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1
Introduction

Recommender systems have become an essential component of many online
platforms [131]. Recommender systems can help users find relevant items that
meet their preferences. They can also help items to get exposed to potential
users. When users interact with a recommender system, they leave a trace
of their behavior on the platform, which can be collected and used by the
recommender system to infer the users’ potential preferences [37, 85, 110]. In
this thesis, we focus on recommendation scenarios, where the users’ preferences
may change over time.

Over the years, advances in deep learning have led to the development of
numerous recommendation models that employ deep learning techniques [49,
58, 62, 65, 73, 88, 89, 92, 96, 101, 117, 125, 127]. These approaches have of-
ten focused on the goal of increasing overall accuracy. However, they neglect
an essential aspect of user behavior: repetition and exploration. People often
have regular habits and display repetition behavior when they interact with the
platform [3, 12, 19]. That is, users may repurchase the same item, re-listen to
the same song, etc. Apart from repetition behavior, people also explore and
discover new and diverse items on a recommendation platform: the discovery
of something new can be a great source of joy and user satisfaction [47, 57].
Understanding the dynamics of repetition and exploration is crucial for a more
rigid evaluation and developing more accurate and effective recommender sys-
tems. Thus, in this thesis, we study the repetition and exploration through four
types of recommendation problems in Figure 1.1, and focus on two aspects:
evaluation and optimization.

To start with, we consider the scenario of next basket recommendation
(NBR) in grocery shopping, where repetition behavior is prevalent. We provide
a novel angle on the evaluation of NBR methods, centered on the distinction
between repetition and exploration: the next basket for a user is typically com-
posed of previously consumed items (i.e., repeat items) and items that are new
to the user (i.e., explore items).

Next, always recommending previously purchased items has the risk of re-
ducing user interest [3], thus, an important goal of recommendation is to help
users discover new items they have not purchased before. We isolate the explo-
ration task from conventional NBR and define the next novel basket recommen-
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1. Introduction

Next basket recommendation Next novel basket recommendation

Reverse next period recommendation

(User-centered) (User-centered)

(Item-centered)

Sequential item recommendation

(User-centered)
(Item-centered)

Figure 1.1: Four recommendation problems studied in this thesis.

dation (NNBR) task. Besides, it is worth thinking about the potential impact of
the repetition signals on the models’ exploration recommendation performance.
Thus, we investigate methods for enhancing exploration recommendation in the
presence of repetition signals.

Then, expanding our scope of research, we look into an item-centered rec-
ommendation scenario, aiming to assist items in finding their potential users.
We introduce the reverse next-period recommendation (RNPR) task, analyze
repetition behaviors at both the item and category levels, and propose item-
centered models and training strategies using the insights obtained from the
repetition analysis.

Finally, we shift our focus to the broader task of sequential recommendation
(SR) and item-side exposure evaluation. Similar to the NBR scenario, most
previous research neglects the difference between the repetition task and the
exploration task, and focuses on increasing the overall accuracy. The notion of
item exposure is used to measure how items get exposed to the users, which
has become an important factor that models need to consider, as items and
producers are important participants within a recommender system. However,
existing research w.r.t. item exposure is mostly focused on individual or group
fairness and does not consider different types of users. Therefore, beyond offer-
ing analyses of repetition and exploration behavior, we propose novel evaluation
metrics, namely, item explore exposure and item repeat exposure, to analyze
the allocation of exposure.

In this thesis, we gain insights into the role of repetition and exploration
in recommender systems. Our findings emphasize the importance of evaluat-
ing and optimizing recommendation models from repetition and exploration
perspectives.

1.1 Research Outline and Questions

Throughout this thesis, we attempt to understand and utilize repetition and ex-
ploration in recommendation from several aspects. We mainly focus on two re-

2



1.1. Research Outline and Questions

search themes: (i) evaluating recommendation performance, and (ii) optimizing
and designing recommendation methods. We scope our research by answering
the following four main research questions across four chapters.

We start by investigating the recommendation in the grocery shopping sce-
nario, where people have regular habits and repetition behavior. Specifically,
we focus on the next basket recommendation task, which recommends a set of
items (the next basket) based on the user’s historical baskets. Previous meth-
ods for next basket recommendation only focus on designing models to achieve
better overall performance but fail to realize that the next basket is typically
composed of previously consumed items (i.e., repeat items) and new items (i.e.,
explore items). So, we formulate our first research question as follows:

RQ1 How to evaluate the next basket recommendation performance from the
perspective of repetition and exploration?

To answer this question, we first perform an analysis of the overall performance
of state-of-the-art NBR methods on datasets with different levels of repetition
behavior. We find that no NBR method is able to consistently achieve the
best performance in terms of average accuracy across different datasets. Next,
we dive deeper into analyzing the components of the recommended basket, and
propose a set of evaluation metrics that measure the basket components and the
performance in terms of a repetition recommendation task (i.e., recommending
repeat items) and an exploration recommendation task (i.e., recommending ex-
plore items), respectively. Using the proposed new metrics, we provide a second
analysis of state-of-the-art NBR methods. We identify a substantial imbalance
in difficulty between the repetition recommendation task and the exploration
recommendation task. Being biased towards the easier repetition task is an
important strategy that helps to boost the overall NBR performance. Further-
more, this analysis also examines the NBR performance from various aspects
(e.g., limitations of overall performance, treatment effect, etc.) and points out
several important guidelines that researchers working on NBR should follow
when designing or evaluating an NBR model.

Naturally, people might simply get tired of repurchasing the same set of
items and one important goal of a recommender system is to help users discover
new items that meet their preferences. Therefore, we formulate our second
research question as follows:

RQ2 How to design basket recommendation models targeted at the exploration
task, and how to optimize the model to explore items in a scenario with
many repetition signals?

To answer this question, we first isolate the exploration task from the conven-
tional NBR task and formulate the next novel basket recommendation (NNBR)
task, which focuses on recommending a novel basket, i.e., a set of items that are
new to a given user. Next, we investigate the performance of several representa-
tive NBR methods w.r.t. the NNBR task and find that training specifically for
the exploration task (i.e., removing repeat items in the training labels) does not

3



1. Introduction

always lead to better performance. We propose a simple bi-directional trans-
former basket recommendation (BTBR) model that learns item-to-item correla-
tions across baskets. A straightforward approach to training the BTBR model
involves randomly masking the items in the basket sequence and then attempt-
ing to predict these masked items. We identify one potential issue w.r.t. the
random masking strategy, i.e., masked items (prediction target) might still exist
in the non-masked positions, so the model might mainly predict the masked item
via its repetition information rather than inferring new items based on item-
to-item correlations. To this end, we propose and investigate several types of
masking strategy with different methods for dealing with the repetition signal.
We also consider flexible orders of items across baskets in a grocery shopping
scenario and propose item-swapping strategies to enrich item-to-item correla-
tions. Our experimental results validate the effectiveness of the proposed BTBR
model and the proposed strategies.

Now, the above two research questions focus on the user-centered recom-
mendation tasks, that help users find their preferred items. Another potential
application of the recommender system is to turn this around and help an item
find its potential users. Our next research question turns to this type of item-
centered recommendation.

RQ3 How to help a given item find its potential users in an item-centered
setting, and how do repetition and exploration influence the design and
optimization of the recommendation model?

To answer this question, we first formulate a novel “item-centered” recommen-
dation task in a sequential setting, namely reverse next-period recommenda-
tion (RNPR). Considering different types of target users, we define three sub-
tasks for RNPR, i.e., Expl-RNPR, Rep-RNPR and Mixed-RNPR. Before de-
signing models, we first analyze the users’ repetition behaviors on both item-
and category-levels, and we find that category-level repetition behavior is more
stable than item-level. Benefiting from this finding, we propose several item-
centered models, i.e., the habit-interest fusion (HIF) model for the Expl-RNPR
task and the repetition-exploration ranking user (REUR) algorithm to inves-
tigate the trade-off within the Mixed-RNPR task. We propose two candidate
filtering strategies, i.e., repetition rule-based and using a candidate filtering
model. Besides, we propose two ways of constructing training samples for the
HIF model. Our experimental results demonstrate the effectiveness of the pro-
posed methods and validate the importance of considering the repetition and
exploration in an item-centered recommendation setting.

Until now, we have mainly focused on recommendations in the grocery shop-
ping domain. Next, we switch to a more general recommendation task, i.e.,
sequential recommendation, and focus on the following research question:

RQ4 How do sequential recommendation models perform, and how should we
evaluate item exposure from the perspective of repetition and exploration?

To answer this question, we first analyze the accuracy of sequential recommen-
dation (SR) models through the lens of repeat and explore items. We confirm

4



1.2. Main Contributions

that the imbalance in performance and difficulty between the repetition task and
exploration task known from previous NBR tasks also exists in the SR scenario.
We point out evaluation issues of only using the overall average performance
(in terms of accuracy) with a significance test. Next, we propose item explore
exposure and item repeat exposure as metrics to analyze the exposure alloca-
tion at a more fine-grained level and demonstrate the importance of considering
item explore exposure. We find that several state-of-the-art SR models suffer
from the problem of zero/few item explore exposure, i.e., an item might be only
exposed to users who have purchased it before. Surprisingly, we find that even
in a pure exploration scenario, SR models still recommend repeat items to the
user. We identify this issue as inherent repetitive bias. We find that the widely
used shared embeddings in the prediction layer will increase repetitive bias and
propose a remove repeat items rule (3R strategy) to address this issue in a pure
exploration scenario.

Overall, by taking a deep dive into repetition and exploration from differ-
ent aspects across different tasks, our work in this thesis sheds light on the
evaluation of recommendations and yields useful insights for the design of rec-
ommendation models.

1.2 Main Contributions

In this section, we summarize the main contributions of this thesis in three
groups:
Theoretical contributions.

• A methodology to evaluate the next basket recommendation performance
from the perspective of repetition and exploration (Chapter 2).

• A new task, next novel basket recommendation (NNBR), which focuses on
the exploration recommendation task in the next basket recommendation
scenario (Chapter 3).

• A new task, reverse next period recommendation (RNPR), which focuses
on the item-side recommendation, together with a taxonomy of RNPR
tasks according to different types of target users from the perspective of
repetition and exploration (Chapter 4).

• A methodology to evaluate the item exposure in the setting of sequen-
tial recommendation from the perspective of repetition and exploration
(Chapter 5).

Algorithmic contributions.

• A bi-directional transformer basket recommendation (BTBR) model for
the NNBR task, which directly models item-to-item correlations across
baskets (Chapter 3).
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1. Introduction

• A group of training and masking methods to effectively train the BTBR
model for the NNBR task, which considers different tasks and different
training signals (Chapter 3).

• An item swapping method to train the BTBR model for the NNBR task,
which considers flexible orders in the grocery shopping scenario (Chapter
3).

• A habit-interest fusion (HIF) model for the Expl-RNPR task, which lever-
ages high-level (category) repetition behavior to help low-level (item) ex-
ploration tasks (Chapter 4).

• Two training sample construction strategies for the habit-interest fusion
model, which consist of a positive sample augmentation strategy and a
negative sample adjustment strategy (Chapter 4).

• A repetition-exploration user ranking algorithm for the Mixed-RNPR task,
which decouples the repetition and exploration tasks and investigates their
trade-off in an item-centered setting (Chapter 4).

• Two repetition rule-based candidate filtering methods (i.e., RRBF-item
and RRBF), which help to reduce the computational costs of the RNPR
task (Chapter 4).

• A model-based candidate filtering method to further reduce the computa-
tional costs of RNPR task, which predicts whether a user likes to repur-
chase a category or not (Chapter 4).

• A method, remove repeat items rule (3R strategy), which can mitigate the
repetitive bias issue in a pure exploration scenario (Chapter 5).

Empirical contributions.

• An empirical evaluation of state-of-the-art NBR methods from the per-
spective of repetition and exploration, which covers the following seven
aspects: (i) overall performance on different scenarios with different lev-
els of repetition behavior; (ii) components of the recommended basket;
(iii) repetition and exploration performance; (iv) the contribution of repe-
tition and exploration to the overall performance; (v) the treatment effect
for different user groups; (vi) the potential limitations of the use of aver-
aged metrics; and (vii) the treatment effect for different items (Chapter
2).

• An empirical comparison of training existing NBR method for NNBR
tasks using different training strategies, i.e., Train-all and Train-explore
(Chapter 3).

• An empirical comparison of training the BTBR model using five mask-
ing strategies, i.e., item-level random masking, item-level select masking,
basket-level all masking, basket-level explore masking, and joint masking
(Chapter 3).
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• An empirical evaluation of training the BTBR model using an item-
swapping strategy (Chapter 3).

• An empirical analysis of users’ repetition behavior on different levels from
both a user and item perspective (Chapter 4).

• An empirical evaluation of item-centered NBR methods on the RNPR
task (Chapter 4).

• An empirical comparison of the HIF model and REUR algorithm against
baselines on the RNPR task (Chapter 4).

• An empirical analysis of the trade-off between repetition and exploration
in RNPR task (Chapter 4).

• An empirical evaluation of the rule-based candidate filtering methods and
model-based candidate filtering methods (Chapter 4).

• An empirical evaluation of representative SR methods from repetition and
exploration perspective, which covers both user-centered perspective and
item-centered perspective (Chapter 5).

• An empirical analysis of repetitive bias from two aspects: (i) repetition
“shortcuts”, and (ii) shared embeddings and independent embeddings used
in the prediction layer (Chapter 5).

• An empirical comparison of SR models with the 3R strategy against with-
out the 3R strategy in a pure exploration scenario (Chapter 5).

1.3 Thesis Overview

In this thesis, we focus on understanding recommendation evaluation from a
repetition and an exploration perspective, and optimizing the recommendation
algorithms according to our findings.

In Chapter 2, we focus on the next basket recommendation task in the
context of grocery shopping. We propose several evaluation metrics and sys-
tematically analyze existing next basket recommendation models through the
lenses of repetition and exploration.

In Chapter 3, we focus on the exploration recommendation task in a scenario
with lots of repetition signals. We formulate the next novel basket recommen-
dation task, and propose a transformer-based basket recommendation model for
this specific task. We also design and investigate various training strategies to
enhance the model’s exploration ability.

In Chapter 4, we focus on an item-centered recommendation scenario and
formulate the reverse next-period recommendation task, which aims to assist
items in identifying potential users who are likely to purchase them in the
near future. Again, considering repetition and exploration, we analyze users’
behavior on both the category level and the item level, from both the item
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side and the user side. Based on the findings derived from the analysis, we
propose several sub-tasks and design corresponding recommendation models
and training strategies for different sub-tasks.

In Chapter 5, we focus on a more general and extensively studied recommen-
dation task, i.e., sequential recommendation. We perform a systematic analysis
of several representative sequential recommendation models. Apart from the
accuracy analysis, we also analyze item exposure from the perspective of repe-
tition and exploration, and identify two important issues, i.e., zero/less explore
exposure and repetitive bias.

In Chapter 6, we give a summary of the thesis, discuss limitations, and
provide insights and future directions around this research.

1.4 Origins

The materials in this thesis come from the following publications:

Chapter 2 is based on the following paper:

• M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A next basket
recommendation reality check. ACM Transactions on Information
Systems, 41(4):Article 116, 2023.

ML designed the evaluation metrics, conducted the experiments, and an-
alyzed the results. All authors contributed to the conception and writing.

Chapter 3 is based on the following paper:

• M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Masked and
swapped sequence modeling for next novel basket recommendation
in grocery shopping. In RecSys 2023: 17th ACM Conference on Rec-
ommender Systems, pages 35–46. ACM, September 2023.

ML designed the algorithms, conducted the experiments, and analyzed
the results. All authors contributed to the conception and writing.

Chapter 4 is based on the following paper:

• M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Who will pur-
chase this item next? Reverse next period recommendation in grocery
shopping. ACM Transactions on Recommender Systems, 1(2):Article
10, 2023.

ML designed the algorithms, conducted the experiments, and analyzed
the results. All authors contributed to the conception and writing.

Chapter 5 is based on the following paper:
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• M. Li, A. Vardasbi, A. Yates, and M. de Rijke. Repetition and ex-
ploration in sequential recommendation. In SIGIR 2023: 46th inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 2532–2541. ACM, July 2023.

ML designed the evaluation metrics, conducted the experiments, and an-
alyzed the results. All authors contributed to the conception and writing.

The thesis also benefited from work on the following publications:

• S. Deng, O. Sprangers, M. Li, S. Schelter, and M. de Rijke. Domain
generalization in time series forecasting. ACM Transactions on Knowledge
Discovery from Data, To appear.

• Y. Liu, M. Li, M. Ariannezhad, M. Mansoury, M. Aliannejadi, and M. de
Rijke. Measuring item fairness in next basket recommendation: A repro-
ducibility study. In ECIR 2024: 46th European Conference on Information
Retrieval. Springer, April 2024.

• M. Li, J. Huang, and M. de Rijke. Repetition and exploration in of-
fline reinforcement learning-based recommendations. In DRL4IR work-
shop@CIKM 2023, October 2023.

• M. Ariannezhad, M. Li, S. Jullien, and M. de Rijke. Tutorial: Complex
item set recommendation. In SIGIR 2023: 46th international ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
3444–3447. ACM, July 2023.

• M. Ariannezhad, M. Li, S. Schelter, and M. de Rijke. A personalized
neighborhood-based model for within-basket recommendation in grocery
shopping. In WSDM 2023: The Sixteenth International Conference on
Web Search and Data Mining, pages 87–95. ACM, February 2023.

• M. Ariannezhad, S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke.
ReCANet: A repeat consumption-aware neural network for next basket
recommendation in grocery shopping. In SIGIR 2022: 45th international
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1240–1250. ACM, July 2022.
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2
Repetition and Exploration in Next

Basket Recommendation

In this chapter, we focus on the repetition and exploration in the next basket
recommendation (NBR) task. The goal of a next basket recommendation system
is to recommend items for the next basket for a user, based on the sequence
of their prior baskets. We examine whether the performance gains of the NBR
methods reported in the literature hold up under a fair and comprehensive
comparison. To clarify the mixed picture that emerges from our comparison, we
provide a novel angle on the evaluation of next basket recommendation (NBR)
methods, centered on the distinction between repetition and exploration: the
next basket is typically composed of previously consumed items (i.e., repeat
items) and new items (i.e., explore items). In this manner, we address the
thesis-level research question RQ1:

How to evaluate the next basket recommendation performance from
the perspective of repetition and exploration?

2.1 Introduction

Over the years, NBR has received a considerable amount of interest from the
research community [9, 88, 125]. Baskets, or sets of items that are purchased or
consumed together, are pervasive in many real-world services, with e-commerce
and grocery shopping as prominent examples [43, 86]. Given a sequence of
baskets that a user has purchased or consumed in the past, the goal of a NBR
system is to generate the basket of items that the user would like to purchase or
consume next. Within a basket, items have no temporal order and are equally
important. A key difference between NBR and session-based or sequential item
recommendations is that NBR systems need to deal with multiple items in
one set. Therefore, models designed for item-based recommendation are not
fit for basket-based recommendation, and dedicated NBR methods have been

This chapter was published as: M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A
next basket recommendation reality check. ACM Transactions on Information Systems, 41
(4):Article 116, 2023.
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proposed [36, 51, 52, 62, 84, 93, 112, 125].

2.1.1 Types of recommendation methods

Over the years, we have seen the development of a wide range of recommenda-
tion methods. Frequency-based methods continue to play an important role as
they are able to capture global statistics concerning popularity of items; this
holds true for item-based recommendation scenarios as well as for NBR sce-
narios. Similarly, nearest neighbor-based methods have long been used for both
item-based and basket-based recommendation scenarios. More recently, deep
learning techniques have been developed to address sequential item recommen-
dation problems, building on the capacity of deep learning-based methods to
capture hidden relations and automatically learn representations [11]. Recent
years have also witnessed proposals to address different aspects of the NBR task
with deep learning-based methods, e.g., item-to-item relations [62], cross-basket
relations [127], and noise within a basket [84].

Recent analyses indicate that deep learning-based approaches may not be the
best performing for all recommendation tasks and under all conditions [55]. For
the task of generating a personalized ranked list of items, linear models and near-
est neighbor-based approaches outperform deep learning-based methods [29].
For sequential recommendation problems, deep learning-based methods may be
outperformed by simple nearest neighbor or graph-based baselines [27]. What
about the task of next basket recommendation? Here, the unit of retrieval —
a basket – is more complex than in the recommendation scenarios considered
in [27, 29, 55], with complex dependencies between items and baskets, across
time, thus creating a potential for sophisticated representation learning-based
approaches to NBR to yield performance gains. In this chapter, we take a closer
look at the field to see if this is actually true.

2.1.2 A new analysis perspective

We find important gaps and flaws in the literature on NBR. These include weak
or missing baselines, the use of different datasets in different papers, and of non-
standard metrics. We evaluate the performance of three families of state-of-the-
art NBR models (frequency-based, nearest neighbor-based, and deep learning-
based), on three benchmark datasets, and find that no NBR method consistently
outperforms all other methods across all settings.

Given these outcomes, we propose a more thorough analysis of the successes
and failures of NBR methods. As we show in Figure 2.1, baskets recommended
in a NBR scenario consist of repeat items (items that the user has consumed
before, in previous baskets) and explore items (items that are new to the user).
The novelty of recommended items has been studied before, and related met-
rics have also been proposed [100], but novelty-oriented metrics are not NBR
specific and only focus on one aspect, i.e., evaluating the novelty of the list of
recommendations. In order to improve our understanding of the relative per-
formance of NBR models, especially regarding repeat items and explore items,
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NBR  
Model

...

Basket

...

Basket

...

Basket

...

Ground-truth basket

...

Predicted basket
Historical basket sequence

Predicted  
repeat items

Predicted 
 explore items

Ground-truth
repeat items

Ground-truth
explore items

Figure 2.1: Four types of items in next basket recommendation.

we introduce a set of task-specific metrics for NBR. Our newly proposed met-
rics help us understand which types of items are present in the recommended
basket and assess the performance of NBR models when proposing new items
vs. already-purchased items.

2.1.3 Main findings

Equipped with our newly proposed metrics for NBR, we repeat our large-scale
comparison of NBR models and arrive at the following important findings:

• No NBR method consistently outperforms all other methods across dif-
ferent datasets.

• All published methods are heavily skewed towards either repetition or
exploration compared to the ground-truth, which might harm long-term
engagement.

• There is a large NBR performance gap between repetition and exploration;
repeat item recommendation is much easier.

• In many settings, deep learning-based NBR methods are outperformed by
frequency-based baselines that fill a basket with the most frequent items in
a user’s history, possibly complemented with items that are most frequent
across all users.

• A bias towards repeat items accounts for most of the performance gains
of recently published methods, even though many complex modules or
strategies specifically target explore items.

• We propose a new protocol for evaluating NBR methods, with a new
frequency-based NBR baseline as well as new metrics to assess the poten-
tial performance gains of NBR methods.
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• Existing NBR methods have different treatment effects on user perfor-
mance and item exposure for users with different repetition ratios and
items with different frequencies, respectively.

Overall, our work sheds light on the state-of-the-art of NBR, provides sugges-
tions to improve our evaluation methodology for NBR, helps us understand the
reasons underlying performance differences, and provides insights to inform the
design of future NBR models.

2.2 Related Work

2.2.1 Reproducibility in information retrieval

Reproducibility is a topic that has been at the center of information retrieval
(IR) research for many years. The mechanics of reproducibility have been a
constant factor since the early days of community benchmarking [104], resulting
in a large number of datasets and metrics. Artifact badging is a matter of
ongoing and active interest [38] as are ways to objectively quantify to what
extent a system-oriented IR experiment has been replicated or reproduced [16].

Asking which lessons hold up under closer scrutiny is not new either in IR.
Papers of this type have been written for query performance prediction [44],
ranking [7], learning to rank [97], search result diversification [1], online learning
to rank [80], question answering [26], and neural rankers [71, 122]. We are
particularly interested in this “which lessons hold up” aspect of reproducibility in
the context of recommender systems. Dacrema et al. [27, 29] and Jannach et al.
[55] have recently examined the relative strength of deep learning-based methods
for item recommendation, both in a traditional static setting and in a sequential
setting. In contrast, we consider the task of next basket recommendation (NBR)
and assess the relative merits of deep learning-based methods for this task.

Some NBR methods [9, 62, 84, 112, 125] only compare with previous (deep)
learning-based methods and avoid comparing with frequency-based baselines
that recommend the k most frequent items in a users’ historical records as the
next basket. In several cases, recent publications on NBR omit comparisons
to other recent methods [36, 52, 84, 127]. In [84], sampled metrics [58] are
used to evaluate the performance even though this is not encouraged [61]. As
our systematic comparisons below show, not all previously published lessons on
deep learning-based NBR methods hold up.

2.2.2 Next basket recommendation

The NBR problem has been studied for many years. As we explain in Section 2.3
below, we analyze the performance of three families of NBR methods. First,
we consider frequency-based methods; in different configurations they have been
considered as baselines in most prior work on NBR that we are aware of. Second
are nearest neighbor-based methods. TIFUKNN [52] and UP-CF@r [36] model
temporal patterns over frequency information and then combine with neighbor
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information or user-wise collaborative filtering. Third are deep learning-based
methods. Such methods often have a strong focus on learning representations
of baskets. Early precursors include the factorizing personalized Markov chains
(FPMC) [88], which leverage matrix factorization (MF) and Markov chains to
model users’ general interest and basket transition relations, and hierarchical
representation models (HRMs) [108], which apply aggregation operations to
learn a hierarchical representation of baskets; these two MC-based methods
only capture local short-term relations between adjacent baskets. In contrast,
RNNs have been used for the NBR task to learn long-term trends by mod-
eling the whole basket sequence. For instance, DREAM [125] uses max/avg
pooling to encode baskets. Sets2Sets [51] adapts an attention mechanism and
adds frequency information to improve performance. Some methods [62, 112]
consider item relations to obtain a better representation. Yu et al. [127] argue
that item-item relations between baskets are important and leverage GNNs to
capture these relations; the authors also use a self-attention mechanism to learn
temporal dependencies between baskets. Some methods [9, 21, 63, 93, 109] ex-
ploit auxiliary information, including product categories, amounts, prices, and
explicit time stamps; for the sake of a fair comparison, we omit these from our
reproducibility study.

What we add on top of prior work is not yet another NBR method but a
systematic comparison under the same experimental conditions across multiple
datasets as well as an analysis of the relative performance of state-of-the-art
NBR methods in terms of repetition and exploration, which helps to explain
the observed performance differences.

2.3 Experimental Setup

2.3.1 Datasets

In order to ensure the reproducibility of our study, we conduct our experiments
on three publicly available real-world datasets:

• TaFeng – contains four months of shopping transactions collected from
a Chinese grocery store. All products purchased on the same day by the
same user are treated as a basket.1

• Dunnhumby – covers two years of household-level transactions at a re-
tailer. All products bought by the same user in the same transaction
are treated as a basket. We use the first two months of the data in our
experiments.2

• Instacart – contains over three million grocery orders of Instacart users.
We treat all items purchased by the same user in the same order as a
basket.3

1https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
2https://www.dunnhumby.com/source-files/
3https://www.kaggle.com/c/instacart-market-basket-analysis/data
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Table 2.1: Statistics of the processed datasets.

Dataset #Items #Users
Avg.

basket
size

Avg.
#baskets
per user

Repeat
ratio

Explore
ratio

TaFeng 11,997 13,858 6.27 6.58 0.188 0.812
Dunnhumby 3,920 22,530 7.45 9.53 0.409 0.591
Instacart 13,897 19,435 9.61 13.21 0.597 0.403

Following previous work [51, 52, 62, 125, 127], we also employ a sampling strat-
egy instead of using the whole dataset. In each dataset, users with a basket size
between 3 and 50 are sampled to conduct experiments. We also remove rare and
unpopular items and the remainder covers more than 95% of the interactions.
A ground truth basket is a basket that we aim to predict or recommend, and the
last basket of a sequence or purchased baskets is regarded as the ground truth
basket. The repetition ratio and exploration ratio are calculated based on the
ground truth basket as the proportion of repeat items and explore items in the
ground truth baskets, respectively. The statistics of the processed datasets are
summarized in Table 2.1.

For our experiments, we split every dataset across users in the same way that
previous works have done [51, 52, 127], i.e., 72% users for training, 8% users
for validation, and 20% users for the test set. The training users, validation
users, and test users are totally independent from each other. We repeat the
dataset split five times for independent experiments. Note that we did not use
an absolute timestamp splitting strategy (i.e., splitting the dataset into several
sub-datasets according to real-time ranges) for the following reasons:

1. As a reality check chapter, we decided to follow the widely used data
splitting strategy in the existing NBR methods.

2. We checked three datasets and found that users’ baskets are spread out
across diverse time ranges and the average basket lengths are limited, so
splitting using an absolute timestamp would be likely to break a large
number of basket sequences into very short sequences, which cannot be
used for effectively training or evaluating NBR methods.

3. As the chapter focuses on the analysis from a repetition and exploration
perspective, we acknowledge that global trends are likely to influence the
repetition ratio of the users, therefore we use Section 2.5.5 to analyze at
a fine-grained level, i.e., the treatment on users with different repetition
ratios.

2.3.2 Baseline methods and reproducible methods

We follow the same strategy as [27] to collect relevant and reproducible NBR
papers. Specifically, we include papers in our analysis that have been pub-
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lished during the last five years (i.e., from 2016 to 2021) in one of the following
conferences: KDD [51, 93, 127], SIGIR [9, 52, 125], IJCAI [62], AAAI [112],
RecSys [21] and UMAP [36]. Papers targeting NBR [9, 36, 52, 62, 84, 112, 125]
and sequential set prediction [51, 93, 127] are considered to be relevant papers.
For a fair comparison, methods [9, 21, 93] using auxiliary information other than
item-basket sequences are not included in this chapter. Like [27], we consider a
paper to be reproducible if they meet the following criteria:

1. A working version of the source code is publicly available4 or the code has
to be modified in minimal ways to work correctly.5

2. At least one dataset used in the original paper is available.

Through this selection process, we end up with eight relevant representative
papers [36, 51, 52, 62, 84, 112, 125, 127], and seven of them are considered to
be reproducible methods in our analysis [36, 51, 52, 62, 84, 125, 127].6 Of the
seven reproducible methods, four methods [36, 52, 84, 127] have been published
during the last two years, and have not been compared with each other.

As simple, yet effective baselines we include two widely known frequency-
based methods, i.e., global top-frequency (G-TopFreq) and personal top-frequency
(P-TopFreq), which are often shown as simple baselines in recommendation
tasks. Surprisingly, we find that 3 of the 5 deep-learning based methods that
we consider only compare with the global top-frequency baseline G-TopFreq [62,
84, 125], but do not compare to the personal top-frequency baseline P-TopFreq,
which is known to have higher performance in general [36, 51, 52, 127].

There is an important limitation of the personal top-frequency method (P-
TopFreq) w.r.t. the basket size in a NBR setting that is ignored in previous
work. P-TopFreq can only recommend items from the past transactions of a
user, which means that it might not be able to fully make use of the available
basket slots like other methods, and this may lead to an unfair comparison. We
analyze the percentage of basket slots used for P-TopFreq, and Table 2.2 shows
the results. To address this limitation, we propose a simple combination of
G-TopFreq and P-TopFreq as an additional baseline, called GP-TopFreq : GP-
TopFeq first uses P-TopFreq to fill a basket, and then uses G-TopFeq to fill any
remaining slots.

Frequency-based baselines

• G-TopFreq – uses the k most popular items in the dataset to form the
recommended next basket. It is widely used in recommendation systems
due to its effectiveness and simplicity.

4We first check whether the paper provides a link to their code; if not, we search GitHub
using the title of the paper.

5We re-implement the Dream algorithm [125].
6We do not include FPMC [88] in our chapter for the following two reasons: first, it will

break the selection criteria [27] we employ in this chapter; second, FPMC is among the worst
performing method in all NBR related papers [52, 62, 84, 125] recently.
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Table 2.2: Percentage of the basket slots used for P-TopFreq.

Dataset

Basket size TaFeng Dunnhumby Instacart

10 92.39% 95.66% 96.70%
20 79.71% 87.98% 90.48%

• P-TopFreq – a personalized top frequency method that treats the most
frequent k items in the users’ historical records as the next basket. This
method only has repeat items in the prediction.

• GP-TopFreq – a combination of P-TopFreq and G-TopFreq to make full
use of the available basket slots.

Nearest neighbor-based methods

• TIFUKNN – models the temporal dynamics of frequency information of
users’ past baskets to introduce personalized frequency information (PIF),
then uses a nearest neighbor-based method on PIF [52].

• UP-CF@r – a combination of recency-aware, user-wise popularity and
user-wise collaborative filtering. The recency of shopping behavior is con-
sidered in this method [36].

Deep learning-based methods

• Dream – the first deep learning-based method that models users’ global
sequential basket history for NBR. It uses a pooling strategy to generate
basket representations, which are then fed into an RNN to learn user
representations and predict the corresponding next set of items [125].

• Sets2Sets – uses a pooling operation to get basket embeddings and an
attention mechanism to learn a user’s representation from their past inter-
actions. Furthermore, item frequency information is adopted to improve
performance [51].

• DNNTSP – leverages a GNN and self-attention techniques. It encodes
item-item relations via a graph and employs a self-attention mechanism
to capture temporal dependencies of users’ basket sequence [127].

• Beacon – an RNN-based method that encodes the basket considering the
incorporating information on pairwise correlations among items [62].

• CLEA – an RNN-based method that uses a contrastive learning model
to automatically extract items relevant to the target items and generates
the representation via a GRU-based encoder [84].
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Table 2.3: Notation used in this chapter.

Symbol Description

U Set of all users
Ug Set of users in group g
I Set of all items
u A single user in U
i A single item in I
Sj Sequence of historical baskets for uj

Bt
j t-th basket in Sj , a set of items i ∈ I

Tuj Target/ground truth basket for uj that we aim to predict
T rep
uj

Set of repeat items in the ground truth basket Tuj for uj

T expl
uj

Set of explore items in the ground truth basket Tuj
for uj

Puj
Predicted basket for uj

P rep
uj

Set of repeat items in the predicted basket Puj
for uj

P expl
uj

Set of explore items in the predicted basket Puj
for uj

Irepj,t Repeat items for uj at timestamp t; set of items that have ap-
peared in uj ’s baskets up to timestamp t

Iexplj,t Explore items for uj at timestamp t; set of items that have not
appeared in uj ’s baskets up to timestamp t

2.3.3 Implementation details

For deep learning-based methods [51, 62, 84, 125, 127], we strictly follow the
hyper-parameter setting and tuning strategy in their respective paper or related
GitHub repository. Following the same strategy as [27], we use the suggested
best parameters in TIFUKNN [52] to achieve its best performance. For UP-
CF@r, the recency window is tuned on {1, 5, 10, 50}, the locality is tuned on {1,
20, 50, 100}, the asymmetry is tuned on {0, 0.25, 0.5, 0.75, 1.0}. We perform
a grid search on the validation dataset to tune hyper-parameters and select the
best model for testing. For all methods, we rely as much as possible on the
original source code and construct a pipeline to perform experiments. We share
the code and data used in our experiments online.

2.4 Performance Comparison Using Conventional Metrics

2.4.1 Conventional next basket recommendation metrics

To analyze the performance of NBR methods, we first consider three conven-
tional metrics: recall, normalized discounted cumulative gain (NDCG), and
personalized hit ratio (PHR), all of which are commonly used in previous NBR
studies [51, 52, 127]. We do not consider the F1 and Precision metrics in this
chapter, since we focus on the basket recommendation with a fixed basket size
K, which means the Precision@K and F1@K are proportional to Recall@K for
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each user. F1@K and Precision@K are more suitable for NBR with a dynamic
basket size for each user.

Recall measures the ability to find all relevant items and is calculated as
follows:

Recall@K(uj) =

∣∣Puj ∩ Tuj

∣∣∣∣Tuj

∣∣ , (2.1)

where Puj
is the predicted basket with K recommended items and Tuj

is the
ground truth basket for user uj . The average recall score of all users is adopted
as the recall performance.

NDCG is a ranking quality measurement metric, which takes item order into
consideration and it is calculated as follows, for a user u ∈ U and its ground
truth basket Tu:

NDCG@K(uj) =

∑K
k=1 pk/ log2(k + 1)∑min(K,|Tuj

|)
k=1 1/ log2(k + 1)

, (2.2)

where pk equals 1 if P k
uj

∈ Tu, otherwise pk = 0. P k
u denotes the k-th item

in the predicted basket Pu. The average score across all users is the NDCG
performance of the algorithm.

PHR focuses on user level performance and calculates the ratio of predictions
that capture at least one item in the ground truth basket as follows:

PHR@K =

∑N
j=1 φ(Puj

, Tuj
)

N
, (2.3)

where N is the number of test users, and φ(Puj
, Tuj

) returns 1 when Puj
∩Tuj

̸=
∅, otherwise returns 0.

2.4.2 Results with conventional next basket recommendation metrics

Performance results for the conventional NBR metrics are shown in Table 2.4.
The performance of different methods varies across datasets; there is no method
that consistently outperforms all other methods, independent of dataset and
basket size. This calls for a further analysis of the factors impacting perfor-
mance, which we conduct in the next section.

Among the frequency-based baselines, P-TopFreq outperforms G-TopFreq
in all scenarios, which indicates that personalization improves the NBR perfor-
mance. P-TopFreq can only recommend items that have appeared in a user’s
previous baskets. As pointed out in Section 2.3.2, the number of repeat items
of a user may be smaller than the basket size, which means there might be
empty slots in a basket recommended by P-TopFreq. Despite this limitation,
P-TopFreq is a competitive NBR baseline. GP-TopFreq makes full use of the
available basket slots by filling any slots with top ranked items suggested by
G-TopFreq. GP-TopFreq outperforms P-TopFreq with no surprise, and, as ex-
pected, the difference shrinks as the repetition ratio of the dataset increases.
For future fair comparisons, we believe that GP-TopFreq should be the baseline
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Table 2.4: Overall performance comparison of frequency-based, nearest
neighbor-based, and deep learning-based NBR methods. Highlights indicate
the highest score per basket size and metric. We write * to indicate that the
highest score for a given basket size and metric is significantly better than the
second highest score (paired t-test, p-value < 0.05).
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for every NBR method to compare with, especially in high exploration scenar-
ios, to be able to determine what value is added beyond simple frequency-based
recommendations.

As to the nearest neighbor-based methods, we see that TIFUKNN and UP-
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CF@r have a similar performance across different scenarios and outperform
all frequency-based baselines. The two methods are similar in the sense that
both model temporal information, combined with a user-based nearest neighbor
method. Their performance in a high exploration scenario is lower than several
deep learning-based methods (i.e., the TaFeng dataset), but on the Dunnhumby
and Instacart datasets, which have a relatively low exploration ratio, they are
among the best performing methods.

Most of the deep learning-based methods outperform G-TopFreq, which is
the only frequency-based baseline considered in many papers. Surprisingly,
P-TopFreq and GP-TopFreq achieve a highly competitive performance and out-
perform four deep learning-based methods (i.e., Dream, Beacon, CLEA and
Sets2sets), by a large margin in the Dunnhumby and Instacart datasets, where
the improvements in terms of Recall@10 range from 35.8% to 141.9% and from
53.6% to 353.3%, respectively. Moreover, the proposed GP-Topfreq baseline
outperforms the deep learning-based Beacon, Dream and CLEA algorithm on
the TaFeng dataset, the scenario with a high exploration ratio. Of the deep
learning-based methods, DNNTSP is the only one to have a consistently high
performance in all scenarios.

2.4.3 Upshot

Based on the above experiments and analysis, we conclude that the choice of
dataset plays an important role in evaluating the performance of NBR methods,
and no state-of-the-art NBR method is able to consistently achieve the best
performance across datasets.

Several deep learning-based NBR methods [62, 84, 125] aim to learn bet-
ter performing representations by capturing long-term temporal dependencies,
denoising, etc. They do indeed outperform the G-TopFreq baseline, but many
are inferior to the P-TopFreq baseline, especially in datasets with a relatively
high repetition ratio. The proposed GP-TopFreq baseline in some sense “re-
calibrates” the improvements reported for recently introduced complex, deep
learning-based NBR methods; compared to the simple GP-TopFreq baseline,
their improvements are modest or even absent.7

So far we have used conventional metrics to examine the performance of
NBR methods. To account for the findings reported in this section and provide
insights for future NBR method development, we will now consider additional
metrics.

2.5 Performance w.r.t. Repetition and Exploration

In order to understand which factors contribute to the overall performance of
a NBR method, we dive deeper into the basket components from a repetition
and exploration perspective.

7According to our analyses, performance differences that were reported in previous work
still stand. However, the set of baselines used for comparison in previous work is too limited.
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2.5.1 Metrics for repetition vs. exploration

We propose several metrics that are meant to capture repetition and explo-
ration aspects of a basket. First, we adopt widely used definitions of repe-
tition and exploration in the recommender systems literature [3, 18, 19, 100]
to define what constitutes a repeat item and an explore item in the context
of NBR. Specifically, an item ir is considered to be a repeat item for a user
uj if it appears in the sequence of the user’s historical baskets Sj , that is, if
ir ∈ Irepj,t = B1

j ∪B2
j ∪ · · · ∪Bt

j . Otherwise, the item is an explore item, denoted
as ie ∈ Iexplj,t = I − Irepj,t . We write Puj

= P rep
uj

∪ P expl
uj

for the predicted next
basket Bt+1

j , which is the union of repeat items P rep
uj

and explore items P expl
uj

.
As an edge case, a basket may consist of repeat or explore items only.

Novelty of recommendation is a concept that is similar to, but different
from, the notion of exploration that we use in this chapter. Several novelty
related metrics have been proposed, i.e., EPC and EPD [100]. It is important
to note that these metrics are not suitable for our analysis in this chapter. First,
they only focus on measuring the novelty of a ranked list, while we want to not
only understand the components within the predicted basket, but also analyze a
model’s ability to fulfill a user’s needs w.r.t. repetition and exploration. Second,
these metrics are not NBR specific and only focus on one aspect, i.e., novelty,
while we want to make a comparison between repetition and exploration to
assess the NBR performance.

To analyze the composition of a predicted basket, we propose the repetition
ratio, RepR, and the exploration ratio, ExplR. RepR and ExplR represent the
proportion of repeat items and explore items in a recommended basket, respec-
tively. The overall RepR and ExplR scores are calculated over all test users
as:8

RepR =
1

N

N∑
j=1

∣∣∣P rep
uj

∣∣∣
K

, ExplR =
1

N

N∑
j=1

∣∣∣P expl
uj

∣∣∣
K

, (2.4)

where N denotes the number of test users, K is the size of the model’s predicted
basket for user uj , P rep

uj
and P expl

uj
are the sets of repeat items in Puj

and of
explore items in Puj

, respectively.
Next, we pay attention to a basket’s ability to fulfill a user’s need for repeti-

tion and exploration, and propose the following metrics. Recallrep and PHRrep

are used to evaluate the Recall and PHR w.r.t. the repetition performance;
similarly, we use Recallexpl and PHRexpl to assess the exploration performance.
More precisely:

Recallrep =
1

Nr

Nr∑
j=1

∣∣∣Puj
∩ T rep

uj

∣∣∣∣∣T rep
uj

∣∣ , PHRrep =

∑Nr

j=1 φ
(
Puj

, T rep
uj

)
Nr

(2.5)

8To assess this performance on a dataset, we use the average performance across users; we
also show the corresponding user level RepR distribution in our analysis.
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and

Recallexpl =
1

Ne

Ne∑
i=1

∣∣∣Puj ∩ T expl
uj

∣∣∣∣∣∣T expl
uj

∣∣∣ , PHRexpl =

∑Ne

j=1 φ
(
Puj , T

expl
uj

)
Ne

, (2.6)

where Nr and Ne denote the number of users whose ground truth basket
contains repeat items and explore items respectively; φ(P, T ) returns 1 when
P ∩ T ̸= ∅, otherwise it returns 0.

Next, we first use the repetition ratio and exploration ratio to examine the
recommended baskets; we then use our repetition and exploration metrics to
re-assess the NBR methods that we consider, examine how repetition and ex-
ploration contribute to the overall recommendation performance, and how users
with different degrees of repeat behavior benefit from different NBR methods.

2.5.2 The components of a recommended basket

We analyze the components of the recommended basket for each NBR method
to understand what makes up the recommendation. The results are shown in
Figure 2.2. First, we see that, averaged over all users, all recommended baskets
are heavily skewed towards either item repetition or exploration, relative to the
ground-truth baskets that are much more balanced between already seen and
new items. We can divide the methods that we compare into repeat-biased
methods (i.e., P-TopFreq, GP-TopFreq, Sets2sets, DNNTSP, UP-CF@r, and
TIFUKNN) and explore-biased methods (i.e., G-TopFreq, Dream, Beacon, and
CLEA). Importantly, a large performance gap exists between the two types.
None of the published NBR methods can properly balance the repeat items and
explore items of users’ future interests. Figure 2.3 shows the repetition ratio
RepR distribution for the ground truth basket and the recommended basket
derived by a repeat-biased method or an explore-biased method. We show the
RepR distribution of a representive explore-biased method, i.e., CLEA, and a
representive repeat-biased method, i.e., DNNTSP, in Figure 2.3. The RepR
distribution of the other eight NBR methods are provided in our appendix
(Figure 2.7).

Among the explore-biased methods, G-TopFreq is not a personalized method;
it always provides the most popular items. Dream, Beacon, and CLEA treat
all items without any discrimination, which means the explore items are more
likely to be in the predicted basket and their basket components are similar
to G-TopFreq. Looking at the performance in Table 2.4, we see that repeat-
biased methods generally perform much better than explore-biased methods
on conventional metrics across the datasets, especially when the dataset has a
relatively high repetition ratio.

The repetition ratios of P-TopFreq and GP-TopFreq serve as the upper
bound repetition ratio for the recommended basket. Most baskets recommended
by repeat-biased methods are close to or reach this upper bound, even when
the datasets have a low ratio of repeat behavior in the ground truth, except for
two cases (Sets2sets and DNNTSP on the TaFeng dataset).
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Figure 2.2: The repetition ratio RepR and exploration ratio ExplR of recom-
mended baskets averaged over all users; solid lines indicate the repetition ratio
of the ground truth; dashed lines indicate the upper bound of the repetition
ratio for basket size 10 and dotted lines for basket size 20.
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Figure 2.3: Distribution of the repetition ratio RepR of recommended baskets
on different datasets for an explore-biased method (CLEA) and a repeat-biased
method (DNNTSP).
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Finally, the exploration ratio of repeat-biased methods increases from bas-
ket size 10 to 20; we believe that this is because there are simply no extra
repeat items available: it does not mean that the methods actively increase the
exploration ratio in a larger basket setting.

2.5.3 Performance w.r.t. repetition and exploration

The results in terms of repetition and exploration performance are shown in
Table 2.5. First of all, using our proposed metrics, we observe that the repetition
performance Recallrep is always higher than the exploration performance, even
when the explore items form almost 90% of the recommended basket. This
shows that the repetition task (recommending repeat items) and the exploration
task (recommending explore items) have different levels of difficulty and that
capturing users’ repeat behavior is much easier than capturing their explore
behavior.

Three deep learning-based methods perform worst w.r.t. repeat item rec-
ommendation and best w.r.t. explore item recommendation at the same time,
as they are heavily skewed towards explore items. We also see that there are
improvements in the exploration performance compared to G-TopFreq with the
same level of exploration ratio, which indicates that the representation learned
by these methods does capture the hidden sequential transition relationship
between items. Repeat-biased methods perform better w.r.t. repetition in all
settings, since the baskets they predict contain more repeat items. Similarly,
we can see that DNNTSP, UP-CF@r, and TIFUKNN perform better than P-
TopFreq w.r.t. repeat performance with the same or a lower level of repetition
ratio.

Third, explore-biased methods spend more resources on the more difficult
and uncertain task of explore item prediction, which is not an optimal choice
when considering the overall NBR performance. Being biased towards the easier
task of repeat item prediction leads to gains in the overall performance, which
is positively correlated with the repetition ratio of the dataset.

To understand the potential reasons for a method being repeat-biased or
explore-biased, we provide an in-depth analysis of the methods’ architectures.
P-TopFreq and GP-TopFreq are repeat-biased methods as they both mainly rely
on the frequency of historical items to recommend the next basket. Two near-
est neighbor-based methods, i.e., TIFUKNN and UP-CF@r, have a module to
model both the frequency and the recency of historical items; besides, they both
have a parameter to emphasize the frequency and recency information. Simi-
larly, Sets2sets is also repeat-biased as it adds the historical items’ frequency
information to the prediction layer. DNNTSP does not consider frequency in-
formation, however, it has an indicator vector to indicate whether an item has
appeared in the historical basket sequence or not, which can be regarded as a
repeat item indicator. G-TopFreq is explore-biased since it is not a personalized
method and can only recommend top-k popular items within the dataset. The
remaining three explore-biased methods (Dream, Beacon, and CLEA) do not
consider the frequency of historical items or the indicator of items’ appearance,
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Table 2.5: Repetition and exploration performance comparison of frequency-
based, nearest neighbor-based, and deep learning-based NBR methods. High-
lights indicate the highest score per basket size, for the exploration and repeti-
tion metrics. As in Table 2.4, we write * to indicate that the highest score for
a given basket size and metric is significantly better than the second highest
score (paired t-test, p-value < 0.05).
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2.5. Performance w.r.t. Repetition and Exploration

so they fail to identify the benefits of recommending repeat items.

2.5.4 The relative contribution of repetition and exploration

Even though a clear improvement w.r.t. either repeat or explore performance can
be observed in the previous section, this does not mean that this improvement
is the reason for the better overall performance, since repeat and explore items
account for different ground truth proportions in different datasets. To better
understand where the performance gains of the well-performing methods in
Table 2.4 come from, we remove explore items and keep repeat items in the
predicted basket to compute the contribution of repetition, similarly, we remove
repeat items and keep explore items to compute the performance, which can be
regarded as the contribution of exploration.

Experimental results on three datasets are shown in Figure 2.4. We consider
G-TopFreq, P-TopFreq, and GP-TopFreq as simple baselines to compare with.
From Figure 2.4, we conclude that Dream and Beacon perform better than G-
TopFreq on the TaFeng dataset, as the main performance gain is from improve-
ments in the exploration prediction. As a consequence, in the Dunnhumby and
Instacart datasets, Dream, Beacon, and G-TopFreq achieve similar performance,
and the repeat prediction contributes the most to the overall performance, even
when their recommended items are heavily skewed towards explore items. Also,
we observe that CLEA outperforms other explore-biased methods due to its
improvements in the repetition performance without sacrificing the exploration
performance.

At the same time, it is clear that TIFUKNN, UP-CF@r, Sets2Sets, and
DNNTSP outperform explore-biased methods because of the improvements in
the repetition performance, even at the detriment of exploration. The repeat
items make up the majority of their correct recommendations. Specifically,
repeat recommendations contribute to over 97% of their overall performance on
the Dunnhumby and Instacart datasets.

An interesting comparison is between Sets2Sets and P-TopFreq. The strong
performance gain of Sets2sets on the TaFeng dataset is mainly due to the explo-
ration part, whereas P-TopFreq outperforms it by a large margin on the other
two datasets at the same level of repetition ratio, even though the personal
frequency information is considered in the Sets2sets model. We believe this
indicates that the loss on repeat items seems to be suppressed by the loss on
explore items during the training process, which weakens the influence of the
frequency information.

Recall that the number of repetition candidates for a user may be smaller
than the basket size, which means that there might be empty slots in the basket
recommended by P-TopFreq. From Figure 2.2 and Table 2.2, we observe that
the empty slots account for a significant proportion of exploration slots in many
settings. However, existing studies omit this fact when making the compari-
son with P-TopFreq, leading to an unfair comparison and overestimation of the
improvement, as their predictions leverage more slots. For example, Dream,
Beacon, and CLEA can beat P-TopFreq, but they are inferior to GP-TopFreq.
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Figure 2.4: Performance contribution from repeat and explore recommenda-
tions on the Tafeng, Dunnhumby, and Instacart datasets.
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TIFUKNN and UP-CF@r model the temporal order of the frequency informa-
tion, leading to a higher repetition performance than P-TopFreq in general.
Even though the contribution of the repetition performance improvement is ob-
vious on the Instacart dataset, it is less meaningful on the other two datasets,
where the performance gain is mainly from the exploration part by filling the
empty slots. When compared with the proposed GP-TopFreq baseline on the
Tafeng and Dunnhumby datasets, the improvement is around a modest 3%.

DNNTSP is always among the best-performing methods across the three
datasets and is able to model exploration more effectively than other repeat-
biased methods. Moreover, it also actively recommends explore items, rather
than being totally biased towards the repeat recommendation in high explo-
ration scenarios. However, the improvement is limited due to the relatively
high repetition ratios and the huge difficulty gap between repetition and ex-
ploration tasks. Compared with GP-TopFreq, the improvement of DNNTSP
w.r.t. Recall@10 on the Dunnhumby and Instacart datasets is merely 1.3% and
1.9% respectively, which is modest considering the complexity and training time
added by DNNTSP.

Obviously, even though many advanced NBR algorithms learn rich user
and/or item representations, the main performance gains stem from the pre-
diction of repeat behavior. Yet, limited progress w.r.t. overall performance has
so far been made compared to the simple P-TopFreq and GP-TopFreq baseline
methods.

2.5.5 Treatment effect for users with different repetition ratios

As the average repetition ratio in a dataset has a significant influence on a
model’s performance (see Section 2.4), existing NBR methods are skewed to
repetition or exploration (see Section 2.5.2) and global trend might influence
the users repetition patterns, it is of interest to investigate the treatment ef-
fect for users with different repetition ratios. We examine the performance of
NBR methods w.r.t. different groups of users with different repetition ratios.
We divide the users into 5 groups according to their repetition ratio: [0, 0.2],
(0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0], and calculate the average performance
within each group. Note that the repetition ratio indicates the user’s prefer-
ence w.r.t. repeat items and explore items, e.g., users with a low repetition ratio
prefer to purchase new items in their next basket. The results are shown in
Figure 2.5.

First, we can see that the methods’ performance within different user groups
is different from the performance computed over all users (Table 2.4). For exam-
ple, several explore-biased methods (G-TopFreq, Dream, Beacon, CLEA) can
outperform recent repeat-biased methods (TIFUKNN, UP-CF@r, Sets2Sets,
DNNTSP) in the user group with a low repetition ratio, [0, 0.2], but these
explore-biased methods are inferior to the repeat-biased methods when comput-
ing the performance over all users. Second, the performance of repeat-biased
NBR models increases, as the repetition ratio increases. Interestingly, we ob-
serve an analogous trend w.r.t. the performance of explore-biased NBR meth-
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Figure 2.5: Treatment effect for users on the Tafeng, Dunnhumby, and In-
stacart datasets, for ten NBR methods for users with different repetition ratios
(binned in five groups).
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ods as the repetition ratio increases, but the rate of the increase is smaller. We
believe that this is because the NBR task gets easier for users with a higher
repetition ratio, and the repeat-biased methods benefit more from an increase
in repetition ratio.

From the perspective of user group fairness, explore-biased methods seem to
be fairer than repeat-biased methods across different user groups, as they have
a very similar performance across groups. Explore-biased methods have lower
variation in performance than repeat-biased methods. However, we should be
aware of intrinsic difficulty gaps between different user groups, e.g., it is easier for
NBR methods to find correct items for users who like to repeat purchase. Taking
this into consideration, we take G-TopFreq and GP-TopFreq as two anchor
baselines to evaluate whether recent NBR methods put a specific user group
at a disadvantage or not. On the Tafeng and Dunnhumby datasets, repeat-
biased methods (Sets2Sets, UP-CF, TIFUKNN, DNNTSP) fail to achieve the
performance of G-TopFreq within users whose repetition ratio is in [0, 0.2], which
means they do not cater to users of this group. At the same time, recent explore-
biased methods (Dream, Beacon, CLEA) fail to achieve the performance derived
by the very simple baseline, i.e., GP-TopFreq, on four user groups on Tafeng,
Dunnhumby, and Instacart dataset. This analysis indicates that both repeat-
biased and explore-biased NBR methods do not treat all user groups fairly.

2.5.6 Looking beyond the average performance

In the recommender systems literature it is customary to compute the average
performance over all test users to represent the performance of a recommenda-
tion method. Given the diverse treatment effect across different user groups, we
want to drill down and see how much the different user groups contribute to-
wards the overall average performance. As before, we use five groups as defined
in Section 2.5.5 in terms of the repetition ratio. Specifically, for each individual
group gj , we analyze its proportion of all users (PAU ) and its contribution to
the average performance (CAP) as follows:

PAU j =
|Ugj |∑q
j=1 |Ugj |

(2.7)

CAP j =

∑
u∈Ugj

Perf u∑q
j=1

∑
u∈Ugj

Perf u
, (2.8)

where Ugj denotes the set of users in group gj , q denotes the number of user
groups, Perf u represents the method’s performance w.r.t. user u. Note that
the performance metric we analyze in this section is Recall@10, but similar
phenomena can be observed for other metrics.

The results in terms of PAU and CAP are shown in Table 2.6. Under the
ideal circumstances, the contribution to the average performance CAP of each
user group should be equal to its proportion of all users PAU ; this would al-
low us to use the average performance of a method as its overall performance
and leave no user group behind. However, we can see that CAP (0.8,1] is much
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higher than PAU (0.8,1] and CAP [0,0.2] is much lower than PAU[0,0.2] for every
NBR method (both repeat-biased methods and explore-biased methods) on all
datasets. On the Tafeng dataset, only 5.5% of the users belong to group (0.8, 1].
However, their contribution to the average performance ranges from 18.8% to
36.8%. On the Dunnhumby dataset, 31.4% of the users belong to group [0, 0.2],
while the CAP [0,0.2] for repeat-biased methods (i.e., P-TopFreq, GP-TopFreq,
Sets2Sets, DNNTSP, TIFUKNN and UP-CF@r) only ranges from 3.1% to 5.0%.
The results reflect that there might be a long-tail distribution w.r.t. the user’s
contribution to the average performance (i.e., few users contribute a large pro-
portion to the performance), since the NBR task for different users might have
different difficulty levels.

Given the previous observations, we construct a simple example to demon-
strate the potential limitations of average performance. Assume we have two
user groups, i.e., group ga with 10 users and group gb with only 1 user, where
the NBR task for gb is easier than ga. Assume, also, that we have a baseline
method Mb whose performance Perf can achieve 0.02 in group ga and 0.4 in
group gb. We have another two optimized methods Mα and Mβ . Compared
to baseline Mb, Mα can achieve 100% improvement in group ga, Mβ can also
achieve 100% improvement in group gb at the cost of 50% reduction in group
ga. In this case, the cumulative improvement of Mα is 0.02×10 = 0.2, while the
cumulative improvement of Mβ is 0.4 × 1 − 0.01 × 10 = 0.3. Mβ is considered
to be better than Mα, since Mβ ’s average performance is higher. However, we
notice that Mα can improve the performance of 10 users, while Mβ can only
improve the performance of 1 user and at the detriment of the other 10 users.
To sum up, the average performance has limitations to represent the perfor-
mance of methods on the NBR task and it might put users in a specific group
at disadvantage.9 We should calculate the performance of each user group in
order to have a comprehensive understanding of the NBR method.

2.5.7 Treatment effect for items with different frequencies

The NBR scenario can be thought of in terms of a two-sided market with items
and users [14, 81, 107]. So far, we have analyzed the user-side performance from
several aspects. In this section, we analyze treatment effects of NBR methods
from the item side. Specifically, we investigate the relation between an item’s
exposure and its frequency in training labels (the ground-truth items of the
training users) or test inputs (the historical items of the test users). As the item
exposure in recommended baskets and the item frequency have different scales,
we use the exposure and frequency of all items, respectively, to normalize them.
In order to visualize the relation between an item’s exposure and its frequency,
we rank items according to their frequency and select the top-500 items. The
frequency and the exposure distributions for different methods on the Tafeng

9In this chapter, to remain focused we only analyze the repetition-exploration issue. How-
ever, there might be other factors (e.g., basket size, historical basket length) that also influence
the difficulty level of NBR problem.
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Table 2.6: Group proportion of all users (PAU ) and contribution to the aver-
age performance (CAP).

User group

Dataset Method [0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

TaFeng

PAU 68.8% 14.9% 8.5% 2.4% 5.5%

G-TopFreq 53.4% 10.2% 10.4% 3.3% 22.7%
P-TopFreq 12.3% 20.9% 21.9% 8.2% 36.8%
GP-TopFreq 21.9% 18.8% 19.5% 7.3% 32.5%
Dream 60.3% 9.7% 9.0% 2.2% 18.8%
Beacon 59.0% 9.3% 9.4% 2.5% 19.9%
CLEA 60.4% 9.3% 9.2% 2.3% 18.9%
Sets2Sets 27.9% 18.2% 18.3% 6.4% 29.1%
DNNTSP 37.4% 16.3% 16.0% 5.5% 24.7%
TIFUKNN 24.2% 19.8% 19.8% 7.1% 29.0%
UP-CF@r 18.4% 21.2% 21.4% 8.4% 30.8%

Dunnhumby

PAU 31.4% 19.6% 21.8% 14.3% 12.9%

G-TopFreq 16.5% 18.6% 25.2% 18.1% 21.6%
P-TopFreq 3.1% 14.8% 25.7% 22.6% 33.8%
GP-TopFreq 4.3% 14.7% 25.5% 22.3% 33.3%
Dream 16.8% 19.2% 24.9% 17.9% 21.2%
Beacon 16.8% 18.7% 24.8% 17.9% 21.8%
CLEA 15.4% 12.2% 20.0% 12.2% 40.1%
Sets2Sets 4.2% 16.1% 25.1% 19.7% 34.9%
DNNTSP 5.0% 15.7% 25.6% 22.5% 31.2%
TIFUKNN 4.9% 15.1% 25.1% 22.0% 32.9%
UP-CF@r 3.7% 15.3% 25.2% 22.3% 33.5%

Instacart

PAU 13.2% 14.9% 20.0% 21.9% 30.0%

G-TopFreq 8.9% 12.3% 19.7% 24.0% 35.0%
P-TopFreq 1.6% 7.8% 16.4% 23.7% 50.4%
GP-TopFreq 1.8% 7.9% 16.4% 23.6% 50.3%
Dream 9.2% 12.3% 19.8% 23.8% 34.8%
Beacon 8.9% 12.4% 19.5% 23.5% 35.6%
CLEA 7.0% 8.6% 14.1% 17.6% 52.6%
Sets2Sets 2.0% 8.7% 15.8% 21.3% 52.2%
DNNTSP 2.0% 8.1% 16.5% 23.3% 50.1%
TIFUKNN 1.8% 8.0% 16.3% 23.6% 50.3%
UP-CF@r 1.8% 8.0% 16.5% 23.5% 50.2%
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dataset are shown in Figure 2.6.10
First, we observe the long-tail distribution w.r.t. the item exposure in all

NBR methods; a small number of items get a large proportion of the total
exposure. Surprisingly, a large proportion of items do not get any exposure in
the baskets recommended by Dream, Beacon and CLEA on the TaFeng dataset,
which we consider to be sub-optimal from the item perspective. Second, the
item exposure distributions of P-TopFreq, TIFUKNN, and UP-CF@r are more
related to the frequency distribution of the test input than to the frequency
distribution of the training labels. We believe that the repeat-biased nature of
those algorithms, as well as the absence of training, results in recommendations
that are strongly dependent on the items’ frequency in historical baskets, i.e.,
on the test inputs. Third, in deep learning-based methods (Dream, Beacon,
CLEA, Sets2Sets, and DNNTSP), we can see that the distribution of items with
high exposure shifts to the left, from Figure 2.6b to Figure 2.6a. This result
reflects the fact that an item’s high exposure is more closely related to its high
frequency in the training labels. To sum up, the item frequency distributions in
the training labels and test inputs have a different impact on the item exposure
of different NBR methods.

2.5.8 Upshot

Based on our second round of analyses of state-of-the-art NBR methods that we
conducted with purpose-built metrics, we observe that there is a clear difficulty
gap and trade-off between the repetition task and the exploration task. As a
rule of thumb, being biased towards the easier repetition task is an important
strategy that helps to boost the overall NBR performance. Deep learning-
based methods do not effectively exploit the repetition behavior. Indeed, they
achieve a relatively good exploration performance, but they are not able to
outperform the simple frequency baseline GP-TopFreq in several cases. Some
recent state-of-the-art NBR methods are skewed towards the repetition task
and outperform GP-TopFreq. However, the improvements they achieve are
limited, especially considering the complexity and computational costs, e.g., for
the training process [127] and for hyper-parameters search [36, 52].

Moreover, current NBR methods usually focus on improving the overall
performance, but they often fail to provide, or exploit, deeper insights into
the components of their recommended baskets (skewed towards repetition or
exploration).

Furthermore, different NBR methods have different treatment effects across
different user groups, and the widely-used average performance can not fully
evaluate the models’ performance, e.g., methods might achieve high overall
performance at the detriment of a specific user group, which accounts for a
large proportion of all users. From the item-side perspective, few items account
for a large proportion of the total exposure in all NBR methods, and some NBR

10Experimental results on the Dunnhumby and Instacart datasets are provided in the ap-
pendix, and qualitatively similar patterns can be observed. We do not include G-TopFreq in
this analysis, since it always recommends top-K items in the historical dataset.

36



2.5. Performance w.r.t. Repetition and Exploration

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

P-TopFreq

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

Dream

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

Beacon

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

CLEA

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

Sets2Sets

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

DNNTSP

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

TIFUKNN

0 100 200 300 400 500
Item rank

0.000

0.005

0.010

0.015

0.020

P
ro

po
rti

on
 o

f e
xp

os
ur

e

UP-CF@r

(a) Items ranked according to their frequency in the training labels.
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(b) Items ranked according to their frequency in the test inputs (i.e., historical
baskets of test users).

Figure 2.6: Treatment effect for items on the Tafeng dataset, for eight NBR
methods for items with different frequencies in training labels and testing inputs.
The blue bar shows the frequency distribution, and the orange line denotes the
exposure distribution.
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methods might only recommend a small set of items to users.

2.6 Conclusion

In this chapter, we have re-examined the NBR methods performance to answer
the main research question RQ1:

How to evaluate the next basket recommendation performance from
the perspective of repetition and exploration?

Specifically, we analyzed state-of-the-art NBR methods on the following seven
aspects: (i) the overall performance on different scenarios; (ii) the basket com-
ponents; (iii) the repeat and explore performance; (iv) the contribution of rep-
etition and exploration to the overall performance; (v) the treatment effect for
different user groups; (vi) the potential limitations of the average metrics; and
(vii) the treatment effect for different items.

2.6.1 Main findings

We arrive at several important findings: (i) No state-of-the-art NBR method,
deep learning-based or otherwise, consistently shows the best performance across
datasets. Compared to a simple frequency-based baseline, the improvements are
modest or even absent. (ii) There is a clear difficulty gap and trade-off between
the repeat task and the explore task. As a rule of thumb, being biased towards
the easier repeat task is an important strategy that helps to boost the over-
all NBR performance. (iii) Some NBR methods might achieve better average
overall performance at the detriment of a user group with a large proportion
of users. (iv) Deep learning-based methods do not effectively exploit repeat
behavior. They indeed achieve relatively good explore performance, but are not
able to outperform the simple frequency-based baseline GP-TopFreq in terms
of the relatively easy repetition task. Some state-of-the-art NBR methods are
skewed towards the repeat task and because of this they are able to outperform
GP-TopFreq; however, their improvements are limited, especially considering
their added complexity and computational costs.

2.6.2 Insights for NBR model evaluation

Our work highlights the following important guidelines that practitioners and
researchers working on NBR should follow when evaluating or designing an NBR
model: (i) Use a diverse set of datasets for evaluation, with different ratios of
repeat items and explore items; (ii) Use GP-TopFreq as a baseline when evalu-
ating NBR methods; (iii) Apart from the conventional accuracy-based metrics,
consider the newly introduced repeat and explore metrics, Recallrep , PHRrep ,
Recallexpl and PHRexpl , as a set of fundamental metrics to understand the
performance of NBR methods; (iv) The RepR and ExplR statistics should be
included to understand what kind of items shape the recommended baskets;
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and (v) Calculate the performance of each user group to get a comprehensive
understanding of the NBR methods.

2.6.3 Insights for NBR model design

From the analysis of this chapter, apart from the difficulty imbalance between
the repetition and exploration task, we should also be aware that the repeti-
tion recommendation task and exploration recommendation task have different
characteristics. For instance, the repetition recommendation task focuses on
predicting whether historical items will be repurchased or not, where the fre-
quency and recency of historical items are very important, and the exploration
recommendation task focuses on inferring explore items from a much bigger
search space via modeling item-to-item correlations, which deep-learning meth-
ods might be good at. Therefore, just blindly designing complex NBR models
without considering the difference between repetition and exploration might be
sub-optimal.

We think that it is better to separate the repetition recommendation and ex-
ploration recommendation in the NBR task (e.g., using frequency and recency to
address the repetition task, and using NN-based models to model item-to-item
correlations), which not only allows us to address repetition and exploration
according to their respective characteristics but also offers the flexibility of con-
trolling repetition and exploration in the recommended basket. Besides, we
also think that future NBR methods should be able to combine repetition and
exploration based on users’ preferences.

2.6.4 Limitations

One of the limitations of this study is that we did not consider the training and
inference execution time in this chapter, which is important for the real-world
value of methods used for NBR [6]. We use the original implementations of NBR
methods to check their reproducibility and avoid potential mistakes that may
come with re-implementations, however, the original implementations are based
on different frameworks, which leads to an inability to make a fair execution
time comparison. A second limitation is that we only follow the widely used
binary definition of repeat items and explore items but do not consider a more
fine-grained formalization based on the frequency of historical items, which
would allow for a more flexible definition of repetition and analysis. A further
limitation is that we only considered the short-term utility of NBR methods: will
users be satisfied with their next basket? Limited by our experimental setup,
where we replay users’ past behavior, we have ignored any potential long-term
effects of having a strong focus on short-term utility by emphasizing repeat
items as opposed to, for instance, long-term engagement which, likely, benefits
from a certain degree of exploration so as to enable surprise and discovery.
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2.6.5 Future work

Obvious avenues for future work include addressing the limitations that we have
summarized above. Another important line of future work concerns the use of
domain-specific knowledge, either concerning complementarity or substitutabil-
ity of items or concerning hierarchical relations between items, both of which
would allow one to consider more semantically informed notions of repeat con-
sumption behavior [4] for next basket recommendation purposes. In addition,
our focus in this chapter has been on users – in the sense that we compared
methods that produce a basket for a given user –, it would be interesting to con-
sider repetition and exploration aspects of the reverse scenario [67] – given an
item, who are the users to whose baskets this item can best be added? Finally,
even though we focused on next basket recommendation, it would be interest-
ing to contrast our outcomes with an analysis of repeat and explore behavior in
traditional sequential recommendation scenarios.

In the next chapter, we will focus on the exploration task in the basket
recommendation scenario.

2.7 Appendix

2.7.1 Additional plots

We include additional plots to supplement Figure 2.3 (Figure 2.7 below) and 2.6
(Figures 2.8 and 2.9), respectively.

2.7.2 Reproducibility

To facilitate the reproducibility of the results, we release our online repository,11
which contains the following resources: (i) source code and datasets; (ii) descrip-
tions of different dataset format; and (iii) pipelines about how to run and get
results.

11https://github.com/liming-7/A-Next-Basket-Recommendation-Reality-Check
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(a) TaFeng
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Figure 2.7: Distribution of the repetition ratio RepR of recommended bas-
kets on TaFeng dataset for eight NBR methods (G-TopFreq, P-TopFreq, GP-
TopFreq, Dream, Beacon, Sets2Sets, Up-CF@r, TIFUKNN).
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(a) Items ranked according to their frequencies in the training labels.
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(b) Items ranked according to their frequencies in the testing inputs (i.e., historical
baskets of testing users).

Figure 2.8: Treatment effect for items on the Dunnhumby dataset, for eight
NBR methods for items with different frequencies in training labels and testing
inputs. The blue bar shows the frequency distribution, and the orange line
denotes the exposure distribution.
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(a) Items ranked according to their frequencies in the training labels.
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(b) Items ranked according to their frequencies in the testing inputs (i.e., historical
baskets of testing users).

Figure 2.9: Treatment effect for items on the Instacart dataset, for eight NBR
methods for items with different frequencies in training labels and testing inputs.
The blue bar shows the frequency distribution, and the orange line denotes the
exposure distribution.
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3
Next Novel Basket Recommendation

From the previous chapter, we conclude that it is useful to distinguish between
repeat items, i.e., items that a user has consumed before, and explore items,
i.e., items that a user has not consumed before. However, most NBR work
either ignores this distinction or focuses on repeat items. In this chapter, we
formulate the next novel basket recommendation (NNBR) task, i.e., the task of
recommending a basket that only consists of novel items, which is valuable for
both real-world application and NBR evaluation.

In particular, we address the thesis-level research question RQ2:

How to design basket recommendation models targeted at the explo-
ration task, and how to optimize the model to explore items in a
scenario with many repetition signals?

3.1 Introduction

Next basket recommendation is a type of sequential recommendation that aims
to recommend the next basket, i.e., set of items, to users given their historical
basket sequences. Recommendation in a grocery shopping scenario is one of
the main use cases of the NBR task, where users usually purchase a set of
items instead of a single item to satisfy their diverse needs. Many methods,
based on diverse underlying techniques (i.e., RNNs [9, 51, 62, 84, 125], self-
attention [22, 93, 127], and denoising via contrastive learning [84]), have been
proposed for, and achieve good performance on, the NBR task.

3.1.1 Next novel basket recommendation

The previous chapter published as [69] offers a new evaluation perspective on the
next basket recommendation (NBR) task by distinguishing between repetition
(i.e., recommending items that users have purchased before) and exploration

This chapter was published as: M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Masked
and swapped sequence modeling for next novel basket recommendation in grocery shopping. In
RecSys 2023: 17th ACM Conference on Recommender Systems, pages 35–46. ACM, Septem-
ber 2023.
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Table 3.1: Three types of basket recommendation.

Task Target items Recommended basket

NBR Repeat items & novel items Repeat items & novel items
NBRR Repeat items Only repeat items
NNBR Novel items Only novel items

(i.e., recommending items that are new to the user) tasks in NBR and points
out the imbalance in difficulty between the two tasks. According to the analysis
of existing methods in [69], the performance of many existing NBR methods
mainly comes from being biased towards (i.e., giving more resource to) the
repetition task and sacrificing the ability of exploration. Building on these
insights, the recent literature on NBR has seen a specific focus on the pure
repetition task as well the introduction of specific methods for the repetition
task [4, 59].

Novelty and serendipity are two important objectives when evaluating rec-
ommendation performance [47, 57]. People might simply get tired of repurchas-
ing the same set of items. Even when they engage in a considerable amount of
repetition behavior, there is still a large proportion of users who would like to try
something new when shopping for grocery [69]. This phenomenon is especially
noticeable for users with fewer transactions in their purchase history [4]. There-
fore, one of the key roles of recommender systems is to assist users in discovering
potential novel items that align with their interests. However, in contrast to the
pure repetition task, the pure exploration task in NBR remains under-explored.
Besides, due to the difference in difficulty between the two tasks, many online e-
commerce and grocery shopping platforms have started to design “buy it again”
service to isolate repeat items from the general recommendation.1,2

Motivated by the research gaps and real-world demands, we formulate the
next novel basket recommendation (NNBR) task, which focuses on recommend-
ing a novel basket, i.e., a set of items that are new to the user, given the user’s
historical basket sequence. Different from the repetition task which predicts the
probability of repurchase from a relatively small set of items, the NNBR task
needs to predict possible items from many thousands of candidates by modeling
item-item correlations, which is more complex and difficult [69]. NNBR is es-
pecially relevant to the “Try Something New” concept in the grocery shopping
scenario. Table 3.1 compares three types of basket recommendation.

1After login, users may see a “buy it again” page on e-commerce platforms (see, e.g.,
Amazon, https://amazon.com) and grocery shopping platforms (see, e.g., Picnic, https://
picnic.app), where the platform collects repeat items. Similarly, in the grocery shopping
scenario, “Try Something New” services also exist, where only novel items are recommended
to the user.

2See, e.g., http://community.apg.org.uk/fileUploads/2007/Sainsburys.pdf for an ex-
ample of the “Try Something New” concept in offline retail, and the Weekly New Recipe
service at https://ah.nl/allerhande/wat-eten-we-vandaag/weekmenu for an example in on-
line retail.

46

https://amazon.com
https://picnic.app
https://picnic.app
http://community.apg.org.uk/fileUploads/2007/Sainsburys.pdf
https://ah.nl/allerhande/wat-eten-we-vandaag/weekmenu


3.1. Introduction

3.1.2 From NBR to NNBR

The NNBR task can be seen as a sub-task of the conventional NBR task, in
which NBR methods are designed to find all possible items (both repeat items
and novel items) in the next basket. Therefore, it is possible to generate a
novel basket by only selecting top-k novel items predicted by NBR methods.
To modify NBR methods for the NNBR task, an intuitive solution is to remove
the repeat items from the ground-truth labels and train models only depending
on the novel items in the ground-truth labels. Given this obvious strategy and
given that many methods have already been proposed for NBR, an important
question is:

If we already have an NBR model, do we need to train another model
specifically for the NNBR task?

Surprisingly, we find that training specifically for exploration does not always
lead to better performance in the NNBR task, and might even reduce perfor-
mance in some cases.

3.1.3 BTBR: Bi-directional transformer basket recommendation

In NNBR, item-to-item correlations are especially important, since we need to
infer the utility of new items based on previously purchased items. Besides,
a single basket is likely to address diverse needs of a user [105]; e.g., what a
user would like to drink is more likely to depend on what he or she drank
before rather than on the tooth paste they previously purchased. However,
most existing NBR approaches [51, 62, 84, 125, 127] are two-stage methods,
which first generate a basket-level representation [99], and then learn a temporal
model based on basket-level representations, which will lead to information
loss w.r.t. item-to-item correlations [62, 93, 127]. Some methods [62, 93, 127]
learn partial item-to-item correlations based on the co-occurrence within the
same or adjacent basket as auxiliary information beyond basket-level correlation
learning. Instead of learning or exploiting complex basket representations, we
learn item-to-item correlations from direct interactions among different items
across different baskets. To do so, we propose a bi-directional transformer basket
recommendation model (BTBR) that adopts a bi-directional transformer [101]
and uses the shared basket position embedding to indicate items’ temporal
information.

3.1.4 Masking and training

To properly train BTBR, we propose and investigate several masking strategies
and training objectives at different levels and tasks, as follows: (i) item-level
random masking: a cloze-task loss [33, 98], in which we randomly mask the
historical sequence at the item level; (ii) item-level select masking: a cloze-task
loss designed for exploration, in which we first select the items we need to mask
and then mask all the occurrences of the selected item; (iii) basket-level all
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3. Next Novel Basket Recommendation

masking: a general basket recommendation task loss, in which we mask and
predict the complete last basket at the end of the historical sequence; (iv) bas-
ket-level explore masking: an explore-specific basket recommendation task loss,
in which we remove the repeat items and only mask the novel items in the last
basket of the historical sequence; and (v) joint masking: a loss that follows the
pre-train-then-fine-tune paradigm, in which we first adopt item-level masking
for the cloze task, then fine-tune the model using basket-level masking.

In addition, conventional sequential item recommendation usually assumes
that the items in a sequence are strictly ordered and sequentially dependent.
However, recent work [e.g., 24, 83, 110, 120] argues that the items may occur
in any order, i.e., the order is flexible, and ignoring flexible orders might lead
to information loss. Similarly, it is unclear whether the items that are being
purchased across baskets have a strict order in the grocery shopping scenario.
Thus, we propose an item swapping strategy that allows us to randomly move
an item to another basket according to a certain ratio, which can enrich item
interactions within the same basket.

We conduct extensive experiments on three publicly available grocery datasets
to understand the effectiveness of the BTBR model and the proposed strategies
on datasets with various repeat ratios and characteristics.

3.1.5 Main contributions

The main contributions of this chapter are:

• To the best of our knowledge, we are the first to formulate and investi-
gate the next novel basket recommendation (NNBR) task, which aims to
recommend a set of novel items that meet users’ preferences in the next
basket.

• We investigate the performance of several representative NBR methods
w.r.t. the NNBR task and find (i) that training specifically for the ex-
ploration task does not always lead to better performance, and (ii) that
limited progress has been made w.r.t. the NNBR task.

• We propose a simple bi-directional transformer basket recommendation
(BTBR) model that learns item-to-item correlations across baskets.

• We propose several types of masking and item swapping strategies for
optimizing BTBR for the NNBR task. Extensive experiments are done
on three open grocery shopping datasets to assess the effectiveness of the
proposed strategies. BTBR with a proper masking and swapping strategy
is the new state-of-the-art method w.r.t. the NNBR task.

3.2 Related Work

In this section, we describe two lines of research in the recommender systems
literature that are related to our work: sequential recommendation and next
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basket recommendation.

3.2.1 Sequential recommendation

Sequential item recommendation has been widely studied for many years, and
models [48, 49, 58, 65, 73, 92, 96, 117] with various deep learning techniques,
e.g., RNN [48, 49], CNN [96], GNN [89, 117], contrastive learning [120], at-
tention [65, 73] and self-attention [58, 92, 101] mechanism are proposed. Self-
attention (Transformer) model [101] with multi-head attention is first proposed
and shows strong performance in natural language processing, and SASRec [58]
is the first sequential recommendation model that employs the self-attention
mechanism. Later, BERT4Rec [92] upgrades the left-to-right training scheme
in SASRec and uses a bi-direction transformer with a Cloze task [98], which
is the closest sequential recommendation method to this chapter. Motivated
by the success of BERT4Rec, some follow-up work has applied masked-item-
prediction training to more specific scenarios [126].

However, BERT4Rec and follow-up work only focus on the item sequential
recommendation with only random masking during training [126]. We extend
BERT4Rec to the basket sequence setting and propose several types of masking
strategies and training objectives that are specifically designed for the NNBR
task. Furthermore, in this work we study the next novel basket recommendation
task, where both historical interactions and the predicted target are baskets
(sets of items). None of the sequential recommendation models listed above are
designed to handle a sequence of baskets.

3.2.2 Next basket recommendation

Next basket recommendation is another sequential recommendation task that
addresses the sequence of baskets in the grocery shopping scenario. Existing
methods can be classified into three types: frequency neighbor-based meth-
ods [36, 52], Markov chain (MC)-based methods [88], and deep learning-based
methods [4, 9, 22, 51, 59, 62, 63, 84, 93, 105, 109, 112, 125, 127]. Recently, Li
et al. [69] have evaluated and assessed NBR performance from a new repetition
and exploration perspective; they find that the repetition task, i.e., recommend-
ing repeat items, is much easier than the exploration task, i.e., recommending
explore items (a.k.a. novel items in this chapter), besides the improvements of
many recent methods come from the performance of the repetition task rather
than better capturing correlations among items. Inspired by this finding, an
NBR method [4] that only models the repetition behavior has been proposed,
and an NBRR task [59] that only focuses on recommending repeat items has
been formulated.

In this chapter, we propose and formulate the next novel basket recommen-
dation task that focuses on recommending novel items to the user, whereas all
of the NBR methods mentioned above focus on the conventional NBR, and their
performance when generalized to the NNBR task remains unknown.
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3.3 Problem Formulation

In this section, we describe and formalize the next novel basket recommendation
task which is the focus of this chapter.

Formally, given a set of users U = {u1, u2, . . . , un} and a set of items
I = {i1, i2, . . . , im}, Su = [B1

u, B
2
u, . . . , B

t
u] represents the historical interaction

sequence for user u, where Bt
u represents a set of items i ∈ I that user u

purchased at time step t. For a user u, the repeat item irepu is the item that user
u has purchased before, which is defined as irepu ∈ Irepu = B1

u ∪ B2
u ∪ . . . ∪ Bt

u,
and the novel item inovelu is the item that user u have not purchased before, i.e.,
inovelu ∈ Inovelu = I − Irepu .

The goal of the next novel basket recommendation task is to predict the
following novel basket which only consists of novel items inovelu that the user
would probably like, based on the user’s past interactions Su, that is,

Pu = B̂t+1
u = f(Su) (3.1)

where Pu denotes a recommended item list that only consists of the novel items
inovelu of user u.

3.4 Our Method

In this section, we first describe the base bi-directional transformer basket rec-
ommendation model (BTBR) we use, then introduce several types of masking
strategies for the NNBR task, and finally describe the item swapping strategy.

3.4.1 Bi-directional transformer basket recommendation model

Learning basket representations [99] and modeling temporal dependencies across
baskets are two key components in almost all neural-based NBR methods. Many
NBR methods introduce complex architectures to learn representations for bas-
kets in grocery shopping [22, 62, 84, 93, 127]. Instead of proposing more complex
architectures to learn better basket representations and temporal dependencies,
we want to simplify the model and only focus on the item-level correlations
across different baskets, which helps us to infer novel items from users’ histori-
cal items.

As a widely used method to model temporal dependencies, a recurrent neural
network (RNN) [25, 41] requires passing information sequentially according to
the temporal order, whereas there is no temporal order for items within the same
basket, and basket-level representations at each timestamp are required [51, 62,
84, 125]. Another alternative method is the self-attention mechanism (a.k.a.
transformer) [101], which is capable of learning the representations of every
position via exchanging the information across all positions. Therefore, we
adopt the bi-directional transformer [33, 101] as the backbone of our BTBR
model, which not only allows us to learn item-to-item correlations from the
direct interactions among items across different baskets but also is able to handle
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Figure 3.1: The overall architecture of the BTBR model.

basket sequence information in grocery shopping. The overall architecture of
BTBR is shown in Figure 3.1.
Embedding layer. In order to use transformers [101] for NNBR, we first
transfer the basket sequence to the item sequence via a “flatten” operation, e.g.,
[{i1, i2}, {i1, i3, i4}] → [i1, i2, i1, i3, i4]. It has been shown that the positions of
items are informative in the sequential recommendation scenario [58, 92]. Differ-
ent from the solutions in conventional item sequential recommendation, where
each item is combined with its unique position embedding w.r.t. its position in
the item sequence, we use learnable position embedding for every basket, and
items within the same basket will share the same position embedding. For exam-
ple, given a basket sequence S = [{i1, i2}, {i1, i3, i4}, {i4, i5}], we first flatten S
and get a sequence of item embedding Ei = [ei1, e

i
2, e

i
1, e

i
3, e

i
4, e

i
4, e

i
5], and get a po-

sition embedding sequence Ep = [ep1, e
p
2, e

p
3], finally the input sequence of trans-

former layer will be Ei,p = [ei1+ep1, e
i
2+ep1, e

i
1+ep2, e

i
3+ep2, e

i
4+ep2, e

i
4+ep3, e

i
5+ep3].

Note that, the padding and truncating operation is also employed to handle the
sequences of various lengths.
Bi-directional transformer layer. The transformer architecture contains
two sub-layers:

1. Multi-head attention layer, which adopts the popular attention mecha-
nism [101] and aggregates all items’ embeddings across different baskets
with adaptive weights.
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2. Point-wise feed-forward layer, which aims to endow nonlinearity and in-
teractions between different latent dimensions.

We use stacked transformer layers to learn more complex item-to-item correla-
tions, that is:

H1 = Trm(Ei,p), . . . ,H
L = Trm(HL−1), (3.2)

where Trm denotes the bi-directional transformer layer, HL = [hL
1 , h

L
2 , . . . , h

L
d ]

denotes a representation sequence derived from the last transformer layer, and d
denotes the maximum sequence length of input sequence Ei,p. Besides, residual
connections [45], dropout [90], layer normalization [8], and GELU activation [46]
are adopted to enhance the ability of representation learning. For more details
about the bi-directional transformer layer, we refer to [58, 92, 101].
Prediction layer. After hierarchically exchanging information of all items
across baskets using the transformer, we get HL ∈ Rm×d, which contains the
corresponding representations hL for all items in the input sequence. Follow-
ing [58, 92], we use the same item embedding EI ∈ Rm×d as the input layer
to reduce the model size and alleviate the overfitting problem. For a masked
position (item), we get its learned representation h ∈ Rd and compute the
interaction probability distribution p of candidate items by:

p = Softmax(hET + b), (3.3)

where E is the embedding matrix for candidate items and b denotes a bias term.

3.4.2 Masking strategy

Since there are repetition signals in the basket sequence, it is unclear whether
these signals are merely noise/shortcuts or contain valuable information for the
task of recommending novel items. After constructing the base model (BTBR),
the challenging problem that needs to be addressed is how to properly train the
model to improve its ability of finding novel items that meet users’ interests.
In this section, we propose four types of alternative masking strategies for the
next novel basket recommendation task considering different tasks and levels,
as well as the repetition-exploration signals. Figure 3.2 shows examples of four
types of masking strategies and Table 3.2 shows the characteristics of different
training strategies.
Cloze task. The first type of training objective is a cloze task [98], i.e., “masked
language model” in [33]. Specifically, we mask a proportion of items in the in-
put sequence, i.e., replace each of them with a “mask token”, and then try to
predict the original items based on their contexts. We call this masking “item-
level”. Two main advantages of this item-level masking & training strategy are
(i) it allows us to generate more item-level training samples by breaking the
definition of “basket”, and (ii) it learns both sides’ information via the bi-direc-
tional transformer, which might allow the model to better capture item-to-item
correlations. We first introduce two item-level masking strategies as follows:
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Figure 3.2: The original basket sequence (at the top) and four types of masking
strategies.

1. Random: This is a conventional masking strategy, which has been adopted
in BERT4Rec [92]. Specifically, given a flattened item sequence, we ran-
domly select several positions of the sequence and mask the corresponding
items of the selected position according to mask ratio α as input.

2. Select : One potential issue w.r.t. the above Random masking is that
the masked items (prediction target) might still exist in the non-masked
positions, so the model might mainly predict the masked item via its
repetition information rather than inferring new items based on item-
to-item correlations. Therefore, we propose the select masking strategy,
which is specifically targeted at the exploration demand of the NNBR
task. Specifically, given a flattened item sequence, we first derive the
item set I in this sequence, then randomly select several items im ∈ I
according to mask ratio α, and finally mask all the occurrences of im
in the sequence. Since there is no repetition information available, the
model can only infer the targeted items, i.e., novel items, via learning the
item-to-item correlations.
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Table 3.2: Comparison of four types of masking strategies from three aspects,
i.e., temporal orders, explore specific and amount of training signals.

Number of
Strategy Strict temporal order Explore specific training signals3

Item-Random × × ***
Item-Explore × ✓ ***
Basket-All ✓ × **
Basket-Explore ✓ ✓ *

Basket recommendation task. Using the cloze task as the learning objective
has limitations: (i) it is not able to fully respect the temporal dependencies of
a sequence, since we can only use the historical information (left-side context)
when we make the recommendation; and (ii) it is not specifically designed for
the basket recommendation task and a mismatch might exist. Therefore, the
second type of training objective we consider is the basket recommendation
task, which masks the input sequence at the basket-level instead of item-level.
Specifically, we mask the last basket and try to predict the items in this basket
only based on the historical items (left-side information). Similarly, we propose
another two basket-level masking strategies as follows:

1. All : This masking strategy can be regarded as optimizing the model for
the NBR task. Given a flattened item sequence, we find and mask all
items, i.e., both novel items and repeat items in the last basket.

2. Explore: This is a NNBR-specific masking strategy. Given a flattened
item sequence, we find the items in the last basket, instead of masking
all items, we only mask the novel items i ∈ Inovel and remove the repeat
items i ∈ Irep. The model will be only optimized for finding all novel
items in the future based on the historical basket sequence.

Joint task. The pretrain-then-finetune paradigm has been widely adopted in
NLP. Item-level masking (the cloze task) and basket-level masking (the basket
recommendation task) can also be combined as a joint masking strategy to
employ the pretrain-then-finetune paradigm in NNBR, which first uses item-
level masking strategy (i.e., self-supervised task) to get item correlations as the
pre-train stage and then employ basket-level masking strategy (i.e., supervised
task) to finetune it for basket recommendation.
Loss. Following [92], we select minimizing the negative log-likelihood loss as
the training objective:

L =
1

|Im|
∑
i∈Im

− log p(i | Su), (3.4)

3More *’s indicate more training signals. Item-level masking can be seen as self-supervised
learning, which is more flexible and can leverage more training signals than basket-level mask-
ing. Basket-explore has the fewest training signals as it can only use the novel items in the
last basket.
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where Im is the masked item set, p(i | Su, t) is the predicted probability of item
i at position t.
Test and prediction. To predict a future basket (a set of items), we only need
to add one masked token at the end of the user’s item sequence, since items
within the same basket share the same position embedding. In the NNBR task,
the candidate items are novel items Inew that the user has not bought before,
thus we use the embedding matrix w.r.t. the novel items of every user to compute
the probabilities according to Eq. 3.3. Finally, we select top-K novel items with
the highest scores as the recommendation list of the next novel basket.

3.4.3 Swapping strategy

In sequential recommendation, some work [24, 83, 110, 120] argues that the
items in a sequence may not be sequentially dependent and different item orders
may actually corresponding to the same user intent. Ignoring flexible orders in
sequential recommendation might lead to less accurate recommendations for
scenarios where many items are not sequentially dependent [83, 110, 126]. In
grocery shopping, the items purchased within the different baskets might not
have rigid orders. To further understand if considering the flexible orders among
items could further improve the performance w.r.t. the NNBR task, we propose
the item swapping strategy to create augmentations for the BTBR.

Specifically, as illustrated in Figure 3.3, we randomly select items according
to a swap ratio λ and then move them to another basket to enrich the items’
interactions within the same basket. Besides, we introduce a hyper-parameter,
i.e., swap hop γ, to control the basket distance of the swapping strategy. Note
that, we only perform the local swap strategy when using item-level masking
(the cloze task) to train the model, since basket-level masking (the basket rec-
ommendation task) is designed to respect the sequential order and predict the
future basket based on historical information.

i1 i2 i1 i3 i4 i2 i5 i6 ...

i1 i3 i1 i2 i2 i5 i6 ...

swapping

i4

training

Figure 3.3: An example of the item swapping strategy.
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3.5 Experimental Setup

3.5.1 Research questions

To comprehensively understand the next novel basket recommendation task,
and evaluate the performance of BTBR with different strategies, we decompose
the thesis-level research question RQ2 into the following questions:

RQ2.1 How do existing NBR models perform w.r.t. the NNBR task? Does
training specifically for the NNBR task lead to better performance?

RQ2.2 How does BTBR with different masking strategies perform compared
to the state-of-the-art models?

RQ2.3 Does the swapping strategy contribute to the improvements?

RQ2.4 How do the hyper-parameters influence the models’ performance and
how different masking strategies affect the training dynamics?

RQ2.5 Is the joint masking strategy more robust than using the single masking
strategy?

3.5.2 Datasets.

We evaluate the NNBR task on three publicly available grocery shopping datasets
(TaFeng,4 Dunnhumby,5 and Instacart6), which vary in their repetition and ex-
ploration ratios. Following [69], we sample users whose basket length is between
3 and 50, and remove the least frequent items in each dataset. We also focus
on the fixed size (10 or 20) next novel basket recommendation problem. In our
experiments, we split the dataset across users, 80% for training, and 20% for
testing, and leave 10% of the training users as the validation set. We repeat the
splitting and experiments five times and report the average performance. The
statistics of the processed datasets are shown in Table 3.3.

Table 3.3: Statistics of the processed datasets.

Dataset #items #users
Avg.

basket
size

Avg.
#baskets
per user

repeat
ratio

explore
ratio

TaFeng 11,997 13,858 6.27 6.58 0.188 0.812
Dunnhumby 3,920 22,530 7.45 9.53 0.409 0.591
Instacart 13,897 19,435 9.61 13.21 0.597 0.403

4https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
5https://www.dunnhumby.com/source-files/
6https://www.kaggle.com/c/instacart-market-basket-analysis/data
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3.5.3 Baselines

We investigate the performance of six NBR baselines, which we select based
on their performance on our chosen datasets in the analysis performed in [69].
Importantly, for a fair comparison, we do not include methods that leverage
additional information [9, 22, 93].

• G-TopFreq: G-TopFreq uses the k most popular items in the dataset to
form the recommended next basket, which is widely used in recommen-
dation due to its effectiveness and simplicity.

• TIFUKNN: TIFUKNN [52] is a state-of-art method that models the
temporal dynamics of frequency information of users’ past baskets to in-
troduce personalized frequency information (PIF), then it uses a KNN-
based method on the PIF.

• Dream: Dream [125] models users’ global sequential basket behavior for
NBR. It uses a pooling strategy to generate basket representations, which
are then fed into an RNN to learn user representations and predict the
corresponding next set of items.

• DNNTSP: DNNTSP [127] is a state-of-art method that leverages a GNN
and self-attention techniques. It encodes item-item relations via a graph
and employs a self-attention mechanism to capture temporal dependencies
of users’ basket sequences.

• Beacon: Beacon [62] is a RNN-based method that encodes the basket
considering the incorporating information on pairwise correlations among
items.

• CLEA: CLEA [84] is a state-of-art RNN-based method that posits that
not all items contribute to the next move, and uses a contrastive learning
model to automatically extract items relevant to the target item and get
the representation via a GRU-based encoder.

Note that, for the above baseline models (except G-TopFreq), we have two
versions with different training methods, i.e., using all items in the last basket
as training labels (Train-all), and only using novel items in the last basket as
training labels (Train-explore).

3.5.4 Configurations

For the training-based baseline methods and TIFUKNN, we strictly follow the
hyper-parameter setting and tuning strategy of their respective original papers,
the embedding size is tuned on {16, 32, 64, 128} for all training-based methods
based on the validation set to achieve their best performance.

We use PyTorch to implement our model and train it using a TITAN X
GPU with 12G memory. For BTBR, we set self-attention layers and their head
number to 2, and tune the embedding size on {16, 32, 64, 128}. The Adam

57



3. Next Novel Basket Recommendation

optimizer with a learning rate of 0.001 is used to update parameters. We set
the batch size to 128 for the Tafeng and Dunnhumby datasets, and 64 for the
Instacart dataset; we sweep the mask ratio α in {0.1, 0.3, 0.5, 0.7, 0.9}, local
swap ratio in {0, 0.1, 0.3, 0.5, 0.7, 0.9} and swap hop γ in {1, 3, 5, 7, 9}. We share
both our processed dataset and the source code.7

3.5.5 Metrics

Two widely used metrics for the NBR problem are Recall@k and nDCG@k. In
the NNBR task, Recall measures the ability to find all novel items that a user
will purchase in the next basket; NDCG is a ranking metric that also considers
the order of these novel items, i.e.,

Recall@K =
1

|U |
∑
u∈U

∣∣Pu ∩ Tnovel
u

∣∣
|Tnovel

u |
, (3.5)

nDCG@K =
1

|U |
∑
u∈U

∑K
k=1 pk/ log2(k + 1)∑min(K,|T novel

u |)
k=1 1/ log2(k + 1)

, (3.6)

where U is a set of users who will purchase novel items in their next basket,
Tnovel
u is a set of ground-truth novel items of user u, pk equals 1 if P k

u ∈
Tnovel
u , otherwise pk = 0. P k

u denotes the k-th item in the predicted basket Pu.
Note that, some methods might assign high scores w.r.t. the repeat items [69],
to generate a novel basket, we fully remove the repeat items, then only rank
and select top-k novel items as the recommended basket Pu to ensure a fair
comparison, i.e., the recommended basket only consists top-k novel items.

3.6 Experimental Results

3.6.1 Train-all and Train-explore

To answer RQ2.1, we employ two training strategies for each baseline method:
(i) Train-all : we keep both repeat items and explore items as part of the
ground-truth labels during training, which means that the model is trained
to find all possible items in the next basket; and (ii) Train-explore: we remove
the repeat items and only keep novel items in the ground-truth labels during
training, which means the model is specifically trained to find novel items in
the next basket. For the NNBR performance evaluation, we assess the models’
ability to find novel items, which means the recommended novel basket consists
of top-k novel items and there are no repeat items. We report the experimental
results of different baseline methods in Table 3.4. We have three main findings.

First, we can see that no method can consistently outperform all other meth-
ods across all datasets. On the Tafeng dataset, several NN-based methods
(Dream-all, Dream-explore, Beacon-all, Beacon-explore, DNNTSP-all, CLEA-
explore) fall in the top-tier methods group with quite good performance. On the

7See https://github.com/liming-7/Mask-Swap-NNBR
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Table 3.4: Results of methods training for finding novel items, i.e., Train-
explore compared against the methods training for finding all items, i.e., Train-
all. Boldface and underline indicate the best and the second best-performing
performance w.r.t. the NNBR task, respectively. Significant improvements and
deteriorations of Train-explore over the corresponding Train-all baseline results
are marked with ↑ and ↓, respectively. (paired t-test, p < 0.05).

D
ataset

M
etric

T
rain

G
-P

op
T

IF
U

K
N

N
D

ream
B

eacon
C

LE
A

D
N

N
T

SP

Tafeng

R
ecall@

10
all

0.0587
0.0714

0.0960
0.0926

0.0870
0.1024

explore
=

0.0911
↑

0.1021
↑

0.0967
↑

0.1010
↑

0.0940
↓

nD
C

G
@

10
all

0.0603
0.0662

0.0823
0.0789

0.0755
0.0855

explore
=

0.0783
↑

0.0859
↑

0.0819
↑

0.0857
↑

0.0767
↓

R
ecall@

20
all

0.0874
0.0926

0.1244
0.1252

0.1150
0.1245

explore
=

0.1157
↑

0.1244
0.1257

0.1253
↑

0.1168
↓

nD
C

G
@

20
all

0.0703
0.0738

0.0928
0.0909

0.0861
0.0943

explore
=

0.0876
↑

0.0939
0.0929

0.0952
↑

0.0858
↓

Dunnhumby

R
ecall@

10
all

0.0468
0.0497

0.0494
0.0499

0.0499
0.0514

explore
=

0.0498
0.0506

0.0529
↑

0.0520
↑

0.0472
↓

nD
C

G
@

10
all

0.0397
0.0409

0.0409
0.0411

0.0376
0.0415

explore
=

0.0411
0.0385

0.0428
↑

0.0404
↑

0.0378
↓

R
ecall@

20
all

0.0701
0.0745

0.0744
0.0804

0.0711
0.0782

explore
=

0.0746
0.0791

0.0813
0.0807

↑
0.0739

nD
C

G
@

20
all

0.0491
0.0505

0.0505
0.0532

0.0479
0.0524

explore
=

0.0506
0.0502

0.0546
0.0521

↑
0.0484

↓

Instacart

R
ecall@

10
all

0.0430
0.0425

0.0440
0.0454

0.0394
0.0414

explore
=

0.0494
↑

0.0455
0.0460

0.0469
↑

0.0419

nD
C

G
@

10
all

0.0359
0.0346

0.0356
0.0388

0.0302
0.0335

explore
=

0.0400
↑

0.0355
0.0387

0.0369
↑

0.0341

R
ecall@

20
all

0.0685
0.0649

0.0690
0.0733

0.0626
0.0635

explore
=

0.0755
↑

0.0719
0.0741

0.0764
↑

0.0642

nD
C

G
@

20
all

0.0455
0.0431

0.0452
0.0499

0.0394
0.0424

explore
=

0.0500
↑

0.0462
0.0501

0.0484
↑

0.0431

59



3. Next Novel Basket Recommendation

Dunnhumby dataset, Beacon-explore achieves the best performance w.r.t. all
metrics. On Instacart dataset, TIFUKNN-explore is among the best-performing
methods, which means that well-tuned neighbor-based models may outperform
complex neural-based methods on some datasets w.r.t. the NNBR task [28,
69]. The performance of G-TopFreq is obviously the worst on the Tafeng and
Dunnhumby dataset, however, its performance is quite competitive on the In-
stacart dataset, which indicates that the popularity information is very impor-
tant w.r.t. the NNBR task in the scenario with a high repeat ratio.

Second, the improvements of recent methods achieved in NBR task does not
always generalize to the NNBR task. Recent proposed methods (TIFUKNN,
CLEA, DNNTSP) have surpassed the previous classic baselines (i.e., G-TopFreq,
Dream, Beacon) by a large margin in conventional NBR task [52, 69, 84, 127],
whereas, the improvements are relatively small or even missing on some datasets
when handling the NNBR task. This indicates that the recently proposed meth-
ods make limited progress on finding novel items for the user and that their im-
provements mainly come from the repeat recommendation, which is consistent
with the findings in [69].

Third, the NNBR performance changes diversely for different methods when
changing from Train-all to Train-explore. Training and tuning existing NBR
methods specifically for the NNBR task lead to significant or mild improve-
ments in most cases, since the models do not need to deal with the repetition
task and they are more targeted on finding novel items that meet users’ pref-
erences. Surprisingly, we find that DNNTSP-explore’s performance is much
worse than DNNTSP-all on the Tafeng and Dunnhumby datasets. We suspect
that the underlying reason for this deterioration is that the repeat items (la-
bels) contain useful item-to-item correlation signals that can be captured by
the DNNTSP.8 Since various NBR methods have distinct architectures, certain
methods may gain more from tailored training for exploration, while others can
grasp item-item correlations from repeat labels. Consequently, it is unwise to
indiscriminately eliminate repeat labels during training.9

3.6.2 Effectiveness of BTBR

To answer RQ2.2, we evaluate the overall NNBR task performance of BTBR
with different masking strategies, i.e., item-level random masking (item-random),
item-level select masking (item-select), basket-level all masking (basket-all) and
basket-level explore masking (basket-explore). The results of the comparison

8Assume that one user’s historical basket sequence is [[a, b, c], [c, d], [a, c]], and next basket
is [b, e]. Even though b is a repeat item, the model might be able to learn the correlation
between b and other items in this historical sequence, which might help with the model’s
ability of finding novel items.

9This finding is important as it helps to avoid the potential issue of poor baselines. To
ensure a fair comparison, NNBR practitioners should experiment with both strategies to train
their baseline models and achieve best performances, instead of using an intuitive solution,
i.e., removing repeat labels.
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Table 3.5: Results of BTBR method with different masking strategies com-
pared against the best performance of baseline method training for each metric
w.r.t. NNBR task. Boldface and underline indicate the best and the second
best performing performance w.r.t. the NNBR task, respectively. Significant
improvements and deteriorations of over the best baseline results are marked
with ↑ and ↓, respectively (paired t-test, p < 0.05). ▲% shows the improvements
against the best performing baseline.
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with the best baseline performances are shown in Table 3.5.10 Based on the
results, we have several observations. First, BTBR with the basket-all masking
strategy (i.e., conventional next basket recommendation task) can significantly
outperform the best baselines on the Tafeng and Instacart datasets, and achieve
comparable performance on the Dunnhumby dataset. This result indicates that
it may not be necessary to introduce basket representations, because only mod-
eling item-to-item correlations is already effective for the NNBR task.

Second, there is no consistent best masking strategy across all datasets.
On the Tafeng dataset, it is clear that basket-level masking outperforms item-
level masking, where basket-all and basket-explore can respectively outperform
and achieve the existing best performances w.r.t. each metric; however, using
item-level masking leads to significant deterioration. On the Dunnhumby and
Instacart datasets, BTBR with item-level masking strategies can significantly
outperform the best performances achieved by baselines by a large margin, and
is superior to BTBR with basket-level masking strategies. The above results
show that the sequential order of items or baskets on the Tafeng dataset might
be more strict than the order on the Dunnhumby and Instacart datasets, so
using item-level masking, which fails to fully respect the sequential order and
has poor performance on the Tafeng dataset.

Third, we can also observe that item-select masking achieves better perfor-
mance than item-random masking w.r.t. all metrics across all datasets (paired
t-test, p < 0.05), i.e., the improvements range from 4.1% to 9.0%, which demon-
strates the effectiveness of our specifically designed item-select masking strategy
for the NNBR task. In a sequence with many recurring items, the conventional
random masking strategy could not ensure there is no masked item remaining
in the other positions of the sequence, so the model might learn to predict the
masked item based on the items’ remaining occurrences, i.e., item self-relations.
While the proposed item-select masking strategy will remove all occurrences of
the same item, which can ensure that the masked items are novel items w.r.t.
the remaining masked sequence, and the model has to infer the masked novel
item via learning the masked item’s relation with other items.

Finally, it can also be seen that basket-explore masking, which is specifically
targeted at the NNBR task, does not lead to any improvements on the Tafeng
and Dunnhumby datasets, and results in a decrease in performance on the
Instacart dataset, compared with basket-all masking. This result again verifies
the findings in Section 3.6.1 and indicates that masking and training BTBR
specifically for the NNBR task may be suboptimal, since the repeat item labels
may also be helpful with item-to-item correlations modeling.

3.6.3 Effectiveness of the item swapping strategy

To answer RQ2.3, we conduct experiments to verify the effectiveness of the
swapping strategy, and the results are shown in Table 3.5. We find that adding

10To avoid confusion, we only mark the significant differences for comparison with the
baselines in this table. More comparison results among different strategies can be found in
the experimental analysis.
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a swapping strategy on top of item-random and item-select leads to a decrease
in performance on the Tafeng dataset. At the same time, we note that adding
a swapping strategy on top of item-random and item-select leads to better
performance on the Dunnhumby and Instacart datasets (paired t-test, p < 0.05).
These results are not surprising, since the swapping strategy will not only enrich
the item interactions within the basket, but also have a risk of introducing noise
w.r.t. the temporal information. The sequential order is relatively strict on the
TaFeng dataset (see Section 3.6.2), and the model can not benefit from the swap
strategy.

We further investigate the influence of hyper-parameters of the swapping
strategy, i.e., swap ratio and swap hop. Figure 3.4 shows a heatmap w.r.t. Re-
call@10 on different datasets when swap ratio ranges within [0.1, 0.3, 0.5, 0.7, 0.9]
and swap hop ranges within [1, 3, 5, 7, 9]. We observe that training with both
high swap ratio and swap hop (the upper-right of the heatmap) leads to poor
performance on the Tafeng and Dunnhumby dataset. When it comes to the
Instacart dataset, better performance is achieved via using a high swap-hop.
The repeat ratio on the Instacart dataset is high, which means that the user’s
interest is relatively stable and swapping across adjacent baskets won’t help, so
a higher swap hop is preferred to enrich item interactions within the basket on
this dataset.

Given the above findings, there is a trade-off between enriching the item
interactions within baskets and respecting the original temporal order informa-
tion, so it is reasonable to search for the optimal swap hyper-parameters to get
the highest performance on different datasets in practice.

3.6.4 Effect of mask ratio and training dynamics

To answer RQ2.4, we investigate the effect of mask ratio and analyze how the
performance changes as training goes on to further understand the properties
of different masking strategies.
Mask ratio. The mask ratio α when using item-level masking is one hyper-
parameter that is worth discussing. Figure 3.5 shows the Recall@10 when mask
ratio ranges within [0.1, 0.3, 0.5, 0.7, 0.9]. We can observe that item-select out-
performs item-random with the same mask ratio in most cases. We also see that
the optimal mask ratio is 0.1 for item-random and item-select, and the optimal
mask ratio is much higher (0.5, 0.7) on the Dunnhumby and Instacart datasets.
We suspect that a higher mask ratio is preferred in the NNBR task when the
dataset has long interaction records for the users.
Training dynamics. Figure 3.6 shows how the Recall@10 evolves as training
goes when using different masking strategies. First, it is obvious that basket-
level masking achieves its best performances very fast, and then drops much
earlier than item-level masking. This is because the training labels of basket-
level masking are static, which can easily lead to overfitting, while the training
labels of item-level masking are dynamic, which alleviates overfitting. Second,
compared to basket-all masking, basket-explore masking further aggravates the
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Figure 3.4: Performance heatmap with different swap hops and swap ratios.
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Figure 3.5: Performance of BTBR with item-random strategy and item-select
masking strategy with various mask ratios.
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Figure 3.6: The training progress w.r.t. Recall@10 of BTBR with different
masking strategies on three datasets.

overfitting problem via removing the repeat items (labels), which might lead
to a performance decrease, especially in the scenario with a high repeat ratio.
Finally, the performance of item-random and item-select evolves similarly on the
Tafeng dataset, since the repeat ratio on it is small. On the Dunnhumby and
Instacart datasets, item-random masking results in overfitting earlier than the
item-select masking, since the masked item might still exist in other positions of
the masked sequence and the model will rely more on the repeat item prediction
instead of inferring novel items, as the repetition prediction task is relatively
easier [69].

3.6.5 Effectiveness of joint masking

So far, we have built a comprehensive understanding of different masking strate-
gies and realize that no single masking strategy is optimal in all cases, due to
the diverse characteristics of datasets. Now, we conduct experiments to eval-
uate the effectiveness of the joint masking (training), i.e., pre-train the model
using item-select masking, then fine-tune the model using basket-all masking.
The results are also shown in Table 3.5. We find that BTBR with joint mask-
ing can consistently outperform best performances derived by existing baselines
across datasets, the improvements range from 1.3% to 7.6% on Tafeng dataset,
from 9.2% to 12.5% on Dunnhumby dataset and from 19.5% to 22.4% on In-
stacart dataset. Although joint masking does not lead to further improvements
compared with a single optimal strategy, i.e., basket-all on the Tafeng dataset
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and item-select with swap on the Dunnhumby and Instacart datasets, in most
cases.11 The joint masking strategy under the pretrain-then-finetune paradigm
is still valuable due to its robustness w.r.t. NNBR task (i.e., can consistently
achieve the best performance) on various datasets with different characteristics,
which answers RQ2.5.

3.7 Conclusion

In this chapter, we have formulated and investigated the NNBR task, i.e., the
task of recommending novel items to users given historical interactions, to an-
swer the thesis-level research question RQ2:

How to design basket recommendation models targeted at the explo-
ration task, and how to optimize the model to explore items in a
scenario with many repetition signals?

The NNBR task has practical applications, and helps us to evaluate an NBR
model’s ability to find novel items. To understand the performance of existing
NBR methods on the NNBR task, we have evaluated several NBR models with
two training methods, i.e., Train-all and Train-explore. To address the NNBR
task, we have proposed a bi-directional transformer basket recommendation
model (BTBR), which uses a bi-directional transformer to directly model item-
to-item correlations across different baskets. To train BTBR, we designed five
types of masking strategies and training objectives considering different levels:
(i) item-level random masking, (ii) item-level select masking, (iii) basket-level
all masking, (iv) basket-level explore masking, and (v) joint masking. To further
improve the BTBR performance, we also proposed an item swapping strategy
to enrich item interactions.

3.7.1 Main findings

We conducted extensive experiments on three datasets. Concerning existing
NBR methods we found that: (i) The performance on the NNBR task differs
widely between existing NBR methods; (ii) The performance of existing meth-
ods on the NNBR task leaves considerable room for improvement, and the top
performing methods on the NNBR task are different from the top performers on
the NBR task; (iii) Training specifically for the NNBR task by removing repeat
items from the ground truth labels does not lead to consistent improvements in
performance. Concerning our newly proposed BTBR method, we found that:
(i) BTBR with a properly selected masking and swapping strategy can substan-
tially improve the NNBR performance; (ii) There is no consistent best masking
level for BTBR across all datasets; (iii) The proposed item-select masking strat-
egy outperforms the conventional item-random masking strategy on the NNBR

11The highest and second-highest scores in Table 3.5 are essentially at the same level and
there is no significant difference between the joint training strategy and the single optimal
strategy on each dataset in terms of performance.
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task; (iv) The item-basket swapping strategy can further improve NNBR perfor-
mance; and (v) A joint masking strategy is robust on various datasets but does
not lead to further improvements compared to a single level masking strategy.

3.7.2 Implications

A broader implication of our work is that blindly training specifically for the
proposed recommendation task might lead to sub-optimal performance and it is
necessary to consider various training objectives on diverse datasets. Another
implication is that it is important to consider the differences between repetition
behavior and exploration behavior when designing recommendation models for
the grocery shopping scenario.

3.7.3 Limitations

One limitation of this chapter is that we only focus on the grocery shopping
scenario. An obvious avenue for future work, therefore, is to extend the proposed
item-select masking strategy to sequential item recommendation scenarios and
investigate if it can outperform the widely used item-random masking strategy
w.r.t. finding novel items.

In the next chapter, we will switch to an item-centered recommendation
scenario.
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4
Reverse Next-Period Recommendation

Previous chapters have been focusing on user-centered recommendations, which
take information about a user as input and suggest items based on the user’s
preferences. In this chapter, we focus on an item-centered recommendation task,
again in the grocery shopping scenario. In the reverse next-period recommen-
dation (RNPR) task, we are given an item and have to identify potential users
who would like to consume it in the next period.

Taking repetition and exploration into consideration, we aim to answer the
thesis-level research question RQ3:

How to help a given item find its potential users in an item-centered
setting, and how do repetition and exploration influence the design
and optimization of the recommendation model?

4.1 Introduction

Recommendation systems are an important instrument to connect users and
items in many online services, like e-commerce [13, 64, 123], grocery shop-
ping [105], music/movie streaming platforms [17, 30], and news [72, 106]. Un-
like the top-n recommendation scenario, where the assumption is that there is
no temporal information about past interactions [32, 56, 118], sequential rec-
ommendation systems keep track of users’ historical interactions. This allows
the recommender system to model users’ preferences over time and recommend
items for their next interactions [113]. Various types of sequential recommenda-
tion tasks have been well investigated in recent years, such as next-item recom-
mendation [48, 117] and next-basket recommendation [52, 62, 84, 88, 125, 127].
What unites these tasks is their user-centered focus: given a user and their pro-
file, these tasks aim to suggest relevant items that meet the user’s preferences.

This chapter was published as: M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Who
will purchase this item next? Reverse next period recommendation in grocery shopping. ACM
Transactions on Recommender Systems, 1(2):Article 10, 2023.
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4.1.1 Item-centered recommendations

In this chapter we focus on a less studied item-centered task, where the recom-
mender system is given an item and needs to identify users who are most likely
to consume it. Examples of such item-centered tasks emerge when advertising
products [95], reducing waste [121], or promoting a healthy lifestyle [91]. For
example, if a supermarket wants to sell bread that will expire soon to reduce
waste, simply recommending the bread to all users will not only lead to high
service costs, but it will also harm users’ experience for those who do not like
bread. As a result, item-centered recommendation algorithms have to identify
specific top-k users who have an interest and may consume a given item. We
define a novel “item-centered” recommendation problem in a sequential setting,
namely reverse next-period recommendation (RNPR):1

Given an item and historical transactions of all users, the reverse
next-period recommendation task is to find potential users who have
an interest in the item in the next time period.

Somewhat related to our item-centered focus, Wang et al. [114] have recently
formulated the task of selecting potential “adopters” for a free-trial item to
increase the exposure of the long-tail items. However, despite the similarity to
our item-centered task, Wang et al. still focus on user-side performance.

While some previous studies have considered item-centered recommenda-
tion problems, their focus has typically been on improving efficiency in this
setting rather than designing recommendation algorithms tailored to the new
item-centered setting. Two related approaches that focus on efficiency are re-
verse maximum inner product search [reverse k-MIPS, 2] and reverse top-k
queries [102, 103, 132]. These approaches do not consider the temporal infor-
mation and assume that the user and item representation vectors are known or
can be pre-computed in advance. As a result, they are not able to handle the
RNPR task effectively.

In this chapter, we are specifically interested in the grocery shopping sce-
nario, where historical interactions consist of baskets (multi-sets of items), for
the following reasons: (i) the demand for item-centered recommendation is very
clear in the grocery shopping scenario, e.g., to help reduce food waste2 or to pro-
mote healthy lifestyles;3 (ii) repetition behavior and exploration behavior both
appear in the grocery shopping scenario, which allows us to understand the
imbalance between repetition and exploration in the item-centered recommen-
dation scenario. Specifically, we regard the next n baskets after the historical
interactions to be “the next time period.” We consider three key aspects of
the RNPR task in this work: (i) user-centered methods for item-centered tasks,
(ii) repetition vs. exploration behavior of users, and (iii) efficiency.

1While conventional recommender systems concentrate on recommending items to users,
the term “reverse” marks a shift in focus by recommending users to items.

2https://shorturl.at/iST79
3https://www.aholddelhaize.com/en/sustainability/healthier-choices/
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4.1.2 User-centered methods for item-centered tasks

Various sequential recommendation algorithms [36, 52, 125, 127] have been pro-
posed and shown to achieve good performance in user-centered sequential rec-
ommendation. Even though these models are user-centered, they can also be
adapted to the RNPR task, for instance by computing item scores from the
user’s side and ranking users from the item’s side. An intuitive solution to
adapt these models for the RNPR task is that, for a given item, the model
computes a score for every candidate user that reflects the user’s preference for
it, and then selects the top-k highest-scoring users.

Before we design task-specific solutions for RNPR, it is of interest to an-
swer the following question: what are the performance and limitations of these
user-centered sequential recommendation methods in an item-centered RNPR
setting? Since we focus on the grocery shopping scenario, we assess and inves-
tigate the performance of several representative next-basket recommendation
algorithms [52, 127] on the RNPR task, and we find that the performance of
state-of-the-art NBR methods does not always generalize to the RNPR task,
even though they do model the temporal dependencies present in sequential
recommendation (Section 4.8.1).

4.1.3 Repetition vs. exploration

In a user-centered sequential recommendation scenario, namely next-basket rec-
ommendation, a recent study [69] separates the candidate items into repeat items
for a user, that is, items that the user has interacted with before, and explore
items for a user, which are items that are new for the user. Similarly, for the
RNPR task, given an item, we can also split its candidate users into repeat users,
who have previously interacted with the given item, and explore users, who have
never interacted with the given item before. We consider three sub-tasks of the
RNPR problem:

Expl-RNPR: find possible new users (i.e., explore users), who will purchase
the given item in the next period;

Rep-RNPR: find possible repeat users (i.e., repeat users), who will repurchase
the given item in the next period; and

Mixed-RNPR: find all possible users (i.e., both repeat users and explore
users), who will purchase the given item in the next period.

To address the Expl-RNPR task, we propose a habit-interest fusion (HIF) model
that uses pre-trained embeddings to model a user’s interests and employs fre-
quency information to capture the repetition-exploration habits of the user. To
train HIF effectively, we use an item-wise pairwise ranking loss and propose two
strategies to construct the training samples: positive augmentation and negative
adjustment. To address the Rep-RNPR task, we employ a simple time-aware
frequency method, which only leverages users’ direct interactions with a given
item. To address the Mixed-RNPR task, we introduce a repetition-exploration
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user ranking (REUR) algorithm, which decouples repetition, i.e., recommending
users who have purchased the given item before, from exploration, i.e., recom-
mending users who have not purchased the given item, and then tries to find
the optimal combination of repeat users and explore users. Importantly, REUR
allows us to investigate the trade-off between recommending repeat users and
explore users. We find that recommending repeat users for a given item is much
easier than finding potential explore users for a given item (Section 4.8.4).

4.1.4 Efficiency

Real world e-commerce applications usually have a large number of users and
items [2], making it computationally expensive to compute every single user’s
score for a given item in order to identify the top-k users. In addition, an item-
centered recommender system needs to operate in an ad hoc fashion, where it
is not known up front which item needs to be recommended [2]. Therefore, it is
important to reduce the computational costs of RNPR. To this end, we propose
repetition-based methods to reduce the number of candidate users for a given
item. Specifically, we first analyze the statistics of users’ repetition behavior
on both item and category level, from both the item and user perspective,
and then propose two repetition-rule based candidate filtering methods (RRBF),
which select candidate users for a given item based on users’ item level (RRBF-
item) and category level (RRBF-cat) repetition behaviors. For the Expl-RNPR
task, we propose a candidate filtering model (CFM) to predict whether a user
will purchase a specific category in the next period based on the temporal
category information, which can further reduce the computational costs on top
of RRBF-cat. We find that both the rule-based method (RRBF) and the model-
based method (CFM) can effectively reduce the computational costs of RNPR
(Section 4.8.5).

4.1.5 Main contributions

The main contributions of this chapter are as follows:

• We define and investigate the problem of reverse next-period recommenda-
tion (RNPR), introducing the Expl-RNPR, Rep-RNPR and Mixed-RNPR
sub-tasks that consider different types of users, i.e., repeat users and ex-
plore users. To the best of our knowledge, this is the first work to study
this problem.

• We investigate several sequential NBR recommendation algorithms ap-
plied to the RNPR problem, and find that their performance cannot be
generalized in some cases for the Expl-RNPR task, and that they are more
complex than needed for the Mixed-RNPR task.

• For the Expl-RNPR task, we propose a habit-interest fusion (HIF) model
to capture users’ habits and interests w.r.t. a given item, and we propose
two training sample construction strategies for HIF.
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• For the Mixed-RNPR task, we propose a REUR algorithm to decouple
the repetition task and exploration task; and we investigate the trade-off
between repetition and exploration via the REUR algorithm.

• We analyze users’ repetition behavior on different levels from both a user
and item perspective, and propose several repetition-based user candidate
filtering methods to reduce the computational cost at inference time.

• We conduct experiments on two publicly available grocery shopping data-
sets, i.e., Dunnhumby and Instacart. The results demonstrate the effec-
tiveness of the strategies we propose in this chapter.

4.2 Related Work

4.2.1 User-centered recommendation

Sequential item recommendation tasks have been investigated for many years.
The purpose of such tasks is to consider users and their preferences and to recom-
mend the next item according to those preferences. Recurrent neural networks
(RNNs) [25, 41] and transformers [101] have shown strong performance in mod-
eling sequential information, and they have been widely used to learn represen-
tations of historical behavior in session-based recommendation. GRU4Rec [49]
leverages GRUs to model user sequences and then optimize a ranking-based loss
for session-based recommendation. An updated version, GRURec+ [48], has a
new ranking loss and sampling strategy. NARM [65] couples a GRU with an
attention mechanism to make the recommendation model focus more on recent
baskets. SASRec [58] employs a self-attention-based method to capture the
temporal dynamics of sequential recommendations in an efficient way.

In addition to RNN- and transformer-based models, several deep learning
techniques have also been applied to this area. Memory networks are applied
by STAMP [73] to capture a user’s general interests and current interests. SR-
GNN [117] models a session sequence as a graph and then uses a graph neural
network [89] to capture item transactions and learn an accurate item embedding.
Tang and Wang [96] propose a CNN-based method to capture general interests
and sequential patterns via vertical and horizontal filtering. Yuan et al. [128]
introduce a generative model to improve the performance. Pre-trained models
(such as BERT) [92] and knowledge graphs are also being applied to user-
centered recommendations [53, 115].

In grocery shopping, both the sequences of historical interactions and the
output of recommendations are sets (or rather, multisets) of items, so-called
baskets, and the next basket recommendation (NBR) task is a user-centered
sequential recommendation task that caters to this scenario. Over the years,
many dedicated NBR methods have been proposed [69]. These include Markov
chain (MC)-based methods [88, 108], deep learning-based methods [4, 9, 51,
62, 112, 125, 127], and frequency neighbor-based methods [36, 52]. An analysis
conducted by Li et al. [69] assesses and evaluates the NBR performance from
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a new repetition and exploration perspective; their comparisons show that rec-
ommending repeat items (items that a user has interacted with previously) is
an easier task than recommending explore items (items that a user has never
interacted with before), see Chapter 2.

All of the sequential recommendation methods mentioned above focus on the
user perspective, whereas we propose the reverse next-period recommendation
(RNPR) problem that focuses on the item perspective.

4.2.2 Item-centered recommendations

Item-centered recommendations focus on the item perspective. That is, they
aim to recommend suitable users for a given item that are likely to interact
positively with it (i.e., purchase it in a grocery shopping setting, listen to it in a
music recommendation setting, download and read it in a book recommendation
setting, etc.). Early proposals of item-centered recommendation date back at
least to the so-called reverse top-k query problem [102, 103, 132]. Early publica-
tions on this problem typically consider Euclidean spaces with low-dimensional
(often, around 5) user and item vectors.

In recent years, recommender systems have benefited from the development
of deep learning techniques, which can construct high-dimensional representa-
tions and embeddings of users and items. For example, Amagata and Hara [2]
propose reverse top-k maximum inner product search (reverse k-MIPS), which
assumes that d-dimensional representations of users and items are obtained via
matrix factorization [60]. Interestingly, previous work on item-centered recom-
mendations only focuses on efficiency (i.e., on reducing the computational costs)
rather than on improving the performance on the item-centered recommenda-
tion task. Furthermore, they do not consider temporal dependencies between
historical items, which is a key aspect of the sequential recommendation task.
Recently, Wang et al. [114] have formulated a user selection problem for free-trial
items, which aims to increase item exposure and retain user-side performance.

Unlike previous work, we formulate the RNPR problem in a sequential set-
ting. We aim to find users who will purchase a given item and focus on item-side
performance. Moreover, we do not only focus on the efficiency aspect, but also
try to improve the performance on the RNPR task.

4.3 Problem Formulation

In this section, we describe two types of users, i.e., repeat users and explore
users, formalize the reverse next-period recommendation task, and associate
three sub-tasks with it, i.e., Expl-RNPR, Rep-RNPR and Mixed-RNPR. We
also introduce the candidate filtering task for reverse next-period recommenda-
tion. The notation used in this chapter is shown in Table 4.1.
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Table 4.1: Notation used in this chapter.

Symbol Description

U Set of all users, i.e., U = {u1, u2, . . . , uo}.
I Set of all items, i.e., I = {i1, i2, . . . , im}
C Set of all categories, i.e., C = {c1, c2, . . . , cq}
Ic Set of all items belongs to category c, i.e., a subset of I.
Bt

u t-th basket purchased by user u at time t, which is a set of items
i ∈ I

Sh
u Sequence of historical baskets for user u, i.e., Sh

u =
{B1

u, B
2
u, . . . , B

t
u}

Sn
u Sequence of future (next-period) baskets for user u, i.e., Sn

u =
{Bt+1

u , Bt+2
u , . . . , Bt+n

u }
Ihu Set of historical items purchased by user u
Inu Set of items that user u will purchase during next period (n bas-

kets)
Ch

u Set of categories from which user u has purchased items before
Cn

u Set of categories from which user u will purchase items during
next period (n baskets)

Urep
i Set of repeat users urep

i who have purchased item i, i.e., i ∈ Ih
urep
i

Uexpl
i Set of explore users uexpl

i who have not purchased item i, i.e.,
i /∈ Ih

uexpl
i

Urep
c Set of repeat users urep

c who have purchased an item in category
c, i.e., c ∈ Ch

urep
c

Uexpl
c Set of explore users uexpl

c who have not purchased an item in
category c, i.e., c /∈ Ch

uexpl
c

U t
i Set of the target users for item i

Û t
i Set of the candidate users for item i

Ti Set of ground-truth users u who will purchase item i in next pe-
riod, i.e., i ∈ Inu

T rep
i Set of ground-truth repeat users urep,∗

i for item i, i.e., i ∈ In
urep,∗
i

and i ∈ Ih
urep,∗
i

T expl
i Set of ground-truth explore users uexpl,∗

i for item i, i.e., i ∈ In
uexpl,∗
i

and i /∈ Ih
urep,∗
i

Pn
i Predicted top-k users for item i, i.e., Pn

i = [up
1, u

p
2, . . . , u

p
k]

f(·) Reverse next period recommendation (RNPR) algorithm
g(·) Candidate filtering algorithm
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4.3.1 Reverse next-period recommendation

Assume we have a set of users and a set of items, denoted as U = {u1, u2, . . . , uo}
and I = {i1, i2, . . . , im}, respectively. Each item belongs to a category c ∈ C =
{c1, c2, . . . , cq}. Bt

u denotes user u’s basket at time step t, where Bt
u consists

of a set of items i ∈ I. Sh
u = {B1

u, B
2
u, . . . , B

t
u} represents the sequence of

historical interactions for user u, and Sn
u = {Bt+1

u , Bt+2
u , . . . , Bt+n

u } represents
the sequence of the next n interactions for user u. Then, Ihu = {i1, i2, . . . , iz}
and Inu = {i1, i2, . . . , ie} represent the item set that user u has purchased before
and will purchase in the next n baskets, i.e., next period, respectively. Ch

u =
{c1, c2, . . . , cv} represents the category set in which user u has purchased items
before, Cn

u = {c1, c2, . . . , cw} represents the category set in which user u will
purchase items in the next n baskets.

Given a specific item i, the users in U can be divided into repeat users and
explore users based on the historical interaction with the item i:

Repeat users U rep
i for item i are the users u who have purchased the item

i before, that is, users u such that i ∈ Ihu .

Explore users Uexpl
i for item i are the users u who have not purchased prod-

uct i before, that is, users u such that i /∈ Ihu .

Similarly, given a specific category c, the users in U can also be divided as
follows:

Repeat users U rep
c for category c are the users u who have purchased an

item in category c before, that is, users u such that c ∈ Ch
u .

Explore users Uexpl
c for category c are the users u who have not purchased

category an item in c before, that is, users u such that c /∈ Ch
u .

Given a specific item i and historical interactions Sh = {Sh
1 , S

h
2 , . . . , S

h
m} of

target users u1, . . . , um ∈ U t
i , the goal of the reverse next-period recommendation

(RNPR) task is to predict the top-k users Pn
i ⊆ U t

i , who will purchase the given
item i in one of the next n baskets. To address the RNPR task, we seek to define
a function f that takes item i and historical interactions Sh = {Sh

1 , S
h
2 , . . . , S

h
m}

of target users u1, . . . , um as input, and returns Pn
i :

Pn
i = [up

1, u
p
2, . . . , u

p
k] = f(i, {Sh

1 , S
h
2 , . . . , S

h
m}). (4.1)

where Pn
i is a predicted ranked list, which contains top-k users for item i.

Considering the difference types of users that we have defined above, we define
three sub-tasks for RNPR:

Expl-RNPR: To find the top-k explore users who are most likely to purchase
the given item i, that is, U t

i = Uexpl
i .

Rep-RNPR: To find top-k repeat users who are most likely to repurchase the
given item i, that is, U t

i = U rep
i .

76



4.4. Repetition Analysis

Mixed-RNPR: To find the top-k users who are most likely to purchase the
given item i, that is, the target users are simply the set of all users:
U t
i = U = Uexpl

i ∪ U rep
i .

4.3.2 Candidate filtering

Given a specific item i and its target users U t
i for the RNPR task, the goal of

candidate filtering is to select a subset of candidate users Û t
i ⊆ U t

i based on
their historical interactions Sh. More formally, we seek to define a candidate
filtering function g such that

Û t
i = {uc

1, u
c
2, . . . , u

c
q} = g(i, Sh

1 , S
h
2 , . . . , S

h
m). (4.2)

Given a filtered set of candidate users Û t
i for item i, we only compute item

scores for users in this filtered set of users Û t
i instead of all candidate users U t

i .

4.4 Repetition Analysis

People often have regular habits and display repetition behavior in grocery
shopping [6, 69, 70, 105]. Li et al. [69] analyze the repetition behavior from
the user side on the item level. That is, how many of the items that the user
will purchase next are repeat items that they have purchased before. However,
repetition behavior at the category level and from the item side remain un-
known. In particular, (i) at the category level, how many of the categories from
which the user will purchase an item are categories that they have previously
purchased an item from? And (ii) from the item side, among the users who will
purchase the given item or from the given category, what is the proportion of
users who have already purchased the given item or from the given category in
their previous interactions?

To better understand users’ repetition behavior in grocery shopping, we
analyze both the item and category level repetition behavior from both the item
side and the user side.4 Specifically, we analyze four types of repeat ratio RepR,
i.e, user-side item-level RepRitem

u , user-side category-level RepRcat
u , item-side

item-level RepRitem
i and item-side category-level RepRcat

i , defined as follows:

RepRitem
u =

1

N

N∑
n=1

#repeat items i ∈ Ihun
the user un will purchase

#all items the user un will purchase
(4.3)

RepRcat
u =

1

N

N∑
n=1

#repeat categories c ∈ Ch
un

the user un will purchase
#all categories the user un will purchase

(4.4)

RepRitem
i =

1

M

M∑
m=1

#repeat users u ∈ U rep
i who will purchase item im

#all users who will purchase item im
(4.5)

4We perform this analysis by splitting the data into historical baskets and future baskets,
which is the same as the experimental setting in Section 4.7.2
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Table 4.2: Repeat ratios at the item level and category level, from the item
perspective and the user perspective.

Dataset Instacart Dunnhumby

Perspective Item level Category level Item level Category level

User side 0.6822 0.8791 0.4264 0.8737
Item side 0.6111 0.7751 0.4374 0.6649

RepRcat
i =

1

Q

Q∑
q=1

#repeat users u ∈ U rep
c who will purchase category cq

#all users who will purchase category cq
,(4.6)

where N , M , and Q are the number of users, items and categories, respectively.
We compute these four ratios for each of the two datasets that we will be using
in this chapter, Instacart and Dunnhumby (see Section 4.7.2). See Table 4.2.

From the user side (the first row in Table 4.2), we can observe that both
the item level repeat ratio RepRitem

u and category level repeat ratio RepRcat
u are

high, ranging from 0.4264 to 0.8791. The results indicate that a large proportion
of items/categories the users will purchase in the next period is made up from
items/categories that the users have purchased before. The category level repeat
ratio RepRcat

u is relatively high, which shows that the repetition behavior at the
category level is more stable than item level in grocery shopping. For example,
a user might like to buy fruits every time, but the user might alternate between
different types of fruits as time passes.

From the item side, we can also see that both datasets have considerable
repeat ratios, i.e., RepRitem

i and RepRcat
i , ranging from 0.4374 to 0.7751. Sim-

ilarly, the category level repeat ratio RepRcat
i is also higher than the item level

repeat ratio RepRitem
i . The results indicate that a considerable proportion of

the users in our datasets are repeat users.
The results presented above indicate that in grocery shopping people have

regular habits and that repetition behavior is a strong signal that can be used
to address the item-centered RNPR problem from several angles: (i) with the
habit module to model users’ category level exploration behavior in HIF model
(Section 4.1.3); (ii) with the REUR algorithm, which decouples the repetition
task and exploration task (Section 4.5.3); and (iii) with the repetition-rule based
candidate filtering methods (Section 4.6.1) and the CFM model to model cate-
gory level repetition behavior (Section 4.6.2) for reducing candidate users.

4.5 Reverse Next-Period Recommendation

In this section, we introduce the habit-interest fusion (HIF) model and corre-
sponding training strategies for the Expl-RNPR task, describe a simple time-
aware frequency model for the Rep-RNPR task, and finally describe the REUR
algorithm for the Mixed-RNPR task.
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4.5.1 Habit-interest fusion model for Expl-RNPR

The objective of a user-centered recommendation model is to rank positive items
higher than the negative items, i.e., giving a higher prediction score to positive
items, where the prediction score for an item may not represent the user’s
absolute preference on this item, as this prediction score can be influenced
by other items in the catalog and the item distribution in the dataset, e.g.,
popularity. User-centered recommendation models usually only take a user’s
historical interactions and learn the general interest of the user and but may not
track the users’ interest w.r.t. a specific given item as time goes by. To achieve
accurate item-centered recommendations, there are two things that should be
taken into consideration: (i) the prediction of the model should be appropriate
and meaningful for ranking users for a given item; and (ii) apart from a user’s
historical interactions, the recommendation model should also take the given
item as input and be able to track user’s interests or habits w.r.t. the given
item as time goes by.

Model

Recall from Section 4.3.1 that the Expl-RNPR task is to find the top-k explore
users who are most likely to purchase a given item i. To address the Expl-RNPR
task, we propose a habit-interest fusion (HIF) model, which leverages frequency
information to model category-level repetition and exploration habits, and pre-
trained item representations to model user’s interests. Figure 4.1 illustrates the
architecture of the HIF model.

Pre-trained embedding In the context of NLP, the skip-gram framework [76,
77] has been proposed to learn word representations by predicting the surround-
ing words within the context. Several recent publications [10, 42, 105] leverage
skip-gram techniques to learn item/product representations in an e-commerce
scenario. In this chapter, we assume that the items within the same basket share
similar semantics and use basket-level skip-grams to derive the embeddings of
items. We regard a particular item as a target item i ∈ I and regard the other
items in the same basket as context items i′ ∈ Iib. Then, the learning objective
is to maximize the following function:

L =
∑
i∈I

∑
i′∈Ii

b

log p(i′ | i), (4.7)

where p(i′ | i) denotes the probability of observing a context item i′ ∈ Ivb given
the current/target item i. It is defined by a softmax function:

p(i′ | i) = exp(EmbTi · Embi′)∑M
m=1 exp(EmbTi · Embi′m)

, (4.8)

where Embi and Embi′ are vector representations of the current item i and
the context item i′, respectively. M represents the number of items in the item
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Figure 4.1: Overall architecture of the HIF model.

catalog. After pre-training on historical data, we can get a vector representation
(a.k.a. embedding) of each item.

Interest module Suppose that a user u has a sequence of historical baskets
Sh = {B1, B2, . . . , Bt}. We first get pre-trained item embeddings Embi for
each item i within each basket Bt. Note that baskets may have different sizes,
so we aggregate item embeddings within the same basket by a pooling strategy
(max pooling or average pooling) to generate the basket representation Embtb
at each timestamp t. Given the target item i we want to recommend, we
compute the cosine similarity Simt

u,i between its embedding Embi and basket
embedding Embtb at each timestamp, and then get the similarity vector Simu,i,
which reflects user’s interests in the given item i across different timestamps.
That is:

Embtb = Pooling
(
Embit1 ,Embit2 , . . . ,Embitn

)
(4.9)

Simt
u,i = cos

(
Embi,Embtb

)
=

Embi · Embtb
|Embi||Embtb|

(4.10)

Simu,i =
[
Sim1

u,i,Sim
2
u,i, . . . ,Sim

t
u,i

]
. (4.11)

To model users’ dynamic interests, we introduce two types of time-aware weight
embeddings, i.e., (i) a category specific time-aware weight embedding TW c

e,
which can only be trained by the samples of the corresponding category c,
and (ii) a global time-aware weight embedding TW g

e , which is shared across
categories and can be trained by all training samples.5 For a given item i and

5Note that, the time-aware weight embeddings throughout out this chapter will be first
initialized using a uniform distribution and then updated during the training process.
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user u ∈ Uexpl
i , we compute the dot products of the similarity vector Simu,i

and two time-aware weight embeddings, i.e., TW c
e and TW g

e , to get time-
aware interests features, i.e., SimF c

u,i and SimF g
u,i. Finally, we concat SimF c

u,i

and SimF g
u,i with a trainable category embedding Embintec to get a hybrid

representation, which will be fed into a two layer fully-connected network to get
the final interests score Scoreinteu,i , that is:

SimF c
u,i = TW c

e · Simu,i (4.12)

SimF g
u,i = TW g

e · Simu,i (4.13)

Scoreinteu,i = FFN(SimF c
u,i ⊕ SimF g

u,i ⊕ Embintec ). (4.14)

Habit module In the Expl-RNPR task, we aim to find possible explore users
for a given item. However, there are no direct interactions between the given
item i and explore users Uexpl

i , so we cannot directly model explore users’
habits w.r.t. the item i. In the grocery shopping scenario, every item belongs
to a category, and a category can contain many items. We notice that if an
item i will be purchased by the user u ∈ Uexpl

i , it indicates that the user u will
purchase and explore the items in category ci in the next period. Therefore, we
aim to model users’ repetition and exploration habits w.r.t. the target category
ci of the given item i.

The users’ repetition habits within a category can be dynamic across time.
Besides, the purchase frequency within a category can also indicate demands
of the user. Specifically, to capture the user’s repetition habits, we create a
category-level repetition frequency vector RepVec for category ci ∈ C for the
user u by considering both temporal information and frequency information.
That is,

RepVecu,ci =

[√
|Ici ∩B1|,

√
|Ici ∩B2|, . . . ,

√
|Ici ∩Bt|

]
, (4.15)

where Ic
i

is the item set within category ci; Bt is a set of items (basket) that
user u purchased at timestamp t. Note that the square root operation is applied
to address the problem of varying sizes of baskets in recommendation systems.
By taking the square root, the impact of baskets that are too large is reduced,
leading to more equitable and balanced frequency information. Then, we derive
time-aware category repetition feature RepF c

u,ci and global repetition feature
RepF g

u,ci as follows:

RepF c
u,ci = TW c

rep · RepVecu,ci (4.16)

RepF g
u,ci = TW g

rep · RepVecu,ci , (4.17)

where TW c
rep and TW g

rep are a category time-aware weight embedding and
a global time-aware weight embedding, respectively, for modeling repetition
behavior.

Note that the user might be loyal to a specific item [105] and uninterested
in exploring new items within the same category, e.g., someone might only
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purchase a specific brand of milk. To model a user’s exploration habits within a
category, we also create an exploration frequency vector ExplVecu,ci considering
the temporal orders, that is:

ExplVecu,ci =
[√

|Ici ∩B1
expl |,

√
|Ici ∩B2

expl |, . . . ,
√

|Ici ∩Bt
expl |

]
, (4.18)

where Bt
expl is a set of explore items (new items) that the user u purchased at

timestamp t.
Similarly, we compute the category exploration feature ExplF c

u,ci and global
exploration feature ExplF g

u,ci as follows:

ExplF c
u,ci = TW c

expl · ExplVecu,ci (4.19)

ExplF g
u,ci = TW g

expl · ExplVecu,ci , (4.20)

where TW c
expl and TW g

expl are the category time-aware weight embedding
and the global time-aware weight embedding, respectively, for modeling ex-
ploration behavior. Finally, we concatenate repetition features, i.e., RepF c

u,ci

and RepF g
u,ci , exploration features, i.e., ExplF c

u,ci and ExplF g
u,ci , and a train-

able category specific embedding Embhabc to get a feature vector, which will be
fed into a two-layer fully-connected network to get the habit score Scorehabu,i .
That is,

Scorehabu,i = FFN(RepF c
u,ci⊕RepF g

u,ci⊕ExplF c
u,ci⊕ExplF g

u,ci⊕Embhabc ). (4.21)

Finally, we compute the fusion score by:

Scorefusionu,i = Sigmoid(Scorehabu,i ) · Score
inte
u,i . (4.22)

Training

In a conventional user-centered scenario, a recommendation model is optimized
based on a user-wise loss, which is computed based on all items for each user.
Since we focus on item-centered recommendations to rank users for the given
item, we propose an item-wise ranking loss to train our model. Specifically, pos-
itive users and negative users are sampled for each item, and then the training
objective is to minimize the following loss function:

Li = − 1

N

N∑
k=1

log

(
1

1 + e−(Scorek
pos,i−Scorek

neg,i)

)
, (4.23)

where Scorepos,i and Scoreneg,i represent the predicted fusion scores for positive
users and negative users, respectively. By minimizing the proposed item-wise
ranking loss, the model will maximize the difference in predicted preference
(fusion) scores between the positive and negative users, such that positive users
are ranked higher in the predicted user ranking list. Even though the definition
of item-wise ranking loss is straight forward, we identify two major issues w.r.t.
the training process of the Expl-RNPR model using item-wise ranking loss.
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Table 4.3: The number of training samples for Expl-RNPR.

Dataset Avg. #negative
samples per item

Avg. #positive
samples per item

Avg. #positive samples per
item after positive augmentation

Instacart 1,307.9 5.8 31.9
Dunnhumby 667.9 6.0 73.6

First, as illustrated in Figure 4.2a, a typical positive sample for Expl-RNPR
is an explore user who only purchased the given item i in the last period of the
historical sequence. However, as shown in Table 4.3, items have a small number
of such positive samples (i.e., new users) if we only consider the last period of
the historical sequence. Therefore, we need to augment the positive samples,
i.e., include more users who explore the target item for the first time. According
to an intuitive reading of the Expl-RNPR task, we should not select a repeat
user who has already purchased the given item as a positive training sample
for the given item, since Expl-RNPR is targeting explore users. However, repeat
users of the target item should have a sub-sequence of interactions, i.e., a basket
sequence before their first purchase, that could be regarded as a positive sample
for Expl-RNPR training (shown in Figure 4.2a).

Second, a typical negative sample for Expl-RNPR is an explore user who
did not purchase the given item i in the last period sequence. However, as
illustrated in Figure 4.2b, if a user u is a new user of a given item i, i.e., i ∈ Inu ,
the user has not purchased this item in previous interactions, i.e., i /∈ Ihu , and
this means that the user should also be regarded as a negative sample for the
item i during the training process. In this case, when we use a leave-one/few-out
splitting strategy to construct a historical (training) dataset and a future (test)
dataset, the positive samples (i.e., the ground-truth) in the test set will be the
negative sample in the training set, even though they may share a long overlap
between two input sequences. To avoid the negative impact of this case, we
propose a negative sample adjustment strategy, which eliminates the potential
overlap between positive and negative sequences by truncating a sub-sequence
from the original negative samples. Note that we perform the truncation action
on all negative samples, since we do not know which one is the positive sample
in the future (test) dataset.

4.5.2 Time-aware frequency model for Rep-RNPR

The task of Rep-RNPR is to help a given item find repeat users. Different
from explore users, repeat users have previously had direct interactions with the
item that we want to recommend. Therefore, we employ a simple time-aware
frequency model, which only uses users’ direct interactions with the given item
instead of using item-item correlations and complex representations. Formally,

Scoreu,i =

m∑
j=1

Fu,i,j · βT−j , (4.24)
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Figure 4.2: Training samples construction strategies.

where Fu,i,j denotes the user’s u purchase frequency of item i at timestamp j,
β denotes the time-decay factor, which emphasizes the impact of recent inter-
actions. We find the optimal β based on the historical data.

4.5.3 The REUR algorithm for Mixed-RNPR

Different from the Expl-RNPR task in Section 4.5.1 and the Rep-RNPR task
in Section 4.5.2, the Mixed-RNPR task considers both repeat users and explore
users for the items that are to be recommended. Theoretically, a model for Expl-
RNPR can also be applied to Mixed-RNPR without excluding repeat users in
the final prediction stage. A recent analysis [69] shows that the repetition and
exploration tasks in the (user-centered) NBR problem have different levels of
difficulty, where the repetition task, i.e., recommending repeat items to a user,
is a much easier task. In an item-centered recommendation scenario, we mainly
use item-to-item relations to infer explore users’ interests for the target item,
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since explore users do not have any previous interactions with it. Yet, we can
address repeat users prediction via the users’ direct interactions with the target
item.

Considering the above differences between the repetition and exploration
tasks in Mixed-RNPR, we propose a repetition-exploration user ranking (REUR)
algorithm to decouple the two tasks and investigate the trade-off between rep-
etition and exploration in an item-centered setting. Specifically, as is shown in
Algorithm 1, we use separate models for the repetition and exploration tasks.6
Note that the models designed in Section 4.5.1 and Section 4.5.2 can be used for
ranking explore users and ranking repeat users, respectively. For a given item,
we rank repeat users and explore users according to the scores derived from the
repetition model M rep and exploration model Mexpl , respectively. Then, REUR
generates the final ranked list of users Pn

i by combining the above two ranked
lists. We define a combination (repeat) ratio α, which controls the proportions
of repeat users and explore users. Assume that we want to recommend a given
item to k users. Then REUR first selects the top-m highest-score repeat users
and then fills any remaining slots with the top-n highest-scoring explore users,
where m = k · α and n = k −m.

As we will see, one simple way to achieve good performance on the Mixed-
RNPR task is to find a global optimal combination ratio α for all items. We
notice that different items might have different repurchase tendencies, i.e., the
repurchase tendency of a pan is likely to be smaller than that of the milk
that is cooked in it, which might influence the optimal combination ratio. The
repurchase tendency is defined by:

RTi =
#users who repurchase item i

#users who bought item i before
. (4.25)

We also cluster items according to their repurchase tendency RTi ∈ [0, 0.2),
[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0], and try to find the optimal combination
ratio α for each cluster. We sweep the combination ratio α and select the
optimal α based on the performance of the validation set.

Apart from achieving good performance on the Mixed-RNPR task, another
important task is to investigate the trade-off between repetition and exploration
so as to make sure that we gain an in-depth understanding of the potential im-
balances in the RNPR task. With the REUR algorithm, we can also easily in-
vestigate the trade-off by setting different combination ratios (see Section 4.8.4).

4.6 Candidate Filtering

Given a specific item i, an intuitive solution to an item-centered recommenda-
tion task is to compute scores for every user in the target user set U t

i . However,
this is usually computationally expensive. The goal of candidate filtering is to
select a group of users as candidates, which is a subset of target users, i.e.,

6For a given item, the repetition task is to find repeat users, whereas the exploration task
is to find new users.
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Algorithm 1: Repetition-exploration user ranking algorithm
Data: User set U , item set I, basket sequences S, user list size k,

combination/repeat ratio α
Result: Predicted top-k users Pn

i for item i.
1 Get repetition model M rep by finding optimal time-decay factor β on

the dataset;
2 Get exploration model Mexpl via training the HIF model on the dataset

until converge;
3 for each given item i do
4 Get repeat users U rep

i and explore users Uexpl
i ;

5 Rank repeat users u ∈ U rep
i via M rep(Su, i);

6 Rank explore users u ∈ Uexpl
i via Mexpl(Su, i);

7 Decide number of repeat users, i.e., m = k · α, and explore users, i.e,
n = k −m;

8 Construct the top-k users Pn
i using top-m repeat users and top-n

explore users;
9 end

Ûi ∈ U t
i . After candidate filtering, we can reduce the computational costs by

only considering users within the candidate set.

4.6.1 Repetition-rule based candidate filtering

According to the repetition analysis in Section 4.4, users have regular habits
in grocery shopping and category-level repetition behavior seems more stable
and prominent than item-level repetition behavior. Next, we first propose two
repetition rule-based candidate filtering methods, i.e., RRBF-item and RRBF-
cat. Formally,

RRBF-item: For a given item i, we only select the repeat users U rep
i to form

up the candidate set, that is, Ûi = U rep
i . This method is designed for

Mixed-RNPR, which helps to reduce Mixed-RNPR to Rep-RNPR.7

RRBF-cat: For a given item i, we get its corresponding category ci and only
select the explore users Uexpl

i who have previously purchased items from ci

to form the candidate set, that is, Ûi = U rep
c ∩Uexpl

i . Note that RRBF-cat
is used in the Expl-RNPR task.

4.6.2 Model-based candidate filtering

Repetition-rule based filtering (RRBF) does not consider the temporal infor-
mation and is static. To further reduce the number of candidates on top of

7RRBF-item cannot be used for Expl-RNPR, since it only selects repeat users as candi-
dates.
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Figure 4.3: The architecture of candidate filtering model (left) and the overall
pipeline (right) of Expl-RNPR task.

RRBF-cat, we propose a candidate filtering model (CFM) to predict whether a
user likes to repurchase the category or not, then select the users who would
like to purchase the category of the given item. The architecture of the candi-
date filtering model is shown in Figure 4.3. Note that the category catalog is
relatively stable and small compared to the item catalog, and the items within
the same category can share the same set of candidate users.

Model

CFM predicts users’ repurchase behavior by modeling their dynamic demands
within the target category. For the sake of simplicity, we do not consider de-
pendencies among different categories. Specifically, we use the category-level
repetition frequency vector RepVec of category c ∈ C (defined in Eq. 4.15),
which contains both temporal information and frequency information.

Different categories might have different characteristics w.r.t. repurchase be-
havior. For example, daily necessities like fruit might be purchased during every
visit to the grocery store, whereas users are less likely to repurchase household
items like dish soap right after their previous purchase of dish soap. Therefore,
we introduce a category specific time-aware weight embedding TW c

cf to model
temporal dependencies. In addition, we also introduce a global time-aware
weight embedding TW g

cf which can be shared and trained by all categories, so
that different categories can benefit from the training samples of each other.
Given a use u and a category c, we first derive the category specific repetition
feature RepF c

u,c and the general repetition feature RepF g
u,c, then we concate-

nate RepF c
u,c and RepF g

u,c with a category embedding Embccf , and feed it to a
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two layer fully-connected neural network, that is:

RepF c
u,c = TW c

cf · RepVecu,c (4.26)

RepF g
u,c = TW g

cf · RepVecu,c (4.27)

pu,c = Sigmoid(FFN(RepF c
u,c ⊕ RepF g

u,c ⊕ Embccf )), (4.28)

where pu,c is the probability that user u will purchase items within the category
c; ⊕ denotes the concatenation operation.

Once we obtain the repurchase probabilities pu,c of the target users, we can
set a filtering threshold λ to filter candidates. For a given item i ∈ Ic, we only
select users whose pu,c is above the filtering threshold λ as candidates. The
overall pipeline of Expl-RNPR is shown in Figure 4.3.

Training

In the training set, every user has a ground-truth label for each category, i.e.,
whether the user has repurchased from the category or not. Conversely, for
a specific category, we can split users into positive users and negative users.
However, positive users and negative users within a category might be imbal-
anced. Besides, the positive users are unevenly distributed across all categories,
e.g., a popular category is likely to have more positive users than a less popular
category.

To overcome the problems of imbalanced data listed above, we sample the
same number of training instances (users) U c for each category in every epoch
instead of using all users, and balance the number of positive users and negative
users within each category. Then, we use binary cross-entropy loss to train our
model:

Lc = − 1

|U c|
∑
u∈Uc

yu,c log(pu,c) + (1− yu,c) log(1− pu,c), (4.29)

where yu,c and pu,c denote the ground-truth of category c and the probability
of c being purchased by user u in the next period.

4.7 Experimental Setup

In this section, we describe our experimental settings, including our research
questions, datasets, constructed baselines, parameter settings, and evaluation
metrics.

4.7.1 Research questions

To better understand the RNPR problem and investigate the effectiveness of
the proposed methods, we intend to answer the following questions through our
experiments:

RQ3.1 How do user-centered state-of-the-art NBR methods perform on the
RNPR task?
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RQ3.2 What is the effectiveness of our newly proposed methods? Do they
outperform existing baselines?

RQ3.3 What is the effectiveness of our training strategies for the HIF model
in Expl-RNPR?

RQ3.4 What are the differences and trade-offs between the repetition and ex-
ploration tasks in Mixed-RNPR?

RQ3.5 Do the proposed candidate filtering strategies help to reduce computa-
tional costs at inference time? How does the candidate filtering process
influence the performance of our models?

4.7.2 Datasets

In order to ensure the reproducibility of our study, we conduct our experiments
on two publicly available real-world datasets:

Dunnhumby: covers two years of household-level transactions at a retailer
from a group of 2,500 households. All products bought by the same cus-
tomer in the same transaction are treated as a basket.8

Instacart: contains over three million grocery orders of Instacart users. We
treat all items purchased in the same order as a basket.9

In each dataset, we sample active users with at least 30 baskets in the dataset,
and truncate a basket sequence to 100 baskets. We follow a strategy that is
similar to the widely used leave-one-out approach to split the dataset. Specifi-
cally, for each user, the last 10 baskets are regarded as future baskets, and all
remaining baskets are regarded as historical baskets. All training is conducted
using the historical data. We select target items according to their frequency in
the ground-truth (a.k.a. future data) to ensure there are new users for this item
in the next period, otherwise we can only add zero to the evaluation metrics.
Note that using the explore users’ frequency in the ground-truth instead of the
repeat users’ not only allows us to address the Expl-RNPR task, but also to
make a fair comparison between the Expl-RNPR task and the Mixed-RNPR
task. Considering the number of users in each dataset, the minimum number
of future new users’ for an item is set to 50 for the Instacart dataset, and 10
for the Dunnhumby dataset. Since we use category information in our model,
splitting across items has a risk of information leakage. So we split the items
into validation and test dataset according to their corresponding category [36],
50% categories for validation, and 50% categories for testing. We repeat the
split 5 times and report the average performance w.r.t. metrics over the 5 splits.

8https://www.dunnhumby.com/source-files/
9https://www.kaggle.com/c/instacart-market-basket-analysis/data
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Table 4.4: Dataset statistics after preprocessing.

Dataset Users Categories Target
items

Avg.
#items
per basket

Avg.
#baskets
per user

Avg.
#item
per user

Avg.
#target users
per item

Instacart 30,134 134 1,369 10.19 49.47 142.38 442.47
Dunnhumby 1,991 307 866 11.77 77.44 528.53 39.27

4.7.3 Baselines

We construct three simple methods, i.e., Random, I-TopFreq and C-TopFreq,
two pre-training based methods, i.e., Basket2Vec and User2Vec, and select
three SOTA NBR methods according to [69] and [4], i.e., DNNTSP [127], TI-
FUKNN [52] and ReCANet [4], as baseline methods for comparison:

Simple methods

We select three simple baseline models:

• Random selects the users for the given item at random.

• I-TopFreq ranks users according to their historical purchase frequency of
the given input item, and selects users with the top-k highest purchase
frequency. Since this method can only select repeat users, it will not be
used in the Expl-RNPR task.10

• C-TopFreq ranks users according to their historical purchase frequency
of different items within the given item’s category, and selects users who
prefer to purchase a lot of different items within the input item’s category.
This method is designed for the Expl-RNPR task, and it will not be used
in the Rep-RNPR task.

Pre-training based methods

We select two pre-training based methods:

• Basket2Vec [105] pre-trains the item embeddings at the basket level, uses
the average embedding of the items in historical baskets to represent the
user, computes similarity between the user and the given item, and finally
selects the top-k users who have the highest similarity with the given item.

• User2Vec [105] pre-trains the item embeddings on the user level, uses
the average embedding of the items in historical baskets to represent the
user, computes similarity between the user and the given item, and finally
selects the top-k users who have the highest similarity with the given item.

10Repeat users play a vital role in Rep-RNPR and Mixed-RNPR, and item frequency serves
as a reliable signal for identifying them for a particular item. We evaluated a similar category
frequency-based method, but found that it did not outperform I-TopFreq w.r.t. Rep-RNPR
and Mixed-RNPR, since using category frequency could result in noise and dilute the signifi-
cance of item frequency information.
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Next basket recommendation methods

We select three NBR methods as baselines:

• DNNTSP [127] is a state-of-the-art NBR method, which encodes the item-
item relation via a GNN, and models temporal dependencies via self-
attention techniques. After training DNNTSP, we first derive the target
users’ purchase probability of the items, and then select the top-k users
with the highest purchase probability of the given item.11

• TIFUKNN [52] is a state-of-the-art NBR method, which constructs per-
sonal item frequency information (PIF) for each user, and leverages a
KNN-based method based on PIF. We first get target users’ scores of the
item, then select the top-k users with the highest purchase score of the
given item.

• ReCANet [4] is a state-of-the-art NBR method, which builds a neural-
based temporal model to focus on recommending repeat items to the user
in the NBR task. After training ReCANet, we first derive the target users’
purchase probabilities of items, and then select the top-k users with the
highest purchase probability of the given item.

4.7.4 Metrics

To assess the performance of RNPR methods, we extend three widely used
user-centered metrics to the item-centered setting and arrive at the following
metrics: Recall@K, nDCG@K and IHN@K.

Recall measures the ability to find all users who will purchase the given item
in the next period:

Recall@K =
1

N

N∑
j=1

∣∣Pij ∩ Tij

∣∣∣∣Tij

∣∣ , (4.30)

where Pij are the top-K predicted users for item ij , and Tij denotes ground-
truth users for item ij .

nDCG is a ranking metric that also considers the order of the users:

nDCG@K =
1

N

N∑
j=1

∑K
k=1 pk/ log2(k + 1)∑min(K,|Tij

|)
k=1 1/ log2(k + 1)

, (4.31)

11When training DNNTSP, we use the binary cross entropy loss from the original paper [127]
rather than devising a new user-centered loss compatible with their approach. There are
several reasons for this. First, we want to explore the performance of user-centered model in
the item-centered setting. Second, our proposed item-wise loss will only sample some of the
users for training, which would be unfair for the DNNTSP model, since the HIF model can
use all available users in its pre-training stage. Third, DNNTSP will learn and update item
embeddings during the training process, which makes it hard to pre-compute user features
to speed up training process and item-wise loss can only use one item’s loss information at
each backpropagation step, so training DNNTSP model via the proposed item-wise loss is
extremely slow.
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where pk equals 1 if P k
ij

∈ Tij , otherwise pk = 0. P k
ij

denotes the k-th user in
the predicted user list Pij for item ij .

IHN represents the average number of correct users the model can find for
each item, that is:

IHN@K =
1

N

N∑
j=1

∣∣Pij ∩ Tij

∣∣ . (4.32)

Since the two datasets that we use, Instacart and Dunnhumby, have different
numbers of users, when we evaluate the Expl-RNPR and Mixed-RNPR perfor-
mance, the value of K for the Instacart dataset is set to 100 and 200, the value
of K for the Dunnhumby dataset is set to 50 and 100. Since the number of
repeat user candidates is limited, the K is set to 20 and 50 for Rep-RNPR task.

4.7.5 Configurations

For all experiments, we set the next period size to 5 and 10 baskets. For
Basket2Vec and User2Vec the embedding size is set to 100 for all datasets. For
TIFUKNN, the number of neighbors is selected from [100, 200, 300, 400, 500], the
fusion weight and time-decay factor are selected from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9], and the window size is set to the next period size, i.e., 5 or 10.

DNNTSP and ReCANet are used with the same parameter settings as
in [127] and [4], respectively. For HIF, we use the same pre-trained item em-
beddings as Basket2Vec to make a fair comparison with it. For both the HIF
model and CFM model, the hidden layer of the fully connected network is set
to 32, the maximum user sequence is set to 30. For REUR, the time-decay
factor β is chosen from [0.5, 0.6, 0.7, 0.8, 0.9], we sweep the combination ratio
α in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] to investigate the trade-off and
find the optimal α for Mixed-RNPR. We use Adam optimizer with 0.001 as the
learning rate and 256 as the batch size to train our models.

We use PyTorch to implement our model and train it using a TITAN X GPU
with 12G memory. We repeat our experiments 5 times and report the average
results. We share the code and parameters in a public GitHub repository.12

4.8 Experimental Results

In this section, we report on the experimental results to answer the research
questions listed in Section 4.7.1.

4.8.1 Performance comparison of “user-centered” methods

Table 4.5, Table 4.6 and Table 4.7 show the performance of all approaches for
the Expl-RNPR task, Rep-RNPR task and the Mixed-RNPR task, respectively.
We have several findings based on the experimental results. As expected, the
performance of Random is always among the lowest in terms of all metrics for

12https://github.com/liming-7/RNPR-Rec
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Table 4.5: Exlp-RNPR results of HIF compared against the baselines. Bold-
face and underline indicate the best performing model and the best performing
baseline, respectively. Significant improvements of HIF over the best perform-
ing baseline results are marked with † (paired t-test, p < 0.05). ▲% indicates
the relative improvements of HIF against the best performing baseline.
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all tasks, as it just randomly selects users. C-TopFreq outperforms Random
on the Expl-RNPR task since it models users’ interests w.r.t. the category of
the target item. I-TopFreq achieves competitive or even better performance
compared to other approaches on both the Rep-RNPR and Mixed-RNPR task,
which confirms that item repetition frequency information is important and
only considering repeat users can achieve quite good performance on the Mixed-
RNPR task.

Among the two pre-training based methods, Basket2Vec always achieves
better performance than User2Vec in all cases, which indicates that basket-level
pre-training can get better item representations than user-level pre-training. We
suspect that this is because users’ interests are dynamic and items purchased
at the same time have more similarity. Basket2Vec is the best performing
approach on the Expl-RNPR task, but Basket2Vec is inferior to I-TopFreq on
both the Rep-RNPR and Mixed-RNPR task, which suggests that the item-item
correlation is less important than the item repetition frequency information in
these two tasks.

Surprisingly, the state-of-the-art DNNTSP method performs poorly on the
Expl-RNPR task; its performance is in the same range as that of Random.
DNNTSP is supposed to capture item-item correlations effectively, as it lever-
ages advanced techniques, i.e., a GNN and self-attention mechanism. The Re-
CANet method achieves quite good performance on the Rep-RNPR task and
the Mixed-RNPR task, which further emphasizes the importance of modeling
repeat users in the Mixed-RNPR task. However, ReCANet does not outperform
the SimpleTF method w.r.t. these two item-centered tasks. A plausible reason is
that the user-wise binary cross entropy loss tries to distinguish items for a given
user, which is sub-optimal for “item-centered” recommendations, where the goal
is to distinguish users for a given item. Compared to DNNTSP, the relatively
simple TIFUKNN is more robust on the Expl-RNPR task and even achieves
the best performance (amongst the baselines) on the Dunnhumby dataset and
the second best performance on the Instacart dataset. For the Rep-RNPR task
and Mixed-RNPR task, TIFUKNN achieves good performance on the Instacart
dataset, as it adopts personal item frequency information. However, it performs
worse than the simple I-TopFreq approach on Dunnhumby; we suspect that the
underlying reason is that the KNN module has a negative impact on finding
repeat users in the Rep-RNPR task and Mixed-RNPR task.

To sum up, the performance of state-of-the-art NBR methods does not al-
ways generalize to the Expl-RNPR task, and they are overly complex for the
Rep-RNPR task and the Mixed-RNPR task. This section answers RQ3.1.

4.8.2 Performance of our proposed methods

For the Expl-RNPR task, the performance of the HIF model is shown in Ta-
ble 4.5 and Figure 4.4a. We can make two main observations based on the
results. First, HIF with the average pooling strategy (HIF-mean) significantly
outperforms all existing approaches on both datasets across all metrics, with
improvements ranging from 14.4% to 35.7%, since HIF models users’ interests
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Table 4.6: Rep-RNPR results of the simple time-aware frequency model (Sim-
pleTF) and the baselines. Boldface and underline indicate the best and the
second best performing model, respectively. Significant improvements of Sim-
pleTF over the best performing baseline results are marked with † (paired t-test,
p < 0.05). ▲% indicates the relative improvements of SimpleTF against the best
performing baseline.
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Table 4.7: Mixed-RNPR results of the REUR algorithm and the baselines.
Boldface and underline indicate the best and the second best performing model,
respectively. Significant improvements of REUR over the best performing base-
line results are marked with † (paired t-test, p < 0.05). ▲% indicates the relative
improvements of REUR against the best performing baseline.
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(a) Expl-RNPR task.
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(b) Mixed-RNPR task.

Figure 4.4: The Recall@K performance of various methods with K ranging
from 20 to 500.

via item-item correlations and models habits via frequency information at the
same time.13 Second, the performance of HIF is different when using different
basket pooling strategies, and the average pooling strategy has a clear advan-
tage over the max pooling strategy on both datasets. This result indicates
that average pooling retains more useful information and leads to better basket
representations in the HIF model.

For the Rep-RNPR task, the performance of SimpleTF is shown in Ta-
ble 4.6.14 Surprisingly, the SimpleTF method outperforms many complex neural
methods, with improvements ranging from 1.8% to 6.3%. This result indicates
that not all user-centered techniques, e.g., learning item representations and
leveraging neighbor information, are helpful in the item-centered recommenda-
tion setting.

For the Mixed-RNPR task, the performance of REUR is shown in Table 4.7
and Figure 4.4b. REUR achieves the best performance on both datasets through
the combination of repeat users ranking (derived from a simple time-aware fre-
quency model) and explore users ranking (derived from the HIF model). The
improvements range from 3.1% to 8.2% over the best baseline methods. Be-

13All occurrences of HIF, unless otherwise stated, refer to HIF-mean, i.e., the HIF model
with average pooling strategy.

14It is not meaningful to evaluate the Recall@K for large values of K in the Rep-RNPR
task, as the number of repeat user candidates is limited.

97



4. Reverse Next-Period Recommendation

Table 4.8: Expl-RNPR ablation study results. Boldface indicates the best
performing model, i.e., HIF with average pooling. Significant deteriorations
compared to HIF are marked with ‡ (paired t-test, p < 0.05). ▼% indicates the
relative drop in performance compared to HIF.

Dataset Metric HIF w/o hab
(▼%)

w/o aug-pos
(▼%)

w/o adj-neg
(▼%)

w/o aug-pos
adj-neg(▼%)

In
st

ac
ar

t

Recall@100 0.0251 0.0237‡(5.9) 0.0233‡(7.2) 0.0198‡(21.1) 0.0206‡(17.9)
nDCG@100 0.0346 0.0311‡(10.1) 0.0310‡(10.4) 0.0282‡(18.5) 0.0289‡(16.5)
IHN@100 2.9315 2.6538‡(9.5) 2.6365‡(10.1) 2.3985‡(18.2) 2.4994‡(14.7)

Recall@200 0.0444 0.0422‡(5.0) 0.0426‡(4.1) 0.0363‡(18.2) 0.0390‡(12.2)
nDCG@200 0.0427 0.0394‡(7.7) 0.0401‡(6.1) 0.0350‡(18.0) 0.0369‡(13.6)
IHN@200 5.2537 4.8525‡(7.6) 4.9452‡(5.9) 4.4325‡(15.6) 4.7102‡(10.3)

D
un

nh
um

by

Recall@50 0.0841 0.0718‡(14.6) 0.0833 (1.0) 0.0791‡(5.9) 0.0808‡(3.9)
nDCG@50 0.0600 0.0480‡(20.0) 0.0589 (1.8) 0.0565‡(5.8) 0.0583‡(2.8)
IHN@50 1.3001 1.1472‡(11.8) 1.2984 (0.1) 1.2388‡(4.7) 1.2919 (0.6)

Recall@100 0.1514 0.1281‡(15.4) 0.1456‡(3.8) 0.1376‡(9.1) 0.1436‡(5.1)
nDCG@100 0.0877 0.0710‡(19.0) 0.0845‡(3.6) 0.0806‡(8.1) 0.0832‡(5.1)
IHN@100 2.3643 2.0351‡(13.9) 2.2834‡(3.4) 2.1659‡(8.4) 2.2777‡(3.6)

sides achieving the best performance, an important advantage of the REUR
algorithm is that we can explicitly investigate the trade-off between repetition
and exploration, which will be discussed in Section 4.8.4. Note that REUR
decouples repetition and exploration, which allows it to benefit from the candi-
date filtering part by only considering repeat users, which we will discuss later
in Section 4.8.5.

To sum up, the HIF model, SimpleTF model and REUR algorithm are
the state-of-the-art methods on the Expl-RNPR, Rep-RNPR and Mixed-RNPR
tasks, respectively. This section answers RQ3.2.

4.8.3 Ablation study of HIF

To analyze the effectiveness of our proposed training strategies and answer
RQ3.3, we conduct an ablation study on the two datasets. Specifically, we
compare the performance of the full HIF model with the following four settings:

1. No habits module (HIF w/o hab).

2. No positive augmentation strategy (HIF w/o aug-pos).

3. No negative adjustment strategy (HIF w/o adj-neg).

4. No postive augmentation strategy and no negative adjustment strategy
(HIF w/o aug-pos and adj-neg).

The results of the ablation study are shown in Table 4.8. The results show
that both the habits capturing module and the positive augmentation strategy
and negative adjustment strategy are beneficial for the HIF because removing
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any of them will lead to a decrease in performance. Without habits module,
the performance of HIF decreases, ranging from 5% to 20%, which indicates
that the frequency information is valuable and the designed habits module is
able to leverage this information to model users’ shopping habits. Furthermore,
HIF w/o hab still outperforms the Basket2Vec baseline (in Table 4.5), which
indicates that the interest module of HIF can capture users’ dynamic interests
by modeling the dynamic user preferences.

When we employ the positive augmentation strategy, repeat users will be
sampled and truncated for training. Without positive augmentation, the per-
formance of HIF drops significantly on the Instacart dataset w.r.t. all metrics,
ranging from 4.1% to 10.4%, while the drop is not significant in terms of several
metrics, i.e., Recall@50, nDCG@50 and IHN@50, on the Dunnhumby dataset.
A plausible reason for this result is that the Instacart dataset has more users
to be ranked, which means that the Expl-RNPR task is more difficult on In-
stacart dataset, so HIF can benefit more from the augmented postive samples
on the Instacart dataset but the original training samples are enough for finding
the top-50 users on the Dunnhumby dataset. Training HIF without negative
adjustment strategy results in 4.7% to 21.1% drops in performance. This in-
dicates that avoiding the overlap between training input and prediction input
is important and effective in training the HIF model for the Expl-RNPR task.
Interestingly, training HIF without both sampling strategies (HIF w/o aug-pos
and adj-neg) achieves better performance than training without negative ad-
justment strategy. The positive augmentation strategy can help us generate
more positive samples, which means that the HIF model will also leverage more
negative samples during training, and this will increase the probability of using
the historical data of the ground-truth users. As a result, negative adjustment is
especially important when using positive augmentation strategy, and HIF w/o
adj-neg is inferior to other variants of HIF.

4.8.4 Trade-off analysis for Mixed-RNPR

To investigate the trade-off between repetition and exploration in the Mixed-
RNPR task (RQ3.4), we use the proposed REUR algorithm and sweep its com-
bination (repeat) ratio α. Figure 4.5a shows the repetition and exploration
trade-off on different datasets when using the same combination ratio α. As the
proportion of repeat users increases in the recommendation, the performance
of REUR on the Mixed-RNPR task increases. REUR achieves its best perfor-
mance when the combination ratio is 1.0, which indicates that REUR has more
confidence in the last user in the repeat user ranking than in the first user in the
explore user ranking. This suggests that the repetition task is much easier than
the exploration task in the “item-centered” recommendation that we consider in
this chapter.

As mentioned before, the repurchase tendency RT of an item can potentially
influence the trade-off. To further understand the repetition and exploration
trade-off, we also investigate this trade-off on different groups items. To ensure
there are enough items within the group, we explore three groups of items, i.e,
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Figure 4.5: Repetition-exploration trade-off analysis.

RT ∈ [0, 0.2), [0.2, 0.4), [0.4, 0.6) on the Dunnhumby dataset and four groups
RT ∈ [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) on the Instacart dataset. The results
are shown in Figure 4.5b. Interestingly, we observe the same trend in all groups
of items, the performance increases when the repeat ratio α increases, even in
the group with a very low repurchase tendency, i.e., RT ∈ [0, 0.2). This result
once again confirms the large gap in difficulty between the repetition task and
the exploration task.

4.8.5 Candidate filtering

To answer RQ3.5, we first evaluate the effectiveness of candidate filtering, and
then discuss the influence on the Expl-RNPR task and insights on the Mixed-
RNPR task.

Effectiveness of candidate filtering

To reduce the computational costs at inference time, the candidate filtering pro-
cess selects a subset of users from the whole user set, which might remove some
of the ground-truth users. A good candidate filtering strategy should reduce
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Figure 4.6: The relation of actual computation cost and proportion of users
that HIF model computes.

Table 4.9: The proportion of ground-truth users (PoG) and computational
costs (CP) of RRBF.

Methods RRBF-cat for Expl-RNPR RRBF-item for Mixed-RNPR

Dataset PoG Computation (CP ) PoG Computation (CP )

Instacart 77.70% 60.08% 61.11% 4.5%
Dunnhumby 87.54% 76.12% 43.74% 11.3%

computational costs, i.e., exclude users who have a low purchase probability
w.r.t. the given item, while keeping a large proportion of the ground-truth
users (PoG), i.e., retain as many ground-truth users as possible. Therefore, we
analyze the proportion of ground-truth users (PoG) among the candidate users
that are left after filtering to evaluate their performance, that is:

PoG =
1

|It|
∑
i∈It

|Ti ∩ Û t
i |

|Ti|
,

where It is a set of items we want to recommend, Ti denotes the ground-truth
users, Û t

i denotes the set of candidate users for item i after candidate filter-
ing. Note that the computation CP represents a percentage of the original
computational costs, that is:

CP =

∑
i∈It |U t

i |∑
i∈It |Û t

i |
.

Intuitively, we expect the computational costs to increase linearly with the
number of item-user scores the model needs to calculate. To validate this,
we conduct experiments to investigate the correlation between actual inference
times and the defined computational costs CP . As shown in Figure 4.6, a linear
correlation between the actual inference times and CP is generally observed,
and we believe that the minor deviations are a result of the varying lengths
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Figure 4.7: Proportion of ground-truth users with the CFM filtering threshold
changing from 0 to 1. RRBF-cat represent the random strategy within the
RRBF-cat candidates.
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Figure 4.8: Computational costs (left) and actual computational cost (right)
with the CFM filtering threshold changing from 0 to 1.

of users’ historical baskets.15 Table 4.9 shows the experimental results for the
two repetition rule-based candidate filtering methods introduced in Section 4.6,
i.e., RRBF-cat and RRBF-item. Theoretically, the PoG of a random candidate
filtering strategy, i.e., randomly selecting a subset of target users as candidates,
should be proportional to its computational cost CP . Clearly, both RRBF-
cat and RRBF-item are effective, since they have a higher left proportion of
ground-truth users PoG in the candidate user set than using a random strat-
egy. RRBF-cat reaches 77.7% and 87.54% w.r.t. Expl-RNPR PoG on Instacart
and Dunnhumby, respectively. This result indicates that a large proportion of
ground-truth explore users, who will explore the given item in the next period,
should have already purchased some other items within the given item’s cate-
gory. RRBF-item retains a high proportion of ground-truth users PoG w.r.t.
Mixed-RNPR on both datasets, while it only has 4.5% and 11.3% of the original

15The computation cost is normalized by the total computation cost by using all users as
candidates for each item.
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Figure 4.9: The Recall performance of HIF with the CFM filtering threshold
changing from 0 to 1. The dashed line is the performance of using all target
users.

computational costs on the Instacart and Dunnhumby datasets, respectively.
In practice, if the prediction results of the CFM model cannot be reused in

other tasks in the platform, the computational costs of the CFM model should
also be factored into the item-centered recommendation computational costs.
We also conduct experiments to compare the actual inference time of the HIF
model and CFM model. We find that the average inference times for the CFM
model to compute one user-category score is 0.15ms on the Instacart dataset
and 0.21ms on the Dunnhumby dataset, whereas the average inference time for
the HIF model to compute one item-user score is 3.3ms on the Dunnhumby
dataset and 2.1ms on the Instacart dataset. Considering that the number of
categories is limited and the CFM model is much lighter than the HIF model, we
also evaluated the actual computational costs compared to the original compu-
tational costs without candidate filtering and find that the total inference time
of the CFM model constitutes only 0.31% and 0.78% of the original inference
time on the Instacart and Dunnhumby datasets, respectively. Figure 4.7 and 4.8
show the results of model-based candidate filtering (CFM) on the Expl-RNPR
task. As the filtering threshold increases, both the computation CP and the
left proportion of ground-truth users PoG decreases, since more ground-truth
users are removed from the candidate set with a higher filtering threshold. We
can also observe that CFM has a higher Expl-RNPR PoG than using a random
strategy within the candidate set of RRBF-cat in both datasets. This result
indicates that CFM can further filter candidates effectively on top of RRBF-cat
by considering temporal information.

Influence on the Expl-RNPR task

To understand the influence of candidate filtering on the performance of HIF
for the Expl-RNPR task, we analyze the sensitivity of the performance of HIF
w.r.t. the candidate filtering threshold of CFM. The experimental results are
shown in Figure 4.9. Note that the performance of HIF when using RRBF-
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cat is equal to the performance when using CFM with the filtering threshold
0, since they have the same set of candidates. We can observe that HIF with
RRBF-cat can achieve same or even higher performance than computing on all
target users, while HIF with RRBF-cat only needs 60.08% and 76.12% of the
original computational costs on Instacart and Dunnhumby, respectively.

Increasing the CFM filtering threshold leads to a decrease in computational
costs (see Figure 4.9), however, the performance of HIF remains at the same
level as RRBF-cat until 0.5, and then decreases gradually as there are fewer
candidate users left for each item. This result suggests that the CFM model
can help HIF to remove a lot of users who have low probability of purchasing
a given item by considering category-level repurchase behavior. With 0.5 as
candidate filtering threshold, the CFM model is able to further reduce by 50%
(Instacart) and 60.5% (Dunnhumby) the computational costs on top of RRBF-
cat, while achieving the same level of performance as using RRBF-cat candidates
or, indeed, using all users.

Insights on the Mixed-RNPR task

The trade-off analysis in Section 4.8.4 suggests that the repetition task is much
easier than the exploration task, and that repeat users dominate the final recom-
mendation set in REUR. Table 4.9 shows that only considering the repeat users,
i.e., RRBF-item, can substantially reduce the computational costs. Besides, the
repetition task can be solved by a simple time-aware frequency model, however
the exploration task requires a model to infer users’ interests in the given item
by using item-item correlations and complex representations. Considering the
above facts, it is reasonable to ask: can we ignore explore users and only con-
sider repeat users in the Mixed-RNPR task? The answer might be different
depending on different assumptions: (i) If there is no special demand for ad-
dressing the need of explore users and only focusing on optimizing the accuracy
aspect, we believe that reducing the Mixed-RNPR task to the Rep-RNPR task,
which simply recommends users who have purchased the given item before is
an efficient and effective solution.16 We believe this is an important point to
make, even though this makes the Mixed-RNPR a less challenging algorithmic
problem. (ii) An important goal of a recommender system is to connect items
with new customers, if beyond accuracy metrics need to be considered, e.g., the
long-term recommendation effect, the explore users should not be ignored and
we should consider the balance between repeat users and explore users in the
recommendation.17

16For instance, some bread might be close to its “best by date”, and the supermarket may
want to sell the bread without caring whom they sell it to.

17For instance, the supermarket wants to promote a certain product, so the item-centered
recommender model not only needs to find repeat users, which is important for the short-term
profit, but also find potential new users, who might account for long-term profit.
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4.9 Conclusion

In this chapter, we have studied an item-centered sequential recommendation
problem, i.e., reverse next-period recommendation (RNPR), which aims to help
a given item find top-k users in the next period, to answer the thesis-level
research question RQ3:

How to help a given item find its potential users in an item-centered
setting, and how do repetition and exploration influence the design
and optimization of the recommendation model?

We have introduced three subtasks for RNPR, i.e., Expl-RNPR, Rep-RNPR
and Mixed-RNPR, considering the differences in types of target users. For the
Expl-RNPR task, we propose a habit-interest fusion model (HIF), which lever-
ages frequency information to model users’ habits and pre-trained embeddings
to model users’ interests. For training the HIF model, we propose two strategies
to construct training samples, i.e., a positive augmentation strategy and a neg-
ative adjustment strategy, to construct training samples. For the Rep-RNPR
task, we employ a simple time-aware frequency model, which only uses the users’
direct interactions with the given item. For the Mixed-RNPR task, we propose
a repetition-exploration ranking user (REUR) algorithm to decouple the repeti-
tion task and exploration task, and generate the final ranking by combining two
ranked lists. In addition, we also examined how to reduce the computational
costs of our approaches without losing performance. Specifically, we proposed
two repetition-rule based filtering methods, i.e., RRBF-cat and RRBF-item,
and a model-based candidate filtering method (CFM) to further reduce the
computational costs of the HIF model during inference.

4.9.1 Main findings

We have performed extensive experiments on two publicly available grocery
shopping datasets and the experimental results demonstrate the effectiveness of
our proposed methods and strategies. The repetition analysis shows that people
display stable repetition behavior at the category level in grocery shopping,
which is a strong indicator that can be used to find potential top-k users for a
given item. Our experiments further show that filtering out some target users
using candidate filtering methods, i.e., RRBF and CFM, can effectively reduce
computational costs without sacrificing performance.

Apart from proposing solutions, we have investigated the performance of
state-of-the-art user-centered NBR models on the RNPR problem and found
that their performance cannot always be generalized to the RNPR task, even
though they are good at helping users find top-k items. This result suggests
that we should not directly use user-centered recommendation (NBR) meth-
ods for the item-centered recommendation (RNPR) task, and that task-specific
algorithms should be designed to cater for the RNPR task.

With the proposed REUR algorithm, we also investigated the trade-off be-
tween repetition and exploration in Mixed-RNPR. We found that the repetition
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task, i.e., finding repeat users, is much easier than the exploration task, i.e.,
finding explore users, in item-centered sequential recommendation, and only
recommending repeat users is an effective and efficient approach for the Mixed-
RNPR task. This imbalance in difficulty can also be found in the user-centered
NBR task [69]. A broader implication of this finding is that it is necessary to
consider and investigate the differences and trade-offs between repetition and
exploration in various recommendation scenarios.

4.9.2 Limitations

Despite the effectiveness of the proposed methods, one limitation of the HIF
model is that it cannot be applied to find users for cold-start items currently.
Even though we avoid using item-specific trainable parameters in the HIF
model, it is still difficult to derive meaningful representations for cold-start
items with limited interactions. One possible solution for cold-start items in the
RNPR task is to employ a cold-start item representations learning method [see,
e.g., 94].

4.9.3 Future work

Work on the RNPR task can be extended in a number of ways. For simplic-
ity, we have employed a simple time-aware frequency model for the repetition
task in this chapter. We intend to consider item characteristics and correla-
tions to further improve the repetition performance. Second, we have used a
conventional skip-gram algorithm to obtain pre-trained item embeddings in this
chapter. Instead, we want to try and use recent graph neural networks to learn
better representations for RNPR as a potential future work. Third, different
items might have different numbers of potential users in the next period, so it
is interesting to address the RNPR task with a dynamic number of users to
recommend. Fourth, we have concentrated on maximizing accuracy, specifically
in identifying the correct users for a given item, without considering the po-
tential impact of recommending either repeat users or explore users. It would
be interesting to examine the differences in the causal effect between repetition
and exploration and to contemplate a way to achieve a balance between them.
Finally, we have only focused on the RNPR problem itself in this chapter; it is
of interest to investigate additional dimensions, such as its potential influence
on user satisfaction or fairness among items.

In the next chapter, we will look into a more general recommendation setting,
i.e., sequential recommendation (SR).
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In the previous chapters, the importance of repetition and exploration has been
discovered and studied. In this chapter, we move on to a more general recom-
mendation setting, i.e., sequential recommenders (SR), where we aim to infer a
user’s preferences and suggest the next item for them to interact with based on
their historical interaction sequences. There has not been a systematic analysis
of sequential recommenders from the perspective of repetition and exploration.
As a result, it is unclear how these models, that are typically optimized for ac-
curacy, perform in terms of repetition and exploration, as well as the potential
drawbacks of deploying them in real applications.

In this chapter, we address the thesis-level research question RQ4:

How do sequential recommendation models perform, and how should
we evaluate item exposure from the perspective of repetition and ex-
ploration?

5.1 Introduction

Recommender systems have become an essential instrument for connecting users
and items on many online platforms [131]. Users may have dynamic interests
over time, and sequential recommender systems aim to learn from users’ his-
torical interaction sequences to infer their preferences and suggest an appro-
priate next item for them to interact with [37, 85, 110]. Advances in deep
learning have led to the development of numerous sequential recommendation
models that employ deep learning techniques such as RNNs [48, 49], CNNs [96],
GNNs [89, 117], contrastive learning [120], attention mechanisms [65, 73], and
self-attention [58, 92, 101].

This chapter was published as: M. Li, A. Vardasbi, A. Yates, and M. de Rijke. Repetition
and exploration in sequential recommendation. In SIGIR 2023: 46th international ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 2532–2541.
ACM, July 2023.
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5.1.1 Repetition and exploration

The default focus of sequential recommendation is on increasing accuracy, that
is, to find relevant or correct next items that meet the preferences of users.
In the next basket recommendation (NBR) scenario, Li et al. [69] distinguish
between repetition, i.e., when the next item the user interacts with is present
in the user’s historical interaction sequence, and exploration, i.e., when the
user first interacts with an item they have not previously interacted with. The
authors find very large differences in performance when recommending repeat
items vs. explore items, with the task of recommending repeat items being far
easier and achieving far higher accuracy scores. As repetition and exploration
behavior coexist in many sequential recommendation scenarios, such as item
repurchase [12, 19], song relistening [3], and POI revisits [23], a natural question
to ask is:

How do sequential recommendation models perform from the repeti-
tion and exploration perspective?

5.1.2 Sequential recommendation: A user-centered perspective

To address the question highlighted above, we first adopt a user-centered per-
spective. We select a diverse set of highly-cited sequential recommendation
models [49, 58, 87, 92, 96, 117] to examine if a similar imbalance between rep-
etition performance and exploration performance as was found for NBR is also
observed from the point of the users who are being served sequential recom-
mendations. We consider the case where each user purchases one item and that
item can either be a repeat item (an item the user has bought before) or an
explore item (an item the user has not purchased before).

We find that users who prefer repetition over exploration get noticeably
higher recommendation accuracy than users who prefer to explore. We also
find that a higher overall accuracy (aggregated over all users) can be achieved
by sacrificing the performance for users who prefer to explore.

These findings matter because the average overall accuracy can be achieved
by sacrificing the quality of recommendations for a large proportion of users,
which challenges the widely adopted usage of average accuracy with significance
test in SR research for evaluation.

5.1.3 Sequential recommendation: An item-centered perspective

The user-centered evaluation summarized above only provides a partial perspec-
tive on the capabilities of a recommendation algorithm. There is at least one
more side to the (sequential) recommendation task: items. Item exposure refers
to how often an item is recommended by a recommendation algorithm. Item
exposure can have a significant impact on the user experience and the overall
effectiveness of the system [34, 39].

Previous studies regarding item exposure often focus on fairness [116, 119].
In this chapter, we generalize the highlighted question in two ways: from the
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next basket recommendation scenario to the sequential recommendation sce-
nario and also from a user-centered perspective to an item-centered perspective.
Specifically, we distinguish between item repeat exposure and item explore ex-
posure: The former refers to the number of times the item is exposed to repeat
users, i.e., users who have purchased it before, whereas the latter refers to the
number of times an item gets exposed to new users, i.e., users who have not
purchased it before. The motivation for this perspective is that if an item has
been purchased by a large proportion of new users in the future, then this item
should probably be recommended to many new users.

We first analyze the distribution of items’ next target users (in historical
interaction logs) and observe that for most items, there exists a large proportion
of purchases that are made by their new users. However, our analysis reveals
that sequential recommendation models do not provide enough explore exposure
to all items. Surprisingly, we find that some items receive zero explore exposure
(i.e., these items will only be recommended to repeat users).

These findings matter because many sequential recommendation models suf-
fer from the issue of zero/less explore exposure, which can influence long-term
performance from the item perspective, i.e., it is unlikely to get such items
exposed to new users.

5.1.4 Repetition “shortcuts” and inherent repetitive bias

Our consistent observation in the above analyses suggests that repeat-next users
(that is, users who prefer to purchase a repeat item next) may act as a “shortcut”
[40] to the optimization goal of sequential recommendation models, leading those
model to recommend repetitive items even for explore-next users, i.e., repetitive
bias. To investigate the potential impact of this shortcut on explore-next users,
we design a counterfactual experiment: we remove all repeat-next users from the
dataset and only train models based on explore-next users (that is, users who
prefer to purchase a explore item next), so that there will be no shortcut during
training and the model is optimized exclusively for the explore-next users, which
can be seen as a pure exploration scenario.

We find that removing the shortcuts results in a higher degree of novelty
of the recommendation (meaning that less repeat items are recommended to
explore-next users). This confirms the existence of shortcuts biases sequential
recommendation (SR) models towards recommending repetitive items. Surpris-
ingly, we also find that sequential recommendation models will still recommend
repeat items to users even in datasets with users who will only explore. This
means that SR models often fail to capture the simple characteristics of the
pure exploration datasets and have an inherent repetitive bias issue.

Our analysis identifies the usage of shared item embeddings in the prediction
layer as one potential cause of worsening the repetitive bias, as representations
of user preferences inferred by the SR model tend to be highly similar to the item
embeddings present in the input item sequence. We find that replacing shared
item representations with independent item embeddings in the prediction layer
alleviates this issue, thereby increasing the novelty of recommendations.
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To complete our study and analysis of repetitive bias, we propose a remedy
called the (3R) strategy, i.e., remove repeat items rule, that simply removes
repeat items from the predicted recommendation results. With this remedy, the
accuracy of existing SR models in pure exploration scenario can be improved
by a large margin.

Our findings matter because the issue of inherent repetitive bias impacts
the performance of SR models in the pure exploration scenario. Future models
should be evaluated more rigidly so as to determine where observed improve-
ments come from.

5.1.5 Main contributions

The main contributions of this chapter are:

• We analyze the accuracy of SR models through the lens of repeat and
explore items. We confirm that the imbalance in performance and diffi-
culty between the repetition task and exploration task known from other
recommendation tasks also exists in the SR scenario. We point out eval-
uation issues of only using the overall average performance (in terms of
accuracy) with a significance test.

• We generalize the perspective on repetition and exploration by adopting
both a user-centered and an item-centered perspective. To the best of
our knowledge, we are the first to propose item explore exposure and item
repeat exposure to analyze the exposure allocation at a more fine-grained
level.

• We demonstrate the importance of considering item explore exposure and
show that several state-of-the-art SR models suffer from the problem of
zero/few item explore exposure.

• We analyze the outcomes of our study by uncovering two key phenomena:
(i) the impact of repetition “shortcuts”: SR models may skew the recom-
mendation towards repeat items by exploiting shortcuts, which leads to
a repetitive bias for explore-next users, and (ii) inherent repetitive bias.
We investigate the differences between using shared item representations
and independent item representations in the prediction layer and propose
a remedy to eliminate the repetitive bias issue.

5.2 Related Work

In this section, we describe several empirical research lines in recommender
systems that serve as the background of this work.

5.2.1 Sequential recommendation

Sequential item recommendation has been extensively studied. Several mod-
els employing deep learning techniques have been proposed [48, 49, 58, 65,
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73, 92, 96, 117], such as RNN [48, 49], CNN [96], GNN [89, 117], contrastive
learning [120], attention [65, 73], and self-attention [58, 92, 101, 126]. SAS-
Rec [58] was the first sequential recommendation model that employed a self-
attention mechanism [101]. BERT4Rec [92] later upgraded the left-to-right
training scheme in SASRec by using a bi-directional transformer with a Cloze
task [98]. In addition, flexible orders [83], capturing repetition and explo-
ration [87], and a consistent representation space [50] have all been found to
improve the accuracy of the sequential recommendation.

5.2.2 Accuracy

There are several reproducibility and empirical studies focusing on accuracy-
related metrics for recommender systems. Jannach and Ludewig [54] compare
the performance of neural-based sequential models with nearest neighbor-based
models; Petrov and Macdonald [82] evaluate the performance of BERT4Rec with
different versions of implementations; Fang et al. [37] investigate several factors
that influence the GRU4Rec performance; and, Zhao et al. [133] investigate
the influence of different dataset splitting methods. However, these accuracy-
oriented studies have primarily focused on the average performance. They do
not provide a detailed assessment of performance for different user groups. More
recently, Li et al. [69] have introduced a new evaluation perspective on the NBR
task by differentiating between repetition (recommending items that users have
purchased before) and exploration (recommending items that are new to the
user) tasks in NBR. The authors highlight the difficulty of striking a balance
between the two tasks. They analyze existing methods in NBR and conclude
that the performance of many existing methods is mainly due to a (strong) bias
towards the repetition task, at the expense of their ability to explore. Building
on this study, the NBR models proposed in [4, 59] are designed to exploit those
insights and improve their effectiveness.

However, the performance of sequential recommendation models w.r.t. repe-
tition and exploration is still unexplored. This chapter fills this gap by analyzing
the impact of repetition and exploration in a sequential recommendation sce-
nario.

5.2.3 Beyond accuracy

Apart from accuracy, diversity is another aspect to satisfy users’ diversified
demand [20, 85, 111, 130]. Recently, similar empirical and revisit studies [75,
124] have been performed to investigate the trade-off between accuracy and
diversity. The notion of item exposure is used to measure item-side performance.
It has become an important factor that models need to consider, as items and
producers are important participants within a recommender system and the
ecosystem in which it is deployed. Existing research w.r.t. item exposure is
mostly focused on individual or group fairness, either on the customer-side, i.e.,
adopting a user-centered perspective [15], or on the provider-side, i.e., adopting
an item-centered perspective [78, 129], or two-sided [79, 116, 119].
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Instead of analyzing the general exposure an item or group gets, as most
prior work does, we are specifically interested in how sequential recommendation
models allocate exposure in relation to repetition and exploration behavior.

5.3 Problem Formulation and Definitions

5.3.1 Sequential recommendation task

We use I and U for the sets of all items and users, respectively. Given a
user u ∈ U and her historical item sequence Iu = [i1, i2, . . . , it], where it
denotes the item that the user interacted with at timestamp t, the sequential
recommendation model Msq infers the user’s preferences from the historical
sequence Iu and predicts the next items as recommendation results pt+1

u at
timestamp t+ 1. Formally:

pt+1
u = Msq(Iu), (5.1)

where pt+1
u is a score distribution over the items. Usually, pt+1

u is used to extract
a ranked list of k items as the most probable items that u may interact with at
timestamp t+1. Similarly to Iu, we use Ui to denote the sequence of users who
have interacted with a given item i ∈ I. When no confusion is possible, we use
the same notations Iu and Ui for the set (instead of sequence) of historical items
and users, respectively. In those cases, we define Īu = I \ Iu and Ūi = U \ Ui.

5.3.2 Repeat vs. explore

Using the historical interaction sequences Iu and Ui, for each user u and item
i, we can divide both users and items as follows:
User-centered perspective. For a given user u, the items can be divided into
repeat items Iu and explore items Īu (i.e., items that user u has not interacted
with before).
Item-centered perspective. For a given item i, the users can be divided into
repeat users Ui and explore users Ūi (i.e., users who have not interacted with
item i before).
Repeat-next user vs. explore-next user. Given the item the users will
purchase next, the users can be divided into repeat-next users U∗ (i.e., users
who will purchase a repeat item in the next step) and explore-next users Ū∗
(i.e., users who will purchase an explore item in the next step).

5.3.3 Explore exposure vs. repeat exposure

Item exposure. Conventional item exposure measures the number of times an
item is recommended to users or the chance of an item being examined by the
user. Besides, the position of an item in a recommendation list can influence its
exposure, e.g., items at the top of the list are likely to receive more exposure
than items at the bottom of the list. Usually, a click model C, which measures
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the likelihood that the user will examine the item in each position, is used in
computing the item exposure, that is:

Ei@K =
∑
u∈Ui

CK(ru,i), (5.2)

where ru,i is the position of item i in the recommendation list shown to user
u. In this study, we use the exposure model from the discounted cumulative
gain (DCG) formula, i.e., CK(ru,i) = (I(ru,i ⩽ K))/(log2(ru,i + 1)).

The conventional definition of item exposure provided above does not ac-
count for the allocation of exposure to different types of users. From the rep-
etition and exploration perspective, it is possible to evaluate the exposure al-
location of the item to different types of users, i.e., repeat users and explore
users. Formally, we propose item explore exposure and item repeat exposure as
follows:
Item repeat exposure refers to the accumulated exposure that item i get
from its repeat users Ui, that is:

RE i@K =
∑
u∈Ui

CK(ru,i). (5.3)

Item explore exposure refers to the accumulated exposure that item i gets
from its explore users Ūi, that is:

EE i@K =
∑
u∈Ūi

CK(ru,i). (5.4)

Using the above two definitions, we define the Explore exposure ratio as the
proportion of a given item’s explore exposure from the total exposure it gets in
the recommender system, that is:

EEr i@K =
EE i@K

Ei@K
. (5.5)

This metric provides an individual-level assessment of exposure allocation. In
the extreme case where EEr i@K = 0, item i is only recommended to users who
have purchased it before and will not be recommended to explore users.

5.4 Experimental Setup

5.4.1 Research questions

In this study, we decompose the thesis-level research question RQ4 into the
following questions:

RQ4.1 How do the SR models perform w.r.t. repetition and exploration? Does
the imbalance between repetition and exploration reported in prior
work on NBR also exist in SR scenarios?
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RQ4.2 Should we consider item explore exposure in the SR? How do the se-
quential recommendation models perform w.r.t. item explore exposure
and item repeat exposure?

RQ4.3 Does the repetition “shortcut” impose the SR models to recommend
repeat items for explore-next users?

RQ4.4 Does the repetitive bias of the sequential recommendation model still
exist in a pure exploration scenario?

RQ4.5 How can we avoid the potential effect of this repetitive bias?

5.4.2 Datasets

As our goal is to investigate the performance from the repetition and exploration
perspective, we select two widely used sequential datasets with both repetition
and exploration behavior:

• Diginetica is a widely used dataset released in CIKM2016 Challenge,
which includes user e-commerce search sessions with unique ids.1

• Yoochoose is a widely used dataset released in the RecSys2015 Challenge,
which contains a collection of sessions from a retailer, and each session in
the dataset represents a series of click events performed by a user during
the session.2

We follow the widely used preprocessing procedure in previous works, i.e., “5-
core”. Specifically, we remove items that are purchased/viewed less than 5
times and remove users whose interaction sequence length is less than 5. We set
the maximum length of a sequence to 50 and any sequences longer than 50 are
truncated. We split each dataset into train, validation, and test partitions using
a leave-one-out strategy: for each item sequence, we hold the final interaction
for the test set, the second last interaction for the validation set, and the third
last interaction for the train set. The statistics of the pre-processed datasets
are shown in Table 5.1.

Table 5.1: Statistics of the processed datasets. ∗ RNU denotes repeat-next
users; † ENU denotes explore-next users.

Dataset #items #users # RNU∗ # ENU† ENU proportion

Diginetica 35,042 75,739 22,610 53,129 61.9%
Yoochoose 30,833 1,878,967 715,518 1,163,449 70.2%

1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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5.4.3 Methods

Methods selection. The purpose of this study is to provide insights w.r.t.
performance evaluation and model design from a novel angle, rather than to
track and confirm the best or latest sequential recommendation model. Thus,
we consider the following aspects to select the methods we want to analyze:

• Influential: the selected method should be highly-cited and influential,
which continue serving as competitive baselines in sequential recommen-
dation research.

• Representative: the selected methods should have diverse representa-
tion techniques, which continue serving as the backbone of various sequen-
tial recommendation models.

• Consistency: the selected methods should follow the same paradigm of
modeling, which only takes users’ historical item sequence as input to
generate the users’ preference representation.3

Methods. Following the criteria listed above, we select several highly-cited
methods with representative techniques (i.e., RNN, CNN, GNN, transformers,
BERT) as follows:

• GRU4Rec is a representative method that uses a recurrent neural net-
work (i.e. a GRU) to model users’ sequential behavior [49].

• Caser is a representative method that uses a CNN to model users’ se-
quential behavior [96].

• SRGNN is a representative method that uses a graph neural network
(GNN) to model user historical sequence [117].

• SASRec is a representative method that employs a left-to-right Trans-
former model to capture users’ sequential behavior [58].

• BERT4Rec is a representative method that employs a bi-directional
transformer model and introduces the Cloze task to train the model [62].

• RepeatNet is a representative method that models the users’ preference
w.r.t. repetition and exploration, and uses separate decoders for repeat
item and explore item prediction [87].

5.4.4 Configurations

For the neural-based sequential recommendation methods listed above, we use
the implementations in the Recbole open-source project and then integrate them
into our pipeline. We follow the hyper-parameter settings suggested in Recbole.

3Note that we do not include sequential recommendation methods with a user embedding
or any additional information as input to maintain fairness and consistency.

115



5. Sequential Item Recommendation

The embedding size is tuned on {32, 64, 128} for all methods based on the vali-
dation set to achieve their best performance. For BERT4Rec and SASRec, we
use two stacked transformer layers with 8 heads. For all methods, the dropout
ratio is set to 0.1 and the Adam optimizer is employed with a learning rate of
0.001.

All the training is performed using TITAN X Pascal GPUs with 12G mem-
ory. We repeat our experiments 5 times and report the average performance.
We share both our dataset processing scripts, the source code, and the hyper-
parameters we use in an anonymous repository.4

5.4.5 Metrics

We use three widely used metrics for the sequential recommendation problem,
i.e., Recall@K, MRR@K, and NDCG@K, to measure accuracy. In the sequen-
tial recommendation task, Recall measures the ability to find a relevant item
that meets the user’s preference; NDCG and MRR are metrics that also con-
sider the order of the relevant items. For these three accuracy-oriented metrics,
the higher the value, the better the performance.

We also use Noveltyu@K to measure the novelty of the recommendation,
that is:

Noveltyu@K =

∑K
r=1 h(u, r) · log2(r + 1)∑K

r=1 log2(r + 1)
(5.6)

where h(u, r) = 1 if the rth item in the recommended list to user u is a explore
item, otherwise h(u, r) = 0. Explore-next users prefer higher novelty, while
repeat-next users prefer lower novelty. We will later describe our proposed
metrics in later sections to remain focused. In this chapter, we consider the
metrics with K ∈ {1, 3}, as a higher K will lead to a passive increase w.r.t. the
novelty and the item explore exposure we will discuss below.5

5.5 Repetition Accuracy and Exploration Accuracy

Evaluation. To answer RQ4.1, we aim to gain an understanding of accuracy
from the repetition and exploration angle and find potential issues w.r.t. only
using average overall accuracy. Specifically, apart from the average overall accu-
racy, we also examine a more fine-grained level, analyzing the accuracy (Recall,
NDCG, MRR) and novelty (Novelty) w.r.t. two user groups, i.e., repeat-next
users U∗ and explore-next users Ū∗.
Results. The experimental results w.r.t. different accuracy metrics are shown
in Figure 5.1 and Table 5.2. We have the following observations: (i) there is
a large imbalance in recommendation accuracy between repeat-next users and

4https://github.com/liming-7/Repetition-exploration-SR
5For example, if the length of a user’s historical sequence is 5, there are at most 5 different

items that could be regarded as repeat items, so the recommendation list with a size of 10
will always contain at least 5 explore items.
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explore-next users, where all models achieve noticeably higher recommendation
accuracy (across different metrics) w.r.t. repeat-next users than explore-next
users; (ii) compared to explore-next users, repeat-next users account for a rel-
atively small proportion of the user population, whereas they contribute to a
large proportion of the average performance; (iii) the absolute difference in rec-
ommendation accuracy between different methods w.r.t. explore-next users is
smaller than the difference w.r.t. repeat-next users; and (iv) a higher average
overall accuracy does not necessarily link to the improvement w.r.t. the recom-
mendation accuracy across all users, e.g., RepeatNet achieves the best overall
accuracy in most cases on Diginetica, whereas it has the lowest accuracy on
both datasets w.r.t. explore-next users.

Table 5.2: The contribution of repeat-next users to the average overall perfor-
mance w.r.t. Recall@1.

Dataset GRU4Rec Caser SRGNN BERT4Rec SASRec RepeatNet

Diginetica 71.5% 81.1% 88.0% 78.5% 86.5% 100%
Yoochoose 90.5% 89.2% 94.3% 92.9% 94.8% 100%

The above results answer RQ1 and confirm that the findings w.r.t. the imbalance
between repetition and exploration in NBR setting generalize to the sequential
item recommendation scenario.

In general, the expected novelty for repeat-next users is 0, meaning that
only repeat items are recommended, while the expected novelty for explore-
next users is 1, indicating that only explore items are recommended. The ex-
perimental results w.r.t. the novelty over different types of users are shown in
Table 5.3. We have the following observations: (i) different methods exhibit di-
verse performance in terms of the novelty of the recommendation; for instance,
GRU4Rec has relatively high novelty, while RepeatNet and SRGNN have much
lower novelty compared to GRU4Rec; and (ii) the novelty of recommendations
to explore-next users is slightly higher than for repeat-next users in most cases,
indicating that these sequential recommendation models have the ability to
identify user preferences towards repetition and exploration to some degree.
Sacrificing the performance for specific users. When there is a huge
imbalance between the recommendation performance w.r.t. different groups of
user, using the average overall performance to represent the performance of a
method has a risk of hiding and sacrificing the performance for users for whom
the recommendation task relatively (more) difficult (e.g., users who prefer to
explore, in this chapter). For instance, compared to BERT4Rec and SASRec,
RepeatNet and SRGNN can achieve higher overall performance by sacrificing
the performance for a large proportion of users who prefer to explore on the
Diginetica dataset.
Significance testing. In recommender system research, we often use a signif-
icance test when comparing the performance of models. If the p-value is less
than a pre-determined level of significance (usually 0.05 or 0.01), we usually
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Table 5.3: The novelty of the recommendation for repeat-next users and
explore-next users.

Diginetica Yoochoose

Novelty@1 Novelty@3 Novelty@1 Novelty@3

Method RNU ENU RNU ENU RNU ENU RNU ENU

GRU4Rec 0.567 0.675 0.725 0.779 0.223 0.362 0.488 0.577
Caser 0.237 0.304 0.634 0.660 0.265 0.436 0.496 0.597
SRGNN 0.145 0.208 0.447 0.479 0.099 0.172 0.408 0.476
SASRec 0.231 0.285 0.511 0.556 0.085 0.134 0.423 0.492
BERT4Rec 0.385 0.483 0.530 0.599 0.110 0.183 0.409 0.479
RepeatNet 0 0 0.010 0.032 0 0 0.108 0.150

claim something like “The proposed model A significantly outperforms baseline
B”. Based on the findings above, we want to caution against over-reliance on
the successful outcomes of a significance test in the context of SR. Our concern
stems from our experimental results that show that RepeatNet achieves higher
accuracy scores than SASRec, with a paired significance test p-value below 0.05.
However, SASRec performs better for users who prefer to explore, who account
for over 60% of the users.
Lessons. The findings concerning reproducibility that we have listed above,
confirm that the analysis of repetition and exploration is also important, but
neglected, in SR scenarios, just as in NBR scenarios, which motivates us to
perform a deeper analysis of SR models from several angles w.r.t. repetition
and exploration.

Furthermore, upon drilling down, we have found that, when comparing se-
quential recommendation models on a dataset containing users who prefer to
repeat, we should be aware that the widely-used average overall accuracy with
a significance test may not fully represent the models’ recommendation accu-
racy for all user groups. Instead, we should also: (i) evaluate the accuracy
for repeat-next users and explore-next users separately and perform separate
significance tests on these two averages; and (ii) check the actual accuracy dis-
tribution to know whether the method favors a specific user group over another.

5.6 Explore Exposure and Repeat Exposure

To answer RQ4.2, we first illustrate the importance of analyzing item explore
exposure and then perform an analysis of this property.

5.6.1 Importance of item explore exposure

In order to demonstrate the importance of analyzing item explore exposure and
answer RQ2, we perform the following two analyses:
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Figure 5.2: Distribution of items across different exploratory purchase ratios.

Exploratory purchase. The number of exploratory purchases for an item
reflects the expected number of times that the item will be purchased by a new
user unovel

i in the future. A large number of exploratory purchases of an item
indicates that it should be recommended to a large number of explore users, i.e.,
require explore exposure, otherwise, it will lose a large potential user purchase
and never be known by these potential explore users. We rank the items based
on their total purchases and find a substantial number of exploratory purchases
across different items in both datasets, as shown in Figure 5.3.
Exploratory purchase ratio. The exploratory purchase ratio (EPr) of an
item refers to the proportion of exploratory purchases within all future pur-
chases of this item. For statistical analysis of the exploratory purchase ratio,
we ignore items with less than 10 future purchases for the sake of confidence.
From Figure 5.2, we observe the distribution is right-skewed, i.e., the EPr is
more spread out towards a higher value, which indicates a large proportion of
the future purchases are made by explore users. An item with a high EPr should
be recommended more to potential explore users than repeat users (a.k.a the
item should get more explore exposure than repeat exposure). An extreme case
with EPri = 1 indicates that all future purchases will be made by explore users
for the item i, so it is meaningless for giving repeat exposure to this item.

5.6.2 Less/zero explore exposure issue

Evaluation. The exploratory purchase ratio (EPr) provides an expected expo-
sure distribution between explore exposure and repeat exposure, which can be
seen as the expected explore exposure ratio. Therefore, we can evaluate whether
the SR models provide items with enough explore exposure compared to what
is expected by computing the difference between the exploratory purchase ratio
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Figure 5.3: Distribution of purchases across different items.

(EPr) and the explore exposure ratio (EEr), that is:

∆E
i @K = EPri@K − EEri@K.

Specifically, we first rank items according to their future total purchases and
then calculate the average ∆E

i of items with top-Q total purchases and non-zero
total exposure for the following reasons: (i) items in the catalog are not equally
important, and fewer total purchases of item indicate that only a small number
of users will prefer this item, and (ii) we focus on the item exposure distribution,
and analyzing the repeat exposure and explore exposure distribution of items
with zero exposure is meaningless.

Table 5.4: Proportion of items with zero explore exposure; analyzed on top-
500 popular next items with K = 1.

Dataset GRU4Rec Caser SRGNN BERT4Rec SASRec RepeatNet

Diginetica 11.8% 16.2% 38.2% 19.4% 35.7% 100%
Yoochoose 6.7% 2.8% 16.7% 18.7% 33.9% 99.7%

Findings. To answer RQ2, we re-evaluate the performance of SR models w.r.t.
their exposure allocation to items. The results of our analysis are shown in
Figure 5.4. For all methods on both datasets, we observe that the average ∆E

is negative, which indicates that items tend to receive less explore exposure than
expected, and their exposure is biased towards repeat exposure.

Note that RepeatNet has the lowest ∆E score, which can be seen as the
lower-bound of ∆E.6 Moreover, SRGNN and SASRec are very close to this

6Even equipped with a module to identify whether a user prefers to explore or repeat,
RepeatNet can only recommend repeat items to the user (Novelty = 0), which also means the
item will only be recommended to users who purchased them before.

121



5. Sequential Item Recommendation

100
200

300
400

500
0.8

0.6

0.4

0.2

0.0

E@1

D
iginetica

100
200

300
400

500

E@3

D
iginetica

100
200

300
400

500

E@1

Yoochoose

100
200

300
400

500

E@3

Yoochoose

R
epeatN

et
SR

G
N

N
B

ERT4R
ec

SA
SR

ec
G

R
U

4R
ec

C
aser

T
op-Q

popular
next

item
s

F
igu

re
5.4:

D
ifference

betw
een

expected
E

E
r

and
actualE

E
r

of
the

over
different

item
groups.

122



5.7. Repetitive Bias

lower-bound w.r.t. ∆E@1 on both datasets. To further investigate the potential
issues w.r.t. SR models, we analyze the proportion of items that will only be
recommended to repeat users (i.e., zero explore exposure) in the sequential next-
item recommendation scenario (i.e. K = 1). The results are shown in Table 5.4.
Surprisingly, we find that a non-negligible proportion of items suffer from the
zero explore exposure issue, which is a severe problem as these items may never
be discovered or seen by their potential new users.
Lessons. According to the findings in this section, we should be aware that
items need explore exposure and that SR models suffer from a less/zero explore
exposure issue w.r.t. a neglected proportion of items. Instead of only analyzing
the overall item exposure from an item-centered perspective, we should also
analyze the exposure distribution w.r.t. repetition and exploration.

5.7 Repetitive Bias

Pure exploration. An important task of recommender systems is to con-
nect users with items that they have never seen; there is a large proportion
of explore-next users, who would like to explore items. From the analysis in
Section 5.5, the imbalance in difficulty between the repetition task and the ex-
ploration task suggests that the existence of repeat-next users is a “shortcut” to
the optimization goal of accuracy-oriented SR models, leading those models to
recommend repetitive items even for explore-next users.

Specifically, we remove all repeat samples (i.e., repeat-next users) from the
train, validation, and test set to ensure there will be no shortcut during training
and optimization, so that the model will be specifically trained and optimized
for explore-next users. Note that this constructed subset can be regarded as a
pure exploration scenario, as all the training, validation, and test ground-truth
labels in this constructed subset are explore items.
Influence of removing repetition shortcuts. From Figure 5.5, we ob-
serve that removing shortcuts leads to a higher novelty for all methods on both
datasets. This illustrates that the presence of repeat-next users makes the model
more likely to recommend repeat items even for explore-next users, this answers
RQ4.3.
A counterintuitive finding. In this pure exploration scenario, we surpris-
ingly find that some sequential recommendation models will still recommend
repeat items to users even in datasets with pure exploration. This finding is
counterintuitive since humans can easily notice the basic characteristics of this
scenario, i.e., there are no repeat items in the ground-truth labels in the train-
ing, validation, and test set. Whereas, many complex models fail to detect this
simple pattern of the dataset and have an inherent repetitive bias issue, which
is a serious pitfall that results in poor user experience.7

7RepeatNet can avoid the inherent repetitive issue since it has an indicator to identify
repetition and exploration. BERT4Rec employs a self-supervised training objective, so it is
not that surprising to have repetitive bias.

123



5. Sequential Item Recommendation

RepeatNet
SRGNNBERT4Rec
SASRecGRU4Rec

Caser

0.0

0.2

0.4

0.6

0.8

1.0

Novelty@1

D
iginetica

A
ll

Explore

RepeatNet
SRGNNBERT4Rec
SASRecGRU4Rec

Caser

Novelty@3

D
iginetica

A
ll

Explore

RepeatNet
SRGNNBERT4Rec
SASRecGRU4Rec

Caser

Novelty@1

Yoochoose

A
ll

Explore

RepeatNet
SRGNNBERT4Rec
SASRecGRU4Rec

Caser

Novelty@3

Yoochoose

A
ll

Explore

F
igu

re
5.5:

T
he

recom
m

endation
novelty

for
explore-preferred

users:
train

using
allvs.

using
pure

exploration.

124



5.7. Repetitive Bias

Rep
eat

Net
SRGNN BERT4R

ec
SASRec GRU4R

ec
Case

r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Novelty@1

D
ig

in
et

ic
a

Sh
ar

ed
In

de
p.

Rep
eat

Net
SRGNN BERT4R

ec
SASRec GRU4R

ec
Case

r

Novelty@3

D
ig

in
et

ic
a

Sh
ar

ed
In

de
p.

Rep
eat

Net
SRGNN BERT4R

ec
SASRec GRU4R

ec
Case

r

Novelty@1

Yo
oc

ho
os

e

Sh
ar

ed
In

de
p.

Rep
eat

Net
SRGNN BERT4R

ec
SASRec GRU4R

ec
Case

r

Novelty@3

Yo
oc

ho
os

e

Sh
ar

ed
In

de
p.

F
ig

u
re

5.
6:

T
he

re
co

m
m

en
da

ti
on

no
ve

lt
y

w
.r

.t
.

ex
pl

or
e-

ne
xt

us
er

s:
sh

ar
ed

em
be

dd
in

g
vs

.
in

de
pe

nd
en

t
em

be
dd

in
g.

125



5. Sequential Item Recommendation

Table 5.5: The recommendation accuracy w.r.t. explore-next users of SR mod-
els with 3R strategy. S and I denote using shared and independent embeddings,
respectively. We exclude RepeatNet here since it does not have repetitive bias.

Diginetica-Expl. Yoochoose-Expl.

Method Mode Recall@1 NDCG@3 Recall@1 NDCG@3

SRGNN

S 0.0107 0.0197 0.0716 0.1155
S+3R 0.0135 0.0232 0.0823 0.1302

I 0.0104 0.0180 0.0640 0.1061
I+3R 0.0125 0.0203 0.0754 0.1212

BERT4Rec

S 0.0140 0.0309 0.0270 0.0886
S+3R 0.0259 0.0493 0.1102 0.1767

I 0.0158 0.0323 0.0399 0.0942
I+3R 0.0230 0.0431 0.1021 0.1643

SASRec

S 0.0119 0.0323 0.0330 0.0947
S+3R 0.0300 0.0520 0.1035 0.1681

I 0.0234 0.0377 0.0824 0.1356
I+3R 0.0256 0.0403 0.0991 0.1562

GRU4Rec

S 0.0091 0.0161 0.0614 0.1021
S+3R 0.0106 0.0183 0.0725 0.1172

I 0.0066 0.0118 0.0577 0.0961
I+3R 0.0073 0.0130 0.0699 0.1123

Caser

S 0.0053 0.0108 0.0415 0.0740
S+3R 0.0072 0.0131 0.0595 0.0980

I 0.0042 0.0087 0.0480 0.0817
I+3R 0.0058 0.0107 0.0548 0.0935

Shared embeddings vs. independent embeddings. We suspect that the
user’s preference representation inferred by the SR model will be similar to the
item embeddings within the model’s input sequence. Therefore, repeat items
will be ranked high in the recommendation list when using the dot product
between user representation and item embedding as the prediction layer. The
prediction layer typically shares item embeddings with the input layer, which
reduces model size and may reduce overfitting [58, 92, 117]. To understand
whether using shared embeddings in the prediction layer will exacerbate bias
towards repetitive items, we replace the shared item representation with an
independent item representation to conduct another group of experiments.

From the results in Figure 5.6, we find that replacing shared item embeddings
with independent item embeddings in the prediction layer can indeed alleviate
this repetitive issue and increase the novelty of recommendations for explore-

126
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next users. The results confirm that using shared embeddings in the prediction
layer contributes to the issue of repetitive bias of SR models, which answers
RQ4.4.
A simple remedy: the 3R strategy. However, we can also see that using
independent embeddings does not entirely address the repetitive bias issue of
SR models. A straightforward method to eliminate the repetitive bias in the
pure exploration scenario is to post-process recommendation results according
to the scenario’s characteristics. We propose a remedy called the 3R strategy,
i.e., remove repeat item from rule, which simply removes the repeat items in the
recommendation in the pure exploration scenario. From the experiment results
in Table 5.5, we observe that: (i) simply adopting the 3R strategy can easily
bring substantial improvements across all methods, and (ii) shared embeddings
with the 3R strategy outperforms independent embeddings with the 3R strategy
in terms of recommendation accuracy for all methods on both datasets. 3R
strategy is the answer to RQ4.5 in the pure exploration scenario.
Lessons. According to the analysis above, when comparing SR models in
a pure exploration scenario, we should be aware that: (i) many complex SR
models have the inherent repetitive bias issue, which negatively impacts their
performance in a pure exploration SR scenario, (ii) the SR models may perform
differently when the input item embeddings are not shared with the prediction
layer, and using shared embedding may exacerbate the inherent repetitive bias
issue, and (iii) a higher recommendation accuracy can be easily achieved by
addressing the repetitive bias using the 3R strategy to post-process recommen-
dations for a pure exploration scenario.

Additionally, it is important for future models to be rigorously evaluated to
check where improvements truly come from.

5.8 Conclusion

In this chapter, we have investigated and revisited sequential recommendation
from the repetition and exploration perspective to answer the thesis-level re-
search question RQ4:

How do sequential recommendation models perform, and how should
we evaluate item exposure from the perspective of repetition and ex-
ploration?

Taking lessons learned in a NBR scenario as our starting point, we analyzed
several representative SR models in multiple ways: (i) from a user-centered
perspective, where we analyze the accuracy and novelty w.r.t. repeat-next users
and explore-next users, and (ii) from an item-centered perspective, where we
define explore exposure and repeat exposure to measure exposure allocation.
We have also investigated the repetitive bias of SR models w.r.t. the recom-
mendation for explore-next users from the following aspects: (i) the repetition
“shortcuts,” and (ii) shared embedding and independent embedding.
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5.8.1 Main findings

We arrive at several important findings and discover some issues w.r.t. SR
models: (i) as in NBR, in SR too there is a huge imbalance between repeti-
tion and exploration, and SR models perform much better for repeat-next users
than explore-next users; (ii) a higher average performance can be achieved by
sacrificing the performance for a large proportion of users, which indicates that
our widely used evaluation strategy, i.e., “overall performance with significance
test”, hides important details about the effectiveness of SR models; (iii) many
SR models suffer from a less/zero explore exposure issue, i.e., items are mostly
(or even only) recommended to their repeat users; (iv) the existence of rep-
etition “shortcuts” increases the repetitive bias w.r.t. the recommendation for
explore-next users; (v) many SR models suffer from an inherent repetitive bias
(i.e., they still recommend repeat items even in the pure exploration scenario),
and using shared embeddings will exacerbate this inherent repetitive bias; and
(vi) a simple strategy for post-processing the recommendations of SR models
may lead to substantial improvements in a pure-exploration scenario.

5.8.2 Implications

Our work highlights the following important lessons that practitioners and re-
searchers should follow: (i) in a SR scenario with both repetition and explo-
ration, instead of only relying on the average overall accuracy with a signifi-
cance test, we should also evaluate the performance of repeat-next users and
explore-next users separately, and check the distribution of performance results
across users; (ii) in a pure exploration SR scenario, we should be aware of the in-
herent repetitive bias issue, and use the 3R strategy to post-process SR models
when using them as baselines; and (iii) on a two-sided platform, SR practition-
ers should also check the explore exposure and the exposure allocation of items
to ensure that items will not only get exposed to their repeat users and have
explore exposure to reach potential exploring consumers.

Our analyses show that using the repetition “shortcut” in SR scenarios with
repetition behavior and addressing the repetitive bias in SR scenarios with pure
exploration may lead to substantial improvements w.r.t. recommendation accu-
racy of SR models. Given that many recent SR models were evaluated with-
out separately considering repetition and exploration performance, it is unclear
whether the improvements observed come from improving the model overall or
from leveraging shortcuts that improve repetition at the expense of exploration.
For evaluations conducted in an exploration scenario, it is unclear which im-
provements would remain after mitigating the models’ repetitive bias with the
3R strategy.

5.8.3 Limitations and future work

Our analyses mainly focus on the neural-based SR models that have been pub-
lished in recent years, ignoring classic machine learning-based and neighbor-
based methods. Another limitation is that we only focus on repetition and
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exploration, but there might be other factors that also lead to a performance
imbalance in the SR scenario. We focus on analyzing the exposure distribu-
tion of items and uncover the limited item explore exposure issue; it would be
interesting to consider how to avoid this issue.

Next, we will conclude the thesis.
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6
Conclusions

In this thesis, we have studied recommendation tasks from a repetition and ex-
ploration perspective. Specifically, we have looked into the evaluation and opti-
mization of recommendation models from both user-centered and item-centered
perspectives. In this chapter, we first summarize the main findings in terms of
the thesis-level research questions listed in Chapter 1, and then outline potential
future directions for follow-up research.

6.1 Main Findings

RQ1 How to evaluate the next basket recommendation performance from the
perspective of repetition and exploration?

This question has been answered in Chapter 2, where we reproduce and investi-
gate various types of next basket recommendation (NBR) models. Specifically,
we propose a set of metrics that measure the repetition/exploration ratio and
performance of NBR models. Using these new metrics, we provide a second anal-
ysis of state-of-the-art NBR models from several perspectives: (i) the overall
performance on different scenarios; (ii) the basket components; (iii) the repeat
and explore performance; (iv) the contribution of repetition and exploration
to the overall performance; (v) the treatment effect for different user groups;
(vi) the potential limitations of the average metrics; and (vii) the treatment
effect for different items.

Through our experiments, we arrived at several important findings: (i) No
state-of-the-art NBR method shows the best performance across datasets with
various levels of repetition behavior. (ii) There is a clear distinction in diffi-
culty and trade-off between the repetition task and the exploration task within
NBR. Recommending repetitions is significantly easier than recommending ex-
ploration. (iii) Being biased towards the easier repetition task is an important
strategy that helps to boost the overall NBR performance. (iv) Some NBR
methods might achieve better overall performance at the detriment of users
who would like to explore new items. (v) Deep learning-based NBR methods
do not effectively utilize the distinction between users’ repetition behavior and
exploration behavior.
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These results help us gain a clearer understanding of the progress made by
existing NBR methods and the reasons behind any observed improvements. In
summary, this thesis sheds light on the evaluation challenges of NBR, introduces
a new evaluation protocol, and offers valuable insights for designing models for
this task.

RQ2 How to design basket recommendation models targeted at the exploration
task, and how to optimize the model to explore items in a scenario with
many repetition signals?

This question has been answered in Chapter 3, where we formulate and in-
vestigate the next novel basket recommendation (NNBR), i.e., an exploration
recommendation task. We evaluate how existing NBR methods perform on the
NNBR task and find that, so far, limited progress has been made w.r.t. the
NNBR task. To address the NNBR task, we propose a simple bi-directional
transformer basket recommendation model (BTBR), which is focused on di-
rectly modeling item-to-item correlations within and across baskets instead of
learning complex basket representations. To properly train BTBR in a scenario
with both repetition and exploration signals, we propose and investigate sev-
eral masking strategies and training objectives: (i) item-level random masking,
(ii) item-level select masking, (iii) basket-level all masking, (iv) basket-level ex-
plore masking, and (v) joint masking. In addition, an item-basket swapping
strategy is proposed to enrich the item interactions within the same baskets.

We conduct extensive experiments on three open datasets with various char-
acteristics. The results demonstrate the effectiveness of BTBR and our masking
and swapping strategies for the NNBR task. BTBR with a properly selected
masking and swapping strategy can substantially improve the NNBR perfor-
mance.

RQ3 How to help a given item find its potential users in an item-centered
setting, and how do repetition and exploration influence the design and
optimization of the recommendation model?

This question has been answered in Chapter 4, where we formulate and inves-
tigate the reverse next-period recommendation (RNPR), i.e., an item-centered
recommendation task. Considering the repetition and exploration, we formu-
late three sub-tasks of the overall RNPR task, (i) Expl-RNPR, (ii) Rep-RNPR,
and (iii) Mixed-RNPR, where we consider different types of target users, i.e.,
(i) explore users, who are new to a given item, (ii) repeat users, who previ-
ously purchased a given item, and (iii) both explore users and repeat users. To
address the Expl-RNPR task, we propose a habit-interest fusion model that em-
ploys frequency information to capture the repetition-exploration habits of users
and that uses pre-trained item embeddings to model the user’s interests. For the
Mixed-RNPR task, we propose a repetition-exploration user ranking algorithm
to decouple the repetition and exploration task, and investigate the trade-off
between targeting different types of users for a given item. Furthermore, to re-
duce computational costs at inference, we analyze the repetition behavior from
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both user and item perspectives and then introduce a repetition-based candi-
date filtering method for each sub-task. We conduct experiments on two public
grocery shopping datasets. Our experimental results not only demonstrate the
difference between repetition and exploration, but also the effectiveness of the
proposed methods.

RQ4 How do sequential recommendation models perform, and how should we
evaluate item exposure from the perspective of repetition and exploration?

This question has been answered in Chapter 5, where we reproduce and inves-
tigate various types of sequential recommendation (SR) models. Specifically,
we examine whether repetition and exploration are still important dimensions
in the sequential recommendation scenario. We consider this generalizability
question both from a user-centered and an item-centered perspective. For user-
centered perspective, we group users into repeat-next users and explore-next
users, and then analyze the recommendation performance w.r.t. the two groups
separately. Towards the latter, we define item repeat exposure and item explore
exposure, which consider the exposure distribution on different types of users.

We conduct experiments to examine the recommendation performance of se-
quential recommendation models in terms of both accuracy and exposure from
the perspective of repetition and exploration. We find that (i) there is an imbal-
ance in accuracy and difficulty w.r.t. repetition and exploration in SR scenarios,
(ii) using the conventional average overall accuracy with a significance test does
not fully represent a model’s recommendation accuracy, (iii) accuracy-oriented
sequential recommendation models may suffer from less/zero item explore expo-
sure issue, where items are mostly (or even only) recommended to their repeat
users and fail to reach their potential new users, (iv) the existence of repe-
tition “shortcuts” increases the repetitive bias w.r.t. the recommendation for
explore-next users; (v) many SR models suffer from an inherent repetitive bias
(i.e., they still recommend repeat items even in the pure exploration scenario),
and using shared embeddings will exacerbate this inherent repetitive bias; and
(vi) a simple strategy for post-processing the recommendations of SR models
may lead to substantial improvements in a pure-exploration scenario.

6.2 Future Directions

In this thesis, we have investigated the topics of repetition and exploration in
recommendation by answering four main research questions using four chap-
ters. The specific limitations and future directions are discussed at the end of
each corresponding research chapter. With many inspiring findings and insights
derived from this thesis, we believe there are several future directions for the
entire thesis in general.
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6.2.1 Other recommendation scenarios

Throughout this thesis, we have observed that the distinction between repeti-
tion and exploration exists in several recommendations tasks. Repetition and
exploration behaviors co-exist in various scenarios and platforms. However, in a
single thesis, we are not able to cover all aspects and scenarios of recommenda-
tion research. It is worth extending our analysis methodology w.r.t. repetition
and exploration to more recommendation settings. Specifically, we think that
the perspective of repetition and exploration would also bring new insights to
the following recommendation scenarios and tasks:

• Repetition and exploration in reinforcement learning-based recommenda-
tion (RL4Rec). The goal of RL4Rec is to optimize a policy that can receive
maximum cumulative reward over multiple sequential recommendations.
In this thesis, we have found that optimizing the recommendation model
in a scenario with both repetition and exploration behaviors introduces
several challenges, e.g., the repetition might be regarded as a “shortcut”
during the optimization process. It is important and interesting to inves-
tigate the potential influence of repetition and exploration signals when
optimizing RL4Rec methods in a such scenario.

• Causal effect of recommendation. The recommended items might have
been clicked or purchased even without recommendations, and recom-
mending such items would not increase positive interactions. To increase
user engagement, we need to focus on the change caused by the recommen-
dation, which is called the causal effect of recommendation. We expect to
see a difference in recommendation effects between repetition recommen-
dations and exploration recommendations.

• Long-term reward. As the repetition task is much easier than the explo-
ration task, simply ignoring the exploration task and being biased towards
the easier repetition task is an intuitive way of boosting performance when
considering the short-term reward. However, people might get tired of rep-
etition over time. In that sense, the exploration task needs to be taken
into account when targeting long-term rewards.

6.2.2 Evaluation

Throughout this thesis, we have found that the average overall performance
can only partially reflect performance, but is not able to represent actual per-
formance w.r.t. different user groups. Recommendation models could leverage
a shortcut to increase overall performance, which is at the sacrifice of a certain
group of users. Recently, more researchers have realized the potential issues of
relying on average overall performance to evaluate recommendation performance
and argued that the evaluation of recommendation methods should consider the
distribution of utility between and within different user groups to more deeply
understand recommendation performance [35]. We believe the repetition and
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6.2. Future Directions

exploration perspective is just one aspect that influences the difficulty of the rec-
ommendation task. Beyond this perspective, we believe there are more angles
and meta-features worthy of investigating, e.g., differences in the length of the
user interaction sequence, different levels of popularity and types of historical
items, etc. Besides, it is also worth performing fine-grained level analysis using
different metrics (e.g., diversity, fairness, etc) and their trade-offs. Ultimately,
we believe it is important to design an evaluation platform and library that
can support the analysis of evaluation metrics across user groups, item groups,
recommendation tasks, and assumptions.
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Summary

Recommender systems serve as an essential bridge for connecting users and
items on a digital platform, which helps users find relevant items and helps
items reach their potential users. Over the years, numerous recommendation
models targeted at various domains have been designed.

People exhibit both regular habits and curiosity, demonstrating repetition
behaviors as well as exploration behaviors when engaging with platforms. The
coexistence of repetition and exploration imposes challenges for performance
evaluation and designing recommendation models. Thus, this thesis aims to
provide insights and understand the repetition and exploration in various rec-
ommendation tasks. Considering the repetition and exploration in recommen-
dation, this thesis covers two research aspects: (i) evaluate recommendation
performance, and (ii) optimize and design recommendation methods.

Specifically, this thesis investigates four recommendation tasks, (i) next
basket recommendation, (ii) next novel basket recommendation, (iii) reverse
next-period recommendation, and (iv) sequential recommendation. In terms of
recommendation evaluation, this thesis introduces a comprehensive set of evalu-
ation metrics that take into account both user-side and item-side aspects, which
allow for a more detailed understanding of recommendation performance. Ad-
ditionally, the thesis presents guidelines for evaluating recommendation models
in a scenario with both repetition and exploration behaviors. In the context
of recommendation optimization and design, the thesis puts forward a range
of training strategies and recommendation model designs based on the insights
derived from the analysis of repetition and exploration.

To sum up, this thesis uncovers the key differences between repetition and
exploration in recommendation, and highlights the importance of evaluating
and optimizing recommendation models from the perspective of repetition and
exploration.
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Samenvatting

Aanbevelingssystemen dienen als een essentiële brug voor het verbinden van ge-
bruikers en items op een digitaal platform, waardoor gebruikers relevante items
kunnen vinden en items hun potentiële gebruikers kunnen bereiken. Door de
jaren heen zijn er talloze aanbevelingsmodellen ontworpen, gericht op verschil-
lende domeinen.

Mensen vertonen zowel reguliere gewoonten als nieuwsgierigheid, waarbij ze
zowel herhalingsgedrag als verkenningsgedrag vertonen wanneer ze met plat-
forms omgaan. Het naast elkaar bestaan van herhaling en verkenning brengt
uitdagingen met zich mee voor het evalueren en het ontwerpen van aanbevel-
ingsmodellen. Het doel van dit proefschrift is dan ook om inzichten te ver-
schaffen en inzicht te krijgen in de herhaling en verkenning van verschillende
aanbevelingstaken. Gezien de herhaling en verkenning in aanbevelingen, behan-
delt dit proefschrift twee onderzoeksaspecten: (i) evaluatie van de prestaties van
aanbevelingen, en (ii) optimalisatie en ontwerp van aanbevelingsmethoden.

Concreet onderzoekt dit proefschrift vier aanbevelingstaken: (i) next basket
recommendation, (ii) next novel basket recommendation, (iii) reverse next-period
recommendation, en (iv) sequential recommendation. Op het gebied van de
evaluatie van aanbevelingen introduceert dit proefschrift een uitgebreide set
evaluatiemetrieken die zowel rekening houden met aspecten aan de gebruikers-
zijde als aan de itemzijde, waardoor een gedetailleerder inzicht in de prestaties
van aanbevelingen mogelijk wordt. Daarnaast presenteert het proefschrift richt-
lijnen voor het evalueren van aanbevelingsmodellen in een scenario met zowel
herhalings- als verkenningsgedrag. In de context van optimalisatie en ontwerp
van aanbevelingen presenteert het proefschrift een reeks trainingsstrategieën en
ontwerpen van aanbevelingsmodellen, gebaseerd op de inzichten verkregen uit
de analyse van herhaling en verkenning.

Samenvattend onthult dit proefschrift de belangrijkste verschillen tussen her-
haling en verkenning bij aanbevelingen, en benadrukt het het belang van het
evalueren en optimaliseren van aanbevelingsmodellen vanuit het perspectief van
herhaling en verkenning.
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