# Query Performance Prediction: From Ad-hoc to Conversational Search

# Chuan Meng

University of Amsterdam Amsterdam, The Netherlands c.meng@uva.nl

## Mohammad Aliannejadi

University of Amsterdam Amsterdam, The Netherlands m.aliannejadi@uva.nl

# ABSTRACT

Query performance prediction (QPP) is a core task in information retrieval. The QPP task is to predict the retrieval quality of a search system for a query without relevance judgments. Research has shown the effectiveness and usefulness of QPP for ad-hoc search. Recent years have witnessed considerable progress in conversational search (CS). Effective QPP could help a CS system to decide an appropriate action to be taken at the next turn. Despite its potential, QPP for CS has been little studied. We address this research gap by reproducing and studying the effectiveness of existing QPP methods in the context of CS. While the task of passage retrieval remains the same in the two settings, a user query in CS depends on the conversational history, introducing novel QPP challenges. In particular, we seek to explore to what extent findings from QPP methods for ad-hoc search generalize to three CS settings: (i) estimating the retrieval quality of different query rewriting-based retrieval methods, (ii) estimating the retrieval quality of a conversational dense retrieval method, and (iii) estimating the retrieval quality for top ranks vs. deeper-ranked lists. Our findings can be summarized as follows: (i) supervised QPP methods distinctly outperform unsupervised counterparts only when training data is ample; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in assessing the conversational dense retrieval method, ConvDR.

# **CCS CONCEPTS**

• Information systems  $\rightarrow$  Evaluation of retrieval results.

## **KEYWORDS**

Query performance prediction; Ad-hoc search; Conversational search

### ACM Reference Format:

Chuan Meng, Negar Arabzadeh, Mohammad Aliannejadi, and Maarten de Rijke. 2023. Query Performance Prediction: From Ad-hoc to Conversational

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9408-6/23/07.

https://doi.org/10.1145/3539618.3591919

# Negar Arabzadeh

University of Waterloo Waterloo, Canada narabzad@uwaterloo.ca

# Maarten de Rijke

University of Amsterdam Amsterdam, The Netherlands m.derijke@uva.nl

Search. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10. 1145/3539618.3591919

## **1** INTRODUCTION

Query performance prediction (QPP) is an essential task in information retrieval (IR). It is about estimating the retrieval quality of a search system for a given query without relevance judgments [14, 16, 22, 26, 59, 62]. QPP has been long studied in the IR community [9]. Numerous benefits of QPP have been identified, including selecting the most effective ranking algorithm for a query [26, 27, 59] based on the difficulty of the input query.

In conversational search (CS) there has been significant progress on multiple subtasks [61], including passage retrieval [13, 58], query rewriting [53, 57], mixed-initiative interactions [3, 60], response generation [38–40], and evaluation [18, 19]. Specifically, passage retrieval has been the main focus of TREC CAsT 2019–2022 [13], where modeling long conversational context for retrieval is shown to be challenging [2]. Moreover, research has shown that mixedinitiative interactions can lead to improved user and system performance [3, 63]. As with ad-hoc retrieval, QPP benefits CS in multiple ways. For instance, effective QPP can help a CS system take appropriate action at the next turn, e.g., take the initiative in asking a clarifying question or saying "I cannot answer your question" to the user, instead of giving a low-quality or risky answer when the estimated retrieval quality for the current user query is low [5, 45].

Despite its importance and significance, little research has been done on QPP for CS [37]. We take the first steps in this direction by conducting a comprehensive reproducibility study, where we examine a variety of QPP methods that were originally designed for ad-hoc retrieval in the setting of CS. We aim to characterize the novel challenges of QPP for CS and highlight the unique characteristics of this field, while simultaneously assessing the effectiveness of existing QPP methods in a conversational setting.

In particular, we highlight three main challenges of QPP applied to CS that distinguish it from the ad-hoc search setting:

- a user query in a conversation depends on the conversational context, i.e., it may contain omissions, coreferences, or ambiguities, leading to unforeseen QPP challenges;
- (2) QPP for CS has to predict the performance of novel retrieval approaches, approaches that are specifically designed for CS; two main groups of CS methods have been proposed to solve

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). *SIGIR* '23. July 23–27. 2023. Taipei. Taiwan

the query understanding challenge in CS, i.e., query-rewritingbased retrieval [33, 36, 51, 53, 54, 57] and conversational dense retrieval methods [29, 32, 34, 34, 35, 43, 58].

(3) QPP for CS should focus on estimating the retrieval quality for the top-ranked results rather than for a full-ranked list because CS systems need to return brief responses to adapt to limitedbandwidth interfaces, such as a mobile screen [61].

In this reproducibility paper, we design our experiments inspired by these CS characteristics and examine whether established findings on QPP for ad-hoc search still hold under these conditions. Specifically, we study the following findings from the literature on QPP for ad-hoc search: (i) supervised QPP methods outperform unsupervised QPP methods [4, 7, 14, 16, 23, 59]; (ii) list-wise supervised QPP methods outperform their point-wise counterparts [7, 16]; and (iii) retrieval score-based unsupervised QPP methods perform poorly in estimating the retrieval quality of neural-based retrievers [15, 23]. By examining each of these QPP-for-ad-hoc-search findings listed above in the setting of CS, we aim to characterize the problem of QPP applied to CS, with novel findings and directions for future research as additional outcomes.

In this paper, we conduct experiments on three CS datasets: (i) CAsT-19 [13], (ii) CAsT-20 [12], and (iii) OR-QuAC [43]. Our experiments show that, in the setting of CS, (i) supervised QPP methods distinctly outperform unsupervised counterparts only when a large amount of training data is available; unsupervised QPP methods show strong performance in a few-shot setting and when predicting the retrieval quality for deeper ranked lists; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; however, list-wise QPP methods show a slight advantage in a few-shot setting and when predicting the retrieval quality for deeper ranked lists; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in estimating the retrieval quality of a conversational dense retrieval method, ConvDR, either for top ranks or deeper ranked lists.

## 2 PRELIMINARIES AND TASK DEFINITION

We recap the definition of the QPP task in the context of ad-hoc search. Generally, given a query q, a collection of documents D, an ad-hoc retrieval method M and the ranked list with top-k ranked documents  $D_{q;M}^k = [d_1, d_2, \ldots, d_k]$  returned by the retriever M over the collection D with respect to the query q, a QPP method f estimates the retrieval quality of the ranked list  $D_{q;M}^k$  with respect to the query q, formally:

$$\phi = f(q, D_{a:M}^k, D) \in \mathbb{R}, \qquad (1)$$

where  $\phi$  indicates the retrieval quality of the ad-hoc retriever *M* in response to the query *q*; the retrieval quality  $\phi$  can depend on collection-based statistics.

Next, we define the task of QPP for CS. The CS task is to find relevant items for each query in a multi-turn conversation  $Q = \{q_t\}_{t=1}^n$  [13], where *n* is the number of turns in a conversation. Unlike traditional ad-hoc search, the query  $q_t$  at turn *t* may contain omissions, coreferences, or ambiguities, making it hard for ad-hoc search methods to capture the underlying information need of the query  $q_t$ . Two main groups of CS methods have been proposed to solve the query understanding challenge in CS, i.e., query rewritingbased retrieval [33, 36, 51, 53, 57] and conversational dense retrieval methods [32, 34, 58]. Query rewriting-based retrieval methods first rewrite the query  $q_t$  into a self-contained query  $q'_t$  with the conversational history  $Q_{1:t-1} = q_1, q_2, \ldots, q_{t-1}$ , and then reuse ad-hoc search methods using the rewritten query  $q'_t$  as input. When estimating the retrieval quality of this group of CS methods, we define QPP for CS as:

$$\phi_t = f(q'_t, D^k_{a' \cdot M}, D) \in \mathbb{R}, \qquad (2)$$

where, given the same query rewrite  $q'_t$ , the ranked list of documents  $D^k_{q'_t;M}$  retrieved by a query rewriting-based retrieval method for the query rewrite  $q'_t$ , predicts  $\phi_t$  that is indicative of the retrieval quality of the method in response to the rewritten query  $q'_t$ .

Conversational dense retrieval methods train a query encoder to encode the current query  $q_t$  and the conversation history  $Q_{1:t-1}$ into a contextualized query embedding that is used to represent the information need of the current query in a latent space [34, 58]. However, existing QPP methods do not have such a special module to understand the noisy raw utterances  $Q_{1:t}$ ; directly feeding the raw utterances  $Q_{1:t}$  into QPP methods may fuse them. Thus, when estimating the retrieval quality of a conversational dense retrieval method, we still feed a query rewrite  $q'_t$  instead of the raw utterances  $Q_{1:t}$  into QPP methods, formally:

$$\phi_t = f(q'_t, D^k_{Q_{1:t};M}, D) \in \mathbb{R} , \qquad (3)$$

where  $D_{Q_{1:t};M}^k$  is the ranked list retrieved by a conversational dense retrieval method in response to the raw utterances  $Q_{1:t}$ .

## **3 REPRODUCIBILITY METHODOLOGY**

We describe our research questions and the experiments designed to address them. We also describe our experimental setup.

#### 3.1 Research questions

We address the following research questions:

- (RQ1) Does the performance of QPP methods for ad-hoc search generalize to CS when estimating the retrieval quality of different query rewriting-based retrieval methods?
- (RQ2) Does the performance of QPP methods for ad-hoc search generalize to CS when estimating the retrieval quality of a conversational dense retrieval method? Is the QPP effectiveness influenced by the choice of query rewrites?
- (RQ3) What is the performance difference between QPP methods when predicting the retrieval quality for top-ranked items vs. for longer-ranked lists?

#### 3.2 Experimental design

Next, we describe the experiments aimed at answering our research questions. Our main goal is to study the reproducibility of ad-hoc QPP methods in the CS setting. We compare the performance of unsupervised and supervised QPP methods on three CS datasets. Specifically, we conduct the following experiments:

- **E1** To address (**RQ1**), we estimate the retrieval quality of BM25 with three query rewriting methods, namely, T5, QuReTeC, and perfect rewriting (human-rewritten) [13]. Note that QPP methods and BM25 always share the same query rewrites.
- E2 To address (RQ2), we study the performance of QPP methods for a conversational dense retrieval method, ConvDR [58], on all three datasets. As ConvDR directly models the raw conversation context, no query rewriting step is required. However,

no existing QPP methods can model raw conversations. Hence, we study the effect of feeding different query rewrites into QPP methods when predicting the performance of ConvDR.

E3 To address (RQ3), we apply the QPP methods on evaluation metrics at different depths. We utilize nDCG@3 and nDCG@100 and analyze how QPP performance is affected by the ranking depth. We also consider Recall@100 to study the effectiveness of QPP for first-stage CS rankers, where high recall is desired.

# 3.3 Experimental setup

**QPP methods.** We analyze a variety of unsupervised and supervised QPP methods. For unsupervised methods, we consider clarity-based and score-based QPP methods because they have been widely used in the literature. We consider more score-based methods since they have shown great effectiveness [6]. We consider one clarity-based method:

• Clarity [9] quantifies the degree of ambiguity of a query w.r.t. a collection of documents. Specifically, it measures the KL divergence between a relevance model [31] induced from top-ranked documents and a language model induced from the collection:

$$Clarity(q, D_{q;M}^{k}, D) = \sum_{w \in V} P(w|D_{q;M}^{k}) \log \frac{P(w|D_{q;M}^{k})}{P(w|D)}, \quad (4)$$

where w and V denote a term and the entire vocabulary of the collection, respectively. The conjecture is that the larger the KL divergence is, the better the retrieval quality is.

We consider five score-based QPP methods:

• Weighted information gain (WIG) [62] measures the divergence of retrieval scores of top-ranked documents from those of the entire corpus: the higher the divergence is, the better the retrieval quality is [48, 49, 59]. WIG is formulated as:

$$WIG(q, D_{q;M}^k, D) = \frac{1}{k} \sum_{d \in D_{q;M}^k} \frac{1}{\sqrt{|q|}} (Score(q; d) - Score(q; D)),$$
(5)

where Score(q; d) and Score(q; D) are the retrieval scores of document *d* and the entire collection *D*, respectively; |q| is *q*'s length.

• Normalized query commitment (NQC) [48] measures the standard deviation of retrieval scores of top-ranked documents; the standard deviation is normalized by the retrieval score of the entire collection *D*. The higher the standard deviation is, the better the retrieval quality is assumed to be. NQC is modeled as:

$$NQC(q, D_{q;M}^k, D) = \frac{1}{Score(q; D)} \sqrt{\frac{1}{k} \sum_{d \in D_{q;M}^k} (Score(q; d) - \mu)^2, (6)}$$

where  $\mu$  is the mean retrieval score of the top-ranked documents.

- $\sigma_{max}$  [42] is based on the standard deviation of retrieval scores of ranked documents but finds the most suitable ranked list size *k* for each query. The intuition is that most of the retrieved documents in a ranked list obtain a low retrieval score; considering such non-relevant documents would hurt QPP effectiveness.  $\sigma_{max}$  computes the standard deviation at each point in the ranked list and selects the maximum standard deviation so as to reduce the impact of the documents with a low retrieval score.
- n(σ<sub>x%</sub>) [11] is also based on the standard deviation. Similar to σ<sub>max</sub>, n(σ<sub>x%</sub>) uses a dynamic number of documents to calculate the standard deviation for each query, but only considers the documents whose retrieval scores are at least x% of the top retrieval

score. The calculated standard deviation is normalized by query length.

 Score magnitude and variance (SMV) [49] argues that WIG and NQC mainly consider the magnitude and the variance of retrieval scores, respectively. SMV takes both aspects into consideration:

$$SMV(q, D_{q;M}^k, D) = \frac{\frac{1}{k} \sum_{d \in D_{q;M}^k} (Score(q; d) |\ln \frac{Score(q; d)}{\mu}|)}{Score(q; D)}, \quad (7)$$

where *Score*(*q*;*d*) denotes score magnitude while  $\left|\ln \frac{Score(q;d)}{\mu}\right|$ ) represents score variance.

Recent studies show that BERT-based supervised QPP methods [4, 7, 16, 23] outperform other neural-based supervised QPP methods, such as NeuralQPP [59] and Deep-QPP [14]. Thus, we consider three BERT-based supervised QPP methods:

- NQA-QPP [23] is the first QPP approach that leverages contextualized embeddings of the query and retrieved documents. NQA-QPP consists of three key components: the retrieval score component, the query component, and the query-document component. All three components are aggregated and fed into a feed-forward neural network for predicting query performance.
- BERT-QPP [4] also leverages contextualized embeddings and achieves a significant performance improvement over earlier work. BERT-QPP fine-tunes a contextualized representation of the queries and the retrieved list of documents, followed by a linear layer for predicting query performance. We use the crossencoder version of BERT-QPP as it outperforms other variants.
- qppBERT-PL [16] is also an end-to-end neural cross-encoderbased approach, trained list-wise over the top-ranked documents (split into chunks). Specifically, it predicts the number of relevant documents in each chunk of a ranked list.

We do not include BERT-groupwise-QPP [7] in our experiments. It is another list-wise supervised QPP method, which uses crossquery information but it cannot be directly applied in a CS setting, as it reveals future conversation turns, which is unrealistic.

**Query rewriting methods**. We adopt the following query rewriting techniques/data in the passage retrieval and QPP process: (i) T5 rewriter<sup>1</sup> is fine-tuned on CANARD [17] query rewriting dataset; (ii) QuReTeC [53] is a BERT-based term expansion query rewriting method. We use the checkpoint released by the author;<sup>2</sup> and (iii) Human is the human-generated oracle query rewriting model obtained from the ground-truth data annotations.

**CS methods to be evaluated for retrieval quality**. We estimate the retrieval quality of two groups of CS methods: query rewritingbased retrieval and conversational dense retrieval methods. For the former, we consider: (i) T5+BM25 rewrites queries using the T5 rewriter and ranks the passages using BM25<sup>3</sup>; (ii) QuReTeC +BM25 [53] performs query resolution using QuReTeC, followed by BM25 passage ranking; and (iii) Human+BM25 uses the ground-truth query rewrites to rank passages using BM25. For the latter, we consider ConvDR [58] and use the code released by the author.<sup>4</sup>

**Datasets**. We consider three CS datasets: (i) CAsT-19 [13] contains 20 conversations of 9.5 average utterances; (ii) CAsT-20 [12] has 25 conversations of 8.6 average utterances; and (iii) OR-QuAC [43] is

<sup>&</sup>lt;sup>1</sup> https://huggingface.co/castorini/t5-base-canard

<sup>&</sup>lt;sup>2</sup> https://github.com/nickvosk/sigir2020-query-resolution <sup>3</sup> We use Pyserini BM25

with the default parameters k1=0.9, b=0.4. <sup>4</sup> https://github.com/thunlp/ConvDR

Table 1: Actual retrieval quality of the CS methods used in this paper in terms of nDCG@3.

|                                     | CAsT-19 | CAsT-20 | OR-QuAC |
|-------------------------------------|---------|---------|---------|
| T5-based query rewriter + BM25      | 0.330   | 0.170   | 0.218   |
| QuReTeC-based query rewriter + BM25 | 0.338   | 0.172   | 0.249   |
| Human query rewriter + BM25         | 0.360   | 0.257   | 0.309   |
| ConvDR                              | 0.471   | 0.343   | 0.614   |

a large-scale synthetic conversational retrieval dataset built on a conversational QA dataset, QuAC [8]; it contains  $\sim$ 5K conversations with  $\sim$ 40K questions. Table 2 lists details of the datasets.

**Evaluation**. A common method for evaluating QPP performance is to assess the correlation between the actual and predicted performance of a query set. Typically, Pearson's  $\rho$  linear coefficient, Kendall's  $\tau$ , and Spearman  $\rho$  ranking correlation are the most commonly used correlation metrics. We report the correlation based on the major metrics adopted by TREC CAST [13], namely, nDCG@3 for high ranks and nDCG@100 for deeper ranked lists. As mentioned above, we also adopt Recall@100 to investigate the performance of QPP when evaluating first-stage CS retrievers.

**Implementation details**. We implement all QPP methods using Pytorch.<sup>5</sup> For unsupervised QPP methods, we use hyperparameters that have been shown to be effective by previous studies. Following [62], *k* is set to 5 for WIG. As suggested by [48, 49], *k* is set to 100 for NQC and SMV; following [49], we use the average retrieval score of the top-1000 documents as the corpus score *Score*(*q*; *D*). Following [11], we set *x* to 50 for n( $\sigma_{x\%}$ ).  $\sigma_{max}$  does not use any hyperparameters. Following [48], we use the Clarity variant that uses the sum-normalized retrieval scores (from BM25 or ConvDR in our setting) for weighing documents when constructing a relevance model [31]; our preliminary experiments showed that this variant performed better than the original Clarity that uses query-likelihood scores to weight documents; we induce the relevance model at the top-100 terms cutoff [47].

For all supervised QPP methods, we use bert-base-uncased,<sup>6</sup> a fixed learning rate (0.00002), and the Adam optimizer [30]. All methods are trained and inferred on an NVIDIA RTX A6000 GPU. Following [34, 58], all training on CAsT-19 or CAsT-20 uses five-fold cross-validation; we use the data split from [58] and train all supervised QPP methods for 5 epochs. For training on OR-QuAC, we train all QPP methods for 1 epoch on the training set of OR-QuAC; we feed QPP methods with human-rewritten queries and train them to estimate the retrieval quality of BM25 with human-rewritten queries. To address the data scarcity on CAsT-19 and CAsT-20, we consider a *warm-up* setting where we first pre-train supervised QPP methods on the training set of OR-QuAC for one epoch, followed by the five-fold cross-validation training for 5 epochs on CAsT. For future reproducibility, our code and data resources are available at https://github.com/ChuanMeng/QPP4CS.

#### 4 RESULTS AND DISCUSSIONS

Our experiments revolve around three main findings from the literature on QPP for ad-hoc search: (i) supervised QPP methods

Meng et al.

Table 2: Data statistics of CAsT-19, CAsT-20 and OR-QuAC.

|                         | CAsT-19 | CAsT-20 | OR-QuAC |       |       |  |  |
|-------------------------|---------|---------|---------|-------|-------|--|--|
|                         | test    | test    | train   | valid | test  |  |  |
| #conversations          | 50      | 25      | 4,383   | 490   | 771   |  |  |
| #conversations (judged) | 20      | 25      | -       | -     | -     |  |  |
| #questions              | 479     | 216     | 31,526  | 3,430 | 5,571 |  |  |
| #questions (judged)     | 173     | 208     | -       | -     | -     |  |  |
| #documents              | 38      | М       |         | 11M   |       |  |  |

outperform unsupervised QPP methods [4, 7, 14, 16, 23, 59]; (ii) listwise supervised QPP methods outperform their point-wise counterparts [7, 16]; and (iii) retrieval score-based unsupervised QPP methods perform poorly in estimating the retrieval quality of neural-based retrievers [15, 23]. We study whether the findings listed above continue to hold for QPP methods in CS.

#### 4.1 Assessing query rewriting-based retrieval

4.1.1 Overall performance. To answer (RQ1), we examine the results of Experiment E1, where we run QPP methods estimating the retrieval quality of BM25 with three query rewriting methods (T5+BM25, QuReTeC+BM25, and Human+BM25). For all supervised QPP methods on CAsT, we further consider their variants that are first pre-trained on the training set of OR-QuAC for one epoch before five-fold cross-validation training on CAsT. See Table 3. Note that QPP methods and BM25 always share the same query rewrites. We have two main observations.

First, when applied to CS, supervised QPP methods only have a distinct advantage over their unsupervised counterparts when training data is sufficient and query rewriting/understanding is relatively easy. Specifically, on OR-QuAC, where training data is ample, all supervised QPP methods perform better than unsupervised methods when assessing BM25 with all three query rewriters. NQA-QPP achieves state-of-art performance on OR-QuAC. On CAsT-19, the performance of unsupervised QPP methods are comparable to supervised QPP methods using five-fold cross-validation. However, on CAsT-20, where query rewriting/understanding is much harder, unsupervised QPP methods perform better than their supervised counterparts using five-fold cross-validation. Warming up on the training set of OR-QuAC brings about improvement in supervised QPP methods in most cases. On CAsT-19, NQA-QPP with warm-up performs better than all unsupervised methods given T5-based and QuReTeC-based query rewrites. Nevertheless, on CAsT-20, even with warm-up, supervised methods do not have a clear advantage. We think it is because all supervised QPP methods need to be fed with queries and the difficulty of query understanding on CAsT-20 limits their performance. Conversely, the prediction of score-based unsupervised QPP methods does not depend on the input queries. The performance of qppBERT-PL drops after warming up on OR-QuAC in most cases. We speculate that this is because qppBERT-PL predicts the number of relevant documents in each chunk of a ranked list, and the number of relevant documents for each query in CAsT is significantly larger than in OR-QuAC, respectively. Therefore, qppBERT-PL's prediction of the relevant document count is biased towards the number of relevant documents in OR-QuAC.

Second, in most cases, point-wise supervised QPP methods such as NQA-QPP and BERTQPP outperform the list-wise supervised

<sup>&</sup>lt;sup>5</sup> https://pytorch.org/ <sup>6</sup> https://github.com/huggingface/transformers

Table 3: Outcomes of Experiment E1. Performance of QPP methods on three CS datasets: Pearson's r, Kendall's  $\tau$ , and Spearman's  $\rho$  correlation coefficients with nDCG@3, for estimating the retrieval quality of three query rewriting-based retrieval methods (BM25 fed with T5-based, QuReTeC-based, and human-written query rewrites). *Warm-up* means the QPP method is first pre-trained on the training set of OR-QuAC for one epoch. All coefficients are statistically significant (t-test, p < 0.05) except the ones in *italics*. The best value in each column is marked in bold, and the second best is underlined.

|          |                      | T5+BM25   |        |        | QuF          | ReTeC+B      | M25          | Human+BM25 |        |        |  |
|----------|----------------------|-----------|--------|--------|--------------|--------------|--------------|------------|--------|--------|--|
| Datasets | QPP methods          | P- $\rho$ | Κ-τ    | S-ρ    | P- $\rho$    | Κ-τ          | S-ρ          | P- $\rho$  | Κ-τ    | S-ρ    |  |
|          | Clarity              | 0.321     | 0.234  | 0.330  | 0.327        | 0.211        | 0.304        | 0.359      | 0.231  | 0.335  |  |
|          | WIG                  | 0.436     | 0.232  | 0.452  | 0.354        | 0.250        | 0.356        | 0.409      | 0.293  | 0.414  |  |
|          | NQC                  | 0.348     | 0.246  | 0.354  | 0.286        | 0.190        | 0.275        | 0.334      | 0.234  | 0.335  |  |
|          | $\sigma_{max}$       | 0.442     | 0.354  | 0.501  | 0.351        | 0.251        | 0.357        | 0.410      | 0.312  | 0.441  |  |
|          | $n(\sigma_{\chi\%})$ | 0.430     | 0.332  | 0.466  | 0.348        | 0.259        | 0.364        | 0.407      | 0.307  | 0.430  |  |
| CAsT-19  | SMV                  | 0.344     | 0.250  | 0.360  | 0.289        | 0.188        | 0.273        | 0.326      | 0.230  | 0.333  |  |
| CASI-19  | NQA-QPP              | 0.188     | 0.047  | 0.072  | -0.016       | 0.010        | 0.014        | 0.152      | 0.069  | 0.099  |  |
|          | BERTQPP              | 0.440     | 0.307  | 0.424  | 0.352        | 0.272        | 0.395        | 0.270      | 0.188  | 0.271  |  |
|          | qppBERT-PL           | 0.414     | 0.296  | 0.421  | 0.392        | 0.298        | 0.406        | 0.292      | 0.196  | 0.280  |  |
|          | NQA-QPP (warm-up)    | 0.538     | 0.357  | 0.510  | 0.420        | 0.301        | 0.428        | 0.331      | 0.230  | 0.336  |  |
|          | BERTQPP (warm-up)    | 0.526     | 0.357  | 0.503  | 0.369        | 0.264        | 0.384        | 0.418      | 0.282  | 0.411  |  |
|          | qppBERT-PL (warm-up) | 0.317     | 0.218  | 0.313  | 0.330        | 0.232        | 0.326        | 0.297      | 0.190  | 0.277  |  |
|          | Clarity              | 0.258     | 0.191  | 0.259  | 0.099        | 0.061        | 0.085        | 0.127      | 0.089  | 0.121  |  |
|          | WIG                  | 0.248     | 0.251  | 0.339  | 0.245        | 0.163        | 0.222        | 0.307      | 0.222  | 0.317  |  |
|          | NQC                  | 0.150     | 0.235  | 0.316  | 0.198        | 0.189        | 0.259        | 0.286      | 0.266  | 0.370  |  |
|          | $\sigma_{max}$       | 0.179     | 0.221  | 0.304  | 0.207        | 0.168        | 0.230        | 0.241      | 0.199  | 0.283  |  |
|          | $n(\sigma_{\chi\%})$ | 0.178     | 0.225  | 0.304  | 0.182        | 0.133        | 0.181        | 0.213      | 0.167  | 0.237  |  |
| CAsT-20  | SMV                  | 0.139     | 0.219  | 0.298  | 0.189        | 0.163        | 0.227        | 0.264      | 0.260  | 0.363  |  |
| CA\$1-20 | NQA-QPP              | 0.001     | 0.067  | 0.093  | -0.064       | -0.082       | -0.111       | 0.086      | -0.011 | -0.012 |  |
|          | BERTQPP              | 0.042     | -0.009 | -0.007 | 0.172        | 0.145        | 0.196        | 0.194      | 0.110  | 0.159  |  |
|          | qppBERT-PL           | 0.131     | 0.125  | 0.159  | 0.175        | 0.150        | 0.185        | 0.043      | 0.015  | 0.021  |  |
|          | NQA-QPP (warm-up)    | 0.274     | 0.170  | 0.227  | 0.190        | 0.149        | 0.201        | 0.231      | 0.155  | 0.222  |  |
|          | BERTQPP (warm-up)    | 0.207     | 0.171  | 0.236  | 0.403        | 0.301        | 0.409        | 0.336      | 0.227  | 0.318  |  |
|          | qppBERT-PL (warm-up) | 0.228     | 0.213  | 0.275  | <u>0.317</u> | <u>0.268</u> | <u>0.335</u> | 0.094      | 0.095  | 0.130  |  |
|          | Clarity              | 0.090     | 0.085  | 0.110  | 0.110        | 0.103        | 0.133        | 0.076      | 0.069  | 0.091  |  |
|          | WIG                  | 0.247     | 0.235  | 0.304  | 0.290        | 0.270        | 0.350        | 0.257      | 0.241  | 0.316  |  |
|          | NQC                  | 0.251     | 0.274  | 0.355  | 0.290        | 0.311        | 0.404        | 0.276      | 0.291  | 0.381  |  |
|          | $\sigma_{max}$       | 0.317     | 0.279  | 0.359  | 0.367        | 0.316        | 0.406        | 0.412      | 0.367  | 0.474  |  |
| OR-QuAC  | $n(\sigma_{x\%})$    | 0.181     | 0.172  | 0.223  | 0.229        | 0.209        | 0.270        | 0.245      | 0.193  | 0.252  |  |
|          | SMV                  | 0.204     | 0.239  | 0.310  | 0.239        | 0.273        | 0.355        | 0.194      | 0.232  | 0.304  |  |
|          | NQA-QPP              | 0.781     | 0.566  | 0.695  | 0.792        | 0.591        | 0.725        | 0.809      | 0.621  | 0.767  |  |
|          | BERTQPP              | 0.678     | 0.434  | 0.546  | 0.692        | 0.476        | 0.598        | 0.725      | 0.527  | 0.666  |  |
|          | qppBERT-PL           | 0.594     | 0.507  | 0.576  | 0.617        | 0.526        | 0.597        | 0.618      | 0.525  | 0.600  |  |

method qppBERT-PL. With five-fold cross-validation, qppBERT-PL has a slight advantage over its point-wise counterparts. E.g., qppBERT-PL achieves a better performance in predicting the performance of QuReTeC+BM25, Human+BM25 on CAsT-19, and T5+BM25, QuReTeC+BM25 on CAsT-20. qppBERT-PL's list-wise training scheme learns from interactions between a query and all documents in a ranked list, providing the model with more training signals and better use of limited training data.

4.1.2 Turn-wise QPP effectiveness. We study the QPP effectiveness on each turn of conversation on CAsT-19; we report the turnwise effectiveness of 2 unsupervised (WIG, NQC) and 2 supervised QPP methods (NQA-QPP with warm-up, BERT-QPP with warm-up, qppBERT-PL) when they assess BM25 with T5-based and humanwritten query rewrites. The results are presented in the two leftmost subfigures in Figure 1. Note that we also introduce the turn-wise actual retrieval quality in terms of nDCG@3 in Figure 1. As indicated in both subfigures, there is a correlation between actual retrieval quality and QPP effectiveness: BERT-QPP effectiveness drops as the actual retrieval quality drops; in contrast, the score-based method WIG is not that sensitive to the actual retrieval quality.

#### 4.2 Assessing conversational dense retrieval

4.2.1 Overall performance. To answer (RQ2), we examine the results of E2. We apply QPP methods (fed with different types of query rewrites) to estimate the retrieval quality of the conversational dense retrieval method ConvDR. See Table 4. Note that the results of NQC,  $\sigma_{max}$  and SMV are invariant to different types of

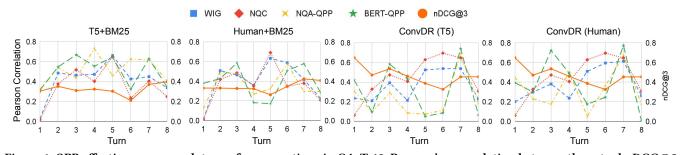



Figure 1: QPP effectiveness on each turn of conversations in CAsT-19. Pearson's *r* correlation between the actual nDCG@3 scores of the queries with the same turn number and their estimated retrieval quality is calculated per turn.

query rewrites because they only depend on retrieval scores; Clarity is also invariant to query rewrites because we use the Clarity variant [48] that uses retrieval scores (from ConvDR in our setting) to weight documents when constructing a relevance model [31]; see Section 3.3 for more details. We have three main observations.

First, retrieval score-based QPP methods NQC and WIG show high effectiveness in estimating the retrieval quality of the conversational dense retrieval method ConvDR, achieving the best performance in most cases on CAsT-19 and CAsT-20. Compared to Table 3, the performance of NQC and WIG is even better than their effectiveness in assessing BM25. It contradicts the previous findings [15, 23]: Datta et al. [15] found that the retrieval scores from neural-based retrievers, such as ColBERT [28], are restricted within a shorter range compared to lexical-based retrievers, which may limit the performance of score-based unsupervised QPP methods. We speculate that there are two reasons. First, the effectiveness of score-based QPP methods depends on the retrieval score distribution of a specific retriever. Figure 2 illustrates the retrieval score distributions of ConvDR and BM25 with three rewrites on the three datasets given all queries in the three datasets. The retrieval score distribution of ConvDR displays a higher variance. A higher standard deviation indicates that the score ranges vary more, and so the top-ranked documents are more distinguishable from the rest. Thus, ConvDR has a higher potential to be predicted more accurately using score-based QPP methods. Second, as discussed in Section 4.1.1, score-based QPP methods do not depend on the input queries and are not impacted by the query understanding challenge in CS. Thus, score-based QPP methods show more effectiveness when assessing ConvDR compared to other supervised methods.

Second, similar to our results for (RQ1), supervised QPP methods distinctly outperform all unsupervised QPP methods on the OR-QuAC dataset where a large amount of training data is available. NQA-QPP remains the state-of-the-art method on OR-QuAC.

Third, as with the results for (**RQ1**), point-wise supervised QPP methods outperform the list-wise supervised method qppBERT-PL in most cases (on CAsT-20 and OR-QuAC). However, on CAsT-19, qppBERT-PL trained using five-fold cross-validation outperforms its point-wise counterparts warming up from OR-QuAC, showing its potential in a few-shot setting.

4.2.2 *Turn-wise QPP effectiveness.* Similar to Section 4.1.2, here we report the turn-wise effectiveness of the same 4 QPP methods when they are fed with T5-based and human-written query rewrites to assess ConvDR. See the two rightmost subfigures in Figure 1. As we can see, the actual retrieval quality drops at turn 6 obviously;

the effectiveness of the two supervised QPP methods drops at turn 6 sharply. Conversely, the effectiveness of WIG and NQC increases at turn 6. It shows that score-based QPP methods are less sensitive to the actual retrieval quality when assessing the conversational dense retrieval method, ConvDR.

## 4.3 Top ranks vs. deeper ranked lists

To answer (**RQ3**), we report the results of **E3** in Table 5, i.e., QPP results in terms of nDCG@3, nDCG@100, and Recall@100. We have three main observations.

First, all QPP methods generally perform better when predicting the retrieval quality for deeper-ranked lists. The estimated performance by various QPP methods achieves a higher correlation with the actual nDCG@100/Recall@100 values in comparison with the nDCG@3 values, which is in line with [59], that found predicting NDCG@20 to be harder than AP@1000.

Second, unsupervised QPP methods get a higher correlation with nDCG@100 and Recall@100 on CAsT-19 and CAsT-20, showing high effectiveness in estimating the retrieval quality of deeper ranked lists. As seen in previous experiments, supervised QPP methods still keep the lead on OR-QuAC.

Third, in some cases, list-wise supervised QPP methods outperform than their point-wise counterparts when estimating the retrieval quality in terms of deeper ranked lists. E.g., qppBERT-PL without warm-up outperforms other point-wise methods (NQA-QPP and BERTQPP with warm-up) on CAsT-19 when predicting the performance of ConvDR in terms of nDCG@100 and Recall@100. Also, qppBERT-PL achieves the best performance when predicting the performance of ConvDR in terms of Recall@100 on OR-QuAC. The gains indicate that modeling a list of retrieved items has the potential of benefiting the retrieval quality estimation for deeperranked lists.

## 5 RELATED WORK

**Query performance prediction.** The QPP task is to estimate the retrieval quality of a search system in response to a user query without relevance judgments [6, 26]. QPP methods have shown a high correlation with the retrieval quality in the context of adhoc retrieval. They can help to obtain better-performing retrieval pipelines in different ways, including query routing [46]. For example, identifying poor-performing queries in practice has shown to be helpful with intelligent assistants [5]. QPP methods can be used to identify user interactions with an intelligent assistant for which the system may not have a reasonable answer [45]. In such cases, the

Table 4: Outcomes of Experiment E2. Performance of QPP methods on three CS datasets: Pearson's r, Kendall's  $\tau$ , and Spearman's  $\rho$  correlation coefficients with nDCG@3, for estimating the retrieval quality of ConvDR (fed with T5-based, QuReTeC-based, and human-written query rewrites). All coefficients are statistically significant (t-test, p < 0.05) except the ones in *italics*. The best value in each column is marked in bold, and the second best is underlined.

| 0.000 11 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T5 QuReTeC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Datasets QPP methods |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Κ-τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S-ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ρ-ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Κ-τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S-ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ρ-ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Κ-τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S-ρ                                                     |  |  |
| Clarity              | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.257                                                   |  |  |
| WIG                  | 0.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.408                                                   |  |  |
| NQC                  | 0.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.438                                                   |  |  |
| $\sigma_{max}$       | 0.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.381                                                   |  |  |
| $n(\sigma_{\chi\%})$ | 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.288                                                   |  |  |
| CAsT-19 SMV          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.405                                                   |  |  |
| NQA-QPP              | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.153                                                   |  |  |
| BERTQPP              | 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.296                                                   |  |  |
| qppBERT-PL           | 0.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.255                                                   |  |  |
| NQA-QPP (warm-up)    | 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.282                                                   |  |  |
| BERTQPP (warm-up)    | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.361                                                   |  |  |
| qppBERT-PL (warm-up) | 0.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.154                                                   |  |  |
| Clarity              | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.127                                                   |  |  |
| WIG                  | 0.377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.368                                                   |  |  |
| NQC                  | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.360                                                   |  |  |
| $\sigma_{max}$       | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.310                                                   |  |  |
| $n(\sigma_{\chi\%})$ | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.220                                                   |  |  |
| SMV                  | 0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.299                                                   |  |  |
| NQA-QPP              | -0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.032                                                   |  |  |
| BERTQPP              | 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.395                                                   |  |  |
| qppBERT-PL           | 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.232                                                   |  |  |
| NQA-QPP (warm-up)    | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.375                                                   |  |  |
| BERTQPP (warm-up)    | 0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.346                                                   |  |  |
| qppBERT-PL (warm-up) | 0.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>0.268</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.376                                                   |  |  |
| Clarity              | -0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.038                                                  |  |  |
|                      | 0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.149                                                   |  |  |
| NQC                  | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.221                                                   |  |  |
| $\sigma_{max}$       | 0.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.443                                                   |  |  |
| $n(\sigma_{x\%})$    | -0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                    |  |  |
| SMV                  | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.106                                                   |  |  |
| NQA-QPP              | 0.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.601                                                   |  |  |
|                      | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.529                                                   |  |  |
| qppBERT-PL           | 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.349                                                   |  |  |
| CAsT-19              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAsT-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OR-QuAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |  |  |
|                      | 1.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |  |  |
|                      | 0.8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Human                                                   |  |  |
|                      | WIG<br>NQC<br>$\sigma_{max}$<br>$n(\sigma_{x\%})$<br>SMV<br>NQA-QPP<br>BERTQPP<br>qppBERT-PL<br>NQA-QPP (warm-up)<br>gppBERT-PL (warm-up)<br>qpBERT-PL (warm-up)<br>Clarity<br>WIG<br>NQC<br>$\sigma_{max}$<br>$n(\sigma_{x\%})$<br>SMV<br>NQA-QPP<br>BERTQPP<br>qppBERT-PL<br>NQA-QPP (warm-up)<br>gpBERT-PL<br>NQA-QPP (warm-up)<br>gpBERT-PL (warm-up)<br>GRTQPP (warm-up)<br>GRTQPP (warm-up)<br>gpBERT-PL (warm-up)<br>gpBERT-PL (warm-up)<br>gpBERT-PL (warm-up)<br>gpBERT-PL (warm-up)<br>gpBERT-PL (warm-up)<br>Granx<br>$n(\sigma_{x\%})$<br>SMV<br>NQA-QPP<br>BERTQPP<br>gpBERT-PL (warm-up)<br>Granx<br>$n(\sigma_{x\%})$<br>SMV | WIG0.387NQC0.431 $\sigma_{max}$ 0.378 $n(\sigma_{x\%})$ 0.187SMV0.386NQA-QPP0.121BERTQPP0.167qppBERT-PL0.344NQA-QPP (warm-up)0.187BERTQPP (warm-up)0.282qppBERT-PL (warm-up)0.212Clarity0.212Clarity0.226MVG0.377NQC0.339 $\sigma_{max}$ 0.282 $n(\sigma_{x\%})$ 0.199SMV0.275NQA-QPP-0.037BERTQPP (warm-up)0.223qppBERT-PL0.185NQA-QPP (warm-up)0.213gpBERT-PL (warm-up)0.213GpBERT-PL (warm-up)0.213QPBERT-PL (warm-up)0.213SMV0.0277 $\sigma_{max}$ 0.442 $n(\sigma_{x\%})$ -0.032SMV0.098NQA-QPP0.615BERTQPP0.481qpbERT-PL0.391Larity0.032SMV0.098NQA-QPP0.615BERTQPP0.481qpbBERT-PL0.391Larity0.481qpbBERT-PL0.391Larity0.391Larity0.391SMV0.098NQA-QPP0.615BERTQPP0.481qpbBERT-PL0.391Larity0.391Larity0.391Larity0.391Larity0.391Larity0.391L | WIG0.3870.274NQC0.4310.307 $\sigma_{max}$ 0.3780.267 $n(\sigma_{x\%})$ 0.1870.175SMV0.3860.285NQA-QPP0.1210.075BERTQPP0.1670.107qppBERT-PL0.3440.225NQA-QPP (warm-up)0.1870.128BERTQPP (warm-up)0.2820.187qppBERT-PL (warm-up)0.2120.151Clarity0.1260.088WIG0.3770.277NQC0.3390.261 $\sigma_{max}$ 0.2820.219 $n(\sigma_{x\%})$ 0.1990.168SMV0.2750.216NQA-QPP-0.037-0.037BERTQPP0.2230.157qppBERT-PL0.1850.144NQA-QPP (warm-up)0.3150.218BERTQPP (warm-up)0.2530.183qppBERT-PL (warm-up)0.2230.164Clarity-0.050-0.029WIG0.1370.107NQC0.2270.163 $\sigma_{max}$ 0.4420.339 $n(\sigma_{x\%})$ -0.032-0.003SMV0.0980.076NQA-QPP0.6150.479BERTQPP0.4810.417qpbBERT-PL0.3910.250CAsT-19 $10^{4}$ 0.391 $0.250$ 0.2910.251 $0.481$ 0.417qpbBERT-PL0.3910.250 | WIG $0.387$ $0.274$ $0.395$ NQC $0.431$ $0.307$ $0.438$ $\sigma_{max}$ $0.378$ $0.267$ $0.381$ $n(\sigma_{x\%})$ $0.187$ $0.175$ $0.262$ SMV $0.386$ $0.285$ $0.405$ NQA-QPP $0.121$ $0.075$ $0.115$ BERTQPP $0.167$ $0.107$ $0.169$ qppBERT-PL $0.344$ $0.225$ $0.324$ NQA-QPP (warm-up) $0.187$ $0.128$ $0.186$ BERTQPP (warm-up) $0.282$ $0.187$ $0.277$ qpBERT-PL (warm-up) $0.212$ $0.151$ $0.213$ Clarity $0.126$ $0.088$ $0.127$ WIG $0.377$ $0.277$ $0.386$ NQC $0.339$ $0.261$ $0.360$ $\sigma_{max}$ $0.282$ $0.219$ $0.310$ $n(\sigma_{x\%})$ $0.199$ $0.168$ $0.236$ SMV $0.275$ $0.216$ $0.299$ NQA-QPP $-0.037$ $-0.037$ $-0.058$ BERTQPP $0.223$ $0.157$ $0.226$ qppBERT-PL $0.185$ $0.144$ $0.191$ NQA-QPP (warm-up) $0.315$ $0.218$ $0.313$ BERTQPP (warm-up) $0.253$ $0.183$ $0.257$ qpBERT-PL (warm-up) $0.218$ $0.164$ $0.221$ Clarity $-0.050$ $-0.029$ $-0.038$ WIG $0.137$ $0.107$ $0.145$ NQC $0.227$ $0.615$ $0.241$ Mug $0.98$ $0.76$ $0.106$ NQA-QPP< | WIG0.3870.2740.3950.388NQC0.4310.3070.4380.431 $\sigma_{max}$ 0.3780.2670.3810.378n( $\sigma_{x\%}$ )0.1870.1750.2620.181SMV0.3860.2850.4050.386NQA-QPP0.1210.0750.1150.118BERTQPP0.1610.0770.1690.220qppBERT-PL0.3440.2250.3240.316NQA-QPP (warm-up)0.1870.1280.1860.161BERTQPP (warm-up)0.1260.0880.1270.234qppBERT-PL (warm-up)0.2120.1510.2130.167Clarity0.1260.0390.2610.3600.339 $\sigma_{max}$ 0.2820.2190.3100.282n( $\sigma_{x\%}$ )0.1990.1680.2360.197SMV0.2750.2160.2990.275NQA-QPP (warm-up)0.1550.1440.1910.292NQA-QPP (warm-up)0.3150.1830.240BERTQPP (warm-up)0.2180.1640.2270.130NQA-QPP (warm-up)0.2180.1640.2270.140Clarity-0.050-0.029-0.038-0.050NQA-QPP (warm-up)0.2180.1640.2270.140BERTQPP (warm-up)0.2150.1440.2270.140Clarity-0.050-0.029-0.038-0.051MQC0.2270.1630.2210.227 </td <td>WIG0.3870.2740.3950.3880.266NQC0.4310.3070.4380.4310.307<math>\sigma_{max}</math>0.3780.2670.3810.3780.267<math>n(\sigma_{x\pi})</math>0.1870.1750.2620.1810.170SMV0.3860.2850.4050.3180.275NQA-QPP0.1210.0750.1150.180.175gpBERT-PL0.3440.2250.3240.3160.197NQA-QPP (warm-up)0.1870.1280.1860.1610.107BERTQPP (warm-up)0.2220.1510.2130.1670.117qpBERT-PL (warm-up)0.2120.1510.2130.1670.117Qrafty0.1260.0880.1270.2610.3890.261<math>\sigma_{max}</math>0.2820.2190.3100.2820.219<math>n(\sigma_{x\pi})</math>0.1990.1680.2360.1970.166NQC0.3390.2610.3060.3390.261<math>\sigma_{max}</math>0.2820.2190.3100.2820.219<math>n(\sigma_{x\pi})</math>0.1990.1680.2660.1970.166NQA-QPP0.3770.2340.1570.2660.466MQC0.3790.2610.3390.2610.3390.261<math>\sigma_{max}</math>0.2820.2190.3100.2820.219<math>n(\sigma_{x\pi})</math>0.1970.1680.2660.1970.166NQA-QPP0.1350.1440.1910.292<!--</td--><td>WIG0.3870.2370.3950.3880.2660.381NQC0.4310.3070.4380.4310.3070.438<math>\sigma_{max}</math>0.3780.2670.3810.3780.2670.381<math>n(\sigma_{x\%})</math>0.1870.1750.2620.1810.1700.255NQA-QPP0.1210.0750.1150.1180.0730.109BERTQPP0.1670.1070.1690.2200.1450.217qpBERT-PL0.3440.2250.3240.1610.1070.157NQA-QPP (warm-up)0.1870.1780.2770.2340.1570.233qpBERT-PL (warm-up)0.2820.1870.2770.2340.1570.233qpBERT-PL (warm-up)0.2120.1510.2130.1670.1170.170Clarity0.1260.0880.1270.1260.0880.1270.2630.373NQC0.3390.2610.3600.3390.2610.3600.3390.2610.360<math>n(\sigma_{x\%})</math>0.1990.1680.2160.1970.1560.224SMV0.2750.2160.1970.1560.224SMV0.2750.2160.3600.3390.2610.3600.3390.2610.360<math>n(\sigma_{x\%})</math>0.1990.1680.2260.2160.1160.2240.310NQA-QPP0.0310.2260.2160.1260.2240.3100.2230.31NQA-QPP</td><td>WIG0.3870.3870.3740.3970.3880.2660.3810.412NQC0.4310.3070.4380.4310.3070.4380.431<math>\sigma_{max}</math>0.1870.1670.12620.1810.1700.2650.216SMV0.3860.2850.4050.3860.2850.4050.386NQA-QPP0.1210.0750.1150.1180.0730.1070.284gpBERT-PL0.3440.2250.3240.3160.1970.2840.276NQA-QPP (warm-up)0.1870.1280.1860.1610.1070.1750.284gpBERT-PL0.3440.2250.3240.1670.1770.2840.276NQA-QPP (warm-up)0.2120.1780.1260.1870.1270.126gpBERT-PL0.3440.2250.3860.3770.2630.3730.384NQC0.3390.2610.3600.3390.2610.3600.339gmax0.2820.2170.1260.3860.3390.2610.3600.339gmax0.2950.2160.2990.2750.2160.2990.275NQA-QPP0.3150.1480.2120.1610.1640.2120.310gmax0.1990.1680.3390.2610.3600.3390.2610.363gmax0.2920.1630.2240.2010.1630.2240.201NQA-QPP0.2330.</td><td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td></td> | WIG0.3870.2740.3950.3880.266NQC0.4310.3070.4380.4310.307 $\sigma_{max}$ 0.3780.2670.3810.3780.267 $n(\sigma_{x\pi})$ 0.1870.1750.2620.1810.170SMV0.3860.2850.4050.3180.275NQA-QPP0.1210.0750.1150.180.175gpBERT-PL0.3440.2250.3240.3160.197NQA-QPP (warm-up)0.1870.1280.1860.1610.107BERTQPP (warm-up)0.2220.1510.2130.1670.117qpBERT-PL (warm-up)0.2120.1510.2130.1670.117Qrafty0.1260.0880.1270.2610.3890.261 $\sigma_{max}$ 0.2820.2190.3100.2820.219 $n(\sigma_{x\pi})$ 0.1990.1680.2360.1970.166NQC0.3390.2610.3060.3390.261 $\sigma_{max}$ 0.2820.2190.3100.2820.219 $n(\sigma_{x\pi})$ 0.1990.1680.2660.1970.166NQA-QPP0.3770.2340.1570.2660.466MQC0.3790.2610.3390.2610.3390.261 $\sigma_{max}$ 0.2820.2190.3100.2820.219 $n(\sigma_{x\pi})$ 0.1970.1680.2660.1970.166NQA-QPP0.1350.1440.1910.292 </td <td>WIG0.3870.2370.3950.3880.2660.381NQC0.4310.3070.4380.4310.3070.438<math>\sigma_{max}</math>0.3780.2670.3810.3780.2670.381<math>n(\sigma_{x\%})</math>0.1870.1750.2620.1810.1700.255NQA-QPP0.1210.0750.1150.1180.0730.109BERTQPP0.1670.1070.1690.2200.1450.217qpBERT-PL0.3440.2250.3240.1610.1070.157NQA-QPP (warm-up)0.1870.1780.2770.2340.1570.233qpBERT-PL (warm-up)0.2820.1870.2770.2340.1570.233qpBERT-PL (warm-up)0.2120.1510.2130.1670.1170.170Clarity0.1260.0880.1270.1260.0880.1270.2630.373NQC0.3390.2610.3600.3390.2610.3600.3390.2610.360<math>n(\sigma_{x\%})</math>0.1990.1680.2160.1970.1560.224SMV0.2750.2160.1970.1560.224SMV0.2750.2160.3600.3390.2610.3600.3390.2610.360<math>n(\sigma_{x\%})</math>0.1990.1680.2260.2160.1160.2240.310NQA-QPP0.0310.2260.2160.1260.2240.3100.2230.31NQA-QPP</td> <td>WIG0.3870.3870.3740.3970.3880.2660.3810.412NQC0.4310.3070.4380.4310.3070.4380.431<math>\sigma_{max}</math>0.1870.1670.12620.1810.1700.2650.216SMV0.3860.2850.4050.3860.2850.4050.386NQA-QPP0.1210.0750.1150.1180.0730.1070.284gpBERT-PL0.3440.2250.3240.3160.1970.2840.276NQA-QPP (warm-up)0.1870.1280.1860.1610.1070.1750.284gpBERT-PL0.3440.2250.3240.1670.1770.2840.276NQA-QPP (warm-up)0.2120.1780.1260.1870.1270.126gpBERT-PL0.3440.2250.3860.3770.2630.3730.384NQC0.3390.2610.3600.3390.2610.3600.339gmax0.2820.2170.1260.3860.3390.2610.3600.339gmax0.2950.2160.2990.2750.2160.2990.275NQA-QPP0.3150.1480.2120.1610.1640.2120.310gmax0.1990.1680.3390.2610.3600.3390.2610.363gmax0.2920.1630.2240.2010.1630.2240.201NQA-QPP0.2330.</td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> | WIG0.3870.2370.3950.3880.2660.381NQC0.4310.3070.4380.4310.3070.438 $\sigma_{max}$ 0.3780.2670.3810.3780.2670.381 $n(\sigma_{x\%})$ 0.1870.1750.2620.1810.1700.255NQA-QPP0.1210.0750.1150.1180.0730.109BERTQPP0.1670.1070.1690.2200.1450.217qpBERT-PL0.3440.2250.3240.1610.1070.157NQA-QPP (warm-up)0.1870.1780.2770.2340.1570.233qpBERT-PL (warm-up)0.2820.1870.2770.2340.1570.233qpBERT-PL (warm-up)0.2120.1510.2130.1670.1170.170Clarity0.1260.0880.1270.1260.0880.1270.2630.373NQC0.3390.2610.3600.3390.2610.3600.3390.2610.360 $n(\sigma_{x\%})$ 0.1990.1680.2160.1970.1560.224SMV0.2750.2160.1970.1560.224SMV0.2750.2160.3600.3390.2610.3600.3390.2610.360 $n(\sigma_{x\%})$ 0.1990.1680.2260.2160.1160.2240.310NQA-QPP0.0310.2260.2160.1260.2240.3100.2230.31NQA-QPP | WIG0.3870.3870.3740.3970.3880.2660.3810.412NQC0.4310.3070.4380.4310.3070.4380.431 $\sigma_{max}$ 0.1870.1670.12620.1810.1700.2650.216SMV0.3860.2850.4050.3860.2850.4050.386NQA-QPP0.1210.0750.1150.1180.0730.1070.284gpBERT-PL0.3440.2250.3240.3160.1970.2840.276NQA-QPP (warm-up)0.1870.1280.1860.1610.1070.1750.284gpBERT-PL0.3440.2250.3240.1670.1770.2840.276NQA-QPP (warm-up)0.2120.1780.1260.1870.1270.126gpBERT-PL0.3440.2250.3860.3770.2630.3730.384NQC0.3390.2610.3600.3390.2610.3600.339gmax0.2820.2170.1260.3860.3390.2610.3600.339gmax0.2950.2160.2990.2750.2160.2990.275NQA-QPP0.3150.1480.2120.1610.1640.2120.310gmax0.1990.1680.3390.2610.3600.3390.2610.363gmax0.2920.1630.2240.2010.1630.2240.201NQA-QPP0.2330. | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |

Figure 2: Distributions of retrieval scores for ConvDR and BM25 with three different rewriters on the three datasets. For the sake of comparison, we normalize the retrieval scores of a retriever for all queries in a dataset by min-max normalization.

assistant may respond with "I do not know the answer to your question" or ask the user to reformulate their question in order to avoid

being unhelpful to the user [5]. Moreover, query difficulty signals have been used to provide direct feedback to users, allowing them

|           |                      |       |                 | T5 +  | BM25         |        |                     | Con    | vDR (QP | P fed wi | th T5 que | ery rewr | ites) |
|-----------|----------------------|-------|-----------------|-------|--------------|--------|---------------------|--------|---------|----------|-----------|----------|-------|
|           |                      | nDC   | nDCG@3 nDCG@100 |       |              | Recall | @100                | nDC    | nDCG@3  |          | nDCG@100  |          | @100  |
|           | QPP methods          | Ρ-ρ   | Κ-τ             | Ρ-ρ   | Κ-τ          | Ρ-ρ    | Κ-τ                 | Ρ-ρ    | Κ-τ     | Ρ-ρ      | Κ-τ       | Ρ-ρ      | Κ-τ   |
|           | Clarity              | 0.321 | 0.234           | 0.326 | 0.257        | 0.214  | 0.187               | 0.257  | 0.176   | 0.342    | 0.227     | 0.335    | 0.216 |
|           | WIG                  | 0.436 | 0.232           | 0.608 | 0.429        | 0.579  | 0.426               | 0.387  | 0.274   | 0.542    | 0.398     | 0.379    | 0.301 |
|           | NQC                  | 0.348 | 0.246           | 0.548 | 0.397        | 0.545  | 0.444               | 0.431  | 0.307   | 0.647    | 0.481     | 0.557    | 0.421 |
| 6         | $\sigma_{max}$       | 0.442 | 0.354           | 0.574 | 0.433        | 0.494  | 0.399               | 0.378  | 0.267   | 0.637    | 0.456     | 0.591    | 0.441 |
| CAsT-19   | $n(\sigma_{X\%})$    | 0.430 | 0.332           | 0.569 | 0.406        | 0.505  | 0.365               | 0.187  | 0.175   | 0.358    | 0.292     | 0.362    | 0.288 |
| As,       | SMV                  | 0.344 | 0.250           | 0.548 | 0.417        | 0.541  | 0.466               | 0.386  | 0.285   | 0.619    | 0.471     | 0.556    | 0.423 |
| C         | NQA-QPP (warm-up)    | 0.538 | 0.357           | 0.542 | 0.392        | 0.537  | 0.377               | 0.187  | 0.128   | 0.401    | 0.275     | 0.364    | 0.263 |
|           | BERTQPP (warm-up)    | 0.526 | 0.357           | 0.532 | 0.391        | 0.463  | 0.325               | 0.282  | 0.187   | 0.378    | 0.249     | 0.261    | 0.194 |
|           | qppBERT-PL (warm-up) | 0.317 | 0.218           | 0.412 | 0.279        | 0.363  | 0.263               | 0.212  | 0.151   | 0.354    | 0.233     | 0.345    | 0.249 |
|           | qppBERT-PL           | 0.414 | 0.296           | 0.509 | 0.358        | 0.452  | 0.312               | 0.344  | 0.225   | 0.461    | 0.310     | 0.455    | 0.327 |
|           | Clarity              | 0.258 | 0.191           | 0.452 | 0.343        | 0.467  | 0.332               | 0.126  | 0.088   | 0.270    | 0.195     | 0.264    | 0.178 |
|           | WIG                  | 0.248 | 0.251           | 0.494 | 0.453        | 0.478  | 0.438               | 0.377  | 0.277   | 0.549    | 0.389     | 0.465    | 0.320 |
|           | NQC                  | 0.150 | 0.235           | 0.363 | 0.399        | 0.320  | 0.380               | 0.339  | 0.261   | 0.544    | 0.404     | 0.463    | 0.357 |
| 0         | $\sigma_{max}$       | 0.179 | 0.221           | 0.339 | 0.372        | 0.339  | 0.382               | 0.282  | 0.219   | 0.496    | 0.364     | 0.440    | 0.328 |
| CAsT-20   | $n(\sigma_{\chi\%})$ | 0.178 | 0.225           | 0.413 | 0.422        | 0.420  | $\underline{0.410}$ | 0.199  | 0.168   | 0.409    | 0.309     | 0.397    | 0.285 |
| As        | SMV                  | 0.139 | 0.219           | 0.362 | 0.400        | 0.333  | 0.387               | 0.275  | 0.216   | 0.503    | 0.380     | 0.454    | 0.352 |
| 0         | NQA-QPP (warm-up)    | 0.274 | 0.170           | 0.471 | 0.362        | 0.466  | 0.370               | 0.315  | 0.218   | 0.310    | 0.237     | 0.324    | 0.223 |
|           | BERTQPP (warm-up)    | 0.207 | 0.171           | 0.404 | 0.301        | 0.364  | 0.246               | 0.253  | 0.183   | 0.349    | 0.242     | 0.221    | 0.133 |
|           | qppBERT-PL (warm-up) | 0.228 | 0.213           | 0.367 | 0.305        | 0.312  | 0.287               | 0.218  | 0.164   | 0.378    | 0.272     | 0.313    | 0.229 |
|           | qppBERT-PL           | 0.131 | 0.125           | 0.310 | 0.251        | 0.363  | 0.275               | 0.185  | 0.144   | 0.301    | 0.217     | 0.263    | 0.196 |
|           | Clarity              | 0.090 | 0.085           | 0.197 | 0.196        | 0.362  | 0.312               | -0.050 | -0.029  | -0.029   | -0.015    | 0.053    | 0.057 |
|           | WIG                  | 0.247 | 0.235           | 0.376 | 0.370        | 0.482  | 0.450               | 0.137  | 0.107   | 0.195    | 0.130     | 0.298    | 0.261 |
| ()        | NQC                  | 0.251 | 0.274           | 0.356 | 0.409        | 0.414  | 0.461               | 0.227  | 0.163   | 0.302    | 0.194     | 0.402    | 0.333 |
| OR-QuAC   | $\sigma_{max}$       | 0.317 | 0.279           | 0.418 | 0.393        | 0.438  | 0.437               | 0.442  | 0.339   | 0.490    | 0.359     | 0.434    | 0.370 |
| ð         | $n(\sigma_{\chi\%})$ | 0.181 | 0.172           | 0.295 | 0.302        | 0.415  | 0.401               | -0.032 | -0.003  | -0.001   | 0.010     | 0.102    | 0.106 |
| <u>OR</u> | SMV                  | 0.204 | 0.239           | 0.311 | 0.383        | 0.396  | 0.456               | 0.098  | 0.076   | 0.170    | 0.109     | 0.313    | 0.277 |
| Ŭ         | NQA-QPP              | 0.781 | 0.566           | 0.783 | 0.602        | 0.603  | 0.486               | 0.615  | 0.479   | 0.644    | 0.475     | 0.446    | 0.323 |
|           | BERTQPP              | 0.678 | 0.434           | 0.767 | 0.551        | 0.589  | 0.484               | 0.481  | 0.417   | 0.595    | 0.453     | 0.447    | 0.313 |
|           | qppBERT-PL           | 0.594 | 0.507           | 0.655 | <u>0.552</u> | 0.451  | 0.440               | 0.391  | 0.250   | 0.449    | 0.277     | 0.455    | 0.383 |

to reformulate queries or seek alternative information sources if the results are expected to be poor. This can be achieved by presenting visual feedback on the predicted performance of a query, in addition to top results. Query refinement [56] and personalization [50] can also benefit from performance prediction methods; QPP methods can be used to estimate the expected utility of different refinement terms and identifying queries that can benefit from personalization, thereby improving users' search experiences [3, 6, 60].

QPP methods can be classified into pre- and post-retrieval methods. Pre-retrieval methods estimate query performance based on the query and corpus statistics before retrieval takes place. Postretrieval methods use additional information from the ranked list to predict query performance after retrieval. Consequently, postretrieval QPP methods have shown superior performance compared to the pre-retrieval metrics when predicting retrieval performance [6]. We focus on the performance of post-retrieval QPP methods. To the best of our knowledge, all the current pre-retrieval QPP methods adopt an unsupervised approach. Post-retrieval QPP methods include both supervised and unsupervised methods.

Traditional query performance prediction methods have mostly relied on an unsupervised approach where query term frequency and corpus statistics are used as indicators for query performance [24–27, 47, 48, 62]. These statistics include measures such as the similarity between the query and the retrieved documents [48], the divergence between the retrieved documents and the corpus [10], and the distribution of the relevance scores obtained for the retrieved documents [9, 62]. More recent approaches use deep learning-based models to train supervised QPP methods. Supervised methods for query performance prediction are more effective than unsupervised approaches in an ad-hoc retrieval setting. However, these supervised methods require a significant amount of data and training instances, such as the MS MARCO dataset [41], in order to perform QPP effectively [4, 16, 23, 59]. Hashemi et al. [23] escaped this limitation by exploring the ability of QPP methods to predict performance when addressing non-factoid question-answering tasks. Studies of the performance of QPP methods in other settings, such as CS, have been limited.

In this reproducibility paper, we contribute an analysis of the effectiveness of QPP methods in predicting the performance of retrieval methods in the context of CS. We do so by providing the results of a comprehensive benchmark of state-of-the-art QPP methods and highlighting the drawbacks and strengths of QPP methods on three different conversational search datasets.

Conversational search. Conversational search (CS) is the task of retrieving relevant passages in response to user queries in a multiturn conversation [13]. A unique challenge in CS is that a user query in a conversation is context-dependent, i.e., it may contain omissions, coreferences, or ambiguities, making it challenging for ad-hoc search methods to capture the underlying information need [44]. Recovering the underlying information need from the conversational history is crucial [34]. To address this challenge, there are two main groups of CS methods, namely, query-rewriting-based retrieval and conversational dense retrieval. Query-rewriting-based retrieval methods first rewrite a query that is part of a conversation into a self-contained query and then feed it to an ad-hoc retriever [33, 36, 51, 53, 54, 57]. Query rewriting can be conducted by either term expansion or sequence generation. The former adds terms from the conversational history to the current query, e.g., by designing rules [36] or training a binary term classifier [51], while the latter directly generates the reformulated queries using pretrained generative language models, e.g., GPT-2 [57] and T5 [33].

Conversational dense retrieval methods train a query encoder to encode the current query and the conversational history into a contextualized query embedding; the contextualized query embedding is expected to implicitly represent the information need of the current query in a latent space [29, 32, 34, 35, 43, 58]. Lin et al. [32] train the query encoder by optimizing a ranking loss over a large number of pseudo-relevance judgments. Yu et al. [58] train the query encoder to mimic the embeddings of human-written queries output by the query encoder of the ad-hoc dense retriever ANCE [55]. Mao et al. [34] train the query encoder to denoise noisy turns in the conversation history by contrastive learning.

Little research has been done into QPP for CS. Arabzadeh et al. [5], Roitman et al. [45] explore QPP in single-turn CS, where they use QPP to help a CS system take the next appropriate action given a user query. Specifically, they use QPP to assess the retrieved answer quality to determine whether the system should return the answer to the user. Al-Thani et al. [1], Lin et al. [33] use QPP to improve the retrieval quality of a CS system. Lin et al. [33] use a QPP method to determine whether the current query should be expanded with keywords from the previous turns. Al-Thani et al. [1] use QPP methods to select the better query rewrite from different ones. Meng et al. [37] investigate the performance of preretrieval QPP methods when they estimate the retrieval quality of BM25 fed with T5-generated query rewrites. Also, Meng et al. [37] propose to incorporate query rewriting quality to improve QPP effectiveness. Additionally, Vlachou and Macdonald [52] explore QPP in the context of conversational fashion recommendation, which differs from CS.

What we add to the studies listed above, is a comprehensive reproducibility study where we reproduce various QPP methods designed for ad-hoc search systems in the setting of multi-turn CS.

## 6 CONCLUSION

In this reproducibility study, we examined whether four key findings for QPP in ad-hoc search hold in CS. We experimented with QPP methods designed for ad-hoc search in three CS settings: (i) predicting the retrieval quality of BM25 while studying the impact of query rewriting; (ii) predicting the retrieval quality of a conversational dense retrieval method, namely ConvDR; and (iii) predicting the retrieval quality for top ranks vs. deeper-ranked lists.

We found that the three findings on QPP for ad-hoc search do not generalize to CS very well. Specifically, we found (i) supervised QPP methods distinctly outperform their unsupervised counterparts only when a large amount of training data is available, while unsupervised QPP methods show strong performance when being in a few-shot setting and predicting the retrieval quality for deeper ranked lists; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; however, list-wise QPP methods are more data-efficient, show a slight advantage in predicting the retrieval quality for deeper ranked lists; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in estimating the retrieval quality of a conversational dense retrieval method, ConvDR, either for top ranks or deeper ranked lists.

Our paper reveals the drawbacks of QPP methods designed for ad-hoc search in the context of CS, motivating the next direction for the modeling of QPP for CS. E.g., we show that the data sparsity problem in CS severely reduces the performance of supervised QPP methods. Thus, designing QPP methods using few-shot learning techniques, e.g., prompt learning, to solve the data sparsity problem in CS is one possible way. Also, we show that the quality of query rewriting and conversation context modeling is of great importance.

We point to two limitations of our study, namely, (i) we only consider estimating the retrieval quality of one conversational dense retrieval method, and (ii) we only use correlation metrics to evaluate the performance of QPP methods. In future work, we plan to (i) consider more conversational dense retrieval methods such as CQE [32] as well as other dense retrieval methods for CS, such as T5-based rewriter+ANCE [55], and (ii) introduce QPP-specific evaluation metrics, such as scaled Absolute Ranking Error (sARE) and scaled Mean Absolute Ranking Error (sMARE) [20, 21].

## ACKNOWLEDGMENTS

We would like to thank our reviewers for their feedback. This research was partially supported by the China Scholarship Council (CSC) under grant number 202106220041, and the Hybrid Intelligence Center, a 10-year program funded by the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research, https://hybrid-intelligence-centre.nl.

All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

## REFERENCES

- [1] Haya Al-Thani, Tamer Elsayed, and Bernard J Jansen. 2022. Improving Conversational Search with Query Reformulation Using Selective Contextual History. Data and Information Management (2022), 100025
- [2] Mohammad Aliannejadi, Manajit Chakraborty, Esteban Andrés Ríssola, and Fabio Crestani. 2020. Harnessing Evolution of Multi-Turn Conversations for Effective Answer Retrieval. In CHIR. 33-42.
- [3] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft. 2019. Asking Clarifying Questions in Open-Domain Information-Seeking Conversations. In SIGIR. 475-484.
- [4] Negar Arabzadeh, Maryam Khodabakhsh, and Ebrahim Bagheri. 2021. BERT-QPP: Contextualized Pre-trained Transformers for Query Performance Prediction. In CIKM. 2857-2861.
- [5] Negar Arabzadeh, Mahsa Seifikar, and Charles LA Clarke. 2022. Unsupervised Question Clarity Prediction Through Retrieved Item Coherency. In CIKM. 3811-
- [6] David Carmel and Elad Yom-Tov. 2010. Estimating the Query Difficulty for Information Retrieval. Synthesis Lectures on Information Concepts, Retrieval, and Services 2, 1 (2010), 1-89.
- [7] Xiaoyang Chen, Ben He, and Le Sun. 2022. Groupwise Query Performance Prediction with Bert. In ECIR. Springer, 64-74.
- [8] Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. 2018. QuAC: Question Answering in Context. In EMNLP. Association for Computational Linguistics, 2174-2184.
- Steve Cronen-Townsend, Yun Zhou, and W Bruce Croft. 2002. Predicting Query [9] Performance. In SIGIR. 299-306.
- [10] Steve Cronen-Townsend, Yun Zhou, and W Bruce Croft. 2006. Precision Prediction Based on Ranked List Coherence. Information Retrieval 9, 6 (2006), 723-755.
- [11] Ronan Cummins, Joemon Jose, and Colm O'Riordan. 2011. Improved Query Performance Prediction Using Standard Deviation. In SIGIR. 1089-1090.
- [12] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2020. CAsT 2020: The Conversational Assistance Track Overview. In Text Retrieval Conference.
- [13] Jeffrey Dalton, Chenyan Xiong, Vaibhav Kumar, and Jamie Callan. 2020. Cast-19: A Dataset for Conversational Information Seeking. In SIGIR. 1985-1988.
- [14] Suchana Datta, Debasis Ganguly, Derek Greene, and Mandar Mitra. 2022. Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Query Performance Prediction. In WSDM, 201-209.
- [15] Suchana Datta, Debasis Ganguly, Mandar Mitra, and Derek Greene. 2022. A Relative Information Gain-based Query Performance Prediction Framework with Generated Ouerv Variants. TOIS (2022).
- [16] Suchana Datta, Sean MacAvaney, Debasis Ganguly, and Derek Greene. 2022. A 'Pointwise-Ouery, Listwise-Document' based Ouery Performance Prediction Approach. In SIGIR. 2148-2153.
- [17] Ahmed Elgohary, Denis Peskov, and Jordan Boyd-Graber. 2019. Can You Unpack That? Learning to Rewrite Questions-in-Context. In EMNLP. 5918–5924.
- [18] Guglielmo Faggioli, Marco Ferrante, Nicola Ferro, Raffaele Perego, and Nicola Tonellotto. 2021. Hierarchical Dependence-aware Evaluation Measures for Conversational Search. In SIGIR. 1935–1939.
- [19] Guglielmo Faggioli, Marco Ferrante, Nicola Ferro, Raffaele Perego, and Nicola Tonellotto. 2022. A Dependency-Aware Utterances Permutation Strategy to Improve Conversational Evaluation. In ECIR. Springer, 184-198.
- [20] Guglielmo Faggioli, Oleg Zendel, J Shane Culpepper, Nicola Ferro, and Falk Scholer. 2021. An Enhanced Evaluation Framework for Query Performance Prediction. In ECIR. Springer, 115-129.
- [21] Guglielmo Faggioli, Oleg Zendel, J Shane Culpepper, Nicola Ferro, and Falk Scholer. 2022. sMARE: A New Paradigm to Evaluate and Understand Query Performance Prediction Methods. Information Retrieval Journal 25, 2 (2022), 94-122.
- [22] Debasis Ganguly, Suchana Datta, Mandar Mitra, and Derek Greene. 2022. An Analysis of Variations in the Effectiveness of Query Performance Prediction. In ECIR. Springer, 215-229.
- Helia Hashemi, Hamed Zamani, and W Bruce Croft. 2019. Performance Prediction [23] for Non-factoid Question Answering. In ICTIR. 55-58.
- [24] Claudia Hauff, Leif Azzopardi, Djoerd Hiemstra, and Franciska de Jong. 2010. Query Performance Prediction: Evaluation Contrasted with Effectiveness. In ECIR. Springer, 204-216.
- [25] Claudia Hauff, Djoerd Hiemstra, and Franciska de Jong. 2008. A Survey of Pre-retrieval Query Performance Predictors. In CIKM. 1419-1420.
- [26] Ben He and Iadh Ounis. 2006. Query Performance Prediction. Information Systems 31, 7 (2006), 585-594.
- [27] Jiyin He, Martha Larson, and Maarten de Rijke. 2008. Using Coherence-based Measures to Predict Query Difficulty. In ECIR. Springer, 689-694.
- [28] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT. In SIGIR. 39-48.
- [29] Sungdong Kim and Gangwoo Kim. 2022. Saving Dense Retriever from Shortcut Dependency in Conversational Search. In *EMNLP*. 10278–10287. Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
- [30] mization. In ICLR.

- [31] Victor Lavrenko and W Bruce Croft. 2001. Relevance-Based Language Models. In SIGIR. 120-127
- [32] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. Contextualized Query Embeddings for Conversational Search. In EMNLP. 1004-1015.
- [33] Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, and Jimmy Lin. 2021. Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting. TOIS 39, 4 (2021), 1-29.
- Kelong Mao, Zhicheng Dou, and Hongjin Qian. 2022. Curriculum Contrastive [34] Context Denoising for Few-shot Conversational Dense Retrieval. In SIGIR. 176-186.
- [35] Kelong Mao, Zhicheng Dou, Hongjin Qian, Fengran Mo, Xiaohua Cheng, and Zhao Cao. 2022. ConvTrans: Transforming Web Search Sessions for Conversational Dense Retrieval. In EMNLP. 2935-2946.
- [36] Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, and Ophir Frieder. 2020. Topic Propagation in Conversational Search. In SIGIR. 2057-2060.
- [37] Chuan Meng, Mohammad Aliannejadi, and Maarten de Rijke. 2023. Performance Prediction for Conversational Search Using Perplexities of Query Rewrites. In OPP++2023. 25-28.
- Chuan Meng, Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, and Maarten de Rijke. 2020. RefNet: A Reference-aware Network for Background Based Conversation. In AAAI.
- Chuan Meng, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tengxiao Xi, and [39] Maarten de Rijke. 2021. Initiative-Aware Self-Supervised Learning for Knowledge-Grounded Conversations. In SIGIR. 522-532.
- [40] Chuan Meng, Pengjie Ren, Zhumin Chen, Weiwei Sun, Zhaochun Ren, Zhaopeng Tu, and Maarten de Rijke. 2020. DukeNet: A Dual Knowledge Interaction Network for Knowledge-Grounded Conversation. In SIGIR. 1151-1160.
- [41] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016. MS MARCO: A Human Generated Machine Reading Comprehension Dataset. In CoCo@NIPS.
- Joaquín Pérez-Iglesias and Lourdes Araujo, 2010, Standard Deviation as a Ouerv [42] Hardness Estimator. In SPIRE. Springer, 207-212.
- [43] Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce Croft, and Mohit Iyyer. 2020. Open-retrieval Conversational Question Answering. In SIGIR. 539-548.
- [44] Filip Radlinski and Nick Craswell. 2017. A Theoretical Framework for Conversational Search. In CHIIR, 117-126
- [45] Haggai Roitman, Shai Erera, and Guy Feigenblat. 2019. A Study of Query Performance Prediction for Answer Quality Determination. In ICTIR. 43-46.
- [46] Surendra Sarnikar, Zhu Zhang, and J Leon Zhao. 2014. Query-performance Prediction for Effective Query Routing in Domain-specific Repositories. Journal of the Association for Information Science and Technology 65, 8 (2014), 1597–1614.
- Anna Shtok, Oren Kurland, and David Carmel. 2010. Using Statistical Decision [47] Theory and Relevance Models for Query-performance Prediction. In SIGIR. 259-266
- [48] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. 2012. Predicting Query Performance by Query-Drift Estimation. TOIS 30, 2 (2012), 1 - 35
- [49] Yongquan Tao and Shengli Wu. 2014. Query Performance Prediction by Considering Score Magnitude and Variance Together. In CIKM. 1891-1894.
- Jaime Teevan, Susan T Dumais, and Daniel J Liebling. 2008. To Personalize or [50] Not to Personalize: Modeling Queries with Variation in User Intent. In SIGIR. 163 - 170
- [51] Svitlana Vakulenko, Nikos Voskarides, Zhucheng Tu, and Shayne Longpre. 2021. A Comparison of Question Rewriting Methods for Conversational Passage Retrieval. In ECIR, 418-424.
- [52] Maria Vlachou and Craig Macdonald. 2022. Performance Predictors for Conversational Fashion Recommendation. In KaRS.
- [53] Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, and Maarten de Rijke. 2020. Query Resolution for Conversational Search with Limited Supervision. In SIGIR, 921-930.
- [54] Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter, and Gaurav Singh Tomar. 2022. CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement Learning. In EMNLP. 10000-10014.
- [55] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. In ICLR.
- Elad Yom-Tov, Shai Fine, David Carmel, and Adam Darlow. 2005. Learning to [56] Estimate Query Difficulty: Including Applications to Missing Content Detection and Distributed Information Retrieval. In SIGIR. 512-519.
- [57] Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul Bennett, Jianfeng Gao, and Zhiyuan Liu. 2020. Few-shot Generative Conversational Query Rewriting. In SIGIR. 1933-1936.
- Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and Zhiyuan Liu. 2021. Few-shot [58] Conversational Dense Retrieval. In SIGIR. 829-838.
- [59] Hamed Zamani, W Bruce Croft, and J Shane Culpepper. 2018. Neural Query Performance Prediction Using Weak Supervision from Multiple Signals. In SIGIR.

Query Performance Prediction: From Ad-hoc to Conversational Search

SIGIR '23, July 23-27, 2023, Taipei, Taiwan

105-114.

- [60] Hamed Zamani, Susan Dumais, Nick Craswell, Paul Bennett, and Gord Lueck.
   2020. Generating Clarifying Questions for Information Retrieval. In WWW. 418-428.
- [61] Hamed Zamani, Johanne R Trippas, Jeff Dalton, and Filip Radlinski. 2022. Con-versational Information Seeking. arXiv preprint arXiv:2201.08808 (2022).
- [62] Yun Zhou and W Bruce Croft. 2007. Query Performance Prediction in Web Search Environments. In *SICIR*, 543–550.
  [63] Jie Zou, Mohammad Aliannejadi, Evangelos Kanoulas, Maria Soledad Pera, and Yiqun Liu. 2022. Users Meet Clarifying Questions: Toward a Better Understanding of User Interactions for Search Clarification. *TOIS* (2022).