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ABSTRACT

Today’s conversational agents often generate responses that are not
sufficiently informative. One way of making them more informative
is through the use of of external knowledge sources with so-called
Knowledge-Grounded Conversations (KGCs). In this paper, we tar-
get the Knowledge Selection (KS) task, a key ingredient in KGC, that
is aimed at selecting the appropriate knowledge to be used in the
next response. Existing approaches to KS based on learned represen-
tations of the conversation context, that is previous conversation
turns, and use Maximum Likelihood Estimation (MLE) to optimize
KS. Such approaches have two main limitations. First, they do not
explicitly track what knowledge has been used in the conversation
nor how topics have shifted during the conversation. Second, MLE
often relies on a limited set of example conversations for training,
from which it is hard to infer that facts retrieved from the knowl-
edge source can be re-used in multiple conversation contexts, and
vice versa.

We propose Dual Knowledge Interaction Network (DukeNet), a
framework to address these challenges. DukeNet explicitly models
knowledge tracking and knowledge shifting as dual tasks. We also
design Dual Knowledge Interaction Learning (DukeL), an unsu-
pervised learning scheme to train DukeNet by facilitating interac-
tions between knowledge tracking and knowledge shifting, which,
in turn, enables DukeNet to explore extra knowledge besides the
knowledge encountered in the training set. This dual process also
allows us to define rewards that help us to optimize both knowledge
tracking and knowledge shifting. Experimental results on two pub-
lic KGC benchmarks show that DukeNet significantly outperforms
state-of-the-art methods in terms of both automatic and human
evaluations, indicating that DukeNet enhanced by DukeL can select
more appropriate knowledge and hence generate more informative
and engaging responses.
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1 INTRODUCTION

Open-domain conversational agents (a.k.a. chatbots) aim to satisfy
human needs for information, communication, entertainment and
more [1, 12, 13, 17]. The development of such agents has bene-
fited significantly from advances in sequence-to-sequence learning
[16, 34, 38]. However, a serious problem of vanilla sequence-to-
sequence based conversational models is that they tend to generate
dull and non-informative responses [3, 8, 43], such as “I don’t know"
and “thank you! To address this problem of generating uninfor-
mative responses, the Knowledge-Grounded Conversation (KGC)
task has been introduced; it leverages external knowledge to en-
hance open-domain conversational models 7, 24, 32]. As shown in
Fig. 1, given a conversation context and external knowledge pool
(with a large set of knowledge sentences), the goal of KGC is to
generate informative and engaging responses by referring to rele-
vant knowledge. KGC can be divided into two sequential subtasks:
(1) Knowledge Selection (KS): to select the appropriate knowledge
at the current turn from a knowledge pool; and (2) Response Gen-
eration (RG): to generate a natural language response based on the
selected knowledge and conversation context. Of the two subtasks,
KS is of vital importance, as it decides what to be talked in the re-
sponse, and selecting inappropriate knowledge will directly result
in an inappropriate response [19].

There is a growing number of studies on KS and promising re-
sults have been achieved [see, e.g., 7, 9]. In terms of modeling, most
approaches try to predict the next knowledge based on representa-
tions of the conversation context [19]. In terms of learning, most
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Conversation

Context

Knowledge Pool

K2 YouTube was created by three former PayPal D I love watching youtube videos, when i start i cannot
employees—Chad Hurley, Steve Chen, and Jawed &%  stopits like a endless recommendation loop :D

Karim—in February 2005.

Yep a few paypal founders made it back in 2005, can't a
believe it is that old already. -is
£ £
[K$;V:L?:Ee} 3 [Kr;;m?:ge} ] (®  Yes, its the most viewed multimedia place, if you can
g S g S d:b call it that way, in the world!
Response

US$1.65 billion; YouTube now operates as one of over a billion dollars, pretty insane but a good

K3 Google bought the site in November 2006 for | Yea to think google bought it only one year later for a
Google's subsidiari Shifted purchase ie

Figure 1: An example of a knowledge-grounded conversation
from the Wizard of Wikipedia dataset [7].

approaches optimize their models via Maximum Likelihood Esti-
mation (MLE) based on conversations encountered in the training
set [14]. Previous work fails to address two important characteris-
tics of KS for conversations.

(1) knowledge tracking (ground the knowledge that has been talked
about to the conversation context) and knowledge shifting (se-
lect the knowledge to be talked about next) are not explicitly
modeled. Explicitly modeling knowledge tracking and shifting
allows us to better capture the interaction between the knowl-
edge at adjacent turns. Consider, for example, in Fig. 1, for the
knowledge K2 “YouTube was created by three former PayPal
employees...” and the knowledge K3 “Google bought the site
in November 2006 for US$1.65 billion....” If we know that K2
has been used in the conversation context, it is natural to use
K3 in the next response.

Unlike Question Answering (QA) tasks in which each query has
only one unique answer in most cases [30, 31], Kim et al. [14]
show that one-to-many mapping between context and knowl-
edge is common in KGC, i.e., for a given conversation context,
we can choose different knowledge sentences to form different
responses. In fact, there is also many-to-one mapping between
context and knowledge, i.e. the same knowledge sentence can
be used in different conversation contexts. Thus, this forms
a many-to-many mapping. For instance, given the context in
Fig. 1, it is also appropriate to select other knowledge besides K3,
e.g., the most popular video or the most famous video creator.
Conversely, it is also appropriate to use K3 in Fig. 1 in other con-
texts such as “I wonder what the relationship between Google
and Youtube is” or “Do you know the history of Youtube” Unfor-
tunately, for a given conversation context, only one knowledge
sentence is encountered in existing datasets [7, 25], because it
is really hard to collect all possible knowledge sentences for
a certain context when constructing a KGC dataset. Existing
studies into KGC rely on MLE to train their models, while MLE
only considers the demonstrated knowledge as ground truth,
which is restrictive.

To address the issues listed above, we propose a novel framework,
Dual Knowledge Interaction Network (DukeNet), that explicitly
models knowledge tracking and knowledge shifting in conversations.
Besides, we further formulate knowledge tracking and knowledge
shifting as dual tasks and devise Dual Knowledge Interaction Learn-
ing (DukeL) to better facilitate interaction between them, as shown
in Fig. 1. DukeL enables knowledge tracking and shifting to teach
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each other in an unsupervised learning way without external su-

pervision. We alternate these two dual processes until convergence.

During the two dual processes, DukeL will explore and reward

extra appropriate knowledge that is not manifest in the training set,

but which help address the many-to-many mapping phenomenon
in conversations.

However, there are incompatible dual processes between training
and inference. Specifically, during inference we can only execute
knowledge tracking and shifting in order, thus knowledge tracking
cannot get the shifted knowledge as input. To alleviate this problem,
we further distinguish knowledge tracking as prior and posterior
knowledge tracking, where the former only takes context as input,
while the latter additional takes the shifted knowledge as input.
During training, besides optimizing the posterior knowledge track-
ing and knowledge shifting based on the closed loop between them,
we force the prior knowledge tracking to approximate the output
of posterior knowledge tracking to get benefit. During inference,
we only execute prior knowledge tracking and shifting.

Experiments on the Wizard of Wikipedia [7] and Holl-E [25]
datasets show that DukeNet can select more appropriate knowledge
and hence generate more informative and engaging responses by
explicitly modeling knowledge tracking and knowledge shifting,
and formulating their interactions as dual learning.

The contributions of this paper are summarized as follows:

e We propose a novel framework, DukeNet, which explicitly mod-
els knowledge tracking and knowledge shifting as dual tasks to
promote KS.

e We devise DukeL, which introduces an unsupervised learning
scheme for KS.

e We conduct automatic and human evaluations on two benchmark
datasets, which shows that DukeNet outperforms recent state-
of-the art methods, and can select more appropriate knowledge
to generate more informative and engaging responses.

2 RELATED WORK

We survey two types of related work: Knowledge-Grounded Con-
versations (KGCs) and dual learning.

2.1 Knowledge-grounded conversation

Existing methods on KGC can be divided into two categories: struc-
tured knowledge based and unstructured knowledge based. The for-
mer conditions response generation on knowledge triples [21, 22,
41, 52? ], while the latter conditions on free knowledge text [28].
Unstructured knowledge based approaches to KGC can be further
divided into document based (where they are given whole docu-
ments, e.g., Reddit articles) [18, 25, 29, 53] and sentence based (where
they are given separate sentences, e.g., Foursquare tips) [7, 9, 14, 19].
In this paper, we focus on sentence based KGC. Next, we briefly
introduce recent advances in this direction.

Ghazvininejad et al. [9] regard Foursquare tips as knowledge sen-
tences and propose MemNet (a variant of Memory Network [36])
which stores the latent representations of knowledge sentences
in a memory module such that a SeqSeq model can attentively
select useful knowledge from it to generate responses. Dinan et al.
[7] collect a large sentence based benchmark dataset, Wizard of
Wikipedia, which retrieves Wikipedia articles and then flattens all
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Figure 2: An overview of DukeNet. Section 3 contains a walkthrough of the model.

the articles into separate sentences and clearly labels the ground
truth knowledge sentence used in each response. They also pro-
pose Transformer MemNet (TMemNet) that improves MemNet by
replacing RNN with Transformers [42] and introduce a KS loss to su-
pervise the KS process. Lian et al. [19] propose Posterior Knowledge
Selection (PostKS), which uses response and context to predict a dis-
tribution over knowledge and regards this distribution as posterior
knowledge distribution. They use that as pseudo-label to guide KS
during training process. Kim et al. [14] propose Sequential Knowl-
edge Transformer (SKT), which sequentially models the history of
KS of previous turns via a sequential latent variable model [35] to
promote KS at the current turn. Although SKT models the knowl-
edge used in conversation history, it does not explicitly distinguish
knowledge tracking and shifting and still uses MLE to train the
model based on the limited demonstrated examples in training set.

Unlike SKT, we explicitly distinguish knowledge tracking and
shifting and regard them as dual tasks, leveraging the unsupervised
dual interaction between them to further improve KS.

2.2 Dual learning

Dual learning has been successfully applied to many tasks, such
as machine translation [11, 45], question answering [37, 40], con-
versation [4, 50], text style transfer [23] as well as image-to-image
translation [49]. The core idea of dual learning is to take advantage
of the closed loop between the forward agent f (mapping from do-
main X to domain Y) and backward agent g (mapping from domain
Y to X ) to improve the performances of each other.

There are many paradigms in dual learning. He et al. [11] first
propose dual learning and apply it to machine translation, which
executes dual learning by maximizing the likelihood of data re-
construction. Concretely, x € X is first fed to the forward agent
f to output § € Y, and § is then fed to the backward agent g to
output X € X. The distortion between x and % is used as a recon-
struction reward to optimize the forward agent f. Similarly, the
reconstruction reward between y and 7 can be used to optimize the
backward agent g. Xia et al. [47] propose dual supervised learning,
which introduces a duality regularization term in their loss function.
The special term reflects the probabilistic correlation between two
agents to better guide the training. Xia et al. [46] argue that existing

work only considers the duality during the training process and
further propose a dual inference framework, which enables dual
agents to improve each other during the inference process without
re-training. Xia et al. [48] propose model-level dual learning, which
shares the model parameters playing similar roles in the two agents.
Wang et al. [44] propose multi-agent dual learning, which intro-
duces more agents in the two directions respectively to maximize
the likelihood of data reconstruction. They show that more agents
can lead to more reliable and robust reconstruction reward.

Unlike the work listed above, we regard knowledge tracking and
shifting in KGC as two dual tasks and propose DukeL to let the two
tasks teach each other by maximizing the likelihood of knowledge
reconstruction. Especially, we present prior and posterior knowl-
edge tracking in DukeL to solve the incompatible dual processes
issue during training and inference. To the best of our knowledge,
we are the first introduce the idea of dual learning into KGC.

3 METHOD
3.1 KGC formulation

We use D = {(Xz, YT)}‘TEl to denote the set of conversation turns,
where (X7, Y7) is a conversation turn from two distinct speakers.
At turn 7, given the conversation context C; = (Xr-1,Yr-1, X7)
(we use a single previous turn and the current turn from the first
speaker X as conversation context), and corresponding knowledge

pool K; = {Kf,j}l.ﬁ‘
retrieved w.r.t. the conversation context), the task of KGC is to
generate a response Y = (Yr,1,Yr2, - -» Y, |1, |) With |Yz| tokens.
With sequence-to-sequence modeling, this can be formulated as

follows:

with |K;| knowledge sentences (which are

|Yz |

P(Y; | Cr,Kp) = np(yr,t | Yr,<t,Cr, Kz),
t=1

(1)

where yz ; is the ¢-th token; y;,<; are the tokens up to the (¢ —1)-th
decoding step.

3.2 Overview of DukeNet

As shown in Fig. 2, DukeNet consists of three layers: (1) an encoding
layer, (2) a dual knowledge interaction layer, and (3) a decoding layer.



The encoding layer employs a BERT encoder to encode context
Cr and knowledge pool K; into context and knowledge representa-
tions HC™ = (hXH , hle , hXT) and HX" = {hKT’j } I.If ’ l, respectively.

P P P P P P Jj=1

The dual knowledge interaction layer contains a Prior Knowledge
Tracker (Pri), a Knowledge Shifter (Shi), and a Posterior K nowledge
Tracker (Pos). The prior knowledge tracker takes context hX,
h!™ as inputs to predict a prior knowledge tracking d1str1but1on
P(Kr-1|pri) over knowledge pool K;_1, based on which we can
get the tracked knowledge representation hpT v The knowledge
shifter takes context h’ and tracked knowledge hKr17 g inputs
to predict knowledge shifting distribution P(K;|K;-1,j, shi) over
knowledge pool K7, based on which we can get the shifted knowl-
edge representation h = The posterior knowledge tracker takes
the shifted knowledge hPT I as input to predict posterior knowl-
edge tracking distribution P(K;—1|K j, pos) over knowledge pool
Kr—1. Note that the posterior knowledge tracker is only used during
training.

The decoding layer contains a Transformer decoder to generate
response Y; token by token based on the context representation
and the shifted knowledge representation.

During training, we devise an unsupervised learning scheme,
DukeL, that regards the posterior knowledge tracker and knowl-
edge shifter as dual tasks. Specifically, for optimizing knowledge
shifter, we feed the ground truth tracked knowledge K,_;; (I de-
notes ground truth) to it, and then the shifted knowledge K75 (s
denotes sampling) that is sampled from the knowledge shifting
distribution P(K|K;-1,j, shi) can be fed back into the posterior
knowledge tracker to recover the tracked knowledge K;_; ; (the
original input of knowledge shifter). We regard the recovering
probability as a reward to optimize the knowledge shifter. The
posterior knowledge tracker can be optimized in a similar manner.
The above process forms a closed loop to alternatively train the
posterior knowledge tracker and knowledge shifter. Meanwhile, we
force the prior knowledge distribution P(K;—1|pri) (from the prior
knowledge tracker) to get close to the posterior knowledge distri-
bution P(K;-1|Kz,j, pos) (from the posterior knowledge tracker)
via Kullback-Leibler Divergence Loss (KLDivLoss) such that the
prior knowledge tracker can benefit from the above dual learning
process even if it is not involved in the closed loop.

During inference, we only execute the prior knowledge tracker
and knowledge shifter to do knowledge tracking and shifting, re-
spectively. Hence the issue of incompatible dual processes that
arises during training and inference can be solved effectively. And
based on the shifted knowledge, we generate the next response.
Next, we introduce the three layers and the learning scheme.

3.3 Encoding layer

We encode the conversation context C; = (X;-1,Y;—1, X;) into
hidden representations H[C,T = (h;( -, h;T‘l, h;(’) using BERT} e
and an average pooling operation [2]:

HXr1 =BERT(X,1) € R4 et = p(¥r1) e RY,
=pH") eR%, (2
HXr =BERT(X;) € R4, i = p(i*r) e R,

HY"1 =BERT(Y, ) € R~ X4 plet

Algorithm 1 Dual knowledge interaction learning algorithm

1: Warm-up training (Phase 1) > See Eq. 12
2. for each iteration i in dual interaction training do (Phase 2)

3 Sample an example from training set;

4 > Start to train knowledge shifter
5: Feed hf"l’l to knowledge shifter;

6: Get knowledge shifting distribution P(K; | K._; , shi);

7 Sample K5 from P(K; | K;_y 1, shi);

8 Feed hgf’s to posterior knowledge tracker to get reward;
9: Update 6gp,; using reward;
10: > Start to train posterior knowledge tracker
11 Feed hf”l to posterior knowledge tracker;

12: Get posterior knowledge distribution P(K;—1 | K, j, pos);

13: Sample K;—1,s from P(K;-1 | K, pos);

14: Feed hgf’l’s to knowledge shifter to get reward;

15: Update 005 using reward;

16: > Start reduce the distance between the prior and posterior
knowledge distribution P(K;—1|pri) and P(K;-1|K, pos)

17: Update 0 using KLDivLoss and MLE.

18: end for

where d stands for hidden size and p refers to pooling operation.
Similarly, we encode the knowledge sentences in knowledge pool

K- | Kz j\ K|
K, = {Kr,j}J‘-: 1}| e RIK-Ixd_
We use row vector representation (e.g., RIXd) for all vectors in this
paper.

into representations H T = {h

3.4 Dual knowledge interaction layer

34.1 Prlor knowledge tracker. Given context representations hX’ !

and hpT !, the prior knowledge tracker predicts the prior knowledge
tracking distribution P(K—1|pri) over the knowledge pool K_1,
which is estimated as follows:

P(Kr-1|pri) = softmax(Qpri p”) c RIKe1l
Qpri = mip([hy™;hy™']) € RY (3)
Kpri = mlp(HfT*l) c RIKTﬂ le)

where mlp(-) = ‘W + b is a Multilayer Perceptron (MLP) and ;
denotes the vector concatenation operation.

3.4.2 Knowledge shifter. Given context representation hp and
tracked knowledge representation hKr-1J , the knowledge shifter
predicts the shifting knowledge dlstrlbutlon P(K;|Kz-1,j, shi) over
knowledge pool K, which is estimated as follows:
P(K;|Kr-1,j, shi) = softmax(QshiKSThi) e RIK
X, 1 Keo1,j
Qqpi = mlp([h;7;hy ™)) € R (@)
Ky = mip(Hy7) € RIK-Xd,

343 Poster/or knowledge tracker. Given context representatlons
hXT ! and hp’ ! and shifted knowledge representation hpT /, the
posterlor knowledge tracker predicts the posterior knowledge track-

ing distribution P(K;-1|Kz, j, pos) over knowledge pool K;—1, which



is estimated as follows:
P(K;_1|Kz,j, pos) = softmax(Qpos
Qpos = mip([By s by shp ™)) € RY - (5)
Kpos = mlp(Hy™) € RIKr-11xd,

K;os) e RIKel

3.5 Decoding layer

We feed [HXr; HX+/] into a transformer decoder [42] equipped
with a copying mechanism [10, 26, 33] to generate Y; token by
token, where HX* € RIXzIXd is the context representation before
pooling (see Eq. 2) and HX=J € RIKnJ1Xd i the shifted knowledge
representation before pooling based on the prediction from the
knowledge shifter. During the training process, we always give the
representations of the ground truth shifted knowledge HX=/ to the
decoder, where [ refer to the ground truth label. Specifically, the

probability of generating y, ; at t is modeled as:
P(yr.t) = P(9)P(yr,tlg) + P(cc)P(yr.tlee) + P(ck)P(yrtlck), (6)

where P(yr,|g) is the probability of generating a token from the
predefined vocabulary V:
P(yrslg) = mlp(hr,) € RV, (7)
where h; ; = TransformerDecoder(emb(y <¢), [HX; HK/]) € RY,
TransformerDecoder is a stack of Transformer decoder blocks [42];

emb(y,<;) denotes the embedding of y; <;.
P(yrtlce) is the probability copying a token from the context

Xzt
Z @i (8)

Xz i=Yrr

P(yr,t|cc) =

where x7; is the i-th token in X; and ag’t is the attention distribu-
tion on X; with h;; attentively reading HX* (see Eq.10). P(yr.¢|ci)
is the probability copying a token from the knowledge K, j, which
is calculated in a similar way.

P(g), P(cc), and P(c) are the coordination probabilities among
the above three modes: g, c. and c, which are estimated as follows:

[P(g), P(cc), P(cr)] = softmax(mlp([hm;cf.jt;clzt)]) eR3 (9)

where cf , and c’; ; are attention vectors derived from h; ; attending

to HX* and HX+/, respectively. Finally, ci’t is calculated as follows:
ey = a;tHXT eR?
ag, = softmax(Q K] ) € Rl (10)
Qc = mip(hy,) € RY, Ke = mip(H¥) € RIXeP<,

And c]; ; is calculated in a similar way.

3.6 Dual knowledge interaction learning

We devise a DukeL scheme to learn DukeNet, which can be di-
vided into two phases: warm-up training phase and dual interaction
training phase, as shown in Algorithm 1.

3.6.1 Warm-up training phase. We first employ the commonly used
MLE loss to maximize the likelihood of the demonstrated examples
in the training set [14]:

Lpri(e) == logP(KT—l,l | Pri)
Lpos(0) = —log P(Ky_y 1 | Ky 1, pos)
Lpi(0) = —log P(Ky | K—q1, shi) (11)
1Yz |
Ly(0) = = > log P(yes | y<rt, Xo Krp),
t=1

where 0 are all the parameters of DukeNet and [ refer to the ground
truth label. £p;(0) is the prior tracking loss; Lpos(0) is the pos-
terior tracking loss; Lp;(0) is the shifting loss; and £L4(0) is the
generation loss. The final loss is the sum of the four functions just

defined:
L(0) = Lpri(0) + Lpos(0) + Lsp;i (0) + Ly (0). (12)

3.6.2 Dual interaction training phase. For each iteration, given an
example sampled from the training set, we first optimize the knowl-
edge shifter. We feed the representation of the ground truth tracked
knowledge h,, Keil o the knowledge shifter to get the knowledge
shifting dlstrlbutlon P(K¢|K;_1, shi) (Line 5-6 in Algorithm 1).
Then we sample knowledge K5 from P(K;|K;_1, shi) and feed
its representation h&7S to the posterior knowledge tracker to get
the probability of recovering the ground truth tracked knowledge
Kr_11 (Line 7-8 in Algorithm 1). We regard this recovering proba-
bility as a reward:

E[R] = E[Rlog P(K¢s | K;—_1 1, shi)]
R = log[P(KT—l,l | Kr,s’POS)]’

where R is the reward of the sampled knowledge K; 5. After that,
we use policy gradients [39] to maximize E[R] and compute the
gradient for the parameters 6,p,; (Line 9 in Algorithm 1):

(13)

Vo, E[R] = E[RVg,, log P(Krs | K;—q1, shi)]. (14)
We then start to optimize the posterior knowledge tracker (the
parameters 0po5), which is done in a similar way (Line 11-15 in
Algorithm 1). After above dual process, we feed the representation
of the ground truth shifted knowledge h ! to the optimized pos-
terior knowledge tracker to again predlct the posterior knowledge
tracking distribution P(K;—1|K;, pos). We then distill the gains
from P(K;-1|K, pos) to P(K;-1|pri) via KLDivLoss (Line 17 in
Algorithm 1) L;(0) =

IK‘rfl‘
P(Kr-1,j | Kpp pos)
P(Kr-1,j | K;p, pos)lo - —,  (15)
,Zl T ek PO TR T pr)

where 0 are the parameters excluding those of encoder and embed-
ding. To reduce the impact of inaccurate reward estimation [23], we
combine L;(0) with the MLE losses [Lpos(é), L:(0), Lg(é)]
linearly and jointly train them:

L(0) = Lk (0) + AL Lpos (0) + Lpi (0) + Lg()],  (16)

where A is a hyper-parameter to control the effect of MLE. We
repeat the above process until convergence.



4 EXPERIMENTS

4.1 Research questions

We aim to answer the following research questions:

(RQ1) What is the performance of DukeNet? Does DukeNet out-
perform state-of-the-art methods? (See §5.1 and §5.2)

(RQ2) Where does the improvements of DukeNet come from? How
do the different components contribute to its performance?
(See §6.1)

(RQ3) Does the dual knowledge interaction improve knowledge
tracking and knowledge shifting jointly? (See §6.2)

(RQ4) Is DukeNet able to generate better responses? Are there any
failures? (See §6.3)

4.2 Dataset

Following Kim et al. [14], we evaluate our model on two public
KGC benchmark datasets, Wizard of Wikipedia [7] and Holl-E [25],
both of which contain the ground truth labels for KS. We split the
data into training, validation and test as per the original papers.

Wizard of Wikipedia is the largest unstructured KGC dataset that
is based on sentences to date. The conversations are conducted be-
tween two speakers about some given open-domain topics. The one
speaker acts as the wizard (expert), who can use a retrieval system
to acquire knowledge sentences from Wikipedia and chooses any to
form a response. The other speaker acts as the apprentice (learner),
who is eager to talk with the wizard about a topic but does not
have access to external knowledge. It contains 18,430, 1,948 and
1,933 conversations for training, validation and test, respectively.
The test set is further split into two subsets, Test Seen and Test
Unseen. The former contains conversations on topics overlapping
with topics in the training set, and the latter contains conversations
on topics never seen in the training and validation set. The average
number of sentences in a knowledge pool is about 67.

Holl-E is a document based dataset, i.e., a single document is
given as knowledge per conversation. Kim et al. [14] have changed
it to a sentence based one and modified the ground truth labels for
KS, so we use the version released by them. It contains 7,228, 930
and 913 conversations for training, validation and test, respectively.
There are two versions of the test set: one with a single reference
and the other with multiple references (more than one ground
truth knowledge sentences and corresponding responses for each
given conversation context). The average number of sentences in a
knowledge pool is roughly 60.

4.3 Baselines

We compare DukeNet with state-of-the-art KGC methods in the

sentence based setting.

o Seq2Seq [38] maps the conversation context into the response
with an encoder-decoder framework, which does not use any
knowledge information.

o Transformer [42] implements an encoder-decoder framework
by solely relying on multi-head attention mechanism and dis-
pensing with recurrence, which does not use any knowledge
information either.

e MemNet [9] combines a Seq2Seq model with an external mem-
ory network to store knowledge.

e TMemNet [7] combines a transformer model with an external
memory network in an end-to-end manner, which further intro-
duces an auxiliary loss to better supervise knowledge selection.

e PostKS [19] uses response and conversation context to jointly
form a posterior knowledge distribution and regards it as pseudo-
labels to supervise KS.

o SKT [14] sequentially models the history of KS at previous turns
via a sequential latent variable model [35]. In addition, SKT uses
BERT to encode conversation context and knowledge and in-
corporates a copying mechanism [10, 33] to promote response
generation.

For a fair comparison, we also report the results of PostKS+BERT

and TMemNet+BERT, which also use BERT as encoders.

4.4 Evaluation metrics

We conduct both automatic and human evaluations. For automatic
evaluation we follow previous KGC studies [24, 51], and use BLEU-
4 [27], METEOR [5], ROUGE-1, ROUGE-2, and ROUGE-L [20] for
evaluating response generation. In addition, we report Hit@1 (the
top 1 accuracy) to evaluate knowledge selection [14, 22] at each
turn. For the evaluation of multiple references in the Holl-E dataset,
we follow Moghe et al. [25] and Kim et al. [14]. For evaluating RG,
we take the max score between responses generated by models and
multiple ground truth responses. For evaluating KS, we regard the
knowledge selected by model as correct if it matches any of the
ground truth knowledge.

For human evaluation we randomly sample 300 examples from
each test set. For each example, we ask three workers to conduct a
pairwise comparison between the knowledge sentences/responses
selected/generated by DukeNet and the ones selected/generated
by a baseline on Amazon Mechanical Turk'. Specifically, given the
conversation context, the knowledge pool2 used at the current turn,
the selected knowledge, as well as the generated responses, each
worker needs to give a preference (ties are allowed) in terms of three
aspects: (1) Appropriateness, i.e., which selected knowledge is more
appropriate/relevant w.r.t. the given conversation context; (2) Infor-
mativeness, i.e., which response looks more informative [14, 22, 52];
(3) Engagingness, i.e., which response is better in general [14]. Model
names were masked out during evaluation.

4.5 Implementation details

For models without BERT encoder, the word embedding size and
hidden size are all set to 256. For models with BERT encoder, we use
BERT-Base pre-trained weights and the hidden size is 768. We use
the Adam optimizer [15] to train all models. In particular, we train
DukeNet model for 10 epochs for the warm-up training phase (learn-
ing rate 0.00002) and 5 epochs for the dual interaction training
phase (learning rate 0.00001). A in Eq. 16 is set to 0.5. We use gra-
dient clipping with a maximum gradient norm of 0.4. We use the
BERT vocabulary? (the size is 30,522) for all models. We select the
best models based on performance on the validation set. The code
is available online®.

Lhttps://www.mturk.com/

2To reduce the burden of workers, we only show them a reduced pool including at
most 10 knowledge sentences, where the ones selected by the models are in it.
Shttps://github.com/huggingface/transformers
4https://github.com/ChuanMeng/DukeNet/
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Table 1: Automatic evaluation results on the Wizard of Wikipedia dataset. Bold face indicates the best result in terms of the
corresponding metric. Significant improvements over the best baseline results are marked with * (t-test, p < 0.05).

Methods Test Seen (%) Test Unseen (%)

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1
Seq2Seq 0.46 12.22 20.32 3.03 14.46 - 0.34 10.21 19.01 2.16 13.55 -
Transformer 0.39 12.82 20.50 3.27 15.00 - 0.39 11.36 18.81 2.17 14.33 -
MemNet 0.41 12.35 21.51 3.17 15.33 4.27 0.32 11.75 20.06 2.51 14.68 4.13
PostKS 0.57 13.50 21.61 3.66 16.07 4.70 0.36 12.60 20.79 2.52 14.88 4.45
TMemNet 1.35 14.52 22.84 4.31 16.77 21.57 043 12.82 21.33 3.05 15.39 12.10
PostKS + BERT 0.77 14.16 22.68 4.27 16.59 4.83 0.39 12.59 20.82 2.73 15.25 4.39
TMemNet + BERT 1.61 15.47 24.12 4.98 17.00 23.86 0.60 13.05 21.74 3.63 15.60 16.33
SKT 1.76 16.04 24.61 5.24 17.61 25.36 1.05 13.74 22.84 4.40 16.05 18.19
DukeNet 2.43* 17.09* 25.17 6.81* 18.52* 26.38 1.68" 15.06* 23.34 5.29* 17.06* 19.57

Table 2: Automatic evaluation results on the Holl-E dataset.

Methods Single golden reference (%) Multiple golden references (%)

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1
Seq2Seq 4.84 17.12 26.25 8.41 20.08 - 7.41 21.47 30.68 12.01 24.58 -
Transformer 5.09 16.39 25.96 8.62 19.64 - 7.58 21.01 30.43 12.25 24.60 -
MemNet 5.49 17.70 26.88 9.51 21.15 3.39 7.75 21.60 31.63 12.21 24.94 5.32
PostKS 5.85 18.53 27.52 9.21 21.23 3.60 8.01 22.23 31.57 12.55 25.15 5.95
TMemNet 6.77 20.67 28.25 9.97 22.37 24.15 8.98 25.29 32.46 13.05 26.37 33.95
PostKS + BERT 6.54 19.30 28.94 9.89 22.15 3.95 8.49 23.97 32.85 13.10 26.17 6.40
TMemNet + BERT  8.99 24.48 31.65 13.24 25.90 28.44 12.36 28.61 35.29 16.14 29.51 37.30
SKT 17.81 29.41 35.28 21.74 30.06 28.99  24.69 35.78 41.68 28.30 36.24 39.05
DukeNet 19.15* 30.93* 36.53 23.02* 31.46" 30.03 26.83° 37.73" 43.18* 30.13* 38.03" 40.33

5 EXPERIMENTAL RESULTS

5.1 Automatic evaluation (RQ1)

We list the results of all methods on both the Wizard of Wikipedia
and Holl-E datasets in Tables 1 and 2, respectively. Generally, Duke-
Net significantly outperforms all baselines on both datasets. From
the results, we have three main observations.

First, DukeNet outperforms the strongest baseline SKT by around
1-1.5% in terms of Hit@1 on both datasets. In particular, the im-
provement of DukeNet over SKT on the test unseen is 1.38%, while
on test seen it is 1.02%, which means that DukeNet can better handle
unseen cases. The reason is that SKT only models the unidirectional
interaction from knowledge tracking to shifting and merely uses
demonstrated examples in the training set to optimize model via
MLE. In contrast, DukeNet benefits from DukeL, which regards
knowledge tracking and shifting as dual tasks to let them boost
each other. The learning process of DukeL explores extra knowl-
edge besides the demonstrated ground truth in the training set,
which improves the generalization ability on unseen cases.

Second, DukeNet substantially outperforms the other baselines

In addition, the tracked knowledge can provide extra evidence and
clues to infer the shifted knowledge compared to use context only,
which narrows the search space for KS. DukeNet also outperforms
all baselines, including SKT, in terms of Response Generation (RG),
i.e., the BLEU-4, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L
scores are significantly improved. Note that nothing special is pro-
posed for the decoder in DukeNet, so the higher scores on the
generation metrics indicate that better KS performance of DukeNet
also improves the quality of RG.

Third, interestingly, we found that the improvement from BERT
is limited compared to that on QA tasks [6], e.g., BERT based models
have been shown to be much more effective and already outper-
formed humans on the SQuUAD dataset [30]. We think the reason
is that BERT is pretrained on language modeling tasks, which will
help improve the language modeling performance mostly. However,
on the KGC task, the main bottleneck now is the KS, which BERT
can only make a limited contribution.

5.2 Human evaluation (RQ1)

that do not explicitly model knowledge tracking and shifting in
terms of Hit@1, e.g., MemNet, PostKS and TMemNet. Especially,
DukeNet outperforms the most competitive baseline TMemNet +
BERT by around 1.5-3.5% on both datasets. The gains show that
explicitly modeling knowledge tracking and shifting can better
capture the interaction between the knowledge at adjacent turns.

Although automatic evaluation metrics have been shown to be
reliable on the KGC task [7, 24], we still conduct human evaluations
to confirm the improvement of DukeNet.

We compare DukeNet with the three most competitive baselines
TMemNet + BERT, PostKS + BERT, and SKT on the more challeng-
ing Wizard of Wikipedia dataset. The results are shown in Table 3.



Table 3: Human evaluation on the Wizard of Wikipedia dataset.

Test Seen (%)

Test Unseen (%)

Methods

Appropriateness Informativeness Engagingness Appropriateness Informativeness Engagingness

Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose

DukeNet vs PostKS + BERT 51 46 3 74 23 3
DukeNet vs TMemNet + BERT 37 55 8 19 79 2
DukeNet vs SKT 15 79 6 15 80 5

59 36 5 74 25 1 70 26 4 78 21 1
48 42 10 45 50 5 23 74 3 38 57 5
16 77 7 20 76 4 15 81 4 21 68 11

Table 4: Ablation study on the Wizard of Wikipedia dataset. -DukeL denotes removing dual interaction training phase. -Pri and
-Pos denote removing prior and posterior knowledge tracker, respectively. -KL denotes removing KLDivLoss in Eq. 15.

Test Seen (%)

Test Unseen (%)

Methods

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L Hit@1
Full model 2.43 17.09 25.17 6.81 18.52 26.38 1.68 15.06 23.34 5.29 17.06 19.57
-Pri,-KL 2.09 16.74 25.10 6.36 18.08 2593 1.39 14.05 22.52 4.68 15.99 18.85
-DukeL 1.99 16.34 24.54 6.19 17.83 25.57 1.28 13.75 22.20 4.67 15.76 18.56
-DukeL,-Pri,-Pos,-KL  1.74 15.99 24.34 5.88 17.66 23.82 099 13.39 22.69 4.35 15.90 16.25

Generally, DukeNet achieves the best performance in terms of all
metrics on both datasets. In particular, we find that the perfor-
mance gaps between DukeNet and the other three baselines are
more obvious on the test unseen subset. For instance, the wins of
DukeNet over SKT is 15% and 20% on the test seen and test unseen
in terms of Appropriateness, respectively, which is consistent with
the automatic evaluation results and again indicates that exploring
data besides the ground truth in DukeL can indeed promote the
generalization ability. DukeNet is even better than SKT in terms
of Informativeness, despite that the fact that they both use a copy-
ing mechanism [10] to make use of knowledge during decoding.
We think that this is because, in many cases, SKT selects inappro-
priate knowledge for a given conversation context; the response
generated based on this is more likely to be less relevant and will
be considered as less informative by workers. DukeNet gets the
best score in terms of Engagingness, which shows that the work-
ers prefer the responses from DukeNet in general, mostly because
DukeNet selects more appropriate knowledge which will result in
more relevant and natural responses.

6 ANALYSIS
6.1 Ablation study (RQ2)

To analyze where the improvements of DukeNet come from, we
conduct an ablation study on the Wizard of Wikipedia dataset;
see Table 4. Here, we consider three settings. (1) No prior knowl-
edge tracker (i.e., -Pri,-KL in Table 4), i.e. we directly use posterior
knowledge tracker during inference, and feed zero vector to re-
place the shifted knowledge. (2) No dual interaction training phase
in §3.6.2 (i.e., -DukeL in Table 4). (3) No knowledge tracking (i.e.,
-DukeL,-Pri,-Pos,-KL in Table 4).

The results show that all parts are helpful to DukeNet because
removing any of them will decrease the results. Without knowledge
tracking, the performance of DukeNet drops sharply in terms of
all metrics, almost degenerating to TMemNet + BERT. Specifically,
it drops around 2.5-3.5% in terms of Hit@1, which means that
knowledge tracking is essential for KS, and modeling KS only by

Table 5: The results of knowledge tracking and shifting with
or without dual interaction training phase on the Wizard of
Wikipedia dataset. Tra-Hit@1 denotes the top 1 accuracy for
knowledge tracking.

Test Seen (%)

Test Unseen (%)

Methods

Tra-Hit@1 Hit@1 Tra-Hit@1 Hit@1
-DukeL 81.66 25.57 76.04 18.56
Full model 82.77 26.38 76.82 19.57

modeling conversation context is far from enough. Without DukeL,
the performance of DukeNet also drops a lot in terms of all metrics,
almost degenerating to SKT. It drops by 0.81% and 1.01% in terms
of Hit@1 in the test seen and test unseen conditions, respectively.
This indicates that DukeL can not only model the dual interaction
between knowledge tracking and shifting to improve them jointly
but also alleviate the many-to-many mapping phenomenon in KGC
via exploring the knowledge that is not limited to ground truth.
Without the prior knowledge tracker, we find that the gain from
DukeL is very limited, though it still slightly outperforms SKT. It
only improves around 0.3% in terms of Hit@1 compared to the case
without DukeL. The posterior knowledge tracker without shifted
knowledge as input cannot perform well during inference due to
the incompatible dual processes between training and inference,
which restricts the effect of the knowledge shifter.

6.2 Dual knowledge interaction (RQ3)

To analyze whether dual knowledge interaction improves both
knowledge tracking and knowledge shifting after the dual inter-
action training phase (see §3.6.2), we report the Tra-Hit@1 and
Hit@1 with or without this phase, respectively. The results on the
Wizard of Wikipedia dataset are shown in Table 5.

We see that the performances improve on both the test seen and
test unseen for knowledge tracking and shifting, which indicates
that they two indeed teach each other during this process. Thus, dur-
ing inference, the improved knowledge tracking can ground tracked



Table 6: Case study. Due to the space limitations, we only show one merged pool (K;-;+K;) and three knowledge sentences.

Example 1 (Test seen)

Example 2 (Test unseen)

Context

Xr—1: pizza delivery
Y;—1: for dinner i had pizza delievered to my house by a pizzeria
X: love a good pizzaria or restaurant that specializes in pissa

Xr—1: what can you tell me about the story of harry potter?
Yr_1: harry potter is a 7 book fantasy series written by jk rowling
X;: 7 books ! wow

Knowledge pool

Kj: pizza delivery is a service in which a pizzeria or pizza chain
delivers a pizza to a customer .

K>: pizzas may be delivered in pizza boxes or delivery bags , and
deliveries are made with either an automobile .

K3: an order is typically made either by telephone or over the
internet to the pizza chain, in which the customer can request

Kj: harry potter is a series of fantasy novels written by british
author j. k. rowling .

K3: the main story arc concerns harry ’ s struggle against lord
voldemort , a dark wizard who intends to become immortal .

K3: the books have sold more than 500 million copies worldwide

pizza type , motorized scooter .

, making them the best-selling book series in history .

PostKS + BERT: @ — Kj X
TMemeNet + BERT: @ — K; X
SKT: Ky X =K, X

DukeNet: K; v — K3

Tracking to shifting

PostKS + BERT: @ —»K; X
TMemeNet + BERT: @ —K; X
SKT:K; vV > K3 X

DukeNet: K; v/ — K,

PostKS + BERT: i love pizza delivery . i love pizza delivery .

TMemeNet + BERT: i can do it with my pizza delivery , but i can

i h .
Response pay my pizza at home

SKT: i love frozen pizza ! i love the delivery bagels with either

an automobile , or a motorized scooter .

DukeNet: i love pizza delivery and i could pay online or online

ordering .

PostKS + BERT: i know that harry potter is a series of fantasy
novels .

TMemeNet + BERT: i ve never read the book, but i know that
harry potter is a series of fantasy novels written by british author
j. k. rowling .

SKT: they have sold more than 500 million copies worldwide .

DukeNet: the main story is about harry ’ s struggle against lord
voldemort .

knowledge more accurately, and the more accurately tracked knowl-
edge can be fed to the improved knowledge shifting to select more
appropriate knowledge, which eventually boosts the quality of RG.

6.3 Case study (RQ4)

We randomly select examples from the Wizard of Wikipedia test sets
to compare the performance of DukeNet, SKT, TMemNet+BERT
and PostKS+BERT in Table 6. We can see that DukeNet conducts
knowledge tracking and shifting more precisely, and hence results
in more engaging responses. For instance, in Example 1, DukeNet
captures the knowledge interaction from the general definition
of “Pizza delivery” to its online ordering. In Example 2, DukeNet
shifts the topic from “harry potter novel” to its main story content
properly. In contrast, in Example 1, SKT messes up the knowledge
Kj and K3, and makes a mistake by considering K, as the tracked
knowledge. The possible reason is that SKT does not explicitly
distinguish knowledge tracking and shifting, and uses the unidi-
rectional interaction from knowledge tracking to shifting, which
cannot utilize the dual interaction between them to further im-
prove both. TMemNet+BERT and PostKS+BERT get the worst per-
formances in the two examples, which again shows that only using
context to model KS is far from enough. We also observe a few
bad cases of DukeNet. Although DukeNet alleviates the problem
of the many-to-many mapping phenomenon to a certain extent,
we found that DukeNet is still more likely to make mistakes when
given a tracked knowledge sentence that can be mapped to multiple
reasonable shifted knowledge ones. This is because the knowledge
interaction between two adjacent turns can only provide limited
hints, which fails to model the long-term dual interactions between
knowledge tracking and shifting.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose DukeNet, which explicitly models knowl-
edge tracking and knowledge shifting as dual tasks to improve
performance on the Knowledge Selection (KS) task. We also devise
an unsupervised DukeL to explore knowledge beyond the demon-
strated ones in the dataset during training for KS. Extensive experi-
ments on two benchmark datasets show that DukeNet achieves new
state-of-the-art performance, indicating that DukeNet enhanced by
DukeL can select more appropriate knowledge and hence generate
more informative and engaging responses.

A limitation of DukeNet is that it only considers the dual knowl-
edge interaction between two adjacent conversation turns. In future
work, we plan to extend the dual knowledge interaction to complete
conversations, such that we can leverage long-term dual interac-
tions between knowledge tracking and shifting to further improve
Knowledge Selection (KS).
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