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1
Introduction

A primary objective of every service provider system is to fulfill its users’ needs [57,
140]. Irrespective of the nature of the service, encompassing domains such as media,
entertainment, products, or information, user satisfaction remains a key considera-
tion [22, 33, 60, 132]. While the goal of satisfying users is the same across different
domains and services, a universal solution that disregards domain-specific characteristics
often proves suboptimal [124]. As an example, consider the difference between grocery
shopping and home appliance shopping. While both fall under the retail category, the
differences in user behavior between the two are significant: it is safe to assume that
supermarket customers would repurchase the same set of items in short periods of times,
say, on a weekly basis [12]. However, this assumption does not hold true for items
with a longer life time, such as washing machines or electric kettles [149]. The same
situation extends to other seemingly similar services: music and movie streaming, both
belonging to the media sector. Listening to the same song over and over again is a
typical pattern [121], whereas it is not as common for users to re-watch the same movie
multiple times [6]. Consequently, it is important to take domain-specific characteristics
into account when designing solutions to improve user satisfaction.

Different means are helpful in ensuring users have a positive experience with a given
system. Recommendation is one: a successful recommender system helps users find
what they need faster and discover relevant items offered by the provider [73, 152, 169].
Accurate demand forecasting is another, which guarantees timely availability of such
items for users [11]. One of the main sources of data to facilitate both tasks is user
interactions with the system [52]. On the one hand, analyzing interaction data from a
user level perspective helps to understand users better, which is crucial for providing
attractive personalized recommendation [100, 141]. On the other hand, studying data
from an item level to see how they have been consumed in the past is an important
signal for predicting the demand in the future [36, 162].

In this thesis, we investigate how to learn from domain-specific user interaction
data and thus improve the user experience with service provider systems. We focus on
recommendation as our main task, and retail as our main domain — hence the thesis
title. To diversify and to analyze whether our methodology and findings generalize to
other tasks and domains, we explore the finance domain and the demand forecasting
task as additional directions.

There is an extensive and growing body of research on understanding and analyzing

1



1. Introduction

user interaction data across various fields, including banking, web search, mobile
search, emails, and software suites [5, 26, 153, 156]. Furthermore, the volume of
research in retail and e-commerce domains is significant, particularly focusing on single-
channel retail setups, where the data comes either from online clicks, or offline in-store
transactions [32, 60, 77, 100, 141, 151, 159, 162, 170]. It is worth noting that in many
cases, these studies have not had a direct impact on shaping the design of subsequent
models. In fact, many state-of-the-art models are designed to be domain-agnostic, and
their performance tends to be less impressive compared to models specifically tailored
to a particular domain [11, 13, 16]. Our goal is to address these limitations by taking a
two-pronged approach. Firstly, we aim to understand and learn from user interactions
in a multi-channel retail setting, where interaction data comes from both digital (i.e.,
online) and in-store (i.e., offline) shopping. Secondly, we intend to explicitly incorporate
the insights gained from domain-specific studies of user behavior into the design of
models for downstream tasks. This approach seeks to enhance the effectiveness and
applicability of our models in their respective domains.

With the rise of e-commerce in recent years, retailers with physical stores feel the
need to provide the opportunity of online shopping for their customers in addition to
in-store shopping [55]. The online channel is not used solely for shopping; customers
may use it as a means to explore the product inventory and check products before
shopping offline [31, 68]. The introduction of an online sales channel does not result in
the isolation of the offline retail channel. Instead, it creates a multi-channel shopping
experience for customers in retail sectors like grocery, cosmetics, and apparel [8, 69].
While these channels can operate with different strategies, for example in marketing and
communication with customers, treating them separately as distinct units has downsides
from both customer and business points of view. Such an approach adds friction
for customers who seek a seamless shopping experience across channels and leads to
operational inefficiencies in supply chain and replenishment for the business [2, 69, 106].

To avoid these drawbacks, we focus on gaining a holistic view of multi-channel
retail in the first part of this thesis. We first study demand forecasting in multi-channel
retail, and we further provide a comprehensive understanding of user behavior in
this setting, with insights that can inform the design of user-oriented recommender
systems [151]. We continue on this route in the second part of this thesis, and focus on
gaining actionable insights from user behavior understanding that are then used by our
proposed recommender algorithms.

As part our journey in this thesis, we take a step back from the retail domain, and
tap into the finance domain. For users of financial information systems, timely access to
the right information is crucial [21, 53]. However, our understanding about how users
interact with financial information systems is limited, where existing literature mostly
addresses the stock recommendation task [30, 34, 164]. We take a first step to fill this gap
by analyzing a large-scale log data from user interactions with a financial information
system, and by designing recommender systems for financial documents. Next, we
focus on retail, in particular grocery shopping. In retail, recommendation systems help
users to find the items that they need from large inventories. Grocery shopping has two
main characteristics that make it distinct from other retail domains: 1) users shop for
items repeatedly and on a regular basis, and 2) grocery items have a short life time and
are repurchased frequently by the same user [97]. As a result, historical purchases of

2



1.1. Research Outline and Questions

users offer strong signals for recommending relevant items for their future purchases.
We study the repeat consumption behavior and design recommender systems that are
able to explicitly model users personal preferences, as indicated by their history.

1.1 Research Outline and Questions

Each chapter in this thesis is organized around one or more of the following research
themes: 1) Characteristics of multi-channel retail (Chapter 2 and 3); 2) Understanding
user behavior (Chapter 3, 4, and 5); and 3) Designing user-oriented recommender
systems (Chapter 4, 5, and 6).

Below, we list our main research questions. Each chapter investigates one of them.
In the first two chapters, we focus on multi-channel retail and study demand forecasting
and user behavior in this setting.

RQ1 How can we effectively utilize data from multiple shopping channels to improve
the accuracy of demand forcasting models?

Predicting the amount of sales in the future is a fundamental problem in the
replenishment process of retail companies. Models for forecasting the demand of
an item typically rely on influential features and historical sales. However, the
values of some influential features (to which we refer as non-plannable features)
are only known during model training (for the past), and not for the future at
prediction time. Examples of such features include sales in other channels, such
as other stores in supermarket chains. Existing forecasting methods ignore such
non-plannable features or wrongly assume that they are also known at prediction
time. To answer RQ1, we consider non-plannable features to be privileged
information, i.e., information that is available at training time but not at prediction
time, and design a neural network to leverage this source of data accordingly. We
present a dual branch neural network architecture that incorporates non-plannable
features at training time, with a first branch to embed the historical information,
and a second branch, the privileged information (PI) branch, to predict demand
based on privileged information. Next, we leverage a single branch network at
prediction time, which applies a simulation component to mimic the behavior of
the PI branch, whose inputs are not available at prediction time.

RQ2 What are the characteristics of user behavior in multi-channel retail settings?

The growing popularity of online shopping drives traditional retailers with physi-
cal stores to allow their customers to shop online as well as offline, that is, in-store.
Increasingly, customers can browse and purchase products across multiple shop-
ping channels. Understanding how customer behavior relates to the availability
of multiple shopping channels is an important prerequisite for many downstream
machine learning tasks, such as recommendation and purchase prediction. How-
ever, previous work in this domain is limited to analyzing single-channel behavior
only. To answer RQ2, we provide the first insights into multi-channel customer
behavior in retail based on a large sample of 2.8 million transactions originating
from 300,000 customers of a food retailer in Europe. We further investigate

3



1. Introduction

the performance of a next basket recommendation model under multi-channel
settings.

In the next three chapters, we focus on designing recommender systems that are in-
formed by insights from user behavior understanding studies. We first consider the
finance domain, and then move on to retail.

RQ3 What are the characteristics of financial information seeking behavior in user
interactions with company filings and how can they be used in designing user-
oriented filing recommender systems?

Publicly-traded companies are required to regularly file financial statements and
disclosures. Analysts, investors, and regulators leverage these filings to support
decision making, with high financial and legal stakes. Despite their ubiquity in
finance, little is known about the information seeking behavior of users accessing
such filings. To answer RQ3, we analyze 14 years of logs of users accessing
company filings of more than 600K distinct companies on the U.S. Securities
and Exchange Commission’s (SEC) Electronic Data Gathering, Analysis, and
Retrieval (EDGAR) system, the primary resource for accessing company filings.
We provide an analysis of the information-seeking behavior for this high-impact
domain. Understanding user interactions with EDGAR can suggest ways to
enhance the user journey in browsing filings, e.g., via filing recommendation.
Based on our observations, we define two filing recommendation tasks that
correspond to either less or more frequent users, i.e., within-session and next-
session recommendation. We design recommendation models that build on
insights from our user behavior analysis.

RQ4 What are the characteristics of repeat consumption behavior in the grocery shop-
ping domain and how can they be used in desiging next basket recommender
systems?

Retailers such as grocery stores or e-marketplaces often have vast selections of
items for users to choose from. Predicting a user’s next purchases has gained
attention recently, in the form of next basket recommendation (NBR), as it facili-
tates navigating extensive assortments for users. Neural network-based models
that focus on learning basket representations are the dominant approach in the
recent literature. However, these methods do not consider the specific charac-
teristics of the grocery shopping scenario, where users shop for grocery items
on a regular basis, and grocery items are repurchased frequently by the same
user. To answer RQ4, we first gain a data-driven understanding of users’ repeat
consumption behavior through an empirical study on six public and proprietary
grocery shopping transaction datasets. We discover that a Next Basket Rec-
ommendation (NBR) model with a strong focus on previously purchased items
can potentially achieve high performance. We introduce ReCANet, a repeat
consumption-aware neural network that explicitly models the repeat consumption
behavior of users in order to predict their next basket.

RQ5 How can we design an effective and scalable within-basket recommender system
that explicitly considers users’ personal preferences?

4



1.2. Main Contributions

Users of online shopping platforms typically purchase multiple items at a time in
the form of a shopping basket. Personalized within-basket recommendation is the
task of recommending items to complete an incomplete basket during a shopping
session. In contrast to the related task of session-based recommendation, where
the goal is to complete an ongoing anonymous session, we have access to the shop-
ping history of the user in within-basket recommendation. Previous studies have
shown the superiority of neighborhood-based models for session-based recom-
mendation and the importance of personal history in the grocery shopping domain.
But their applicability in within-basket recommendation remains unexplored. To
answer RQ5, we propose PerNIR, a personalized nearest neighbor-based model
for within-basket recommendation that explicitly models the personal history of
users for within-basket recommendation in grocery shopping. The main novelty
of PerNIR is in modeling the short-term interests of users, which are represented
by the current basket, as well as their long-term interests, which is reflected in
their purchasing history. In addition to the personal history, neighboring users are
utilized to capture the collaborative purchase behavior.

1.2 Main Contributions

This thesis makes different types of contributions: algorithmic, empirical, and concern-
ing resources.

Algorithmic contributions

• SB-PIANN and DB-PIANN: single and dual branch neural demand forecasting
models capable of leveraging privileged information, i.e., information that is
available during training time and not available at prediction time (Chapter 2).

• CIK-S-POP, CIK-encoder, and CIK-P-POP: two-stage recommender systems
for different filing recommendation tasks in the finance domain (Chapter 4).

• ReCANet: a repeat consumption-aware neural network for next basket recom-
mendation in grocery shopping (Chapter 5).

• PerNIR: a personalized nearest neighbor-based model for within-basket recom-
mendation that explicitly considers users’ personal preferences (Chapter 6).

Empirical contributions

• An empirical verification of the effectiveness of PIANN for demand forecasting
in retail in comparison with state-of-the-art (Chapter 2).

• Insights from a descriptive study on understanding multi-channel customer
behavior in retail (Chapter 3).

• Insights from a descriptive study on understanding financial information seeking
behavior from user interactions with company filings (Chapter 4).

• Insights from a descriptive study on understanding customers’ repurchasing
behavior in grocery shopping (Chapter 5).

5



1. Introduction

• An empirical verification of the effectiveness of ReCANet for next basket recom-
mendation in grocery shopping in comparison with state-of-the-art (Chapter 5).

• An empirical verification of the effectiveness of PerNIR for within-basket rec-
ommendation in grocery shopping in comparison with state-of-the-art (Chap-
ter 6).

Resource contributions

• The source code for PIANN (Chapter 2) released under an open source license.
• The source code for ReCANet (Chapter 5) released under an open source

license.
• The source code for PerNIR (Chapter 6) released under an open source license.

1.3 Thesis Overview

This thesis consists of an introductory chapter, five research chapters divided into two
parts, and a concluding chapter. In each research chapter, one of the main research
questions (defined in Section 1.1) is investigated. Additionally, Chapters 2, 5, and 6
answer more fine-grained research questions that concern chapter-specific contributions.

The current chapter, Chapter 1, introduces the subject of this thesis. It outlines
its research questions and the main contributions, together with the origins for each
chapter.

Part I, titled Characteristics of Multi-Channel Retail, contains two research chapters.
Chapter 2 looks at improving the performance of demand forecasting in a multi-channel
retail scenario. Specifically, this chapter provides a solution to make use of sales in
multiple shopping channels in order to improve the performance of demand forecasting
in a target channel. Chapter 3 studies user behavior in a multi-channel retail setting.
This chapter provides insights about the channel-specific properties of user behavior,
and their effects on the performance of recommender systems.

Part II, titled From User Behavior to Recommendation, contains three research
chapters. Chapters 4 and 5 both include two main sections: user behavior analysis and
proposed recommender systems. Chapter 4 delves into the finance domain, providing
insights on financial information seeking behavior in user interactions with company
filings. Chapter 5 focuses on understanding repurchasing behavior in retail, specifically
in the grocery shopping domain. Both chapters propose domain-specific user-oriented
recommender systems that are informed by the finding of the aforementioned user
behavior analysis. Chapter 6 leans more on scalable recommendation in retail: it
proposes an efficient and easy to scale recommender system that explicitly models users’
personal preferences that are reflected in their purchasing history.

Finally, Chapter 7 concludes the thesis by summarizing the findings and outlining
directions for future work.

All chapters are based on separate published papers, are self-contained, and can
be read independently. We aim to avoid creating alternate versions of published work
that deviate from the originals. Unavoidably, this results in some overlap in the prob-
lem formulations, the description of datasets and some baseline methods in different
chapters.
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1.4 Origins

Below we list the publications that form the basis for each chapter in this thesis and
briefly describe the roles of co-authors.

Chapter 2 is based on the following paper:

M. Ariannezhad, S. Schelter, and M. de Rijke. Demand forecasting in the
presence of privileged information. In Advanced Analytics and Learning on
Temporal Data - 5th ECML PKDD Workshop, AALTD 2020, Ghent, Belgium,
September 18, 2020, pages 46–62. Springer, 2020.

MA proposed the idea, designed the model, implemented it, ran experiments
and analyzed most results. SSC and MdR helped with the model design and
intermediate result analysis. All authors contributed to the writing.

Chapter 3 is based on the following paper:

M. Ariannezhad, S. Jullien, P. Nauts, M. Fang, S. Schelter, and M. de Rijke. Un-
derstanding multi-channel customer behavior in retail. In CIKM ’21: The 30th
ACM International Conference on Information and Knowledge Management,
Virtual Event, Queensland, Australia, November 1–5, 2021, pages 2867–2871.
ACM, 2021.

MA proposed the idea, implemented it, ran experiments and analyzed most
results. SJ, SSC and MdR helped with the intermediate result analysis. PN and
MF facilitated access to data. All authors contributed to the writing.

Chapter 4 is based in part on the following paper:

M. Ariannezhad, M. Yahya, E. Meij, S. Schelter, and M. de Rijke. Under-
standing financial information seeking behavior from user interactions with
company filings. In Companion of The Web Conference 2022, Virtual Event /
Lyon, France, April 25–29, 2022, pages 586–594. ACM, 2022.

This work was done during an internship at Bloomberg AI in 2020. EM proposed
the initial idea. MA formed the final idea, prepared the data, ran experiments and
analyzed most results. MY and EM helped with technical details. MY, EM, SSC
and MdR helped with intermediate result analysis. All authors contributed to the
writing.

Chapter 5 is based on the following paper:

M. Ariannezhad, S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke.
ReCANet: A repeat consumption-aware neural network for next basket recom-
mendation in grocery shopping. In SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval,
Madrid, Spain, July 11–15, 2022, pages 1240–1250. ACM, 2022.
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MA proposed the idea, designed the model, implemented it, ran experiments and
analyzed most results. SJ, ML, SSC and MdR helped with the model design and
intermediate result analysis. MF facilitated access to data. All authors contributed
to the writing.

Chapter 6 is based on the following paper:

M. Ariannezhad, M. Li, S. Schelter, and M. de Rijke. A personalized neigh-
borhood-based model for within-basket recommendation in grocery shopping.
In Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining, WSDM 2023, Singapore, 27 February 2023 – 3 March 2023,
pages 87–95. ACM, 2023.

MA proposed the idea, designed the model, implemented it, ran experiments and
analyzed most results. ML, SSC and MdR helped with the model design and
intermediate result analysis. All authors contributed to the writing.

The writing of the thesis also benefited from work on the following publications:

• M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Masked and swapped sequence
modeling for next novel basket recommendation in grocery shopping. In RecSys
2023: 17th ACM Conference on Recommender Systems. ACM, 2023.

• M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A next basket recommenda-
tion reality check. ACM Trans. Inf. Syst., 41(4), 2023.

• M. Ariannezhad, M. Li, S. Jullien, and M. de Rijke. Complex item set recom-
mendation. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan,
July 23–27, 2023, pages 3444–3447. ACM, 2023.

• S. Jullien, M. Ariannezhad, P. Groth, and M. de Rijke. A simulation environment
and reinforcement learning method for waste reduction. Trans. Mach. Learn.
Res., 2023, 2023.

• M. Li, M. Ariannezhad, A. Yates, and M. de Rijke. Who will purchase this item
next? Reverse next period recommendation in grocery shopping. ACM Trans.
Recomm. Syst., 1(2), 2023.

• S. Schelter, M. Ariannezhad, and M. de Rijke. Forget me now: Fast and exact
unlearning in neighborhood-based recommendation. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2023, Taipei, Taiwan, July 23–27, 2023, pages 2011–2015.
ACM, 2023.

• S. Jullien, M. Ariannezhad, P. Groth, and M. de Rijke. GLDQN: Explicitly param-
eterized quantile reinforcement learning for waste reduction. CoRR, abs/2205.-
15455, 2022.
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• M. Ariannezhad. Understanding and learning from user behavior for recom-
mendation in multi-channel retail. In Advances in Information Retrieval – 44th
European Conference on IR Research, ECIR 2022, Stavanger, Norway, April
10–14, 2022, pages 455–462. Springer, 2022.

• T. van de Looij and M. Ariannezhad. Cluster-based forecasting for intermittent
and non-intermittent time series. In Advanced Analytics and Learning on Tempo-
ral Data – 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September
13, 2021, pages 139–154. Springer, 2021.

• M. Ariannezhad, A. Montazeralghaem, H. Zamani, and A. Shakery. Improving
retrieval performance for verbose queries via axiomatic analysis of term discrimi-
nation heuristic. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan,
August 7–11, 2017, pages 1201–1204. ACM, 2017.

• M. Ariannezhad, A. Montazeralghaem, H. Zamani, and A. Shakery. Iterative
estimation of document relevance score for pseudo-relevance feedback. In Ad-
vances in Information Retrieval – 39th European Conference on IR Research,
ECIR 2017, Aberdeen, UK, April 8–13, 2017, pages 676–683, 2017.

• H. R. Zagheli, M. Ariannezhad, and A. Shakery. Negative feedback in the lan-
guage modeling framework for text recommendation. In Advances in Information
Retrieval – 39th European Conference on IR Research, ECIR 2017, Aberdeen,
UK, April 8–13, 2017, pages 662–668, 2017.

• R. Rahimi, A. Shakery, J. Dadashkarimi, M. Ariannezhad, M. Dehghani, and
H. N. Esfahani. Building a multi-domain comparable corpus using a learning to
rank method. Nat. Lang. Eng., 22(4):627–653, 2016.
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2
Demand Forecasting in Multi-Channel

Retail

In this chapter, we address RQ1: How can we effectively utilize data from multiple
shopping channels to improve the accuracy of demand forcasting models? Given a
certain shopping channel as target, we propose to model the sales data from other
channels as privileged information. We design a neural forecasting approach that is able
to make use of this source of data.

2.1 Introduction

Demand forecasting aims to predict future sales and has the potential to significantly
improve supply chain management. An accurate forecast prevents overstocking and
reduces costs, waste, and losses. At the same time, it also avoids understocking and
thereby helps to prevent unfulfilled orders and unsatisfied customers [28, 144]. In
practice, demand forecasting is modeled as a time series forecasting (TSF) problem,
where the goal is to predict future sales volumes based on historical sales and influential
features [25]. Following the success of deep neural networks in sequence-to-sequence
tasks such as machine translation [139], recent work has studied the effectiveness
of neural networks for TSF in general [81, 116, 127], and demand forecasting in
particular [36, 50, 115].

We divide influential features into two categories, based on their availability at the
time of forecast. Plannable features are known for the past and the future; examples
are time-dependent features such as calendar events, or static features such as product
characteristics. Non-plannable features are time-dependent and only known for the
past, e.g., sales in other stores. Many neural-based approaches use an encoder-decoder
structure to map the history of a time series to its future. A common strategy when
treating influential features is to feed their historical values to the encoder, either
alongside the historical sales data [50], or to a different layer that is responsible for
encoding them [36]. The decoder then either uses their future values to produce the
forecast [50, 155], or assumes that they are unknown [36]. Neither of these schemes

This chapter was published as M. Ariannezhad, S. Schelter, and M. de Rijke. Demand forecasting in
the presence of privileged information. In Advanced Analytics and Learning on Temporal Data - 5th ECML
PKDD Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, pages 46–62. Springer, 2020.
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is ideal for non-plannable features. Using future values of influential features in the
decoding stage makes sense for plannable features, but the approach is not applicable
for non-plannable features. A model trained in that way is not applicable in a real-world
setting as the non-plannable features are not known at prediction time. Simply ignoring
non-plannable features – both at training and prediction time – is not optimal either as
they carry important information that should be leveraged at the time of training the
model.

In this chapter, we therefore propose an indirect approach to model the effects of non-
plannable features, and treat them as privileged information [101], i.e., information that
is available at the time of training the model but not at prediction time (Section 2.3.1).
We introduce a neural network architecture to capture the effect of these features at
training time, and use this effect to produce a forecast at prediction time (Section 2.3.2).
To this end, we propose two different network architectures for training and prediction.
At the time of training, the network has two different branches. The first branch is
responsible for modeling the effect of historical sales and plannable features, while the
second branch uses non-plannable features as input to produce a forecast based on them.
At prediction time, the second branch is not available, and is replaced by a simulation
network, which is trained to mimic its behavior (Section 2.3.3).

Our experimental evaluation demonstrates that the proposed model outperforms
state-of-the-art baselines on several datasets in terms of mean absolute error and sym-
metric mean absolute percentage error. Our experiments show that the proposed network
is not only able to learn from non-plannable features at training time, but can also embed
this type of information for use at prediction time.

We summarize the contributions of our research as follows:

• We categorize the influential features for demand forecasting into two categories,
based on their availability for the time of forecast. We propose to treat the
non-plannable features as privileged information (Section 2.3.1).

• We design a novel neural network architecture that is able to leverage privileged
information. To this end, we propose to use two different networks for training
and prediction time, where the network at prediction time simulates the effect of
the unknown privileged information (Section 2.3.2).

• We conduct extensive experiments on two publicly available datasets. Our experi-
mental results show that our approach outperforms state-of-the-art baselines for
demand forecasting in the majority of cases in terms of mean absolute error and
symmetric mean absolute percentage error metrics (Section 2.5).

2.2 Related Work

Time series forecasting. Prior work on time series forecasting (TSF) mostly fo-
cuses on linear approaches [125], such as Auto-Regressive Integrated Moving Aver-
age (ARIMA) model [27], with a solid underlying theory and relatively few parameters.
However, linear methods cannot model non-linear temporal dependencies and com-
plex relationships between different dimensions of a time series. Recently, neural
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network-based approaches have found their way into TSF. The most dominant type
of network used are recurrent neural networks (RNNs) and long short-term memory
networks (LSTMs) [3, 19, 116, 127, 131]. Convolutional neural networks (CNNs) are
also considered in the literature [78, 130], and some work studies networks with both
recurrent and convolutional components [81, 158].

For the task of demand forecasting, state-of-the-art approaches mostly employ
neural-based models. TADA [36] uses different LSTM layers to model different kinds
of influential features, and the multimodal-attention model proposed in [50] uses a
bidirectional LSTM with an attention mechanism to better capture latent patterns in
historical data. To incorporate the impact of substitutable products with respect to the
target product, DSF [115] uses a sequence-to-sequence structure with gated recurrent
units.

Our focus is on modeling non-plannable features. In previous work, non-plannable
features are either treated as plannable, i.e., with the unrealistic assumption that their
future values are known at prediction time, or are only used as historical data. None of
these approaches is able to incorporate non-plannable features in a realistic manner. In
contrast, we propose a neural architecture, that 1) is capable of modeling non-plannable
features, and 2) has different components for historical sales and influential features,
which are usually treated in the same way in previous work.

Learning under privileged information. The learning under privileged information
(LUPI) framework was originally proposed for support vector machines [147]. The
idea was again popularized in [101], where it was unified with knowledge distillation
for neural networks. Most of the work done in this area is in the field of computer
vision [39, 64, 82], with teacher-student networks as the dominant approach. Teacher-
student networks are mostly based on distilling knowledge from a ‘teacher’ network
to a ‘student’ network at training time through the loss function, which makes sense
for classification problems [101], where class probabilities produced by the teacher
network are treated as ‘soft targets’ for training the student network.

To the best of our knowledge, LUPI has never been used in time series forecasting
and utilizing existing LUPI frameworks is not straight-forward in a forecasting scenario.
In this work, we propose a network architecture to leverage non-plannable features. We
achieve this with two different networks at training and prediction time. In contrast
to common teacher-student networks, our second network is not guided by a loss
component, but learns a simulation component that mimics the output of the missing
branch.

2.3 A Privileged Information-Aware Neural Network

We present a dual branch neural network architecture for demand forecasting. It
incorporates non-plannable features as privileged information (PI) at training time, with
a first branch (the historical branch) that embeds historical information and plannable
features via dilated causal convolutional layers, and a second branch, the PIBranch,
which leverages fully-connected feed-forward layers to predict sales based on privileged
information. At prediction time, we apply a slightly different single branch network
with a simulation component to mimic the behavior of the PIBranch, whose inputs are
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not available at prediction time.

2.3.1 Problem statement
The goal of a demand forecasting model is to predict the amount of sales in the future.
Many different settings exist for building a forecasting model. Without loss of generality,
we consider the case of multiple stores and multiple items, and forecast the demand of
each item per store. Formally, for an arbitrary target product in a target store, the goal
of the forecasting model is to predict

{ŷt}T+∆
t=T+1 = {ŷT+1, . . . , ŷT+∆},

where T is the length of history being considered, ∆ is the forecast horizon, and ŷt ∈ R
denotes the predicted sales of the target item in the target store at time t. Future sales are
affected by both the history of sales in the past, and other influential features. Influential
features can be divided into two categories. Plannable features are known both for the
past and the future; they can be static, such as product-dependent features like category
and brand, or time-dependent, such as promotional campaigns and calendar events.
Future values of non-plannable features are not known at the time of forecast; examples
include behavior data from users on an online shopping website, sales of similar items
in the same store, or sales of the same item in other stores.

We design a forecasting model that incorporates both types of feature alongside the
historical sales. Formally:

{ŷt}T+∆
t=T+1 = F

(
{yt}Tt=1, {x

p
t }T+∆

t=1 , {xnp
t }Tt=1

)
, (2.1)

where F (·) is a non-linear mapping function that we learn, and

{yt}Tt=1 = {y1, y2, . . . , yT } (2.2)
{xp

t }T+∆
t=1 = {xp

1,x
p
2, . . . ,x

p
T+∆} (2.3)

{xnp
t }Tt=1 = {xnp

1 ,xnp
2 , . . . ,xnp

T } (2.4)

denote the historical sales of the target item, and the corresponding plannable features
xp ∈ Rn and non-plannable features xnp ∈ Rm for the item, respectively, with the
corresponding feature dimensions n and m.

For training our model, we adopt the ‘walk-forward’ training schema that is a
common choice for time series data [36, 80, 135]. In this approach, which we illustrate
in Fig. 2.1, we apply a sliding window to divide the data into history and forecast
horizon, and shift this sliding window ∆ steps from training time to prediction time.
In other words, assuming the length of the whole dataset is T + 2∆ and T ≫ ∆ is the
length of the sliding window, the [1, T ] interval is used as the history training time, the
[T +1, T +∆] interval is used as the forecast horizon at training time (i.e., the validation
window), the [∆+1, T +∆] interval is used as the history at prediction time and finally,
the [T + ∆+ 1, T + 2∆] interval is used as the forecast horizon at prediction time.

We evaluate our model on the forecast horizon at prediction time, for which the
non-plannable features are not available. For training and hyperparameter selection,
we leverage the history and the validation window, for which non-plannable features
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Prediction Time:

Training Time:

1

History Forecast Horizon

History Forecast Horizon

Time

Figure 2.1: The ‘walk-forward’ training scheme. A history of length T is used for
training, and validation is performed on [T +1, T +∆]. For predication time, the history
is shifted ∆ steps, and [T + ∆+ 1, T + 2∆] is used as forecast horizon.

are known. This assumption is inline with real world cases, where a forecasting model
is trained on the past data, for which the values of all influential features are already
known. We rephrase Eq. 2.1 into Eq. 2.5 at training time and into Eq. 2.6 at prediction
time in order to account for this setup:

{ŷt}T+∆
t=T+1 = F1

(
{yt}Tt=1, {x

p
t }T+∆

t=1 , {xnp
t }T+∆

t=1

)
(2.5)

{ŷt}T+2∆
t=T+∆+1 = F2

(
{yt}T+∆

t=∆+1, {x
p
t }T+2∆

t=∆+1

)
, (2.6)

where F1(·) is the function that we learn at training time and F2(·) is the function that
we apply at prediction time to produce the forecast.

2.3.2 Architecture overview
We model non-plannable features as privileged information (PI), i.e., information that is
available at the training time but not available at prediction time. This approach requires
different forecasting models for training and prediction time. We therefore propose a
Dual Branch PI Aware Neural Network (DB-PIANN) to embed both the historical sales
and PI at training time, and a Single Branch PI Aware Neural Network (SB-PIANN)
to produce the forecast at prediction time. Fig. 2.2a illustrates the architecture of
DB-PIANN. Historical sales and plannable features are fed into one branch of the
network, while privileged information is fed into a different branch. The outputs of
these two branches are then merged with a combination layer, and fed into the output
module to produce the forecast. The unavailablity of the PI for the future implies that
we cannot produce a forecast with DB-PIANN at prediction time. However, only the
input to the privileged information branch (PIBranch) is missing at prediction time, and
we can still utilize the historical branch (HiBranch) of DB-PIANN.

We tackle this challenge by training an additional simulation network to mimic
the behavior of the missing PI Branch. This network takes the output of the historical
branch as input, and learns to reproduce the output of the combination layer. Fig. 2.2b
details the architecture of the SB-PIANN. The difference to DB-PIANN is that the
PIBranch and the combination layer are replaced with the simulation network; the other
branch is identical. DB-PIANN and SB-PIANN model F1(·) and F2(·) in Eq. 2.5 and
Eq. 2.6, respectively.
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HiBranch

PIBranch

combination layer

output module

...

...

...

...

..................

Produces the forecast.

Combines the outputs of HiBranch and
PIBranch.

Models the effects of non-plannable
features.

Models the effects of historical sales,
alongside plannable features.

(a) Dual Branch PI Aware Neural Network (DB-PIANN) (dual branch)

HiBranch

simulation module

output module

...

...

..................

Module identical to DB-PIANN. Produces
the forecast.

Since the inputs to the PIBranch are not
available at the prediction time, the PIBranch
and the combination layer are replaced by a
simulation module that is trained to mimic
the effects of PI, by estimating the output
of the combination layer based on the
output of HiBranch.

Module identical to DB-PIANN.
Models the effects of historical sales,
alongside plannable features.

(b) Single Branch PI Aware Neural Network (SB-PIANN) (single branch)

Figure 2.2: Neural network architectures for PI-aware demand forecasting. Fig. 2.2a
illustrates the architecture of DB-PIANN applied at training time and Fig. 2.2b details
the architecture of the SB-PIANN, which we leverage at prediction time.
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2.3.3 Architecture details
Next, we introduce the details of DB-PIANN and SB-PIANN. As illustrated in Fig. 2.2a,
DB-PIANN consists of four modules: 1) a historical branch (HiBranch), which is re-
sponsible for modeling the effects of historical sales data, along with plannable features,
2) a privileged information branch (PIBranch), which takes care of non-plannable fea-
tures, 3) a combination layer, which combines the outputs of the two previous branches,
and 4) an output module, which produces the final forecasts.

Based on these definitions, we break up Eq. 2.5 as follows:

{ŷt}T+∆
t=T+1 = F1

(
{ct}T+∆

t=T+1

)
, (2.7)

where F1 is the output module, and {ct}T+∆
t=T+1 is the output of the combination layer,

defined as:
{ct}T+∆

t=T+1 = {zt + ut}T+∆
t=T+1, (2.8)

where {zt}T+∆
t=T+1 and {ut}T+∆

t=T+1 are the outputs of the HiBranch and PIBranch, re-
spectively (Fig. 2.2a).
Historical branch. The input of this branch, namely N1, consists of the historical
sales of an item yt with of length T , and the plannable features xp

t of length T + ∆
corresponding to that item. The output of this branch, zt, has the length of ∆, and will
be fed to the combination layer. Formally:

{zt}T+∆
t=T+1 = N1

(
{yt ⊕ xp

t }Tt=1, {x
p
t }

T+∆
t=T+1

)
, (2.9)

where ⊕ denotes the concatenation operation. With this definition, HiBranch can be
applied in SB-PIANN at prediction time, where we shift the time ∆ steps. However,
one cannot include non-plannable features as well at prediction time, since their values
are unknown for the forecast horizon.

We choose a stack of dilated causal 1D convolution layers [146] for the historical
branch, followed by two fully-connected feed-forward layers to produce the final output
of the branch. Formally:

N1

(
{yt ⊕ xp

t }Tt=1, {x
p
t }

T+∆
t=T+1

)
= Wh

2 ReLU(Wh
1 cL1

+ bh1 ) + bh2 , (2.10)

where cL1 is the output of the last convolutional layer, and Wh
1 , bh1 , Wh

2 , and bh2 are the
weights and biases of the first and second feed-forward layer.

Causal convolutions are typically faster to train compared to RNNs and LSTMs
(the common choice for sequence to sequence problems), since they do not have any
recurrent connections [17]. Dilated convolutions allow us to process a long sequence
without exponentially increasing the number of layers, by skipping input values with a
certain step size. This is especially useful for the case of demand forecasting, where the
history of the data is relatively long. More formally, for a sequence input x and a filter
f with size k, a causal dilated convolution operation g on element s of the sequence is
defined as:

g(s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i, (2.11)
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where d is the dilation factor. Following [146], we increase d exponentially with the
depth of the network, i.e., d = O(2j) at level j of the network, where j ∈ {0, . . . , L1 −
1} and L1 denotes the number of layers. All parameters are shared across the whole
forecast horizon.

The historical branch N1 operates on a rolling basis, meaning that the output zt ∈ R
is produced one step at a time and is concatenated to the history in the input, which is is
then shifted one step forward, and fed back into the first convolutional layer, until the
end of the forecast horizon is reached (see Fig. 2.2a).
Privileged information branch. The input of this branch, namely N2, are the non-
plannable features with a length of ∆, and the output of this branch, ut, (also of length
∆), will be fed to the combination layer. To make use of all the available training data,
we apply a sliding window of length ∆ and move it forward one step at a time, until we
reach the end of the training interval, i.e., T + ∆. For the PIBranch N2, we leverage
fully-connected feed-forward layers with dropout [134] applied after each hidden layer.
We use a ReLU activation function for the hidden layers, and a linear fully-connected
layer for the output. Formally:

{ut}i+∆
t=i = N2({xnp

t}i+∆
t=i ) = Wnp

L2
ReLU(Wnp

l xl + bnpl ) + bnpL2
, (2.12)

where 1 ⩽ i ⩽ T is the start of the sliding window, L2 denotes the number of layers,
and Wnp

l and bnpl are the weights and biases of the l-th layer for l ∈ {1, . . . , L2}; xl is
the input of the l-th layer, which is the output of the previous layer for l ∈ {2, . . . , L2},
and equal to {xnp

t}T+∆
t=T+1 for l = 1.

Note that the PIBranch cannot be used in SB-PIANN at prediction time, since its
input values are unknown for the forecast horizon.
Output module. In SB-PIANN, this module consumes the output of the combination
layer, and produces the predicted sale values for the validation period. We again apply
fully-connected feed-forward layers:

{ŷt}T+∆
t=T+1 = F1({ut + zt}T+∆

t=T+1) = W o
L3
ReLU(W o

l sl + bol ) + boL3
, (2.13)

where W o
l and bol are the weights and biases of the l-th layer for l ∈ {1, . . . , L3}, sl is

the input of l-th layer, which is the output of the previous layer for l ∈ {2, . . . , L3}, and
equal to {ut + zt}T+∆

t=T+1 for l = 1.
Together, the definitions of the aforementioned modules complete the architecture

of DB-PIANN, according to Eq. 2.7.
SB-PIANN. Next, we define our second architecture SB-PIANN, which is going to
produce the forecast at prediction time. We break down Eq. 2.6 as follows:

{ŷt}T+2∆
t=T+∆+1 = F2

(
{yt}T+∆

t=∆+1, {x
p
t}T+2∆

t=∆+1

)
= F1

(
S({zt}T+2∆

t=T+∆+1)
)

= F1

(
S(N1

(
{yt ⊕ xp

t }
T+∆
t=∆+1, {x

p
t }

T+2∆
t=T+∆+1

)
)
)
,

(2.14)

where S is the simulation module, which we define in Eq. 2.15 below, N1 refers to
the historical branch defined in Eq. 2.10, and F1 depicts the output module, defined in
Eq. 2.13.
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Simulation module. The purpose of the simulation module is to replace the missing
PIBranch of DB-PIANN. As we cannot use the PIBranch at prediction time, one of
the inputs of the combination layer is not available at prediction timeas well (see
Fig. 2.2). Therefore, we train a feed-forward neural network to estimate the output of
the combination layer based on the output of HiBranch. Formally:

S({zt}T+2∆
t=T+∆+1) = W s

L4
ReLU(W s

l pl + bsl ) + bsL4
, (2.15)

where W s
l and bsl are the weights and biases of the l-th layer for l ∈ {1, . . . , L4}. pl

is the input of l-th layer, which is the output of the previous layer for l ∈ {2, . . . , L4},
and equal to {zt}T+2∆

t=T+∆+1 for l = 1.

2.3.4 Learning process

Many options exist for training a forecasting model for a collection of time series, such
as the sales per item per store in our case. Following previous work [36, 127], we train
a single model for all of the items; each training sample contains the sales of a single
item in a single store, along with its corresponding influential features.

We train the PIBranch N2 and the historical branch N1 separately, and then train
DB-PIANN using the learned models, as outlined in the previous section. We subse-
quently train the simulation network S in isolation. With this scheme, SB-PIANN does
not actually need training and can be composed from the previously learned modules,
i.e., HiBranch, the simulation module and the output module. We leverage the mean
absolute error between the predicted values and the actual values as objective function
to train all the components of our architecture. All of our proposed modules are smooth
and differentiable, which allows us to learn their parameters by standard back propaga-
tion. With mean absolute error as the objective function, we define the loss for each
module as follows:

L =
1

N

( N∑
n=1

T+∆∑
t=T+1

| yant − ypnt |
)
, (2.16)

where N is the number of training samples, n is an index for the samples, yant is the label
for sample n at time t, and ypnt is the output of the corresponding module. Specifically,
when training the HiBranch, PIBranch, and output module, yant is equal to the actual
sales of the training sample n at time t, and ypnt is equal to the corresponding value of zt,
ut, and ŷt for sample n. For the simulation module, yant translates to the corresponding
values of zt + ut of sample n.

2.4 Experimental Setup

Datasets. Unfortunately, most of the sales datasets from existing work are not publicly
available. For example, we could neither obtain the ‘One Stop Warehouse’ dataset
from [36], the Amazon Demand Forecasting dataset from [155], nor the JD50K Online
Sales Forecasting dataset from [50].
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Table 2.1: Dataset statistics.

Dataset Items Stores #time series Time series’ length

Favorita 1,656 54 11,614 365
Dunnhumby 1,101 26 8,825 117

We therefore evaluate the performance of SB-PIANN on two publicly available
datasets to ensure reproducibility. Both datasets contain sales numbers at the product
and store level; we therefore set the goal of predicting the sales per product per store
for a certain forecast horizon. Here, for a target item in a target store, we treat its sales
in other stores as the privileged information. The Favorita dataset contains daily sales
of thousands of items across 54 stores located in Ecuador.1 We use the data from the
15th of August 2016 to the 15th of August 2017, and only consider items that have less
than five days of sales data missing.2 We also use the The Complete Journey dataset
published by Dunnhumby.3 This dataset contains around 300 million transactions for
∼5,000 items across ∼760 distinct stores, spanning more than two years of history. We
randomly select a subset of items and stores for our experiments, and aggregate sales
on a weekly basis to reduce the sparsity. The statistics of the datasets are shown in
Table 2.1. Not all of the items are sold in all of the stores, so the total number of time
series, i.e., training samples, is different from the number of items multiplied by the
number of stores.
Influential features. Our design of the network architecture does not restrict the types
of influential features that our approach can incorporate. However, we work with non-
plannable features only in the experiments, as their effect on the forecast is the focus of
this chapter. For such non-plannable features, we rely on the sales of an item in other
stores. In many demand forecasting datasets, including both of the datasets that we use,
the retail company has more than one store, and the sales of a target item in other stores
can help to forecast the demand in the target store. Formally:

xnp
t = {(xs0

t , xs1
t , . . . , xsn

t )}, (2.17)

where n is the number of stores and xsi
t denotes the sales for the target item in store si

at time t.
Training and testing. Analogous to previous work, we use the walk-forward strat-
egy [36, 135] for the train-test split, as detailed in Section 2.3.3. Following this strat-
egy, we split the data according to the time dimension, and not based on stores and
items. Given a time series with a total size of T for the history of sales data and
∆ steps to predict, we use [1, T ] as the training data, [T + 1, T + ∆] for validation
and [T + ∆ + 1, T + 2∆] for testing (as illustrated in Fig. 2.1). We experiment with
∆ ∈ {2, 8, 16}.

1https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
2The same dataset is used in [36], however the authors do not mention how they created a subset of the

original dataset in their paper. Nevertheless, we achieve a comparable performance with their method on our
version of the data.

3https://www.dunnhumby.com/careers/engineering/sourcefiles
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2.5. Experimental Results

Implementation details. Our models are implemented using the Keras framework [41]
with TensorFlow as backend [1]. We use mini-batch stochastic gradient descent (SGD)
together with the Adam optimizer [76] to train the models. We set the batch size to 32,
and stop training when the loss on the validation set converges. All the methods run on
a Linux server with an Intel Xeon CPU, and a GeForce GTX 980 (Maxwell GM204)
GPU. The GPU code is implemented using CUDA 9.
Metrics. We consider two metrics for evaluation: mean absolute error (MAE) and
symmetric mean absolute percentage error (SMAPE):

MAE =
1

N × ∆

N∑
n=1

T+2∆∑
t=T+∆+1

|yt − ŷt|, (2.18)

SMAPE =
100

N × ∆

N∑
n=1

T+2∆∑
t=T+∆+1

|yt − ŷt|
(|yt|+ |ŷt|)/2

, (2.19)

where yt and ŷt denote real and predicted sales, respectively.
Parameter settings. For all of the parameters of the networks, we conduct a grid search
and leverage the parameters with the best performance on the validation set. For the
feed-forward modules, we conduct a grid search over {1, 2, 3, 4} for the number of
hidden layers, {16, 32, 64, 128, 256, 512} for the number of nodes in each hidden
layer, and {0.1, 0.2, 0.3, 0.4} for the dropout rate. For the convolutional layers, we
search over {16, 32, 64} for the number of filters, {2, 4, 8, 16} for the filter size, and
{4, 5, 6, 7, 8} for the number of layers.

2.5 Experimental Results

We investigate the ability of SB-PIANN to capture the effects of privileged information
in Section 2.5.1, and analyse its performance compared to the state-of-the-art for demand
forecasting in Section 2.5.2.

2.5.1 Capturing the effects of privileged information
Our first set of experiments addresses the following research question: To what extent is
the proposed model, SB-PIANN, able to capture the effect of privileged information? We
conduct experiments with different components of our proposed model to answer our
first research question. The purpose of these experiments is to reveal the importance of
privileged information and to quantify its impact on the final performance of SB-PIANN.
We compare its performance to that of the HiBranch and PIBranch in isolation, as well
to the “oracle” performance of DB-PIANN. DB-PIANN’s performance is only reported
for the sake of comparison; the model cannot be used for prediction in real world cases
due to the unavailability of the values of non-plannable features at prediction time.
Results and discussion. Table 2.2 shows the performance of HiBranch, PIBranch,
SB-PIANN and DB-PIANN in terms of MAE and SMAPE, on testing time intervals,
i.e., [T + ∆ + 1, T + 2∆]. The results are reported for all ∆ settings on the Favorita
and Dunnhumby datasets. We compare the performance of two different branches
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2. Demand Forecasting in Multi-Channel Retail

Table 2.2: Performance of SB-PIANN and DB-PIANN and their components on the
Favorita and Dunnhumby datasets. ∗ indicates that a component is significantly out-
performed by SB-PIANN; − indicaties that there is no significant difference between
DB-PIANN and SB-PIANN (student t-test, α = 0.05).

Method ∆ = 2 ∆ = 8 ∆ = 16

MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset
HiBranch 6.126∗ 38.840∗ 6.494∗ 38.563∗ 7.278∗ 38.794∗

PIBranch 6.415∗ 38.235∗ 6.664∗ 39.692∗ 7.080∗ 38.431∗

SB-PIANN 6.069 37.139 6.277 38.102 6.868 38.241
DB-PIANN 5.985− 36.956− 6.052− 37.304− 6.752− 37.314−

Dunnhumby dataset
HiBranch 3.593 43.042∗ 3.661∗ 44.348∗ 4.079∗ 50.289∗

PIBranch 3.669∗ 44.108∗ 3.640 44.006 3.691 45.059
SB-PIANN 3.558 42.567 3.612 43.506 4.059 49.540
DB-PIANN 3.555− 42.531− 3.601− 43.384− 3.899− 47.817−

for different forecast horizons. We observe that the performance of the PIBranch is
comparable to that of the HiBranch for shorter forecast horizons, i.e., 2 and 8, and
outperforms HiBranch for the longest forecast horizon. This shows that the PIBranch
is capable of predicting the sales at least as well as HiBranch, and is more robust with
respect to forecast horizon. We attribute the ability of PIBranch to predict future sales
to two aspects: First, we note that the historical sales data are not taken into account in
the PIBranch, and the forecast is produced solely based on the privileged information.
This indicates the usefulness of this information for demand forecasting. Second, the
obtained performance points out the effectiveness of the proposed network to model the
effects of privileged information. In other words, a deep feed-forward neural network is
capable of producing a forecast based on the sales of products in other stores, and this
forecast is comparable to and in some cases superior to the one based on the historical
sales.

We also report the performance of DB-PIANN, while noting (again) that it cannot
be used in a real world setting, as it requires the privileged information, which is not
available at prediction time. DB-PIANN outperforms individual branches on both
datasets and for all of the forecast horizons, which shows that it is able to leverage both
the historical sales and the privileged information to produce the final forecast. The
performance gain also indicates that both branches contribute positively to the final
forecast; their contribution is not overlapping, and they are both essential to achieve the
highest performance.

Finally, we observe that the performance of SB-PIANN is better than that of Hi-
Branch and is relatively close to DB-PIANN, on both datasets and for all forecast
horizons. Recall that SB-PIANN is not using the inputs of the PIBranch, and indirectly
models the effects of privileged information via the simulation component. The close
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Figure 2.3: Forecasts produced by HiBranch, PIBranch and SB-PIANN, along with
the actual sales, for sample products. 2.3a is taken from Favorita and 2.3b is selected
from Dunnhumby. y axis shows the sales and x axis is the time. 2.3a and 2.3b show the
improved forecasts using PI.

performance of SB-PIANN to that of DB-PIANN shows that the proposed approach is
able to embed the PI from train to test time effectively. In other words, the simulation
component is capable of transferring the effects of privileged information absorbed in
the train time to the prediction time. The superiority of SB-PIANN compared to the
HiBranch supports the hypothesis that utilizing the privileged information leads to a
better performance than a forecast that only relies on the historical data.

To gain more insights into forecasts by our proposed method, we visualize a few
examples in Fig. 2.3. Each figure shows the demand for a product in a store, taken from
both Favorita and Dunnhumby. We show 101 days of history for both datasets. The
history of sales as well as the actual sales in the future are plotted, along with forecasts
made by PIBranch, HiBranch, and SB-PIANN. We observe that the forecast based on
PI has a different trend from the one based on the history of sales. This might be a
result of an event that affects the sales of the product in the stores, and leads to a better
prediction for the future sales, compared to the forecast of HiBranch, which is based on
the history of sales in the target store. We can also recognize that SB-PIANN picks-up
on this difference, and its forecast is superior to that of HiBranch.

2.5.2 Comparison to existing approaches for demand forecasting

Next, we focus on the following question: How effective and accurate is SB-PIANN for
the task of demand forecasting? We compare SB-PIANN to the following state-of-the-
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art neural network-based forecasting models:
DA-RNN [116]. This dual-stage attention-based RNN method is proposed for time
series prediction. It uses an encoder-decoder structure with two different attention
mechanisms. In this model, the PI are available also for the future. However, this is an
unrealistic assumption; we use this model as the baseline to evaluate the ability of our
model in making use of PI.
LSTNet [81]. The long- and short-term time-series network uses both CNNs and RNNs
to capture both short-term and long-term trending patterns of the time series. It also
has an auto-regressive component. The architecture is proposed for multi-variate TSF,
therefore we build a model for each item and forecast for the target stores simultaneously.
For LSTNet, we only make use of the historical values of PI for both training and test
time.
TADA [36]. An encoder-decoder based architecture that uses two LSTM branches
for encoding different types of features. Since the method was tested on the Favorita
dataset, we also report their results based on their original division of features for this
dataset. For the Dunnhumby dataset, we randomly divide the data from other stores into
two categories. We again only make use of the historical values of PI available for both
training and test time.

All baselines report superior performance compared to auto-regressive models, decision
tree models, and simpler neural network-based approaches. We therefore omit these
methods from our evaluation. Aside from their state-of-the-art performance, we chose
our baselines to cover a wide range of possible approaches. Specifically, they apply
different training schemes; DA-RNN trains a model per time-series, LSTNet trains a
model per store, and TADA uses an approach similar to ours, training a single model
for all of the data. They also differ in the ways they treat the PI. For DA-RNN, the
assumption is that these features are available for both history and the future (which is
not true in real-world settings), while the other two only use the historical values of the
PI.
Implementation details. For the baseline implementation, we asked the authors
of TADA and DA-RNN for the code and they kindly provided us with their own
implementation. For LSTNet, we leverage the code which is made publicly available by
the authors.4 We use the same testing environment as SB-PIANN for the baselines, as
outlined in Section 2.4.
Results and discussion. Table 2.3 shows the performance of SB-PIANN compared to
the baselines for different forecast horizons on Favorita and Dunnhumby, respectively.
The best performance is highlighted with bold face. In almost all cases, SB-PIANN
outperforms the baselines in terms of MAE and SMAPE. We observe that the per-
formance of all methods starts to drop with the increase of the forecast horizon, but
SB-PIANN is more robust with respect to the length of the forecast horizon. In all cases,
the performance is better on Favorita than on Dunnhumby in terms of SMAPE. This
might be due to the fact that the sales data in Dunnhumby is more scarce.

According to the results, SB-PIANN even outperforms DA-RNN, which makes
the unrealistic assumption of having the PI available at prediction time. The fact

4https://github.com/laiguokun/LSTNet
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Table 2.3: Comparison of neural network-based forecasting methods on the Favorita
and Dunnhumby datasets. ∗ indicates that a method is significantly outperformed by
SB-PIANN (student t-test, α = 0.05).

Method Uses PI ∆ = 2 ∆ = 8 ∆ = 16

Train Test MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset
DA-RNN + + 9.343∗ 48.864∗ 8.583∗ 46.174∗ 8.709∗ 43.132∗

LSTNet − − 6.619∗ 40.509∗ 7.481∗ 43.920∗ 8.332∗ 45.016∗

TADA − − 6.428∗ 36.744 7.431∗ 41.389∗ 8.463∗ 43.165∗

SB-PIANN + − 6.069 37.139 6.277 38.102 6.868 38.241

Dunnhumby dataset
DA-RNN + + 4.535∗ 52.779∗ 3.995∗ 47.154∗ 4.168∗ 48.942
LSTNet − − 4.134∗ 48.484∗ 4.818∗ 55.310∗ 5.673∗ 59.864∗

TADA − − 4.367∗ 49.018∗ 5.777∗ 63.834∗ 8.251∗ 78.055∗

SB-PIANN + − 3.558 42.567 3.612 43.506 4.059 49.540

that SB-PIANN outperforms even DA-RNN shows the effectiveness of our proposed
approach to leverage privileged information. The lower performance of DA-RNN might
also be a result of its training scheme, i.e., building a forecast model per time series.
In this scenario, the model cannot learn from the similarity and differences between
different products and stores.

While the special type of PI that we experiment with, i.e., sales in other stores,
suggests the use of a multi-variate TSF model, our experiments show that compared
to LSTNet, a state-of-the-art model proposed for the multi-variate TSF, SB-PIANN,
performs better in all cases. On the Favorita dataset, we compare the performance of
SB-PIANN with the original version of TADA, i.e., using the definition that the authors
propose for internal and external features. In this version, a set of 13 attributes are
used as features, such as the location of the stores and the oil price. In our approach,
we only rely on the sales of the items in other stores as features, and we observe that
our model performs significantly better in terms of both error metrics, while using
no manual categorization of features. The gain in performance is more significant on
the Dunnhumby dataset, which indicates the limitation of TADA when the division
of features into internal and external as required by TADA is not straightforward. In
other words, the performance of TADA degrades when influential features cannot
be characterized as internal and external, and accordingly, cannot be fed into the
corresponding LSTM layers.

2.6 Conclusion

Demand forecasting is a fundamental problem in the replenishment process of retail
companies. Models for forecasting the demand for a product usually consider patterns
in the history of sales data and influential features. Such influential features can be
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divided into two categories: plannable features that are known for the past and the
future, and non-plannable features, for which the future values are unknown. Neural
forecasting models usually ignore non-plannable features when predicting the amount
of sales in the future.

In this chapter, we answered RQ1: we consider non-plannable features as privileged
information and design a novel neural network to utilize them. We propose two different
network architectures for training and prediction time. At the time of training, the
network has two different branches to model the effect of historical sales and non-
plannable features. At prediction time, the second branch is not available, and is
replaced by a simulation network that is trained to mimic its behavior. We extensively
evaluate our proposed approach on two real-world forecasting datasets, and find that it
outperforms state-of-the-art baselines in terms of mean absolute error and symmetric
mean absolute percentage error metrics.

While our proposed architecture is capable of leveraging plannable features, our
focus in this chapter is on modeling non-plannable features. In future work, it will be
appealing to study different approaches to incorporate plannable features in the model;
aside from treating them as an extra dimension of the historical sales, they can be
fed into the PIBranch, or an extra dedicated branch. Moreover, although we make no
specific assumptions about the type of non-plannable features in our model, we rely on
a single type of non-plannable features in our experiments. We also aim to investigate
the impact of more sources of privileged information.

In the next chapter, we continue our study on multi-channel retail with a focus on
understanding user behavior and next basket recommendation.
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3
Multi-Channel Customer Behavior

In this chapter we stay in the same as domain as Chapter 2, that is, multi-channel retail,
but we change our task settings from demand forecasting to understanding user behavior
and next basket recommendation. We address RQ2: What are the characteristics of
user behavior in multi-channel retail settings? We conduct a descriptive study on a
real-world sample of transactions from large retailer to understand user behavior in this
scenario.

3.1 Introduction

The emergence of e-commerce in recent years has encouraged retailers with physical
stores to provide the possibility of online shopping for their customers in addition to
in-store (offline) shopping. Customers do not only buy goods via multiple shopping
channels, but they can also leverage the online channel for exploring the product
inventory, comparing products, and saving products for later purchases, before shopping
offline. In addition, the data generated via online shopping provides a further opportunity
for personalizing the shopping experience through recommendation [2, 106].

The ease of use of online shopping translates into a rapidly growing market share of e-
commerce solutions, even in industries such as fashion. This growth is not cannibalistic
– most customers who purchase goods online also purchase in-store (offline) [31]. The
addition of an online channel does not isolate the offline channel. Instead, it creates a
multi-channel shopping experience for customers in retail sectors like grocery, cosmetics,
and apparel.

Understanding customer behavior in retail serves as a basis for many downstream
machine learnings tasks, such as recommending products and predicting purchases.
While there are numerous studies examining user behavior in online shopping platforms,
little is known about multi-channel customer behavior. Previous work relies mainly
on click stream data [32, 60, 100, 141, 159, 162, 170]. Other sources of customer
behavior include transaction data [151], digital receipts of online purchases extracted
from emails [77], transaction logs of a bank [156], or search logs of a commercial

This chapter was published as M. Ariannezhad, S. Jullien, P. Nauts, M. Fang, S. Schelter, and M. de Rijke.
Understanding multi-channel customer behavior in retail. In CIKM ’21: The 30th ACM International
Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November
1–5, 2021, pages 2867–2871. ACM, 2021.
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product search engine [136]. However, these studies utilize data from a single shopping
channel only, and do not explore multi-channel customer behavior. So far, multi-
channel customer behavior has mostly been studied in the marketing and retail research
literature [2, 31, 55, 68, 69]. These studies rely on perceptions gathered via interviews
and customer surveys, in order to model, e.g., lock-in effects or physical store surface
needs. Yet, perceptions are often different from actions, and these works do not consider
actual transaction data from customers.

In this chapter, we provide the first study on multi-channel customer behavior in
retail. Based on a sample of 2.8 million transactions from 300,000 customers, gathered
from a food retailer with multiple physical stores and two online platforms, we provide a
first picture of customer behavior in a multi-channel retail setting. To this end, we group
the customers into three groups, namely online-only, offline-only, and multi-channel
customers, based on their choice of shopping channels (Section 3.2). We first compare
the shopping behavior of these customer groups in Section 3.3. We find that the tendency
to purchase previously bought products, defined as repeat behavior ratio, is higher for
online-only customers. Zooming in on multi-channel customers, our analysis reveals
that there is little overlap in online and offline baskets of multi-channel customers; they
use each channel for different sets of items. Our analysis further indicates that online
baskets are larger, and contain items from more diverse product categories.

The observed differences between customer groups can affect the performance
of models that are designed for downstream prediction tasks based on customer be-
havior (Section 3.4). As a case study, we investigate the Next Basket Recommenda-
tion (NBR) task, where the goal is to predict items that a customer will purchase in
their future basket, given their previous shopping baskets. Existing approaches to NBR
rely on data from a single shopping channel only, and do not consider multi-channel
settings [66, 148, 165]. We examine the performance of a standard NBR model, namely
PersonalTopK, for different customer groups and different channels of the future bas-
ket. NBR performance differs significantly for different customer groups, with the
online-only customers receiving the best and offline-only customers receiving the worst
overall performance. For multi-channel customers, the performance heavily depends
on the channel type for the target basket, and choosing the correct target channel has
the potential to boost NBR performance. Overall, our experiments indicate that the
NBR task is not trivial for multi-channel settings; a single model is not able to achieve
the same performance for different customer groups. Our findings serve as a call for
follow-up research on designing recommendation models that explicitly model the
characteristics of multi-channel retail.

In summary, we provide the following contributions.

• To the best of our knowledge, we provide the first study of multi-channel customer
behavior in retail, based on a large sample of 2.8 million transactions from 300,000
customers of a food retailer in Europe with physical stores, an online shop and a
mobile application (Section 3.2).

• Our analysis of the transaction logs of different customer groups indicates that
online-only, offline-only, and multi-channel customers have different shopping
behavior across multiple dimensions, such as repeat ratio and basket size (Sec-
tion 3.3).
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Figure 3.1: Cumulative distribution of the number of baskets (left) and the time between
consecutive baskets (in days, right) per customer.

• In experiments with a standard next basket recommendation model, it under-
performs for multi-channel customers (compared to online-only customers),
indicating the need for approaches that explicitly model the multi-channel con-
text (Section 3.4).

3.2 Dataset Description

Our work is based on proprietary transaction data from a large food retailer in Europe,
with a number of physical stores, an online website, and a mobile application. The
same product inventory is offered on all channels. Customers can get a loyalty card
either in-store or online, and can use that card for their shopping across all channels. A
customer can be tracked across offline and online channels if they use their loyalty card
at the cashier in-store, and use the same card when buying online. A customer needs
to be identified to fulfill the order in the online channel, while this is not the case for
in-store shopping (offline).
Sampling of customers based on channel preferences. In order to understand multi-
channel customer behavior, we select an eight week period of time as the transaction
period, and define three groups of customers based on their channel preferences during
the transaction period: 1) offline-only customers who conducted only offline transactions
and no online transaction, 2) online-only customers who have only online transactions
and no offline transactions, and 3) multi-channel customers who conducted both online
and offline transactions.
Extraction of transaction data. We first filter the data to retain only customers with a
loyalty card so as to be able to track customers, both within and across channels. Next,
we sample 100,000 customers at random from each group, and extract their transactions
during our period of interest. Each transaction in the data is marked as either online or
offline, and represents a basket with one or multiple products, purchased by a customer.
The sample of online-only customers has 500K corresponding transactions, while the
sample for offline-only customers comprises of 900K transactions. The multi-channel
customers undertook 1.4M transactions with a similar online/offline ratio.
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Figure 3.2: Cumulative distribution of the number of unique items (left), and normalized
unique items (right) per customer.

Figure 3.3: Cumulative distribution of the discount proportion (left) and the repeat
ratio (right) for different groups of customers.

3.3 Understanding Customer Behavior

We first focus on similarities and differences in the behavior of all three customer groups,
and then consider multi-channel customers. We also study the characteristics of online
and offline baskets.

Comparison of customer groups. We consider the users’ purchase frequency in both
channels. Fig. 3.1 depicts the cumulative distribution of the number of baskets and
the time between consecutive baskets (in days) for online-only, offline-only, and multi-
channel customers. We observe that multi-channel customers have the highest number
of baskets, and online-only customers have the lowest. Offline-only and multi-channel
customers have a similar behavior with respect to shopping times, with a median of three
days between consecutive baskets, and a 90% percentile of seven days. The distribution
is different for online-only customers: the average time between consecutive baskets
is longer, with a median of seven days. This seven day interval is frequent for a large
number of online customers, partly because of the possibility of selecting a fixed day
for delivery for a series of online baskets.
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Figure 3.4: Cumulative distribution of the proportion of online baskets (left) and the
overlap in items purchased online and offline (right) for multi-channel customers.

On top of the number of purchases, we also seek insights into the quantity and
variety of items purchased. Fig. 3.2 shows the cumulative distribution of the number
of unique items that a customer has purchased during their shopping history, and the
normalized unique items, defined as the number of unique items divided by the number
of baskets. Offline-only customers have the smallest number of unique items and
normalized items; while multi-channel customers have the highest number of unique
items, online-only customers have purchased more unique items when the number of
baskets is considered. We conjecture that easy access to the full catalogue plus the ease
of home delivery leads to this increase in diversity.

As the loyalty card allows for discounts, it is of interest to know how different
customer groups behave with regard to promotions. Fig. 3.3 shows the cumulative
distribution of the discount proportion (defined as the amount of discount per basket
divided by basket value) and the repeat ratio (defined as the number of unique items
divided by the total number of items purchased across baskets) for different groups
of customers. All customers are similar w.r.t. the discount proportion, online-only
customers have the highest repeat ratio, and offline-only customers have the lowest.

Behavior of multi-channel customers. Do multi-channel users prefer a shopping
channel? Fig. 3.4 (left) depicts the cumulative distribution of the proportion of online
baskets, defined as the number of online baskets divided by the total number of both
online and offline baskets, per customer. For roughly half of the multi-channel customers,
online baskets are in the majority, while for the other half offline baskets are dominant,
so there is no clear preference.

Next, we want to know whether multi-channel customers use the two channels for
the same purchases. Fig. 3.4 (right) plots the cumulative distribution of the overlap
in items purchased online and offline for multi-channel customers, calculated as the
Jaccard index of online and offline item sets. The overlap between online and offline
baskets is minimal for the majority of customers; for 90% of them, the overlap is less
than 0.16. This implies that while multi-channel customers purchase both online and
offline baskets, they use each channel for purchasing a separate set of products.

Finally, we investigate when multi-channel customers are more susceptible to prefer
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Figure 3.5: Distribution of the variation in terms of items and item categories for online
and offline baskets.

one channel over the other. We find that offline shopping peaks on Fridays and Saturdays,
while online shopping has a uniform distribution across week days. We also observe a
decline in shopping on Sundays for both online and offline channels. We further look at
the patterns underlying the selection of a channel for shopping. We consider the channel
switch probability for multi-channel customers. The probability is exactly equal to 0.5
for 20% of customers; these customers may or may not select a different channel for
their next basket with an equal chance. Roughly 40% of customers change their channel
with a probability of less than 0.5, and 10% of customers change their channel almost
after every basket. This indicates that predicting the next channel for the customer is
not trivial.

Comparison of online and offline baskets. Each transaction in the data represents a
basket of products purchased at a time by a customer. How do baskets purchased online
compare to those purchased offline? Fig. 3.5 shows the distribution of the number of
unique items and unique item categories in a basket, the basket variation (defined as the
basket size divided by the number of unique items), and the basket category variation
(defined as the basket size divided by the number of unique item categories) for online
and offline baskets. While online baskets contain more unique items and more unique
item categories, there is not much difference in basket variation and basket category
variation; this is a hint that the difference in the distribution of the number of unique
items and the number of unique item categories in online and offline baskets is mostly
caused by the larger basket size in the online channel.

3.4 Next Basket Recommendation

We have observed important differences in purchasing behavior between the three
groups of customers. We hypothesize that ignoring the shopping channel can hurt
the performance of downstream machine learning tasks. In this section, we present a
case study to investigate this hypothesis. In particular, we study the performance of a
prominent Next Basket Recommendation (NBR) model in the multi-channel context.
The goal of an NBR model is to predict the set of items that a customer will purchase
in their next basket, given their purchase history [66, 148, 165]. Formally, given the
history of baskets for customer u defined as Bu = {Bu

1 , B
u
2 , . . . , B

u
n}, where Bu

i is a
basket of items defined as Bu

i = {x1, x2, . . . , xt}, and xi ∈ X denotes an item from
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Table 3.1: Experimental results for next basket recommendation using the PersonalTopK
model.

Prediction target Recall nDCG PHR

k
=

10

Online-only customers 0.1582 0.5873 0.9743
Offline-only customers 0.1773 0.2716 0.7331
Multi-channel customers 0.1282 0.3696 0.7688
Multi-channel customers, online target basket 0.1431 0.5946 0.9816
Multi-channel customers, offline target basket 0.1163 0.1891 0.5981
Multi-channel customers, target channel known 0.1373 0.3808 0.7882

k
=

20

Online-only customers 0.2459 0.4993 0.9882
Offline-only customers 0.2435 0.2664 0.7998
Multi-channel customers 0.1950 0.3292 0.8242
Multi-channel customers, online target basket 0.2265 0.5068 0.9916
Multi-channel customers, offline target basket 0.1697 0.1867 0.6899
Multi-channel customers, target channel known 0.2027 0.3387 0.8369

k
=

50

Online-only customers 0.3988 0.4564 0.9939
Offline-only customers 0.3448 0.2951 0.8664
Multi-channel customers 0.3085 0.3124 0.8838
Multi-channel customers, online target basket 0.3677 0.4372 0.9968
Multi-channel customers, offline target basket 0.2609 0.2123 0.7931
Multi-channel customers, target channel known 0.3095 0.3191 0.8846

the whole item set X , the goal is to predict the items in the next basket of the customer,
i.e., Bu

n+1. For the basket history Bu, the recommendation model assigns a score to
all items xi ∈ X , and the top-k items are returned as the candidate items for the next
basket recommendation.

We investigate the NBR task for different types of customers in multi-channel
retail. We use a simple but powerful recommendation model, namely PersonalTopK,
that has been shown to perform on par with complex state-of-the-art methods [66].
PersonalTopK recommends the most frequent k items that appear in the past baskets of
a given customer as the prediction for the next basket.

Experimental setup. We experiment with our transaction logs, pick a week as the test
week, and consider all customers that have a basket in the test week as candidate test
customers, with their first basket in the test week as the target basket to predict. We only
consider customers that have over 10 baskets in the previous seven weeks as our test
customers, and leverage the baskets from the previous seven weeks as training data. We
partition the test customers into three groups based on their shopping channels in the
training data. We are left with 15K offline-only, 52K multi-channel, and 3K online-only
customers. For the multi-channel customers, around 50% of the target baskets are online
and 50% are offline.

We evaluate the NBR performance using Recall@k, nDCG@k, and PHR@k [66,
166]. Recall is widely used in NBR, measuring how many of the items in the target
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basket are present in the predicted items for the next basket. nDCG is a ranking based
measure which takes into account the order of items. PHR (Personal Hit Rate) measures
the ratio of customers whose predicted baskets contain the items appearing in the target
basket, evaluating the performance at customer level. All measures are averaged across
the predicted baskets for all test users. We report the metrics for k ∈ {10, 20, 50}.

Results and discussion. Table 3.1 contains the results of the PersonalTopK recom-
mendation model. PersonalTopK performs surprisingly well across all metrics and
basket sizes, compared to common datasets used for evaluating the NBR task [66, 166].
This highlights the importance of personal history in our dataset. The performance for
online-only customers is superior to offline-only customers, across all metrics and basket
sizes, except Recall@10. The difference in performance is substantial; improvements
range from 55% to 116% in terms of nDCG and 15% to 33% in terms of PHR. The
performance for multi-channel customers is lower than for online-only customers with a
large margin across metrics and basket sizes. The decrease in performance ranges from
19% to 23% in recall, 32% to 37% in nDCG, and 11% to 21% in PHR. The performance
for multi-channel customers is higher than for offline-only customers, except in Recall.
This is in line with our finding on the repeat ratio from the customer behavior analysis in
the previous section; online-only customers have the most repeated behavior, followed
by multi-channel and offline-only customers. The importance of personal history differs
for different types of customers.

Next, we zoom in on multi-channel customers, and distinguish between multi-
channel customers with an online vs. an offline target basket. In cases where the target
basket is online, NBR performance is substantially better across all metrics and basket
sizes, ranging from 23% to 41% in recall, 106% to 214% in nDCG and 26% to 64%
in PHR. This is inline with the previous results; online baskets are easier to predict for
the PersonalTopK model due to stronger repeated behavior. The NBR performance
for multi-channel customers with an offline target basket is lower than for offline-only
customers with a large margin (ranging from 24% to 34% in recall, 28% to 30% in nDCG
and 8% to 18% in PHR), across all metrics and basket sizes. This means that the online
baskets of these customers are not very helpful in predicting the items in the offline
target basket. This is probably caused by the fact that the candidate items pool becomes
large with the addition of items purchased in the online channel, which adds noise in
predicting the offline target basket. However, this is not the case for the customers
with an online target basket in general. While some metrics (Recall@10, Recall@20,
Recall@50 and nDCG@50) are marginally lower for multi-channel customers with an
online basket compared to online-only customers, the rest of the metrics are improved.
This indicates that the offline baskets of multi-channel customers are not necessarily
misleading the recommendation of online baskets.

We further consider an oracle version of PersonalTopK for the multi-channel cus-
tomers, where we assume that the channel for the target basket of customers is known,
and where we only consider data from the correct target channel for computing the
most frequent items. NBR performance in this context is superior to the performance
for multi-channel customers. This means that knowing the target channel can improve
the performance of an NBR model, even for one as simple as PersonalTopK. We still
observe a large difference compared to the best performing group, namely online-only
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customers. Hence, there is a huge potential for improving the performance of NBR for
multi-channel customers.

3.5 Conclusion

We answered RQ2: What are the characteristics of user behavior in multi-channel
retail settings? by presenting the first study on customer behavior in a multi-channel
setting in retail, where customers can use both online (web shop, mobile application)
and offline (physical store) channels for shopping. We based our analysis on a sample
of 2.8 million transactions originating from 300,000 customers of a food retailer in
Europe. We revealed significant differences in customer behavior across online and
offline channels, for example w.r.t. basket size and the repeat ratio of item purchases.
Based on these findings, we investigated the performance of a downstream prediction
task under multi-channel settings, namely next basket recommendation.

The recommendation performance differs significantly for customers based on
their choice of shopping channel. This strongly indicates that future research on
recommenders in this area should take into account the particular characteristics of
multi-channel retail shopping.

The next chapter starts Part II of the thesis, with a shift in domain from retail to
finance. We continue with user behavior understanding in finance, and focus on relevant
recommendation tasks for this domain.
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Part II

From User Behavior to
Recommendation
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4
Understanding and Learning from

Financial Information Seeking Behavior

In this chapter, we switch domains, from retail to finance, and answer RQ3: What are
the characteristics of financial information seeking behavior in user interactions with
company filings and how can they be used in designing user-oriented filing recommender
systems? We address this question using public large-scale logs from a financial
information system.

4.1 Introduction

Finance is a domain characterized by a large number of financial and regulatory docu-
ments, which analysts and investors need to consume as part of their regular workflows.
Advanced techniques for search, filtering, and recommendation are crucial to ensure
timely access to the right information [21, 53]. Despite this, information retrieval (IR)
research focused on the financial domain is still in its early days. While there are
some studies on stock recommendation [30, 34, 164], financial entity extraction [107],
financial event representation learning [40], ranking [54], and prediction [161], we
understand relatively little about how users interact with financial information systems.
In this work we take a first step in this direction by focusing on company filings.

Company filings are financial statements of companies or disclosures made by par-
ties tied to these companies. They are a primary source for investors, analysts, advisors,
and regulators to acquire information about a company. In the US, all public compa-
nies are required to submit filings to the Securities and Exchange Commission (SEC).
These filings are exposed to users through the Electronic Data Gathering, Analysis, and
Retrieval system (EDGAR) database [86]. With an average of over 3,000 filings being
submitted per day and hundreds of thousands of daily filing views by users, EDGAR
plays a central role in the collection and distribution of financial information.

The Securities and Exchange Commission (SEC) made the EDGAR Log File
Dataset (EDGAR-LFD) publicly available. The dataset records access to company

This chapter (except for Section 4.6) was published as M. Ariannezhad, M. Yahya, E. Meij, S. Schelter,
and M. de Rijke. Understanding financial information seeking behavior from user interactions with company
filings. In Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25–29, 2022, pages
586–594. ACM, 2022.
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(a) Filing index page linking to filing and supplementary files. Image source: https:
//www.sec.gov/edgar/search-and-access

(b) Content of an S-8 filing (corresponds to the first row in Fig. 4.1a). Image
source: https://www.sec.gov/edgar/search-and-access

Figure 4.1: Example EDGAR filing index page and content.
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filings in the period between February 14, 2003 and June 30, 2017.1 It captures access
to individual filings from different users, alongside meta-information about the filing
that is being accessed. The availability of EDGAR-LFD has led to numerous studies
in the finance literature [45, 46, 87, 93, 102, 150], which shows the importance of
this dataset for research in finance. The focus in such publications is on revealing
correlations between the information acquisition of EDGAR users at an aggregate level
and financial variables such as stock returns [46, 87, 150]. Different from previous work
in the finance literature, we aim to understand how users interact with EDGAR with the
focus on information access itself.

In this chapter, we provide a comprehensive picture of EDGAR-LFD (Section 4.3)
and analyse how users interact with financial company filings (Section 4.5). We study
the interactions of users with EDGAR on a session level, on a user level, and from a
temporal perspective. We find that more than half of the users are one-timers with a
single session, while the 10% most active users account for 75% of all sessions. Further,
most sessions are focused on filings from a small number of companies. Specifically,
66% of all sessions contain filings from 1–2 companies, suggesting that users tend
to focus on filings of a single or of a pair of companies in a session. In the top 10%
most frequent users, 50% are interested in six companies or less and 90% of them are
interested in 37 or less unique companies over their whole life-cycle, defined as the
time between their first and last session on EDGAR. This shows that the most frequent
users of the system only focus on a small portfolio of companies.

Our user behavior analysis serves as a stepping stone for the community to tackle
retrieval and recommendation tasks for the high-impact financial domain. Our findings
have the potential to help financial information providers such as the SEC and com-
mercial providers to better understand the user journey in browsing filings, and suggest
ways to enhance the user experience, e.g., via filing recommendation. As a concrete use
case to benefit from our analysis, we identify two variations of the filing recommenda-
tion task that correspond to the different usage patterns observed in EDGAR, namely
next-filing and next-session recommendation.

Next-filing and next-session recommendation. As a use-case for the user behavior
analysis, we study filing recommendation as a downstream task. More active users will
benefit from different forms of filing recommendations than less active ones based on
how much we know about them. For infrequent users, for whom we have no prior history
beyond the current session, we investigate how to best recommend the next filing to look
at based on their ongoing session of looked-at filings, i.e., next-filing recommendation,
which is equivalent to session-based recommendation [70]. For more frequent users for
whom we have a rich history, we investigate a next-session recommendation model that
predicts a full list of filings for their next session, which is analogous to next basket
recommendation [65]. We propose custom two-stage recommendation models for these
tasks (Section 4.6), where we predict the company(s) of the next filing in the first stage,
and rank the filings of the predicted companies in the second stage so as to recommend
the top ranking filings to the user. Our experimental results show that our custom
two-stage recommendation models are more effective than state-of-the-art direct filing
recommendation models in terms of standard ranking evaluation metrics, such as recall

1https://www.sec.gov/dera/data/edgar-log-file-data-set.html
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and mean reciprocal rank.
In summary, we provide the following contributions:

• We provide a detailed description and statistics for EDGAR-LFD, which will
inform anyone interested in exploring this dataset (Section 4.3).

• We provide the first analysis on the information seeking behavior of EDGAR
users. Our analysis reveals that user sessions focus on filings from a small number
of companies, and that individual users are typically only concerned with a small
fraction of the set of all companies (Section 4.5).

• We design custom two-stage recommendation models for session-based and
next-session filing recommendation, based on the usage patterns uncovered in
our behavioral analysis. We evaluate our models on EDGAR-LFD, where the
experiments show their effectiveness (Section 4.6).

4.2 Related Work

Previous work on EDGAR-LFD. While this dataset has not been studied by the IR com-
munity, there is a considerable amount of work on it in the finance literature. Loughran
and McDonald [102] study the consumption of financial information in filings by analyz-
ing the distribution of daily filing requests. Activity on EDGAR is correlated with poor
stock performance [45], reactions of the stock market to earnings announcements [93],
and predictive of firm performance [46] and stock returns [87, 150]. Co-searches of
companies by the same users on EDGAR are used to identify economically related peer
firms [86]. These studies examine the usage of EDGAR at an aggregate level, and do not
look into user level activities; the focus is on financial variables such as stock returns,
and correlations with market events. Unlike previous work, in this chapter we analyze
the EDGAR-LFD from an information access perspective, in order to understand user
behavior and enhance the performance of filing recommendation systems.
Analyzing information seeking behavior. There is a large volume of work on ana-
lyzing and learning from interaction logs. Interaction logs are studied to characterize
information seeking behavior in different settings such as web search [94], mobile
search [153], email search [5], library search [79], and search in productivity software
suites [26]. What we add to the work listed above is a comprehensive picture of the
information seeking behavior in the finance domain.
Information retrieval in finance. IR in finance has gained attention in the recent
years. The FinIR workshop [53] introduces and explores challenges and potential
research directions in this area. The FinWeb workshop2 further explores the usefulness
of information on the Web for financial technology. Plachouras et al. [114] and Liu et al.
[96] propose search systems specifically designed for financial data. Other related work
includes methods to rank financial tweets [29], entity extraction and disambiguation in
finance [63], extracting summaries from annual financial reports [4], risk ranking from
financial reports [143], and financial document classification [51]. Complementary to

2https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021
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Table 4.1: Descriptions of the most frequently accessed filing (form) types on EDGAR.

Type Description

10-K Report on a company’s performance over a financial year
4 Statement of changes in beneficial ownership of a company
8-K Report of unscheduled material events or corporate changes at a company
10-Q Report on a company’s performance over a financial quarter

existing work, we focus on understanding user behavior in interaction with a financial
information system and enhancing the user experience with recommender systems.
Recommendation. To the best of our knowledge, there is no prior work on filing recom-
mendation. We propose two variations of the filing recommendation task based on the
usage patterns on EDGAR, namely session-based and next-session. Session-based rec-
ommendation is the task of predicting the next item that a user will interact with in their
current session [122]. Popular approaches to session-based recommendation include
nearest neighbors [70], neural network [122] and factorization based methods [103].
While most recent work focuses on deep neural networks [88, 95, 122], nearest neighbor
based methods are shown to often perform equally well or significantly better, despite
their simplicity [103]. Our proposed next session filing recommendation task parallels
next basket recommendation. Similar to session-based recommendation, neural network
based models are gaining attraction [18, 65, 165], while a nearest neighbor based model
is shown to be more effective [66, 92]. We report on, and analyze, the performance of
state-of-the-art methods for session-based and next session filing recommendation.

4.3 EDGAR & The Log File Dataset

We start by describing the EDGAR system and EDGAR-LFD, which are the main focus
of this chapter. At the center of EDGAR are filings, financial statements of companies
and disclosures made by parties tied to these companies. Fig. 4.1a shows the index page
for a specific type S-8 filing issued by Amazon. An S-8 filing is made by companies
when they issue equity to their employees. Other examples of filing (form) types are
shown in Table 4.1.3 A company, like Amazon in our example, is identified by a unique
central index key (CIK). The concrete filing is uniquely identified by an accession
number. As shown in Fig. 4.1a, the filing itself is composed of multiple files; these are
typically the filing document itself in various formats, and supplementary material such
as graphics and relevant correspondences. Fig. 4.1b shows the top of a filing document
itself, which corresponds to what a user sees after clicking on a document in the first
row of Fig. 4.1a.

The EDGAR system provides various interfaces for accessing filings. These inter-
faces can be divided into the following categories:

(1) Company lookup (Fig. 4.2a), to list all filings of that specific company, as shown
in Fig. 4.2b.

3Descriptions of different filing types can be found under https://www.sec.gov/forms
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(a) Users can search EDGAR for specific companies. Image source: https://www.
sec.gov/edgar/searchedgar/companysearch

(b) Chronological list of filings for a company. Image source: https://www.sec.
gov/cgi-bin/browse-edgar?CIK=1018724

Figure 4.2: Examples of specific parts of the SEC’s EDGAR website.
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(a) Latest EDGAR submissions, chronologically ordered. Image source: https:
//www.sec.gov/cgi-bin/browse-edgar?action=getcurrent

(b) EDGAR full-text search. Image source: https://www.sec.gov/cgi-bin/
srch-edgar

Figure 4.3: Examples of specific parts of the SEC’s EDGAR website.
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Table 4.2: Yearly statistics of EDGAR-LFD after preprocessing.

Year #valid
days

#sessions #accesses #unique
filings

#unique
companies

2003 303 4,421,280 12,377,278 1,430,943 142,960
2004 366 7,377,624 24,697,866 2,012,168 194,072
2005 243 4,505,386 14,290,505 1,817,180 178,416
2006 235 3,971,556 15,424,208 2,232,270 193,222
2007 365 6,703,874 28,643,702 3,467,975 265,258
2008 366 8,351,487 34,072,032 3,469,548 243,016
2009 365 12,111,097 45,109,128 3,244,679 227,435
2010 365 13,633,080 51,405,694 3,403,496 235,163
2011 365 15,543,090 60,586,259 3,598,266 256,870
2012 344 15,835,972 60,817,982 4,745,665 287,858
2013 365 25,724,152 112,685,058 8,517,826 398,015
2014 365 31,280,275 119,560,348 8,158,452 385,115
2015 365 33,084,153 108,967,228 5,993,998 336,679
2016 366 45,364,178 142,694,568 8,211,940 448,807
2017 181 20,282,374 95,057,605 8,586,242 480,512

Total 4,959 248,189,578 926,389,461 11,596,247 607,426

(2) Latest filings, for listing filings made in the past few days (Fig. 4.3a).

(3) EDGAR archive, when the user knows the CIK (and possibly the accession
number) of the filing.4

These interfaces for reaching a specific filing are reflected in the EDGAR-LFD entries
for a specific filing.

With the EDGAR Log File Dataset (EDGAR-LFD), the SEC made access logs
for EDGAR filings publicly available.The dataset captures access to individual filings
between February 14, 2003 and June 30, 2017, where each record in the data corresponds
to a single access by a user to a single filing. A single access corresponds to a single
user viewing the contents of a filing (Fig. 4.1b), or a filing index page (Fig. 4.1a).
Each record contains the date and time of the access and the obfuscated IP address
of the user accessing the filing, as well as other details such as the company’s CIK
and the filing’s accession number. An example of an EDGAR-LFD record is shown in
Table 4.3. Additional information about the filings, such as the filing type and the date
that the filing was submitted to EDGAR can be inferred using the accession number.5

Section 4.4 gives more details about the fields of an EDGAR-LFD entry.
We preprocess the dataset and group individual accesses into sessions. The pre-

processing and sessionization steps are described in Section 4.4. The yearly dataset
statistics after the preprocessing steps are shown in Table 4.2. The processed dataset

4https://www.sec.gov/Archives/edgar/data/1018724
5From: https://www.sec.gov/Archives/edgar/full-index/
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Table 4.3: Example of an access record in EDGAR-LFD.

IP Date Time CIK

203.24.7.aba 2009-10-01 12:09:41 001018724
. . .

Accession Find Crawler Extension
. . .

0001193125-09-154174 3 0 .htm

contains more than 926M accesses to more than 11M filings from 600K companies,
grouped into more than 248M sessions, which span across more than 14 years of history.

4.4 Data Preparation

Available fields. EDGAR-LFD records access to EDGAR filings between February 14,
2003 and June 30, 2017. The dataset captures access to individual filings, both for the
index page of a filing (Fig. 4.1a) and the individual documents that belong to that filing
(Fig. 4.1b). The dataset is available in CSV format, and is based on Apache web server
access logs. Next, we describe the fields captured by each EDGAR-LFD entry that are
relevant to the analyses performed in this chapter.6

• IP An obfuscated version of the IP address from which a filing was accessed.
Obfuscation is done by replacing the last octet of the original IP address with a
three character string that preserves the uniqueness of the IP address across the
entire dataset.

• Date Date of the access in YYYY-mm-dd format.

• Time Time of the access in HH:MM:SS format.

• CIK Identifier for the company that the filing accessed in this record belongs to.

• Accession A unique identifier for the filing being accessed.

• Find A number between zero and 10 that indicates how the user arrived at the
filing, e.g., internal EDGAR search.

• Crawler Indicates whether the user self-identifies as a web crawler.

• Extension The extension of the filing page being accessed. Corresponds to the
“Document” column in Fig. 4.1a. Used to identify whether a filing document has
been accessed, or its index page.

Initial cleanup. After downloading the dataset, we remove records that have an HTTP
response code that indicates unsuccessful requests, which are those not in the 2xx class.
We also remove records that self-identify as crawlers. We first remove entries from

6https://www.sec.gov/files/EDGAR_variables_FINAL.pdf for the full list of fields.
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dates between September 23, 2005, and May 10, 2006 that were labeled by the SEC as
“lost or damaged”, as mentioned in [102]. We then further manually examine the days
that have significantly less records than the surrounding days for no apparent reason,
such as holidays. This results in marking the dates between 2003-02-14 to 2003-03-01,
2003-12-13 to 2003-12-15, and 2012-02-08 to 2012-02-29 as damaged. We remove the
damaged dates from the data.

Session definition. In order to better understand the user journeys on EDGAR, we
take the individual filing access records in EDGAR-LFD and group these into seman-
tically meaningful sessions. Following [109, 154], we define a session as a sequence
of actions performed by a single IP address, where the difference in time between
subsequent actions is not larger than a predefined threshold. We rely on [59] to find
the threshold, based on fitting a Gaussian mixture model to the histogram of the time
between subsequent accesses by the same IP address, i.e., same user. A three component
Gaussian mixture model is fitted to the histogram using expectation maximization. After
that, the point where inter-activity time is equally likely to be within the Gaussians fit
with sub-hour means (within-session) and Gaussians fit with means beyond an hour
(between-session) is selected as the threshold.

We apply the above method to EDGAR-LFD in order to create sessions from the
individual accesses per IP address. To this end, we sample 10,000 IP addresses that we
are confident come from interactions of a single human user with the system based on
heuristics from [102] from each year. An IP address corresponding to a single human
user is assumed to not have more than 50 requests per day. We plot the histogram of
differences consecutive actions by the same IP address in seconds on a log scale. We
find 35 minutes to be the optimal threshold for session breaks, which is in line with the
thresholds in datasets from other domains [59].

Valid sessions. EDGAR is accessed by both humans and bots, but not all bots self-
identify as such; solely relying on the crawler attribute of a log entry is unreliable
and following previous work [102], we take additional measures to remove bot accesses.
We filter out sessions based on three thresholds: 1) the number of accesses in a session,
2) the duration of a session measured in hours, and 3) the average time per access
in a session. We keep the sessions that are either a) less than four hours and have a
time-per-access of more than two seconds, or b) have less than four accesses in total.

Handling successive requests for the same filing. Each filing on EDGAR has an index
page (see Fig. 4.1a), and files that belong to the filing. The data contains access to all
documents and index pages. Our focus is on how users interact with different filings;
in-filing browsing is out of scope. Hence, for each session, we ignore all successive
views to the same accession number, and we remove records corresponding to access to
the index pages of filings.

4.5 User Behavior Analysis

We study financial information seeking behavior by analyzing EDGAR-LFD. We look
into temporal access patterns, session-level and user-level behavior. We use the data
from all years (bottom row, Table 4.2). We aim to understand the user behavior and
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Figure 4.4: Cumulative distribution of (Left:) number of sessions per user, and (Right:)
sessions across users.

gain insights that can help to improve the user experience in accessing the filings.

4.5.1 User-level analysis

We focus on user-specific aspects of the filing views. Fig. 4.4 (Left) shows the cumu-
lative distribution of the number of sessions per user. More than half of the users in
the data are one-timers with a single session. The 90th percentile for the number of
sessions per user is equal to four, and out of 50.2M users in the data, 5.8M have at least
four sessions. We will refer to these top 10% users as frequent users in the rest of our
analysis. Fig. 4.4 (Right) displays the cumulative distribution of sessions across users,
showing that the 10% most active users account for roughly 75% of the sessions.

The analysis shows that the proportion of infrequent users is considerable. For such
users, historical behavior beyond the current session is scarce. For downstream tasks
such as recommendation, this implies that instant recommendation scenarios such as
session-based recommendation, where only the information from the current session is
considered, are suitable for a general EDGAR user. We also notice that frequent users
are responsible for over 75% of all the sessions in the data, showing that for such users
we can rely on rich historical behavior for downstream tasks, and other recommendation
scenarios that rely on historical behavior (such as sequential recommendation) could be
considered.

We further look into the companies and form types of interest to all users and
to the subset of frequent users. Fig. 4.5 shows the cumulative distribution of unique
number of companies and form types that users have interacted with over their whole
life cycle. Of the frequent users, 50% are interested in six or less companies and 90%
of them are interested in 37 or less unique companies in total; frequent EDGAR users
are concerned with only a small subset of companies that have their filings available on
the website. The median and 90th percentile are much less if we consider all users. A
similar observation holds for the number of unique form types. Out of 505 different
form types available, 50% of the frequent users are interested in five or less and 90%
are interested in at most 17 unique form types.
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Figure 4.5: Cumulative distribution of (Left:) number of unique companies, and (Right:)
number of unique form types for all users and frequent users.
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Figure 4.6: Cumulative distribution of (Left:) average session length per user, and
(Right:) life-cycle of users in the whole time frame of the data, for all users and frequent
users.

This means that each user is concerned with a very small fraction of the data that is
available on EDGAR. This implies that in downstream tasks for improving user journey
on EDGAR, such as recommendation, focusing on companies and filing types that a
user has previously shown interest in will be effective. Such a focus can drastically
reduce the search space in different retrieval and recommendation scenarios.

We study the average session length, defined as time between the first and last access
in a session, for all users and for frequent users. Fig. 4.6 (Left) shows the cumulative
distribution. The session length is longer for frequent users, with 9 and 15 minutes for
the 90th percentile of all and frequent users, respectively.

Our analysis reveals that most of the sessions on EDGAR are short; users tend to
focus on a single task in a session, that can translates to accessing a particular filing of
interest. There is a notable difference between the session length distribution of frequent
users and all users; frequent users have longer sessions, which could indicate that they
are a specific group of users, for example analysts. It is worth mentioning that EDGAR-
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Figure 4.7: Cumulative distribution of (Left:) session length in terms of number of
filings accessed in a session, and (Right:) session length measured in seconds.

LFD does not provide any information about the type of users who are accessing the
filings, but the usages patterns could help to identify different user groups [46].

Fig. 4.6 (Right) shows the cumulative distribution of life-cycle of users, defined as
the number of days between the first and the last session. While the data spans 14 years,
the frequent users have a median life-cycle of roughly a year and when considering all
users, the 90th percentile for life-cycle is around a year. We observe that frequent users
have a much longer life-cycle. For such users, in cases where the historical information
is used for a downstream task, the change in the interests of a user in time needs to be
accounted for; a very old historical behavior could be less relevant than a recent one
when predicting the future interactions of a user.

4.5.2 Session-level analysis
We analyze the characteristics of sessions on EDGAR in this section. Fig. 4.7 shows
the cumulative distribution of session length in terms of number of filings viewed and
session length measured in seconds between the first and the last access in the session.
We observe that 68% of all sessions contain only one filing, suggesting that often times
users are interested in one filing at a time. This means that most sessions are focused on
a single information need, corresponding to a small number of filings at a time.

The session length distribution shows that 53% of all sessions take less than 10
seconds, corresponding to the sessions with one filing. On the other hand, around
40% of sessions take longer than 100 seconds, which shows that rapid consumption of
information is not always possible. It is worth mentioning that since we are measuring
the time between the first and the last access, this does not reflect the exact session
duration; the user may still be reading the last accessed filing.

We further study sessions that contain more than one filing in terms of the number
of unique companies and form types that they contain. Fig. 4.8 shows the distributions.
Most sessions are focused on a small number of companies. Specifically, 66% of all
sessions contain filings from one or two companies, suggesting that EDGAR users tend
to focus on filings of a single or a pair of companies in a session. The average number
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Figure 4.8: Cumulative distribution of (Left:) number of unique companies, and (Right:)
number of unique form types in sessions with more than one filing accessed.
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Figure 4.9: Average (Left:) accesses per day, and (Right:) users per day for different
years.

of unique form types in sessions is 2.78, with 25% of sessions containing a single form
type, suggesting that users are interested in browsing multiple form types in a session.
In case of session-based recommendation, these insights can be used to limit the search
space to certain filing types from the companies accesses up until now in the current
session.

We also look at the referrers to the first access in the session, which tells us how
people come to interact with filings in EDGAR. It is worth mentioning that EDGAR-
LFD only records accesses to filings; accesses to other pages on the SEC website are
not visible in the dataset. We observe that 53% of all sessions start from an unknown
referrer, including accesses from outside of the SEC website, such as web search and
web links. The remaining sessions start from the various pages shown in Fig. 4.1a, 4.2
and 4.3: 82.5% of those start from the page containing all of the filings of a specific
company (Fig. 4.2b), suggesting that the company page is the starting point for browsing
filings for most of the sessions. Further categories of known referrers are index page
(8.8%, Fig. 4.1a), the EDGAR archive (5.0%), filing data (3.3%), search (0.3%), and the
latest filings page (0.2%). Only 0.3% of all sessions initiate from search, which shows
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Figure 4.10: Most accessed filing types in the dataset.

that EDGAR users rarely use search to directly find filings; the majority of sessions
start from a company page, which indicates that users probably use search to find the
companies and use the company filing page (Fig. 4.2b) to access the filings.

4.5.3 Temporal analysis

In this part we focus on the temporal aspects of filing views. Since the data is available
for more than 14 years of history, we study the changes in user access across all these
years. Fig. 4.9 shows the average of daily accesses and daily users for each year. We
observe that there is an exponential growth in both, which shows that more people are
using EDGAR as a source of information year by year.

We further study the distribution of the time spent on the filings and the time between
accesses and the filing dates for different filing types. We first study the number of
accesses per form type. Fig. 4.10 shows the 41 filing types that are responsible for 90%
of all accesses on EDGAR, out of 505 available form types. Over half of all accesses
are to four filing types, namely 4, 10-K, 10-Q, and 8-K. We look into the time spent
on filings by EDGAR users. Fig. 4.11 (Left) shows the cumulative distribution of the
time spent on filings for different filing types. Users spent the least time on filing type 4,
which is essentially a table, with a median of four and 90th percentile of 100 seconds.
Users spent considerably more time on 10-Q and 10-K forms; digesting information in
these forms requires more time, as they report on a public company’s performance over
a financial year or quarter.

Fig. 4.11 (Right) shows the cumulative distribution of the difference between the
filing date of a filing and the date that it is being viewed in days, for the top four
filing types and in total. EDGAR contains filings from 1993, and EDGAR-LFD covers
accesses from 2003 to 2017, so users that we study have access to filings from 10 to
24 years of history. However, 50% of accesses happen within a year of the filing dates.
We further notice the difference between filing types. For filing type 4, roughly 35%
of the accesses occur in a day from the filing date, and 50% happen in 12 or less days,
showing that users are mostly interested in more recent filings of this type. The median
is around a year for the 10-K filings, showing that 10-Ks, which cover a company’s
annual performance, are interesting for the users for a longer period of time.
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Figure 4.11: Cumulative distribution of (Left:) the time spent on a filing by users, for
different filing types (Right) the time between access and filing date.

4.5.4 Main findings

We further highlight some of the findings in our user behavior analysis that will inform
our recommendation models.

The user-level analysis shows that there are two main types of users on EDGAR,
less active users with a few sessions (Fig. 4.4 (Left)), and the top 10% more active users
who account for 75% of all the sessions (Fig. 4.4 (Right)). More active users will benefit
from different forms of filing recommendation than less active ones based on how much
we know about them. For infrequent users, for whom we have no prior history beyond
the current session, we investigate how to best recommend the next filing to look at
based on their ongoing session of looked-at filings, i.e., next-filing recommendation.
For more frequent users for which we have a rich history, we investigate a next-session
recommendation model that predicts a full list of filings for their next session.

4.6 Filing Recommendation

As shown in Section 4.3, users can access filings through either a search interface or
listings of filings. The user behavior analysis suggests that there is value in recom-
mending filings to users based on the ones they have already accessed in the short or
long term. Such recommendations would reduce the burden on users to move between
filings, facilitating quicker access overall. We now discuss two variations of the filing
recommendation task that are informed by our user analysis. Subsequently, we propose
custom recommendation models based on the results of our analysis, and compare their
performance to state-of-the-art approaches and standard baselines. We would like to
note that the recommendation use case presented here is just one possible task informed
by our analysis. As another example, the user interactions captured in EDGAR-LFD can
further be used for learning company representations that are beneficial for downstream
tasks, such as identifying economically related peer firms [86].
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4.6.1 Next-filing recommendation
Our first recommendation task is next-filing recommendation, where the goal is to
predict the next filing that a user will view, based on the filings that they have already
viewed in the current session. More precisely, this is the task of recommending an
accession number (see Table 4.3). Analogous to session-based recommendation [122],
next-filing recommendation is particularly useful for EDGAR since the majority of
users are not frequent users. As shown in Section 4.5.1, the 90th percentile for the
number of sessions per user is equal to four, which makes reliance on historical behavior
for a specific user impractical. A successful next-filing recommendation system will
save users time, and will help them to have a more comprehensive picture on the subject
that they are seeking information about.

Given a session s = {xs,1, xs,2, . . . , xs,t}, defined as a sequence of interactions
with items corresponding to actions performed by a user, where xs,i ∈ X is an item
from the universe X , the goal of the recommendation model is to predict xs,t+1, the
next item that the user will interact with in s. For the session s, the recommendation
model assigns a score to all items xi ∈ X , and the top-K items are returned as the
candidate items for recommendation.
Our proposed approach. Building on our observations in the user behavior analysis,
we decompose the filing recommendation task into 1) predicting the company of the
target filing, and 2) ranking the filings of the predicted company. The initial step of
narrowing down the candidate set of companies is motivated by our user behavior
analysis, which showed that sessions usually contain filings from a small number of
companies only (see Fig. 4.8). We propose two company predictors, i.e., CIK-predictors,
to address the first problem:

• CIK-S-POP: Our user behavior analysis shows sessions contain filings from a small
number of unique companies. Hence, we select the most frequently viewed company
in the current session as the company for the next filing.

• CIK-encoder: We use a three layer neural network to encode the sequence of compa-
nies accessed in the input session and predict the next company. The first layer is an
embedding layer of size 128, the second layer is an LSTM with 128 units, and the
final layer is a linear transformation with softmax activation to convert the LSTM
output to predicted next-CIK probabilities. We limit the input sequence to (the most
recent) 128 companies.

We use the filings of the top prediction of the CIK-predictors as the recommendation
candidates. To rank the candidate filings, we use a ranking function similar to [70].
The approach learns from a training set of sessions (not necessarily tied to the user in
question), and makes a prediction using the most similar such sessions. Specifically, all
candidate filings xc are ranked using:

sim(si, xc) =
∑

s∈Nsi

sim(si, s)× I(xc, s), (4.1)

where Nsi is the set of top ksession similar sessions to the current session si, and I(xc, s)
is equal to one if xc ∈ s and zero otherwise. Following [70], we set ksession = 500
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in our experiments. To find the top ksession similar sessions to the current session, all
sessions are ranked based on their similarity to the current session. Similarity is defined
as the Jaccard index where sessions are encoded as sets of filings. Formally:

sim(s1, s2) =
|s1 ∩ s2|
|s1| × |s2|

, (4.2)

where | · | denotes the number of filings in a session.
Experimental setup. We use the data from 2003 in our experiments and split the data
temporally to obtain training and test sessions. We use a week of data for testing, and
the 16 weeks prior to that as training data. We repeat this process four times to make
sure we are not overfitting on a particular period. Each split comprises of approximately
700K training sessions, 40k test sessions, and contains more than 800k unique items,
i.e., filings. We run all models on all four splits, and report aggregated results on the four
one-week test periods. We generate input sequences and labels from sessions following
previous work [88, 122]. The results are reported on all test samples from the four splits
combined. For evaluation, we use Recall@k and MRR@k, following [88, 122]. We
report the metrics for k ∈ {10, 20}.
Baseline methods used for comparison. We compare our methods with classic recom-
mendation methods as well as state-of-the-art models. Through this comparison, we
aim to examine the effectiveness of the recommendation models that are designed based
on our understanding of the user behavior, versus powerful existing recommendation
models that are not designed for EDGAR. The following baseline models are evaluated:

• S-POP: Recommends the most popular filings of the current session. Despite its
simplicity, S-POP can achieve a competitive performance [122].

• Item-KNN [43]: Filings similar to the filings already viewed in the current session
are recommended by this baseline.

• Session-KNN [70]: This baseline relies on the similarity score between the current
session and the training sessions. All sessions are ranked based on their similarity to
the current session, and filings in the top similar sessions are ranked based on their
similarity to the filings in the current session.

• RepeatNet [122]: A state-of-the-art neural model with an encoder-decoder architec-
ture. The recommendation probability for each filing is learned via two decoders, to
account for two different modes in user behavior: exploration and repeated behavior.

Baseline result analysis. Table 4.4 shows the results for the baselines and our own
models. S-POP performs poorly; users rarely access the same filing more than once in a
session. Nearest neighbor-based models have the best performance among the baselines
on all metrics. This is in line with previous work showing the effectiveness of nearest
neighbor-based approaches for recommendation [42, 70]. Session-KNN outperforms
Item-KNN, which shows the effectiveness of measuring session similarity compared to
individual filing similarity for the task of next-filing recommendation.

The performance of RepeatNet is inferior to the nearest neighbor-based models, by a
large margin. We hypothesize that this is due to our huge item space. While RepeatNet
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Table 4.4: Experimental results for next-filing recommendation. The best baseline
results are underlined, the best overall results are shown in bold. Significant improve-
ments over the best baseline are marked with ∗ (t-test, p < .05).

Category Method Recall MRR

@10 @20 @10 @20

Baselines S-POP 0.0241 0.0284 0.0135 0.0138
Item-KNN 0.1095 0.1358 0.0540 0.0558
Session-KNN 0.1415 0.1771 0.0680 0.0704
RepeatNet 0.0652 0.0787 0.0348 0.0358

Ours CIK-S-POP 0.1686∗ 0.2110∗ 0.0800∗ 0.0829∗

CIK-encoder 0.2047∗ 0.2574∗ 0.0961∗ 0.0998∗

Figure 4.12: Performance of the proposed next-filing recommendation models w.r.t.
session length (Left) and frequency of target company in the training data (Right).

has been shown to be effective on e-commerce and music datasets with around 40K
unique items [122], we have around 800K unique items in each training set; even after
removing the items that appear less than 5 times in the training data [122], around 780K
unique items remain; our dataset is much sparser than the ones that RepeatNet has been
trained and tested on originally.

Discussion of the proposed approach. We analyze our proposed methods. Both
proposed models significantly outperform the best baseline with a large margin. This
confirms the effectiveness of the two-step recommendation model, where the search
space for the next filing is limited to the filings of the companies of interest to the user.
The superior performance of CIK-S-POP as compared to the baselines shows that a
simple model that is informed by the user behavior analysis can result in significant
improvements in performance.

Additionally, we calculate Precision@1 for both CIK predictors. This metric shows
to what extent the models are able to identify the company of the target filing, which
directly affects the final results. The Precision@1 is equal to 0.2957 and 0.3613 for
CIK-S-POP and CIK-encoder, respectively. The CIK-encoder model is more accurate,
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which is reflected in the filing recommendation performance. The higher accuracy in
prediction of the company for the next filing is the reason that CIK-Encoder outperforms
CIK-S-POP in the task of filing recommendation.

We further look into the sensitivity of each of the models to the input session length.
Fig. 4.12 (Left) shows the Recall@10 metric for different input session lengths. For
very short input sessions (length one or two) where there is not enough history for CIK-
Encoder to capture, CIK-S-POP is the best performing model. As the session length
increases, the performance of CIK-Encoder dominates. As the session grows in length
and the number of candidate companies to choose from increases, the performance of
both models degrades. For extremely long sessions CIK-Encoder rises in performance
again, which shows the effectiveness of the neural architecture to learn representations
for long input lengths.

Finally, we consider the sensitivity of the models to the frequency of the target
company in the training data. Fig. 4.12 (Right) shows the Recall@10 metric for both
models w.r.t. the target company frequency. The performance of both models improves
with the increase in the frequency of the target company. We notice that CIK-Encoder is
unable to outperform CIK-S-POP when the target company has extremely low frequency
in the training data.

Summary. We have proposed two-stage filing recommendation models that are de-
signed based on our understanding of user behavior. Our proposed models significantly
outperform state-of-the-art baselines, and are more effective for shorter sessions and
companies that are more frequent in the data.

4.6.2 Next-session recommendation

We consider the problem of next-session recommendation in the context of EDGAR
filings, where the session items are filing accesses during a session. The goal of the
next-session recommendation task is to recommend a list of filings to the user every
time they visit the website, based on the filings they have viewed in the past. Such
recommendations would reduce the burden on users to proactively find the filings of
interest every time they visit EDGAR, and facilitates quicker access to their information
need.

Recommending filings for the next session will be most helpful to the frequent users
of EDGAR for whom enough historical behavior is available. Although the frequent
users are not the majority of users, they are responsible for most of the activity, justifying
the design of recommendation models tailored for them. As shown in Section 4.5.1, the
10% most active users account for roughly 75% of the sessions on EDGAR.

Given Su = {Su
1 , S

u
2 , . . . , S

u
n} as the sessionized history of interactions for user u,

where Su
i is a session of interactions defined as Su

i = {x1, x2, . . . , xt} and xi ∈ X is
an item from the whole item set X , the goal is to predict the items in the next session of
the user, i.e., Su

n+1. For the session history Su, the recommendation model assigns a
score to all items xi ∈ X , and the top-K items are returned as the candidate items for
the next-session recommendation. This problem definition is equivalent to the task of
Next Basket Recommendation (NBR) [123].

Our proposed approach. We propose a simple yet effective recommendation model
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built on our observations from the user behavior analysis. We know from our user be-
havior analysis that a session usually contains filings from a small number of companies
(see Fig. 4.8). In particular, 85% of target sessions in our training set contain filings
from a single company. As a result, predicting the companies that will have filings
in the next session can reduce the search space tremendously. Similar to next-filing
recommendation, we propose a two-stage recommendation model, where in the first
step we predict the company(s) for the filings in the next session, and in the second step
we rank them. Our user behavior analysis also reveals that users are usually interested
in a small number of companies during their life time. In 46% of the training cases the
companies of the next session of a user are already present in their history.

We define CIK-P-POP such that for each user in the test data, we take the most
viewed company in their history in terms of number of sessions that contain it as the
predicted company for their next session. To rank the filings of the predicted company,
we rely on the fact that users are interested in the most recent filings, and rank the filings
of the predicted company in reverse chronological order of filing date.
Experimental setup. We use the data from 2003 in our experiments and split the data
temporally to obtain training and test sessions. We select the period from 2003-01-01 to
2003-11-31 as our training period. We keep the users that have more than 10 sessions
in this period. We set the week of 2003-12-01 to 2003-12-07 as our test period, and
our goal is to predict the first session of our training users in this period. As a result,
we train on 41,743 users, evaluate on 13,900 users, with an average number of 63.87
sessions per user with an average length of 3.22. For evaluation, we use Recall@k and
nDCG@k for k ∈ {10, 20} [66]. Both measures are calculated across the predicted
next session for all test users.
Baseline methods for comparison. We compare our method with classic methods
as well as a state-of-the-art model to examine the effect of using the insights from
user behavior in designing a recommendation model for EDGAR. Based on [92], the
following baseline models are evaluated:

• P-POP: Recommends the most popular filings in the user history.

• User-KNN: following [66], we merge all the filings in the historical sessions of users
as a set, calculate the user similarity using the similarity function defined in Eq. 4.2,
and sort the filings in the top kuser similar users with the scoring function defined in
Eq. 4.1. We set kuser = 100 in our experiments.

• TIFU-KNN [66]: A state-of-the-art nearest neighbor-based model for NBR, which
has been shown to outperform deep recurrent neural networks. The model relies on
the similarity of the target user with other users and the history of the target user.

Baseline result analysis. From the results in Table 4.5 we observe that P-POP performs
reasonably well; recommending filings that a user has accessed before is effective. The
User-KNN model does not outperform P-POP on this dataset, which is consistent with
the observations on NBR datasets [66, 92], emphasising the importance of personal
history of users compared to the similarity with other users. TIFU-KNN achieves the
highest performance among the baselines, which shows that combining users’ personal
preferences with the history of similar users is the most effective.
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Table 4.5: Experimental results for next-session recommendation. The best results are
shown in bold, the best baseline results are underlined. Significant improvements over
the best baseline are marked with ∗ (t-test, p < .05).

Category Method Recall nDCG

@10 @20 @10 @20

Baselines P-POP 0.0444 0.0629 0.0285 0.0337
User-KNN 0.0374 0.0433 0.0288 0.0305
TIFU-KNN 0.0666 0.0862 0.0440 0.0494

Ours CIK-P-POP 0.0789∗ 0.0965∗ 0.0558∗ 0.0609∗

0.2

0.1

0.3

0.02

0.04

0.06

0.08

Figure 4.13: Performance of CIK-P-POP w.r.t. the number of companies (Left) and
sessions (Right) in the user history.

Discussion of the proposed approach. We observe that despite its simplicity, CIK-
P-POP is able to significantly outperform the baselines, particularly the state-of-the-
art TIFU-KNN. This, again, highlights the importance of the analysis presented in
Section 4.5 in understanding user interaction with EDGAR and using it to facilitate
more streamlined interaction. We analyze the performance of CIK-P-POP. For 18.15%
of the test users, the companies in the target session contain the predicted company;
thus, there is a large room for improvement of the company predictor. We also examine
the sensitivity of CIK-P-POP to the number of unique companies in the history of the
users. Fig. 4.13 (Left) shows that the model is very sensitive to this parameter, with a
range of 30% Recall@10. It performs best when users have accessed a small number
of companies throughout their history, which makes it more probable for CIK-P-POP
to select the correct one for the next session. We also consider the sensitivity of the
model to the number of sessions in the user history. Fig. 4.13 (Right) shows the results.
CIK-P-POP is less sensitive to the number of sessions than to the number of companies,
and its performance sharply degrades when the number of sessions exceeds 50, which
makes it more difficult for CIK-P-POP to select the target company.

Summary. We have proposed a simple filing recommendation model based on our
insights from our user behavior analysis. Our proposed model significantly outperforms
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a state-of-the-art baseline, and is especially more effective for users that are focused on
a small number of companies in their history.

4.7 Conclusion

Financial company filings are a primary source for investors, analysts, advisors, and
regulators to acquire information about a company and to support their decision making.
We answer RQ3 by studying the EDGAR Log File Dataset, a publicly available dataset
containing the log of accesses to company filings on the US Securities and Exchange
Commission (SEC) website. Through a user behavior analysis, we provide the first
study on this dataset from an information access perspective. We find that sessions on
EDGAR are focused on filings from a small number of companies and individual users
are interested in a limited number of companies during their life cycle on EDGAR.

The goal of our work is to provide a stepping stone for the academic community
to tackle retrieval and recommendation tasks for the finance domain. We identify two
filing recommendation tasks that correspond to different usage patterns in the dataset.
To address RQ3, we propose two-stage filing recommendation models that first predict
the company of the next filing(s), and then rank the filings of the predicted company.
Our proposed models perform significantly better than the state-of-the-art direct filing
recommendation models. The contents of the filings are available through EDGAR,
and can be used to better understand the users. In future work, we aim to design
content-aware recommendation models. EDGAR-LFD contains the data for a rather
long period. While we study some temporal aspects of the user behavior in this chapter,
many dimensions remain unexplored. For example, it will be worthwhile to see how the
co-accesses to filings of different companies shift over time, and whether such a shift is
a reflection of a change in companies’ business lines.

In the next chapter we switch back to retail. We study the repurchase behavior of
users in grocery shopping and introduce a repeat consumption-aware neural network for
next basket recommendation.
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5
Modeling Repeat Behavior in Retail

In this chapter, we switch domain from finance to retail, and continue with designing
user-oriented recommender methods. This chapter addresses the following research
question: RQ4: What are the characteristics of repeat consumption behavior in the
grocery shopping domain and how can they be used in desiging next basket recom-
mender systems? We study the repeat behavior across six grocery shopping datasets,
and propose a neural next basket recommendation model that explicitly considers the
repeat behavior signals.

5.1 Introduction

Recommender systems in retail help users to find the items that they need from large
inventories. Different retail industries such as fashion [37], general e-commerce [88],
and grocery shopping [108] utilize recommender systems to facilitate the shopping
experience for their users. Different types of recommender systems, such as top-n [38],
sequential [137], and session-based [61] systems, are deployed for different scenarios.
In grocery shopping in particular, the Next Basket Recommendation (NBR) formulation
is considered to be the most relevant and has gained increasing attention in the literature
recently [49, 66, 117].
Next basket recommendation for grocery shopping. The NBR task is defined as
recommending a group of items to a user based on their shopping history, where the
history is a time-ordered sequence of baskets that they have purchased in the past. Each
basket is a set of items with no particular order [165]. This formulation fits the grocery
shopping setting well, where a user’s purchase history occurs naturally in the form of
such baskets. Two main characteristics of the grocery shopping scenario make it distinct
from other retail domains: 1) users shop for grocery items repeatedly and on a regular
basis, and 2) grocery items have a short life time and are repurchased frequently by the
same user [97].

Previous work has studied the NBR problem within different algorithmic frame-
works. Specifically, a number of neural network-based methods have been proposed

This chapter was published as M. Ariannezhad, S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke.
ReCANet: A repeat consumption-aware neural network for next basket recommendation in grocery shopping.
In SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Madrid, Spain, July 11–15, 2022, pages 1240–1250. ACM, 2022.
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to learn basket representations [65, 117, 138, 165], while nearest neighbor-based meth-
ods are dominant in modeling the personal history of users [49, 66]. In the grocery
shopping domain, recent studies of NBR models has shown that nearest neighbor-based
models that consider the characteristics of this domain and explicitly model the personal
history of users significantly outperform neural network-based models that are mostly
focused on basket representation and consider the previously purchased items only
implicitly [66, 92]. The superiority of nearest neighbor-based models is further shown
to be caused by their ability to correctly recommend items that have previously been
purchased by a user, so-called repeat items [92].

Understanding repeat-consumption behavior. Inspired by previous work highlighting
the importance of repeat items in grocery shopping [12, 49, 66, 92], we study the repeat
consumption behavior across six public and proprietary datasets in the grocery shopping
domain (Section 5.4). We find that different users exhibit different levels of repeat
consumption in all datasets. As time goes by and more baskets are added to a user’s
history, the repeat consumption increases. In all datasets, most of the items are subject to
repurchasing with a high probability. We further demonstrate what these findings mean
in terms of predictive performance for NBR. Specifically, we discover that averaged
over all datasets, over 54% of the performance in terms of recall comes from such
repeat items: items that the users have already purchased in their history, which only
account for 1% of the total items on average. This high performance indicates that a
NBR model that is focused on previously purchased items can potentially achieve a
high performance, while considering only a small number of candidate items per user.
Section 5.4.3 shows that most of the performance of recommender systems in NBR
stems from the minority of repeat items in the dataset.

Existing nearest neighbor-based models [49, 66] consider three main factors in
recommending repeat items for the next basket: 1) the frequency of items bought in a
users’ history, 2) the recency of items bought in the history, and 3) similarities between
users. Repurchasing patterns of items are not reflected in these models. For example,
one user might buy milk in every basket, and buy apples every two-to-three baskets
only. Moreover, similarities between items are also not taken into account. Considering
item similarities has the potential to help the generalization power of a recommendation
model, in cases where the consumption data is scarce [20].

ReCANet. We propose ReCANet, a repeat consumption-aware neural network that
addresses the shortcomings of existing NBR models (Section 5.5). In addition to
frequency and recency of items purchased by a user, and user similarities, ReCANet
further considers item similarities and personal repeat consumption patterns. The
intuition behind ReCANet is that the consumption pattern of an item by a user indicates
whether the item will appear in the next basket or not. Additionally, the consumption
pattern of that particular item by other users can also help the prediction. To this end, we
use embedding layers to represent items and users, and model the consumption patterns
with LSTM [62] layers. To evaluate the performance of ReCANet for NBR, we compare
it with several state-of-the-art models on six datasets in terms of multiple standard
ranking metrics (Section 5.6). The experimental results confirm the effectiveness of
ReCANet (Section 5.7); it significantly outperforms the state-of-the-art models in terms
of recall and nDCG. The improvements over state-of-the-art baselines are consistent
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across all datasets.
To summarize, our contributions are as follows:

• We provide an empirical study on the characteristics of repeat consumption
behavior across six grocery shopping datasets (Section 5.4). To the best of our
knowledge, this is the first study of this kind.

• We propose ReCANet, a novel neural architecture for NBR in grocery shopping,
focused on repeat items (Section 5.5).

• We demonstrate the effectiveness of ReCANet in comparison with state-of-the-art
NBR models through experiments on three public and three proprietary datasets,
where ReCANet is shown to significantly outperform the baselines (Section 5.7).

• We validate the importance of different components of ReCANet through an abla-
tion study and conduct parameter and user sensitivity experiments to demonstrate
its robustness for different hyper-parameters and user groups (Section 5.7).

5.2 Problem Formulation

The goal of the NBR task is to recommend a full basket composed of a list of items to
the user for their next basket, based on the history of the items that they have purchased
in the past. Such recommendations reduce the burden on users to proactively find items
of interest every time they need to shop.

Formally, a basket is a set of items defined as B = {x1, x2, . . . , xt}, where xi ∈ I
denotes an item from a set of items I . Given the history of purchases for user u ∈ U
as the sequence Bu = [Bu

1 , B
u
2 , . . . , B

u
n], where Bu

i is the i-th basket in the purchase
history of user u and U denotes the set of users, the goal is to predict the items in the
next basket of the user, i.e., Bu

n+1. For the basket history Bu, the recommendation
model assigns a score to all items xi ∈ X , and the top-k items are returned as the
candidate items for the next basket.

One of the main use cases for the NBR task is grocery shopping, which is also the
focus of this chapter. Users tend to purchase multiple items at a time, which corresponds
to the concept of a shopping basket. Grocery shopping is repetitive; it is usually done
on a regular basis. Moreover, many grocery items have a short life time, which leads to
repeated purchases of these items [97].

The next basket of a user consists of both repeat items, i.e., the items that they have
already purchased in the past, and completely new items that they have not purchased
previously, i.e., explore items. A recent study on state-of-the-art methods in NBR on
grocery shopping datasets [92] has shown that NBR methods that are biased towards
repetition, i.e., that generate a predicted basket mostly from repeat items, significantly
outperform explore-biased approaches. Explore-biased approaches methods are even
repeatedly outperformed by the simplest model for NBR, which recommends the most
frequently purchased items in a user’s history. This calls for further studies aimed at
understanding repeat consumption behavior in grocery shopping, as well as designing
personalized NBR models that are able to effectively model this behavior.

67



5. Modeling Repeat Behavior in Retail

In this chapter, we focus on the following two research questions as a step towards
this direction:

RQ4.1: What are the characteristics of repeat consumption behavior in the grocery
shopping domain?

RQ4.2: How can we design a NBR model that takes the personal repeat behavior of
users into account?

In Section 5.4, we address RQ4.1 through an empirical study of six grocery shopping
datasets. To answer RQ4.2, we propose ReCANet in Section 5.5, a personalized next
basket recommender that models the repeat consumption behavior effectively.

5.3 Related Work

Next basket recommendation. There is growing interest in research into e-commerce
in the information retrieval (IR) community [142]. As one of the core recommendation
tasks in e-commerce, the NBR task has gained considerable attention in the recent years,
where many studies focus on learning representations for sequence of baskets with
neural networks. Yu et al. [165] use recurrent layers and inspired by word2vec in natural
language processing, Wan et al. [148] introduce triple2vec for NBR. Correlations
between items in baskets are used to recommend more coherent baskets in [85]. An
encoder-decoder architecture using recurrent layers is proposed in [65]. Inspired by
the transformer architecture, Sun et al. [138] leverage multi-head attention to learn a
representation for a sequence of sets. Yu et al. [166] build a co-occurrence graph for
items and use graph convolutions to learn item relationships in baskets. A contrastive
learning framework is introduced in [117] to denoise basket generation by considering
only the relevant items in the history. The focus in these works is on modeling item
relations in baskets; personal preferences of users are considered only implicitly.

In another line of work, Hu et al. [66] propose TIFU-KNN, a nearest neighbor-based
model for NBR that directly models the personal history of users. The model is shown
to perform superior to strong neural network-based baselines designed for the task,
demonstrating the importance of repeat behavior, i.e., recommending items that a user
has purchased before. Similarly, Faggioli et al. [49] propose UP-CF@r, a simple model
that combines the personal popularity with collaborative filtering, leading to strong
performance for NBR. A recent survey on NBR models demonstrates the effectiveness
of TIFU-KNN and UP-CF@r compared to more complex neural models [92]. While
these models consider the frequency and the recency of items bought in the history,
repurchasing patterns of items are not reflected in these models.

In this chapter, we propose a neural architecture that learns from the personal
consumption patterns of users and recommends from the previously purchased items.
Understanding repeat behavior. People are creatures of habit [6, 110]. The tendency
to repeat behavior has been uncovered in many different domains, from revisiting places
to re-listening to the same songs [6, 23]. Reiter-Haas et al. [121] adopt a psychological
theory of human cognition that models the operations of human memory for music re-
listening prediction. Chen et al. [35] derive four generic features that influence people’s
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short-term reconsumption behaviors independent of domain and predict whether or not
a user will perform a reconsumption at a specific time.

Repeat behavior has also been studied in the context of recommendation. Rappaz
et al. [120] show that carefully modeling repeat consumption plays a significant role
in achieving state-of-the-art recommendation performance on a video live-streaming
platform. Repeat purchase recommendations on the Amazon.com website lead to an
over 7% increase in product click through rate on its personalized recommendations
page [24]. Ren et al. [122] propose a model with an encoder-decoder architecture
for session-based recommendation, where the encoder has a separate component for
modeling repeat consumption. Finally, Wang et al. [149] combine collaborative filtering
with temporal point processes to recommend novel items and consumed items in a
sequential recommendation setting.

What we add to this literature is a next basket recommendation model that focuses on
recommending items from the users’ past consumption history in the grocery shopping
domain.

5.4 Empirical Study

In this section, we study the characteristics of repeat consumption behavior in grocery
shopping. We describe six datasets that contain transaction data from online and physical
grocery stores. We then analyze the repeat behavior across users, baskets, and items.
We conclude this section by establishing an upper bound on the predictive performance
for repeat-focused recommendation.

5.4.1 Dataset description

We use six grocery shopping datasets in this chapter. The datasets are described below
and their statistics are summarized in Table 5.1. We leverage three types of datasets:
“online” and “offline” refer to online shops and physical stores, respectively. “Multi-
channel” is the case where users purchase goods from both online and offline shopping
channels. Among them, three are publicly available: Dunnhumby,1 ValuedShopper,2

and Instacart.3 We further use three proprietary datasets from a large food retailer in
Europe, namely X-online, X-offline, and X-multi-channel.

All datasets contain transactions: which items are bought by which user at which
time. All items bought in the same transaction are treated as a basket. In all datasets,
we remove users who have less than three baskets and items that occur in less than five
baskets in total. For every user, we sort the baskets by time. The last basket of every
user is reserved for testing or validation, while the rest are treated as the training data.
Table 5.1 shows the statistics for the training data after preprocessing.

“Avg. item per user” shows the number of unique items that a user has interacted
with, averaged over all users. “Personal item ratio (%)” is the average number of items
per user divided by the total number of items in the dataset, in percentage. “Avg. repeat

1https://www.dunnhumby.com/careers/engineering/sourcefiles
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/overview
3https://www.kaggle.com/c/instacart-market-basket-analysis
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Figure 5.1: Distribution of repeat ratio in the baskets of users for all datasets.

ratio” shows the fraction of items in the last training basket of the users that have already
appeared in their past, averaged over users. “Avg. explore ratio” shows the opposite, the
fraction of new items.

The datasets vary in different aspects. In terms of history per user, Dunnhumby and
ValuedShopper are very rich, with more than a hundred baskets per user on average.
Instacart, X-offline and X-multi-channel have much less history for users, ranging from
13 to 16 basket per user on average, and X-online is scarce with only 6 basket per user
on average. The number of users varies across datasets as well, with Instacart being the
largest with 197K users and Dunnhumby being the smallest with 2K users. The basket
size is similar for all datasets, except X-online and X-multi-channel which have larger
basket sizes than the rest. The total number of items does not vary a lot across datasets,
ranging from 13K to 47K.

The average repeat ratio differs between datasets, with ValuedShopper having the
highest and X-offline having the lowest values. However, even the lowest repeat ratio is
over 36%. Personal item ratio is less than 3% for all datasets, which shows that from all
of the items that are present in the inventory, every individual user is only concerned
with a very small fraction of them. Interestingly, this is also the case for the datasets
with a rich history for users, such as Dunnhumby and ValuedShopper: even when a
user’s purchase history covers a long period, the number of unique items they interact
with does not grow that much.

5.4.2 Characteristics of repeat consumption

In this section, we study the repeat consumption behavior in the grocery shopping
datasets introduced above. We aim to gain insights that show what a recommendation
model should focus on when using user and item data. In this section, we only consider
the training baskets.

Repeat ratio across baskets. Repeat ratio in a basket is defined as the fraction of
items in that basket that have already been purchased by the same user in the previous
baskets. We study the repeat ratio in users’ baskets to understand the stability of repeat
consumption across time. Specifically, we are interested in analyzing how the repeat
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Figure 5.2: Cumulative distribution of repeat ratio in the last basket of users (Left) and
repetition probability of items (Right) in all datasets.

ratio changes as more baskets are added to the history of a user. For each user, we
distribute their baskets uniformly in 10 bins, where the smaller bin numbers correspond
to the earliest baskets in the user’s history. Given Bu

t as a basket in user u’s history,
where t indicates the index in the history sequence and n is the total number of u’s
baskets, the bin number for Bu

t is defined as ⌈ t
blu

⌉, where blu corresponds to the bin
length for u, defined as ⌈ n

10⌉.
Fig. 5.1 shows the distribution of the averaged repeat ratio for each bin across

datasets. As expected, the repeat ratio grows as more baskets are added to the history.
For the Instacart, Dunnhumby and ValuedShopper datasets, we see a jump at the start
of the history. The jump at the start shows that after the first baskets of the user, when
sufficient history has been gathered, the repeat ratio stabilizes to some extent. That
is, when users have purchased goods for some time, their history is rich enough for a
repeat-based recommendation. On the X-datasets, the repeat ratio is still increasing
and has not reached the plateau point yet. This might be the result of the minimum
preprocessing and preselection of users that we performed when creating these datasets,
in contrast to the ones that are made public by others.

The repeat ratio reaches its highest value in the final baskets of the users. This
means that the last baskets of the users in the history contain more repeat items than the
earlier ones. This shows the importance of considering the recency: the next basket we
aim to predict is closer to the last baskets of the users, in terms of repeat ratio, than to
the early baskets.

Repeat ratio across users. To analyze the repeat ratio across users, we consider the
repeat ratio in their last basket in the training data, which is the temporally closest one
to the future basket we aim to predict. The cumulative distribution of repeat ratio in the
last basket of training data is shown in Fig. 5.2 (Left). The distributions differ across
datasets. On the Instacart, Dunnhumby and ValuedShopper datasets, 20 to 25 percent of
users have a repeat ratio of 1: their last basket is entirely composed of items that they
have already purchased before. On the ValuedShopper dataset, half of the users have a
repeat ratio of more than 0.75, and for only 20 percent of the users the repeat ratio is
less than 0.50. Instacart follows the same trend, with slightly lower values for the repeat
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Table 5.2: Performance of the oracle personal NBR model.

Type Dataset Recall@|B| nDCG@|B|

Online Instacart 0.6087 0.6945
X-online 0.6214 0.7236

Offline
Dunnhumby 0.4488 0.5331
ValuedShopper 0.7168 0.7815
X-offline 0.3811 0.4843

Multi-channel X-multi-channel 0.4959 0.6055

ratio. On the other hand, in the X-offline and Dunnhumby datasets, around 20 percent
of the users have a repeat ratio of zero: these are the users who will not benefit from
repeat-based recommendations. This percentage is less than 10 for the other datasets.
X-online has the smoothest distribution, with no long tail on either side of the spectrum.

Overall, we observe that not all users benefit to the same degree from a personalized
recommendation, which is expected: users differ in terms of amount of history that we
have for them, and they differ in their tendency for repeat consumption. However, even
for the X-offline dataset as the most challenging dataset, over 30% of the last basket can
be predicted based on the history, for more than 50% of the users.

Repeat ratio across items. So far, we have analyzed the repeat behavior from the
users’ perspective and across baskets. Another aspect to consider for repeat behavior
is the item dimension. Items differ in their tendency to be repurchased. We define the
item repetition probability as the number of users who have repurchased the item (a.k.a.
purchased the item more than once) divided by the number of users who have purchased
the item only once.

Fig. 5.2 (Right) shows the cumulative distribution of the probability of an item being
repurchased for all items across datasets. Unlike the analysis on baskets and users,
where the repeat ratio varied a lot across datasets, we observe very similar distributions
for items. On all datasets, less than 10% of the items have a repetition probability of
less than 0.5. The median ranges between 0.7 to 0.9, which means that most of the
items in the grocery shopping datasets will be repurchased with a high probability.

5.4.3 Upper bound for next basket recommendation performance

Our study in Section 5.4.2 shows that the users’ repeat behavior becomes more dominant
as time passes. Furthermore, while being different for different users, repeat items
account for a considerable fraction of items in baskets even when the average repeat
ratio is low. Moreover, most of the items in grocery shopping datasets are repurchased
frequently. In this section, we analyze how the repeat consumption behavior relates to
the next basket recommendation problem. To this end, we consider a personal NBR
model that only focuses on items that a user has purchased before. That means that
instead of ranking all of the items in the dataset, the model only assigns scores to the
users’ previously purchased items.
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What is the maximum performance of a personal NBR model? We design an
oracle personal NBR model that achieves this performance as follows: given the items
purchased in the history Bu = [Bu

1 , B
u
2 , . . . , B

u
n] of user u, the oracle recommends

the ones that occur in Bu
n+1. Table 5.2 shows the performance of the oracle model on

different datasets, in terms of Recall@|B| and nDCG@|B|, where |B| is the size of the
target basket Bu

n+1. Recall@|B| measures the fraction of items in the target basket that
are present in the top |B| items, and nDCG measures how high in the top |B| list the
relevant items are ranked. Repeat items, which account for less than 3% of all items
in all datasets, are responsible for 38 to 62% of the oracle performance in NBR. The
remaining 97% of items contribute to the oracle performance in NBR similarly: they
account for the remaining 38 to 62% of performance. Averaged over all datasets, 54% of
the oracle performance in NBR in terms of Recall@|B| comes from only 1% of items!
This indicates the importance of the repeat items, and the potential of a personalized
recommendation model that is focused on those.

In answer to RQ4.1, we find that 1) users tend to buy more of the items they have
purchased before as time passes, 2) repeat items remain a significant fraction of items
in baskets on average, and 3) focusing on repeat items for next basket recommendation
offers a great opportunity to improve the overall performance of recommender systems.
Next, we introduce our proposed recommendation model that builds on these insights.

5.5 A Personalized Next Basket Recommendation Model

Based on insights from our empirical study, we design a network that is focused on
repeat items and that models the personal consumption patterns in a user’s history. We
introduce ReCANet, a repeat consumption-aware neural network.

5.5.1 Architecture overview

The goal of the personalized NBR task is to decide which of the items that a user
consumed in the past will appear in the next basket. We model it as a binary classification
task, where the labels “positive” and “negative” correspond to an item being present in
the target basket or not, respectively.

We design a neural model for this problem, whose architecture is shown in Fig. 5.3.
The intuition is that the repurchase of an item is predictable from the past consumption
pattern of the item by this user, other users, and other items. To model this, the network
takes three inputs: item id x, user id u, and history vector with the length of window
size w, corresponding to the consumption pattern of x by u. Formally, given user u,
for every x ∈ Xu where Xu is the set of all items user u has purchased in their history,
ReCANet produces pux, which is the probability of item x being in the next basket of u.
At the first layer, item id and user id are embedded separately, concatenated, and fed
to a feed-forward layer to create a user-item representation. The combination of the
user-item representation and the history vector is then fed to a stack of LSTM layers,
which models the temporal consumption pattern of item x by user u. The output of the
last LSTM layer is the input for a stack of feed-forward layers, with a sigmoid activation
at the last layer which generates the probability of item x appearing in the target basket.
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User embedding

Non-linear feed-forward layer 
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in the next basket of user  

 

Item embedding

User-item representation learning Consumption pattern learning
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PredictionLSTM layer

Non-linear feed-forward layer 

Non-linear feed-forward layer 

Linear feed-forward layer 

Figure 5.3: Overview of ReCANet’s architecture.

5.5.2 Architecture details

The goal of ReCANet is to predict the probability of an item appearing in the next basket
of a user. As explained above, to model this, ReCANet utilizes different components,
which we will now discuss in detail.
Inputs. The network takes three inputs: 1) An item id x, which is a unique identifier
for each item x ∈ X; 2) A user id u, similarly a unique identifier for each user u ∈ U ;
3) A history vector h⃗ ∈ Rw, where window size w is a hyper-parameter of our model.

The history vector h⃗ is defined in a way to reflect the consumption history of item x
by user u. As we aim to predict the occurrence of x in basket Bu

n+1, we consider the
last w baskets in [B1, . . . , Bn] that contain x. [b1, b2, . . . , bw] denote the indices in the
basket history sequence, that is 1 ≤ bi ≤ n. For 0 ≤ i ≤ w − 1, the i-th element in h⃗
is equal to bi+1 − bi. For i = w, the i-th element in h⃗ is equal to (n+ 1)− bw. If the
number of baskets that contain x are less than w, the corresponding elements in h⃗ are
filled with zero.

As an example, assume that user u has 99 baskets in their history, and we want to
predict whether item x appears in the 100th basket. We know that x has appeared in
baskets {15,29,45,78,95,97,99}. Given a window size of w = 5, vector h⃗ is equal to
[78− 45, 95− 78, 97− 95, 99− 97, 100− 99] = [33, 17, 2, 2, 1].

The history vector h⃗ has three important properties: 1) it contains the frequency of
consuming the item, as the number of nonzero elements in the vector are the represen-
tative of the purchase frequency; 2) it contains the recency information, since it is a
sequence and the index in the sequence indicates how far in the history the item has
been consumed; and 3) it contains information about the consumption pattern, as the
values in the vector demonstrate the gaps between consecutive purchases of the item.
User item representation learning. Our goal is to predict the appearance of item x in
the next basket of user u. As a result, we aim to model the user-item relationship. We
separately embed users and items, and then combine the embeddings. Assume Wi ∈
R|I|×di is the trainable embedding matrix for items and Wu ∈ R|U |×du is the trainable
embedding matrix for users, where di and du are the embedding dimensions. Given x
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and u as item and user identifiers, the corresponding rows in the embedding matrices
denote the item embedding ex ∈ Rdi and user embedding eu ∈ Rdu , respectively.
These embeddings allow the network to learn item and user representations that keep
similar items and similar users close in the embedding space. The final user-item
representation eui ∈ Rm is obtained as follows:

eui = ReLU((eu ⊕ ei) ·W1 + b1),

where W1 ∈ R(di+du)×m and b1 ∈ Rm are trainable parameters, ReLU is the activation
function, and m is a hyper-parameter of our model that denotes the hidden layer size,
i.e., the model size. ⊕ denotes concatenation.
Consumption pattern learning. The history vector h⃗ ∈ Rw contains the consumption
pattern of item x by user u. In order to predict the repurchase probability, we first need
to combine the user-item representation with the history vector. To this end, we replicate
eui w times to obtain ewui ∈ Rw×m. The combination representation cui ∈ Rw×m is
the computed as follows:

cui = ReLU((ewui ⊕r h⃗) ·W2 + b2), (5.1)

where ⊕r denotes row-wise concatenation; that is, each element of h⃗ is concatenated
with the corresponding row in ewui (i.e., (ewui ⊕r h⃗) ∈ Rw×(m+1)). W2 ∈ R(m+1)×m

and b2 ∈ Rm are trainable parameters. cui is a sequence of length w that contains
information from both the user-item representation and the consumption history vector.
To model sequential information, we use a stack of two LSTM layers. Formally:

fjt = Sigmoid(Wfjxt + Ufjht−1j + bfj )

ijt = Sigmoid(Wijxt + Uijht−1j + bij )

ojt = Sigmoid(Wojxt + Uojht−1j + boj )

ĉjt = Tanh(Wcjxt + Ucjht−1j + bcj )

cjt = fjt · cjt−1 + ijt · ĉjt
hjt = ojt · Tanh(cjt),

(5.2)

where j ∈ {1, 2} denotes the first and the second LSTM layer, respectively; 1 ≤ t ≤ w
indexes the time step; xt ∈ Rm denotes the input of the LSTM, which is equal to the
corresponding time stamp in cui for the first layer, and the corresponding time stamp
in cell state vector of the first layer (i.e., c1t) for the second layer. Wfj , Wuj

, Woj ,
Ufj , Uuj

, Uoj , bfj , buj
, boj are weight matrices and bias vector parameters that will be

learned during training. The hidden state of the second layer, i.e., hw2
∈ Rm, is used as

the input for the prediction layers.
Prediction. We apply a two-layer feed-forward network with ReLU activation in
between and a sigmoid activation at the end to produce the probability of item x
appearing in the next basket of user u, with trainable parameters Wo1 ,Wo2 ∈ Rm×m

and bo1 , bo2 ∈ Rm:

pux = Sigmoid(ReLU(hw2
·Wo1 + bo1) ·Wo2 + bo2). (5.3)
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5.5.3 Learning process

Training. We use the training baskets for creating training samples. For each user, we
consider their last L baskets, where L is a parameter than can be set per user or per
dataset. We set it per dataset. The intuition behind truncating the baskets is two-fold:
1) as shown in our empirical study, the last baskets of users are more similar to their
upcoming basket in terms of repeat consumption behavior than their earlier baskets; and
2) the number of baskets per user varies, and this may result in unfair presence of users
in training data. Limiting the number of baskets per user helps to mitigate this problem.
For each basket Bt in the last L baskets of a user, the items that have been purchased
in the previous t− 1 baskets are the candidates for recommendation. Each item along
with the user and its consumption history make up one training sample. To create labels
for the binary classification task, the items that occur in Bt are the positive samples; the
rest are negative ones. We use the binary cross-entropy loss for training the network.

Testing. The last basket of each user is used for testing or validation. The inputs of the
network are generated with the same procedure as the training phase, where all items in
the training baskets of the user are recommendation candidates. For each user, the items
are then ranked based on the output of the network, and the top-k items are returned as
the predictions for the next basket.

5.6 Experimental Setup

We introduce our baselines, data split scheme, evaluation metrics, parameter setting and
implementation details.

Baselines. In addition to two simple baselines (P-POP, GP-POP), we compare ReCANet
with two neighborhood-based models (TIFU-KNN, UP-CF@r), and one neural network
(DNNTSP). These models have been shown to outperform other methods in NBR for
grocery shopping and achieve state-of-the-art performance [92]:4

• P-POP: Recommends the most popular items in the user history, sorted by frequency
of purchases. In NBR, P-POP is considered one of the strongest baselines.

• GP-POP: First uses P-POP to fill the predicted basket. If there are remaining empty
slots (a.k.a., the basket size is larger than the number of items in the user’s history),
they will be filled with the most popular items in total.

• TIFU-KNN [66]: A nearest neighbor-based model that has been shown to outperform
deep recurrent neural networks. The model relies on the similarity of the target user
with other users and the history of the target user.

• UP-CF@r [49]: A collaborative filtering-based approach based on user-wise item
popularity which also considers the recency of purchases.

4While a large number of NBR methods have been proposed in recent years, these are all outperformed by
the methods that we have selected as baselines; see [66, 92].
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• DNNTSP [166]: A deep neural network model that learns item relationships by
constructing a co-occurrence graph and performs graph convolutions on the dynamic
relationship graphs.

Data split. We follow the same procedure as Faggioli et al. [49]. The training data is
composed of all baskets but the last one of all users. We randomly select 50% of the
last baskets for the validation set, and the remaining ones for the test set. The validation
set is used to select the best hyper-parameters of the methods, and the final results are
reported on the test set.

Evaluation metrics. Following [66, 166], we use Recall@k and nDCG@k for evalua-
tion. Recall is widely used in NBR, measuring how many of the items in the target basket
are present in the predicted items for the next basket. nDCG is a ranking-based measure
that takes into account the order of elements. Both measures are calculated across the
predicted next basket for all test users. We report the metrics for k ∈ {10, |B|}, where
|B| stands for the length of the test basket B. We use 10 because there are limits for
showing recommendations to users. We use |B| to be able to compare performance
across varying basket sizes and different datasets.

Parameter settings. We perform a grid search to find the hyper parameters that result
in the best performance on the validation set, and use those for testing. We set the model
size m to 64, sweep the embedding sizes du and di in {16, 32, 64, 128} and the window
size w in {5, 15, 25, 35, 45}. The hyper-parameters of the baselines are either tuned
or set according to instructions in the papers if available. For TIFU-KNN we use the
best parameters reported in the original paper [66] for the Instacart and ValuedShopper
datasets. For UP-CF@r, we use the reported parameters on the Instacart and Dunnhumby
dataset [49]. We tune these models on the rest of the datasets. DNNTSP is used with the
parameter setting stated in [166] for all datasets, as there are no instructions for tuning.

Implementation details. ReCANet is implemented using the Keras framework with
TensorFlow as backend. We use mini-batch stochastic gradient descent (SGD) together
with the Adam optimizer to train the models. We set the batch size to 2048, and
stop training when the loss on the validation set converges. To remove the random
initialization effect, we run our model 10 times and report the average results. It is worth
mentioning that the standard deviation is less than 0.001 in all cases. For users who
have more than 100 baskets in the training data, we only keep their last 100 baskets for
creating the training samples (L = 100), except on the ValuedShopper dataset, where
we set the threshold to 50. We make our code public to facilitate reproducibility and
follow up research.5

5.7 Results and Discussion

5.7.1 Overall performance

Table 5.3 shows the results of ReCANet alongside state-of-the-art baselines on all
datasets. We observe that the performance of P-Pop and GP-Pop is identical in most

5https://github.com/mzhariann/recanet
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Table 5.3: Results of ReCANet compared against the baselines. Boldface and underline
indicate the best and the second best performing model among NBR models, respec-
tively. Significant improvements of ReCANet over the best baseline results are marked
with † (paired t-test, p < 0.05). ▲% shows the improvements of ReCANet against the
best baseline.

D
at

as
et Baselines

Metric P-Pop GP-Pop TIFU-KNN UP-CF@r DNNTSP ReCANet
(▲%)

In
st

ac
ar

t Recall@10 0.3222 0.3230 0.3434 0.3400 0.3427 0.3592† (4.6)
nDCG@10 0.3131 0.3134 0.3332 0.3319 0.3336 0.3502† (5.0)
Recall@|B| 0.2901 0.2904 0.3115 0.3077 0.3079 0.3295† (5.8)
nDCG@|B| 0.3299 0.3301 0.3521 0.3479 0.3480 0.3717† (5.6)

X
-o

nl
in

e Recall@10 0.1603 0.1603 0.1443 0.1619 0.1601 0.1645† (1.6)
nDCG@10 0.6283 0.6283 0.5771 0.6361 0.6334 0.6462† (1.6)
Recall@|B| 0.3613 0.3613 0.3009 0.3680 0.3679 0.3735† (1.5)
nDCG@|B| 0.4323 0.4323 0.3731 0.4396 0.4391 0.4467† (1.6)

D
un

nh
um

by Recall@10 0.1315 0.1315 0.1485 0.1421 0.0892 0.1621† (9.2)
nDCG@10 0.1267 0.1267 0.1379 0.1364 0.0825 0.1489† (8.0
Recall@|B| 0.1048 0.1048 0.1244 0.1173 0.0576 0.1310† (5.3)
nDCG@|B| 0.1216 0.1216 0.1423 0.1346 0.0685 0.1503† (5.6)

V
al

ue
d-

Sh
op

pe
r Recall@10 0.2030 0.2030 0.2194 0.2161 0.1927 0.2311† (5.3)

nDCG@10 0.2006 0.2006 0.2142 0.2096 0.1954 0.2228† (4.0)
Recall@|B| 0.1735 0.1735 0.1853 0.1822 0.1647 0.1958† (5.7)
nDCG@|B| 0.2032 0.2032 0.2174 0.2134 0.1929 0.2282† (5.0)

X
-o

ffl
in

e Recall@10 0.1585 0.1587 0.1136 0.1644 0.1298 0.1704† (3.6)
nDCG@10 0.2006 0.2007 0.1345 0.2055 0.1964 0.2120† (3.2)
Recall@|B| 0.1569 0.1570 0.1090 0.1619 0.1593 0.1675† (3.5)
nDCG@|B| 0.1882 0.1883 0.1282 0.1933 0.1899 0.1998† (3.4)

X
-m

ul
ti-

ch
an

ne
l Recall@10 0.1170 0.1170 0.0797 0.1181 0.1064 0.1203† (1.9)

nDCG@10 0.3628 0.3628 0.2375 0.3673 0.3607 0.3648 (-0.7)
Recall@|B| 0.2132 0.2133 0.1634 0.2172 0.2152 0.2214† (1.9)
nDCG@|B| 0.2574 0.2575 0.1848 0.2616 0.2582 0.2642† (1.0)

cases, and in cases where a difference is observed (all metrics on Instacart and X-offline,
Recall@|B| and ndCG@|B| on X-multi-channel) GP-Pop outperforms P-Pop with a
very small margin that is not significant. This means that given 10 and |B| as cut-off
points for the recommendation list, users have enough items in their history that will
surpass the threshold. However, the differences will likely be more substantial if larger
thresholds are used, as suggested in [92].

The performance of P-Pop is the lowest in most cases, but it is in the same range as
state-of-the-art methods. This result once again confirms the importance of personal
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history in next basket recommendation. P-Pop as the simplest method for NBR should
always serve as a baseline when a new model is proposed. This has not always been
the case; in [117], for example, the authors do not compare their proposed method with
P-Pop, and it has later been shown that P-Pop outperforms it in most cases [92].

DNNTSP is not the best baseline for any of the datasets and metrics, except for
nDCG@10 on Instacart. The performance in all cases is in the same range with
other methods, except on Dunnhumby, where there is a large gap between DNNTSP’s
performance and the others. We suspect that this is a result of the extremely low number
of users in Dunnhumby, compared to the other datasets. DNNTSP has been tested on
datasets with 10k to 100k users in the original paper [166], and additional measures
such as hyper-parameter tuning might be required for a dataset with small number of
users.

TIFU-KNN and UP-CF@r are the best performing baselines on all datasets and
metrics, except for one case (nDCG@10 on Instacart). Both methods are nearest
neighbor-based, and show superior performance to the state-of-the-art neural approach
DNNTSP. These results are in line with findings in previous work [66, 92]; modeling
the personal history is at least as effective as basket representation learning, if not
more. The performance of UP-CF@r is more stable across datasets than TIFU-KNN;
in cases where it is not the best baseline (Instacart, Dunnhumby, ValuedShopper) its
performance does not differ significantly from TIFU-KNN. On the other hand, TIFU-
KNN’s performance drops on X datasets and even falls short of P-Pop. We suspect that
this a result of non-optimal hyper-parameters on these datasets. The ranges for tuning
the parameters given in the original paper are for Dunnhumby (but another version of
the dataset), Instacart and ValuedShopper [66].

ReCANet significantly outperforms the best baseline in all datasets and across all
metrics, except for one case (nDCG@10 on X-multi-channel), where it performs the
same as UP-CF@r. The improvements range from 1.0% to 9.2%. X-online and X-
multi-channel are the datasets with the lowest performance gains compared to the best
baseline. These are the datasets with a large average basket size (42 and 23, compared
to around 10 on other datasets). This indicates that predicting larger baskets is more
challenging for ReCANet. Improving the ranking component of the network could
mitigate this problem, which is left as future work.

5.7.2 Ablation study

We design an ablation study to investigate the effect of different components of ReCANet
and compare it with four variations: 1) w/o user: the user embedding layer is omitted,
and the item embedding alone is combined with history vector; 2) w/o item: the item
embedding layer is omitted, and the user embedding alone is combined with history
vector; 3) w/o user and item: the user-item representation learning module is omitted;
and 4) w/o history: the consumption pattern learning module is omitted.

Table 5.4 shows the results. ReCANet w/o history has the lowest performance
compared to the other versions, across all metrics and datasets. Omitting the consump-
tion pattern learning module results in drops in performance ranging from 12.7% to
31.3%. This indicates that the history vector contains valuable information for next
basket predication, and the designed module is effective in utilizing this information.
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Table 5.4: Results of ablation study. Boldface and underline indicate the best and
the second best performing model. ▼% shows the drop in performance compared to
ReCANet.

D
at

as
et Variations

Metric ReCANet w/o user
(▼%)

w/o item
(▼%)

w/o user and
item (▼%)

w/o history
(▼%)

In
st

ac
ar

t Recall@10 0.3592 0.3585 (0.2) 0.3507 (2.4) 0.3506 (2.4) 0.3135 (12.7)
nDCG@10 0.3502 0.3496 (0.2) 0.3406 (2.7) 0.3407 (2.7) 0.2976 (15.0)
Recall@|B| 0.3295 0.3291 (0.1) 0.3203 (2.8) 0.3202 (2.8) 0.2807 (14.8)
nDCG@|B| 0.3717 0.3712 (0.1) 0.3613 (2.8) 0.3612 (2.8) 0.3172 (14.7)

X
-o

nl
in

e Recall@10 0.1645 0.1632 (0.8) 0.1609 (2.2) 0.1598 (2.9) 0.1155 (29.8)
nDCG@10 0.6462 0.6409 (0.8) 0.6285 (2.7) 0.6238 (3.5) 0.4604 (28.8)
Recall@|B| 0.3735 0.3712 (0.6) 0.3637 (2.6) 0.3626 (2.9) 0.2997 (19.8)
nDCG@|B| 0.4467 0.4436 (0.7) 0.4342 (2.8) 0.4323 (3.2) 0.3441 (23.0)

D
un

nh
um

by Recall@10 0.1621 0.1615 (0.4) 0.1544 (4.8) 0.1526 (5.9) 0.1330 (18.0)
nDCG@10 0.1489 0.1488 (0.1) 0.1447 (2.8) 0.1417 (4.8) 0.1206 (19.0)
Recall@|B| 0.1310 0.1337 (-2.1) 0.1226 (6.4) 0.1250 (4.6) 0.1067 (18.5)
nDCG@|B| 0.1503 0.1529 (-1.7) 0.1412 (6.1) 0.1428 (5.0) 0.1230 (18.2)

V
al

ue
d-

Sh
op

pe
r Recall@10 0.2311 0.2309 (0.1) 0.2264 (2.0) 0.2257 (2.3) 0.2007 (13.2)

nDCG@10 0.2228 0.2221 (0.3) 0.2209 (0.9) 0.2193 (1.6) 0.1949 (12.5)
Recall@|B| 0.1958 0.1966 (-0.4) 0.1933 (1.3) 0.1925 (1.7) 0.1650 (15.7)
nDCG@|B| 0.2282 0.2287 (-0.2) 0.2264 (0.8) 0.2244 (1.7) 0.1958 (14.2)

X
-o

ffl
in

e Recall@10 0.1704 0.1692 (0.7) 0.1597 (6.3) 0.1598 (6.2) 0.1342 (21.2)
nDCG@10 0.2120 0.2113 (0.3) 0.2009 (5.2) 0.2006 (5.4) 0.1575 (25.7)
Recall@|B| 0.1675 0.1669 (0.4) 0.1579 (5.7) 0.1582 (5.6) 0.1280 (23.6)
nDCG@|B| 0.1998 0.1990 (0.4) 0.1895 (5.2) 0.1893 (5.3) 0.1496 (25.1)

X
-m

ul
ti-

ch
an

ne
l Recall@10 0.1203 0.1203 (0.0) 0.1166 (3.1) 0.1174 (2.4) 0.0826 (31.3)

nDCG@10 0.3648 0.3683 (-1.0) 0.3509 (3.8) 0.3548 (2.7) 0.2587 (29.1)
Recall@|B| 0.2214 0.2218 (-0.2) 0.2128 (3.9) 0.2144 (3.2) 0.1685 (23.9)
nDCG@|B| 0.2642 0.2656 (-0.5) 0.2541 (3.8) 0.2564 (3.0) 0.1954 (26.0)

The smallest effect on performance comes from the user embedding layer, as illustrated
in the results of ReCANet w/o user. The drops in performance are small, ranging from
0% to 0.8%. In some cases ReCANet w/o user even outperforms ReCANet, albeit with
small margins. The user information is implicitly encoded in the model, in the way that
we create the training and test data. That is, the positive and negative samples come
from the personal history of users in the training data, and the personal items are ranked
during testing. This results in a reduced need for explicitly modeling users via the user
embedding layer. Item embeddings have a positive effect on performance across all
metrics and dataset; ReCANet w/o item results in 0.9% to 6.4% drops in performance.
Hence, modeling item information is important for the NBR task. Omitting the user-
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Figure 5.4: Performance of ReCANet in terms of nDCG@|B| based on the number of
baskets per user. Bars show the distribution of users.

item representation learning module all together has a similar effect on performance.
As expected, in cases where user information is not helpful, the effect is lower than
omitting the item embedding alone. In other cases where user information helps the
performance, the effect of the user-item representation learning is more apparent.

In summary, all components of ReCANet contribute to its performance, and are
essential to achieve the best overall performance.

5.7.3 User-level analysis

Table 5.3 shows the performance of ReCANet averaged over all users. In this section,
we analyze the treatment effect for different groups of users [129]. We group users in
three ways: 1) by the number of baskets per user, 2) by the number of unique items per
user, and 3) by the average repeat ratio per user. Do different groups of users benefit
from ReCANet in different degrees?

Fig. 5.4 shows the performance of ReCANet in terms of nDCG@|B| w.r.t. the
number of baskets per user for each dataset. The distribution of users based on their
number of baskets is also shown with bars. All datasets are right-skewed; most of the
users have relatively small number of baskets in their history. The performance shows
no correlation with the number of baskets, and is robust across users. Sudden drops in
performance on the Dunnhumby and X-offline datasets only appear at the far right side
of the distributions, where the number of users is very low.

Fig. 5.5 shows the performance of ReCANet in terms of nDCG@|B| w.r.t. to the
number of unique items per user for each dataset. Similar to the number of baskets, the
distribution of users w.r.t. to the number of unique items has a right-skewed shape, but
it is closer to the normal distribution on X-online, ValuedShopper and X-multi-channel.
The performance is robust w.r.t. the number of items on Instacart and X-offline, but
there is a drop on Instacart for a small number of users in the tail. On Dunnhumby,
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Figure 5.5: Performance of ReCANet in terms of nDCG@|B| based on (the number of
unique items per user. Bars show the distribution of users.

ValuedShopper and X-multi-channel, the performance increases with the increase in
the number of items and decreases after a pick around 1500, 200, and 200 items,
respectively. When the number of unique items per user is very small, the performance
is low due to the fact that the user is still exploring; their history is not rich enough for
personalized recommendation. When the number of items passes the peak point, the
performance decreases; for users with many unique items, the final ranking is more
subject to noise. ReCANet performs better for users with a higher number of unique
items, as it results in a more accurate estimation of the users’ taste.

Fig. 5.6 shows the performance of ReCANet in terms of nDCG@|B| w.r.t. to the
average repeat ratio in the training baskets per user for each dataset. The distribution of
users is rather close to the normal distribution in all datasets; most of the users have a
medium repeat ratio, with smaller numbers of users with a very high or very low repeat
ratio. In all datasets, performance of ReCANet has a clear correlation with the repeat
ratio; the more a user tends to repurchase, the bigger benefit they will get from the
personalized recommendations. This also means that the average repeat ratio can serve
as predictor for the expected performance of ReCANet. In that case, one can decide to
explore non-personal items for recommendation to users with low repeat ratios.

5.7.4 Parameter sensitivity

We analyze the performance of ReCANet w.r.t. to three hyper-parameters: window size
w, user embedding size du and item embedding size di. On all datasets, the performance
is most sensitive to the window size. Small and large window sizes both degrade the
performance; 15 and 25 result in the highest performance. This means that too little
history makes it hard for the model the learn the consumption patterns, and too much
history adds noise to the data that matters most. In contrast, the performance is not
sensitive to the user and embedding size; the performance only changes marginally (less
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Figure 5.6: Performance of ReCANet in terms of nDCG@|B| based on the average
repeat ratio in users’ history. Bars show the distribution of users. Performance correlates
with the average repeat ratio.

than 0.1%) when increasing the dimension size from 16 to 128. This indicates that we
can use a small embedding size, which results in a smaller model size and less training
time without loss of performance.

5.8 Conclusion

In this chapter, we have analyzed the repeat consumption behavior in grocery shopping.
We addressed RQ4 with two sub-questions. In answer to RQ4.1, we have found that
repeat items, i.e., items that a user has previously purchased, have a high chance of
reappearing in users’ future baskets. We have focused on the next basket recommenda-
tion (NBR) problem, and proposed ReCANet to answer RQ4.2, a neural model for the
task that learns from users’ personal consumption patterns of items. Our experiments
show that ReCANet, while focused on the repeat items that make up a small percentage
of the total items in the inventory, is able to outperform state-of-the-art NBR models.
This means that the repeat consumption behavior in grocery shopping is a strong in-
dicator for future purchases, and explicitly modeling it leads to improvements in the
recommendation performance.

Our experiments further show that not all users benefit to the same degree from
the repurchase recommendations; the recommendation performance correlates with
the average repeat ratio in the previous baskets of the users. In future work, we aim
to extend ReCANet to help such users in discovering new items, while modeling the
consumption behavior of repeat items at the same time. Moreover, while ReCANet
significantly outperforms the best baselines, there is still a gap between ReCANet’s
performance and the performance of an oracle personalized NBR model. This indicates
that the repeat-focused recommendation task is far from solved and there is still room

84



5.8. Conclusion

for improvement. Currently, item relations in baskets are only considered implicitly
and through the training sample generation procedure in ReCANet. In future work, we
aim to add a basket representation learning component, in the history baskets modeling
phase as well as the final basket generation phase.

Next, in the final research chapter, we continue with the retail domain and study a
slightly different recommendation scenario, that is within-basket recommendation.
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6
Personalized Within-basket

Recommendation

This chapter follows the previous chapter in that it also focuses on recommendation in
retail, but it differs by tackling basket completion as a task, instead of basket recommen-
dation. We address RQ5: How can we design an effective and scalable within-basket
recommender system that explicitly considers users’ personal preferences? We propose
a neighborhood-based model and detail an efficient implementation, which allows for
real-time inference in large scale environments.

6.1 Introduction

Recommender systems in retail help users to find the items that they need from large
inventories in different domains [148]. In many shopping scenarios, such as grocery
shopping, users purchase multiple items in a single transaction, which corresponds to
a shopping basket. Within-basket recommendation is defined as recommending items
for an incomplete shopping basket, which can reduce the burden on users to explore
the inventory proactively, and result in shorter shopping times [89, 99]. This problem
is relevant in both online and offline shopping. For an online platform, items can be
recommended based on user activity and items that have previously been added to a
basket. In brick-and-mortar grocery stores, RFID-tagged items and smart shopping
carts allow real-time recommendation of items based on a user’s smart cart [84].

The characteristics of recommendation in grocery shopping have been studied
extensively in a closely related line of work, namely next basket recommendation [13,
66, 92]. These studies reveal the importance of the personal purchase history in grocery
shopping. In particular, users shop for grocery items repeatedly and on a regular
basis; grocery items have a short life-time and are repurchased frequently by the same
user. Previous work on within-basket recommendation mostly focuses on learning a
representation for the incomplete basket using factorization machines [84, 89], product

This chapter was published as M. Ariannezhad, M. Li, S. Schelter, and M. de Rijke. A personalized
neighborhood-based model for within-basket recommendation in grocery shopping. In Proceedings of the
Sixteenth ACM International Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27
February 2023 – 3 March 2023, pages 87–95. ACM, 2023.
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embeddings [148], or graph neural networks [98, 99]. However, no prior work considers
explicitly modeling personal preferences.

Recent studies show that nearest neighbor methods provide state-of-the-art per-
formance in different recommendation settings, such as session-based recommenda-
tion [103, 105], next basket recommendation [66, 92], and session-aware recommen-
dation [83]. Moreover, neighborhood-based recommendations are transparent and
explainable [105]. Recent work on real-world recommender systems show that nearest
neighborhood-based models scale to industry workloads [75]; the training time required
for neural approaches has been found to be at least an order of magnitude larger than
neighbor-based approaches [74].

We propose PerNIR, a personalized nearest neighbor-based model for within-basket
recommendation that explicitly considers users’ personal preferences (Section 6.4).
PerNIR has two main components: 1) a personal component that explicitly models the
personal preference of a user, and 2) a collaborative component, which leverages the
neighboring users for scoring candidate items. In both components, items in the current
incomplete basket are used as signals to find candidate items for recommendation. The
main novelty of PerNIR is that it models the long-term and short-term interests of
users at the same time in the personal component. The personal component uses the
historical purchases to assign scores to items that the user has previously purchased,
and leverages the items in the current basket as signals for the short-term interests. The
collaborative component calculates how neighboring users would score the candidate
items, given the items in the user’s current basket. The personal and collaborative item
scores are aggregated to make up the final recommendation scores. Additionally, we
provide an optimized vectorized implementation of our proposed method in Section 6.5,
which precomputes static parts of our models on a per user-basis and thereby provides
low-latency inference performance.

In Sections 6.6 and 6.7, we conduct experiments on two public and private grocery
shopping datasets to evaluate PerNIR. We compare PerNIR against 10 state-of-the-art
baselines and find that it significantly outperforms all, with gains of over 12% in terms
of hit rate over the second best performing approach. We conduct an extensive ablation
study with nine model variations as well as a hyper-parameter sensitivity experiment.
We analyze the performance along different dimensions, i.e., characteristics of the users’
historical purchase behavior and the current incomplete basket. Moreover, we study the
inference efficiency of PerNIR to demonstrate its effectiveness under real-world latency
requirements.

6.2 Problem Formulation

The goal of the within-basket recommendation task is to recommend the next item
that a user would add to their current incomplete basket, based on the items that are
currently in the basket and the history of the items that they have purchased in the
past [89, 98, 99]. One of the main use cases for the within-basket recommendation task
is grocery shopping, which is the focus of this chapter. In grocery shopping, users tend
to purchase multiple items at a time, which corresponds to a shopping basket [13, 66].

A basket is a list of items defined as b = [x0, x1, . . . , xt], where xi ∈ I denotes
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an item from a set of items I , and xi is the i-th item that the user has added to the
basket b. The sequence Bu = [bu

0 ,b
u
1 , . . . ,b

u
n] denotes the history of baskets for a

user u ∈ U . bu
i is the i-th basket in the history of user u, and U is the set of all users.

The goal is to predict the next item xt+1 to be added to the current incomplete basket
bu
n+1 = [x0, x1, . . . , xt]. For the basket history Bu and the new basket bu

n+1, the
recommendation model assigns a score to all items xi ∈ X , and the top-n items are
returned as the candidates for the next item to be added to the basket.

6.3 Related Work

Our work is related to several lines of work in the recommender systems literature.

Within-basket recommendation. Although less studied than other forms and defini-
tions of the recommendation task, there are a few papers that address the exact same
problem as ours in the literature. As some of the first authors active in this area, Le et al.
[84] propose a basket-sensitive factorization machine, which models the recommen-
dation as a function of four associations between a user, a target item, and the items
in a basket. Focused on the grocery shopping domain, Wan et al. [148] learn product
embeddings using the co-occurrence of items in baskets and further use the learned em-
beddings for in-basket and next basket recommendation. Graph-based neural networks
have also been studied in work associated with Walmart Labs, again focused on gro-
cery [98, 99]. More recently, Li et al. [89] have proposed a deep learning-based model
(DBFM, deep basket-sensitive factorization machine) to address the task. However, the
order of items in a basket is ignored in this work.

Our work resembles the papers listed in terms of problem definition, domain, and
datasets used. What we add is a highly effective, low-latency neighborhood-based
model with a focus on personal history for within-basket recommendation in grocery
shopping.

Session-based recommendation. A well-studied recommendation scenario is session-
based recommendation (SBR), which refers to the task of recommending items for the
next interactions in a given ongoing anonymous session. Various neural models have
been proposed for the task [58, 88, 95, 111, 157, 160], as well as neighborhood-based
models [56, 70]. Recent studies have revealed that neighborhood-based models, despite
their sometimes simple nature, often perform equally well as, or even outperform,
conceptually and computationally more complex deep neural models [103–105].

We build on successful ideas from neighborhood-based models in SBR in our work.
However, in contrast to SBR, the identity of the user with an ongoing basket is assumed
to be known for within-basket recommendation, which makes our problem space and
solution different from existing work.

Personalized session-based recommendation. Analogous to within-basket recom-
mendation, the goal in this scenario is to recommend items for an ongoing session,
while the recommender system is aware of the user identifier (and the corresponding
user history). Neural recommendation models are the dominant approach in this area,
where recurrent neural networks [67, 113, 118, 126], attention networks [163], and
graph neural networks [112, 168] have been proposed. A surprising recent study on
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personalized session-based recommender systems has revealed that such neural models
are not better than approaches that do not use users’ personal history, and extensions of
neighborhood-based models proposed for SBR consistently outperform recent neural
techniques [83].

None of these publications consider the grocery shopping domain for recommenda-
tion, which has been shown to have specific characteristics, such as the importance of a
user’s personal history [13, 66]. We focus on this domain, and propose a neighborhood-
based model that is designed for within-basket recommendation.
Next basket recommendation. In this scenario, the goal is to recommend a list
of items to a user, based on their history of previously purchased shopping baskets.
This definition is similar to within-basket recommendation, as the history is in the
form of baskets, and is mostly studied in the grocery shopping domain. Similar to
SBR, neighborhood-based methods [49, 66] and neural methods [13, 85, 117, 165]
have both been examined and show strong performance in next basket recommenda-
tion (NBR) [92]. In within-basket recommendation, however, the goal is to recommend
items to complete an incomplete basket, which already contains some items that can be
utilized for recommendation.

In this work, we make use of ideas that have been shown to be effective in NBR
for grocery shopping and adapt them to our problem setting by using both the personal
history and the current basket for computing the recommendation scores.

6.4 Model

Next, we introduce PerNIR, our personalized neighborhood-based model for within-
basket recommendation in grocery shopping. We introduce the personal scoring func-
tion, the neighborhood-based scoring, as well as our final scoring function, which
combines them.

6.4.1 Personal scoring function
Recent studies have shown the importance of users’ personal history in grocery shop-
ping [13, 66, 92]. However, they consider the next basket recommendation task as their
main goal, where there is no information about a current basket bu

n+1. For simplicity,
we use the notation bc as the current basket that we aim to recommend items for as an
alias for bu

n+1. We propose the following personal scoring function PSF (x, u,bc) to
compute the score of a candidate item x for the current incomplete basket bc of user u:

PSF (x, u,bc) = α ·HSF (x, u) + (1− α) ·BSF (x, u,bc), (6.1)

where HSF (x, u) is a history-based scoring function that scores an item x based on how
the user u has consumed it in the past, regardless of the current basket. BSF (x, u,bc)
is a basket-based scoring function that considers both the history and the items in the
current basket for assigning a score to x. Finally, α is a hyper-parameter to balance the
two parts.
History-based scoring. HSF (x, u), the history-based scoring function, accounts for
the loyalty of a user to an item. In other words, it considers how frequently a user has
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purchased the item in the past. In addition to frequency, the recency of occurrences of
an item is also important in predicting the next occurrence, as shown in [13, 49]. We
define HSF (x, u) as follows:

HSF (x, u) =

|Bu|−1∑
t=0

1{x∈bt}

|Bu| − t
, (6.2)

where 1{x∈bt} is equal to one if x occurs in bt and zero otherwise. In this formulation,
more recent occurrences of an item in the user history are given more weight.

Basket-based scoring. To compute the score of a candidate item x given the items
that are already in the current basket, we define the basket-based scoring function
BSF (x, u,bc). It scores an item x based on its past co-occurrences with the items
in the user’s past baskets. It takes into account three factors while scoring an item:
1) recent baskets are more informative than older baskets, 2) recent items in the current
basket are more important than older items, and 3) the distance between the candidate
item x and the current item xi in the past baskets is important. Formally:

BSF (x, u,bc) =

|bc|−1∑
i=0

1

|bc| − i
·
|Bu|−1∑
t=0

1{x∈bt}

|Bu| − t
·

1{xi∈bt}

|I(x,bt)− I(xi,bt)|
, (6.3)

where I(x,bt) indicates the index at which x has occurred in basket bt. In other words,
more weight is given to a candidate item that has appeared in close proximity of current
items in the recent baskets of the user. The first two factors have already been shown to
be effective for session-based recommendation in [56], where they are used to compute
the similarity of the current session with all existing sessions. Here, however, we
compute the similarity with the personal baskets of the user for scoring candidate items.

6.4.2 Neighbor-based scoring function

In addition to the personal scoring function, our model has a collaborative component
that assigns scores to candidate items according to the neighboring users of the target
user u. Specifically, the neighbor-based scoring function NSF (x, u,bc) is defined as
follows:

NSF (x, u,bc) =
1

|Nu|
∑
v∈Nu

sim(u, v)PSF (x, v,bc), (6.4)

where Nu is the set of neighbors of u of size k and sim(u, v) is the similarity between
users u and v. Note that the number of neighbors k is a hyper-parameter in our model.
The neighbor-based scoring function NSF (x, u,bc) calculates how an item x would be
scored by the neighbors of user u, given the items already in the basket. The similarity
between a neighbor and the target user is also considered.

User similarity. To compute the similarity sim(u, v) between two users u and v, we
consider the history-based scoring from Eq. 6.2. We represent each user u as a vector
over the item space I , where each element in the vector, corresponding to an item x ∈ I ,
is the history-based score of the item for the user. The similarity is then defined as the
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cosine similarity between two user vectors. Formally:

sim(u, v) =

∑
x∈I HSF (x, u)HSF (x, v)√∑

x∈I HSF (x, u)2
√∑

x∈I HSF (x, v)2
. (6.5)

The set of k nearest neighbors of a user u, containing the most similar users in U to u,
is then defined as Nu.

6.4.3 Final scoring function

The final score of a candidate item x for an incomplete basket bc belonging to user u,
is calculated as follows:

score(x, u,bc) = β · PSF (x, u,bc) + (1− β) ·NSF (x, u,bc), (6.6)

where β is a hyper-parameter of our model, balancing the contributions of the personal
history component and the collaborative component. The model assigns a score to all
items in I \ bc, and the top n scored items are returned as the recommendation list.

6.5 Vectorized Implementation

Analogous to session-based recommendation, within-basket recommendation models
are challenging to deploy in real-world scenarios, as they need to respond online to users
filling their baskets. E-commerce applications typically need to respond with a latency
of less than 50 milliseconds in at least 90 percent of requests [75], and it has been
observed that low prediction latency contributes to the acceptance of recommendations
by users [7, 74].

The design of PerNIR supports such low-latency prediction scenarios. Major parts
of PerNIR depend on the static user history Bu (which only changes after purchases),
while only the incomplete basket bc changes dynamically during the shopping session.
In the following, we describe how to exploit this structure to precompute the parts
of the model that only depend on the static user history Bu and how to vectorize the
underlying computations to score multiple candidate items at once. Note that we model
a basket b ∈ {0, 1}|I| as a binary vector in item space for these purposes.

6.5.1 Offline precomputation

For each user u, we can precompute the outputs of HSF (Eq. 6.2) into a user-specific
history vector hu:

hu =

|Bu|−1∑
t=0

1

|Bu| − t
bt. (6.7)

We analogously precompute the item co-occurrences (the second sum from Eq. 6.3)
from their basket history matrix into a user-specific basket co-occurrence matrix Cu.
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Each entry (i, j) of this matrix denotes the weight assigned to the co-occurrence of two
items i and j in the basket history Bu:

Cu =

|Bu|−1∑
t=0

1{xi∈bt} 1{xj∈bt}

(|Bu| − t) |I(xi,bt)− I(xj ,bt)|


ij

. (6.8)

Note that Cu ∈ R|I|×|I| is high-dimensional but extremely sparse, as its number of non-
zeros is at most the sum of the squares of the number of distinct items per basket in the
user history. Next, we precompute the top-k similar users Nu for a user u (which only
depend on the users’ static history vectors). Based on the corresponding similarities, we
precompute the combination hsu of the user’s history vector hu with the history vectors
of their neighbors v ∈ Nu, and analogously precompute the combination Csu of their
co-occurrence matrices:

hsu = β hu +
1− β

|Nu|
∑
v∈Nu

sim(u, v)hv (6.9)

Csu = βCu +
1− β

|Nu|
∑
v∈Nu

sim(u, v)Cv. (6.10)

6.5.2 Online inference
At inference time, we compute a “summation and selection” vector ϕ(bc) from the
dynamically changing incomplete basket bc, which contains the associated weights
from the first sum of Eq. 6.3:

ϕ(bc) =

[
1{xi∈bc}

|bc| − I(xi,bc)

]
i

. (6.11)

We can now efficiently compute item scores based on ϕ(bc) and the precomputed
“personal” model hsu and Csu for user u:

score(u,bc) = αhsu + (1− α)Csu ϕ(bc). (6.12)

Note that the scoring computation only requires a single sparse matrix vector multipli-
cation and a single sparse vector addition, for which we can leverage highly optimized
implementations from SparseBLAS [47].

6.6 Experimental Setup

We address the following research questions (RQs):

RQ5.1: How does PerNIR perform compared with existing state-of-the-art models for
within-basket recommendation in grocery shopping?

RQ5.2: What are the effects of the different components HSF , BFS, and NFS of
PerNIR and hyper-parameters α, β, and the number of neighbors k on the
overall performance?
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Table 6.1: Dataset statistics after preprocessing.

Avg. item Avg. basket
Dataset Users Items Baskets per basket per user

Instacart 30,000 43,936 413,860 11.9 13.8
X-online 10,000 22,486 141,342 38.2 14.1

RQ5.3: How sensitive is PerNIR’s performance to characteristics such as the number
of baskets per user or the number of items in the current basket?

RQ5.4: How efficient is PerNIR in terms of inference latency?

To answer our research questions we consider two experimental setups.

6.6.1 Setup for effectiveness experiments

To answer RQ5.1–RQ5.3 we design a set of contrastive experiments with a diverse set
of state-of-the-art baselines.

Datasets. We use two datasets in our experiments. While other grocery shopping
datasets do exist [92], they do not contain the add-to-basket order data which is crucial
for within-basket recommendation [98, 99]. The datasets are described below and their
statistics are summarized in Table 6.1. Instacart1 is publicly available, and X-online
comes from a large food retailer in Europe. We randomly sample 30,000 users from
Instacart and 10,000 users from X-online and retrieve all baskets of the users. In both
datasets, we remove users with less than three baskets, items occuring in less than five
baskets in total, and baskets with less than four items.

Baselines. In addition to the simple baseline P-POP, we compare PerNIR with within-
basket recommendation models (BasConv, MITGNN), session-based recommendation
models (VSKNN, STAN), a personalized session-based recommendation model (HG-
GNN), and next basket recommendation models (TIFU-KNN, ReCANet):

• P-POP: Recommends the most popular items in the user history, sorted by their
frequency of purchases. P-POP is considered one of the strongest baselines in NBR
for grocery shopping [13], and we consider it as a baseline for our task as well.

• BasConv [99]: Defines a basket entity to represent the basket intent and models the
recommendation task as a basket-item link prediction task in the user-basket-item
graph. It utilizes graph convolutional networks to learn representations.

• MITGNN [98]: An approach based on graph neural networks to model multiple
intents in the baskets.

• VSKNN [103]: A neighborhood-based model proposed that puts a strong emphasis
on more recent events of a session when computing session similarities.

1https://www.kaggle.com/c/instacart-market-basket-analysis
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• STAN [56]: A neighborhood-based model that considers the position of an item in
the current session, the recency of a past session w.r.t. to the current session, and the
position of a recommendable item in a neighboring session when computing session
similarities.

• HG-GNN [112]: A graph-augmented hybrid encoder that consists of a heteroge-
neous graph neural network and a personalized session encoder to generate a session
preference embedding for personalized session-based recommendation.

• TIFU-KNN [66]: A nearest neighbor-based model that outperforms deep recurrent
neural networks in NBR. The model relies on the similarity of the target user with
other users and the purchase history of the target user.

• ReCANet [13]: A repeat consumption-aware neural network that explicitly models
the repeat consumption behavior of users in order to predict their next basket.

In the case of NBR baselines, we considered two setups: discarding the current basket
and treating it as the final basket in the history. The former gave the best performance
results and we report those. In case of session-based and personalized session-based
baselines, each session is considered as a basket. We further use two modified session-
based models, namely Personalized SKNN (PSKNN) and Personalized STAN (PSTAN).
In these two models, the neighboring baskets are the personal baskets of the user.
Data split. We follow the same procedure as Latifi et al. [83]. For every user, we sort
the baskets by purchase time and use the last basket of each user as test data. The
second-to-last basket is used as validation data to tune the parameters. The remaining
baskets are considered as training data. Table 6.1 shows the statistics for the training
data after preprocessing. Each test or validation basket produces several test samples.
Specifically, the first three items in the basket are used as the seed for the current
basket, and the rest of the items are added iteratively to the current basket and the
next item is used as the ground truth item. Evaluation is performed for each non-seed
item in the basket. For example, given a test or validation basket b = [x1, x2, . . . , x6],
the evaluation is performed on the following samples: {X = [x1, x2, x3], Y = [x4]},
{X = [x1, x2, x3, x4], Y = [x5]},{X = [x1, x2, x3, x4, x5], Y = [x6]}.
Evaluation metrics. We use Hit Rate (HR) @n and Mean Reciprocal Rank (MRR)
@n as evaluation metrics. HR measures if the relevant item appears in the list of
recommendations, and MRR measure how high the relevant item is ranked. Both
measures are calculated across the predicted next item for all test users and all test
samples. We report the metrics for n ∈ {10, 20}.
Parameter settings. We perform a grid search to find the hyper parameters that result
in the best performance on the validation set, and use those for testing. The hyper-
parameters of the baselines are either tuned or set according to instructions in the
original papers if available.

6.6.2 Setup for efficiency experiments
To answer RQ5.4, we use an alternative experimental design. Our goal will be to
showcase that PerNIR is able to handle inference workloads with a latency low enough
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for production workloads, where users browse a site and fill their baskets in response
to online recommendations. We choose the Instacart dataset for this experiment as it
is larger than the X-Online dataset in terms of users, items and baskets, and therefore
more challenging for inference workloads.

We run this experiment in a single thread on a StandardD8v4 instance in the
Microsoft Azure cloud, with an Intel Xeon Platinum 8272CL CPU@2.60GHz and 32gb
of RAM, using Ubuntu 20.04, Python 3.9 and scipy 1.9.0.

We pick 1,000 users at random from the Instacart dataset, and ask PerNIR to score
items for five randomly chosen incomplete test baskets per user. We base the prediction
on the precomputed “personal” model for each user (as discussed in Section 6.5). We
measure the response time in milliseconds, and repeat this experiment for increasing
numbers of neighbors k, ranging from 20 to 500.

Reproducibility. To facilitate reproducibility and follow-up research, we share our
code.2

6.7 Results and Analysis

We conduct extensive experiments to answer our research questions. In this section, we
describe the results of our experiments.

6.7.1 Performance comparison (RQ5.1)

We compare the performance of PerNIR with several state-of-the-art baselines, and
list the results in Table 6.2. First, we observe that HG-GNN is the baseline with the
weakest performance. This model is originally proposed for personalized session-
based recommendation, which is identical to within-basket recommendation in terms of
problem formulation. However, the grocery shopping domain has special characteristics,
such as repeat behavior and larger baskets compared to online sessions, which are not
considered by HG-GNN and other personalized session-based recommendation models.

The GNN-based within-basket recommendation models BasConv and MITGNN
perform poorly. One possible reason for this is that these models are trained on large
baskets only (more than 40 items) in the original papers, which might limit their ability
to generalize to our setting, where we set the lower bound of the basket size to four items.
Moreover, these models are trained for predicting the rest of the basket where 80% of the
items in the current basket are already given, which is again different from our setting.
We add items to the baskets one by one and use each item as a label during evaluation,
which is closer to the real-world setting where users receive recommendations after
each item is added to the basket.

The session-based recommendation models VSKNN and STAN in their original
formulation perform better than the previous models, but fall short of their modified
personalized versions. This shows that the user personal history is an important indicator
in within-basket recommendation. VSKNN and STAN focus on finding items from
baskets that are similar to the current incomplete basket, and cannot utilize the personal

2https://github.com/mzhariann/pernir
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6. Personalized Within-basket Recommendation

preferences of users. By limiting the search for similar baskets to the personal baskets,
PVSKNN and PSTAN get a boost in performance. Specifically, PSTAN is the best
performing baseline on X-Online based on three out of four metrics, and PVSKNN
is the second-best performing one on Instacart. This shows that the components in
VSKNN and PSTAN are able to utilize the items in the current basket for scoring
candidate items.

Next basket recommendation models provide the best baseline performance on both
datasets. Among them, ReCANet is the strongest competitor, followed by PPOP and
TIFUKNN. This is in line with the results observed for NBR [13]. NBR models focus
on utilizing personal purchasing history, but are unable to use the signals in the current
incomplete basket. These models demonstrate higher performance compared to the
performance of session-based recommendation models that use only the incomplete
basket but not the personal history. This result once again confirms the importance of
the personal history in grocery shopping.

PerNIR outperforms all the baselines on both datasets, and the improvements over
the best performing baseline are statistically significant on all metrics, using a paired
t-test. The improvements on Instacart are 1.6% and 1.1% for HR@10 and HR@20,
respectively. Larger improvements are obtained on MRR@10 and MRR@20, namely
6.8% and 6.2%. Improvements on X-Online are even more substantial, especially in
terms of HR. We observe 1.9% and 2.7% increases in terms of MRR@10 and MRR@20
with respect to PSTAN, as well as 12.3% and 12.7% improvements over PSTAN and
ReCANet in terms of HR@10 and HR@20. Overall, the results show that PerNIR is
effective for within-basket recommendation.

6.7.2 Ablation study (RQ5.2)

We conduct an extensive ablation study with nine different variations of PerNIR to
analyze the effect of different components in the model. Table 6.3 shows the results.
First, we observe that the final model is superior to all variations on both datasets for
all metrics, with the exception of one case (HR@20 on variation 6, where there is a
0.1% performance degradation). This indicates that all of the components in PerNIR
contribute to the final performance and are necessary to achieve the best performance.

The first two variations concern the effect of HSF and BSF in the personal scoring
function. By setting α to zero, we remove the HSF and with setting it to one, we
remove BSF . Both cases result in a drop in performance for all metrics on both datasets.
However, removing BSF has a more substantial effect on performance ranging from
3.0% to 8.5% on Instacart and 16.4% to 35.1% on X-Online. The effect is considerably
higher on X-Online; one reason for this could be the larger basket sizes on X-Online,
which translates to more signals being lost when the current basket is ignored.

In variations 3 and 4, we remove the personal scoring function PSF and neighboring
scoring function NSF by setting β to zero and one, respectively. In both cases the
performance degrades for all metrics and datasets. The effect of removing PSF is
substantially larger than of removing NSF , where the performance drop ranges from
43.1% to 48.7% on Instacart and 58.4% to 63.6% on X-Online. This indicates the
importance of modeling personal history in PerNIR. Removing NSF results in 1.6% to
2.3% and 3.5% to 5.4% drops in performance on Instacart and X-Online, respectively.
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Figure 6.1: Sensitivity of the performance in terms of HR@20 to hyper-parameters α
and β for different values of k on Instacart.

Therefore, the neighbor-based scoring function is essential and contributes to the final
performance.

Another component in PerNIR is the user similarity computation, which is analyzed
by variations 5 and 6. In variation 5, we remove the user similarity scores altogether and
set sim(u, v) = 1 in Eq. 6.4, which means that all neighbors have the same weight in
the neighbor-based scoring function NSF . This results in a small drop in performance
on Instacart, ranging from 1% to 1.5%. The effect is considerable on X-Online, where
the degradation ranges from 7.5% to 12.4%. One explanation is the larger number of
users on Instacart, which could lead to more similar users in the neighborhood, which
lowers the need for the similarity scores. In variation 6, we use another similarity scoring
function to compute sim(u, v), which is essentially removing HSF from Eq. 6.5, and
representing each user by a binary vector with the length of the item space, where
each element in the vector indicates the occurrence of the corresponding item in the
purchasing history of the user. This results in the lowest performance drop on both
datasets for all metrics compared to the other variations, ranging from −0.1% to 4.4%.
Hence, using HSF in computing user similarity is effective, but the effect is not critical.

In variations 7, 8, and 9, we study the effect of different components in computing
the basket-based scoring function BSF . In variation 7, we remove the effect of basket
recency by using the same weight for all baskets in the user history in Eq. 6.3. We
remove the effect of item recency in the current basket in variation 8 by setting the
weights of all items in the current basket to one. We further remove the effect of
the distance between a candidate item and the item in the current basket in historical
baskets in variation 9, by using the same weight of one for all candidate items. In all
cases, the performance degrades; all of these components contribute to the performance.
Interestingly, for variations 8 and 9, the performance drop for X-Online is more than for
Instacart, ranging from 12.0% to 30.4%. This could be a result of larger basket sizes in
X-Online; since baskets are larger on X-Online, it becomes more important to consider
the position of items in the baskets, in both incomplete baskets and in the historical
baskets.

We further study the effect of the three hyper-parameters α, β, and k on the perfor-
mance. We perform a grid search where α and β are swiped in [0.1, 0.2, 0.3, · · · , 0.8, 0.9]
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Figure 6.2: Performance of PerNIR in terms of HR@20 based on the number of items
in the current basket. Bars show the distribution of basket lengths.
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Figure 6.3: Performance of PerNIR in terms of HR@20 based on the number of baskets
in users’ history. Bars show the distribution of number of baskets per user.

and k in {50, 250, 500}. We find that on Instacart, k = 250, α = 0.1, and β = 0.2 result
in the best performance on the validation set in terms of HR@20. A similar observation
is made on X-Online, with the difference of k = 50 giving the best performance.

Fig. 6.1 (left) shows the performance of PerNIR for different values of α and k.
Increasing α leads to lower performance for all k values. Hence, in the personal scoring
function PSF , items in the current basket should be considered more effectively;
relying heavily on HSF , which ignores the current basket hurts, performance.

Fig. 6.1 (right) shows the performance of PerNIR for different values of β and
k. For all values of k, setting β to 0.2 results in the best performance. β balances
the contribution of personal scoring function and neighbor-based scoring function to
the final score of items. A high value for β results in a lower effect for NSF , which
degrades the performance. The optimal value of k is 250 on Instacart, however, it has
a lower effect on the performance compared to α and β. Increasing the number of
neighbors from 250 to 500 has a minimal effect on performance, while the difference is
more apparent between k = 50 and k = 250, which indicates that a too low value for k
hurts the performance.
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Figure 6.4: Performance of PerNIR in terms of hit rate at different thresholds, for two
cases: when the target item is a previously purchased item and when it is a new item.

6.7.3 Sensitivity analysis (RQ5.3)

In this section, we study the sensitivity of PerNIR’s performance to characteristics
of users and baskets. Specifically, we analyze the recommendation performance for
incomplete baskets of varying lengths and users with varying numbers of baskets in
their history. We also consider the performance for cases where the target item is a
previously purchased item vs. cases where it is a new item.

Fig. 6.2 shows the distribution of basket lengths, i.e., number of items in the current
incomplete basket, in the test samples for Instacart and X-Online (bars) as well as the
performance in terms of HR@20 (line). We observe that in both datasets the distribution
is right-skewed; most of the baskets contain a small number of items. The performance
correlates negatively with the basket size in both cases: the smaller the size of the
current basket, the higher the performance of PerNIR. This means that recommending
the last items in the basket is more difficult for PerNIR. One reason for this could be
that users add more obvious, regular items earlier to their basket, which are easier for
the model to predict.

Fig. 6.3 shows the distribution of the number of baskets in the users’ history (bars)
as well as the performance in terms of HR@20 (line). In Instacart, the distribution is
right-skewed; most users have a small number of baskets in their history. In X-Online,
the distribution is closer to uniform, with users with a small, medium, or large number
of baskets in their history. In both datasets, the performance has a positive correlation
with the number of baskets in the users’ history. As users purchase more, PerNIR gets
better at learning their shopping behavior and recommends more accurately.

We further analyze the performance of PerNIR for cases where the target item
has previously been purchased by the user (i.e., a repeat item) vs. the cases where
it is a new item. Fig. 6.4 shows the performance in terms of hit rate at different
thresholds, for repeat and new items on both datasets. There is a significant difference
in performance: predicting a repeat item is much easier than predicting a new item.
While the performance reaches it maximum for repeat items at a threshold of 100 and
500 items for Instacart and X-Online, respectively, recommending accurate new items
remains challenging even at high thresholds. The new items are recommended based on
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Figure 6.5: Median and 90-th percentile of the prediction latency of PerNIR for an
increasing number of neighbors on the Instacart dataset (in milliseconds). PerNIR is
able to respond with a p90 latency of less than 1.4 milliseconds for k = 250, which
scored high in our evaluation.

Table 6.4: Average number of non-zero entries in the sparse history vectors (nnz-h)
and cooccurrence matrices (nnz-c) of the precomputed personal models for various
values of k.

k 100 200 250 300 400 500

nnz-h 3,173 5,027 5,789 6,468 7,654 8,700
nnz-c 153,236 307,630 384,850 463,615 614,432 761,671

the items that neighboring users have purchased before. This makes the search space
larger and finding the correct target item more challenging. Additionally, not all new
items can be found in the neighbors’ item space, which further limits the achievable
performance. We conclude that repeat item recommendation is an easier task for PerNIR
in the within-basket recommendation scenario, in line with previous findings in NBR
for grocery shopping [92].

6.7.4 Prediction latency (RQ5.4)

Next, to answer RQ4, we evaluate the prediction latency of our precomputation approach
from Section 6.5.

We plot the median and 90th percentile (p90) of the response times of PerNIR in
Fig. 6.5. Both the median and p90 prediction latency scale linearly with the number
of neighbors k. Our precomputation approach is able to conduct inference with low
prediction latency even for higher numbers of k, e.g., with a p90 latency of less 1.4
milliseconds for k = 250, which scored high in our evaluation. These results give a
strong indication that PerNIR handles real-world deployments where low-latency online
responses for users browsing a site and filling their baskets are required.

In addition, we list the average model sizes (in terms of the number of non-zero en-
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tries in the sparse history vectors hsu (nnz-h) and cooccurrence matrices Csu (nnz-c))
of the precomputed personal models for various values of k in Table 6.4. The model
size also scales linearly with k and the personal models only require a small number
of megabytes in terms of storage, e.g., the average model size for k = 250 would be
less than ten megabytes with 64bit floating point numbers. This small size would, for
example, make it feasible to ship these models to user devices such as mobile phones.

6.8 Conclusion

In this chapter, we have proposed PerNIR, a personalized neighborhood-based model
for within-basket recommendation in grocery shopping to answer RQ5, and analyzed
its performance from different aspects through answering RQ5.1 – RQ5.4. PerNIR has
different components for explicitly modeling personal preferences of users and utilizing
the purchasing behavior of neighboring users.

Through extensive experiments, we have demonstrated the effectiveness of PerNIR
compared to state-of-the-art baselines in terms of different performance metrics. We
have further studied the contribution of different components in our model in an ablation
study, which has revealed the necessity of all of them for achieving the best performance.
Moreover, we have provided a vectorized implementation of PerNIR which allows for
fast inference. As a result, PerNIR can provide low-latency predictions that are required
in real-world recommendation systems.

A broader implication of our work is that PerNIR is applicable to the personalized
session-based recommendation scenario, where sessions can be treated as baskets.

In terms of limitations, we have found that the performance of PerNIR degrades
as the number of items in an incomplete basket increases. In future work, we aim to
further study and address this phenomenon. One possible solution for this could be
learning better weights for items in a given basket, which is currently calculated solely
based on the recency of the addition of the item to the basket. Our experimental results
have revealed a substantial difference in performance of PerNIR between the cases
when the target item is a previously purchased item or a new item. In future work, we
aim to improve the collaborative component in PerNIR to better capture signals for
recommending items unseen in users’ personal history.

In the next chapter, we conclude this thesis, discuss our main findings and future
research directions.
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This chapter concludes the thesis by summarizing our main findings and pointing out
future directions. In Section 7.1, based on the results obtained in the research chapters
we reflect on the research questions we asked in Section 1.1. In Section 7.2, we discuss
possible future research work that builds on the work in this thesis.

7.1 Main Findings

We first revisit the research questions we posed in Section 1.1. The first two focus on
multi-channel retail.

RQ1 How can we effectively utilize data from multiple shopping channels to improve
the accuracy of demand forcasting models?

We focused on forecasting the demand for individual products at a given target
sale channel. To answer RQ1, we modeled sales from other channels as privileged
information, i.e., information that is available at training time but not at prediction
time. We proposed a neural framework consisting of two different architectures,
where the two combined can leverage the privileged information accurately.
We evaluated our approach on two real-world forecasting datasets, and found
that it outperforms state-of-the-art competitors in terms of mean absolute error
and symmetric mean absolute percentage error metrics. We further provided
visualizations and conducted experiments to validate the contribution of different
components in our proposed architecture.

RQ2 What are the characteristics of user behavior in multi-channel retail settings?

To answer RQ2, we analyzed a large sample of 2.8 million transactions originating
from 300,000 customers of a food retailer in Europe. We grouped the customers
into three groups, namely online-only, offline-only, and multi-channel customers,
based on their choice of shopping channels. Our analysis revealed significant
differences in customer behavior across online and offline channels, for example
with respect to the repeat ratio of item purchases and basket size. Based on these
findings, we investigated the performance of a next basket recommendation model
under multi-channel settings. We found that the recommendation performance
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differs significantly for customers based on their choice of shopping channel,
which strongly indicates that future research on recommenders in this area should
take into account the particular characteristics of multi-channel retail shopping.

The next three questions concern the design of recommender systems that are informed
by insights from user behavior understanding studies, in two different domains: finance
and retail.

RQ3 What are the characteristics of financial information seeking behavior in user
interactions with company filings and how can they be used in designing user-
oriented filing recommender systems?

To answer RQ3, we analyzed 14 years of logs of users accessing company filings
of more than 600K distinct companies on the U.S. Securities and Exchange Com-
mission’s (SEC) Electronic Data Gathering, Analysis, and Retrieval (EDGAR)
system. We provided a comprehensive picture of the information-seeking behav-
ior for this high-impact domain. We found that little behavioral history is available
for the majority of users, while frequent users have rich histories. Most sessions
focus on filings belonging to a small number of companies, and individual users
are interested in a limited number of companies. Based on our observations,
we defined two filing recommendation tasks that correspond to either less or
more frequent users, i.e., within-session and next-session recommendation. We
designed recommendation models that build on insights from our user behavior
analysis. The models are two-staged: we first predict the company that the user
will be interested in, limiting the search space to the filings of that company. In
the next stage we rank the filings based on relevance signals, such as being timely
for the user. Our experiments showed the effectiveness of our proposed models.

RQ4 What are the characteristics of repeat consumption behavior in the grocery shop-
ping domain and how can they be used in desiging next basket recommender
systems?

To answer RQ4, we conducted an empirical study on six public and proprietary
grocery shopping transaction datasets. We discovered that averaged over all
datasets, over 54% of next basket recommendation (NBR) performance in terms
of recall comes from repeat items: items that users have already purchased in
their history, which constitute only 1% of the total collection of items on average.
This implies that a Next Basket Recommendation (NBR) model with strong focus
on previously purchased items can potentially achieve a high overall performance.
We introduced ReCANet, a repeat consumption-aware neural network that ex-
plicitly models the repeat consumption behavior of users in order to predict their
next basket. ReCANet significantly outperformed state-of-the-art models for the
NBR task, in terms of recall and nDCG. We performed an ablation study and
showed that all of the components of ReCANet contribute to its performance, and
demonstrated that a user’s repetition ratio has a direct influence on the treatment
effect of ReCANet.

RQ5 How can we design an effective and scalable within-basket recommender system
that explicitly considers users’ personal preferences?

106



7.2. Future Work

To answer RQ5, we proposed PerNIR, a personalized nearest neighbor-based
model for within-basket recommendation that explicitly models the personal his-
tory of users for within-basket recommendation in grocery shopping. PerNIR has
two components to model both short-term and long-term interests of users, which
are represented by the current basket and the purchasing history, respectively. In
addition to the personal preferences, user neighbors are modeled in PerNIR to
capture the collaborative purchase behavior. We evaluated PerNIR on two public
and proprietary datasets. The experimental results showed that it outperforms
10 state-of-the-art competitors with a significant margin, i.e., with gains of more
than 12% in terms of hit rate over the second best performing approach. Addi-
tionally, we showcased an optimized implementation of PerNIR, which computes
recommendations fast enough for real-world production scenarios.

The main takeaway from our results is that insights from understanding how users
interact with a service provider can guide the design of recommender systems, such that
they address the specific needs of the users.

7.2 Future Work

In this section, we discus the limitations of the work in this thesis and possible directions
for extending it.

The first part of the thesis studies multi-channel retail settings. Our user behavior
study in Chapter 3 is based on transaction logs only, which is not the only source of data
available. Click behavior data is another important resource which we did not consider,
and could be used to answer questions like how do the customers of a multi-channel
retail organization make use of its online platforms? Analyzing the click data in this
context can help in detecting customer intention given the interactions in an online
session. Depending on the intention, let it be an online purchase, an offline purchase, or
simply browsing, appropriate online features can be shown to the user. As an example,
if an offline purchase is predicted, pointing the customer to the location of a product in
a store is considered more useful than displaying the “add to basket” button.

In Chapters 3 and 5, we studied the recommendation performance in online-only,
offline-only, and multi-channel settings. Our experiments revealed that the recommenda-
tion performance is not consistent across channels, when using a model that is agnostic
to the shopping channel. Given the differences between online and offline baskets, a
single model might not be optimal for representing users’ history. Moreover, online
click behavior data can also be useful in providing signals for recommendation. An
interesting research question to answer here is how can we design a recommendation
algorithm for the multi-channel setting? A modular system could be the solution, with a
component to predict or suggest the channel for the next basket, together with separate
components for modeling online baskets, offline baskets, and click behavior data.

In Chapters 3 to 6, we focused mostly on repeat recommendation – recommending
items that a user has previously interacted with. Helping users discover new items
is another important goal of recommender systems, which can be more challenging:
the number of items not explored by a user is often much larger than the number of
items they have previously explored. This makes the search space for unseen item
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recommendation much larger, consequently making the task of finding relevant items
harder. Understanding users’ exploration behavior is a promising first step in tackling
this challenge: how does a user decide to add a new item to their personal item space?
Identifying signals of exploration and designing recommender systems that can leverage
such signals remains an interesting scope for future research.

We mostly focused on accuracy-based metrics in the evaluation of recommender
systems throughout this thesis. Understanding the performance in other dimensions
such as diversity, novelty, serendipity, and coverage remains for future work. We went
beyond reporting only the average performance in Chapters 5 and 6: we analyzed the
performance for different users. Our preliminary analysis already shows there is a
large room to study user-oriented fairness criteria in this domain: is it fair that users
with a certain pattern in their interaction with the recommender system receive better
recommendations? See [48] for a recent publication that argues in favor of more fine-
grained analysis of the impact of recommender systems for different populations. The
same question can be asked from an item perspective to understand supplier-oriented
fairness as well.

In all our experiments, the recommender systems are trained and evaluated on a
static snapshot of data. As a result, temporal changes in user behavior that might affect
the accuracy of recommendations are not considered. As an example, the sample we
used in our user behavior analysis in Chapter 3 was carefully selected to only include
data before Covid-19. Studies have shown the effect of the pandemic on online shopping
behavior [133], and we had to exclude this manually by adjusting our sample period.
Ideally, recommender systems should be able to pick up on such changes automatically,
instantly, reliably, and potentially alter their predictions based on this. Similar to our
experimental designs, most of the existing literature on recommendation considers static
datasets only, providing an opportunity for future research in this area. See [44] for
a recent study on shortcomings of evaluating recommendation performance on static,
historical data.

Finally, we mostly focused on user-oriented recommendation in retail, and addition-
ally in finance. We believe that understanding user behavior and designing recommender
systems should go hand-in-hand, regardless of the domain. We hope this thesis serves
as an example for this research methodology and that is encourages future research
in filling the gap between understanding user behavior and designing recommender
systems.
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Summary

User satisfaction is considered a key objective for all service provider platforms, regard-
less of the nature of the service, encompassing domains such as media, entertainment,
retail, and information. While the goal of satisfying users is the same across different
domains and services, considering domain-specific characteristics is of paramount im-
portance to ensure users have a positive experience with a given system. User interaction
data with a system is one of the main sources of data that facilitates achieving this goal.
In this thesis, we investigate how to learn from domain-specific user interactions. We
focus on recommendation as our main task, and retail as our main domain. We further
explore the finance domain and the demand forecasting task as additional directions
to understand whether our methodology and findings generalize to other tasks and
domains. The research in this thesis is organized around the following dimensions:
1) Characteristics of multi-channel retail: we consider a retail setting where interaction
data comes from both digital (i.e., online) and in-store (i.e., offline) shopping. 2) From
user behavior to recommendation: we conduct extensive descriptive studies on user
interaction log datasets that inform the design of recommender systems in two domains,
retail and finance.

Our key contributions in characterizing multi-channel retail are two-fold. First, we
propose a neural model that makes use of sales in multiple shopping channels in order
to improve the performance of demand forecasting in a target channel. Second, we
provide the first study of user behavior in a multi-channel retail setting, which results in
insights about the channel-specific properties of user behavior, and their effects on the
performance of recommender systems. We make three main contributions in designing
user-oriented recommender systems. First, we provide a large-scale user behavior
study in the finance domain, targeted at understanding financial information seeking
behavior in user interactions with company filings. We then propose domain-specific
user-oriented filing recommender systems that are informed by the findings of the user
behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in
the grocery shopping domain. We then propose a repeat consumption-aware neural
recommender for this domain. Third, we focus on scalable recommendation in retail
and propose an efficient recommender system that explicitly models users’ personal
preferences that are reflected in their purchasing history.

Overall, this thesis contributes to the research literature by providing novel insights
in user behavior understanding and introducing state-of-the-art recommendation models.
For future work, we call for research in the different directions that build on our findings.
Our user behavior study in multi-channel retail settings is based on transaction logs
only. Click behavior data is another important resource which we did not consider. Ana-
lyzing click data can help in detecting customer intentions for downstream tasks. Our
experiments further show that the recommendation performance is not consistent across
online-only, offline-only, and multi-channel settings. Designing a recommendation
algorithm specifically for the multi-channel setting remains an unexplored direction.
Finally, we focused on repeat recommendation across the thesis. However, helping users
discover new items is another important goal of recommender systems. Understanding
users’ exploration behavior with previously unseen items as a stepping stone towards
achieving this goal is another promising direction for future work.
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Samenvatting

Gebruikerstevredenheid wordt beschouwd als een hoofddoelstelling voor alle platforms
van dienstverleners, ongeacht de aard van de dienst, en omvat domeinen als media,
entertainment, detailhandel en informatie. Hoewel het doel om gebruikers tevreden te
stellen hetzelfde is voor verschillende domeinen en services, is het in aanmerking nemen
van domeinspecifieke kenmerken van het allergrootste belang om ervoor te zorgen dat
gebruikers een positieve ervaring hebben met een bepaald systeem. Gegevens over
gebruikersinteractie met een systeem zijn één van de belangrijkste gegevensbronnen
die het bereiken van dit doel mogelijk maken. In dit proefschrift onderzoeken we
hoe we kunnen leren van domeinspecifieke gebruikersinteracties. Wij richten ons op
aanbevelingen als onze hoofdtaak, en retail als ons hoofddomein. We onderzoeken
verder het financiële domein en de het voorspellen van de toekomstige vraag naar een
product of dienst als aanvullende richtingen om te begrijpen of onze methodologie en
bevindingen generaliseren naar andere taken en domeinen. Het onderzoek in dit proef-
schrift is georganiseerd rond de volgende dimensies: 1) Kenmerken van multi-channel
retail: we beschouwen een winkelomgeving waarin interactiegegevens afkomstig zijn
van zowel digitaal (dat wil zeggen online) als in-store (dat wil zeggen offline) winke-
len. 2) Van gebruikersgedrag tot aanbevelingen: we voeren uitgebreide beschrijvende
onderzoeken uit naar datasets van gelogde gebruikersinteracties die het ontwerp van
aanbevelingssystemen in twee domeinen, retail en financiën, informeren.

Onze belangrijkste bijdragen aan het karakteriseren van multi-channel retail zijn
tweeledig. Om te beginnen stellen we een neuraal model voor dat gebruik maakt van
gegevens over verkopen in meerdere winkelkanalen om de prestaties van de vraagvoor-
spelling in een doelkanaal te verbeteren. Ten tweede bieden we de eerste studie van
gebruikersgedrag in een multi-channel retailomgeving, die resulteert in inzichten over de
kanaalspecifieke eigenschappen van gebruikersgedrag en hun effecten op de prestaties
van aanbevelingssystemen. We leveren drie belangrijke bijdragen aan het ontwerpen van
gebruikersgerichte aanbevelingssystemen. Ten eerste bieden we een grootschalig onder-
zoek naar gebruikersgedrag in het financiële domein, gericht op het begrijpen van het
zoekgedrag naar financiële informatie bij gebruikersinteracties met bedrijfsdocumenten.
Vervolgens stellen we domeinspecifieke, gebruikersgerichte aanbevelingssystemen voor
zogeheten filings voor die gebaseerd zijn op de bevindingen van onze analyse van
gebruikersgedrag. Ten tweede analyseren we herhaal-aankopen in de detailhandel, met
name in de boodschappenbranche. Vervolgens stellen we een neurale methode voor
aanbevelingen met herhaald consumptiegedrag in dit domein voor. Ten derde richten we
ons op schaalbare aanbevelingen in de detailhandel en stellen we een efficiënt aanbevel-
ingssysteem voor dat expliciet de persoonlijke voorkeuren van gebruikers modelleert,
die worden weerspiegeld in hun aankoopgeschiedenis.

Over het geheel genomen draagt dit proefschrift bij aan de onderzoeksliteratuur door
nieuwe inzichten te verschaffen in gebruikersgedrag en door de introductie van state-of-
the-art aanbevelingsmodellen. Voor toekomstig werk roepen we op tot onderzoek in de
verschillende richtingen die voortbouwen op onze bevindingen. Ons onderzoek naar
gebruikersgedrag in multi-channel retailomgevingen is uitsluitend gebaseerd op gelogde
transacties. Gegevens over klikgedrag zijn een andere belangrijke bron waar we geen
rekening mee hebben gehouden. Het analyseren van klikgegevens kan helpen bij het de-
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7. Samenvatting

tecteren van klantintenties voor downstream-taken. Uit onze experimenten blijkt verder
dat de aanbevelingsprestaties niet consistent zijn in instellingen die alleen online, alleen
offline, of via meerdere kanalen werken. Het ontwerpen van een aanbevelingsalgoritme
specifiek voor de meerkanaalsomgeving blijft een onontgonnen richting. Ten slotte
hebben we ons in het hele proefschrift geconcentreerd op herhaalde aanbevelingen.
Het helpen van gebruikers bij het ontdekken van nieuwe items is echter een ander
belangrijk doel van aanbevelingssystemen. Het begrijpen van het verkenningsgedrag
van gebruikers met voorheen ongeziene items als opstap naar het bereiken van dit doel
is een andere veelbelovende richting voor toekomstig werk.
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