amde/DDRO-Direct-Document-Relevance-Optimization/
tree/main

extensive hyperparameter tuning [40], contributing to training in-
stability and scalability challenges for large-scale applications. In
contrast, we propose DDRO, a direct document-level relevance opti-
mization method that eliminates the need for explicit reward model
training and reinforcement learning fine-tuning, thereby reducing
computational overhead and improving optimization efficiency.

Dense-generative integration. Ranking-oriented generative re-
trieval (ROGER) [77] combines dense and generative retrieval by
using dense retrievers as intermediaries to provide relevance signals,
bridging the gap between document ranking and docid generation.
ROGER employs knowledge distillation from dense retrievers to
enhance the generative model’s ranking capabilities, combining the
strong relative ranking signals of dense retrieval with the flexibility
of generative models. However, it relies on external dense retrievers
and does not directly optimize for document-level relevance within
the generative model’s training objectives. In contrast, DDRO elim-
inates this dependency by incorporating pairwise ranking directly
into the generative model’s optimization pipeline, ensuring align-
ment with document-level relevance.

Learning to rank in generative retrieval models. Similarly,
LTRGR [29] incorporates a learning-to-rank (LTR) framework to
address the gap between docid generation and document ranking.
It introduces an additional training phase where the model is op-
timized using a margin-based ranking loss, eliminating the need
for a separate ranking step during inference. However, LTRGR
focuses on optimizing passage ranking during the second phase,
treating docid generation as a step toward this goal rather than
fully integrating document-level relevance into the generative pro-
cess. Consequently, the challenge of embedding document-level
relevance directly into docid generation remains unaddressed. In
contrast, DDRO integrates pairwise ranking directly into the gen-
erative model’s optimization pipeline, ensuring docid generation
inherently aligns with document-level relevance.

Our approach. Building on the advancements of GenRRL, ROGER,
and LTRGR, we propose a framework that combines SFT for do-
cid generation with pairwise ranking optimization to better align
GenIR objectives with ranking goals. DDRO addresses token-level
misalignment by incorporating document-level relevance optimiza-
tion into the training process, enhancing existing GenIR systems
by enabling them to learn to rank more effectively.

State-of-the-art baselines. SOTA baselines in GenIR, such as
RIPOR [70] and PAG [71], employ multi-stage optimization ap-
proaches. E.g., RIPOR refines relevance-based docids through itera-
tive pre-training and fine-tuning, while PAG introduces a hybrid
decoding strategy that combines simultaneous and sequential de-
coding to enhance ranking efficiency. Both methods achieve strong
results on the MS MARCO passage ranking dataset. Our work sim-
plifies optimization with a single-framework approach, offering
an alternative to multi-stage methods. A direct comparison with
these baselines is deferred to future work to assess how DDRO
can complement and extend these approaches while evaluating its
scalability in large-scale retrieval tasks.

https://github.com/kidist-amde/DDRO-Direct-Document-Relevance-Optimization/tree/main
https://github.com/kidist-amde/DDRO-Direct-Document-Relevance-Optimization/tree/main
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3 Preliminaries and Motivations
3.1 Generative Information Retrieval (GenIR)
GenIR models build on large pre-trained language models, such
as T5 [41] and BART [27], and are designed to take a query string
and generate a ranked list of document identifiers (docids) based
on their generation probabilities, ordered in descending sequence.
Each document 𝑑 is assigned a unique identifier docid = (docid1,
docid2, . . . , docid𝐿), where 𝐿 is the length of the identifier, and
the model processes the query 𝑞 to autoregressively generate the
corresponding docid using a scoring function defined as:

𝑠𝑐𝑜𝑟𝑒 (docid | 𝑞) =
𝐿∏
𝑖=1

𝑝𝜃 (docid𝑖 | docid1:𝑖−1, 𝑞), (1)

where 𝑝𝜃 denotes the generative retrieval model parameterized by
𝜃 , and docid𝑖 is the 𝑖-th token of the docid for document 𝑑 . The
generation continues until a special end-of-sequence (EOS) token
is decoded.

Training is performed using a multi-task setup that combines
indexing and fine-tuning, which yields better results than training
these tasks separately [60]. During indexing, the model memorizes
the document collection and maps each document’s text to its
corresponding docid. Fine-tuning then refines this mapping by
optimizing query-to-docid associations. The model is optimized via
the following loss 𝐿𝜃

𝐷𝑆𝐼
with teacher forcing [66]:∑︁

𝑑𝑖 ∈𝐷
log 𝑃 (𝑑𝑜𝑐𝑖𝑑𝑖 | 𝑇 5𝜃 (𝑑𝑖 )) +

∑︁
𝑞 𝑗 ∈𝑄

log 𝑃 (𝑑𝑜𝑐𝑖𝑑𝑖 | 𝑇 5𝜃 (𝑞 𝑗 )), (2)

where 𝐷 represents the document set, and 𝑄 denotes the query set.
This loss function enables parameter updates during both indexing
and fine-tuning, enhancing the model’s ability to generate the most
relevant docid for a given query or document. The retrieval phase
employs a (constrained) beam search algorithm to decode the most
probable docid, with their generation probabilities determining the
final ranking [33, 60, 64, 70, 71, 80].

3.2 Learning to Rank (L2R)
L2R aims at training models to rank documents based on their
relevance to a given query [6, 9, 63]. L2R methods can be classi-
fied into point-wise, pair-wise, and list-wise approaches based on
their learning objectives. (i) Point-wise methods [19] frame ranking
as a classification problem by scoring individual documents in-
dependently: 𝐿point =

∑
𝑖 L(𝑠 (𝑑𝑖 , 𝑞), 𝑠 (𝑑𝑖 , 𝑞)), where 𝑠 (𝑑𝑖 , 𝑞) and

𝑠 (𝑑𝑖 , 𝑞) denote the predicted relevance score and ground truth
relevance score, respectively. In GenIR, generated probabilities
serve as relevance scores, aligning with this approach [60]. And
the retrieval term in Eq. 2 belongs to this type. (ii) Pair-wise ap-
proaches [6, 9, 15, 63] compare document pairs to determine relative
preferences: 𝐿pair =

∑
(𝑑𝑖 ,𝑑 𝑗 ) log

(
1 + exp

(
−
(
𝑠 (𝑑𝑖 , 𝑞) − 𝑠 (𝑑 𝑗 , 𝑞)

) ) )
,

where 𝑑𝑖 and 𝑑 𝑗 are used as pairs to compare. DDRO shares similari-
ties with traditional pairwise L2R methods such as RankNet [5] and
LambdaRank [7], in that it optimizes a margin between relevant
and non-relevant documents. It differs in that the ranking signal is
used to supervise the generation of structured docid sequences via a

generative decoder. Unlike typical L2R approaches that score docu-
ments retrieved by an external system, DDRO learns to produce do-
cids directly, making it end-to-end generative. This integration of se-
quence modeling and pairwise supervision is a key distinction from
prior L2R pipelines. (iii) List-wise approaches [24, 67], optimize the
entire ranked list:𝐿list =

∑
𝑞 L (Softmax(𝑠 (𝑞, 𝜋)), Softmax(𝑠 (𝑞, 𝜋))),

where 𝜋 and 𝜋 are the predicted and ground-truth lists, respectively.
In GenIR, Tang et al. [53] introduces a position-aware list-level ob-
jective to learn the relevance. As we focus on pair-wise approaches,
comparisons with list-wise methods are left for future work.

A fundamental challenge in GenIR stems from the inherent mis-
alignment between the optimization objectives of autoregressive
models and the overarching objectives of document ranking tasks.
Training GenIR models solely to generate docids can be treat as
the point-wise approach, which is often insufficient for achieving
effective ranking. Addressing this challenge necessitates the de-
velopment of a robust framework that enables GenIR models to
directly learn to rank [29, 76, 77].

3.3 Reinforcement Learning from Relevance
Feedback (RLRF)

To address the aforementioned limitations, Zhou et al. [76] propose
GenRRL, a generative retrieval model based on RLRF to optimize
generative models for alignment with document-level relevance.
RLRF optimizes rewards while ensuring alignment with human
preferences using a KL divergence constraint [2, 14, 30, 35, 39, 47,
76]. This method refines model predictions using a learned reward
function, as formalized in prior research [20, 21]:

max
𝜋𝜃

E𝑥∼D,𝑦∼𝜋𝜃 (𝑦 |𝑥 )
[
𝑟𝜙 (𝑥,𝑦)

]
− 𝛽DKL

(
𝜋𝜃 (𝑦 |𝑥)∥𝜋 ref (𝑦 |𝑥)

)
, (3)

where 𝛽 is a parameter controlling deviation from the base refer-
ence policy 𝜋 ref, which is typically the initial supervised fine-tuned
model. This constraint prevents the model from straying too far
from the data distribution used to train the reward function, pre-
serving output diversity and avoiding overfitting to high-reward
responses. Since language generation is non-differentiable, rein-
forcement learning (RL) techniques are widely used. A widely rec-
ognized approach [39, 47, 81] optimizes the reward function using
Proximal Policy Optimization (PPO) [46], and defines the reward
function as:

𝑟 (𝑥,𝑦) = 𝑟𝜙 (𝑥,𝑦) − 𝛽 (log𝜋𝜃 (𝑦 |𝑥) − log𝜋 ref (𝑦 |𝑥)). (4)

GenRRL [76] trains a reward model using relevance-annotated data
derived from BM25 [44], DPR [22], and LLaMA-13b [61]. This re-
ward model guides reinforcement learning to optimize the language
model’s policy for generating high-reward outputs, with a KL diver-
gence constraint ensuring alignment with the original supervised
fine-tuned model or the reference policy 𝜋 ref. The optimization pro-
cess involves supervised fine-tuning using negative log-likelihood,
pairwise ranking loss for the reward model, and reinforcement
learning techniques incorporating pointwise, pairwise, and list-
wise approaches to enhance ranking performance. While effective,
this approach introduces considerable complexity, requiring the
training of multiple models and sampling from the policy during
training, which substantially increases computational costs.
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Figure 1: The proposed workflow comprises three key stages: (1) Construction of document identifiers (docids) including
URL/title, domain, and product quantization codes; (2) Supervised fine-tuning of the retrieval model 𝜋 ref

𝜃
using diverse data

pairs; and (3) Freezing the trained reference policy model 𝜋 ref
𝜃

and performing direct learning-to-rank (L2R) optimization on a
policy model 𝜋𝜃 .

Inspired by the work of Rafailov et al. [40], we propose direct doc-
ument relevance optimization (DDRO), a streamlined approach de-
signed to enhance the ranking capabilities of GenIR models. DDRO
directly optimizes GenIR models to learn document-level rank-
ing without relying on explicit reward modeling or reinforcement
learning. While our optimization is inspired by the DPO frame-
work [40], its adaptation to GenIR is non-trivial. Unlike preference
alignment for open-ended generation, our task involves optimizing
structured docid generation under beam decoding constraints. Ad-
ditionally, our method differs in both architecture (encoder-decoder
vs. decoder-only) and objective (document ranking vs. preference
alignment), requiring novel integration into GenIR pipelines. To
the best of our knowledge, DDRO is the first method to apply
preference-style optimization directly to generative document re-
trieval by extending DPO-style training to constrained generative
settings, leveraging pairwise query-docid relevance supervision
and constrained decoding.

4 Method
We provide a comprehensive explanation of the proposed DDRO
method. As depicted in Figure (1), the method initiates with the gen-
eration of two categories of docids, designed to encapsulate diverse
semantic and contextual features of the documents (Section 4.1).
Subsequently, the retrieval model is trained through a combination
of self-supervised and supervised learning techniques (Section 4.2).
Finally, direct learning-to-rank (L2R) optimization is applied, using
relevance feedback to refine the model’s ranking quality and align
its outputs with document-level relevance (Section 4.3).

4.1 Docid Construction
The methodology for constructing docids in this work is grounded
in established frameworks [70, 71, 76, 79]. This approach uses
keyword-based identifiers to effectively encapsulate the seman-
tic and contextual information of the documents.
URL and Title (TU). Titles in web search results are typically
crafted to be descriptive, closely aligning with user search intent,
while URLs often contain structured tokens, such as keywords

or domains, that are highly indicative of relevance for web-based
queries [79]. The structure of the URL reverses to prioritize seman-
tically meaningful segments. When a URL lacks descriptive content
(e.g., uses numeric IDs or generic paths), we fall back to a combi-
nation of the document’s title and domain name as an alternative
identifier. Formally, this docid variant is defined as:

𝑑𝑜𝑐𝑖𝑑TU =

{
reverse(URL), if the URL is semantically rich,
title + domain, otherwise.

(5)

Product quantization codes (PQ). Building on prior work [10,
42, 70, 79], we adopt product quantization (PQ) to reduce the di-
mensionality of document representations while maintaining their
semantic integrity. PQ compresses document vectors into latent
semantic tokens by employing K-means clustering to partition the
latent vector space into clusters. Each document is then represented
by the corresponding cluster center, forming a compact identifier
that preserves the document’s core semantic features. The resulting
docid is defined as:

𝑑𝑜𝑐𝑖𝑑𝑃𝑄 = 𝑃𝑄 (Encoder(𝑑)), (6)

where the encoder is based on a pre-trained T5 model [36]. The clus-
tering process generates 𝒌 cluster centers across 𝒏 groups, expand-
ing the vocabulary by 𝒏 × 𝒌 new tokens. This approach produces a
semantically rich and efficient representation of each document.

4.2 Supervised Fine-tuning
Supervised fine-tuning (SFT) enhances the retrieval capabilities of
pre-trained language models by aligning them with task-specific
data [1, 39, 47]. Based on the two basic operations of DSI [60], i.e.,
indexing and retrieval tasks, diverse data pairs are curated and
optimized using a teacher forcing policy [66] to achieve alignment
with the ground truth.
Indexing task. To memorize the corpus, the indexing task learns
associations between documents and docids, making the document
input format a crucial factor. Inspired by the indexing strategy pro-
posed in [79], we generate self-supervised learning signals directly
from the document corpus.
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∇𝜃LDDRO
(
𝜋𝜃 ;𝜋 ref

)
= −𝛽E(𝑞,𝑑𝑜𝑐𝑖𝑑+,𝑑𝑜𝑐𝑖𝑑− )∼D [ 𝜎

(
𝑟𝜃 (𝑞, 𝑑𝑜𝑐𝑖𝑑−) − 𝑟𝜃

(
𝑞, 𝑑𝑜𝑐𝑖𝑑+

) )︸                                       ︷︷                                       ︸
higher weight when reward estimate is wrong

×

[ ∇𝜃 log𝜋
(
𝑑𝑜𝑐𝑖𝑑+ | 𝑞

)︸                     ︷︷                     ︸
increase likelihood of 𝑑𝑜𝑐𝑖𝑑+

− ∇𝜃 log𝜋 (𝑑𝑜𝑐𝑖𝑑− | 𝑞)︸                     ︷︷                     ︸
decrease likelihood of 𝑑𝑜𝑐𝑖𝑑−

]],
(7)

Figure 2: Gradient for direct learning-to-rank optimization using relevance feedback.

Text segments are mapped to their corresponding docids, en-
abling the model to link document passages with their broader
context [8, 79]. Each document is divided into fixed-size passages,
paired with the document’s docid to create passage-to-docid pairs.
For a document containing 𝑁 terms, {𝑤1,𝑤2, . . . ,𝑤𝑁 }, multiple
passage-to-docid pairs are generated as follows:

passage : {𝑤𝑖 ,𝑤𝑖+1, . . . ,𝑤𝑖+𝑚−1} → 𝑑𝑜𝑐𝑖𝑑, (7)

where 𝑖 is the starting term of a passage, and𝑚 is the fixed passage
length. To emphasize a document’s core semantic content, terms
are prioritized by their 𝑡 𝑓 -𝑖𝑑 𝑓 scores [44], with a subset of high-
scoring terms selected to form a compressed representation, which
is then mapped to the document’s docid:

terms : {𝑤𝑎,𝑤𝑏 ,𝑤𝑐 } → 𝑑𝑜𝑐𝑖𝑑, (8)

where 𝑤𝑎,𝑤𝑏 ,𝑤𝑐 are key terms selected based on their 𝑡 𝑓 -𝑖𝑑 𝑓
scores.

Retrieval task. During retrieval, a pre-trained language model
is fine-tuned with supervised query-docid pairs to learn seman-
tic mappings between queries and their corresponding docids. A
key challenge in this process is the scarcity of labeled click data,
which limits the ability to establish effective query-to-docid asso-
ciations. To mitigate this, pseudo-queries are generated directly
from the document corpus [64, 80]. Specifically, the docTTTTT-
query [38] model is fine-tuned using supervised click data from the
MS MARCO document and NQ datasets. For each document, an
initial passage serves as input, and the model produces 𝑘 predicted
queries using beam search, denoted as 𝑄 = {𝑞1, . . . , 𝑞𝑘 }.

These diverse datasets, including passage-to-docid pairs, super-
vised query-docid pairs (derived from real-world relevance judg-
ments), and synthetic pseudo-queries, are collectively used to train
the 𝝅 ref

𝜃
model. Using these comprehensive and diverse training

data, the SFT model acquires a robust understanding of query-
to-document mappings and learns to generate relevant docids by
optimizing token-level generation probabilities for a given query.

Training objective. The model is trained with a sequence-to-
sequence objective, aiming to maximize the likelihood of the target
sequence through teacher forcing [66]. Given an input sequence
𝑠 , which can be any of the document formats or queries described
above, the objective is defined as:

𝐿𝜃SFT = argmax
𝜃

log 𝑃 (𝑑𝑜𝑐𝑖𝑑∗ | 𝑠, 𝜋 ref
𝜃

(𝑑𝑜𝑐𝑖𝑑)), (9)

where 𝑑𝑜𝑐𝑖𝑑∗ represents the ground truth sequence, 𝜋 ref
𝜃

(𝑑𝑜𝑐𝑖𝑑)
denotes the sequence generated by the SFT model, and 𝑃 (𝑑𝑜𝑐𝑖𝑑∗ |
𝑠, 𝜋 ref

𝜃
(𝑑𝑜𝑐𝑖𝑑)) corresponds to the conditional probability of the

ground truth given the input sequence and the model’s generated
sequence.

4.3 Direct L2R Optimization Using Relevance
Feedback

DDRO simplifies the complexities associated with reward modeling
and reinforcement learning used in RLRF approaches. Instead, it
directly optimizes the likelihood that relevant docids (𝑑𝑜𝑐𝑖𝑑+) are
assigned higher scores over non-relevant ones (𝑑𝑜𝑐𝑖𝑑− ) for a given
query, as illustrated in Figure (3). The corresponding optimization
objective is formulated as:

LDDRO (𝜋𝜃 ;𝜋 ref) = − E(𝑞,𝑑𝑜𝑐𝑖𝑑+,𝑑𝑜𝑐𝑖𝑑− )∼𝐷[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑑𝑜𝑐𝑖𝑑+ | 𝑞)
𝜋 ref (𝑑𝑜𝑐𝑖𝑑+ | 𝑞)

− 𝛽 log
𝜋𝜃 (𝑑𝑜𝑐𝑖𝑑− | 𝑞)
𝜋 ref (𝑑𝑜𝑐𝑖𝑑− | 𝑞)

)]
,
(10)

where 𝜋𝜃 (𝑑𝑜𝑐𝑖𝑑 |𝑞) is the policy that is being optimized, while
𝜋 ref (𝑑𝑜𝑐𝑖𝑑 |𝑞) is the reference policy, typically the fine-tuned model
(SFT). This formulation ensures that the optimized model remains
close to the reference policy while improving relevance-based rank-
ing. The DDRO update guides the model toward producing outputs
better aligned with relevance by utilizing pairwise comparisons, of-
fering a simplified alternative to RL-based approaches. The gradient
w.r.t. the model parameters 𝜃 is defined as in Eq. 7, where

𝑟𝜃 (𝑞, 𝑑𝑜𝑐𝑖𝑑) = 𝛽 log
𝜋𝜃 (𝑑𝑜𝑐𝑖𝑑 | 𝑞)
𝜋 ref (𝑑𝑜𝑐𝑖𝑑 | 𝑞)

(11)

is the reward implicitly defined by the model 𝜋𝜃 and the reference
model 𝜋 ref. The examples are weighted according to how much
the implicit reward model 𝑟𝜃 overestimates the ranking of the non-
relevant docid compared to the relevant docid. This weighting is
scaled by 𝛽 , reflecting the degree of misjudgment while considering
the strength of the KL divergence constraint. The sigmoid function
𝜎 (·) ensures smooth optimization, and the model parameters 𝜃
are adjusted to increase the likelihood of the relevant docids over
non-relevant ones. This reparameterization streamlines the train-
ing process by eliminating the need for an explicit reward model
and iterative fine-tuning, providing a more stable and efficient
framework for aligning the retrieval model with document-level
relevance objectives.

5 Experimental Settings
5.1 Datasets and Evaluation Metrics
Datasets. We conduct our experiments using two widely recog-
nized benchmarks: theMSMARCODocument Ranking dataset2
[3] and theNaturalQuestions (NQ) dataset3 [23]. TheMSMARCO
document ranking dataset is widely used for document ranking
tasks and contains a large collection of queries and web pages. Fol-
lowing prior work [65, 76, 78, 79], we use a subset with 320k docu-
ments and 360k query-document pairs for training. The NQ dataset,
2https://microsoft.github.io/msmarco/Datasets.html#document-ranking-dataset
3https://ai.google.com/research/NaturalQuestions/download

https://microsoft.github.io/msmarco/Datasets.html#document-ranking-dataset
https://ai.google.com/research/NaturalQuestions/download
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Figure 3: Architecture of the DDRO model, which fine-tunes
the retrieval model through direct learning-to-rank (L2R)
optimization using relevance feedback. Unlike GenRRL [76],
DDRO directly optimizes with relevance judgment data,
avoiding reinforcement learning, explicit reward modeling,
and extensive hyperparameter tuning. For clarity, the model
𝜋
ref
𝜃

from the SFT phase is referred to as 𝜋 ref , with its param-
eters frozen during this phase.

introduced by Google, is a widely used benchmark in question-
answering research. In this study, we use the NQ320k version, which
includes 320k query-document pairs sourced from Wikipedia, with
queries formulated in natural language. To ensure reliable evalua-
tion and improve performance [26], we deduplicate documents by
title and utilize the predefined training and validation splits.
Evaluation metrics. Following [65, 76–79], we assess model per-
formance using standard document retrieval metrics: Recall (R@1/5/
10) and Mean Reciprocal Rank (MRR@10). Statistical significance
is determined using paired t-tests with a threshold of 𝑝 < 0.05.

5.2 Baselines
We evaluate our approach against three types of baseline: term-
based retrieval, dense retrieval, and generative retrieval.
Term-based retrieval. (i) BM25 [45], a probabilistic retrieval
model commonly used as a standard baseline, implemented us-
ing Pyserini.4 (ii) DocT5Query [38], which generates synthetic
queries from documents using the T5 model [41], appending them
to the original document text.
Dense retrieval. (i) DPR [22], which utilizes a BERT-based dual
encoder to produce dense embeddings for queries and documents.
PseudoQ [49] improves DPR by generating pseudo-queries using
K-means clustering over document embeddings. (ii) ANCE [68],
a RoBERTa-based dual encoder that incorporates hard negatives
retrieved from an asynchronously updated approximate nearest
neighbor (ANN) index. (iii) RepBERT [74], a BERT-based model
that generates fixed-length contextualized embeddings, with query–
document relevance computed via inner product similarity. (iv) Sen-
tence-T5 [36], which applies a T5-based architecture to gener-
ate sentence embeddings using encoder-only and encoder-decoder
models with contrastive learning.
Generative retrieval. (i) DSI [60], which represents docids us-
ing hierarchical k-means cluster IDs and trains with the DSI-Num
objective. (ii) DSI-QG [80], which augments training data with
synthetic queries generated using a query generation model [38]

4https://github.com/castorini/pyserini

and represents documents with arbitrary unique numerical docids.
(iii) NCI [64], which assigns semantically structured numeric do-
cids paired with pseudo-queries. (iv) SEAL [16], which retrieves
docids represented as arbitrary n-grams extracted from document
text using an FM-index. (v) Ultron [79], which employs keyword
and semantic-based docids, using a three-stage training approach:
general pre-training, search-oriented pre-training, and supervised
fine-tuning. (vi) ROGER [77], which transfers document relevance
knowledge from a dense retriever to a generative retriever via
knowledge distillation. (vii) MINDER [28], which assigns multi-
ple identifiers, including titles, n-grams, and synthetic queries, to
documents and pairs them for indexing. (viii) LTRGR [29], which
trains on pairwise relevance objectives using margin-based rank-
ing loss for optimization. (ix) GenRRL [76], which incorporates
pointwise, pairwise, and listwise relevance optimization through
reinforcement learning, using document summaries and URLs as
docids. We exclude document summaries as docids due to their de-
pendence on external summarization models, such as LLaMA-13b
used in GenRRL. These models introduce preprocessing overhead
and variability in identifier quality. Instead, DDRO employs product
quantization (PQ) to generate compact, structured docids, ensuring
consistency and scalability.

Note on result sourcing. Baseline results for methods such as
GenRRL [76] and ROGER [77] are taken from their original papers
due to the unavailability of public code, ensuring consistency and
avoiding potential reproducibility issues. Other results were repro-
duced using publicly available code and the dataset configurations
described in this work.

5.3 Implementation Details
SFT. The SFT model is based on the T5-base pretrained model [41],
trained with a learning rate of 1e-3 and a batch size of 128. All
experiments involving various docid types were conducted on 8
NVIDIA RTX A6000 GPUs.

Pseudo queries. The DocT5Query model [38], fine-tuned on the
target dataset with document-query pairs, was used to generate 10
pseudo-queries per document.

Contrastive data pair construction. Training triples were gener-
ated using stratified sampling for diversity. Positive samples were
selected based on qrels relevance judgments, while negatives were
drawn from the top 1000 BM25-retrieved documents, stratified into
top (1–100), mid (101–500), and lower (501–1000) ranks. Negatives
were randomly sampled in roughly equal proportions, with 8 per
query for NQ and 16 for MS MARCO.

DDRO. The DDRO model was initialized with the pre-trained au-
toregressive SFT model (see Section 4.2) and fine-tuned using the
proposed direct learning-to-rank framework (see Section 4.3). Train-
ing was performed using amodified Hugging Face TRL DPOTrainer
[62], adapted for encoder-decoder models. A cosine learning rate
scheduler with 1000 warm-up steps and early stopping was applied.
The learning rate was set to 5e-6 for PQ-based docids and 1e-5
for URL-based docids, with a batch size of 64 and a regularization
parameter 𝛽 of 0.4 to balance chosen and rejected responses. All
experiments were conducted on a single NVIDIA A100 GPU.

https://github.com/castorini/pyserini
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Table 1: Performance comparison of GenRRL and DDRO
on the MS MARCO document ranking (MS300K) dataset.
The best results are in bold. Results for cited models are
sourced from their original papers. Abbreviations: PQ – Prod-
uct Quantization; TU – Title + URL; Sum – document sum-
mary.

Model R@1 R@5 R@10 MRR@10

GenRRL (TU) [76] 33.01 63.62 74.91 45.93
GenRRL (Sum) [76] 33.23 64.48 75.80 46.62
DDRO (PQ) 32.92 64.36 73.02 45.76
DDRO (TU) 38.24 66.46 74.01 50.07

Constrained beam search. During inference, constrained beam
search generates valid docids by using a prefix tree [60] to enforce
valid token sequences.

6 Experimental Evaluation and Results
Our evaluation of DDRO focuses on the following questions:
RQ1 How does DDRO compare to RLRF-based methods, such as

GenRRL, in terms of retrieval performance while avoiding the
complexities of reward modeling and reinforcement learning?

RQ2 How does DDRO perform relative to established baselines
in terms of retrieval accuracy and ranking consistency on
benchmark datasets?

RQ3 What is the impact of pairwise ranking optimization on the
performance of DDRO?

RQ4 How robust is DDRO across datasets with varying character-
istics?

RQ5 How does DDRO balance relevance across the ranked list in
generative retrieval models, and what impact does it have on
overall ranking quality?

6.1 Comparison with Reinforcement
Learning-Based Methods

To address RQ1, we compare DDRO with GenRRL [76] on both
datasets. Results are presented in Table 1 and Table 2.

We observe the following: (i) OnMSMARCO,DDRO (TU) achieves
the highest scores in early precision-focused metrics. Specifically, it
outperforms GenRRL(Sum) by 15.06% in R@1 and 7.4% in MRR@10,
highlighting its effectiveness in ranking the most relevant docu-
ment at the top. While GenRRL (Sum) performs better in the R@10
metric, DDRO (TU) achieves comparable results with a simplified
optimization process, avoiding the need for a reward model and re-
inforcement learning. (ii) On NQ, DDRO (PQ) outperforms GenRRL
(Sum) by 34.69% in R@1 and 19.87% in MRR@10, further validat-
ing its effectiveness in retrieving relevant documents within the
top ranks. GenRRL variants achieve higher R@10 scores, likely
benefiting from multi-signal learning and listwise optimization
strategies, potentially improving broader document retrieval. Sum-
mary-based docids may aid performance on knowledge-intensive
queries. (iii) DDRO (TU) and DDRO (PQ) show different trends
across datasets: TU performs better on MS300K, while PQ excels
on NQ. This disparity likely stems from higher document quality in
NQ, where the rich semantic content allows the generated PQs to
convey more meaningful information. In contrast, MS300K, which
is derived from web search logs, contains noisy content such as ads,

Table 2: Performance comparison of GenRRL and DDRO on
the NQ320K dataset. The best results are in bold. Results for
cited models are sourced from their original papers. Abbre-
viations: PQ – Product Quantization; TU – Title + URL; Sum
– document summary.

Model R@1 R@5 R@10 MRR@10

GenRRL (TU) [76] 35.79 56.49 70.96 45.73
GenRRL (Sum) [76] 36.32 57.42 71.49 46.31
DDRO (TU) 40.86 53.12 55.98 45.99
DDRO (PQ) 48.92 64.10 67.31 55.51

resulting in lower-quality PQs. Consequently, TU, which prioritizes
keyword-based features, effectively captures the core content of
MS300K, where the shorter, keyword-focused queries align well
with surface-level signals such as titles and URLs.

6.2 Comparison with Established Baselines
To address RQ2, Table 3 presents a comprehensive comparison of
DDRO with baselines on the MS300K dataset. We can observe the
followings: (i) The performance of dense retrieval baselines is gen-
erally better than that of sparse retrieval baselines, likely because
the former uses dense vectors to capture richer semantic infor-
mation, which is consistent with earlier findings [31, 32]. (ii) The
best-performing dense retrieval baseline, ANCE, outperforms oth-
ers such as SEAL, NCI, and DSI-QG. This could be due to the fact
that these generative retrieval baselines rely solely on maximum
likelihood estimation (MLE) to learn relevance, which may not fully
capture the relevance patterns. However, ANCE lags behind mod-
els like Ultron, ROGER, and LTGR, which employ more advanced
optimization strategies. This highlights the need for fine-grained
relevance modeling to enhance generative retrieval ranking perfor-
mance. (iii) Our proposed DDRO (TU) outperforms these generative
retrieval baselines, achieving 15.63% and 8.03% higher R@1 and
MRR@10, respectively, compared to the best-performing baseline,
ROGER-Ultron. These results demonstrate the effectiveness of our
document-level relevance optimization approach.While ROGER-Ul-
tron achieves the highest R@10, DDRO (TU) delivers comparable
performance within a more efficient and lightweight framework.

6.3 Ablation Study
To address RQ3, an ablation study was conducted to assess the im-
pact of pairwise ranking optimization on DDRO performance. From
Table 4, we can find: (i) On the MS MARCO dataset, removing pair-
wise ranking optimization significantly reduces intermediate and
broader recall metrics (R@5 and R@10) for both DDRO variants,
highlighting its critical role in improving retrieval performance.
(ii) On the NQ dataset, excluding pairwise ranking optimization
leads to consistent declines across all metrics, with a more pro-
nounced impact on DDRO (PQ), particularly in early precision and
broader recall. This underscores the importance of pairwise ranking
in enhancing retrieval effectiveness at various ranking depths.

These findings confirm that pairwise ranking optimization ef-
fectively aligns model predictions with document relevance, con-
tributing to improved performance across different ranking levels.
Effect of KL Constraint Strength 𝛽. We evaluate the impact
of the 𝛽 parameter, which controls the KL divergence constraint
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Table 3: Comparison of retrieval model performance on the
MS MARCO document ranking (MS300K) dataset. The best
results are highlighted in bold. Statistical significance is as-
sessed using a paired t-test with a 𝑝 < 0.05 threshold, where
improvements are marked with the dagger symbol (†) to
indicate statistical significance. The second-best values are
underlined. Results for cited models are sourced from their
original papers. Abbreviations: SI – Semantic ID; PQ – Prod-
uct Quantization; NG – N-grams; TU – Title + URL.

Model R@1 R@5 R@10 MRR@10

Term-based retrieval
BM25 18.94 42.82 55.07 29.24
DocT5Query 23.27 49.38 63.61 34.81

Dense retrieval
DPR 29.08 62.75 73.13 43.41
ANCE 29.65 63.43 74.28 44.09
RepBERT 25.25 58.41 69.18 38.48
Sentence-T5 27.27 58.91 72.15 40.69

Generative retrieval
DSI (SI) 25.74 43.58 53.84 33.92
DSI-QG (SI) 28.82 50.74 62.26 38.45
NCI (SI) 29.54 57.99 67.28 40.46
SEAL (NG) 27.58 52.47 61.01 37.68
Ultron (TU) 29.82 60.39 68.31 42.53
Ultron (PQ) 31.55 63.98 73.14 45.35
ROGER-NCI (SI) [77] 30.61 59.02 68.78 42.02
ROGER-Ultron (TU) [77] 33.07 63.93 75.13 46.35
MINDER (SI) 29.98 58.37 71.92 42.51
LTRGR (SI) 32.69 64.37 72.43 47.85

Ours
DDRO (PQ) 32.92 64.36 73.02 45.76
DDRO (TU) 38.24† 66.46† 74.01 50.07†

between the DDRO policy 𝜋𝜃 and the reference policy 𝜋 ref , on
retrieval performance. Figure 4 shows results for different 𝛽 values
on MS MARCO and Natural Questions (NQ). A moderate setting
(𝛽 = 0.4) consistently yields the best MRR@10 across both datasets.
Smaller values (e.g., 𝛽 = 0.2) lead to under-regularization, resulting
in unstable and suboptimal learning. In contrast, larger values (e.g.,
𝛽 = 0.6) impose excessive regularization, restricting the model’s
ability to adapt, and thus degrading performance. These results
highlight the sensitivity of DDRO to the KL constraint, suggest-
ing the importance of tuning 𝛽 to balance learning flexibility and
regularization.

6.4 Robustness Analysis Across Datasets
To address RQ4, additional experiments were conducted NQ dataset
to evaluate the robustness of DDRO across datasets with varying
characteristics. The analysis focuses on two aspects: (i) comparing
DDRO retrieval performance with baseline models across different
categories Table 5, and (ii) examining the impact of various docid
design choices on retrieval effectiveness.

Comparison to baseline retrieval models. The performance
comparison on the NQ320k across different retrieval baselines is as
follow: (i) Term-based baselines, such as BM25 and DocT5Query,
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Figure 4: Effect of KL constraint strength (𝛽) on DDRO perfor-
mance. A moderate value (𝛽 = 0.4) yields the best MRR@10,
while under- or over-regularization degrades performance.

Table 4: Ablation study evaluating the impact of pairwise
ranking optimization on DDRO performance across the
MS300K and NQ320K datasets. Statistical significance is as-
sessed using a paired t-test with a significance threshold of
𝑝 < 0.05. Statistically significant improvements (𝑝 < 0.05)
are marked with a dagger symbol (†), while non-significant
improvements are underlined. Abbreviations: PQ – Product
Quantization; TU – Title + URL.

MS MARCO doc

Model R@1 R@5 R@10 MRR@10

DDRO (PQ) 32.92 64.36† 73.02† 45.76
w/o pairwise ranking 32.18 62.62 71.29 44.79

DDRO (TU) 38.24 66.46† 74.01† 50.07
w/o pairwise ranking 38.12 64.60 72.90 49.18

Natural Questions

Model R@1 R@5 R@10 MRR@10

DDRO (PQ) 48.92† 64.10† 67.31† 55.51†
w/o pairwise ranking 44.19 58.44 62.23 50.48

DDRO (TU) 40.86† 53.12† 55.98† 45.99†
w/o pairwise ranking 39.58 50.50 53.53 44.32

show lower early ranking performance, but remain competitive at
broader levels. (ii) Dense retrieval baselines, including DPR and
ANCE, improve early ranking metrics over term-based methods.
(iii) Generative retrieval baselines, such as ROGER-Ultron (TU)
and LTRGR, perform well across all metrics. The proposed DDRO
achieves the highest overall performance. Specifically, DDRO (PQ)
surpasses the best-performing baseline, ROGER-Ultron (TU), by
36.27% in R@1 and 23.58% in MRR@10.

Impact of Dataset Characteristics and Docid Selection. The
docid design is a critical factor influencing performance in GenIR,
we further analyze the differences in performance among various de-
signs within our proposed DDRO. Our analysis underscores the crit-
ical impact of docid design on retrieval performance across datasets.
DDRO (TU) excels on MS MARCO, where shorter, keyword-driven
queries align well with title and URL-based docids that capture
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Table 5: Comparison of retrieval model performance on the
NQ320K dataset. The best-performing results are shown in
bold. Statistical significance is determined using a paired t-
test with a significance threshold of 𝑝 < 0.05, with a dagger
symbol (†) indicating statistical significance. Results for cited
models are drawn from their respective original publications.
Abbreviations used: SI – Semantic ID; PQ – Product Quanti-
zation; NG – N-grams; TU – Title + URL.

Model R@1 R@5 R@10 MRR@10

Term-based retrieval
BM25 14.06 36.91 47.93 23.60
DocT5Query 19.07 43.88 55.83 29.55

Dense retrieval
DPR 22.78 53.44 68.58 35.92
ANCE 24.54 54.21 69.08 36.88
RepBERT 22.57 52.20 65.65 35.13
Sentence-T5 22.51 52.00 65.12 34.95

Generative retrieval
DSI (SI) 27.42 47.26 56.58 34.31
DSI-QG (SI) 30.17 53.20 66.37 38.85
NCI (SI) 32.69 55.82 69.20 42.84
SEAL (NG) 29.30 54.12 68.53 40.34
Ultron (TU) 33.78 54.20 67.05 42.51
Ultron (PQ) 25.64 53.09 65.75 37.12
ROGER-NCI (SI) [77] 33.20 56.34 69.80 43.45
ROGER-Ultron (TU) [77] 35.90 55.59 69.86 44.92
MINDER (SI) 31.00 55.50 65.79 43.50
LTRGR (SI) 32.80 56.20 68.74 44.80

Ours
DDRO (TU) 40.86 53.12 55.98 45.99
DDRO (PQ) 48.92† 64.10† 67.31 55.51†

surface-level lexical features for efficient retrieval. In contrast, DDRO
(PQ) performs better on NQ, which features longer, complex queries
requiring deeper semantic understanding. PQ-based docids effec-
tively capture latent relationships, making them well-suited for
NQ’s informational queries. These findings suggest that aligning
docid strategies with dataset-specific characteristics enhances re-
trieval effectiveness and model adaptability.

6.5 Analysis of Relevance Distribution
The relevance distribution could, to some extent, reflect the re-
trieval model’s ability to recognize relevance. Therefore, we analyze
the retrieval performance of DDRO at different top positions in
the generated docid list to address RQ5. We have the following
observations: (i) Tables (3) and (5) demonstrate DDRO’s effective-
ness across datasets, showcasing its adaptability. On MS MARCO,
DDRO (TU) achieves the highest early precision, with statistically
significant improvements in R@1 and MRR@10, and excels in inter-
mediate ranking (R@5), outperforming models like ROGER-Ultron
(TU) and LTRGR (SI). This highlights its ability to identify relevant
documents early while maintaining strong intermediate perfor-
mance. However, at broader recall levels (R@10), ROGER-Ultron
(TU) shows a slight advantage over DDRO (TU). (ii) On NQ, DDRO
(PQ) achieves the highest early precision (R@1, R@5), effectively

ranking relevant documents for complex queries. The PQ-based
docids capture deeper semantic relationships, leading to strong
intermediate performance and competitive broader recall (R@10)
against hybrid models such as ROGER-NCI (SI).

Overall, DDRO consistently achieves strong performance with-
out relying on auxiliary reward models, reinforcement learning, or
dense retrieval signals. Instead, it employs SFT followed by pair-
wise ranking optimization to refine early-stage precision while
maintaining effectiveness across different ranking depths.

7 Conclusion
We introduced DDRO, a novel approach for enhancing GenIR sys-
tems by directly aligning docid generation with document-level
relevance estimation. This alignment allows GenIR systems to ef-
fectively learn to rank and improve accuracy. We experimented
with two types of docid designs and designed a lightweight direct
L2R optimization algorithm on top of SFT training. Unlike existing
RL-based methods, DDRO simplifies optimization through pairwise
ranking, eliminating the need for auxiliary reward modeling and
RL fine-tuning. Experiments conducted on benchmark datasets
demonstrate that DDRO offers a lightweight optimization process
while achieving high performance and demonstrating robustness.
However, DDRO has limitations that offer opportunities for further
improvement. (i) Our evaluation has primarily focused on a subset
of the MSMARCO document dataset, leaving its scalability to larger
and more diverse corpora, including domain-specific and multilin-
gual datasets, yet to be explored. Addressing this limitation will
be crucial to assess DDRO’s adaptability in broader applications.
(ii) Our current pairwise ranking formulation relies on binary rele-
vance judgments (relevant vs. non-relevant), which may limit its
expressiveness for queries with nuanced or graded relevance levels.
Future work may explore listwise ranking objectives and graded
relevance supervision to more accurately capture complex retrieval
intents. (iii) Potential improvements could include advanced hard
negative mining to enhance relevance discrimination and multi-ob-
jective optimization to balance relevance with efficiency, fairness,
and diversity. (iv) A comprehensive comparisonwith scalable GenIR
baselines such as RIPOR and PAG remains an avenue for future
research to assess DDRO’s scalability and integration potential in
large-scale retrieval scenarios.

Acknowledgments
We thank our colleagues at the IRLab for their support and Hansi
Zeng at UMass Amherst for helpful discussions and technical guid-
ance.

Experiments for this work were supported by the Dutch Re-
search Council (NWO) under project EINF-9550; computations
were performed on the Snellius supercomputer (SURF). This re-
search was (partially) supported by Ahold Delhaize, through AIR-
Lab, by the Dutch Research Council (NWO), under project numbers
024.004.022, NWA.1389.20.183, and KICH3.LTP.20.006, and by the
European Union’s Horizon Europe program under grant agreement
No 101070212.

All content represents the opinion of the authors, which is not
necessarily shared or endorsed by their respective employers and/or
sponsors.



SIGIR ’25, July 13–18, 2025, Padua, Italy Kidist Amde Mekonnen, Yubao Tang, and Maarten de Rijke

References
[1] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova

DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas
Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston,
Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
2022. Training a Helpful and Harmless Assistant with Reinforcement Learning
from Human Feedback. https://doi.org/10.48550/ARXIV.2204.05862

[2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
et al. 2022. Constitutional AI: Harmlessness from AI Feedback. arXiv preprint
arXiv:2212.08073 N/A, N/A (2022), N/A.

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
MS MARCO: A Human Generated Machine Reading Comprehension Dataset.
arXiv preprint arXiv:1611.09268 N/A, N/A (2016), N/A.

[4] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen-tau Yih, Sebastian
Riedel, and Fabio Petroni. 2022. Autoregressive Search Engines: Generating
Substrings as Document Identifiers. https://doi.org/10.48550/ARXIV.2204.10628

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In Proceed-
ings of the 22nd International Conference on Machine Learning (Bonn, Germany)
(ICML ’05). Association for Computing Machinery, New York, NY, USA, 89–96.
https://doi.org/10.1145/1102351.1102363

[6] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMart: An
Overview. Learning 11, 23-581 (2010), 81.

[7] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to
Rank with Nonsmooth Cost Functions. In Proceedings of the 20th International
Conference on Neural Information Processing Systems (Canada) (NIPS’06). MIT
Press, Cambridge, MA, USA, 193–200.

[8] Jamie Callan. 1994. Passage-level Evidence in Document Retrieval. In Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Springer, N/A, Dublin, Ireland, 302–310.

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the
24th international conference on Machine learning. ACM, Corvallis, Oregon, USA,
129–136.

[10] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, Yixing
Fan, and Xueqi Cheng. 2023. Continual Learning for Generative Retrieval over
Dynamic Corpora. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. ACM, Birmingham, UK, 306–315.

[11] Jiangui Chen, Ruqing Zhang, Jiafeng Guo,Maarten de Rijke, Yiqun Liu, Yixing Fan,
and Xueqi Cheng. 2023. A Unified Generative Retriever for Knowledge-Intensive
Language Tasks via Prompt Learning. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, Taipei, Taiwan, 2372–2382. https://doi.org/10.1145/3539618.3591665

[12] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. 2022.
GERE: Generative Evidence Retrieval for Fact Verification. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, Madrid, Spain, 2108–2112. https://doi.org/10.1145/
3477495.3531864

[13] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu, Yixing Fan, and Xueqi
Cheng. 2022. CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-
Intensive Language Tasks. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. ACM, Atlanta, GA, USA, 199–208.
https://doi.org/10.1145/3511808.3557475

[14] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep Reinforcement Learning from Human Preferences. Advances
in neural information processing systems 30 (2017).

[15] Faïza Dammak, Hager Kammoun, and Abdelmajid Ben Hamadou. 2017. Improv-
ing Pairwise Learning to Rank Algorithms for Document Retrieval. In 2017 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, Honolulu, HI, USA,
1–8. https://doi.org/10.1109/SSCI.2017.8285207

[16] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2020. Au-
toregressive Entity Retrieval. https://doi.org/10.48550/ARXIV.2010.00904

[17] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
https://doi.org/10.48550/ARXIV.2109.10086

[18] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association for
Computing Machinery, New York, NY, USA, 2288–2292. https://doi.org/10.1145/
3404835.3463098

[19] Muhammad Ibrahim and Mark Carman. 2016. Comparing Pointwise and List-
wise Objective Functions for Random-Forest-based Learning-to-Rank. ACM
Transactions on Information Systems (TOIS) 34, 4 (2016), 1–38.

[20] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato,
Richard E. Turner, and Douglas Eck. 2017. Sequence Tutor: Conservative Fine-
tuning of Sequence Generation Models with KL-control. In Proceedings of the
34th International Conference on Machine Learning - Volume 70 (Sydney, NSW,
Australia) (ICML’17). JMLR.org, Sydney, NSW, Australia, 1645–1654.

[21] Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson,
Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. 2020. Human-
centric Dialog Training via Offline Reinforcement Learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for
Computational Linguistics, Online, 3985–4003. https://doi.org/10.18653/v1/2020.
emnlp-main.327

[22] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,
6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550

[23] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei
Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. 2019.
Natural Questions: A Benchmark for Question Answering Research. Transac-
tions of the Association for Computational Linguistics 7 (2019), 453–466. https:
//api.semanticscholar.org/CorpusID:86611921

[24] Yanyan Lan, Yadong Zhu, Jiafeng Guo, Shuzi Niu, and Xueqi Cheng. 2014.
Position-aware ListMLE: A Sequential Learning Process for Ranking. In Proceed-
ings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (Quebec
City, Quebec, Canada) (UAI’14). AUAI Press, Arlington, Virginia, USA, 449–458.

[25] Hyunji Lee, JaeYoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vladimir
Karpukhin, Yi Lu, and Minjoon Seo. 2023. Nonparametric Decoding for Gen-
erative Retrieval. In Findings of the Association for Computational Linguistics:
ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Asso-
ciation for Computational Linguistics, Toronto, Canada, 12642–12661. https:
//doi.org/10.18653/v1/2023.findings-acl.801

[26] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck,
Chris Callison-Burch, and Nicholas Carlini. 2022. Deduplicating Training Data
Makes Language Models Better. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), SmarandaMure-
san, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational
Linguistics, Dublin, Ireland, 8424–8445. https://doi.org/10.18653/v1/2022.acl-
long.577

[27] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

[28] Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. 2023. Multiview
Identifiers Enhanced Generative Retrieval. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 6636–6648. https://doi.org/10.
18653/v1/2023.acl-long.366

[29] Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. 2024. Learning to
Rank in Generative Retrieval. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 8716–8723.

[30] Zihao Li, Zhuoran Yang, and Mengdi Wang. 2023. Reinforcement Learning
with Human Feedback: Learning Dynamic Choices via Pessimism. https:
//doi.org/10.48550/ARXIV.2305.18438

[31] Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul
Bennett, Tie-Yan Liu, and Arnold Overwijk. 2021. Less is More: Pretrain a Strong
Siamese Encoder for Dense Text Retrieval Using a Weak Decoder. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.).
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 2780–2791. https://doi.org/10.18653/v1/2021.emnlp-main.220

[32] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, and Xueqi Cheng. 2022. Pre-
train a Discriminative Text Encoder for Dense Retrieval via Contrastive Span
Prediction. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22).
Association for Computing Machinery, New York, NY, USA, 848–858. https:
//doi.org/10.1145/3477495.3531772

[33] Sanket VaibhavMehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Jinfeng
Rao, Marc Najork, Emma Strubell, and Donald Metzler. 2023. DSI++: Updating
Transformer Memory with New Documents. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino,

https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.10628
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/3539618.3591665
https://doi.org/10.1145/3477495.3531864
https://doi.org/10.1145/3477495.3531864
https://doi.org/10.1145/3511808.3557475
https://doi.org/10.1109/SSCI.2017.8285207
https://doi.org/10.48550/ARXIV.2010.00904
https://doi.org/10.48550/ARXIV.2109.10086
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2020.emnlp-main.327
https://doi.org/10.18653/v1/2020.emnlp-main.327
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2023.acl-long.366
https://doi.org/10.18653/v1/2023.acl-long.366
https://doi.org/10.48550/ARXIV.2305.18438
https://doi.org/10.48550/ARXIV.2305.18438
https://doi.org/10.18653/v1/2021.emnlp-main.220
https://doi.org/10.1145/3477495.3531772
https://doi.org/10.1145/3477495.3531772


Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
8198–8213.

[34] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking search:
making domain experts out of dilettantes. In ACM SIGIR Forum, Vol. 55. ACM
New York, NY, USA, 1–27.

[35] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina
Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu
Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew
Knight, Benjamin Chess, and John Schulman. 2021. WebGPT: Browser-assisted
Question-answering with Human Feedback. https://doi.org/10.48550/ARXIV.
2112.09332

[36] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel
Cer, and Yinfei Yang. 2022. Sentence-T5: Scalable Sentence Encoders from Pre-
trained Text-to-Text Models. In Findings of the Association for Computational
Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(Eds.). Association for Computational Linguistics, Dublin, Ireland, 1864–1874.
https://doi.org/10.18653/v1/2022.findings-acl.146

[37] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
https://doi.org/10.48550/ARXIV.1901.04085

[38] Rodrigo Nogueira and Jimmy Lin. 2019. From Doc2query to DocTTTTTquery.
(2019). https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_
docTTTTTquery-v2.pdf.

[39] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training Lan-
guage Models to Follow Instructions with Human Feedback. In Proceedings of
the 36th International Conference on Neural Information Processing Systems (New
Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article
2011, 15 pages.

[40] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D.
Manning, and Chelsea Finn. 2023. Direct Preference Optimization: Your Lan-
guage Model is Secretly a Reward Model. In Proceedings of the 37th International
Conference on Neural Information Processing Systems (NeurIPS) (New Orleans, LA,
USA) (NeurIPS ’23). Curran Associates, Inc., Red Hook, NY, USA, Article 2338,
14 pages. https://doi.org/10.48550/arXiv.2305.18290

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[42] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Keshavan, Trung
Vu, Lukasz Heidt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej
Kula, Ed H. Chi, and Maheswaran Sathiamoorthy. 2023. Recommender Systems
with Generative Retrieval. In Proceedings of the 37th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS ’23). Curran
Associates Inc., Red Hook, NY, USA, Article 452, 17 pages.

[43] Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, and Haifeng
Wang. 2023. TOME: A Two-stage Approach for Model-based Retrieval. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 6102–6114.
https://doi.org/10.18653/v1/2023.acl-long.336

[44] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.
https://doi.org/10.1561/1500000019

[45] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In Proceedings of the Third Text
REtrieval Conference (TREC-3). National Institute of Standards and Technology
(NIST), Gaithersburg, Maryland, USA, 109–126. https://www.microsoft.com/en-
us/research/publication/okapi-at-trec-3/

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. https://doi.org/10.48550/ARXIV.
1707.06347

[47] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul Christiano. 2020. Learning to Sum-
marize from Human Feedback. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 253, 14 pages.

[48] Weiwei Sun, Lingyong Yan, Zheng Chen, ShuaiqiangWang, Haichao Zhu, Pengjie
Ren, Zhumin Chen, Dawei Yin, Maarten de Rijke, and Zhaochun Ren. 2023. Learn-
ing to Tokenize for Generative Retrieval. In Proceedings of the 37th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’23). Curran Associates Inc., Red Hook, NY, USA, Article 2010, 17 pages.

[49] Hongyin Tang, Xingwu Sun, Beihong Jin, JingangWang, Fuzheng Zhang, andWei
Wu. 2021. Improving Document Representations by Generating Pseudo Query
Embeddings for Dense Retrieval. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), Chengqing Zong,

Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational
Linguistics, Online, 5054–5064. https://doi.org/10.18653/v1/2021.acl-long.392

[50] Yubao Tang, Ruqing Zhang, Jiafeng Guo, Jiangui Chen, Zuowei Zhu, Shuaiqiang
Wang, Dawei Yin, and Xueqi Cheng. 2023. Semantic-Enhanced Differentiable
Search Index Inspired by Learning Strategies. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. Association for
Computing Machinery, New York, NY, USA, 4904–4913.

[51] Yubao Tang, Ruqing Zhang, Jiafeng Guo, and Maarten de Rijke. 2023. Recent
Advances in Generative Information Retrieval. In Proceedings of the Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval in the Asia Pacific Region. 294–297.

[52] Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, and Xueqi
Cheng. 2024. Generative Retrieval Meets Multi-Graded Relevance. In Advances
in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates,
Inc., 72790–72817. https://proceedings.neurips.cc/paper_files/paper/2024/file/
853e781cb2af58956ed5c89aa59da3fc-Paper-Conference.pdf

[53] Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, and Xueqi
Cheng. 2024. Listwise Generative Retrieval Models via a Sequential Learning
Process. ACM Transactions on Information Systems 42, 5 (2024), 1–31.

[54] Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Yixing Fan, and Xueqi
Cheng. 2024. Bootstrapped Pre-training with Dynamic Identifier Prediction for
Generative Retrieval. In Findings of the Association for Computational Linguistics
ACL 2024. 10303–10317.

[55] Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Shihao Liu, Shuaiqing
Wang, Dawei Yin, and Xueqi Cheng. 2025. Generative Retrieval for Book Search.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining.

[56] Yubao Tang, Ruqing Zhang, Zhaochun Ren, Jiafeng Guo, and Maarten de Rijke.
2024. Recent Advances in Generative Information Retrieval. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Washington DC, USA) (Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval).
Association for Computing Machinery, New York, NY, USA, 3005–3008. https:
//doi.org/10.1145/3626772.3661379

[57] Yubao Tang, Ruqing Zhang, Zhaochun Ren, Jiafeng Guo, and Maarten de Rijke.
2024. Recent Advances in Generative Information Retrieval. In Advances in
Information Retrieval, Nazli Goharian, Nicola Tonellotto, Yulan He, Aldo Lipani,
Graham McDonald, Craig Macdonald, and Iadh Ounis (Eds.). Springer Nature
Switzerland, Cham, 363–368.

[58] Yubao Tang, Ruqing Zhang, Weiwei Sun, Jiafeng Guo, and Maarten de Rijke.
2024. Recent Advances in Generative Information Retrieval. In Companion
Proceedings of the ACM Web Conference 2024 (Singapore, Singapore) (WWW
’24). Association for Computing Machinery, New York, NY, USA, 1238–1241.
https://doi.org/10.1145/3589335.3641239

[59] Yubao Tang, Ruqing Zhang, Weiwei Sun, Jiafeng Guo, and Maarten de Rijke. 2024.
Recent Advances in Generative Information Retrieval. In Companion Proceedings
of the ACM Web Conference 2024 (Singapore, Singapore) (The Web Conference
2024). Association for Computing Machinery, New York, NY, USA, 1238–1241.
https://doi.org/10.1145/3589335.3641239

[60] Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta,
Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and
Donald Metzler. 2022. Transformer Memory as A Differentiable Search Index. In
Proceedings of the 36th International Conference on Neural Information Processing
Systems (New Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook,
NY, USA, Article 1587, 13 pages.

[61] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
https://doi.org/10.48550/ARXIV.2302.13971

[62] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tris-
tan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. TRL: Transformer Reinforcement Learning. https://github.com/
huggingface/trl.

[63] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.
2018. The LambdaLoss Framework for Ranking Metric Optimization. In Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge
Management (Torino, Italy) (CIKM ’18). Association for Computing Machinery,
New York, NY, USA, 1313–1322. https://doi.org/10.1145/3269206.3271784

[64] YujingWang, Yingyan Hou, HaonanWang, Ziming Miao, ShibinWu, Hao Sun, Qi
Chen, Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Allen
Sun, Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A Neural Corpus Indexer
for Document Retrieval. In Proceedings of the 36th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS ’22). Curran
Associates Inc., Red Hook, NY, USA, Article 1856, 15 pages.

[65] Zihan Wang, Yujia Zhou, Yiteng Tu, and Zhicheng Dou. 2023. NOVO: Learnable
and Interpretable Document Identifiers for Model-Based IR. In Proceedings of the

https://doi.org/10.48550/ARXIV.2112.09332
https://doi.org/10.48550/ARXIV.2112.09332
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.48550/ARXIV.1901.04085
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.18653/v1/2023.acl-long.336
https://doi.org/10.1561/1500000019
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.18653/v1/2021.acl-long.392
https://proceedings.neurips.cc/paper_files/paper/2024/file/853e781cb2af58956ed5c89aa59da3fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/853e781cb2af58956ed5c89aa59da3fc-Paper-Conference.pdf
https://doi.org/10.1145/3626772.3661379
https://doi.org/10.1145/3626772.3661379
https://doi.org/10.1145/3589335.3641239
https://doi.org/10.1145/3589335.3641239
https://doi.org/10.48550/ARXIV.2302.13971
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://doi.org/10.1145/3269206.3271784


SIGIR ’25, July 13–18, 2025, Padua, Italy Kidist Amde Mekonnen, Yubao Tang, and Maarten de Rijke

32nd ACM International Conference on Information and Knowledge Management
(Birmingham, United Kingdom) (CIKM ’23). Association for Computing Machin-
ery, New York, NY, USA, 2656–2665. https://doi.org/10.1145/3583780.3614993

[66] Ronald J. Williams and David Zipser. 1989. A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks. Neural Computation 1 (1989), 270–
280.

[67] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
Approach to Learning to Rank: Theory and Algorithm. In Proceedings of the
25th International Conference on Machine Learning (Helsinki, Finland) (ICML
’08). Association for Computing Machinery, New York, NY, USA, 1192–1199.
https://doi.org/10.1145/1390156.1390306

[68] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. https://doi.org/10.
48550/ARXIV.2007.00808

[69] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies: Tutorials, Greg Kondrak, Kalina Bontcheva, and Dan
Gillick (Eds.). Association for Computational Linguistics, Online, 1–4.

[70] Hansi Zeng, Chen Luo, Bowen Jin, Sheikh Muhammad Sarwar, Tianxin Wei, and
Hamed Zamani. 2024. Scalable and Effective Generative Information Retrieval.
In Proceedings of the ACM Web Conference 2024 (Singapore, Singapore) (WWW
’24). Association for Computing Machinery, New York, NY, USA, 1441–1452.
https://doi.org/10.1145/3589334.3645477

[71] Hansi Zeng, Chen Luo, and Hamed Zamani. 2024. Planning Ahead in Gen-
erative Retrieval: Guiding Autoregressive Generation through Simultaneous
Decoding. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Washington DC, USA) (SI-
GIR ’24). Association for Computing Machinery, New York, NY, USA, 469–480.
https://doi.org/10.1145/3626772.3657746

[72] Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022. Curriculum Learning
for Dense Retrieval Distillation. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Madrid,
Spain) (SIGIR ’22). Association for Computing Machinery, New York, NY, USA,
1979–1983. https://doi.org/10.1145/3477495.3531791

[73] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2021. Optimizing Dense Retrieval Model Training with Hard Negatives.
https://doi.org/10.48550/ARXIV.2104.08051

[74] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. Rep-
BERT: Contextualized Text Embeddings for First-Stage Retrieval. https:
//doi.org/10.48550/ARXIV.2006.15498

[75] Peitian Zhang, Zheng Liu, Yujia Zhou, Zhicheng Dou, Fangchao Liu, and Zhao
Cao. 2023. Generative Retrieval via Term Set Generation. https://doi.org/10.
48550/ARXIV.2305.13859

[76] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2023. Enhancing Generative
Retrieval with Reinforcement Learning from Relevance Feedback. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 12481–12490.

[77] Yujia Zhou, Jing Yao, Zhicheng Dou, Yiteng Tu, Ledell Wu, Tat-Seng Chua, and
Ji-Rong Wen. 2024. ROGER: Ranking-Oriented Generative Retrieval. ACM Trans.
Inf. Syst. 42, 6, Article 155 (Oct. 2024), 25 pages. https://doi.org/10.1145/3603167

[78] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, and Ji-Rong Wen. 2022. Dy-
namicRetriever: A Pre-training Model-based IR System with Neither Sparse nor
Dense Index. https://doi.org/10.48550/ARXIV.2203.00537

[79] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian Zhang, and Ji-Rong Wen.
2022. Ultron: An Ultimate Retriever on Corpus with a Model-based Indexer.
https://doi.org/10.48550/ARXIV.2208.09257

[80] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido
Zuccon, and Daxin Jiang. 2022. Bridging the Gap Between Indexing and
Retrieval for Differentiable Search Index with Query Generation. https:
//doi.org/10.48550/ARXIV.2206.10128

[81] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-Tuning Language
Models from Human Preferences. https://doi.org/10.48550/ARXIV.1909.08593

[82] Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng Jiang. 2023. Large Language
Models are Built-in Autoregressive Search Engines. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (Eds.). Association for Computational Linguistics, Toronto,
Canada, 2666–2678. https://doi.org/10.18653/v1/2023.findings-acl.167

https://doi.org/10.1145/3583780.3614993
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.48550/ARXIV.2007.00808
https://doi.org/10.48550/ARXIV.2007.00808
https://doi.org/10.1145/3589334.3645477
https://doi.org/10.1145/3626772.3657746
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.48550/ARXIV.2104.08051
https://doi.org/10.48550/ARXIV.2006.15498
https://doi.org/10.48550/ARXIV.2006.15498
https://doi.org/10.48550/ARXIV.2305.13859
https://doi.org/10.48550/ARXIV.2305.13859
https://doi.org/10.1145/3603167
https://doi.org/10.48550/ARXIV.2203.00537
https://doi.org/10.48550/ARXIV.2208.09257
https://doi.org/10.48550/ARXIV.2206.10128
https://doi.org/10.48550/ARXIV.2206.10128
https://doi.org/10.48550/ARXIV.1909.08593
https://doi.org/10.18653/v1/2023.findings-acl.167

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Motivations
	3.1 Generative Information Retrieval (GenIR)
	3.2 Learning to Rank (L2R)
	3.3 Reinforcement Learning from Relevance Feedback (RLRF)

	4 Method
	4.1 Docid Construction
	4.2 Supervised Fine-tuning
	4.3 Direct L2R Optimization Using Relevance Feedback

	5 Experimental Settings
	5.1 Datasets and Evaluation Metrics
	5.2 Baselines
	5.3 Implementation Details

	6 Experimental Evaluation and Results
	6.1 Comparison with Reinforcement Learning-Based Methods
	6.2 Comparison with Established Baselines
	6.3 Ablation Study
	6.4 Robustness Analysis Across Datasets
	6.5 Analysis of Relevance Distribution

	7 Conclusion
	Acknowledgments
	References

