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ABSTRACT
Identifying the right moment for a system to take the initiative
is essential to conversational information seeking (CIS). Existing
studies have extensively studied the clarification need prediction
task, i.e., predicting when to ask a clarifying question, however,
it only covers one specific system-initiative action. We define the
system initiative prediction (SIP) task as predicting whether a CIS
system should take the initiative at the next turn. Our analysis reveals
that for effective modeling of SIP, it is crucial to capture depen-
dencies between adjacent user–system initiative-taking decisions.
We propose to model SIP by CRFs. Due to their graphical nature,
CRFs are effective in capturing such dependencies and have greater
transparency than more complex methods, e.g., LLMs. Applying
CRFs to SIP comes with two challenges: (i) CRFs need to be given
the unobservable system utterance at the next turn, and (ii) they
do not explicitly model multi-turn features. We model SIP as an
input-incomplete sequence labeling problem and propose a multi-
turn system initiative predictor (MuSIc) that has (i) prior-posterior
inter-utterance encoders to eliminate the need to be given the un-
observable system utterance, and (ii) a multi-turn feature-aware
CRF layer to incorporate multi-turn features into the dependencies
between adjacent initiative-taking decisions. Experiments show
that MuSIc outperforms LLM-based baselines including LLaMA,
achieving state-of-the-art results on SIP. We also show the benefits
of SIP on clarification need prediction and action prediction.

CCS CONCEPTS
• Information systems → Retrieval tasks and goals; Users and
interactive retrieval.
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1 INTRODUCTION
An essential part of conversational information seeking (CIS) is
to identify the right moment for a CIS system to take the initia-
tive [6, 72], given that system initiative-taking risks frustrating
the user and hurting the user experience [64, 65, 72, 75, 76]. Vari-
ous system-initiative actions can be taken by a CIS system to take
the initiative, e.g., asking a clarifying question or requesting feed-
back [58, 60]. Existing work has extensively studied the clarification
need prediction task, that is, predicting when to ask a clarifying
question in an information-seeking conversation [2, 3, 5, 64, 65, 68].
However, as shown in Fig. 1, asking a clarifying question is only
one of several possible system-initiative actions [1, 7, 72].
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Figure 1: Distribution of system-initiative actions in two re-
alistic CIS training datasets, WISE and MSDialog. CQ: clarify-
ing question (called clarify inWISE); IR: information request
(called request in WISE); RV: revise; RC: recommendation
(ask users if they would like something); OQ: original ques-
tion; RQ: repeat question; and FQ: follow up question.

Task and motivation. We define system initiative prediction (SIP)
task, which is to predict whether the CIS system should take the ini-
tiative at the next turn in an information-seeking conversation. To
the best of our knowledge, no existing studies explicitly model this
problem. SIP has three benefits for CIS systems: (i) SIP can improve
the controllability of the overall initiative level of the system to
balance utility and user experience [53]. (ii) SIP can enable knowl-
edge sharing among various system-initiative actions; the shared
knowledge learned through SIP can be transferred to improve the
prediction of a specific system-initiative action by transfer learning,
e.g., by fine-tuning amodel, pre-trained on SIP, on clarification need
prediction. And (iii) SIP is a high-level decision, and downstream
tasks, such as action prediction, depend on SIP; SIP can boost the
prediction performance on downstream tasks by reducing the deci-
sion space; e.g., on action prediction, the action requesting feedback
is performed only if the SIP result is initiative. One could argue that
existing action prediction methods [70] are sufficiently effective for
SIP. However, our experiments show that using action prediction
methods for SIP leads to suboptimal results, but conversely, SIP
significantly improves downstream action prediction.

Our empirical analysis of two CIS datasets [43, 47] reveals that
a system’s initiative-taking decision at the next turn is not iso-
lated but depends on the user’s previous initiative-taking decision.
Fig. 2a shows that the system is more likely to take the initiative
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Figure 2: The probability of system initiative-taking (sys-in)
conditioned on the user’s initiative-taking decision at the
preceding turn (pre-user-in) and the number of times the
system has taken the initiative (# pre-sys-in) on the WISE
and MSDialog training sets.

immediately after the user has taken the initiative in a conversa-
tion; thus, capturing the dependencies between adjacent user–system
initiative-taking decisions is critical for modeling SIP.

A natural way to capture such structural dependencies is to
use probabilistic graphical models, such as conditional random
fields (CRFs) [32]. We propose to use linear-chain CRFs [32, 56] to
model SIP for three reasons: (i) they have been shown to be effective
in capturing dependencies between adjacent output decisions [56];
(ii) linear-chain CRFs for SIP can guarantee the best initiative-taking
decision at the next turn by decoding the optimal sequence of
initiative-taking decisions in context (1 : 𝑇 − 1 in Fig. 3a) and the
next turn (𝑇 in Fig. 3a), instead of outputting the decision at the
next turn independently [32, 56]; and (iii) due to CRFs’ graphical
nature, they have been shown to exhibit better interpretability and
transparency than other methods [20, 30], such as emergent large
language models (LLMs) [14, 57, 74].
Challenges. When adopting linear-chain CRFs to the SIP task
we face two challenges: (i) They cannot be directly applied to SIP
because we face an input-incomplete sequence labeling problem.
Linear-chain CRFs are designed for sequence labeling problems that
have a one-to-one correspondence between input observations and
output decisions. As shown in Fig. 3a, to output initiative-taking
decisions in context and at the next turn, linear-chain CRFs need to
be given a complete input sequence of utterances in context and at
the next turn. However, given the nature of SIP, as shown in Fig. 3b,
the system utterance at the next turn is unobservable, leading to an
input-incomplete sequence labeling problem. And (ii) linear-chain
CRFs do not explicitly model multi-turn features. Our empirical
analysis shows that an initiative-taking decision depends on mul-
ti-turn features. We define a multi-turn feature as a variable that
varies across turns. Consider, e.g., the number of times the system has
taken the initiative; Fig. 2b shows that a system is much less likely
to take the initiative once again if it has already taken the initiative
before. But linear-chain CRFs do not consider this feature as it is
beyond the dependency between adjacent initiative decisions.
Approach. To address the challenges, we cast SIP as an input-
incomplete sequence labeling problem and propose a multi-turn
system initiative predictor (MuSIc). We propose (i) prior-posterior
inter-utterance encoders to adapt linear-chain CRFs to the input-in-
complete sequence labeling problem and eliminate the need to be
given the unobservable system utterance, and (ii) a multi-turn fea-
ture-aware conditional random field (CRF) layer to explicitly capture
the impact of multi-turn features on an initiative-taking decision by
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Figure 3: A comparison between a sequence labeling problem
(a) and an input-incomplete sequence labeling problem (b).
1 : 𝑇 denote turn numbers and 𝑇 is the next system turn.

conditioning the dependencies between adjacent initiative-taking
decisions on multi-turn features. MuSIc can use an arbitrary num-
ber of multi-turn features; we consider three essential ones: (i) role
transition direction, (ii) the number of times the system has taken
the initiative, and (iii) the distance to the last system initiative turn.
Experiments. We annotate the initiative-taking decision at each
turn on two multi-turn CIS datasets, WISE [47] and MSDialog [42].
Experiments on both datasets show that MuSIc achieves state-of-
the-art performance on SIP, outperforming strong clarification need
prediction, action prediction, and LLM-based (LLaMA [57]) base-
lines. We get two more insights: (i) LLMs do not show promising
performance on SIP where scaling up LLMs is not an effective way
to solve SIP; and (ii) probabilistic graphical modeling is still competi-
tive and effective for this task and it should not be ignored in the era
of LLMs. Furthermore, a visual analysis indicates that the transition
matrices learned through the MuSIc exhibit meaningful transition
patterns and explicitly show how MuSIc models the dependencies,
showing great interpretability and transparency. Moreover, we fine-
tune MuSIc pre-trained on SIP on the clarification need prediction
task, achieving the state-of-the-art clarification need prediction
performance on ClariQ [2, 3], indicating that the knowledge shared
among various system-initiative actions learned through SIP can
be used to improve the prediction of a specific system-initiative
action. Finally, we construct a SIP-aware action prediction frame-
work where action prediction is fed with SIP results returned by
MuSIc. The action prediction performance is significantly improved,
indicating the effectiveness of SIP in benefiting downstream tasks.
Contributions. Our main contributions are as follows:
• We introduce the task of system initiative prediction (SIP) for CIS,
which has not been explicitly modeled in prior work.

• Wepropose amulti-turn system-initiative predictor (MuSIc), which
formalizes SIP as an input-incomplete sequence labeling problem
and jointly considers dependencies between adjacent user–system
initiative-taking decisions and the impact of multi-turn features
on an initiative-taking decision.

• We conduct experiments on twomulti-turn CIS datasets, showing
state-of-the-art performance of MuSIc on SIP.

• We fine-tune MuSIc pre-trained on SIP on the clarification need
prediction task, achieving state-of-the-art clarification need pre-
diction performance on the ClariQ dataset.

• We propose a SIP-aware action prediction framework, showing
the effectiveness of MuSIc in downstream action prediction.

2 RELATEDWORK
2.1 Conversational information seeking
We focus on modeling mixed-initiative CIS systems [16, 21, 39–41,
72]. Mixed initiative is a key aspect in CIS [45]: the user and system
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can both take the initiative at different times in a conversation.
Mixed-initiative CIS systems can ask clarifying questions [3, 4,
49, 71], elicit user preferences [44, 50], ask for feedback [58, 60],
initiate a conversation [62] and so on. Existing work focuses on
when a CIS system should take the initiative [6] and response
generation/selection given a decided system-initiative action [4,
12, 49, 66, 71]. We focus on the former. In this direction, Avula
et al. [6] run a user study to investigate it. Besides, much work
has studied the prediction of when to perform a specific system-
initiative action, asking a clarifying question (a.k.a. clarification
need prediction) [2, 3, 5, 64, 65, 68].
Clarification need prediction. Zou et al. [75, 76] show that ask-
ing a clarifying question is not always necessary, and inappropriate
requests for clarification can hurt user experience. Xu et al. [68]
propose a binary classification model to identify whether clarifica-
tion is needed given the conversational context. Aliannejadi et al.
[2, 3] fine-tune pre-trained language models fed with user queries
to return a clarification need score. Wang and Ai [64, 65] propose a
binary classification model that further takes into account clarify-
ing question and answer candidates returned by retrieval models.
Arabzadeh et al. [5] utilize the coherency of items retrieved for
the user query: the more coherent the retrieved items are, the less
ambiguous the query is, and the need for clarification decreases.

Our work differs from these studies, as SIP covers a broader
range of system-initiative actions, while these studies are limited
to one initiative type (i.e., asking a clarifying question).
System action prediction. Radlinski and Craswell [45] define
a system action space and emphasize the need for system action
prediction in CIS, i.e., a CIS system should predict an appropriate
action from an action space at the right time. Azzopardi et al. [8]
define a more detailed taxonomy of user/system actions in CIS.
Schneider et al. [48] conduct user study to reveal action flow pat-
terns in CIS. Ghosh et al. [22] first identify the user action used in
the previous user utterance and then use that to benefit the system
action prediction. In this paper, we are concerned with the more
challenging multi-action system action prediction task, i.e., the sys-
tem performs multiple actions concurrently per turn [73]. Beyond
CIS, multi-action system action prediction has been well studied
for task-oriented conversations, where it is typically formulated
as a multi-label classification [25, 34, 67] or sequence generation
problem [28, 34, 52, 63]. Ye et al. [70] propose a sequence generation-
based method, called Co-Gen, achieving leading performance in
terms of response generation and action prediction.

Our work differs from action prediction because SIP is a higher-
level decision on which the action prediction depends.

2.2 Linear-chain conditional random fields
Linear-chain CRFs are discriminative probabilistic graphical mod-
els for sequence labeling problems that assign output decisions
to all of the observations in a sequence jointly [32]. The output
decisions are arranged in a sequence/linear chain where adjacent
output decisions are dependent according to the first-order Markov
assumption, enabling linear-chain CRFs to effectively capture de-
pendencies between adjacent output decisions [56]. We focus on
neural linear-chain CRFs [26, 27], where parameters can be trained
end-to-end. They have been widely used for sequence labeling

Multi-turn feature-aware CRF layer

BERT utterance encoder

Prior-posterior inter-utterance encoders

User utterance
turn 1

System utterance
turn 2

User utterance
turn T-1

System utterance
Turn T (unobservable)

I I N I

only during training
…

… used for evaluation

Figure 4: Overview of MuSIc. Its target is to predict the op-
timal sequence of initiative-taking decisions in the context
1 : 𝑇 −1 and at the next turn𝑇 given the utterances over turns
1 : 𝑇 − 1. I/N at the top denotes Initiative/Non-initiative.

tasks, e.g., POS tagging [26], named entity recognition [26, 33] and
dialogue act recognition [13, 17, 31, 46, 51].

None of the work listed above can be directly applied to SIP due
to the input-incomplete sequence labeling problem. Another line
of research captures the dependencies between adjacent output
decisions by dynamically generating transition matrices [24, 27, 54,
55]. MuSIc differs as it explicitly incorporates multi-turn features
into the adjacent dependencies. While some work [11, 51] injects
features (e.g., emotion shifts) into the adjacent dependencies for
sequence labeling, MuSIc is for input-incomplete sequence labeling
and considers CIS-specific features that have not been studied yet.

3 TASK DEFINITION
Suppose that we have an information-seeking conversation 𝑋 =

(𝑥1, 𝑥2, . . . , 𝑥 |𝑋 |−1, 𝑥 |𝑋 | ) with a sequence of |𝑋 | utterances, where
𝑥 is an utterance uttered by either a user or system. The con-
versation 𝑋 comes with a sequence of ground-truth initiative-
taking decisions 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦 |𝑋 |−1, 𝑦 |𝑋 | ), i.e., each utterance
𝑥 in the conversation has a corresponding initiative-taking deci-
sion 𝑦 ∈ {Initiative, Non-initiative}. Given the context 𝑋1:𝑇−1 =

(𝑥1, 𝑥2, . . . , 𝑥𝑇−1), where 𝑇 − 1 is a user turn, the system initiative
prediction (SIP) task is to predict the system’s initiative-taking deci-
sion 𝑦𝑇 at the next turn𝑇 . We formulate SIP as an input-incomplete
sequence labeling problem: we model the conditional probability
𝑃 (𝑌1:𝑇 | 𝑋1:𝑇−1) of the sequence of initiative-taking decisions in the
context 𝑌1:𝑇−1 and at the next turn 𝑦𝑇 given the sequence 𝑋1:𝑇−1
of utterances in the context. Only the system’s initiative-taking
decision 𝑦𝑇 at the next turn 𝑇 is used for evaluation.

4 METHOD
4.1 Limitations of linear-chain CRFs
Linear-chain CRFs predict a sequence of output decisions based on
emission and transition scores (see [26, 33] for details), and have
two main limitations when applied “as is” to SIP: (i) They model
𝑃 (𝑌1:𝑇 | 𝑋1:𝑇 ) to output the sequence 𝑌1:𝑇 : they use the sequence
𝑋1:𝑇 of utterances in the context and at the next turn to calculate
emissions scores over {Initiative, Non-initiative} over turns 1 : 𝑇 ;
there is a one-to-one correspondence between 𝑋1:𝑇 and emission
scores over turns 1 : 𝑇 . However, 𝑥𝑇 , the utterance at the next
turn, is unobservable for SIP (see Fig. 3b), leading to the absence
of the emission scores at turn 𝑇 . (ii) They use a transition matrix
that contains transition scores from one initiative-taking decision
to itself (e.g., Initiative to Initiative) or the other (e.g., Initiative to
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Non-initiative) to capture dependencies between adjacent initiative–
taking decisions. An initiative-taking decision 𝑦𝑡+1 is also impacted
by a multi-turn feature 𝑠𝑡 :𝑡+1 that changes across turns, e.g., the
number of times the system has taken the initiative (see Fig. 2b).
However, the transition matrix is unique and shared across all
turns; thus, the transition scores cannot be adjusted across turns to
capture the impact of a multi-turn feature 𝑠𝑡 :𝑡+1 effectively.

4.2 Overview of MuSIc
We propose MuSIc for SIP, which consists of three parts: (i) a BERT
utterance encoder, (ii) prior-posterior inter-utterance encoders, and
(iii) a multi-turn feature-aware CRF layer. See Fig. 4. The BERT
utterance encoder is used to encode each utterance into a latent rep-
resentation. Prior-posterior inter-utterance encoders enable MuSIc to
model the input-incomplete sequence labeling by approximating the
absent emission scores at turn 𝑇 . We model 𝑃 (𝑌1:𝑇 | 𝑋1:𝑇 ) during
training (see Fig. 5a) as we can access the unobservable system
utterance 𝑥𝑇 at the next turn𝑇 ; we pass 𝑋1:𝑇 through the BERT en-
coder and a posterior inter-utterance encoder to calculate emission
scores over turns 1 : 𝑇 ; we define them as posterior emission scores.
Similarly, we pass𝑋1:𝑇−1 through BERT and a prior inter-utterance
encoder; we use the output of the prior inter-utterance encoder to
calculate prior emission scores that are forced to approximate the
posterior emission scores at 𝑇 via an MSE loss. During inference
(see Fig. 5b), we model 𝑃 (𝑌1:𝑇 | 𝑋1:𝑇−1) and regard the approxi-
mate (prior) emission scores as the absent emission scores at turn
𝑇 , eliminating the need to be given the unobservable system utter-
ance 𝑥𝑇 . The multi-turn feature-aware CRF layer incorporates three
multi-turn features and conditions transition scores (dependencies)
between adjacent initiative-taking decisions on multi-turn features.
We extend the single transition matrix in linear-chain CRFs to mul-
tiple ones, corresponding to different multi-turn features. For a pair
of adjacent initiative-taking decisions between turn 𝑡 and 𝑡 + 1, we
adjust the transition score between them by selecting the transition
matrix corresponding to the multi-turn features from turn 𝑡 to 𝑡 + 1.

4.2.1 BERT utterance encoding. We use a BERT encoder [18] to
encode an utterance 𝑥𝑡 (𝑡 = 1, . . . ,𝑇 during training, 𝑡 = 1, . . . ,𝑇 −1
during inference) into an utterance representation H𝑥𝑡 ∈ R |𝑥𝑡 |×𝑑 ,
after which an average pooling operation [10] is used to get a
condensed representation h𝑥𝑡 ∈ R1×𝑑 , where |𝑥𝑡 | and 𝑑 denote the
number of tokens in 𝑥𝑡 and the hidden size, respectively.

4.2.2 Prior-posterior inter-utterance encoding. 1 We have a prior en-
coder fed with {h𝑥𝑡 }𝑇−1

𝑡=1 , returning prior utterance representations
{h𝑥𝑡

𝑝𝑟𝑖
}𝑇−1
𝑡=1 , as shown in Fig. 5. Also, we have a posterior encoder fed

with {h𝑥𝑡 }𝑇
𝑡=1 ({h

𝑥𝑡 }𝑇−1
𝑡=1 during inference), outputting posterior

utterance representations {h𝑥𝑡𝑝𝑜𝑠 }𝑇𝑡=1 ({h
𝑥𝑡
𝑝𝑜𝑠 }𝑇−1

𝑡=1 during inference).

4.2.3 Multi-turn feature-aware CRF layer. During training, we feed
the unobservable system utterance 𝑥𝑇 to MuSIc and model the con-
ditional probability 𝑃 (𝑌1:𝑇 | 𝑋1:𝑇 ) of the sequence 𝑌1:𝑇 of initiative-
taking decisions in the context and at the next turn given the se-
quence 𝑋1:𝑇 of utterances in the context and at the next turn.

We consider threemulti-turn features S = {𝑠𝑟
𝑡 :𝑡+1, 𝑠

𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1}

𝑇−1
𝑡=1

as additional input:
1 We implement inter-utterance encoders by BiLSTMs, which got better performance
than Transformers in our preliminary experiments.

(1) 𝑠𝑟
𝑡 :𝑡+1 represents the role transition direction from turn 𝑡 to 𝑡 + 1,
i.e., 𝑠𝑟

𝑡 :𝑡+1 = 𝑢2𝑠/𝑠2𝑢 means that the role transition is from the
user to the system/the system to the user from turn 𝑡 to 𝑡 + 1.

(2) Given 𝑠𝑟
𝑡 :𝑡+1 = 𝑢2𝑠 (“user to system”),2 𝑠𝑛

𝑡 :𝑡+1 represents the
number of times the system takes the initiative before the next
system turn at 𝑡 + 1. Table 1 shows that the average number of
system initiative utterances in a conversation in training sets is
less than 1. To make full use of the sparse training data, we only
consider the cases 𝑠𝑛

𝑡 :𝑡+1 = 0 and > 0, which means that the
system has not taken the initiative and has taken the initiative
once or more before the next system turn at 𝑡 + 1, respectively.

(3) Given 𝑠𝑟
𝑡 :𝑡+1 = 𝑢2𝑠 (again, “user to system”) and 𝑠𝑛

𝑡 :𝑡+1 > 0, 𝑠𝑑
𝑡 :𝑡+1

represents the distance to the last system initiative turn from
the next system turn at 𝑡 + 1. Similarly, to make full use of the
sparse data, we only consider 𝑠𝑑

𝑡 :𝑡+1 = 2 and > 2,3 which means
that the distance to the last system initiative turn from the next
system turn at 𝑡 + 1 is 2 and more than 2 turns, respectively.

After considering the three multi-turn features, MuSIc models:

𝑃 (𝑌1:𝑇 | 𝑋1:𝑇 , S) =
exp(𝜓 (𝑋1:𝑇 ,𝑌1:𝑇 ,S) )∑

𝑌̃1:𝑇
exp(𝜓 (𝑋1:𝑇 ,𝑌̃1:𝑇 ,S) )

,

𝜓 (𝑌1:𝑇 , 𝑋1:𝑇 , S) =
∑𝑇
𝑡=1 𝑒 (𝑦𝑡 , 𝑋1:𝑇 ) +∑𝑇−1

𝑡=1 𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1, 𝑠
𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1),

(1)

where 𝑌̃1:𝑇 denotes one of all possible sequences of initiative-taking
decisions, 𝑒 (𝑦𝑡 , 𝑋1:𝑇 ) is the emission scoring function to calculate
the posterior emission scores based on 𝑋1:𝑇 , and 𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1,
𝑠𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1) is the transition score function to calculate the transi-

tion scores conditioned on multi-turn features S.
Computing emission scores. 𝑒 (𝑦𝑡 , 𝑋1:𝑇 ) calculates the poste-

rior emission scores {e𝑥𝑡𝑝𝑜𝑠 }𝑇𝑡=1 based on the posterior utterance
representations {h𝑥𝑡𝑝𝑜𝑠 }𝑇𝑡=1; see Fig. 5a. The calculation at each turn
is modeled as:

𝑒 (𝑦𝑡 , 𝑋1:𝑇 ) = e𝑥𝑡 ,𝑦𝑡𝑝𝑜𝑠 ∈ R1×1

e𝑥𝑡𝑝𝑜𝑠 = MLP(h𝑥𝑡𝑝𝑜𝑠 ) ∈ R1×2,
(2)

where 𝑡 = 1, 2, . . . ,𝑇 , e𝑥𝑡𝑝𝑜𝑠 ∈ R1×2 are posterior emission scores
over {Initiative, Non-initiative}, and MLP(·) denotes a multilayer
perceptron (MLP). In parallel, we calculate the prior emission scores
e𝑥𝑇 −1
𝑝𝑟𝑖

∈ R1×2 based on the last output (at turn 𝑇 − 1) of the prior
inter-utterance encoder h𝑥𝑇 −1

𝑝𝑟𝑖
(see Fig. 5a):

e𝑥𝑇 −1
𝑝𝑟𝑖

= MLP(h𝑥𝑇 −1
𝑝𝑟𝑖

) ∈ R1×2 . (3)

The prior emission scores e𝑥𝑇 −1
𝑝𝑟𝑖

∈ R1×2 would learn to approximate
the posterior emission scores e𝑥𝑇𝑝𝑜𝑠 ∈ R1×2 at turn𝑇 (see Fig. 5a and
Eq. 8). The parameters of the MLP in Eq. 2 and Eq. 3 are not shared.

Computing transition scores. Linear-chain -CRFs do not con-
dition a transition score on any multi-turn features:

𝑔(𝑦𝑡 , 𝑦𝑡+1) = 𝐺𝑦𝑡 ,𝑦𝑡+1 ∈ R1×1, (4)

where 𝐺 ∈ R2×2 is a transition matrix shared across all turns,
and 𝐺𝑦𝑡 ,𝑦𝑡+1 is the transition score from the decision 𝑦𝑡 to 𝑦𝑡+1.
Our transition scoring function 𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1, 𝑠

𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1) does

2 We consider other features only given “user to system” for simplicity;“user to system”
ismore critical as the role transition from turn𝑇 −1 to𝑇 is always from “user to system”.
3 We also experimented with more fine-grained cases, such as 𝑠𝑛

𝑡 :𝑡+1 = 1, 2, 3, 4 and
𝑠𝑑
𝑡 :𝑡+1 = 4, 6, 8, but no further improvements were obtained.
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(b) Inference
Figure 5: Prior-posterior inter-utterance encoders and multi-turn feature-aware CRF layer during (a) training and (b) inference.
The system utterance at the next turn 𝑇 can be accessed by the posterior inter-utterance encoder only during training.

condition the computation of the transition scores between adjacent
initiative-taking decisions on the multi-turn features 𝑠𝑟

𝑡 :𝑡+1, 𝑠
𝑛
𝑡 :𝑡+1,

and 𝑠𝑑
𝑡 :𝑡+1. We define separate transition matrices corresponding to

different combinations of multi-turn features. For a pair of adjacent
initiative-taking decisions between turn 𝑡 and 𝑡 + 1, we select the
transition matrix corresponding to the multi-turn features from
turn 𝑡 to 𝑡 + 1. If the transition score is only conditioned on the
multi-turn feature role transition direction 𝑠𝑟

𝑡 :𝑡+1, it is calculated as:

𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1) = (1− 𝐼 (𝑠𝑟𝑡 :𝑡+1)) ·G
𝑠2𝑢
𝑦𝑡 ,𝑦𝑡+1+ 𝐼 (𝑠

𝑟
𝑡 :𝑡+1) ·G

𝑢2𝑠
𝑦𝑡 ,𝑦𝑡+1 , (5)

where 𝐼 (𝑠𝑟
𝑡 :𝑡+1) is an indicator function that equals 1 if 𝑠𝑟

𝑡 :𝑡+1 = 𝑢2𝑠
and 0 otherwise, and G𝑠2𝑢 ∈ R2×2 and G𝑢2𝑠 ∈ R2×2 are transition
matrices corresponding to “from system to user” and “from user to
system,” respectively.

Given 𝑠𝑟
𝑡 :𝑡+1 = 𝑢2𝑠 , if the transition score is further conditioned

on the feature 𝑠𝑛
𝑡 :𝑡+1, the number of times the system takes the initia-

tive before the next system turn at 𝑡 + 1, it is calculated as:

𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1, 𝑠
𝑛
𝑡 :𝑡+1)) = (1 − 𝐼 (𝑠𝑟𝑡 :𝑡+1)) · G

𝑠2𝑢
𝑦𝑡 ,𝑦𝑡+1 +

𝐼 (𝑠𝑟𝑡 :𝑡+1) · [(1 − 𝐼 (𝑠𝑛𝑡 :𝑡+1)) · G
𝑢2𝑠,𝑛=0
𝑦𝑡 ,𝑦𝑡+1 + 𝐼 (𝑠𝑛𝑡 :𝑡+1) · G

𝑢2𝑠,𝑛>0
𝑦𝑡 ,𝑦𝑡+1 ],

(6)

where 𝐼 (𝑠𝑛
𝑡 :𝑡+1) is an indicator function that equals 1 if 𝑠𝑛

𝑡 :𝑡+1 > 0
and 0 otherwise, and G𝑢2𝑠,𝑛=0 ∈ R2×2 and G𝑢2𝑠,𝑛>0 ∈ R2×2 are
transition matrices corresponding to “the system has not take the
initiative” and “the system has taken the initiative once or more”
before the next system turn at 𝑡 + 1, respectively.

Given 𝑠𝑟
𝑡 :𝑡+1 = 𝑢2𝑠 and 𝑠𝑛

𝑡 :𝑡+1 > 0, if the transition score is further
conditioned on the feature 𝑠𝑑

𝑡 :𝑡+1, the distance to the last system’s
initiative turn from the next system turn at 𝑡 + 1, it is calculated as:

𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1, 𝑠
𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1)) = (1 − 𝐼 (𝑠𝑟𝑡 :𝑡+1)) · G

𝑠2𝑢
𝑦𝑡 ,𝑦𝑡+1+

𝐼 (𝑠𝑟𝑡 :𝑡+1) · {(1 − 𝐼 (𝑠𝑛𝑡 :𝑡+1)) · G
𝑢2𝑠,𝑛=0
𝑦𝑡 ,𝑦𝑡+1 +

𝐼 (𝑠𝑛𝑡 :𝑡+1) · [(1 − 𝐼 (𝑠𝑑𝑡 :𝑡+1)) · G
𝑢2𝑠,𝑛>0,𝑑=2
𝑦𝑡 ,𝑦𝑡+1 +

𝐼 (𝑠𝑑𝑡 :𝑡+1) · G
𝑢2𝑠,𝑛>0,𝑑>2
𝑦𝑡 ,𝑦𝑡+1 ]},

(7)

where 𝐼 (𝑠𝑑
𝑡 :𝑡+1) is an indicator function that equals 1 if 𝑠

𝑑
𝑡 :𝑡+1 > 2 and

0 otherwise, and G𝑢2𝑠,𝑛>0,𝑑=2 ∈ R2×2 and G𝑢2𝑠,𝑛>0,𝑑>2 ∈ R2×2 are
transition matrices for “the distance to the last system’s initiative
turn is 2 turns” and “the distance to the last system’s initiative turn
is more than 2 turns” from the next system turn at 𝑡 +1, respectively.

Training objectives. Our final loss function is defined as L =

Lcrf + Lmse . We not only minimize the negative log-likelihood
of the sequence 𝑌1:𝑇 of ground-truth initiative-taking decisions in

the context and at the next turn, but also force e𝑥𝑇 −1
𝑝𝑟𝑖

to learn to
approximate e𝑥𝑇𝑝𝑜𝑠 via an MSE loss (see Fig. 5a):

Lcrf = − log 𝑃 (𝑌1:𝑇 | 𝑋1:𝑇 , S)
Lmse = −(e𝑥𝑇 −1

pri − e𝑥𝑇pos)2 .
(8)

Inference phase. MuSIc models the conditional probability
𝑃 (𝑌̃1:𝑇 | 𝑋1:𝑇−1, S) of a possible sequence 𝑌̃1:𝑇 of initiative-taking
decisions in the context (1 : 𝑇 − 1) and at the next turn𝑇 only given
the sequence 𝑋1:𝑇−1 of utterances in the context (see Fig. 5b):

𝑃 (𝑌̃1:𝑇 | 𝑋1:𝑇−1, S) =
exp(𝜓 (𝑋1:𝑇 −1,𝑌̃1:𝑇 ,S) )∑

𝑌̃1:𝑇
exp(𝜓 (𝑋1:𝑇 −1,𝑌̃1:𝑇 ,S) )

,

𝜓 (𝑌̃1:𝑇 , 𝑋1:𝑇−1, S) =
∑𝑇
𝑡=1 𝑒 (𝑦𝑡 , 𝑋1:𝑇−1) +∑𝑇−1

𝑡=1 𝑔(𝑦𝑡 , 𝑦𝑡+1, 𝑠𝑟𝑡 :𝑡+1, 𝑠
𝑛
𝑡 :𝑡+1, 𝑠

𝑑
𝑡 :𝑡+1),

(9)

where 𝑒 (𝑦𝑡 , 𝑋1:𝑇−1) = e𝑥𝑇 −1,𝑦̃𝑇
𝑝𝑟𝑖

if 𝑡 = 𝑇 and e𝑥𝑡 ,𝑦̃𝑡𝑝𝑜𝑠 otherwise (see
Fig. 5b). The optimal sequence 𝑌 ∗

1:𝑇 of initiative-taking decisions in
context and at the next turn is decoded by the Viterbi algorithm [61]:

𝑌 ∗
1:𝑇 = argmax

𝑌̃1:𝑇
𝑃 (𝑌̃1:𝑇 | 𝑋1:𝑇−1, S). (10)

5 EXPERIMENTAL SETUP
Research questions. (RQ1) To what extent does MuSIc improve
performance on the SIP task compared to state-the-art baselines?
(RQ2) What is the effect of multi-turn features on the performance
of MuSIc? (RQ3) To what extent does knowledge shared among
various system-initiative actions learned through SIP benefit the
clarification need prediction task? (RQ4) To what extent does the
SIP task benefit the downstream action prediction task?
Datasets. We consider two multi-turn CIS datasets with annota-
tions of actions for utterances, WISE [47] and MSDialog [42, 43, 69].
Based on the action annotations, we annotate the initiative-taking
decision for each utterance. WISE is collected through crowdsourc-
ing; it consists of mixed-initiative conversations between two work-
ers playing the role of user and system. All utterances are annotated
with actions. We use the data split from [47]. MSDialog consists of
mixed-initiative conversations between users who ask for techni-
cal help and expert users or staff (i.e., system) who help to solve
problems. This dataset has two versions: the complete set and a
labeled subset. Each utterance in the labeled subset is annotated
with actions; We use the data split of the labeled subset from [43].

Pre-processing. Following [59, 64, 65], we merge consecutive
utterances from either the user or system into one utterance by
concatenation; their corresponding actions are merged by a union
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Table 1: Statistics of the WISE and MSDialog datasets after
preprocessing; conv. is short for “conversation.”

WISE MSDialog

train valid test train valid test

# conversations 705 200 1,000 1,760 220 219
# utterances 12,184 3,811 18,828 6,305 752 747
# system utterances 5,949 1,868 9,246 2,938 352 354
# system initiatives 691 324 1,457 1,085 131 143
Max. # turns/conversation 38 38 42 10 10 10
Avg. # turns/conversation 17.28 19.06 18.83 3.58 3.42 3.41
Max. # actions/system turn 3 2 3 6 6 7
Avg. # actions/system turn 1.02 1.02 1.02 1.67 1.77 1.80
Avg. # system initiatives/conv. 0.98 1.62 1.46 0.62 0.60 0.65
Avg. # clarifying questions/conv. 0.87 1.23 1.17 0.15 0.18 0.15

operation too. See Table 1 for the statistics of the datasets. The
average numbers of turns in both datasets are less than the numbers
in the original papers [43, 47] due to the merging operation.

Annotation of initiative-taking decision labels. For both
datasets, we derive the initiative annotations by mapping the man-
ual annotations of actions to initiative or non-initiative labels. An
utterance is annotated as initiative if it is annotated with any of the
actions showing initiative4 and non-initiative otherwise.
Baselines. We compare MuSIc with recently proposed LLM-based
baselines, and three other groups of state-of-the-art baselines for
the SIP task: (i) clarification need prediction, (ii) system action
prediction, and (iii) linear-chain CRF-based methods.

We consider LLaMA-7B/13B/33B/65B [57] using in-context
learning [9, 19] as the LLM-based baselines. Mao et al. [35] prompt
LLMs for conversational query rewriting and we adapt their de-
signed prompt to SIP. We prepend the SIP task instruction at the
beginning of the prompt, followed by two groups of demonstrations:
(i) a few complete conversations randomly sampled from the train-
ing set, and (ii) utterances in the context 𝑋1:𝑇−1 prior to the next
turn 𝑇 . Given the prompt, LLaMA generates the system-initiative
decision at the next system turn 𝑇 . WISE is a Chinese language
dataset; however, the original LLaMA has a limited ability to encode
and decode Chinese text [15]. Cui et al. [15] release Chinese-LLaMA-
Plus-7B and -13B at the time of writing. These LLaMA variants
use the extended Chinese vocabulary and are further trained on
Chinese data. We report the performance of both [15] on WISE.

We train and test two clarification need prediction models on SIP:
(i) CtxPred (BERT) uses a BERT encoder to encode the context
and predict whether to take the initiative at the next turn [2, 3, 68].
(ii) Risk-aware Conversational Search agent with Q-learning
(RCSQ) is fed with the context, clarifying question and answer
candidates returned by retrievers, and is trained with a user sim-
ulator by reinforcement learning [64, 65]. To adapt it to SIP,5 we
replace the clarifying question and answer candidates with initia-
tive and non-initiative system utterance candidates retrieved by
bi-encoders;6 we also replace Q-learning with supervised learning
using the annotations of initiative-taking decisions.
4 The WISE dataset has different taxonomies for user and system actions; system
actions showing initiative have been shown in Fig. 1; user actions showing initiative
are reveal, request, and revise. MSDialog has the same taxonomy for user and system
actions; actions showing initiative have been shown in Fig. 1. 5 We use the code
from the author: https://github.com/zhenduow/conversationalQA 6 We implement
the bi-encoders based on BERT, as MuSIc and most of the baselines use BERT.

We also compare MuSIc with the state-of-art system action pre-
diction method Co-Gen [70]. Co-Gen generates actions and re-
sponses concurrently — the two generators share a common latent
space. We consider two variants of Co-Gen:7 (i) Co-Gen (action
prediction) is trained with action and response generation; the
model outputs actions based on which we derive initiative-taking
decisions using our action-initiative mapping. (ii) Co-Gen (SIP) is
trained with SIP and response generation; the action generator in
the original paper directly learns SIP to output the initiative-taking
decision at the next turn.

Linear-chain CRF-based methods cannot be directly applied to
SIP as they need to be given the unobservable utterance at the
next turn. Based on the same BERT utterance encoder and prior-
posterior inter-utterance encoders as in MuSIc, we implement the
following: (i) VanillaCRF only uses a unique transition matrix
(see Eq. 4). (ii) VanillaCRF+features feeding the three multi-turn
features into the prior-posterior inter-utterance encoders by en-
coding the multi-turn features as one-hot vectors at each turn and
concatenating the vectors with the BERT utterance representation.
(iii) DynamicCRF uses adjacent input observations 𝑥𝑡 , 𝑥𝑡+1 to gen-
erate a dynamic transition matrix𝐺𝑥𝑡 ,𝑥𝑡+1 to model the dependency
between the corresponding output decisions 𝑦𝑡 , 𝑦𝑡+1 [24, 27, 54, 55].
𝑥𝑇 is unseen so𝐺𝑥𝑇 −1,𝑥𝑇 cannot be computed. Like the calculation
of the prior/posterior emissions scores in MuSIc, we use the out-
put of the prior inter-utterance encoder h𝑥𝑇 −1

𝑝𝑟𝑖
to generate a prior

transition matrix 𝐺𝑥𝑇 −1 for the output decisions 𝑦𝑇−1, 𝑦𝑇 ; 𝐺𝑥𝑇 −1

approximates a posterior matrix 𝐺𝑥𝑇 −1,𝑥𝑇 generated by the output
of the posterior encoder h𝑥𝑇 −1

𝑝𝑜𝑠 , h𝑥𝑇𝑝𝑜𝑠 via an MSE loss.
Evaluationmetrics. Because SIP is a binary classification problem,
we use macro-averaged F1, precision, recall, and accuracy.
Implementation details. For all models except LLaMA, we use
BERT encoders (BERT-base) on all datasets, set the hidden size to
768, batch whole conversations instead of individual turns, set the
overall learning rate to 0.00002, use the Adam optimizer [29], and
pick the best checkpoint in terms of F1 on the validation set.8 For
LLaMA with all sizes, we randomly sample 2 complete conversa-
tions from the training set of WISE/MSDialog as demonstrations
since other numbers lead to degraded performance. Note that all
methods need to predict initiative-taking decisions for all system
turns in all conversations in a dataset. Our code and data resources
are available at https://github.com/ChuanMeng/SIP.

6 RESULTS AND ANALYSIS
6.1 Performance comparison
To answer RQ1, the results of MuSIc and all baselines on WISE and
MSDialog are presented in Table 2. We have five observations.

First, LLaMA-7B/13B gets theworst result onWISE; onMSDialog,
LLaMA-13B outperforms CtxPred (BERT), and is comparable to
VanillaCRF and DynamicCRF, showing the effectiveness of LLMs.
However, LLaMAwith a larger parameter size even performs worse
7 We use the code released by the author and adapt Co-Gen to SIP by making three
changes: (i) we replace the GRU encoder with a BERT encoder like MuSIc has; (ii) Co–
Gen requires a state vector (belief state and database records) that does not exist in CIS,
so we replace the state vector with one-hot vectors encoding the current multi-turn
features; and (iii) we remove reinforcement learning in Co-Gen as the rewards (task
completion) do not exist in both CIS datasets. 8 We found that F1 can better show the
ability of a model to deal with the class imbalance problem according to experimental
results on the WISE and MSDialog validation sets.

https://github.com/zhenduow/conversationalQA
https://github.com/ChuanMeng/SIP
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Table 2: Performance comparison on SIP. Significant improvements over the best baseline results are marked with ∗ (t-test,
𝑝 < 0.05). The significance test is only performed on accuracy because it gives a score for each individual example, while other
metrics evaluate the performance over all examples. Chinese versions of LLaMA-33B/65B are unavailable at the time of writing.

Methods WISE (%) MSDialog (%)

F1 Precision Recall Accuracy F1 Precision Recall Accuracy

LLaMA-7B 46.96 46.69 47.57 75.45 60.22 60.40 60.13 62.15
LLaMA-13B 26.91 55.01 54.28 26.96 62.54 62.73 63.21 62.99
LLaMA-33B – – – – 58.11 58.24 58.53 58.76
LLaMA-65B – – – – 55.30 62.33 60.44 55.93

CtxPred (BERT) 68.47 69.66 67.52 84.16 60.17 60.25 60.12 61.86
RCSQ 70.11 71.57 68.96 85.07 63.68 63.86 64.38 64.12

Co-Gen (action prediction) 67.65 69.89 66.14 84.40 53.76 55.23 54.35 58.47
Co-Gen (SIP) 69.47 71.37 68.09 85.01 63.13 63.62 62.97 65.25

VanillaCRF 69.06 71.38 67.46 85.04 62.31 63.24 62.17 64.97
DynamicCRF 69.21 71.25 67.75 84.97 62.01 61.95 62.20 62.99
VanillaCRF+features 69.32 71.85 67.61 85.25 63.29 64.19 63.10 65.82

MuSIc 71.40 73.53 69.84 85.98∗ 65.37 65.79 65.19 67.23∗

in most cases, e.g., 7B vs. 13B onWISE and 33B vs. 65B onMSDialog.
This problem is also known as inverse scaling [36]. McKenzie et al.
[36] identify four potential causes of it and highlight that there’s
still much to uncover in understanding it. Further investigation of
this problem on SIP is left for future work.

Second, MuSIc and the linear-chain CRF-based methods out-
perform CtxPred (BERT). In terms of F1, VanillaCRF outperforms
CtxPred (BERT) by 0.59% and 2.14% on WISE and MSDialog, re-
spectively. The gains indicate that it is beneficial for SIP to capture
dependencies between adjacent initiative-taking decisions.

Third, both MuSIc and VanillaCRF+features outperform Vanil-
laCRF and DynamicCRF, indicating that it is beneficial for SIP to
take into account the impact of multi-turn features on an initiative-
taking decision. Also, in terms of F1, MuSIc outperforms Vanil-
laCRF+features by more than 3% on both datasets, underlining the
importance of introducing such impact in the CRF layer.

Fourth, Co-Gen (action prediction) performs poorly, indicating
that SIP cannot be effectively inferred from the predicted system
actions. This could be due to the large action space, making the
model prone to action prediction errors, which would propagate to
SIP. It also implies the potential of SIP to reduce the decision space
of action prediction, which we discuss in response to RQ4. Co-Gen
(SIP) outperforms Co-Gen (action prediction), suggesting that shar-
ing a common latent space between SIP and response generation is
beneficial, however, MuSIc does not use that information.

Fifth, MuSIc outperforms RCSQ, which uses system initiative and
non-initiative utterance candidates returned by retrieval models,
whereas MuSIc does not have access to such information. MuSIc
outperforms RCSQ in terms of F1 by 2.51% and 2.89% on WISE and
MSDialog, respectively, confirming the effectiveness of MuSIc.

6.2 Visualisation of transition matrices
We show MuSIc’s transition matrices G𝑠2𝑢 , G𝑢2𝑠,𝑛=0, G𝑢2𝑠,𝑛>0,𝑑=2

and G𝑢2𝑠,𝑛>0,𝑑>2 on WISE and MSDialog in Fig. 6. We see differ-
ent patterns in each transition matrix, indicating that different
transition patterns are associated with different cases: (i) G𝑢2𝑠,𝑛=0

shows that the user’s initiative tends to transition to the system’s
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Figure 6: MuSIc’s transition matrices learned on WISE and
MSDialog. N and I denote non-initiative and initiative, re-
spectively. See Section 4.2.3 for more information about each
transition matrix. Transition scores are normalized across
columns. Darker colors indicate higher scores.

initiative when the system has not taken the initiative before. This
corresponds to cases where the system tends to take the initiative
for the first time to ask a clarifying question after the user has
asked a question. (ii) G𝑢2𝑠,𝑛>0,𝑑=2 shows that the user’s initiative
tends to transition to the system’s non-initiative if the system has
taken the initiative at the last system turn. In other words, the
system is less likely to take the initiative in two consecutive system
turns if the user takes the initiative in the middle. (iii) According to
G𝑢2𝑠,𝑛>0,𝑑>2, we see that compared to G𝑢2𝑠,𝑛>0,𝑑=2, if the system
has not taken the initiative at the last system turn, the possibil-
ity of system initiative increases, especially when the user takes
the initiative (on MSDialog). This corresponds to cases where the
system takes the initiative once again to ask for feedback after an-
swering a question from the user. The complexities of the patterns
described above indicate that MuSIc effectively captures the impact
of multi-turn features on an initiative-taking decision.

6.3 Effect of different multi-turn features
To answer RQ2, we evaluate MuSIc with multi-turn features on
WISE andMSDialog.We consider four settings: (i) (r, n, d) is our final
model considering all features (Eq. 7); (ii) (r, n) does not consider
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Table 3: Effect of multi-turn features in MuSIc. Notation for
features explained in Section 6.3. ∗ means (r, n, d) is signifi-
cantly better than (–).

fe
at
u. WISE (%) MSDialog (%)

F1 Prec. Recall Acc. F1 Prec. Recall Acc.

r, n, d 71.40 73.53 69.84 85.98∗ 65.37 65.79 65.19 67.23∗

r, n 70.71 73.00 69.08 85.75 64.80 64.96 64.70 66.38
r 69.98 72.03 68.49 85.31 62.84 63.10 62.72 64.69
– 69.06 71.38 67.46 85.04 62.31 63.24 62.17 64.97

the distance to the last system’s initiative turn (Eq. 6); (iii) (r) does
not consider the number of times the system has taken the initiative
(Eq. 5); (iv) – does not consider any feature, degrading to VanillaCRF
(Eq. 4). See Table 3. All proposed multi-turn features contribute
to the success of MuSIc. On WISE, the MuSIc performance shows
the biggest drop (0.92%) in terms of F1 score after removing role
transition direction ((r) vs. –). OnMSDialog, MuSIc’s F1 score shows
the biggest drop (1.96%) after removing the number of times the
system has taken the initiative ((r, n) vs. (r)).

6.4 Benefits of SIP on other tasks
We have demonstrated the effectiveness of MuSIc on SIP. Next, we
illustrate two applications of SIP.
Improving clarification need prediction via transfer learning.
To answer RQ3, we examine the benefits of SIP to clarification
need prediction (CNP) [2, 3, 5, 64, 65, 68]. We examine whether
knowledge shared among system-initiative actions learned through
SIP on a dataset (MSDialog) can be reused to improve clarification
need prediction on the single-turn ClariQ dataset [2, 3]. We adopt
MuSIc and the two strong clarification need prediction baselines
CtxPred (BERT) [2, 3, 68] and RCSQ [64, 65] in two settings: (i) a
supervised setting (CNP, ClariQ), where we only trainmodels on the
ClariQ training dataset, and (ii) a transfer learning setting (SIP, MS.
→CNP, ClariQ), where we first get the best checkpoints pre-trained
on SIP on the MSDialog training set and then fine-tune them on
the ClariQ training dataset. We also introduce MiniLm-ANC [5], an
unsupervised learning method for clarification need prediction. We
follow [5] to binarize the graded clarification need scores ranging
from 1 (no need for clarification) to 4 (clarification is necessary) on
ClariQ. Unlike [5], where scores are split in the middle, we only
regard score 1 as not asking a clarifying question because the author
of ClariQ states that clarification is still needed for scores 2 and 3
but not as much as score 4.9 We present the results in Table 4.

MuSIc outperforms strong baselines on the single-turn ClariQ
dataset in the supervised setting; it outperforms MiniLm-ANC and
RCSQ (CNP, ClariQ) that use retrieved documents by 6.88% and
3.07% in terms of F1 score, respectively. Transfer learning from
SIP to clarification need prediction benefits MuSIc and the base-
lines: performance increases with knowledge shared among system-
initiative actions acquired from SIP.MuSIc (SIP,MS.→CNP, ClariQ)
shows an increase (3.77%) in terms of F1 compared to MuSIc (CNP,
ClariQ), significantly exceeding all baselines in the transfer learning
setting and achieving state-of-the-art performance on ClariQ.

Because the MSDialog training set contains system utterances of
clarifying questions, pre-training on SIP on the MSDialog dataset
9 https://github.com/aliannejadi/ClariQ

Table 4: Performance on clarification need prediction on
ClariQ. (CNP, ClariQ) indicates models in the supervised set-
ting, where we only train the models on the ClariQ training
dataset; (SIP, MS. → CNP, ClariQ) indicates models in the
transfer learning setting, where we further fine-tune the
best checkpoints, pre-trained on SIP, on the ClariQ training
dataset; MuSIc (CNP, MS.→ CNP, ClariQ), pre-trained on the
SIP examples only containing clarifying questions on the
MSDialog training dataset. Significant improvements over
the best baseline results are marked with ∗ (t-test, 𝑝 < 0.05).

Method ClariQ (%)

F1 Prec. Recall Acc.

MiniLm-ANC 54.38 54.12 54.95 77.05

CtxPred (CNP, ClariQ) 50.59 50.66 50.59 78.69
RCSQ (CNP, ClariQ) 58.19 58.73 57.78 81.97
MuSIc (CNP, ClariQ) 61.26 64.64 59.67 85.25

CtxPred (SIP, MS.→ CNP, ClariQ) 56.84 56.84 56.84 80.33
RCSQ (SIP, MS. → CNP, ClariQ) 61.26 64.64 59.67 85.25
MuSIc (CNP, MS. → CNP, ClariQ) 63.03 69.74 60.61 86.89
MuSIc (SIP, MS.→ CNP, ClariQ) 65.03 78.16 61.56 88.52∗

already includes the pre-training of clarification need prediction.
Is the improvement of transfer learning because the model learns
knowledge shared among various system-initiative actions on the
SIP task or because the model is just augmented with more training
examples of clarification need prediction on MSDialog? In order
to determine this, we introduce MuSIc (CNP, MS. → CNP, ClariQ),
which is only pre-trained on clarification need prediction on the
MSDialog training dataset, i.e., pre-trained on the partial SIP train-
ing examples containing clarifying questions. The performance of
MuSIc (SIP, MS.→ CNP, ClariQ) shows an increase (2%) in terms
of F1 score compared to the performance of MuSIc (CNP, MS. →
CNP, ClariQ), confirming that shared knowledge of various system-
initiative actions learned through SIP benefits the model.
Improving downstream action prediction. To answer RQ4, we
propose a SIP-aware action prediction framework where action pre-
diction is fed with the initiative-taking decision predicted by MuSIc.
In our scenario, the system can take multiple actions per turn. Multi-
action system action prediction is typically modeled as multi-label
classification [25, 34, 67] or sequence generation [28, 34, 52, 63]. We
adopt two typical models for both types and a state-of-art system
action prediction method, Co-Gen [70]: (i) following [25, 34, 67],
we construct a multi-label classification model by using a BERT en-
coder to encode the context and feeding the [CLS] token to an MLP
followed by sigmoid activation function to perform binary classifi-
cation for each action; (ii) following [28, 34, 52, 63], we construct a
sequence generation model by using BERT to encode the context
and feeding the [CLS] token to a GRU decoder to sequentially de-
code actions step by step; and (iii) Co-Gen is a sequence generation
model, and we use Co-Gen (action prediction) (see Section 5) to
generate actions. To inject initiative-taking decisions into these
models, we first embed an initiative-taking decision (annotated
during training and predicted by MuSIc during inference) to a 768-
dimensional vector. For the models under (i) and (ii) we concatenate
the vector with the [CLS] token and feed the concatenation to an

https://github.com/aliannejadi/ClariQ
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Table 5: Performance on the downstream task. Methods used:
mlc (multi-label classification), sg (sequence generation), and
Co-Gen (state-of-the-art action prediction). + MuSIc: inject
the initiative-taking decision predicted by MuSIc; + oracle:
inject ground-truth initiative-taking decisions. Significant
improvements over results of methods without using SIP
results are marked with ∗ (t-test, 𝑝 < 0.05).

M
et
h. WISE (%) MSDialog (%)

F1 Prec. Recall Acc. F1 Prec. Recall Acc.

mlc 21.59 25.80 20.24 48.78 18.23 20.41 18.06 48.83
+ MuSIc 23.05 25.87 22.71 51.98∗ 19.61 24.00 18.53 50.11∗

+ oracle 24.78 27.53 24.82 54.69 21.77 29.08 19.84 56.51

sg 21.92 22.77 23.01 54.28 19.36 21.65 19.31 45.87
+ MuSIc 23.28 25.92 24.07 56.68∗ 21.12 22.94 21.00 49.87∗

+ oracle 29.40 29.29 32.09 61.50 27.88 31.43 26.61 53.71

Co-Gen 24.17 24.14 25.77 55.02 21.34 22.98 20.95 48.94
+ MuSIc 26.26 28.95 26.86 58.54∗ 23.38 24.39 23.08 51.76∗

+ oracle 30.49 31.49 32.23 62.32 28.37 29.14 28.27 57.47

MLP/GRU decoder. For Co-Gen, we concatenate the vector with
the context representation (see [70]).

For evaluation, we adopt the same metrics as the previous sec-
tions except for accuracy. Accuracy here is measured by the Ham-
ming score (a.k.a. the intersection over the union) [23] that is widely
used in multi-label classification evaluation [43]. Table 5 shows the
results. The performance of three action prediction models fed with
the initiative-taking decision predicted by MuSIc (+ MuSIc) is sig-
nificantly improved compared to models without using SIP results.
We think that this is because SIP, when effective, can reduce the
action space of the downstream action prediction models. However,
the downstream action prediction model cannot solve the SIP task
(see Section 6.1). It shows that action prediction cannot replace SIP,
reiterating the effectiveness of SIP in benefiting downstream tasks.

6.5 Error analysis
We conduct an error analysis of SIP. We group system initiative
utterances in the test sets of WISE and MSDialog according to their
annotated system-initiative actions; utterances in each group share
the same system-initiative action. See Fig. 7. MuSIc can still perform
well on some system-initiative actions that only take up a limited
proportion of the training sets. E.g., on MSDialog, the percentage
of CQ is far less than the percentage of IR in the training set, but
the performance of MuSIc is comparable in terms of CQ and IR in
the test set. SIP enables knowledge sharing among various system-
initiative actions, benefiting individual system-initiative actions.
For revise (RV), there are only 4 and 3 system utterances of this
type in the WISE training and test sets, respectively, numbers that
are too small to properly evaluate the performance.

7 CONCLUSIONS AND FUTUREWORK
We have introduced the task of system initiative prediction (SIP),
which is to predict whether a CIS system should take the initiative
at the next turn. We found that it is natural to utilize probabilistic
graphical models for SIP but we faced two main challenges: solv-
ing the input-incomplete sequence labeling problem and explicitly
modeling multi-turn features. To solve the challenges, we proposed
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Figure 7: SIP accuracy over utterance groups (utterances in
one group share the same system-initiative action) in the
test sets and percentages of system-initiative actions in the
training sets. Abbreviations are explained in Figure 1.

MuSIc, which has (i) prior-posterior inter-utterance encoders to adapt
CRFs to input-incomplete sequence labeling by eliminating the need
to be given the unobservable system utterance at the next turn, and
(ii) a multi-turn feature-aware CRF layer to jointly consider depen-
dencies between adjacent user–system initiative-taking decisions and
the impact of multi-turn features on an initiative-taking decision.

Experiments on two CIS datasets show that MuSIc outperforms
various baselines including LLMs and achieves state-of-the-art per-
formance on SIP. A visual analysis shows how the learned transition
matrices exhibit MuSIc’s interpretability and transparency. Trans-
ferring knowledge shared among system-initiative actions learned
through SIP to the clarification need prediction task greatly benefits
it; MuSIc achieves state-of-the-art performance on ClariQ. Lastly,
SIP significantly improves the downstream action prediction task
by the proposed SIP-aware action prediction framework.

As to MuSIc’s limitations and future work, MuSIc does not utilize
retrieved documents to improve SIP. Recent research into query
performance prediction (QPP) on conversational search [37, 38]
has shown that QPP can model retrieved documents and has the
potential to help a CIS system take appropriate action at the next
turn [37, 38]. We plan to incorporate QPP-based features into our
model. Clearly, splitting out SIP as a separate task adds complexity
to CIS systems. Pre-training a model on SIP to learn knowledge
shared among system-initiative actions and then fine-tuning the
model on other tasks does not change the model architecture, but
only increases training time without affecting inference time. Our
proposed SIP-aware action prediction framework models SIP and
action prediction as a two-stage process, which carries additional
computational costs at inference time. We plan to improve the
efficiency in the future, e.g., by modeling SIP and action prediction
jointly in one stage.
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