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ABSTRACT

Query performance prediction (QPP) is a core task in information
retrieval. The QPP task is to predict the retrieval quality of a search
system for a query without relevance judgments. Research has
shown the effectiveness and usefulness of QPP for ad-hoc search.
Recent years have witnessed considerable progress in conversa-
tional search (CS). Effective QPP could help a CS system to decide
an appropriate action to be taken at the next turn. Despite its po-
tential, QPP for CS has been little studied. We address this research
gap by reproducing and studying the effectiveness of existing QPP
methods in the context of CS. While the task of passage retrieval
remains the same in the two settings, a user query in CS depends
on the conversational history, introducing novel QPP challenges.
In particular, we seek to explore to what extent findings from QPP
methods for ad-hoc search generalize to three CS settings: (i) es-
timating the retrieval quality of different query rewriting-based
retrieval methods, (ii) estimating the retrieval quality of a conver-
sational dense retrieval method, and (iii) estimating the retrieval
quality for top ranks vs. deeper-ranked lists. Our findings can be
summarized as follows: (i) supervised QPP methods distinctly out-
perform unsupervised counterparts only when training data is
ample; (ii) point-wise supervised QPP methods outperform their
list-wise counterparts in most cases; and (iii) retrieval score-based
unsupervised QPP methods show high effectiveness in assessing
the conversational dense retrieval method, ConvDR.
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1 INTRODUCTION

Query performance prediction (QPP) is an essential task in in-

formation retrieval (IR). It is about estimating the retrieval qual-

ity of a search system for a given query without relevance judg-
ments [14, 16, 22, 26, 59, 62]. QPP has been long studied in the

IR community [9]. Numerous benefits of QPP have been identi-

fied, including selecting the most effective ranking algorithm for a

query [26, 27, 59] based on the difficulty of the input query.

In conversational search (CS) there has been significant progress
on multiple subtasks [61], including passage retrieval [13, 58], query
rewriting [53, 57], mixed-initiative interactions [3, 60], response
generation [38-40], and evaluation [18, 19]. Specifically, passage
retrieval has been the main focus of TREC CAsT 2019-2022 [13],
where modeling long conversational context for retrieval is shown
to be challenging [2]. Moreover, research has shown that mixed-
initiative interactions can lead to improved user and system perfor-
mance [3, 63]. As with ad-hoc retrieval, QPP benefits CS in multiple
ways. For instance, effective QPP can help a CS system take appro-
priate action at the next turn, e.g., take the initiative in asking a
clarifying question or saying “I cannot answer your question” to
the user, instead of giving a low-quality or risky answer when the
estimated retrieval quality for the current user query is low [5, 45].

Despite its importance and significance, little research has been
done on QPP for CS [37]. We take the first steps in this direction
by conducting a comprehensive reproducibility study, where we
examine a variety of QPP methods that were originally designed
for ad-hoc retrieval in the setting of CS. We aim to characterize the
novel challenges of QPP for CS and highlight the unique character-
istics of this field, while simultaneously assessing the effectiveness
of existing QPP methods in a conversational setting.

In particular, we highlight three main challenges of QPP applied
to CS that distinguish it from the ad-hoc search setting:

(1) a user query in a conversation depends on the conversational
context, i.e., it may contain omissions, coreferences, or ambigu-
ities, leading to unforeseen QPP challenges;

(2) QPP for CS has to predict the performance of novel retrieval
approaches, approaches that are specifically designed for CS;
two main groups of CS methods have been proposed to solve
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the query understanding challenge in CS, i.e., query-rewriting-
based retrieval [33, 36, 51, 53, 54, 57] and conversational dense
retrieval methods [29, 32, 34, 34, 35, 43, 58].
(3) QPP for CS should focus on estimating the retrieval quality for
the top-ranked results rather than for a full-ranked list because
CS systems need to return brief responses to adapt to limited-
bandwidth interfaces, such as a mobile screen [61].
In this reproducibility paper, we design our experiments inspired by
these CS characteristics and examine whether established findings
on QPP for ad-hoc search still hold under these conditions. Specifi-
cally, we study the following findings from the literature on QPP
for ad-hoc search: (i) supervised QPP methods outperform unsu-
pervised QPP methods [4, 7, 14, 16, 23, 59]; (ii) list-wise supervised
QPP methods outperform their point-wise counterparts [7, 16];
and (iii) retrieval score-based unsupervised QPP methods perform
poorly in estimating the retrieval quality of neural-based retriev-
ers [15, 23]. By examining each of these QPP-for-ad-hoc-search
findings listed above in the setting of CS, we aim to characterize the
problem of QPP applied to CS, with novel findings and directions
for future research as additional outcomes.

In this paper, we conduct experiments on three CS datasets:
(i) CAsT-19 [13], (ii) CAsT-20 [12], and (iii) OR-QuAC [43]. Our ex-
periments show that, in the setting of CS, (i) supervised QPP meth-
ods distinctly outperform unsupervised counterparts only when a
large amount of training data is available; unsupervised QPP meth-
ods show strong performance in a few-shot setting and when pre-
dicting the retrieval quality for deeper ranked lists; (ii) point-wise
supervised QPP methods outperform their list-wise counterparts in
most cases; however, list-wise QPP methods show a slight advan-
tage in a few-shot setting and when predicting the retrieval quality
for deeper ranked lists; and (iii) retrieval score-based unsupervised
QPP methods show high effectiveness in estimating the retrieval
quality of a conversational dense retrieval method, ConvDR, either
for top ranks or deeper ranked lists.

2 PRELIMINARIES AND TASK DEFINITION

We recap the definition of the QPP task in the context of ad-hoc
search. Generally, given a query g, a collection of documents D, an
ad-hoc retrieval method M and the ranked list with top-k ranked
documents Dk'M = [d1,dy, ..., dy] returned by the retriever M over
the collection D with respect to the query ¢, a QPP method f
estimates the retrieval quality of the ranked list DZ; v With respect
to the query g, formally:

¢ = f(q. Dy D) € R, (1)
where ¢ indicates the retrieval quality of the ad-hoc retriever M
in response to the query g; the retrieval quality ¢ can depend on
collection-based statistics.

Next, we define the task of QPP for CS. The CS task is to find
relevant items for each query in a multi-turn conversation Q =
{q:}}_; [13], where n is the number of turns in a conversation.
Unlike traditional ad-hoc search, the query g; at turn t may contain
omissions, coreferences, or ambiguities, making it hard for ad-hoc
search methods to capture the underlying information need of the
query ¢;. Two main groups of CS methods have been proposed to
solve the query understanding challenge in CS, i.e., query rewriting-
based retrieval [33, 36, 51, 53, 57] and conversational dense retrieval
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methods [32, 34, 58]. Query rewriting-based retrieval methods first
rewrite the query ¢; into a self-contained query ¢} with the con-
versational history Q1:r—1 = ¢1,92, - - ., qt—1, and then reuse ad-hoc
search methods using the rewritten query g} as input. When esti-
mating the retrieval quality of this group of CS methods, we define
QPP for CS as:
¢t = (4} Dy pp D) € R, @)

where, given the same query rewrite g}, the ranked list of documents
Dk, 1 Tetrieved by a query rewriting-based retrieval method for
the query rewrite q;, predicts ¢ that is indicative of the retrieval
quality of the method in response to the rewritten query g;.

Conversational dense retrieval methods train a query encoder
to encode the current query g; and the conversation history Q1.,—1
into a contextualized query embedding that is used to represent
the information need of the current query in a latent space [34, 58].
However, existing QPP methods do not have such a special module
to understand the noisy raw utterances Qi.;; directly feeding the
raw utterances Qj.; into QPP methods may fuse them. Thus, when
estimating the retrieval quality of a conversational dense retrieval
method, we still feed a query rewrite g} instead of the raw utterances
Q1.+ into QPP methods, formally:

¢ = f(q;’ng;M’ D) eR, (3)

where Dgl .y is the ranked list retrieved by a conversational dense
HE
retrieval method in response to the raw utterances Qj.;.

3 REPRODUCIBILITY METHODOLOGY

We describe our research questions and the experiments designed
to address them. We also describe our experimental setup.

3.1 Research questions

We address the following research questions:

(RQ1) Does the performance of QPP methods for ad-hoc search
generalize to CS when estimating the retrieval quality of
different query rewriting-based retrieval methods?

(RQ2) Does the performance of QPP methods for ad-hoc search
generalize to CS when estimating the retrieval quality of a
conversational dense retrieval method? Is the QPP effective-
ness influenced by the choice of query rewrites?

(RQ3) What is the performance difference between QPP methods
when predicting the retrieval quality for top-ranked items
vs. for longer-ranked lists?

3.2 Experimental design

Next, we describe the experiments aimed at answering our research
questions. Our main goal is to study the reproducibility of ad-hoc
QPP methods in the CS setting. We compare the performance of
unsupervised and supervised QPP methods on three CS datasets.
Specifically, we conduct the following experiments:

E1 To address (RQ1), we estimate the retrieval quality of BM25
with three query rewriting methods, namely, T5, QuReTeC,
and perfect rewriting (human-rewritten) [13]. Note that QPP
methods and BM25 always share the same query rewrites.

E2 To address (RQ2), we study the performance of QPP methods
for a conversational dense retrieval method, ConvDR [58], on
all three datasets. As ConvDR directly models the raw conver-
sation context, no query rewriting step is required. However,
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no existing QPP methods can model raw conversations. Hence,
we study the effect of feeding different query rewrites into QPP
methods when predicting the performance of ConvDR.

E3 To address (RQ3), we apply the QPP methods on evaluation
metrics at different depths. We utilize nDCG@3 and nDCG@100
and analyze how QPP performance is affected by the ranking
depth. We also consider Recall@100 to study the effectiveness
of QPP for first-stage CS rankers, where high recall is desired.

3.3 Experimental setup

QPP methods. We analyze a variety of unsupervised and super-
vised QPP methods. For unsupervised methods, we consider clarity-
based and score-based QPP methods because they have been widely
used in the literature. We consider more score-based methods since
they have shown great effectiveness [6]. We consider one clarity-
based method:

o Clarity [9] quantifies the degree of ambiguity of a query w.r.t. a
collection of documents. Specifically, it measures the KL diver-
gence between a relevance model [31] induced from top-ranked
documents and a language model induced from the collection:

P(wIDE )

) k _ k I ekt
Clarlty(q,Dq;M,D)—WEE:VP(MDq;M)log P(wiD)

where w and V denote a term and the entire vocabulary of the
collection, respectively. The conjecture is that the larger the KL
divergence is, the better the retrieval quality is.

We consider five score-based QPP methods:

o Weighted information gain (WIG) [62] measures the divergence
of retrieval scores of top-ranked documents from those of the
entire corpus: the higher the divergence is, the better the retrieval
quality is [48, 49, 59]. WIG is formulated as:

k 1 1
WIG(q, Dgps, D) = = > =

dEDk vV |q|
M

where Score(q; d) and Score(q; D) are the retrieval scores of docu-
ment d and the entire collection D, respectively; |q| is ¢’s length.
e Normalized query commitment (NQC) [48] measures the stan-
dard deviation of retrieval scores of top-ranked documents; the
standard deviation is normalized by the retrieval score of the
entire collection D. The higher the standard deviation is, the
better the retrieval quality is assumed to be. NQC is modeled as:
= St DA E 2 (o d % @

K
dqu:M

©

(Score(g; d) — Score(q; D)), (5)

NQC(q, DZ;; wD)

where y is the mean retrieval score of the top-ranked documents.

® Omax [42] is based on the standard deviation of retrieval scores of
ranked documents but finds the most suitable ranked list size k for
each query. The intuition is that most of the retrieved documents
in a ranked list obtain a low retrieval score; considering such
non-relevant documents would hurt QPP effectiveness. omax
computes the standard deviation at each point in the ranked list
and selects the maximum standard deviation so as to reduce the
impact of the documents with a low retrieval score.

® n(oxy) [11] is also based on the standard deviation. Similar to
Omax> N(0x) uses a dynamic number of documents to calculate
the standard deviation for each query, but only considers the doc-
uments whose retrieval scores are at least x% of the top retrieval
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score. The calculated standard deviation is normalized by query
length.

e Score magnitude and variance (SMV) [49] argues that WIG and
NQC mainly consider the magnitude and the variance of retrieval
scores, respectively. SMV takes both aspects into consideration:

1 . Score(q;d)
% ZdEDg;M (Score(q; d)|In ) )

Score(q; D)

where Score(q; d) denotes score magnitude while [In

represents score variance.
Recent studies show that BERT-based supervised QPP methods [4,
7, 16, 23] outperform other neural-based supervised QPP methods,
such as NeuralQPP [59] and Deep-QPP [14]. Thus, we consider
three BERT-based supervised QPP methods:
o NQA-QPP [23] is the first QPP approach that leverages contextu-
alized embeddings of the query and retrieved documents. NQA-
QPP consists of three key components: the retrieval score compo-
nent, the query component, and the query-document component.
All three components are aggregated and fed into a feed-forward
neural network for predicting query performance.
BERT-QPP [4] also leverages contextualized embeddings and
achieves a significant performance improvement over earlier
work. BERT-QPP fine-tunes a contextualized representation of
the queries and the retrieved list of documents, followed by a
linear layer for predicting query performance. We use the cross-
encoder version of BERT-QPP as it outperforms other variants.
gppBERT-PL [16] is also an end-to-end neural cross-encoder-
based approach, trained list-wise over the top-ranked documents
(split into chunks). Specifically, it predicts the number of relevant
documents in each chunk of a ranked list.
We do not include BERT-groupwise-QPP [7] in our experiments.
It is another list-wise supervised QPP method, which uses cross-
query information but it cannot be directly applied in a CS setting,
as it reveals future conversation turns, which is unrealistic.

. ()

Score(q;d) )
M

k
SMV (g, D, D) =

Query rewriting methods. We adopt the following query rewrit-
ing techniques/data in the passage retrieval and QPP process: (i) T5
rewriter! is fine-tuned on CANARD [17] query rewriting dataset;
(if) QuReTeC [53] is a BERT-based term expansion query rewrit-
ing method. We use the checkpoint released by the author;> and
(iif) Human is the human-generated oracle query rewriting model
obtained from the ground-truth data annotations.

CS methods to be evaluated for retrieval quality. We estimate
the retrieval quality of two groups of CS methods: query rewriting-
based retrieval and conversational dense retrieval methods. For
the former, we consider: (i) T5+BM25 rewrites queries using the
T5 rewriter and ranks the passages using BM25°; (ii) QuReTeC
+BM25 [53] performs query resolution using QuReTeC, followed by
BM25 passage ranking; and (iii) Human+BM25 uses the ground-truth
query rewrites to rank passages using BM25. For the latter, we con-
sider ConvDR [58] and use the code released by the author.*
Datasets. We consider three CS datasets: (i) CAsT-19 [13] contains
20 conversations of 9.5 average utterances; (ii) CAsT-20 [12] has 25
conversations of 8.6 average utterances; and (iii) OR-QuAC [43] is
! https://huggingface.co/castorini/t5-base-canard

2 https://github.com/nickvosk/sigir2020-query-resolution 3 We use Pyserini BM25
with the default parameters k1=0.9, b=0.4. % https://github.com/thunlp/ConvDR
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Table 1: Actual retrieval quality of the CS methods used in
this paper in terms of nDCG@3.

CAsT-19 CAsT-20 OR-QuAC

T5-based query rewriter + BM25 0.330 0.170 0.218
QuReTeC-based query rewriter + BM25 0.338 0.172 0.249
Human query rewriter + BM25 0.360 0.257 0.309
ConvDR 0.471 0.343 0.614

a large-scale synthetic conversational retrieval dataset built on a
conversational QA dataset, QUAC [8]; it contains ~5K conversations
with ~40K questions. Table 2 lists details of the datasets.

Evaluation. A common method for evaluating QPP performance
is to assess the correlation between the actual and predicted per-
formance of a query set. Typically, Pearson’s p linear coefficient,
Kendall’s 7, and Spearman p ranking correlation are the most com-
monly used correlation metrics. We report the correlation based on
the major metrics adopted by TREC CAsT [13], namely, nDCG@3
for high ranks and nDCG@100 for deeper ranked lists. As men-
tioned above, we also adopt Recall@100 to investigate the perfor-
mance of QPP when evaluating first-stage CS retrievers.

Implementation details. We implement all QPP methods using
Pytorch.” For unsupervised QPP methods, we use hyperparameters
that have been shown to be effective by previous studies. Follow-
ing [62], k is set to 5 for WIG. As suggested by [48, 49], k is set to
100 for NQC and SMV; following [49], we use the average retrieval
score of the top-1000 documents as the corpus score Score(g; D).
Following [11], we set x to 50 for n(oxs). Omax does not use any
hyperparameters. Following [48], we use the Clarity variant that
uses the sum-normalized retrieval scores (from BM25 or ConvDR
in our setting) for weighing documents when constructing a rele-
vance model [31]; our preliminary experiments showed that this
variant performed better than the original Clarity that uses query-
likelihood scores to weight documents; we induce the relevance
model using the top 100 documents and clip the relevance model
at the top-100 terms cutoff [47].

For all supervised QPP methods, we use bert-base-uncased,®
a fixed learning rate (0.00002), and the Adam optimizer [30]. All
methods are trained and inferred on an NVIDIA RTX A6000 GPU.
Following [34, 58], all training on CAsT-19 or CAsT-20 uses five-
fold cross-validation; we use the data split from [58] and train all
supervised QPP methods for 5 epochs. For training on OR-QuAC,
we train all QPP methods for 1 epoch on the training set of OR-
QuAC; we feed QPP methods with human-rewritten queries and
train them to estimate the retrieval quality of BM25 with human-
rewritten queries. To address the data scarcity on CAsT-19 and
CAsT-20, we consider a warm-up setting where we first pre-train
supervised QPP methods on the training set of OR-QuAC for one
epoch, followed by the five-fold cross-validation training for 5
epochs on CAsT. For future reproducibility, our code and data
resources are available at https://github.com/ChuanMeng/QPP4CS.

4 RESULTS AND DISCUSSIONS

Our experiments revolve around three main findings from the lit-
erature on QPP for ad-hoc search: (i) supervised QPP methods

5 https://pytorch.org/  © https://github.com/huggingface/transformers
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Table 2: Data statistics of CAsT-19, CAsT-20 and OR-QuAC.

CAsT-19 CAsT-20 OR-QuAC
test test train valid test
#conversations 50 25 4383 490 771
#conversations (judged) 20 25 - - -
#questions 479 216 31,526 3,430 5,571
#questions (judged) 173 208 - - -
#documents 38M 11M

outperform unsupervised QPP methods [4, 7, 14, 16, 23, 59]; (ii) list—
wise supervised QPP methods outperform their point-wise coun-
terparts [7, 16]; and (iii) retrieval score-based unsupervised QPP
methods perform poorly in estimating the retrieval quality of neu-
ral-based retrievers [15, 23]. We study whether the findings listed
above continue to hold for QPP methods in CS.

4.1 Assessing query rewriting-based retrieval

4.1.1  Overall performance. To answer (RQ1), we examine the re-
sults of Experiment E1, where we run QPP methods estimating
the retrieval quality of BM25 with three query rewriting meth-
ods (T5+BM25, QuReTeC+BM25, and Human+BM25). For all super-
vised QPP methods on CAsT, we further consider their variants
that are first pre-trained on the training set of OR-QuAC for one
epoch before five-fold cross-validation training on CAsT. See Ta-
ble 3. Note that QPP methods and BM25 always share the same
query rewrites. We have two main observations.

First, when applied to CS, supervised QPP methods only have a
distinct advantage over their unsupervised counterparts when train-
ing data is sufficient and query rewriting/understanding is relatively
easy. Specifically, on OR-QuAC, where training data is ample, all
supervised QPP methods perform better than unsupervised meth-
ods when assessing BM25 with all three query rewriters. NQA-QPP
achieves state-of-art performance on OR-QuAC. On CAsT-19, the
performance of unsupervised QPP methods are comparable to su-
pervised QPP methods using five-fold cross-validation. However,
on CAsT-20, where query rewriting/understanding is much harder,
unsupervised QPP methods perform better than their supervised
counterparts using five-fold cross-validation. Warming up on the
training set of OR-QuAC brings about improvement in supervised
QPP methods in most cases. On CAsT-19, NQA-QPP with warm-up
performs better than all unsupervised methods given T5-based and
QuReTeC-based query rewrites. Nevertheless, on CAsT-20, even
with warm-up, supervised methods do not have a clear advantage.
We think it is because all supervised QPP methods need to be fed
with queries and the difficulty of query understanding on CAsT-20
limits their performance. Conversely, the prediction of score-based
unsupervised QPP methods does not depend on the input queries.
The performance of qppBERT-PL drops after warming up on OR-
QuAC in most cases. We speculate that this is because qppBERT-
PL predicts the number of relevant documents in each chunk of a
ranked list, and the number of relevant documents for each query in
CASsT is significantly larger than in OR-QuAC, respectively. There-
fore, qppBERT-PL’s prediction of the relevant document count is
biased towards the number of relevant documents in OR-QuAC.

Second, in most cases, point-wise supervised QPP methods such
as NQA-QPP and BERTQPP outperform the list-wise supervised
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Table 3: Outcomes of Experiment E1. Performance of QPP methods on three CS datasets: Pearson’s r, Kendall’s 7, and Spearman’s
p correlation coefficients with nDCG@3, for estimating the retrieval quality of three query rewriting-based retrieval methods
(BM25 fed with T5-based, QuReTeC-based, and human-written query rewrites). Warm-up means the QPP method is first
pre-trained on the training set of OR-QuAC for one epoch. All coefficients are statistically significant (t-test, p < 0.05) except

the ones in italics. The best value in each column is marked in bold, and the second best is underlined.

T5+BM25 QuReTeC+BM25 Human+BM25
Datasets QPP methods P-p K-r S-p P-p K-t S-p P-p K-r S-p
Clarity 0.321  0.234 0.330 0.327 0.211 0304 0359 0.231 0.335
WIG 0436 0.232 0452 0354 0.250 0.356 0.409 0.293 0414
NQC 0.348 0.246 0.354 0.286 0.190 0.275 0334 0.234 0.335
Omax 0.442 0354 0501 0351 0.251 0357 0.410 0.312 0.441
n(0y7) 0430 0332 0466 0348 0259 0364 0407 0307 0.430
CAST-19 SMV 0.344 0.250 0.360 0.289 0.188 0.273 0326 0.230 0.333
NQA-QPP 0.188  0.047 0.072 -0.016 0.010 0.014 0.152 0.069 0.099
BERTQPP 0.440 0.307 0424 0352 0.272 0.395 0.270 0.188 0.271
qppBERT-PL 0.414 0.296 0.421 0.392 0.298 0.406 0.292 0.196 0.280
NQA-QPP (warm-up) 0.538 0.357 0.510 0.420 0.301 0.428 0331 0.230 0.336
BERTQPP (warm-up) 0526 0.357 0503 0369 0264 0384 0.418 0282 0411
qppBERT-PL (warm-up)  0.317 0.218 0313 0330 0.232 0326 0.297 0.190 0.277
Clarity 0.258 0.191  0.259 0.099 0.061 0.085 0.127 0.089  0.121
WIG 0.248 0.251 0.339 0.245 0.163 0.222 0.307 0.222 0.317
NQC 0.150 0.235 0.316 0.198 0.189 0.259 0.286 0.266 0.370
Omax 0.179  0.221 0.304 0.207 0.168 0.230 0.241 0.199 0.283
n(oxy) 0.178 0.225 0.304 0.182 0.133 0.181 0.213 0.167 0.237
CAST-20 SMV 0.139 0219 0.298 0.189 0.163 0.227 0.264 0.260 0.363
NQA-QPP 0.001  0.067 0.093 -0.064 -0.082 -0.111 0.086 -0.011 -0.012
BERTQPP 0.042 -0.009 -0.007 0.172 0.145 0.196 0.194 0.110 0.159
qppBERT-PL 0.131  0.125 0.159 0.175 0.150 0.185 0.043 0.015 0.021
NQA-QPP (warm-up) 0.274 0.170  0.227 0.190 0.149 0.201 0.231 0.155 0.222
BERTQPP (warm-up) 0.207 0.171  0.236 0.403 0.301 0.409 0.336 0.227 0.318
qppBERT-PL (warm-up)  0.228  0.213  0.275 0.317 0.268 0.335 0.094 0.095 0.130
Clarity 0.090 0.085 0.110 0.110 0.103 0.133 0.076 0.069 0.091
WIG 0.247 0.235 0.304 0.290 0.270 0350 0.257 0.241 0.316
NQC 0.251 0.274 0.355 0.290 0.311 0.404 0.276 0.291 0.381
Omax 0.317 0.279 0359 0367 0316 0.406 0.412 0367 0.474
OR-QuAC  n(ox%) 0.181 0.172  0.223  0.229 0.209 0.270 0.245 0.193 0.252
SMV 0.204 0.239 0310 0.239 0.273 0355 0.194 0.232 0.304
NQA-QPP 0.781 0.566 0.695 0.792 0.591 0.725 0.809 0.621 0.767
BERTQPP 0.678 0.434 0.546 0.692 0476 0.598 0.725 0.527 0.666
qppBERT-PL 0594 0507 0576 0617 0526 0597 0.618 0525 0.600

method qppBERT-PL. With five-fold cross-validation, qppBERT-
PL has a slight advantage over its point-wise counterparts. E.g.,
qppBERT-PL achieves a better performance in predicting the per-
formance of QuReTeC+BM25, Human+BM25 on CAsT-19, and
T5+BM25, QuReTeC+BM25 on CAsT-20. qppBERT-PL’s list-wise
training scheme learns from interactions between a query and all
documents in a ranked list, providing the model with more training
signals and better use of limited training data.

4.1.2  Turn-wise QPP effectiveness. We study the QPP effective-
ness on each turn of conversation on CAsT-19; we report the turn-
wise effectiveness of 2 unsupervised (WIG, NQC) and 2 supervised
QPP methods (NQA-QPP with warm-up, BERT-QPP with warm-up,
qppBERT-PL) when they assess BM25 with T5-based and human-
written query rewrites. The results are presented in the two leftmost

subfigures in Figure 1. Note that we also introduce the turn-wise ac-
tual retrieval quality in terms of nDCG@3 in Figure 1. As indicated
in both subfigures, there is a correlation between actual retrieval
quality and QPP effectiveness: BERT-QPP effectiveness drops as the
actual retrieval quality drops; in contrast, the score-based method
WIG is not that sensitive to the actual retrieval quality.

4.2 Assessing conversational dense retrieval

4.2.1 Overall performance. To answer (RQ2), we examine the re-
sults of E2. We apply QPP methods (fed with different types of
query rewrites) to estimate the retrieval quality of the conversa-
tional dense retrieval method ConvDR. See Table 4. Note that the
results of NQC, oy4x and SMV are invariant to different types of
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Figure 1: QPP effectiveness on each turn of conversations in CAsT-19. Pearson’s r correlation between the actual nDCG@3
scores of the queries with the same turn number and their estimated retrieval quality is calculated per turn.

query rewrites because they only depend on retrieval scores; Clar-
ity is also invariant to query rewrites because we use the Clarity
variant [48] that uses retrieval scores (from ConvDR in our setting)
to weight documents when constructing a relevance model [31];
see Section 3.3 for more details. We have three main observations.

First, retrieval score-based QPP methods NQC and WIG show
high effectiveness in estimating the retrieval quality of the con-
versational dense retrieval method ConvDR, achieving the best
performance in most cases on CAsT-19 and CAsT-20. Compared
to Table 3, the performance of NQC and WIG is even better than
their effectiveness in assessing BM25. It contradicts the previous
findings [15, 23]: Datta et al. [15] found that the retrieval scores
from neural-based retrievers, such as ColBERT [28], are restricted
within a shorter range compared to lexical-based retrievers, which
may limit the performance of score-based unsupervised QPP meth-
ods. We speculate that there are two reasons. First, the effectiveness
of score-based QPP methods depends on the retrieval score dis-
tribution of a specific retriever. Figure 2 illustrates the retrieval
score distributions of ConvDR and BM25 with three rewrites on the
three datasets given all queries in the three datasets. The retrieval
score distribution of ConvDR displays a higher variance. A higher
standard deviation indicates that the score ranges vary more, and
so the top-ranked documents are more distinguishable from the
rest. Thus, ConvDR has a higher potential to be predicted more
accurately using score-based QPP methods. Second, as discussed in
Section 4.1.1, score-based QPP methods do not depend on the input
queries and are not impacted by the query understanding challenge
in CS. Thus, score-based QPP methods show more effectiveness
when assessing ConvDR compared to other supervised methods.

Second, similar to our results for (RQ1), supervised QPP methods
distinctly outperform all unsupervised QPP methods on the OR-
QuAC dataset where a large amount of training data is available.
NQA-QPP remains the state-of-the-art method on OR-QuAC.

Third, as with the results for (RQ1), point-wise supervised QPP
methods outperform the list-wise supervised method qppBERT-PL
in most cases (on CAsT-20 and OR-QuAC). However, on CAsT-19,
qppBERT-PL trained using five-fold cross-validation outperforms
its point-wise counterparts warming up from OR-QuAC, showing
its potential in a few-shot setting.

4.2.2  Turn-wise QPP effectiveness. Similar to Section 4.1.2, here we
report the turn-wise effectiveness of the same 4 QPP methods when
they are fed with T5-based and human-written query rewrites to
assess ConvDR. See the two rightmost subfigures in Figure 1. As
we can see, the actual retrieval quality drops at turn 6 obviously;

the effectiveness of the two supervised QPP methods drops at turn
6 sharply. Conversely, the effectiveness of WIG and NQC increases
at turn 6. It shows that score-based QPP methods are less sensitive
to the actual retrieval quality when assessing the conversational
dense retrieval method, ConvDR.

4.3 Top ranks vs. deeper ranked lists

To answer (RQ3), we report the results of E3 in Table 5, i.e., QPP
results in terms of nDCG@3, nDCG@100, and Recall@100. We
have three main observations.

First, all QPP methods generally perform better when predicting
the retrieval quality for deeper-ranked lists. The estimated perfor-
mance by various QPP methods achieves a higher correlation with
the actual nDCG@100/Recall@100 values in comparison with the
nDCG@3 values, which is in line with [59], that found predicting
NDCG@20 to be harder than AP@1000.

Second, unsupervised QPP methods get a higher correlation
with nDCG@100 and Recall@100 on CAsT-19 and CAsT-20, show-
ing high effectiveness in estimating the retrieval quality of deeper
ranked lists. As seen in previous experiments, supervised QPP meth-
ods still keep the lead on OR-QuAC.

Third, in some cases, list-wise supervised QPP methods out-
perform than their point-wise counterparts when estimating the
retrieval quality in terms of deeper ranked lists. E.g., qppBERT-PL
without warm-up outperforms other point-wise methods (NQA-
QPP and BERTQPP with warm-up) on CAsT-19 when predicting the
performance of ConvDR in terms of nDCG@100 and Recall@100.
Also, qppBERT-PL achieves the best performance when predicting
the performance of ConvDR in terms of Recall@100 on OR-QuAC.
The gains indicate that modeling a list of retrieved items has the
potential of benefiting the retrieval quality estimation for deeper-
ranked lists.

5 RELATED WORK

Query performance prediction. The QPP task is to estimate the
retrieval quality of a search system in response to a user query
without relevance judgments [6, 26]. QPP methods have shown
a high correlation with the retrieval quality in the context of ad-
hoc retrieval. They can help to obtain better-performing retrieval
pipelines in different ways, including query routing [46]. For exam-
ple, identifying poor-performing queries in practice has shown to be
helpful with intelligent assistants [5]. QPP methods can be used to
identify user interactions with an intelligent assistant for which the
system may not have a reasonable answer [45]. In such cases, the
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Table 4: Outcomes of Experiment E2. Performance of QPP methods on three CS datasets: Pearson’s r, Kendall’s 7, and Spearman’s
p correlation coefficients with nDCG@3, for estimating the retrieval quality of ConvDR (fed with T5-based, QuReTeC-based,
and human-written query rewrites). All coefficients are statistically significant (t-test, p < 0.05) except the ones in italics. The
best value in each column is marked in bold, and the second best is underlined.

T5 QuReTeC Human
Datasets QPP methods P-p K-t S-p P-p K- S-p P-p K-t S-p
Clarity 0.257 0.176  0.257 0.257 0.176  0.257 0.257 0.176  0.257
WIG 0.387 0.274 0395 0.388 0.266 0.381 0412 0.285 0.408
NQC 0.431 0.307 0.438 0.431 0.307 0.438 0.431 0.307 0.438
Omax 0.378 0.267 0381 0378 0.267 0.381 0378 0.267 0.381
n(oxe) 0.187 0.175 0.262 0.181 0.170 0.256  0.216 0.196  0.288
CAST-19 SMV 0.386  0.285 0.405 0386 0.285 0.405 0.386 0.285  0.405
NQA-QPP 0.121 0.075 0.115 0.118 0.073 0.109 0.150 0.109 0.153
BERTQPP 0.167  0.107 0.169 0.220 0.145 0.217 0.298 0.193  0.296
qppBERT-PL 0.344 0.225 0324 0316 0.197 0.284 0.276 0.178  0.255
NQA-QPP (warm-up) 0.187 0.128 0.186 0.161 0.107 0.157 0.287 0.191  0.282
BERTQPP (warm-up) 0.282 0.187 0.277 0.234 0.157 0.233 0371 0.251 0.361
qppBERT-PL (warm-up)  0.212  0.151 0.213  0.167 0.117 0.170 0.172  0.115 0.154
Clarity 0.126  0.088 0.127 0.126  0.088 0.127 0.126  0.088 0.127
WIG 0.377 0.277 0.386 0.377 0.263 0.373 0384 0.264 0.368
NQC 0.339 0.261 0.360 0.339 0.261 0360 0.339 0.261 0.360
Omax 0.282 0.219 0.310 0.282 0.219 0310 0.282 0.219 0.310
n(ox%) 0.199 0.168 0.236 0.197 0.156 0.224 0.201  0.156  0.220
CAST-20 SMV 0.275 0.216 0.299 0.275 0.216 0.299 0.275 0.216  0.299
NQA-QPP -0.037 -0.037 -0.058 -0.081 -0.063 -0.092 0.059 0.023  0.032
BERTQPP 0.223  0.157 0.226 0.216 0.146 0.212 0.404 0.281 0.395
qppBERT-PL 0.185 0.144 0.191 0.029 0.023 0.031 0.251 0.171  0.232
NQA-QPP (warm-up) 0.315 0.218 0.313 0.240 0.178 0.245 0374 0.267 0.375
BERTQPP (warm-up) 0.253  0.183  0.257 0320 0.236 0338 0349 0.244 0.346
qQppBERT-PL (warm-up)  0.218  0.164 0.227 0.140 0.115 0.157 0348 0.268 0.376
Clarity -0.050 -0.029 -0.038 -0.050 -0.029 -0.038 -0.050 -0.029 -0.038
WIG 0.137  0.107 0.145 0.116 0.088 0.120 0.140 0.111  0.149
NQC 0.227 0.163 0.221 0.227 0.163  0.221 0.227 0.163  0.221
Omax 0.442 0339 0.443 0442 0339 0443 0442 0339 0.443
OR-QuAC n(ox%) -0.032  -0.003 -0.004 -0.073 -0.035 -0.045 -0.022 0.008 0.011
SMV 0.098 0.076  0.106  0.098 0.076 0.106  0.098 0.076  0.106
NQA-QPP 0.615 0.479 0.615 0.639 0.499 0.638 0.600 0.470 0.601
BERTQPP 0.481 0417 0.541 0.505 0435 0.563 0.481 0.408 0.529
qppBERT-PL 0.391 0.250 0.287 0.424 0.294 0335 0.437 0306 0.349
CAsT-19 CAsT-20 OR-QuAC
2 o> Y e‘eﬂ“‘m ‘)*Y’WP e e o™ o aeﬁ?’ 5&‘,\15 M«a“ o o e‘ecw‘m 6*@“{) i o

Figure 2: Distributions of retrieval scores for ConvDR and BM25 with three different rewriters on the three datasets. For the
sake of comparison, we normalize the retrieval scores of a retriever for all queries in a dataset by min-max normalization.

assistant may respond with “I do not know the answer to your ques- being unhelpful to the user [5]. Moreover, query difficulty signals
tion” or ask the user to reformulate their question in order to avoid have been used to provide direct feedback to users, allowing them
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Table 5: Outcomes of Experiment E3. Performance of QPP methods on three CS datasets: Pearson’s r, Kendall’s 7, and Spearman’s
p correlation coefficients with nDCG@3, nDCG@ 100 and Recall@ 100, for estimating the retrieval quality of BM25 fed with
T5-based query rewrites and ConvDR. All coefficients are statistically significant (t-test, p < 0.05) except the ones in italics. The
best value in each column is marked in bold, and the second best is underlined.

T5 + BM25 ConvDR (QPP fed with T5 query rewrites)
nDCG@3 nDCG@100 Recall@100 nDCG@3 nDCG@100 Recall@100
QPP methods P-p K-t P-p K-t P-p K-t P-p K-t P-p K-t P-p K-t
Clarity 0.321 0.234 0326 0.257 0.214 0.187 0.257 0.176  0.342 0.227 0.335 0.216
WIG 0.436 0.232 0.608 0.429 0.579 0.426 0387 0.274 0.542 0398 0379 0.301
NQC 0.348 0.246 0.548 0.397 0.545 0444 0.431 0.307 0.647 0.481 0.557 0421
o Omax 0442 0354 0574 0433 0494 0399 0378 0267 0.637 0456 0.591 0.441
; n(oxs) 0.430 0332 0569 0.406 0.505 0365 0.187 0.175 0.358 0.292 0.362 0.288
2 SMV 0344 0250 0548 0417 0541 0.466 0386 0285 0619 0471 0556 0.423
© NQA-QPP (warm-up) 0.538 0.357 0.542 0392 0537 0377 0.187 0.128 0.401 0.275 0.364 0.263
BERTQPP (warm-up) 0.526 0.357 0.532 0.391 0.463 0325 0.282 0.187 0.378 0.249 0.261 0.194
qppBERT-PL (warm-up)  0.317 0.218 0.412 0.279 0363 0.263 0.212 0.151 0354 0.233 0.345 0.249
qppBERT-PL 0.414 0.296 0509 0.358 0.452 0312 0.344 0.225 0.461 0.310 0.455 0.327
Clarity 0.258 0.191 0452 0.343 0467 0332 0126 0.088 0.270 0.195 0.264 0.178
WIG 0.248 0.251 0.494 0.453 0.478 0.438 0.377 0.277 0.549 0.389 0.465 0.320
NQC 0.150 0.235 0.363 0.399 0320 0.380 0.339 0.261 0.544 0.404 0.463 0.357
o Omax 0.179 0.221 0339 0372 0339 0382 0.282 0.219 0496 0364 0.440 0.328
E n(oxy) 0.178 0.225 0.413 0422 0420 0410 0.199 0.168 0.409 0.309 0.397 0.285
2 SMV 0.139 0.219 0362 0.400 0333 0.387 0.275 0.216 0.503 0.380 0.454 0.352
© NQA-QPP (warm-up) 0.274 0.170 0471 0.362 0466 0370 0315 0.218 0.310 0.237 0.324 0.223
BERTQPP (warm-up) 0.207 0.171 0404 0.301 0.364 0.246 0.253 0.183 0.349 0.242 0.221 0.133
qppBERT-PL (warm-up)  0.228 0.213 0367 0.305 0.312 0.287 0.218 0.164 0378 0.272 0.313 0.229
qppBERT-PL 0.131 0.125 0310 0.251 0.363 0.275 0.185 0.144 0.301 0.217 0.263 0.196
Clarity 0.090 0.085 0.197 0.196 0.362 0312 -0.050 -0.029 -0.029 -0.015 0.053 0.057
WIG 0.247 0.235 0376 0370 0482 0450 0.137 0.107 0.195 0.130 0.298 0.261
NQC 0.251 0.274 0356 0.409 0.414 0461 0.227 0.163 0302 0.194 0.402 0.333
% Omax 0.317 0.279 0.418 0.393 0438 0.437 0442 0339 0490 0359 0434 0.370
51 n(oxs) 0.181 0.172 0.295 0.302 0415 0401 -0.032 -0.003 -0.001 0.010 0.102 0.106
Qolﬁ SMV 0.204 0.239 0311 0.383 0396 0456 0.098 0.076 0.170 0.109 0.313 0.277
NQA-QPP 0.781 0.566 0.783 0.602 0.603 0.486 0.615 0479 0.644 0.475 0.446 0.323
BERTQPP 0.678 0.434 0.767 0.551 0.589 0.484 0481 0.417 0595 0.453 0.447 0.313
qppBERT-PL 0.594 0.507 0.655 0.552 0.451 0.440 0391 0.250 0449 0.277 0.455 0.383

to reformulate queries or seek alternative information sources if the
results are expected to be poor. This can be achieved by presenting
visual feedback on the predicted performance of a query, in addition
to top results. Query refinement [56] and personalization [50] can
also benefit from performance prediction methods; QPP methods
can be used to estimate the expected utility of different refinement
terms and identifying queries that can benefit from personalization,
thereby improving users’ search experiences [3, 6, 60].

QPP methods can be classified into pre- and post-retrieval meth-
ods. Pre-retrieval methods estimate query performance based on
the query and corpus statistics before retrieval takes place. Post-
retrieval methods use additional information from the ranked list
to predict query performance after retrieval. Consequently, post-
retrieval QPP methods have shown superior performance compared
to the pre-retrieval metrics when predicting retrieval performance
[6]. We focus on the performance of post-retrieval QPP methods. To

the best of our knowledge, all the current pre-retrieval QPP meth-
ods adopt an unsupervised approach. Post-retrieval QPP methods
include both supervised and unsupervised methods.

Traditional query performance prediction methods have mostly
relied on an unsupervised approach where query term frequency
and corpus statistics are used as indicators for query performance
[24-27, 47, 48, 62]. These statistics include measures such as the sim-
ilarity between the query and the retrieved documents [48], the di-
vergence between the retrieved documents and the corpus [10], and
the distribution of the relevance scores obtained for the retrieved
documents [9, 62]. More recent approaches use deep learning-based
models to train supervised QPP methods. Supervised methods for
query performance prediction are more effective than unsupervised
approaches in an ad-hoc retrieval setting. However, these super-
vised methods require a significant amount of data and training
instances, such as the MS MARCO dataset [41], in order to per-
form QPP effectively [4, 16, 23, 59]. Hashemi et al. [23] escaped this
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limitation by exploring the ability of QPP methods to predict per-
formance when addressing non-factoid question-answering tasks.
Studies of the performance of QPP methods in other settings, such
as CS, have been limited.

In this reproducibility paper, we contribute an analysis of the
effectiveness of QPP methods in predicting the performance of
retrieval methods in the context of CS. We do so by providing
the results of a comprehensive benchmark of state-of-the-art QPP
methods and highlighting the drawbacks and strengths of QPP
methods on three different conversational search datasets.

Conversational search. Conversational search (CS) is the task of
retrieving relevant passages in response to user queries in a multi-
turn conversation [13]. A unique challenge in CS is that a user query
in a conversation is context-dependent, i.e., it may contain omis-
sions, coreferences, or ambiguities, making it challenging for ad-hoc
search methods to capture the underlying information need [44].
Recovering the underlying information need from the conversa-
tional history is crucial [34]. To address this challenge, there are
two main groups of CS methods, namely, query-rewriting-based
retrieval and conversational dense retrieval. Query-rewriting-based
retrieval methods first rewrite a query that is part of a conver-
sation into a self-contained query and then feed it to an ad-hoc
retriever [33, 36, 51, 53, 54, 57]. Query rewriting can be conducted
by either term expansion or sequence generation. The former adds
terms from the conversational history to the current query, e.g., by
designing rules [36] or training a binary term classifier [51], while
the latter directly generates the reformulated queries using pre-
trained generative language models, e.g., GPT-2 [57] and T5 [33].

Conversational dense retrieval methods train a query encoder
to encode the current query and the conversational history into
a contextualized query embedding; the contextualized query em-
bedding is expected to implicitly represent the information need
of the current query in a latent space [29, 32, 34, 35, 43, 58]. Lin
et al. [32] train the query encoder by optimizing a ranking loss
over a large number of pseudo-relevance judgments. Yu et al. [58]
train the query encoder to mimic the embeddings of human-written
queries output by the query encoder of the ad-hoc dense retriever
ANCE [55]. Mao et al. [34] train the query encoder to denoise noisy
turns in the conversation history by contrastive learning.

Little research has been done into QPP for CS. Arabzadeh et al.
[5], Roitman et al. [45] explore QPP in single-turn CS, where they
use QPP to help a CS system take the next appropriate action given
a user query. Specifically, they use QPP to assess the retrieved
answer quality to determine whether the system should return the
answer to the user. Al-Thani et al. [1], Lin et al. [33] use QPP to
improve the retrieval quality of a CS system. Lin et al. [33] use
a QPP method to determine whether the current query should
be expanded with keywords from the previous turns. Al-Thani
et al. [1] use QPP methods to select the better query rewrite from
different ones. Meng et al. [37] investigate the performance of pre-
retrieval QPP methods when they estimate the retrieval quality of
BM25 fed with T5-generated query rewrites. Also, Meng et al. [37]
propose to incorporate query rewriting quality to improve QPP
effectiveness. Additionally, Vlachou and Macdonald [52] explore
QPP in the context of conversational fashion recommendation,
which differs from CS.

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

What we add to the studies listed above, is a comprehensive
reproducibility study where we reproduce various QPP methods
designed for ad-hoc search systems in the setting of multi-turn CS.

6 CONCLUSION

In this reproducibility study, we examined whether four key find-
ings for QPP in ad-hoc search hold in CS. We experimented with
QPP methods designed for ad-hoc search in three CS settings: (i) pre-
dicting the retrieval quality of BM25 while studying the impact of
query rewriting; (ii) predicting the retrieval quality of a conversa-
tional dense retrieval method, namely ConvDR; and (iii) predicting
the retrieval quality for top ranks vs. deeper-ranked lists.

We found that the three findings on QPP for ad-hoc search do
not generalize to CS very well. Specifically, we found (i) supervised
QPP methods distinctly outperform their unsupervised counter-
parts only when a large amount of training data is available, while
unsupervised QPP methods show strong performance when being
in a few-shot setting and predicting the retrieval quality for deeper
ranked lists; (ii) point-wise supervised QPP methods outperform
their list-wise counterparts in most cases; however, list-wise QPP
methods are more data-efficient, show a slight advantage in predict-
ing the retrieval quality for deeper ranked lists; and (iii) retrieval
score-based unsupervised QPP methods show high effectiveness in
estimating the retrieval quality of a conversational dense retrieval
method, ConvDR, either for top ranks or deeper ranked lists.

Our paper reveals the drawbacks of QPP methods designed for
ad-hoc search in the context of CS, motivating the next direction
for the modeling of QPP for CS. E.g., we show that the data sparsity
problem in CS severely reduces the performance of supervised QPP
methods. Thus, designing QPP methods using few-shot learning
techniques, e.g., prompt learning, to solve the data sparsity problem
in CS is one possible way. Also, we show that the quality of query
rewriting and conversation context modeling is of great importance.

We point to two limitations of our study, namely, (i) we only con-
sider estimating the retrieval quality of one conversational dense
retrieval method, and (ii) we only use correlation metrics to eval-
uate the performance of QPP methods. In future work, we plan
to (i) consider more conversational dense retrieval methods such
as CQE [32] as well as other dense retrieval methods for CS, such
as T5-based rewriter+ ANCE [55], and (ii) introduce QPP-specific
evaluation metrics, such as scaled Absolute Ranking Error (sARE)
and scaled Mean Absolute Ranking Error (sMARE) [20, 21].
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