
A Tableaux Calculus for Ambiguous
Quantification?

Christof Monz and Maarten de Rijke

ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam,
The Netherlands. E-mail: {christof, mdr}@wins.uva.nl

Abstract. Coping with ambiguity has recently received a lot of atten-
tion in natural language processing. Most work focuses on the semantic
representation of ambiguous expressions. In this paper we complement
this work in two ways. First, we provide an entailment relation for a
language with ambiguous expressions. Second, we give a sound and com-
plete tableaux calculus for reasoning with statements involving ambigu-
ous quantification. The calculus interleaves partial disambiguation steps
with steps in a traditional deductive process, so as to minimize and post-
pone branching in the proof process, and thereby increases its efficiency.

1 Introduction

Natural language expressions can be highly ambiguous, and this ambiguity may
have various faces. Well-known phenomena include lexical and syntactic ambi-
guities. In this paper we focus on representing and reasoning with a different
source of ambiguity, namely quantificational ambiguity, as exemplified in (1).

(1) a. Every man loves a woman.
b. Every boy doesn’t see a movie.

The different readings of (1.a) correspond to the two logical representations in

(2) a. ∀x (man(x)→ ∃y (woman(y) ∧ love(x, y))).
b. ∃y (woman(y) ∧ ∀x (man(x)→ love(x, y))).

We refer the reader to [KM93,DP96] for extensive discussions of these and other
examples of quantificational ambiguity. All we want to observe here is this. Ex-
amples like (1.a) have a preferred reading namely the wide-scope reading rep-
resented by (2.a)). Additional linguistic or non-linguistic information, or the
context, may overrule this preference. For instance, if (1.a) is followed by (3),
then the second reading (2.b) is preferred. But if (1.a) occurs in isolation, then
the first reading (2.a) is preferred.

(3) But she is already married.

? The research in this paper was supported by the Spinoza project ‘Logic in Action’
at the University of Amsterdam.

H. de Swart (Ed.): TABLEAUX’98, LNAI 1397, pp. 232−246, 1998.
 Springer-Verlag Berlin Heidelberg 1998

232

Clearly, if we want to process a discourse from left to right and take the con-
text of an expression into account, our semantic representation for (1.a) must
initially allow for both possibilities. And, similarly, any reasoning system for
ambiguous expressions needs to be able to integrate information that helps the
disambiguation process within the deductive process.

Although the problem of ambiguity and underspecification has recently en-
joyed a considerable increase in attention from computational linguists, computer
scientists and logicians (see, for instance, [DP96]), the focus has mostly been on
semantic aspects, and deductive reasoning with ambiguous sentences is still in
its infancy.

The aim of this paper is to present a tableaux calculus for reasoning with
expressions involving ambiguous quantification. An important feature of our
calculus is that it integrates two processes: disambiguation and deductive rea-
soning. The calculus operates on semantic representations of natural language
expressions. These representations contain both ambiguous and unambiguous
subparts, and an important feature of our representations is that they represent
all possible disambiguations of an ambiguous statement in such a way that un-
ambiguous subparts are shared as much as possible. As we will explain below,
compact representations of this kind will allow us to keep ambiguities ‘localized’
— a feature which has important advantages from the point of view of efficiency.

In setting up a deductive system for ambiguous quantification we have had
two principal desiderata. First, although this is not the topic of the present pa-
per, we aim to implement the calculus as part of a computational semantics
work bench; this essentially limits our options to resolution and tableaux based
calculi. Second, to incorporate information arising from the disambiguation pro-
cess within a proof system, the proofs themselves need to be incremental in the
sense that at any stage we have a ‘partial’ proof that can easily be extended to
cope with novel information. We believe that a tableaux style calculus has clear
advantages over resolution based systems in this respect.

The paper is organized as follows. A considerable amount of work goes into
setting up semantic representations and a mechanism for for recording ambigu-
ities and disambiguations in such a way that it interfaces rather smoothly with
traditional deductive proof steps. This work takes up Sections 2 and 3. Then,
in Section 4 we present two tableaux calculi, one which deals with fully disam-
biguated representations of ambiguous natural language expressions, and a more
interesting one in which traditional tableaux style deduction is interleaved with
partial disambiguation. Section 5 contains a detailed example, and Section 6
provides conclusions and suggestions for further work.

2 Representing Ambiguity

Lexical ambiguities can be represented pretty straightforwardly by putting the
different readings into a disjunction. (Cf. [Dee96,KR96] for further elaboration.)
It is also possible to express quantificational ambiguities by a disjunction, but
quite often this involves much more structure than in the case of lexical ambi-

233A Tableaux Calculus for Ambiguous Quantification

233

guities, because quantificational ambiguities are not tied to a particular atomic
expression. For instance, the only way to represent the ambiguity of (1.a) in a
disjunctive manner is (4).

(4) ∀x (man(x)→ ∃y (woman(y) ∧ love(x, y)))
∨ ∃y (woman(y) ∧ ∀x (man(x)→ love(x, y)))

Obviously, there seems to be some redundancy, because some subparts appear
twice. If we put indices at the corresponding subparts, as in (5) below, we see that
these subparts are not proper expressions of first-order logic, except subpart k.

(5) ∀x (man(x)→
i
∃y (woman(y)∧

j
love(x, y)

k
))

∨ ∃y (woman(y)∧
j
∀x (man(x)→

i
love(x, y)

k
))

The difference between the readings lies not in the material used, both readings
are built from the parts i, j and k, but in the order these are put together.

A reasonable way to represent improper expressions like i and k is to ab-
stract over those parts that are missing in order to yield a proper expression
of first-order logic. [Bos95] calls these missing parts holes. Roughly speaking,
they are variables over occurrences of first-order formulas. To distinguish the
occurrence of an expression from its logical content, it is necessary to supple-
ment first-order formulas with labels. Holes may be subject to constraints; for
instance, the semantic representations of verbs have to be in the scope of its
arguments, because otherwise it may happen that the resulting disambigua-
tions contain free variables. So we do not want to permit disambiguations like
∀x (man(x)→ love(x, y) ∧ ∃y (woman(y))). These constraints are expressed by
a partial order on the labels.

Definition 1 (Underspecified Representation). For i ∈ IN, let hi a new
atomic symbol, called a hole. A formula ϕ is an h-formula, or a formula possibly
containing holes, if it is built up from holes and atomic formulas from first-order
logic using the familiar boolean connectives and quantifiers.

Next, we specify the format of an underspecified representation UR of a nat-
ural language expression. An underspecified representation is a quadruple 〈LHF ,
L, H, C〉 consisting of

1. A set of labeled h-formulas LHF .
2. The set of labels L occurring in LHF.
3. The set of holes H occurring in LHF.
4. A set of order-constraints C of the form k ≤ k′, meaning that k has to be a

subexpression of k′, where k, k′ ∈ L ∪ H and C is closed under reflexivity,
antisymmetry and transitivity.

An obvious question at this point is, how does one associate a UR with a given
natural language expression? We will not address this issue here, but we will
assume that there exists some mechanism for arriving at UR’s, see for example
[Kön94]. For notational convenience we write UR(S) for the underspecified rep-
resentation, associated with a sentence S. By way of example, we reconsider (4)
and obtain the following underspecified representation:

234 C. Monz and M. de Rijke

234

(6) 〈{l0 : h0, l1 : ∀x (man(x)→ h1), l2 : ∃y (woman(y) ∧ h2), l3 : love(x, y)},
{l0, l1, l2, l3},
{h0, h1, h2, h3}〉,
closure({l1 ≤ h0, l2 ≤ h0, l3 ≤ h1, l3 ≤ h2})

There are two possible sets of instantiations, ι1 and ι2, of the holes h0, h1, h2,
h3 in (6) which obey the constraints in (6): ι1 = {h0 := l1, h1 := l2, h2 := l3}
and ι2 = {h0 := l2, h2 := l1, h1 := l3}.
It is also possible to view UR’s as upper semi-lattices, as it is done in [Rey93]:

l0 : h0

l1 : ∀x(man(x)→ h1) l2 : ∃y(woman(y)∧ h2)

l3 : love(x, y)

For each instantiation of the holes there is a corresponding substitution σ(ι)
which is like ι but h := ϕ ∈ σ(ι) iff there is a l, such that l : ϕ ∈ LHF and
h := l ∈ ι.

The next step is to define an extension of the language of first-order logic, L,
in which both standard (unambiguous) expressions occur side by side with the
above underspecified representations. The resulting language of the language of
underspecified logic, or Lu for short, is the language in which we will perform
deduction.

Definition 2 (Underspecified Logic). A formula ϕ is a formula of our un-
derspecified logic Lu, or a u-formula, that is, a formula possibly containing un-
derspecified representations, if it is built up from underspecified representations
and the usual atomic formulas from standard first-order logic using the familiar
boolean connectives and quantifiers.

Example 1. As an example of a more complex u-formula consider the semantic
representation of if every boy didn’t sleep and John is a boy, then John didn’t
sleep.

(


l0 : h0

l1 : ¬ h1 l2 : ∀x (boy(x)→ h2)

l3 : sleep(x)

 ∧ boy(j))→ ¬sleep(j)

Definition 3 (Total Disambiguations). To define the total disambiguation
δ(ϕ) of a u-formula ϕ, we need the following notion of a join.

Given an underspecified representation 〈LHF , L, H, C〉 and k, k′, k′′ ∈ L∪H
and k′′ ≤ k, k′ ∈ C then k′′ is the join of k and k′, k t k′ = k′′, only if there is
no k′′′ ∈ L ∪H and k′′′ ≤ k, k′ ∈ C and k′′′ > k′′ ∈ C.

Then, by δ(ϕ) we denote the set of total disambiguations of the u-formula ϕ,
where for all d ∈ δ(ϕ), d ∈ L. For complex u-formulas δ is defined recursively:

235A Tableaux Calculus for Ambiguous Quantification

235

1. δ(〈LHF ,L,H ,C 〉) = the set of LHFσ(ι) such that
(i) ι is an instantiation and σ(ι) is the corresponding substitution

(ii) Hι = L
(iii) for all l, l′ ∈ L, if l t l′ is defined, then l ≤ l′ ∈ closure(Cι) or l′ ≤ l ∈

closure(Cι)
2. δ(¬ϕ) = { ¬d | d ∈ δ(ϕ) }
3. δ(ϕ ◦ ψ) = { d ◦ d′ | d ∈ δ(ϕ), d′ ∈ δ(ψ) }, where ◦ ∈ {∧,∨,→}
4. δ(Qxϕ) = { Qxd | d ∈ δ(ϕ) }, where and Q ∈ {∀, ∃}.

If l ≤ l′ 6∈ C and l′ ≤ l 6∈ C, then it does not have to be case that there is
a scope ambiguity between quantifiers belonging to l and l′. For instance, if l
and l′ belong to different conjuncts, they are not ordered to each other. The
restriction that l t l′ has to be defined excludes this.

Example 2. To illustrate the purpose of this restriction see the underspecified
representation for every man who doesn’t have a car rides a bike

l0 : h0

l1 : ∀x((man(x) ∧ h1)→ h2) l2 : ∃y(car(y) ∧ h3) l3 : ∃z(bike(z)∧ h4)

l4 : ¬h5

l5 : have(x, y) l6 : ride(x, z)

Although l3 and l4 are not related to each other, it cannot happen that l3 is in
the scope of l4, because the negation must be a subformula of the antecedent of
l1, whereas l3 might have scope over l1 as a whole or might be in the scope of
the succedent of l1. More generally, this is due to the fact that l3 and l4 do not
have to share a subformula, i.e., l3 t l4 is not defined.

3 Semantics of Underspecified Formulas

In the previous section we introduced a formalism that allows for a compact
semantic representation of ambiguous expressions. Now we want to see what
the validity conditions of these underspecified representations are, and how they
interact with the classical logical connectives.

If an ambiguous sentence S with δ(UR(S)) = {d1, d2} is uttered, and we
want to check, whether S is valid, we simply have to see whether all of its
disambiguations are valid. That is, it must be the case that |= d1 and |= d2. If,
on the other hand, an ambiguous sentence S with δ(UR(S)) = {d1, d2} is claimed
to be false, things are different. Here it is not sufficient that either 6|= d1 or 6|= d2;
one has to be sure that all disambiguations are false, i.e., 6|= d1 and 6|= d2. To
model this distribution of falsity, van Eijck and Jaspars [EJ96] use the notions
of a countermodel and a falsification relation =|. Roughly, if only unambiguous
expressions appear as premises or consequences =| corresponds to 6|=, but if at
least one underspecified expression appears as premise or consequence, we have
to define the (counter-) consequence relation appropriately.

236 C. Monz and M. de Rijke

236

Definition 4. We define the underspecified consequence relation |=u and un-
derspecified falsification relation =|u for Lu and an arbitrary model M .

1. M |=u ϕ iff M |= ϕ, if ϕ is an unambiguous expression.
M =|u ϕ iff M 6|= ϕ, if ϕ is an unambiguous expression.

2. M |=uUR iff M |= d, for all d ∈ δ(UR).
M =|uUR iff M 6|= d, for all d ∈ δ(UR).

3. M |=u ¬ϕ iff M =|u ϕ
M =|u ¬ϕ iff M |=u ϕ

4. M |=u ϕ ∧ ψ iff M |=u ϕ and M |=u ψ
M =|u ϕ ∧ ψ iff M =|u ϕ or M =|u ψ

5. M |=u ϕ ∨ ψ iff M |=u ϕ or M |=u ψ
M =|u ϕ ∨ ψ iff M =|u ϕ and M =|u ψ

6. M |=u ϕ→ ψ iff M =|u ϕ or M |=u ψ
M =|u ϕ→ ψ iff M |=u ϕ and M =|u ψ

7. M |=u ∀xϕ iff M |=u ϕ[a], for all a ∈ D(M).
M =|u ∀xϕ iff M =|u ϕ[a], for some a ∈ D(M).

8. M |=u ∃xϕ iff M |=u ϕ[a], for some a ∈ D(M).
M =|u ∃xϕ iff M =|u ϕ[a], for all a ∈ D(M).

Example 3. We now give an example demonstrating the convenience of having
the falsification relation.

In our setting of ambiguous expressions, some familiar classical tautologies
are no longer valid. For instance, if A is ambiguous and B unambiguous we do
not want (A∧B)→ A because the two occurrences of A may be disambiguated
in different ways. For instance, if δ(A) = {d1, d2}, then |=u (A ∧ B) → A iff
|=u (d1 ∧B)→ d1, |=u (d1 ∧B)→ d2, |=u (d2 ∧B)→ d1 and |=u (d2 ∧B)→ d2.
If we were to model falsity by 6|=, applying the definitions would yield:

|=u (A ∧B)→ A iff 6|=u A ∧B or |=u A

iff 6|=u A or 6|= B or |=u A

iff 6|= d1 or 6|= d2 or 6|= B or (|= d1 and |= d2).

The latter is classically valid, and it would therefore make the classical tautology
valid. On the other hand, if we model falsity by =|u we manage to avoid this, as
=|u distributes over disambiguations of A, whereas 6|= does not:

|=u (A ∧B)→ A iff =|u A ∧B or |=u A

iff =|u A or =| B or |=u A

iff (6|= d1 and 6|= d2) or =| B or (|= d1 and |= d2).

Definition 5. Let ϕ1, . . . , ϕn, ψ be Lu-formulas, possibly containing underspec-
ified representations. We define relation of underspecified consequence |=u as
follows:

ϕ1, . . . , ϕn |=u ψ iff

for all d1 ∈ δ(ϕ1), . . . , dn ∈ δ(ϕn)

and for all d′ ∈ δ(ψ) it holds that

d1, . . . , dn |= d′.

237A Tableaux Calculus for Ambiguous Quantification

237

The underlying intuition is that if someone utters a statement of the form if
S then S′, where S and S′ are ambiguous sentences with δ(UR(S)) = {d1, d2},
δ(UR(S′)) = {d′1, d′2}, then we do not know exactly what the speaker had in
mind by uttering this. So to be sure that this was a valid utterance, one has to
check whether it is valid for every possible combination of disambiguations, i.e.,
whether each of d1 |= d′1, d1 |= d′2, d2 |= d′1, and d2 |= d′2 is a valid classical
consequence.

Unfortunately, this definition of entailment is not a conservative extension
of classical logic. Even the reflexivity principle A |= A fails. For instance, if we
take δ(UR(S)) = {d1, d2}, then UR(S) |=u UR(S) iff d1 |= d1, d1 |= d2, d2 |= d1,
and d2 |= d2, i.e. iff |= d1 ↔ d2. As we will show below, this has some clear
consequences for our calculus, especially the closure conditions. We refer the
reader to [Dee96,Jas97] for alternative definitions of the ambiguous entailment
relation.

4 An Underspecified Tableaux Calculus

The differentiation between consequence and falsification can be nicely modeled
in a labeled tableaux calculus, where the nodes in the tableaux tree are of the
form T : ϕ or F : ϕ, meaning that we want to construct a model or countermodel
for ϕ, respectively. Tableaux calculi are especially well suited, because the notion
of a countermodel is implicit in the notion of an open tableaux tree, where one
constructs a countermodel for a formula.

But what does it mean, if we not only allow first-order formulas to appear in
a tableaux proof but as also u-formulas? According to the semantic definitions in
Section 3, a proof for a u-formula is simply a proof for each of its disambiguations
(in a classical tableaux calculus TC). In the following two subsections we first
introduce a calculus TCu which integrates the mechanism of disambiguation in
its deduction rules, and thereby allows one to postpone the disambiguation until
it is really needed. TCu nicely shows how ambiguity and branching of tableaux
trees correspond to each other. But TCu still makes no use of the compact repre-
sentation of underspecified representations, introduced in Section 2. Therefore,
we give a modified version of TCu, called TCup, which also allows us to reason
within an underspecified representation.

Our tableaux calculi are based on the labeled free-variable tableaux calculus,
see for instance [Fit96] for a general introduction to tableaux calculi.

4.1 Reasoning with Total Disambiguations

The definitions of the logical connectives in section 3 allow us to treat logical
connectives occurring in u-formulas in the same way as in a tableaux calculus
for classical logic TC, as long as they do not occur inside of a UR. Here it is
necessary to disambiguate the UR first, and then apply the rules in the normal
way.

238 C. Monz and M. de Rijke

238

Example 4. If we try to deduce (A ∧ B) → A, with δ(A) = {d1, d2} and B
unambiguous, we have to prove each of `TC (d1 ∧ B) → d1, `TC (d1 ∧ B) → d2,
`TC (d2 ∧ B) → d1 and `TC (d2 ∧ B) → d2. This leads to the following classical
labeled tableaux proof trees.

(a)
F : (d1 ∧B)→ d1

T : d1 ∧B

F : d1

T : d1

T : B

(b)
F : (d1 ∧B)→ d2

T : d1 ∧B

F : d2

T : d1

T : B

(c)
F : (d2 ∧ B)→ d1

T : d2 ∧ B

F : d1

T : d2

T : B

(d)
F : (d2 ∧B)→ d2

T : d2 ∧B

F : d2

T : d2

T : B

At least structurally, the above proof trees are the same. It does not matter
whether they contain underspecified representations. This suggests a natural
strategy: to postpone disambiguation and merge those parts of the trees that
are similar.

(1) F : (A ∧B)→ A

(2) T : A ∧B

(3) F : A

(4) T : A

(5) T : B

(6) F : d1 (7) F : d2

(8) T : d1 (9) T : d2 (10) T : d1 (11) T : d2

This is a much more compact representation. Again, since A is ambiguous, (3)
and (4) do not allow one to close the branch, because reflexivity is not a valid
principle in our ambiguous setting.

The deduction rules for our underspecified tableaux calculus for totally dis-
ambiguated expressions TCu are given in Table 1. Besides the last two rules
(Tu :UR) and (Fu :UR), all rules are stated in a standard way and need no
further explanation. The purpose of the last two rules is to disambiguate UR’s
and to start a new branch for each of its disambiguations. This implements the
idea of postponing disambiguation, because disambiguation applies now only to
UR’s and not to any u-formula.

Theorem 1. Let ϕ ∈ Lu. Then `TCu ϕ iff `TC d, for all d ∈ δ(ϕ).

Corollary 1. Let ϕ ∈ Lu. Then `TCu ϕ iff |=u ϕ.

239A Tableaux Calculus for Ambiguous Quantification

239

Table 1. Deduction rules of the underspecified tableaux calculus TCu

Tu : ϕ ∧ ψ
Tu : ϕ
Tu : ψ

(Tu : ∧) Fu : ϕ ∧ ψ
Fu : ϕ Fu : ψ

(Fu : ∧)

Tu : ϕ ∨ ψ
Tu : ϕ Tu : ψ

(Tu : ∨)
Fu : ϕ ∨ ψ
Fu : ϕ
Fu : ψ

(Fu : ∨)

Tu : ϕ→ ψ

Fu : ϕ Tu : ψ
(Tu :→)

Fu : ϕ→ ψ

Tu : ϕ
Fu : ψ

(Fu :→)

Tu : ¬ϕ
Fu : ϕ

(Tu : ¬)
Fu : ¬ϕ
Tu : ϕ

(Fu : ¬)

Tu : ∀xϕ
Tu : ϕ[x/X]

(Tu : ∀) Fu : ∀xϕ
Fu : ϕ[x/f(X1, . . . , Xn)]

(Fu : ∀)†

Tu : ∃xϕ
Tu : ϕ[x/f(X1, . . . , Xn)]

(Tu : ∃)†
Fu : ∃xϕ

Fu : ϕ[x/X]
(Fu : ∃)

Tu :UR

Tu : d1 . . . Tu : dn
(Tu :UR)‡

Fu :UR

Fu : d1 . . . Fu : dn
(Fu :UR)‡

†Where X1, . . . , Xn are the free variables in ϕ.
‡Where d1, . . . , dn ∈ δ(UR).

4.2 Reasoning with Partial Disambiguations

From a computational point of view (Tu : UR) and (Fu : UR) are not optimal,
since they cause a lot of branchings of the tableaux tree. Also, total disam-
biguation is not the appropriate means for underspecified reasoning, because
the advantage of the compact representation, namely avoiding redundancy, gets
lost. So TCu is appropriate for dealing with formulas containing UR’s but not
for reasoning inside the UR’s themselves.

Sometimes it is not necessary to compute all disambiguations, because there
exists a strongest (weakest) partial disambiguation. If such a strongest (weakest)
disambiguation does exist, it suffices to verify (falsify) this one, because it entails
(is entailed by) all other disambiguations. But what are the circumstances under
which a strongest (weakest) disambiguation exists?

Before we can determine a strongest (weakest) reading, we have to resolve
the relative position of negative contexts and quantifiers. To this end we define
positive and negative contexts (see also [TS96]).

240 C. Monz and M. de Rijke

240

Definition 6. A u-formula ϕ is a positive context for a subformula ξ of ϕ,
notation: con+(ϕ, ξ), iff

ϕ ::= ξ | ψ ∧ χ[ξ] | χ[ξ] ∧ ψ | ψ ∨ χ[ξ] | χ[ξ] ∨ ψ | ψ → χ[ξ] | ∀xχ[ξ] | ∃xχ[ξ]

where ξ occurs in χ and con+(χ, ξ) holds, or ϕ ::= ¬χ[ξ] | χ[ξ] → ψ, where ξ
occurs in χ and con−(χ, ξ) holds.

A u-formula ϕ is a negative context for a subformula ξ of ϕ, con−(ϕ, ξ), iff

ϕ ::= ψ ∧ χ[ξ] | χ[ξ] ∧ ψ | ψ ∨ χ[ξ] | χ[ξ] ∨ ψ | ψ → χ[ξ] | ∀xχ[ξ] | ∃xχ[ξ],

where ξ occurs in χ and con−(χ, ξ) holds, or ϕ ::= ¬χ[ξ] | χ[ξ] → ψ, where ξ
occurs in χ and con+(χ, ξ) holds.

To apply the tableaux rules to a formula ψ it is necessary to know whether ψ
occurs positively in a superformula ϕ — then we have to apply a T -rule —, or
negatively — then we have to apply an F -rule. In an underspecified representa-
tion it may happen that a formula occurs positively in one disambiguation and
negatively in another. We call formulas of this kind indefinite, and in this case
we cannot apply a tableaux rule.

Definition 7. Given an underspecified representation 〈LHF , C, L, H〉, a la-
beled h-formula l : ϕ[h] ∈ LHF is definite if for every l′ : ψ[h′] ∈ LHF , such
that con−(ψ, h′) holds and h t h′ defined, then it holds that l ≤ h′ ∈ C or
l′ ≤ h ∈ C. It is called indefinite otherwise.

Why do we consider definite formulas? Intuitively, we need to know which
quantifier we are actually dealing with when we are trying to find a strongest
(weakest) reading. Formulas can be made more definite by using the rules for
partial negation resolution given in Table 2. Roughly, we obtain more definite
h-formulas within a given underspecified representation by adding further con-
straints which let indefinite h-formulas become definite by using one of the rules
of partial negation resolution as specified in Table 2, which are generalizations of
the method of partial disambiguation in [KR96]. These rules reduce the number
of indefinite h-formulas occurring in an underspecified representation by creat-
ing partial disambiguations in which the indefinite h-formula has scope over (or
is in the scope of one of) the h-formulas inducing the indefiniteness; in Table 2
this is lm : ϕm[hn], where con−(ϕm, hn) holds and hk thn is defined. Solid lines
between two labels or holes, k, k′, indicate immediate scope relation, dashed
lines are the transitive closure of solid lines. For instance, let ϕj = ∀x(ϕ) and
ϕm = ¬hn, we do not know, whether ∀x binds x universally or existentially,
because it can appear above or under the negation. Applying (Tu : π) yields the
two possible cases, namely ∀x(ϕ) occurring above (left branch) or under (right
branch) the negation.

To put it differently, suppose that lm : ϕm[hn] is the only h-formula, which
causes indefiniteness of lj : ϕj in an application of (Tu : π), then the rule for
left partial disambiguation labels lj : ϕj with Tu, because now it has scope over

241A Tableaux Calculus for Ambiguous Quantification

241

Table 2. Tableaux rules for partial negation resolution

Tu :hi

lj : ϕj[hk] . . . ll: ϕl

lm: ϕm[hn]

Tu :hi

lj : ϕj [hk] . . . ll: ϕl

lm: ϕm[hn]

Tu :hi

. . . ll: ϕl

lm: ϕm[hn]

lj : ϕj [hk]

(Tu : π)

Fu :hi

lj : ϕj [hk] . . . ll: ϕl

lm: ϕm[hn]

Fu :hi

lj : ϕj[hk] . . . ll: ϕl

lm: ϕm[hn]

Fu :hi

. . . ll: ϕl

lm: ϕm[hn]

lj : ϕj [hk]

(Fu : π)

the negative context, and the rule for right partial disambiguation labels lj : ϕj
with Fu, because it is in the scope of the negative context.

Our complete set of deduction rules for underspecified representations is given
by combining Tables 2 and 3. This set defines our tableaux calculus, TCup.

Observe that there are three sets of rules in Table 3. The first set deals
with ordinary logical connectives only. The second group are so-called interface
rules; roughly speaking, they control the flow of information between traditional
tableaux reasoning and disambiguation. Reasoning within an underspecified rep-
resentation starts at its top-hole and compares all its daughters, i.e., those for-
mulas that appear immediately in its scope. A similar interface is needed for
h-formulas. The logical connectives in complex h-formulas are also treated with
the T/F-rules, but for treating holes we need to know what material goes into
them. For holes having only one daughter, it is possible to apply the normal
tableaux rules to this daughter, see (Tu : ↑) and (Fu : ↑).

As to the rules in the third group, these are designed to partially construct
the weakest or strongest readings of u-formulas, respectively. Both (Tu : ∀) and
(Fu : ∃) presuppose that lj : ∃xϕ[hl] or lj : ∀xϕ[hl] occurs definite, otherwise we

242 C. Monz and M. de Rijke

242

Table 3. Set of deduction and interface rules of TCup

T : ϕ ∧ ψ
T : ϕ
T : ψ

(T : ∧) F : ϕ ∧ ψ
F : ϕ F : ψ

(F : ∧)

T : ϕ ∨ ψ
T : ϕ T : ψ

(T : ∨)
F : ϕ ∨ ψ
F : ϕ
F : ψ

(F : ∨)

T : ϕ→ ψ

F : ϕ T : ψ
(T :→)

F : ϕ→ ψ

T : ϕ
F : ψ

(F :→)

T : ¬ϕ
F : ϕ

(T : ¬)
F : ¬ϕ
T : ϕ

(F : ¬)

T : ∀xϕ
T : ϕ[x/X]

(T : ∀) F : ∀xϕ
F : ϕ[x/f(X1, . . . , Xn)]

(F : ∀)†

T : ∃xϕ
T : ϕ[x/f(X1, . . . , Xn)]

(T : ∃)†
F : ∃xϕ

F : ϕ[x/X]
(F : ∃)

T :UR

Tu :h0

li: ϕi . . . ln: ϕn

(T : UR)
F :UR

Fu :h0

li: ϕi . . . ln: ϕn

(F : UR)

T : hi

Tu :hi

li: ϕi . . . ln: ϕn

(T : h)
F : hi

Fu :hi

li: ϕi . . . ln: ϕn

(F : h)

Tu :hi

lj: ϕ

T : ϕ
(Tu : ↑)

Fu :hi

lj : ϕ

F : ϕ
(Fu : ↑)

Tu :hi

lj: ∀xϕ[hl] lk: Qyψ . . . ln: ϕn

Tu :hi

lj: ∀xϕ[hl] . . . ln: ϕn

lk: Qyψ

(Tu : ∀)‡

Fu :hi

lj: ∃xϕ[hl] lk: Qyψ . . . ln: ϕn

Fu :hi

lj: ∃xϕ[hl] . . . ln: ϕn

lk: Qyψ

(Fu : ∃)‡

†Where X1, . . . , Xn are the free variables in ϕ.
‡Where Q ∈ {∀, ∃}, lj is definite, and ∀xϕ[h] and ∃xϕ[h] are special (see below).

243A Tableaux Calculus for Ambiguous Quantification

243

would not be able to tell what the quantificational force of lj : ∃xϕ or lj : ∀xϕ
is. So, before applying the rules it may be necessary to apply partial negation
resolution as presented in Table 2 first so as to make lj : ∀xϕ[hl] definite. There is
an important restriction on the applicability of the rules (Tu : ∀) and (Fu : ∃): to
guarantee soundness of the rules, the formulas ∀xϕ[h] and ∃xφ[h] in lj should be
special. Here ∀xϕ[h] is special if it is of the form ∀x (χ1 → h) or ∀x (χ1∧h→ χ2),
while ∃xϕ[h] is special if it is of the form ∃x (χ1 ∧ h).

To conclude this section, we briefly turn to soundness and completeness.
First, now that our tableaux may have different kinds of labelings (there are
T/F -nodes and Tu/Fu-nodes), we need to specify what it means for a tableaux
to close. We say that a branch b closes if there are two nodes T : ϕ and F : ψ
belonging to b, such that ϕ and ψ are atomic formulas of L and ϕ and ψ are
unifiable. In particular, it is not possible to close a tableau with two nodes T : ϕ
and F : ψ containing holes or underspecified representations.

Next, what do soundness and completeness mean in our ambiguous setting?
Sound and complete with respect to which semantics or system? We have opted
to state soundness and completeness with respect to tableaux provability of all
total disambiguations.

Theorem 2 (Soundness and Completeness). Let ϕ ∈ Lu. Then `TCup ϕ
if, and only if, for all d ∈ δ(ϕ) T̀C d

Proof (Sketch). The soundness part (‘only if’) boils down to a proof that the
Tu/Fu rules do not introduce any information that would not have been available
by totally disambiguating first. The restrictions on the rules (Tu : ∀) and (Fu : ∃)
that were discussed above allow us to establish this.

Proving completeness (‘if’) is in some way easier: any open branch in a (com-
pletely developed) tableau for TCup corresponds to a (completely developed)
open branch in a tableau proof for TCu. See [MR98] for the details.

5 An Example

Consider the sentence every boy doesn’t see a movie appearing as a premise in a
tableau. Because displaying derivations in our calculus is very space-consuming,
we can only give the beginning of one of its branches, which is given in Fig-
ure 1. Each box corresponds to a node in a tableau tree. Because in (1) l1 :
∀x (boy(x) → h1) occurs indefinite, it is necessary to apply partial negation
resolution first. The total disambiguation of the left branching would be

{∀x (boy(x)→ ∃y (movie(y) ∧ ¬see(x, y))),

∀x (boy(x)→ ¬∃y (movie(y) ∧ see(x, y))),

∃y (movie(y) ∧ ∀x (boy(x)→ ¬see(x, y)))},

That is, formulas in which the universal quantifier has scope over the nega-
tion, disregarding the existential quantifier. Now (Tu : ∀) is applicable and the
universal quantifier is given wide scope in (4), corresponding to the readings

244 C. Monz and M. de Rijke

245A Tableaux Calculus for Ambiguous Quantification

245

∀x (boy(x) → ∃y(movie(y) ∧ ¬see(x, y))) and ∀x (boy(x) → ¬∃y (movie(y) ∧
see(x, y))). Because h0 has only one daughter, the normal tableaux rules for
logical connectives can be applied to it. So we instantiate x with a free variable
X and apply (T :→), which causes a branching of the proof tree, where (7) is a
non-ambiguous literal with which we can try to close a tableaux branch. In (8)
h1 is the top-node to which the underspecified tableaux rules can be applied.

6 Conclusion

In this paper we have presented a tableaux calculus for reasoning with ambigu-
ous quantification. We have set up a representation formalism that allows for a
smooth interleaving of traditional deduction steps with disambiguation steps.

Our ongoing work focuses on two aspects. First, we are adding rules for coping
with additional forms of ambiguity to the calculus, such as ambiguity of binary
connectives. Second, we are in the process of implementing the calculus TCup;
as part of this work new and interesting theoretical issues arise, such as ‘proof
optimization’: for reasons of efficiency it pays to postpone disambiguations as
long as possible, but to be able to apply some of the rules expressions need to
be definite and for this reason early disambiguation may be required. What is
the best way of reconciling these two demands?

References

[Bos95] J. Bos. Predicate logic unplugged. In P. Dekker and M. Stokhof, editors, Proc.
10th Amsterdam Colloquium. ILLC, University of Amsterdam, 1995.

[Dee96] K. van Deemter. Towards a logic of ambiguous expressions. In Peters and
Deemter [DP96].

[DP96] K. van Deemter and S. Peters, editors. Semantic Ambiguity and Underspeci-
fication. CSLI Publications, 1996.

[EJ96] J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Report
CS-R9616, Centrum voor Wiskunde en Informatica, Amsterdam, 1996.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag New York, 2nd edition, 1996.

[Jas97] J. Jaspars. Minimal logics for reasoning with ambiguous expressions. CLAUS-
Report 94, University of Saarbrücken, 1997.

[KM93] H. S. Kurtzman and M. C. MacDonald. Resolution of quantifier scope ambi-
guities. Cognition, 48:243–279, 1993.

[Kön94] E. König. A study in grammar design. Arbeitspapier des Sonderforschungs-
bereich 340 no. 54, Institut für Maschinelle Sprachverarbeitung, 1994.

[KR96] E. König and U. Reyle. A general reasoning scheme for underspecified repre-
sentations. In H.-J. Ohlbach and U. Reyle, editors, Logic and Its Applications.
Festschrift for Dov Gabbay. Kluwer Academic Publishers, 1996.

[MR98] C. Monz and M. de Rijke. Reasoning with ambiguous expressions. Unpublished
manuscript, 1998.

[Rey93] U. Reyle. Dealing with ambiguities by underspecification: Construction, rep-
resentation, and deduction. Journal of Semantics, 10(2):123–179, 1993.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Uni-
versity Press, 1996.

246 C. Monz and M. de Rijke

	Introduction
	Representing Ambiguity
	Semantics of Underspecified Formulas
	An Underspecified Tableaux Calculus
	Reasoning with Total Disambiguations
	Reasibubg with Partial Disambiguations

	An Example
	Conclusion

