Labeled Resolution for Discourse
Semantics

Christof Monz and Maarten de Rijke
ILLC, University of Amsterdam.

Plantage Muidergracht 24, 1018 TV Amsterdam
E-mail: {christof,mdr}@wins.uva.nl

Abstract

This paper concerns the application of resolution theorem proving to
natural language semantics. We focus on the problem of efficient pronoun
binding in a discourse, trying to circumvent the enormous computational
complexity triggered by natural language ambiguities like pronoun bind-
ing. Automated deduction steps and binding of pronouns are interleaved
with the effect that only pronouns that are used during a derivation are
bound to a possible antecedent. Labels are used to encode structural in-
formation which is essential to define admissible bindings. It turns out
that the notion of pronoun binding can be reduced to the notion of labeled
unification.

1 Introduction

Unlike formal languages natural languages are ambiguous. Ambiguity is espe-
cially problematic for automated reasoning, because it is not clear which of the
possibly conflicting readings the deduction method has to consider if an ambigu-
ous expression occurs within the derivation. Is it to enough to consider only
one reading, or do all of them have to be considered? Should a theorem prover
work only on totally disambiguated expressions? Total disambiguation results
in an explosion of readings, because of the multiplicative behavior of ambiguity.
On the other hand, to prove a conclusion ¢ from a set of premises I' it may
be enough to use only premises from a subset A of I', and it may be sufficient,
and much more efficient, to disambiguate only A instead of the whole set of
premises I'. In general, we do not know in advance which subset of premises
might be enough to derive a certain conclusion, but during a derivation often
certain (safe) strategies may be applied that prevent some premises from being
used since they cannot lead to the conclusion, anyway. Common strategies to
constrain the search space in resolution deduction are e.g., the set-of-support
strategy and ordered resolution. Our goal is to constrain the set of premises
that have to be disambiguated by interleaving deduction and disambiguation.

Roughly speaking, premises are only disambiguated if they are used by a de-
duction rule.

Reasoning with ambiguous information is still a matter of ongoing research,
see for instance [vD96, vEJ96, Jas97, MdR98], and this paper does not try to
give a general answer. Instead, we focus on a particular instance of ambiguity,
namely the question of pronoun binding.! As exemplified by (1) below.

(1) A man saw a boy. He whistled.

(2) a. A man; saw a boy. He; whistled.
b. A man saw a boy;. He; whistled.

Often, there are lots of possibilities and it is not clear which one to choose.
The pronoun he in the short discourse in (1) can be resolved in two ways as
given in (2), where co-indexation indicates identity. For some cases heuristics
are applicable which prefer certain bindings to others, but at present there is no
approach making use of heuristics which is general enough to cover all problems.

The main topic of this papers is not to deal with pronoun binding as such,
but to give an efficient deduction system for natural language discourses and
pronoun binding is only part of the problem. Our strategy is to try and deduce
something from a set of premises and bind pronouns only where necessary.

The quest for efficiency suggests that we try to use resolution based meth-
ods, but here a problem arises. Most efficient reasoning systems presuppose
that their input is in a normal form, e.g., conjunctive normal form (CNF) for
resolution deduction. In the process, the original structure of the discourse,
which is important for pronoun binding, is totally distorted. In contrast, rea-
soning systems that do preserve the original structure like tableaux or natural
deduction are less efficient. How do code structural information in a different
in a resolution based approach? In this paper we will see that labels allow us to
do so in an appropriate way.

The rest of the paper is structured as follows. Section 2 provides some rudi-
mentary background in dynamic semantics and explains what kind of structural
information is necessary to properly restrict pronoun binding. Besides that, the
basics of resolution deduction are introduced. Section 3 discusses some of the
problems of the (standard) resolution method when applied to natural lan-
guage. The method of labeled unification and labeled resolution is presented to
overcome these problems. Section 4 briefly relates our work to some other ap-
proaches to pronoun binding. Section 5 provides some conclusions and prospects
for further work.

IThroughout this paper we use the term binding to express the referential identification
of a pronoun and another referential expression occurring in the discourse. Common terms
are also co-indecation or pronoun resolution. We especially did not use pronoun resolution to
avoid confusion with resolution as a deduction principle.

2 Background

Before we turn to our method of labeled resolution deduction and its applications
to discourse semantics, we briefly present the idea of dynamic semantics. The
second subsection shortly explains the classic resolution method for (static)
first-order logic.

2.1 Dynamic Semantics

Dynamic semantics [Kam81, Hei82] allows to give a perspicuous solution to
some problems involving pronoun binding. We consider a combination of Dis-
course Representation Theory (DRT) [Kam81, KR93|, where co-indexation of
pronouns is not presupposed, and Dynamic Predicate Logic (DPL) [GS91]. In
(3) a semantic representation of the short discourse in (1) is given, where the
pronoun he is represented by a free variable u. Variables for pronouns are dis-
played in boldface and are of a different kind than regular variables. If we want
to identify this variable with one of the variables bound by one of the existential
quantifiers in the first sentence, we have to extend the scope of the existential
quantification.

(3) Fz(man(z) A Jy(boy(y) A see(z,y))) . whistle(u)

The corresponding construction of a representation for the whole discourse ba-
sically consists of two steps:

(4) step 1: Jz(man(z) A Jy(boy(y) A see(z,y))) & whistle(u)
step 2: dz(man(z) A Jy(boy(y) A see(z,y))) A whistle(z)

The @ operator merges two formulas by putting them into a conjunction and
binding variable pronouns, where we assume for simplicity that both formulas
are variable disjoint. A free variable u is identified with a bound variable z if x
is accessible from u.

One of the main characteristics of dynamic semantics is the flexible scope of
the existential quantifier. In classical logic the variable x occurs free after the
second step in 4, but in dynamic semantics the existential quantifier can also
bind variables occurring to the right-hand side of its traditional scope, as long
as certain conditions hold. One such condition is that existential quantifiers
occurring inside a negation cannot bind variables outside of the negation. The
following example illustrates this.

(5) *John doesn’t own a car;. It; is in front of his house.

Both properties (a) existential quantifiers can bind variables occurring to the
right-hand side of their traditional scope and (b) negations are barriers for dy-
namic binding, allow us to define the properties of the other logical connectives
V, = and V.

(6) [evey] = [~(-eA—)]
[e =4 = [~(pA)]
[Vze] = [-3z—¢]

Given these definitions we see that the disjunction is a barrier both internally
and externally, the implication is a barrier externally but internally it allows for
flexible binding, and the universal quantifier does not allow for external binding.

The ?-operator is a bit different, because it only binds its argument, but does
not quantify over it. Actually, it is not necessary to have a special operator
for pronouns, and we introduced it more for the sake of convenience. Unlike
the existential quantifier, the 7-operator does not have the property of flexible
binding. We get the following equivalence:

[-7up] = [Pu-y]

To define accessibility we can now say that a variable z is accessible from
a pronoun u if no barrier occurs between the quantifier introducing = and ?u.
The equations in (6) show that V, — and V introduce barriers because of the
way they are defined in terms of negation. This is exemplified by (7) below.

(7) *Every farmer owns a donkey. It is grey.

Unfortunately we do not have enough space to give a more detailed account
of dynamic semantics, but we refer the reader to [Kam81, GS91].

2.2 The Resolution Method

The resolution method [Rob65] has become quite popular in automated theo-
rem proving, because it is very efficient and it is easily augmentable by lots of
strategies which restrict the search space, see e.g., [Lov78]. On the other hand,
the resolution method has the disadvantage of presupposing that its input has
to be in clause form, where clause form is the same as CNF but a disjunction
is displayed as a set of literals (the clause) and the conjunction of disjunctions
is a set of clauses. Probably the most attractive feature of resolution is that it
has only one single inference rule, the resolution rule:

CU{_'Pla'-'a_'Pn} DU{Ql”Qm}
(CUDn)o

(res)

where ¢ Qq,...,Q,, are atomic
e 7 is a substitution such that C U {-Py,...,—-P,} and
Dru{Qm,...,Qnm} are variable disjoint
e o is the most general unifier of {Py,...,P,, Qi7,...,Qn7}

To prove that T’ = ¢ holds we transform (A T') A = in clause form and try to
derive a contradiction (the empty clause) from it by using the resolution rule.
For a comprehensive introduction to the resolution method see for instance

[Lei97, LovT78].

3 Dynamic Resolution

Applying the classical resolution method to a dynamic semantics causes prob-
lems. Below we will first discuss some of them and then see how we have to
design our dynamic resolution method to overcome these problems.

3.1 Adapting the Resolution Method

There are mainly two problems that we have to find a solution for. First,
transforming formulas to clause form causes a loss of structural information.
Therefore, it is sometimes impossible to distinguish between variables that can
serve as antecedents for a pronoun and variables than can not. The second
problem concerns the duplication of literals which may occur during clause
from transformation and the assumption of the resolution method that clauses
are variable disjoint. Although the same pronoun may have two occurrences in
different clauses, we do not want them to be bound by different antecedents.

Turning to the first problem, e.g. in (8), the pronoun u cannot be bound by
the existential quantifier, whereas the pronoun z can be bound by it.

(8) a. Every farmer who owns a donkey beats it. It suffers.

b. Vz(f(z) A y(d(y) Ao(z,y)) =?zb(z,2)))ATus(u)
9) { {_'f(l')a ﬁd(y),ﬂo(z,y),b(z,z)}, {s(u)} }

How can we tell which identifications are allowed by looking at the corresponding
clause form in (9)? How do we know whether a variable or skolem function is
accessible?

We use labels to carry the information about accessible variables. Each
pronoun variable is annotated with a label that indicates the set of accessible
variables. Besides the set of first-order or proper variables (VAR), first-order
formulas (FORM), and pronoun variables (PVAR), we are going to introduce
the sets of labeled pronoun variables (LPVAR) and labeled formulas (LFORM).
Labeled pronoun variables are of the form V :u, where V C VAR and u is a
pronoun variable. The set of labeled formulas is the set of first-order formulas
plus formulas containing labeled pronoun variables.

To see which variables inside of a formula ¢ can serve as antecedents for
pronouns, [GS91] introduced the function AQV which returns the set of actively
quantifying variables when applied to .

Definition 1 (Actively Quantifying Variables) Let FORM be the set of

classical first-order formulas and VAR the set of first-order variables. The func-

tion AQV : FORM — POW (VAR) is defined recursively:

AQV(R(z1...z,)) = 0
AQV(-p) = 0
AQV(p A9) = AQV(p) UAQV(Y)
AQV(p = 4) = 0
AQV(pVve) = 0
AQV(Vzy) = @
AQV(Jzp) = AQV(p)U {z}
AQV(Tup) = AQV(y)

Using the above definition we can now define the notion of accessible vari-

ables.

Definition 2 (Annotation with Accessible Variables) To annotate u in
?uy, we drop the binding operator ?u and substitute all occurrences of the
pronoun variable in % by its annotated counterpart. The annotation function

annot : VAR x FORM — LFORM is defined recursively, where V' C VAR:

annot(V,R(z1...z,)) = R(z1...z,)
annot(= -annot(V,)
annot(V, p A ¢' = annot(V,¢) A annot(V U AQV(p),)

annot(V,) — annot(V U AQV(p),)
annot(V,) V annot(V, 1)

= Vz annot(V U {z}, p)

Jz annot(V U {z}, ¢)

= annot(V, ¢[u/V :ul)

annot(V,p — v

)
—p)
)
)
annot(V, ¢ V1)
)
)
)

annot(V,Vzp
annot(V, 3zp
annot(V, Tup

The actual annotation takes place in the last case, where the pronoun is sub-
stituted. The other cases thread the actively quantifying variables through the
formula. To annotate a whole discourse 3 A --- A ¢,, the variable parameter
of annot is initialized with @, annot(@, p; A--- A). Alternatively, we say that
a variable z is accessible from a pronoun u iff z is element of the set of the
accessible variables of u. It is important to note that the first parameter (the
variable parameter) of the annot-function is structure-shared when applied to
different subformulas. This is mainly for two reasons: first, to avoid represen-
tational redundancy, as the set of accessible variables can become quite large,
and second, it allows to handle global instantiation efficiently.

Reconsider the last example, every farmer who owns a donkey beats it. It
suffers. Applying annotation yields:

annot(@,Vz(f (z) A Jy(d(y) A o(z,y)) =72z b(z,2))ATus(u))
= Va(f(z) AJy(d(y) A o(z,y)) = b(z, {z,y}:2))) A s(B:u)

Applying clause form transformation to the annotated formulas yields:

(10) { {_'f(m)v_'d(y)a _'O("Ea y)7 b(l‘, {'Tvy} :z)}v {5(@:11)} }

Here, we can also see that (8.a) is not well-formed because there are no accessible
pronouns for the second pronoun it, i.e., the label of u is the empty set.

Although clause form transformation does not manipulate the labels directly,
it does in an indirect way, because skolemization substitutes variables by skolem
terms. Therefore, the substitution has to be applied to the labels, which carry
a set of variables, also.

Now we turn to the second problem: how do we make sure that the same
pronoun, occurring in different clauses, is bound to the same antecedent? As
we said earlier, we do not want to assume pronouns to be bound in a set of
premises when we apply resolution. The reason is that pronoun binding is highly
ambiguous and often it is not necessary to bind all pronouns in a set of premises
to derive a certain conclusion from it. Another issue, which we briefly hinted
at in Section 2, is that pronouns should be treated as free variables of a special
kind, not to be dealt with in the same manner as universally quantified variables
(which also happen to be represented by free variables). This is illustrated by
the following example, which shows an invalid entailment.

(11) a. FzTy((A(z) vV A(y)) A (7zA(z) - (BAC))) £BVC
b. {{A(f); A(9)}, {-~A(2), B}, {-A(2),C}, {-B}, {-C}}

The transformation in (11) causes a duplication of the literal —A(z), and we have
to make sure that the pronoun is instantiated the same way in both cases.

(12) {A(f),A(9)} {-A(z),B} {-A(z),C} {-B} {-C}
\/
{A(9), B}

{B,C}

{c}
O

In (12) z is instantiated with f in the first resolution step and then with g in the
second. The resolution rule as it was stated in the preceding section assumes that
clauses to be resolved are variable disjoint. We have to modify the resolution
rule such that the same pronoun variable is allowed to occur in both clauses.
Additionally, the instantiation of a pronoun variable for constructing the most
general unifier in a resolution step is applied globally, i.e. to all clauses.

(13) {A(f),Al9)} {~A(#),B} {-A(2),C} {-B} {=C}
{4(9), B} {A(f),C}
{A(9)} {A(N}

Global instantiation correctly prevents us from deriving a contradiction in (13).

3.2 Labeled Resolution

Unification is a fundamental technique in the resolution method. Since we
are also dealing with labeled variables, we have to think how the unification
mechanism has to be adapted. In the course of this subsection, it will turn out
that pronoun binding can be reduced to unification.

3.2.1 Labeled Unification

We use the unification algorithm of Martelli and Montanari [MM82] as a basis
and adapt it in such a way that it can deal with labeled pronoun variables.

What does it mean to unify a set of equations E = {s1 = ¢1,...,5, = tn},
where s; or t; can also be a labeled pronoun variable? We have to distinguish
three possible cases: (i) neither s; nor t; is a labeled pronoun variable, then
labeled unification and normal unification are the same thing, (ii) one of them
is a pronoun and the other is not, and (iii) both are pronouns. Case (ii) is
the normal pronoun binding, where a try to identify pronoun with a proper
variable. Case (iii) is not an instance of pronoun binding, but an identification
of two pronouns, i.e., whatever is the antecedent of the first pronoun, it is also
the antecedent of the other one.

Definition 3 (Labeled Unifier) A substitution o is a labeled unifier or unifier*
of a set of equations E = {51 & t1,...,8, =t} iff

1. sio0 =ti0,...,8,0 =t,0
2. if (V:u)o =tand t ¢ LPVAR thent € V
3. if (Viu)o =V':vthen V' CV

We use = to express equality in our object language, whereas = denotes equality
in the meta language.

Condition 1 is the normal condition of unifiability, namely that the terms of
an equation have to be identical after substitution. The second condition says
that unifiers have to obey accessibility, for instance o := [{z, f}:u/g] is not a
unifier of {{z, f} :u = g}, because g is not accessible from u, as g ¢ {z, f}.
To ensure that identification of pronouns always restricts the set of accessible
antecedents, we need condition 3.

Definition 4 (Most General Labeled Unifier) A labeled unifier o of a set
of equations E = {s1 & t1,...,8n & t,} is the most general labeled unifier or

mgu* of E iff
1. if 0 is a unifier* of E then there is substitution 7 such that § = o1

2. if (Vin)o=Vi:v, (V:iu)d =Va:v, Vi,Vo CV, and V;, Vo # 0
then V5, C

Again, the first condition is standard in regular unification. Condition 2 says
that the most general unifier* has to restrict the set of accessible antecedents
as little as possible when identifying pronouns. To unify V; :u and V5 : v it
suffices to take any non-empty subset of the intersection of V; and V5, but this
fact may prohibit some antecedents from being accessible, although they are in
fact accessible for both pronouns.

Definition 5 (The Labeled Unification Algorithm) The unification func-
tion unify™ is first applied to a pair of atoms, and then it tries to unify the set of
corresponding argument pairs. The algorithm terminates successfully if it did
not terminate with failure and no further equations are applicable.

1. unify*(R(s1...5n), R(t1--t5))
= unify* ({s1 & t1...8n X tn})

2. unify*({f(s1...5n) = f(t1...tn) } UE)
= unify* ({s1 ® t1...6n X t,} UE)

3. unify*({f(s1..-8n) ® g(t1...tm) }UE), f#Agorn#m

= terminate with failure

4. unify*({z ~z}UE
= unify*(E)

5. unify*({t xz} UE), t ¢ VAR
= unify*({z ®# t} UE)

6. unify*({z =t} UE), z #t,t ¢ LPVAR, zin t

= terminate with failure

7. unify*({z ~# t} UE), z #t,t ¢ LPVAR, z not in t, z in E
= unify* ({z ~ t} U E[z/t])

8. unify*({V:iu=t}UE),t¢ LPVAR,t€V,V:uin E
= unify*({V:u =t} UE[V:u/t])

9. unify"({(Vi:ux Va:vIUE), VinVa #0,VinVy C Vs
=unify* {Vi:ux VinVa:v,Varva Vi N,:v}
UE[VL:u/Vi N Vv, Va:v/Vi N Va:v])

The first equations of the algorithm are the same as in [MM82], except for
additional side conditions which make sure that ¢ is not a labeled variable. The
interesting cases are 8 and 9. In 8 a pronoun is bound to an antecedent and
in 9 two pronouns are identified, i.e., they have the same possible antecedents,
namely those which are accessible for both of them.

Identification of pronouns underlies different constraints than binding a pro-
noun to a proper antecedent. To identify a pronoun u with another pronoun v,
it is not required that u is accessible from v, or the other way around. But they
can only be identified if they have at least one proper accessible antecedent in
common.

(14) Buk is a poet. For every man there is a woman who hates him.
= There is a woman who hates him.

(15) p(b) AVa(w(z) = Jy(w(y)ATu h(y, u)))
E 3z(w(z)A?v h(z,V))

For instance, in (14) the conclusion is only valid if the first and the second
occurrence of him are identified. In Section 2 it was said that universal quan-
tification is a barrier for flexible binding, and therefore the second occurrence
of him cannot be bound to the first one. On the other hand, both of them have
a proper antecedent in common, namely the constant b representing the proper
name Buk. In addition, the first occurrence of him has the variable z as an
accessible antecedent, which is introduced by the universal quantification every
man. If one wants to identify them, one has to take the intersection of both sets
of accessible antecedents and hence drop x as a possible antecedent. Observe
that identification of pronouns still leaves some space for underspecification,
because the intersection of two pronouns does not have to be a singleton. Of
course, identifying two pronouns, where more than one antecedent is accessible
for both, forces them to be bound to the same element of the intersection. Both
can be bound to one or the other element of the intersection, but it has to be
the same one for both pronouns.

If the unification algorithm terminates successfully for a pair of literals P,Q),
the solved set determines a substitution ¢ that is the mgu* of P,Q:

o:={s/t|s~teunify"(P,Q)}.
A set of equations {s; = t1,...,5, X t,} is called solved iff
1. s; € VARU LPVAR and the s; are pairwise disjoint

2. no s; occurs in a term t; (1 <4,j < n).

Lemma 6 (Correctness of the Unification* Algorithm) Let E be a set of
equations and unify*(E) = E', then

(i) E is unifiable* iff E' is unifiable*
(i) o is the mgu* of E iff o is the mgu* of E'

Proof. (i) We have to show that actions 2, 4, 5, 7, 8, and 9 preserve unifiability*,
when unify* is applied to a unifiable* set E. For 2, 4, and 5, this is obvious. To
show it for 7, note that 7 := [z/t] is a unifier* of z and ¢. If ¢ is a unifier* of
{z = t} U E then o is of the form 7p. Because 77 = 7, it holds that o0 = 7p =
77p = T0. Therefore o unifies* {z =~ t} U E iff o unifies* {z ~ t} U E[z/t]. 8 is
analogous to 7, plus the additional side condition that ¢ € V. The last case is
9. If {Vi:u = V5:v} U E is unifiable*, then it is with a unifier* o of the form
Tp with
T:=[Vi:u/Vi1NVa:v, Vaiu/Vy N Va:v].

10

Again, 0 = 7p = 77p = 70 and then o also unifies*
VirusVinVa:v,Va:va ViNVa:viUE[VL:u/ViNVaiv, Va:v/ViNVa:v].

(i1) The actions 2, 4, 5, 7, and 8 turn a set of equations into an equivalent
one. For o to be the mgu* of {V; :u = V5 :v} U E means according to our
definition that ¢ has to be of the form 7p, where

T:=[Vi:u/V1 NVa:v,Vaiu/Vy NVa:v].
But then o is also the mgu* of
WMusViNnVev,Vorva ViNVe:viUEV :u/ViNVa:v, Va:v/ViNVy:v).

Lemma 7 (Termination of the Unification* Algorithm) The unification*
algorithm terminates for each finite set of equations.

Proof. If rules 3 and 6 are applied, we are done. Otherwise, rule 7 can be
applied only once, because after application the side condition is no longer
fulfilled. In 9 it is presupposed that V; NV; is a proper subset of V,; this ensures
that an application of 9 really reduces the set of possible antecedents. Because
9 can be applied only a finite number of times, it can reintroduce a term V :u
only finitely often, therefore rule 8 can also be applied only finitely many times.
Rules 1, 5, and 6 are only applied once, and the number of possible applications
of rule 2 is finite as well, because terms contain only finitely many symbols.
Therefore all rules can be applied only finitely many times, and termination
follows.

Proposition 8 (Total Correctness of the Unification* Algorithm)
The unification* algorithm computes for each finite set of equations E a solved
set, that has the same mgu* as E in finitely many steps iff E is unifiable*.

Proof. The fact that the unification* algorithm preserves unifiability* and
that it terminates has been proven in Lemma 1 and Lemma 2, respectively. It
remains to be shown that the set of equations computed by the algorithm is a
solved set. In 7, 8, and 9, the left side of the equation is always substituted in
FE by the right side of the equation. If the left side is identical to the right side,
the equation is erased by rule 4. Therefore, no left side of an equation occurs
somewhere else.

3.2.2 The Resolution Method

Having defined labeled unification, it is straightforward to adapt the resolution
principle. The only thing we have to change is to make sure that variable
disjointness applies only to proper variables (elements of VAR). The function
VAR returns the set of proper variables, when applied to a set of clauses A

VAR(A) = {z € VAR | z occurs in A}. The resolution rule accomplishing
pronoun binding (res,) is defined as follows:

11

CU{_'Pla"'a_'Pn} DU{Ql”Qm}
(CUDm)o

(resp)

where o Q,...,Q,, are atomic
e 7 is a substitution such that
VAR(C U {-Py,...,~P,}) N (VAR(DU{Q1,...,Qm}))7 =10
e ¢ is the mgu* of {Py,...,P,, Qi7,...,Qpn7}

3.2.3 An Example

We will only give a very short, and therefore very simple example of a labeled
resolution derivation. We hope that it illustrates some of the aspects of labeled
resolution mentioned before.

Consider example (14) again, here repeated as (16), where (17) is the corre-
sponding semantic representation.

(16) Buk is a poet. For every man there is a woman who hates him.
= There is a woman who hates him.

(17) p(b) AVa(w(z) = Jy(w(y)ATu h(y, u)))
E 3z(w(z)A?v h(z,V))

Our proof algorithm prf consists of three steps:
1. annotate the conjunction of the premises and the negation of the conclu-
sion;
2. apply clause form transformation; and

3. apply the resolution rule until a contradiction can be derived, or no new
resolvents can be generated.

annotating (17):
annot((, p(b) A Vz(w(z) — Jy(w(y)ATu h(y, u))) A =3z(w(2)A?v h(z,V))) =
p(b) AVz(w(z) = Fy(w(y) A h(y, {b, 7} :u))) A =3z(w(2) A h(z,{b}:V)))

clause form transformation:

{p(®)}, {m (W)}, {-m(2), w(f)}, {-m(2), h(f, {b, 2} :w)}, {-w(z), =h(z, {b} : v)}

where the additional clause {m(h)} stems from the assumption that the domain
of men is nonempty.

resolution:

{p@®)} {mm)} {-m(@),w(f)} {-m(x),h(f,{b,x}:w)} {-w(2),-h(z{b}:v)}
T T
{-m(z), ~w(f)}

12

Actually, the only remarkable step in the derivation is resolving

{-m(z), h(f,{b,z}:u)} and {-w(z), ~h(z, {b}:V)}

with {-m(z),-w(f)} as the resolvent. Here, the two labeled pronoun vari-
ables can be identified, because the intersection of their accessible antecedents
is nonempty. The corresponding mgu* of

{-m(z), h(f,{b,z}:u), w(z),-h(z,{b}:v)}

iso:=[z/z,z/f,{bx}:u/{b}:V].

Note also, that although p(b) introduced the antecedent b, it is not used in the
derivation because all information that is necessary to derive the contradiction
is captured by the labels. This is the advantage of using labels; it allows us to
express non-local dependency relations in our framework, which is essential for
dealing with pronoun binding in dynamic semantics where a pronoun and its
antecedent can occur in different formulas.

3.2.4 Evaluation from a Linguistic Point of View

In general, it is of course not enough if one gives just the information that there
is a binding that allows to derive a conclusion, but one also wants to know
which binding. It is straightforward to augment our method in a way such
that it accomplishes this simply by memorizing the substitutions of pronoun
variables that occur during a derivation.

From a linguistic point of view, one is also interested in comparing different
bindings. If we force the proof procedure to backtrack every time it has found a
binding which allows to derive a contradiction, we can generate all possible bind-
ings. Probably some of the bindings are preferable to others by taking linguistic
heuristics for pronoun resolution into account, see for instance [GIW95, JK96],
but this is beyond the scope of the present paper.

3.3 Results

Before we prove completeness and soundness of our method, we have to explain
what these notions mean in our setting.

First, we need to explain the notion of dynamic consequence |=p. We cannot
possibly give full details here, and refer the reader to [Dek93, GS91]. Basically,
the dynamic meaning of a formula ¢ is a function from states to states, where a
state is a collection of assignment function. Then 4y, ...,%, =D ¢ means that
for every state s[¢1]o---o[¢n] C s[¢], where [x] is the dynamic meaning of x
and o denotes functional composition.

We say that T' |= ¢ iff there is a total disambiguation or binding function
0 : LPVAR — VAR such that I'6 |=p ¢4, where |=p is the dynamic entailment
relation. Our resolution method returns partial pronoun bindings, when applied
to AT A —p.

13

Theorem 9 (Soundness and Completeness) For every set of first-order for-
mulas the following hold:

1. If prf produces the empty clause on input ', then there is a disambiguation

6 of T such that T'§ is unsatisfiable.

2. If there is a disambiguation & of T' such that T'§ is unsatisfiable, then prf
produces the empty clause on input T'.

The proof of the soundness half of Theorem 9 can be reduced to the soundness
of standard resolution. As to completeness, this may be proved as follows.
Assume that for some disambiguation §, the (disambiguated) set of formulas I'§
is unsatisfiable. Then, by completeness of the standard resolution method, there
is a resolution proof of O from I'd. The idea, then, is to turn this proof into a
labeled resolution proof of O from the original set I' by repeating the resolution
steps and inserting the required substitutions (i.e., partial disambiguations) just
before any steps where they used in the original proof. Although the idea of
this proof is simple, the details are too cumbersome to be included here.

4 Related Work

Most work in the area of ambiguity and discourse semantics focuses on represen-
tational issues. Approaches that deal with pronoun binding are mostly trying
to bind pronouns by applying some heuristics. The work that is closest to ours
is the approach of Kohlhase and Konrad [KK98] who deal with pronoun binding
in the setting of natural language corrections by using higher-order unification,
and a higher-order tableaux method [Koh95] to reason about possible bindings.

5 Conclusion

In this paper we have presented a resolution calculus for reasoning with ambigui-
ties triggered by pronouns and the different ways to bind them. Deduction steps
and pronoun bindings are interleaved with the effect that only pronouns that
are used during a derivation are bound to a possible antecedent. Labels allow
us to capture relevant structural information of the original formula on a very
local level, namely by annotating variables. Therefore structural manipulation,
a prerequisite of any efficient proof method, does no harm.

Our ongoing work focuses on two aspects. First, we have to see how our reso-
lution method behaves when additional strategies to restrict the search space are
added; these include set-of-support strategy, ordered unification, or subsump-
tion checking. Second, we are in the process of implementing the annotation
and unification* algorithms and are trying to integrate them into a resolution
theorem prover.

14

References

[Dek93]

[GIW95]

[GSO1]
[Hei82]
[Jas97]

[JK96]

[Kam81]

[KK98]

[Koh95]

[KR93]
[Lei97]
[Lov78]

[MdR98]

[MMS82]
[Rob65]

[vD96]

[VEJ96]

P. Dekker. Transsentential Meditations. PhD thesis, University of Am-
sterdam, 1993.

B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for
modelling the local coherence of discourse. Computational Linguistics,
21(2), 1995.

J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Linguistics
and Philosophy, 14:39-100, 1991.

I. Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD
thesis, University of Massachusetts, Amherst, 1982.

J. Jaspars. Minimal logics for reasoning with ambiguous expressions.
CLAUS-Report 94, University of Saarbriicken, 1997.

J. Jaspars and M. Kameyama. Preferences in dynamic semantics. In
M. Stokhof and P. Dekker, editors, Proceedings of the 10th Amsterdam
Colloquium, pages 445-464. ILLC, Amsterdam, 1996.

H. Kamp. A theory of truth and semantic representation. In J. Groe-
nendijk et al., editor, Formal Methods in the Study of Language. Math-
ematical Centre, Amsterdam, 1981.

M. Kohlhase and K. Konrad. Higher-order automated theorem prov-
ing for natural language semantics. SEKI-Report SR-98-04, University
of Saarbriicken, 1998.

Michael Kohlhase. Higher-order tableaux. In P. Baumgartner et al.,
editor, Proceedings TABLEAUX’95, pages 294-309. Springer-Verlag,
New York, 1995.

H. Kamp and U. Reyle. From Discourse to Logic. Kluwer Academic
Publishers, 1993.

A. Leitsch. The Resolution Calculus. Texts in Theoretical Computer
Science. Springer-Verlag, 1997.

D. W. Loveland. Automated Theorem Proving: A Logical Bases.
North-Holland, Amsterdam, 1978.

C. Monz and M. de Rijke. A tableaux calculus for ambiguous quan-
tification. In H.C.M. de Swart, editor, Proceedings TABLEAUX’98,
LNALIL Springer-Verlag, Berlin, 1998.

A. Martelli and U. Montanari. An efficient unification algorithm.
ACM Trans. on Prog. Languages and Systems, 4:258-282, 1982.

J. A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

K. van Deemter. Towards a logic of ambiguous expressions. In S. Pe-
ters and K. van Deemter, editors, Semantic Ambiguity and Under-
specification. CSLI Lecture Notes, Stanford, Ca., 1996.

J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Re-
port CS-R9616, Centrum voor Wiskunde en Informatica, Amsterdam,
1996.

15

