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1
Introduction

Search engines leverage large repositories of knowledge to improve information ac-
cess [115, 128, 147]. These repositories may store unstructured knowledge such as
textual documents or social media posts, or structured knowledge such as attributes of
and relationships between real-world objects and topics.

In order to effectively leverage knowledge, search engines should account for
context, i.e., additional information about the user and the query [7, 18, 165, 194]. In
this thesis, we study how to support search engines in leveraging knowledge while
accounting for different types of context: (1) context that the search engine proactively
provides to enrich search results (e.g., information on tourist attractions when searching
for a city), (2) context that stems from the interactions between the user and the search
engine in a conversational search session, or (3) context provided by the user to specify
a broad query.

Search engine result pages (SERPs) present information that is meant to be relevant
to the user’s query [13, 78, 168]. Apart from the traditional “ten blue links”, modern
SERPs are increasingly being enriched with additional context that often comes from
structured knowledge sources to enhance the user experience [47]. Knowledge graphs
(KGs), which store world knowledge in the form of facts, are the most prominent
structured knowledge source for search engines [25, 106, 147]. This is natural since the
majority of queries issued to search engines contain entities stored in KGs [70]. KGs are
used to support different components of modern SERPs, such as direct answers to user
queries and KG panels [208], which present facts about the entity identified in the query
and other, related entities to support exploratory search (see Figure 1.1) [21, 25, 75, 120].
A challenge that arises when presenting such structured knowledge in a SERP is that it
is stored in a formal form, not directly suitable for presentation to the user. Tackling
this challenge is the focus of the first research theme of this thesis, where we study how
to make structured knowledge more accessible to the search engine user.

Users interact with the search results presented to them in multiple ways and they
provide signals that may be used by search engines to improve the user experience,
for instance by continuously learning better ranking functions [38, 79, 80, 84, 88].
Recent advances in natural language processing and deep learning have enabled the
wide-spread use of interactive systems in real-world applications [64], which, in turn,
has fueled a resurgence of research in conversational search [6, 45, 46, 155, 210]. In
conversational search, the user interacts with the search engine during relatively short

1



1. Introduction

Figure 1.1: Part of a SERP KG panel in response to the query “Bill Gates” (split in two
parts).

sessions to gather knowledge over large unstructured knowledge repositories [16, 43]. A
prominent challenge in conversational search is that the search engine has to keep track
of the evolving context during the conversation so as to enable more natural interactions.
Addressing this challenge is the focus of the second research theme of this thesis, where
we study how to identify relevant context from the conversation history in order to
improve interactive knowledge gathering.

Search engines facilitate knowledge gathering for different types of users. A large
portion of research in information retrieval has focused on how to answer information
needs of users in web search [27, 117, 124, 211]. In contrast to web search, in pro-
fessional search, users express their information needs in a different way and aim to
access and explore domain-specific knowledge [91, 157, 183]. Writers are a type of
professional users who heavily rely on search engines [74, 173]. For instance, writers
in the scientific domain use search engines to find relevant references to include in their
articles [19, 76]. Another prominent example of professional search engine users are
writers in the news domain [44, 51]. Such writers create narratives around specific
events and use search engines to support them in this process [39, 93, 161]. In the third
research theme of this thesis, we study how to support writers explore unstructured
knowledge about past events given an incomplete narrative that specifies a main event
and a context.

1.1 Research Outline and Questions

This thesis focuses on three research themes aimed at supporting search engines with
knowledge and context: (1) making structured knowledge more accessible to the user by
describing and contextualizing KG facts (Chapters 2, 3 and 4), (2) improving interactive
knowledge gathering by identifying relevant context in conversational search (Chap-
ter 5), and (3) supporting knowledge exploration for narrative creation by retrieving

2



1.1. Research Outline and Questions

event-focused news articles in context (Chapter 6).
Below, we describe the main research questions for each chapter. In each chapter

we describe more fine-grained subquestions that we ask to answer each main research
question.

1.1.1 Making structured knowledge more accessible to the user

SERPs often include structured knowledge for queries that mention real-world entities
in the form of KG facts. Facts are stored in KGs in a formal form (e.g., 〈Bill Gates,
founderOf, Microsoft〉). When presenting a KG fact to the user, however, it is more
natural to use human-readable descriptions that verbalize and contextualize the fact [66].
For instance, a possible description of the KG fact 〈Bill Gates, founderOf, Microsoft〉
is: Bill Gates is an American business magnate and the principal founder of Microsoft
Corporation. In our first study (Chapter 2), we cast the problem of finding such
descriptions as a retrieval task:

RQ1 Given a KG fact and a text corpus, can we retrieve textual descriptions of the fact
from the text corpus?

We propose a method that first extracts and enriches candidate sentences that may be
referring to the entities of the fact from a text corpus, and then ranks those sentences.
Our results show that we can reliably retrieve sentences that accurately describe a given
fact, under the condition that a relevant sentence exists in the underlying text corpus.

However, it is likely that this condition does not hold in cases where a given fact
is not explicitly described in the text corpus at hand. This limits the applicability of
our proposed method in real-world scenarios. In order to address this limitation, in our
second study (Chapter 3), we consider a text generation task:

RQ2 Given a KG fact, can we automatically generate a textual description of the fact
in the absence of an existing description?

We propose to first create sentence templates for each relationship in the KG using
existing fact descriptions. Then, given a KG fact that expresses a specific relationship,
we select a relevant template and fill it using additional information from the KG (other
facts), if needed. We find that our method can generate contextually rich descriptions
and is robust against KG incompleteness.

KG fact descriptions often contain mentions of other, related facts that provide
additional context and thus increase the user’s understanding of the fact as a whole (e.g.,
Bill Gates founded Microsoft with Paul Allen). Given the large size of KGs, many facts
could potentially be relevant to the fact of interest, thus we need to automate the task of
finding those other facts. This is the focus of our next study (Chapter 4):

RQ3 Can we contextualize a KG query fact by retrieving other, related KG facts?

We propose a method that first enumerates other candidate facts in the neighborhood of
the query fact and then ranks those facts with respect to their relevance to the query fact.
We propose the neural fact contextualization method (NFCM), a neural ranking model
that combines automatically learned and hand-crafted features. In addition, we propose

3



1. Introduction

to use a distant supervision method to automatically gather training data for NFCM. We
find that NFCM outperforms several baseline methods and that distant supervision is
effective for this task.

1.1.2 Improving interactive knowledge gathering

The ultimate goal of conversational AI is interactive knowledge gathering [64]. Search
engines can play a crucial role towards achieving that goal. An interactive search engine
should support conversational search, where a user aims to interactively find information
stored in large unstructured knowledge repositories [45].

In our next study (Chapter 5), we focus on multi-turn passage retrieval as an instance
of conversational search [46]. Here, the query at the current turn may be underspecified.
Thus, we need to identify relevant context from the conversation history to arrive at a
better expression of the query. We answer the following research question:

RQ4 Can we use query resolution to identify relevant context and thereby improve
retrieval in conversational search?

Here, query resolution refers to the task of adding missing context from the conversation
history to the current turn query, if needed. We propose to model query resolution as a
term classification task. We design query resolution by term classification (QuReTeC),
a neural query resolution model based on bidirectional transformers. Since obtaining
human-curated training data specifically for query resolution may be cumbersome, we
propose a distant supervision method that automatically generates supervision data for
QuReTeC using query-passage relevance pairs. We find that when integrating QuReTeC
in a multi-stage ranking architecture we can significantly outperform baseline models.
In addition, we find that the distant supervision method we propose can substantially
reduce the amount of human-curated training data required to train QuReTeC.

1.1.3 Supporting knowledge exploration for narrative creation

Writers such as journalists often use search engines to find relevant material to include
in event-oriented narratives [51, 83, 140]. Such material can provide background
knowledge on the event itself or connections to other events that can help writers
generate new angles on the narrative and thus better engage the reader [39, 93]. Previous
work has focused on exploring knowledge for narrative creation from different sources,
such as social media [44, 52, 213], or from sources with a more narrow scope, such as
political speeches [113].

In our next study (Chapter 6), we focus on supporting knowledge exploration from a
corpus of event-centric news articles for narrative creation. More specifically, we study
a real-world scenario where the writer has already generated an incomplete narrative
that specifies a main event and a context, and aims to retrieve relevant news articles that
discuss other events from the past. We answer the following research question:

RQ5 Can we support knowledge exploration for event-centric narrative creation by
performing news article retrieval in context?

4



1.2. Main Contributions

We formally define this task and propose a retrieval dataset construction procedure that
relies on existing news articles to simulate incomplete narratives and relevant articles.
We conduct experiments on two datasets derived from this procedure and find that
state-of-the-art lexical and semantic rankers are not sufficient for this task. We find
that combining those rankers with one that ranks articles by reverse chronological
order outperforms those rankers alone. We also perform an in-depth quantitative and
qualitative analysis of the results along different dimensions to acquire insights into the
characteristics of this task.

1.2 Main Contributions

In this section, we summarize the main contributions of this thesis.

Theoretical contributions

1. We formalize the task of retrieving knowledge graph fact descriptions stored in a
text corpus (Chapter 2).

2. We formalize the task of generating knowledge graph fact descriptions (Chap-
ter 3).

3. We formalize the task of knowledge graph fact contextualization (Chapter 4).

4. We formulate the task of query resolution for conversational search as term
classification (Chapter 5).

5. We formalize the task of news article retrieval in context for event-centric narrative
creation (Chapter 6).

Algorithmic contributions

6. A learning to rank method that combines a rich set of features for retrieving
knowledge graph fact descriptions (Chapter 2).

7. A method for generating knowledge graph fact descriptions by template construc-
tion and filling (Chapter 3).

8. Neural fact contextualization method (NFCM), a method for contextualizing
knowledge graph facts, and a distant supervision method for gathering training
data automatically (Chapter 4).

9. Query resolution by term classification (QuReTeC), a method for query resolution
for multi-turn passage ranking, and a distant supervision method for gathering
training data automatically (Chapter 5).

10. A retrieval dataset construction procedure for the task of news article retrieval in
context for event-centric narrative creation (Chapter 6).

5



1. Introduction

Empirical contributions

11. Retrieving knowledge graph fact descriptions (Chapter 2)

(a) Empirical comparison of our proposed learning to rank model and other
sentence retrieval methods.

(b) Empirical comparison of relationship-dependent models against an indepen-
dent model.

(c) Analysis of how different feature types contribute to the performance of our
model and an error analysis of common errors made by our model.

12. Generating knowledge graph fact descriptions (Chapter 3)

(a) Empirical comparison of different methods by automatic and manual evalu-
ation.

(b) Analysis of specific cases where our method succeeds or fails.

13. Contextualizing knowledge graph facts (Chapter 4)

(a) Empirical comparison of NFCM and heuristic baselines.

(b) We show that learning ranking functions using distant supervision is benefi-
cial.

(c) Analysis of the effect of handcrafted and automatically learned features on
retrieval effectiveness.

14. Query resolution for conversational search (Chapter 5)

(a) Empirical comparison of QuReTeC and multiple baselines of different
nature.

(b) We show that distant supervision can substantially reduce the amount of
gold standard training data needed to train QuReTeC.

(c) Qualitative analysis of specific cases where our method succeeds or fails.

15. News article retrieval in context (Chapter 6)

(a) Empirical comparison of state-of-the-art lexical rankers on this task.

(b) We show that a combination of lexical and semantic rankers with one that
ranks articles by reverse chronological order outperforms those rankers
alone.

(c) An in-depth quantitative and qualitative analysis of the performance of the
rankers under comparison among different dimensions.
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Resources

16. A manually annotated dataset for knowledge graph fact description retrieval.

17. An automatically extracted dataset for knowledge graph fact description genera-
tion.

18. A manually annotated dataset for knowledge graph fact contextualization.

19. An open source implementation of QuReTeC.

20. An automatically extracted dataset for news article retrieval in context.

1.3 Thesis Overview

The thesis is organized in three parts.
In the first part we study how to make KG facts more accessible to users in search

applications. Specifically, given a specific KG fact, we study how to retrieve textual
descriptions of the fact (Chapter 2), how to generate a textual description of the fact in
the absence of an existing description (Chapter 3), and how to retrieve other KG facts to
contextualize the fact (Chapter 4).

In the second part we study how to improve interactive knowledge gathering by
performing query resolution for multi-turn passage retrieval (Chapter 5).

In the third part we study how to support narrative creation by performing news
article retrieval in context (Chapter 6).

In Chapter 7 we conclude the thesis and discuss directions for future work.

1.4 Origins

Below we list which publication is the origin of each chapter.

Chapter 2 is based on the conference paper: N. Voskarides, E. Meij, M. Tsagkias,
M. de Rijke, and W. Weerkamp. Learning to explain entity relationships in knowledge
graphs. In ACL-IJCNLP. ACL, 2015 [185].

NV designed the method and ran the experiments. EM helped with algorithmic
design. All authors conributed to the text, NV did most of the writing.

Chapter 3 is based on the conference paper: N. Voskarides, E. Meij, and M. de Rijke.
Generating descriptions of entity relationships. In ECIR. Springer, 2017 [186].

NV designed the method and ran the experiments. All authors contributed to the
text, NV did most of the writing.

Chapter 4 is based on the conference paper: N. Voskarides, E. Meij, R. Reinanda,
A. Khaitan, M. Osborne, G. Stefanoni, K. Prabhanjan, and M. de Rijke. Weakly-
supervised contextualization of knowledge graph facts. In SIGIR. ACM, 2018 [187].

NV designed the method and ran the experiments. EM, RR contributed to the
experimental design. AK helped with the infrastructure. All authors contributed to the
text, NV did most of the writing.
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Chapter 5 is based on the conference paper: N. Voskarides, D. Li, P. Ren, E. Kanoulas,
and M. de Rijke. Query resolution for conversational search with limited supervision.
In SIGIR. ACM, 2020 [189].

NV designed the method and ran the experiments. DL contributed to the experimen-
tal design and ran baseline models. All authors contributed to the text, NV did most of
the writing.

Chapter 6 is based on the conference paper: N. Voskarides, E. Meij, S. Sauer, and
M. de Rijke. News article retrieval in context for event-centric narrative creation. In
Under submission, 2020 [190].

NV designed the method and ran the experiments. All authors contributed to the
text, NV did most of the writing.

The thesis also indirectly benefited from insights gained from the following publications:

• N. Voskarides, D. Odijk, M. Tsagkias, W. Weerkamp, and M. de Rijke. Query-
dependent contextualization of streaming data. In ECIR. Springer, 2014 [184].

• N. Voskarides, D. Li, A. Panteli, and P. Ren. ILPS at TREC 2019 Conversational
Assistant Track. TREC, NIST, 2019 [188].

• G. Sidiropoulos, N. Voskarides, and E. Kanoulas. Knowledge graph simple
question answering for unseen domains. In AKBC, 2020 [166].

• F. Sarvi, N. Voskarides, L. Mooiman, S. Schelter, and M. de Rijke. A comparison
of supervised learning to match methods for product search. In eCOM 2020: The
2020 SIGIR Workshop on eCommerce. ACM, 2020 [160].

• A. M. Krasakis, M. Aliannejadi, N. Voskarides, and E. Kanoulas. Analysing the
effect of clarifying questions on document ranking in conversational search. In
ICTIR. ACM, 2020 [95].
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Part I

Making Structured Knowledge
more Accessible to the User
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2
Retrieving Knowledge Graph Fact

Descriptions

In the first part of this thesis, we study how to make structured knowledge more
accessible to the user. In this chapter, we aim to answer RQ1: Given a KG fact and a
text corpus, can we retrieve textual descriptions of the fact from the text corpus?

Knowledge graph (KG) facts express entity relationships in a formal form. In the
scope of this chapter we use the term “explaining entity relationships” as an alias for
“retrieving KG fact descriptions”.

2.1 Introduction

Knowledge graphs are a powerful tool for supporting a large spectrum of search appli-
cations including ranking, recommendation, exploratory search, and web search [56].
A knowledge graph aggregates information around entities across multiple content
sources and links these entities together, while at the same time providing entity-specific
properties (such as age or employer) and types (such as actor or movie).

Although there is a growing interest in automatically constructing knowledge graphs,
e.g., from unstructured web data [42, 60, 193], the problem of providing evidence
on why two entities are related in a knowledge graph remains largely unaddressed.
Extracting and presenting evidence for linking two entities, however, is an important
aspect of knowledge graphs, as it can enforce trust between the user and a search
engine, which in turn can improve long-term user engagement, e.g., in the context of
related entity recommendation [21]. Although knowledge graphs exist that provide this
functionality to a certain degree (e.g., when hovering over Google’s suggested entities,
see Figure 2.1), to the best of our knowledge there is no previously published research
on methods for entity relationship explanation.

In this chapter we propose a method for explaining the relationship between two
entities, which we evaluate on a newly constructed annotated dataset that we make
publicly available. In particular, we consider the task of explaining relationships between
pairs of Wikipedia entities. We aim to infer a human-readable description for an entity
pair given a relationship between the two entities. Since Wikipedia does not explicitly

This chapter was published as [185].

11



2. Retrieving Knowledge Graph Fact Descriptions

Figure 2.1: Part of Google’s search result page for the query “barack obama”. When
hovering over the related entity “Michelle Obama”, an explanation of the relationship
between her and “Barack Obama” is shown.

define relationships between entities we use a knowledge graph to obtain these relations.
We cast our task as a sentence ranking problem: we automatically extract sentences
from a corpus and rank them according to how well they describe a given relationship
between a pair of entities. For ranking purposes, we extract a rich set of features and use
learning to rank to effectively combine them. Our feature set includes both traditional
information retrieval and natural language processing features that we augment with
entity-dependent features. These features leverage information from the structure of the
knowledge graph. On top of this, we use features that capture the presence in a sentence
of the relationship of interest. For our evaluation we focus on “people” entities and we
use a large, manually annotated dataset of sentences.

We break down RQ1 to three research sub-questions. First, we ask what the
effectiveness of state-of-the-art sentence retrieval models is for explaining a relationship
between two entities (RQ1.1). Second, we consider whether we can improve over
sentence retrieval models by casting the task in a learning to rank framework (RQ1.2).
Third, we examine whether we can further improve performance by using relationship-
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dependent models instead of a relationship-independent one (RQ1.3). We complement
these research questions with an error and feature analysis.

Our main contributions are a robust and effective method for explaining entity
relationships, detailed insights into the performance of our method and features, and a
manually annotated dataset.

2.2 Related Work

We combine ideas from sentence retrieval, learning to rank, and question answering to
address the task of explaining relationships between entities.

Previous work that is closest to the task we address in this chapter is that of Blanco
and Zaragoza [20] and Fang et al. [61]. First, Blanco and Zaragoza [20] focus on finding
and ranking sentences that explain the relationship between an entity and a query. Our
work is different in that we want to explain the relationship between two entities, rather
than a query. Fang et al. [61] explore the generation of a ranked list of knowledge
base relationships for an entity pair. Instead, we try to select sentences that describe a
particular relationship, assuming that this is given.

Our approach builds on sentence retrieval, where one retrieves sentences rather than
documents that answer an information need. Document retrieval models such as tf-idf,
BM25, and language modeling [11] have been extended to tackle sentence retrieval.
Three of the most successful sentence retrieval methods are TFISF [8], which is a
variant of the vector space model with tf-idf weighting, language modeling with local
context [62, 126], and a recursive version of TFISF that accounts for local context [54].
TFISF is very competitive compared to document retrieval models tuned specifically for
sentence retrieval (e.g., BM25 and language modeling [110]) and we therefore include
it as a baseline.

Sentences that are suitable for explaining relationships can have attributes that are
important for ranking but cannot be captured by term-based retrieval models. One way
to combine a wide range of ranking features is learning to rank (LTR). Recent years
have witnessed a rapid increase in the work on learning to rank, and it has proven to
be a very successful method for combining large numbers of ranking features, for web
search, but also other information retrieval applications [3, 28, 171]. We use learning
to rank and represent each sentence with a set of features that aim to capture different
dimensions of the sentence.

Question answering (QA) is the task of providing direct and concise answers to
questions formed in natural language [77]. QA can be regarded as a similar task to ours,
assuming that the combination of entity pair and relationship form the “question” and
that the “answer” is the sentence describing the relationship of interest. Even though
we do not follow the QA paradigm in this chapter, some of the features we use are
inspired by QA systems. In addition, we employ learning to rank to combine the devised
features, which has recently been successfully applied for QA [3, 171].
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2.3 Problem Statement

We address the problem of explaining relationships between pairs of entities in a
knowledge graph. We operationalize the problem as a problem of ranking sentences
from documents in a corpus that is related to the knowledge graph. More specifically,
given two entities ei and ej that form an entity pair 〈ei, ej〉, and a relation r between
them, the task is to extract a set of candidate sentences Sij = {sij1 , . . . , sijk} that
refer to 〈ei, ej〉 and to impose a ranking on the sentences in Sij . The relation r
has the general form 〈type(ei), terms(r), type(ej)〉, where type(e) is the type of the
entity e (e.g., Person or Actor) and terms(r) are the terms of the relation (e.g.,
CoCastsWith or IsSpouseOf).

We are left with two specific tasks: (1) extracting candidate sentences Sij , and
(2) ranking Sij , where the goal is to have sentences that provide a perfect explanation
of the relationship at the top position of the ranking. The next section describes our
methods for both tasks.

2.4 Explaining Entity Relationships

We follow a two-step approach for automatically explaining relationships between entity
pairs. First, in Section 2.4.1, we extract and enrich sentences that refer to an entity pair
〈ei, ej〉 from a corpus in order to construct a set of candidate sentences. Second, in
Section 2.4.2, we extract a rich set of features describing the entities’ relationship r and
use supervised machine learning in order to rank the sentences in Sij according to how
well they describe the relationship r.

2.4.1 Extracting candidate sentences

To create a set of candidate sentences for a given entity pair and relationship, we require
a corpus of documents that is pertinent to the entities at hand. Although any kind of
document collection can be used, we focus on Wikipedia in this chapter, as it provides
good coverage for the majority of entities in our knowledge graph.

First, we extract surface forms for the given entities: the title of the entity’s
Wikipedia article (e.g., “Barack Obama”), the titles of all redirect pages linking to
that article (e.g., “Obama”), and all anchor text associated with hyperlinks to the article
within Wikipedia (e.g., “president obama”). We then split all Wikipedia articles into
sentences and consider a sentence as a candidate if (i) the sentence is part of either
entities’ Wikipedia article and contains a surface form of, or a link to, the other entity;
or (ii) the sentence contains surface forms of, or links to, both entities in the entity pair.

Next, we apply two sentence enrichment steps for (i) making sentences self-
contained and readable outside the context of the source document and (ii) linking
the sentences to entities. For (i), we replace pronouns in candidate sentences with the
title of the entity. We apply a simple heuristic for the people entities, inspired by [197]:1

we count the frequency of the terms “he” and “she” in the article for determining

1We experimented with the Stanford co-reference resolution system [101] and Apache OpenNLP and
found that they were not able to consistently achieve the level of effectiveness that we require.
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the gender of the entity, and we replace the first appearance of “he” or “she” in each
sentence with the entity’s title. We skip this step if any surface form of the entity occurs
in the sentence.

For (ii), we apply entity linking to provide links from the sentence to additional
entities [121]. This need arises from the fact that not every sentence in an article contains
explicit links to the entities it mentions, as Wikipedia guidelines only allow one link to
another article in the article’s text.2 The algorithm takes a sentence as input and iterates
over n-grams that are not yet linked to an entity. If an n-gram matches a surface form of
an entity, we establish a link between the n-gram and the entity. We restrict our search
space to entities that are linked from within the source article of the sentence and from
within articles to which the source article links. This way, our entity linking method
achieves high precision as almost no disambiguation is necessary.

As an example, consider the sentence “He gave critically acclaimed performances
in the crime thriller Seven. . . ” on the Wikipedia page for Brad Pitt. After applying
our enrichment steps, we obtain “Brad Pitt gave critically acclaimed performances
in the crime thriller Seven. . . ”, making the sentence human readable and link to the
entities Brad Pitt and Seven (1995 film).

2.4.2 Ranking sentences

After extracting candidate sentences, we rank them by how well they describe the
relationship of interest r between entities ei and ej . There are many signals beyond
simple term statistics that can indicate relevance. Automatically constructing a ranking
model using supervised machine learning techniques is therefore an obvious choice.
For ranking we use learning to rank (LTR) and represent each sentence with a rich
set of features. Tables 2.1 and 2.2 list the features we use. Below we provide a brief
description of the more complex ones.

Text features This feature type regards the importance of the sentence s at the term
level. We compute the density of s (feature 4) as:

density(s) =
1

K · (K + 1)

n∑
j=1

idf(tj) · idf(tj+1)

distance(tj , tj+1)2
, (2.1)

where K is the number of keyword terms in s and distance(tj , tj+1) is the number
of non-keyword terms between keyword terms tj and tj+1. We treat stop words and
numbers in s as non-keywords and the remaining terms as keywords. Features 5–8
capture the distribution of part-of-speech tags in the sentence.

Entity features These features partly build on [118, 177] and describe the entities
and are dependent on the knowledge graph. Whether ei or ej is the first appearing
entity in a sentence might be an indicator of importance (feature 13). The spread of
ei and ej in the sentence (feature 14) might be an indicator of their centrality in the
sentence [20]. Features 15–22 capture the distribution of part-of-speech tags in the

2http://en.Wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking
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Table 2.1: Text and entity features used for sentence ranking.

# Name Gloss

Text features
1 Sentence length Length of s in words
2 Sum of idf Sum of IDF of terms of s in Wikipedia
3 Average idf Average IDF of terms of s in Wikipedia
4 Sentence density Lexical density of s, see Equation 2.1 [100]

5–8 POS fractions Fraction of verbs, nouns, adjectives, others
in s [122]

Entity features
9 #entities Total number of entities in s

10 Link to ei Whether s contains a link to the entity ei
11 Link to ej Whether s contains a link to the entity ej
12 Links to ei and ej Whether s contains links to both entities ei

and ej
13 Entity first Is ei or ej the first entity in the sentence?
14 Spread of ei, ej Distance between the last match of ei and ej

in s [20]
15–22 POS fractions left/right Fraction of verbs, nouns, adjectives, others to

the left/right window of ei and ej in s [122]
23–25 #entities left/right/between Number of entities to the left/right or be-

tween entities ei and ej in s
26 common links ei, ej Whether s contains any common link of ei

and ej
27 #common links The number of common links of ei and ej in

s
28 Score common links ei, ej Sum of the scores of the common links of ei

and ej in s
29–30 #common links prev/next The number of common links of ei and ej in

previous/next sentence of s

sentence in a window of four words around ei or ej in s [122], complemented by the
number of entities between, to the left of, and to the right of the entity pair (features
23–25).

We assume that two articles that have many common articles that point to them are
strongly related [196]. We hypothesize that, if a sentence contains common inlinks from
ei and ej , the sentence might contain important information about their relationship.
Hence, we add whether the sentence contains a common link (feature 26) and the
number of common links (feature 27) as features. We score a common link l between
ei and ej using:

score(l, ei, ej) = sim(l, ei) · sim(l, ej), (2.2)

where sim(·, ·) is defined as the similarity between two Wikipedia articles, computed
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Table 2.2: Relationship and source features used for sentence ranking.

# Name Gloss

Relationship features
31 Match terms(r)? Whether s contains any term in terms(r)
32 Match wordnet(r)? Whether s contains any phrase in wordnet(r)
33 Match word2vec(r)? Whether s contains any phrase in word2vec(r)

34–36 or’s Boolean OR of feature 31 and one or both of
features 32 and 33

37–38 or(31, 32, 33) prev/next Boolean OR of features 31, 32, 33 for the previ-
ous/next sentence of s

39 Average word2vec(r) Average cosine similarity of phrases in
word2vec(r) that are matched in s

40 Maximum word2vec(r) Maximum cosine similarity of phrases in
word2vec(r) that are matched in s

41 Sum word2vec(r) Sum of cosine similarity of phrases in
word2vec(r) that are matched in s

42 Score LC Lucene score of s with titles(ei, ej), terms(r),
wordnet(r), word2vec(r) as query

43 Score R-TFISF R-TFISF score of s with queries constructed as
above

Source features
44 Sentence position Position of s in document from which it origi-

nates
45 From ei or ej? Does s originate from the Wikipedia article of

ei or ej?
46 #(ei or ej) Number of occurrences of ei or ej in document

from which s originates, inspired by document
smoothing for sentence retrieval [125]

using a variant of Normalized Google Distance [196]. Feature 28 then measures the
sum of the scores of the common links.

Previous research shows that using surrounding sentences is beneficial for sentence
retrieval [54]. We therefore consider the number of common links in the previous and
next sentence (features 29–30).

Relationship features Feature 31 indicates whether any of the relationship-specific
terms occurs in the sentence. Only matching the terms in the relationship may have low
coverage since terms such as “spouse” may have many synonyms and/or highly related
terms, e.g., “husband” or “married”. Therefore, we use WordNet to find synonym
phrases of r (feature 32); we refer to this method as wordnet(r).

Alternatively, we use word embeddings to find such similar phrases [119]. Such
embeddings take a text corpus as input and learn vector representations of words
and phrases consisting of real numbers. Given the set Vr consisting of the vector
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representations of all the relationship terms and the set V which consists of the vector
representations of all the candidate phrases in the data, we calculate the distance between
a candidate phrase represented by a vector vi ∈ V and the vectors in Vr as:

distance(vi, V ) = cos

vi,
∑

vj∈Vr

vj

 , (2.3)

where
∑

vj∈Vr
vj is the element-wise sum of the vectors in Vr and the distance between

two vectors v1 and v2 is measured using cosine similarity. The candidate phrases in
V are then ranked using Equation 2.3 and the top-m phrases are selected, resulting in
features 33, 39, 40, and 41; we refer to the ranked set of phrases that are selected using
this procedure as word2vec(r).

In addition, we employ state-of-the-art retrieval functions and include the scores for
queries that are constructed using the entities ei and ej , the relation r, wordnet(r), and
word2vec(r). We use the titles of the entity articles titles(e) to represent the entities in
the query and two ranking functions, Recursive TFISF (R-TFISF) and LC,3 (features
42–43). TFISF is a sentence retrieval model that determines the level of relevance of a
sentence s given a query q as:

R(s, q) =
∑
t∈q

log(tf t,q + 1) · log(tf t,s + 1) · log
(

n+ 1

0.5 + sf t

)
, (2.4)

where tf t,q and tf t,s are the number of occurrences of term t in the query q and the
sentence s respectively, sf t is the number of sentences in which t appears, and n is the
number of sentences in the collection. R-TFISF is an improved extension of the TFISF
method [54], which incorporates context from neighboring sentences in the ranking
function:

Rc(s, q) = (1− µ)R(s, q) + µ[Rc(sprev(s), q) +Rc(snext(s), q)],

where µ is a free parameter and sprev(s) and snext(s) indicate functions to retrieve the
previous and next sentence, respectively. We use a maximum of three recursive calls.

Source features Here, we refer to features that are dependent on the source document
of the sentences. We have three such features.

2.5 Experimental Setup

In this section we describe the dataset, manual annotations, learning to rank algorithm,
and evaluation metrics that we use to answer our research questions.

3In preliminary experiments R-TFISF and LC were the best performing among a pool of sentence retrieval
methods.
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2.5.1 Dataset

We draw entities and their relationships from a proprietary knowledge graph that is
created from Wikipedia, Freebase, IMDB, and other sources, and that is used by the
Yahoo web search engine. We focus on “people” entities and relationships between
them.4 For our experiments we need to select a manageable set of entities, which we
obtain as follows. We consider a year of query logs from a large commercial search
engine, count the number of times a user clicks on a Wikipedia article of an entity in
the results page and perform stratified sampling of entities according to this distribution.
As we are bounded by limited resources for our manual assessments, we sample 1476
entity pairs that together with nine unique relationship types form our experimental
dataset.

We use an English Wikipedia dump dated July 8, 2013, containing approximately
4M articles, of which 50638 belong to “people” entities that are also in our knowledge
graph. We extract sentences using the approach described in Section 2.4.1, resulting in
36823 candidate sentences for our entities. On average we have 24.94 sentences per
entity pair (maximum 423 and minimum 0). Because of the large variance, it is not
feasible to obtain exhaustive annotations for all sentences. We rank the sentences using
R-TFISF and keep the top-10 sentences per entity pair for annotation. This results in a
total of 5689 sentences.

Five human annotators provided relevance judgments, manually judging sentences
based on how well they describe the relationship for an entity pair, for which we use a
five-level graded relevance scale (perfect, excellent, good, fair, bad).5 Of all relevance
grades 8.1% is perfect, 15.69% excellent, 19.98% good, 8.05% fair, and 48.15% bad.
Out of 1476 entity pairs, 1093 have at least one sentence annotated as fair. As is
common in information retrieval evaluation, we discard entity pairs that have only “bad”
sentences. We examine the difficulty of the task for human annotators by measuring
inter-annotator agreement on a subset of 105 sentences that are judged by 3 annotators.
Fleiss’ kappa is k = 0.449, which is considered to be moderate agreement.

2.5.2 Machine learning

For ranking sentences we use a Random Forest (RF) classifier [26].6 We set the number
of iterations to 300 and the sampling rate to 0.3. Experiments with varying these two
parameters did not show any significant differences. We also tried several feature
normalization methods, none of them being able to significantly outperform the runs
without feature normalization.

We obtain POS tags using the Stanford part-of-speech tagger and filter out a standard
list of 33 English stopwords. For the word embeddings we use word2vec and train our
model on all text in Wikipedia using negative sampling and the continuous bag of words
architecture. We set the size of the phrase vectors to 500 and m = 30.

4Note that, except for the co-reference resolution step described in Section 2.4.1, our method does not
depend on this restriction.

5https://github.com/nickvosk/acl2015-dataset-learning-to-explain-
entity-relationships

6In preliminary experiments, we contrasted RF with gradient boosted regression trees and LambdaMART
and found that RF consistently outperformed other methods.
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Table 2.3: Results for five baseline variants. See text for their description and significant
differences.

Baseline NDCG@1 NDCG@10 ERR@1 ERR@10

B1 0.7508 0.8961 0.3577 0.4531
B2 0.7511 0.8958 0.3584 0.4530
B3 0.7595 0.8997 0.3696 0.4600
B4 0.7767 0.9070 0.3774 0.4672
B5 0.7801 0.9093 0.3787 0.4682

2.5.3 Evaluation metrics

We employ two main evaluation metrics in our experiments, NDCG [85] and ERR [33].
The former measures the total accumulated gain from the top of the ranking that is
discounted at lower ranks and is normalized by the ideal cumulative gain. The latter
models user behavior and measures the expected reciprocal rank at which a user will
stop her search. We consider these ranking-based graded evaluation metrics at two
cut-off points: position 1, corresponding to showing a single sentence to a user, and
10, which accounts for users who might look at more results. We report on NDCG@1,
NDCG@10, ERR@1, ERR@10, and Exc@1, which indicates whether we have an
“excellent” or “perfect” sentence at the top of the ranking. Likewise, Per@1 indicates
whether we have a “perfect” sentence at the top of the ranking (not all entity pairs have
an excellent or a perfect sentence).

We perform 5-fold cross validation and test for statistical significance using a paired
two-tailed t-test. We depict a significant difference in performance for p < 0.01 with N

(gain) and H (loss) and for p < 0.05 with M (gain) and O (loss). Boldface indicates the
best score for a metric.

2.6 Results and Analysis

We compare the performance of typical document retrieval models and state-of-the-
art sentence retrieval models in order to answer RQ1.1. We consider five sentence
retrieval models: Lucene ranking (LC), language modeling with Dirichlet smoothing
(LM), BM25, TFISF, and Recursive TF-ISF (R-TFISF). We follow related work and set
µ = 0.1 for R-TFISF, k = 1 and b = 0 for BM25 and µ = 250 for LM [62].

In our experiments, a query q is constructed using various combinations of surface
forms of the two entities ei and ej and the relationship r. Each entity in the entity pair
can be represented by its title, the titles of any redirect pages pointing to the entity’s
article, the n-grams used as anchors in Wikipedia to link to the article of the entity,
or the union of them all. The relationship r can be represented by the terms in the
relationship, synonyms in wordnet(r), or by phrases in word2vec(r).

First, we fix the way we represent r. Baseline B1 does not include any representation
of r in the query. B2 includes the relationship terms of r, while B3 includes the
relationship terms of r and the synonyms in wordnet(r). B4 includes the terms of r and
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the phrases in word2vec(r), and B5 includes the relationship terms of r, the synonyms
in wordnet(r) and the phrases in word2vec(r). Combining these variations with the
entity representations, we find that all combinations that use the titles as representation
and R-TFISF as the retrieval function outperform all other combinations.This can
be explained by the fact that titles are least ambiguous, thus reducing the possibility
of accidentally referring to other entities. BM25 and LC perform almost as well as
R-TFISF, with only insignificant differences in performance.

Table 2.3 shows the best performing combination of each baseline, i.e., varying the
representation of r and using titles and R-TFISF. B4 and B5 are the best performing
baselines, suggesting that word2vec(r) and wordnet(r) are beneficial. B5 significantly
outperforms all baselines except B4.

We also experiment with a supervised combination of the baseline rankers using LTR.
Here, we consider each baseline ranker as a separate feature and train a ranking model.
The trained model is not able to outperform the best individual baseline, however.

2.6.1 Learning to rank sentences

Next, we provide the results of our method using the features described in Section 2.4.2,
exploring whether our learning to rank (LTR) approach improves over sentence retrieval
models (RQ1.2). We compare an LTR model using the features in Tables 2.1 and 2.2
against the best baseline (B5).

Table 2.4 shows the results. Each group in the table contains the results for the entity
pairs that have at least one candidate sentence of that relevance grade for B5 and LTR.

We find that LTR significantly outperforms B5 by a large margin. The absolute
performance difference between LTR and B5 becomes larger for all metrics as we move
from “fair” to “perfect,” which shows that LTR is more robust than the baseline for
entity pairs that have at least one high quality candidate sentence. LTR ranks the best
possible sentence at the top of the ranking for ∼83% of the cases for entity pairs that
contain an “excellent” sentence and for ∼72% of the cases for entity pairs that contain
a “perfect” sentence.

Note that, as indicated in Section 2.5.1, we discard entity pairs that have only “bad”
sentences in our experiments. For the sake of completeness, we report on the results
for all entity pairs in our dataset—including those without any relevant sentences—in
Table 2.5.

2.6.2 Relationship-dependent models

Relevant sentences may have different properties for different relationship types. For
example, a sentence describing two entities being partners would have a different form
than one describing that two entities costar in a movie. A similar idea was investigated
in the context of QA for associating question and answer types [205]. To answer
RQ1.3 we examine whether learning a relationship-dependent model improves over
learning a single model for all types. We split our dataset per relationship type and
train a model per type using 5-fold cross-validation within each. Table 2.6 shows
the results. Our method is robust across different relationships in terms of NDCG.
However, we observe some variation in ERR as this metric is more sensitive to the
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Table 2.7: Results using relationship-dependent models, removing individual feature
types.

Features NDCG@1 NDCG@10 ERR@1 ERR@10

All 0.8661 0.9395 0.4615 0.5287

All\text 0.8620 0.9372 0.4606 0.5274
All\source 0.8598 0.9372 0.4582 0.5261
All\entity 0.8421O 0.9282H 0.4497 0.5202O

All\relation 0.8183H 0.9201H 0.4352H 0.5112H

distribution of relevant items than NDCG—the distribution over relevance grades varies
per relationship type. For example, it is much more likely to find candidate sentences
that have a high relevance grade for 〈Person , isSpouseOf , Person〉 than for 〈Athlete ,
PlaysSameSportTeamAs , Athlete〉 in our dataset. We plan to address this issue by
exploring other corpora in the future.

The second-to-last row in Table 2.6 shows the averaged results over the different
relationship types, which is a significant improvement over LTR at p < 0.01 for all
metrics. This method ranks the best possible sentence at the top of the ranking for
∼85% of the cases for entity pairs that contain an “excellent” sentence (∼2% absolute
improvement over LTR) and for ∼75% of the cases for entity pairs that contain a
“perfect” sentence (∼3% absolute improvement over LTR).

2.6.3 Feature type analysis

Next, we analyze the impact of the feature types. Table 2.7 shows how performance
varies when removing one feature type at a time from the full feature set. Relationship
type features are the most important, although entity type features are important as well.
This indicates that introducing features based on entities identified in the sentences
and the relationship is beneficial for this task. Furthermore, the limited dependency on
the source feature type indicates that our method might be able to generalize in other
domains. Finally, text type features do contribute to retrieval effectiveness, although not
significantly. Note that calculating the sentence features is straightforward, as none of
our features requires heavy linguistic analysis.

2.6.4 Error analysis

When looking at errors made by the system, we find that some are due to the fact that
entity pairs might have more than one relationship (e.g., actors that costar in movies
also being partners) but the selected sentence covers only one of the relationships.7 For
example, Liza Minnelli is the daughter of Judy Garland, but they have also
costarred in a movie, which is the relationship of interest. The model ranks the sentence
“Liza Minnelli is the daughter of singer and actress Judy Garland. . . ” at the top, while

7The annotators marked sentences that do not refer to the relationship of interest as “bad” but indicated
whether they describe another relationship or not. We plan to account for such cases in future work.
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the most relevant sentence is: “Judy Garland performed at the London Palladium with
her then 18-year-old daughter Liza Minnelli in November 1964.”

Sentences that contain the relationship in which we are interested, but for which
this cannot be directly inferred, are another source of error. Consider, for example,
the following sentence, which explains director Christopher Nolan directed ac-
tor Christian Bale: “Jackman starred in the 2006 film The Prestige, directed by
Christopher Nolan and costarring Christian Bale, Michael Caine, and Scarlett Johans-
son”. Even though the sentence contains the relationship of interest, it focuses on actor
Hugh Jackman. The sentence “In 2004, after completing filming for The Machinist,
Bale won the coveted role of Batman and his alter ego Bruce Wayne in Christopher
Nolan’s Batman Begins. . . ”, in contrast, refers to the two entities and the relationship
of interest directly, resulting in a higher relevance grade. Our method, however, ranks
the first sentence on top, as it contains more phrases that refer to the relationship.

2.7 Conclusions and Future Work

We have presented a method for explaining relationships between knowledge graph enti-
ties with human-readable descriptions. We first extract and enrich sentences that refer to
an entity pair and then rank the sentences according to how well they describe the rela-
tionship. For ranking, we use learning to rank with a diverse set of features. Evaluation
on a manually annotated dataset of “people” entities shows that our method significantly
outperforms state-of-the-art sentence retrieval models for this task. Experimental results
also show that using relationship-dependent models is beneficial.

In future work we aim to evaluate how our method performs on entities and relation-
ships of any type and popularity, including tail entities and miscellaneous relationships.
We also want to investigate moving beyond Wikipedia and extract candidate sentences
from documents that are not related to the knowledge graph, such as web pages or news
articles. Employing such documents also implies an investigation into more advanced
co-reference resolution methods.

Our analysis showed that sentences may cover different relationships between
entities or different aspects of a single relationship—we aim to account for such cases
in follow-up work. Furthermore, sentences may contain unnecessary information for
explaining the relation of interest between two entities. Especially when we want to
show the obtained results to end users, we may need to apply further processing of the
sentences to improve their quality and readability. We would like to explore sentence
compression techniques to address this. Finally, relationships between entities have an
inherit temporal nature and we aim to explore ways to explain entity relationships and
their changes over time.

In this chapter, we studied the task of retrieving existing KG fact descriptions
(explaining entity relationships). In the next chapter, we study how to generate such
descriptions instead of retrieving existing ones.

26



3
Generating Knowledge Graph Fact

Descriptions

In the previous chapter, we studied how to retrieve existing KG fact descriptions.
However, a scenario where a description for a KG fact does not exist in the underlying
text corpus is not unlikely. Therefore, in this chapter, we aim to answer RQ2: Given a
KG fact, can we automatically generate a textual description of the fact in the absence of
an existing description? As in the previous chapter, we use the term “entity relationship”
to refer to a KG fact.

3.1 Introduction

Results displayed on a modern search engine result page (SERP) are sourced from
multiple, heterogeneous sources. For so-called organic results it has been known for a
long time that result snippets, i.e., brief descriptions explaining the result item and its
relation to the query, positively influence the user experience [176]. In this chapter, we
focus on generating descriptions for results sourced from another important ingredient
of modern SERPs: knowledge graphs. Knowledge graphs (KGs) contain information
about entities and their relationships. A large and diverse set of search applications
utilize KGs to improve the user experience. For instance, web search engines try to
identify KG entities in queries and augment their result pages with knowledge graph
panels that provide contextual entity information [22, 106]. Such panels usually focus
on a single entity and may include attributes of the entity and other, related entities.

Entities can be connected with more than one relationship in a KG, however. For
example, two actors might have appeared in the same film, be born in the same country
and also be partners. Recent work has focused on finding relationships between a
pair of entities and ranking the relationships by a predefined relevance criterion [61].
When using relationships in real-world search applications, with SERPs being the prime
example, a crucial problem is that they are typically represented in a formal manner
that is not suitable to present to an end user. Instead, human-readable descriptions that
verbalize and provide context about entity relationships are more natural to use [66].

This chapter was published as [186].
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They can be used, e.g., for entity recommendations [21] or for KG-based timeline
generation [9].

Descriptions of KG relationships themselves are usually not included in large-scale
knowledge graphs and previous work on automatically generating such descriptions
has either relied on hand-crafted templates [9] or on external text corpora [185]. The
main limitations of the former are that manually creating these templates is expensive,
not generalizable, and thus it does not scale well. The latter approach is limited as the
underlying text corpus may not contain descriptions for all certain relationship instances;
it will not produce meaningful results for instances that do not appear in the text corpus.

We propose a method that overcomes these limitations by automatically generating
descriptions of KG entity relationships. Since there exist textual descriptions of a
certain relationship for some relationship instances, we aim to use these descriptions
to learn how the relationship is generally expressed in text and use this information to
generate descriptions for other instances of the same relationship. Existing relationship
descriptions are usually complex and tailored to the entities they discuss. Also, it
is likely that the KG does not contain all the information included in a description.
For example, the KG might not contain any information about the second part of the
following sentence: “Catherine Zeta-Jones starred in the romantic comedy The Rebound,
in which she played a 40-year-old mother of two . . . ”. Nevertheless, descriptions of
the same relationship share patterns that are specific to that relationship. Therefore, we
first create sentence templates for a certain relationship and then, for a new relationship
instance, we select appropriate templates, which we formulate as a ranking problem,
and fill them with the appropriate entities to generate a description.

We propose a method that generates descriptions of entity relationships for a rela-
tionship instance given a knowledge graph and a set of relationship instances coupled
with their descriptions; we evaluate this method using an automatic and manual eval-
uation method, and release the datasets used to the community.1 We show that we
generate contextually rich relationship descriptions that are meant to be valid under the
KG closed-world assumption. Moreover, our template-based method is naturally robust
against KG incompleteness, since in the case of lack of contextual information about
the relationship instance, it can still generate a basic description.

3.2 Related Work

Web search engine result pages (SERPs) can be augmented with information about
the query and the documents from KGs in order to improve the user experience [106].
Also, SERPs can be augmented with textual descriptions and/or summaries with a
prominent example being snippet generation for web search [176, 178]. Closest to
our setting, relationship descriptions have been studied in the context of providing
evidence for entity recommendation for web search [185] and timeline generation for
knowledge base entities [9]. Our task, generating a description of a relationship instance
given a KG, is similar to event headline generation, where the task is to generate a
short sentence that summarizes a specific event. Similar to our templates, the headline
patterns constructed in [138] consist of words and entity slots. Our method differs

1https://github.com/nickvosk/ecir2017-gder-dataset/
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Table 3.1: Glossary.

Symbol Description

K knowledge graph
E set of entities
P set of predicates
〈s, p, o〉 knowledge graph triple with s, o ∈ E and p ∈ P
v word in vocabulary V
a sentence
ri relationship instance of relationship r
Tr set of templates t ∈ Tr for relationship r
Rt set of relationship instances that support the template t
X set of pairs 〈ri′ , y′〉, where y′ is a textual description (a single sentence)
C mapping from an entity to an entity cluster
K entity dependency graph of a sentence
G compression graph
P set of paths in G

however, since relationships are more general than events and we thus have to deal with
ambiguity at generation time when selecting which template matches a relationship
instance.

Our task is also similar to concept-to-text generation, where the task is to generate a
textual description given a set of database records [148]. In this context, our task is most
closely related to [99, 159]. Saldanha et al. [159] use a template-based approach for
generating company descriptions from Freebase. They construct sentence templates by
replacing the entities in existing sentences by the Freebase relation of the entity to the
company (e.g., 〈company〉 was founded by 〈founder〉). They add a preprocessing step
where they remove phrases from the sentence that contain entities that are not connected
to the company directly. At generation time, the authors replace the entity slots with
the appropriate entities. Lebret et al. [99] propose a neural model to generate the first
sentence of a person’s biography in Wikipedia conditioned on Wikipedia infoboxes.
Our setting is different from these papers since our generated descriptions are neither
restricted to having entities that are directly connected to the subject entity in a KG nor
need they be contained in a Wikipedia infobox.

3.3 Problem Definition

In this section we formally define the task of generating descriptions of entity relation-
ships. Table 3.1 lists the main notation we use in this chapter.

3.3.1 Prelimilaries

Let E be a set of entities and P a set of predicates. A knowledge graph K is a set of
triples 〈s, p, o〉, where s, o ∈ E and p ∈ P . We follow the closed-world assumption for
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x z yactor film film starring

Figure 3.1: Graphical representation of the logical form of the starsInFilm relationship.
Lambda variables are shown in circles and existential variables in rectangles.

K and use Freebase as our knowledge graph [23, 128]. A sentence a is a sequence of
words [v1, . . . , vn], where each vi ∈ a is also in V . Non-overlapping sub-sequences of
a might refer to a single entity e ∈ E .

A relationship r is a logical form in λ-calculus that consists of two lambda variables
(x and y), at least one predicate, and zero or one existential variables [208]. Lambda
variables can be substituted with Freebase entities, excluding compound value type
(CVT) entities.2 Existential variables, on the other hand, can be substituted with Free-
base entities, including CVT entities. For example, the logical form of the relationship
starsInFilm is λx.λy.∃z.actor film(x, z) ∧ film starring(z, y). Figure 3.1 shows
the equivalent graphical representation of this relationship.

A pair ri = r〈s, o〉 is a relationship instance of r for entities s, o ∈ E if by substitut-
ing x = s and y = o in r and by executing the resulting logical form in the knowledge
graph K we get at least one result. For example, starsInFilm(BradPitt ,Troy) is a
relationship instance of the starsInFilm relationship.

3.3.2 Task definition

We assume that a relationship instance ri can be expressed with a human-readable
description (such as a single sentence) that contains mentions of both s and o and
possibly other entities which may provide contextual information for the relationship r
or the entities s and o. The task we address in this chapter is to generate such a textual
description y of the relationship instance ri given the KG. For this we leverage a set of
pairs X , where each x ∈ X is a pair of ri′ and y′, and y′ is the description of ri′ . We
describe how we obtain this set in Section 3.5.

We aim to generate descriptions that are valid (expressing a relationship that can
be found in the knowledge graph under the closed-world assumption), natural (gram-
matically correct), and informative, i.e., not just replicating the formal relationship but
providing additional contextual information where possible.

We conclude our task definition with an example. Assume that we are given
the relationship instance starsInFilm(BradPitt, T roy). A possible description of
this relationship instance is the following: “Brad Pitt appeared in the American epic
adventure film Troy.” This description not only contains mentions of the entities of
the relationship instance and a verbalization of the relationship (“appeared in”), but
also mentions of other entities that provide additional context. In particular, it contains
mentions of Troy’s type (Film), its genres (Epic, Adventure), and its country
of origin.

2CVT entities are special entities in Freebase that are used to model attributes of relationships (e.g., date
of marriage).
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Table 3.2: Additional surface forms per entity type.

Entity type Surface form

Person “he” or “she”, person’s surname
Film “the film”
Music album “the album”
Music composition “the song”, “the track”

3.4 Generating Textual Descriptions

In this section we detail our method which consists of three main steps. First, we enrich
the description y′ for each pair 〈ri′ , y′〉 ∈ X with additional entities from the KG
(Section 3.4.1). Second, we use K and the set X to create a set of sentence templates
Tr for the relationship r (Section 3.4.2). Third, given a new relationship instance, we
use Tr and K to generate a description (Section 3.4.3).

3.4.1 Enriching the textual descriptions

In this step we perform entity linking to enrich the description y′ for each pair 〈ri′ , y′〉 ∈
X with additional entities from the KG. This is done in order to facilitate the template
creation step (Section 3.4.2). Each y′ is a sentence that is about an entity e ∈ E and in
the context of this chapter we obtain these sentences from Wikipedia as our KG provides
explicit links to Wikipedia articles. Although Wikipedia articles already contain explicit
links to other articles and thus entities, these links are quite sparse. Therefore, we apply
an algorithm for entity linking similar to [185].

Since y′ originates from a Wikipedia article that is about a specific entity, we restrict
the candidate entities (i.e., the entities that we consider adding to enrich y′) to e itself,
the in-links and out-links of the article of e in the Wikipedia structure, and the one-hop
and two-hop neighbors of e in the KG. We infer the surface forms of each entity using
the Wikipedia link structure, as is common in entity linking [118], and we also use
the aliases of each entity provided by the KG.3 In order to increase coverage for e, we
enhance the set of surface forms of entity e using the rules in Table 3.2.

We iterate over the n-grams of the sentence that are not yet linked to an entity in
decreasing order of length; if the n-gram matches a surface form of a candidate entity,
we link the n-gram to the entity. If multiple entity candidates exist for a surface form, we
rank the candidate entities by the number of entity neighbors they have in the sentence
and select the top-ranked entity. Because of the very restricted set of candidate entities,
the linking is usually unambiguous (with only one entity candidate per surface form).4

3We tag the sentences with POS tags and ignore unigram surface forms that are verbs.
4A manual evaluation of this algorithm on a held-out, random sample of 100 sentences in our dataset

revealed an average of 93% precision and 85% recall per sentence.
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Algorithm 1 Template creation

Require: A set X , the knowledge graph K
Ensure: A set of templates Tr

1: X ′ ← []
2: for 〈ri′ , y′〉 ∈ X do
3: K ← BUILDENTITYDEPENDENCYGRAPH(y′,K)
4: X ′.append(〈ri′ , y′,K〉)
5: C ← CLUSTERENTITIES(X ′)
6: G← BUILDCOMPRESSIONGRAPH(X ′, C)
7: P ← FINDVALIDPATHS(G)
8: Tr ← {}
9: for p ∈ P do

10: t← CONSTRUCTTEMPLATE(p,G,X ′)
11: if t 6= NULL then
12: Tr.add(t)

3.4.2 Creating sentence templates

In this step, we create a set of templates Tr for a relationship r using the KG and the set
of 〈ri′ , y′〉 pairs. The templates in Tr will be used in the next step to generate a novel
description for the relationship instance ri.

A sentence template t is a tuple (k, l, Rt), where (i) k = [u1u2 . . . un] is a sequence,
such that ∀ui ∈ l : ui ∈ V ∪ Et, (ii) l is a logical form in λ-calculus that consists of all
the lambda variables in Et, at least one predicate and zero or more existential variables,
and (iii) Rt is a set of relationship instances that support t.

The procedure we follow is outlined in Algorithm 1. First, we augment each
〈ri′ , y′〉 pair with an entity dependency graph K in order to capture dependencies
between entities in a sentence (lines 1–4). Next, we build a mapping C that maps each
entity in each sentence to a single cluster id (line 5). This is done in order to facilitate the
detection of useful patterns in the sentences since each sentence describes a relationship
for a particular entity pair. Then, we build a compression graph G (line 6) and use it
to find valid paths P (line 7). Finally, for each path p ∈ P , we construct a template
t and add it to the set of templates (lines 8–12). We now describe each procedure in
Algorithm 1.

BUILDENTITYDEPENDENCYGRAPH(.) In order to build the graph K for a sentence
y′, we retrieve all paths between each pair of entities mentioned in y′ from the KG and
add them to K. We only consider 1-hop paths and 2-hop paths that pass through a CVT
entity. Figure 3.2 shows the entity dependency graph for an example sentence.

CLUSTERENTITIES(.) In order to obtain C, we consider all x′ = 〈ri′ , y′,K〉 ∈ X ′
and map two entities in the same cluster if they share at least one incoming or outgoing
edge label in their corresponding entity dependency graph K. For example, in the
starsInFilm relationship, this procedure will create separate clusters for persons, films,
dates and CVT entities.

BUILDCOMPRESSIONGRAPH(.) In this step, we build a compression graph G =
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Brad Pitt

med1

12 Years a Slave

Film

Dramaactor.film

performance.film film.sta
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Figure 3.2: Entity dependency graph for the sentence “Brad Pitt appeared in the drama
film 12 Years a Slave”. Nodes represent entities and edge labels represent predicates
(med1 is a CVT entity).

(V,E) using the sentence y′ of each 〈ri′ , y′,K〉 ∈ X ′. V is a set of nodes and E is a
set of edges. We follow a similar procedure to [63], in which each node holds a list of
〈sid, pid〉 pairs, where sid is a sentence id and pid is the index of the word/entity in the
sentence. In our case a node can be a word or an entity cluster. We map two words onto
the same node if they have the same lowercase form and the same POS tag. We map
two entities on the same node if they have the same cluster id.

FINDVALIDPATHS(.) In order to find valid paths in the graph G, we set all the entity
cluster nodes as valid start/end nodes and traverse G to find a set of paths P from a start
to an end node. In order to build templates that are natural we enforce the following
constraints for the paths in P : (i) the path must contain a verb and (ii) the path must have
been seen as a complete sentence at least once in the input sentences. For example, given
the following sentences (the corresponding cluster id per entity are listed in brackets):

• y′1: “Bruce Willis[c1] appeared in Moonrise Kingdom[c2]”

• y′2: “Liam Neeson[c1] appeared in the action[c3] film[c4] Taken[c2]”

• y′3: “Brad Pitt[c1] appeared in the drama[c3] film[c4] 12 Years a Slave[c2]”

we obtain the following valid paths by traversing the graph:

• p1: “c1 appeared in c2”

• p2: “c1 appeared in the c3 c4 c2”

CONSTRUCTTEMPLATE(.) Algorithm 2 outlines the procedure for constructing a
template t from a path p. First, for each 〈ri′ , y′,K〉 ∈ X ′, we check whether y′ is a
(possibly non-continuous) subsequence h of path p by using the positional information
of each node in p from G.5 If it is, we check whether h contains links to both the
subject and the object of the relationship instance ri′ . If it does, we store the entity
dependency graph and the relationship instance. Next, if the number of instances is less

5For example, the path p1 is a subsequence of y′2.
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3. Generating Knowledge Graph Fact Descriptions

Algorithm 2 CONSTRUCTTEMPLATE(.)

Require: A path p, the compression graph G, a set X ′, parameters α, β
Ensure: A template t

1: Dg ← [] . entity dependency graphs
2: Rt ← [] . relationship instances that support the template
3: for 〈ri′ , y′,K〉 ∈ X ′ do
4: if ISSUBSEQUENCE(p, y′, G) then
5: h← GETSUBSEQUENCE(p, y′, G) . get the actual subsequence
6: 〈s, o〉 ← ri′ . subject/object of the relationship instance
7: if CONTAINSLINK(h, s) and CONTAINSLINK(h, o) then
8: Dg.append(K)
9: Rt.append(ri′)

10: if |Rt| < α then . too few relationship instances
11: return NULL
12: l← BUILDLOGICALFORM(Dg, β) . aggregate the entity dependency graphs
13: k ← REPLACECLUSTERIDSWITHVARIABLES(p)
14: t = (k, l, Rt)

xsubj z xobj

x3

x4

actor.film

performance.film film.starring

performance.actor

type

genre

Figure 3.3: Logical form of the template constructed using p2 and y′1, y
′
2, y
′
3 (with their

corresponding relationship instances). k =“xsubj appeared in the x3 x4 xobj”. Lambda
variables are shown in circles and existential variables in rectangles.

than a parameter α, we consider the template to be invalid. Subsequently, we build the
logical form l by aggregating the entity dependency graphs Dg . Entity nodes that were
part of the path p become lambda variables (nodes constructed from subject and object
entities have special identifiers). Entity nodes that were not part of the path p (CVT
entities) become existential variables. We ignore edges appearing in less than |Dg| · β
entity dependency graphs. Lastly, we replace the cluster ids in p with the corresponding
lambda variables to obtain a sequence k.

Figure 3.3 shows the logical form of a template constructed using the example
sentences y′1, y′2 and y′3 and their corresponding instances in graphical form (β = 0.5).
Note that the edge “producer.film” has been eliminated since it only appears in one out
of the three instances.
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3.4.3 Generating the description

In this step we generate a novel description for a relationship instance ri using the set
of templates Tr and the knowledge graph K. This comes down to selecting the template
from Tr that best describes the relationship instance ri and filling it with the appropriate
entities.

The procedure is as follows. First, we rank the templates in Tr for the rela-
tionship instance using a scoring function f(ri, t). Subsequently, for each template
t = (k, l, Rt) we replace the subject and object lambda variables in l to obtain
l′ = l[xsubj = s, xobj = o]. We then query the knowledge graph K using l′ and
if at least one instantiation of l′ exists, we randomly pick one and replace all the
entity variables in k with the entity names to generate the description y, otherwise
we proceed to the next template. As an example, assume we are given the instance
ri = starsInFilm(Ryan Reynolds , Deadpool) and we consider the template shown
in Figure 3.3. A possible instantiation of the template for this relationship instance will
result in the description “Ryan Reynolds appeared in the comedy film Deadpool”.6

The template scoring function f(ri, t) returns a score for a relationship instance ri
and template t. As we want to generate descriptions that are valid under the closed-
world assumption of the KG, we promote templates that are semantically closest to the
relationship instance. For a new relationship instance ri we extract binary features for
each entity in the ri. Recall that ri has two or more entities (subject s, object o and
possibly a CVT entity z). For each entity e of ri, we extract all triples 〈e, p, e′〉 from
the KG K. We restrict the feature space by discriminating between entity attributes and
entity relations depending on the predicate p as in [107]. If the predicate p is an attribute
(e.g., “gender”), we use the complete triple as a feature (e.g. 〈s, gender , female〉). If
the predicate p is a relation (e.g., “date of death”), we only keep the subject and the
predicate of the triple as a feature (e.g., 〈e, person.date of death〉). We also add a
count feature for the relation predicates (e.g., 〈s, person.children, 2〉, i.e., a person has
two children). We denote the resulting binary vector for ri as vec(ri). We obtain a
vector vec(t) for template t by summing the vectors of all the instances Rt of t. We also
compute a vector vec tfidf (t) that is a TF.IDF weighted vector of vec(t), where IDF
is calculated at the template level. Based on these ingredients, we define two scoring
functions:

• Cosine Calculates the cosine similarity between vectors vec(ri) and vec tfidf(t).

• Supervised Learns a scoring function using a supervised learning to rank algo-
rithm. We treat ri as a “query” and t as a “document.”

We create training data for the supervised algorithm as follows. Recall that each ri is
coupled with a description y′. For each ri, we assign a relevance label of 3 for templates
that best match y (measured by the number of entities) and a relevance label of 2 for the
rest of the templates that match y. In order to create “negative” training data, we sample
templates that are dissimilar to the ones that match y in the following way. First, we
calculate the average vector of all the templates that match y and build a distribution of

6Note that there might be multiple instantiations (e.g., Deadpool is also a science fiction film) and selecting
the optimal one depends on the application—we leave this for future work.
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templates based on the cosine distance from the average vector to each of the templates
in Tr (excluding the ones that match y). Lastly, we sample at most the number of
matching templates from the resulting distribution and assign them a relevance label of
1 (we ignore templates that have a cosine similarity to the average vector greater than
0.9). For the supervised model we use the following features: each element/value pair
in vec(ri), the cosine similarity between vectors vec(ri) and vec tfidf (t), the words in
t, the number of entities in t and the size of Rt. We use LambdaMART [199] as the
learning algorithm and optimize for NDCG@1.7

3.5 Experimental Setup

In this section we describe the experimental setup we designed to answer RQ2.

3.5.1 Datasets

We use an English Wikipedia dump dated 5 February 2015 as our document corpus. We
perform sentence splitting and POS tagging using the Stanford CoreNLP toolkit. We
use a subset of the last version of Freebase as our KG [23]: all the triples in the people,
film and music domains, as these are well-represented in Freebase.

In order to create an evaluation dataset for our task, we first need a set of KG
relationships. We rank the predicates in each domain by the number of instances and
keep the 10 top-ranked predicates. We exclude trivial predicates such as “dateOfDeath”.
We then use the predicates to manually construct the logical forms of the relationships
(see Figure 3.1 for an example). Second, we need a set of 〈ri′ , y′〉 pairs for each
relationship r, where ri′ = r〈s′, o′〉 is an instance of relationship r, s′ and o′ are entities
and y′ is a description of ri′ . To this end, for each relationship r, we randomly sample
12000 relationship instances from the KG. For each relationship instance ri′ , we pick
the first sentence in the Wikipedia article of the subject entity s′ that contains links to
both s′ and o′. If such a sentence does not exist, we proceed to the next instance. We
manually inspected a subset of the sentences selected with this heuristic and the quality
of the selected sentences was relatively good. Our final dataset contains 10 relationships
and 90058 〈ri′ , y′〉 instances in total and 8187 instances on average per relationship. We
randomly select 80% of each relationship sub-dataset for training and 20% for testing.

3.5.2 Evaluation metrics

We perform two types of evaluation: automatic and manual. For automatic evaluation
we use METEOR [97], ROUGE-L [105] and BLEU-4 [133] as metrics. METEOR
was originally proposed in the context of machine translation but has also been used
in a task similar to ours [159]. ROUGE is a standard metric in summarization and
BLEU is widely used in machine translation and generation. As is common in text
generation [94], we also employ manual evaluation. We ask human annotators to
annotate each output sentence on three dimensions: validity under the KG closed-world

7For this method we use 20% of the training data as validation data. The same test data is used for all
methods.
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Table 3.3: Automatic evaluation results, averaged per relationship.

Method BLEU METEOR ROUGE

Random 1.14 16.56 24.13
Most-freq 0.13 13.99 21.96
Cosine 1.76N 17.37 25.84N

Supervised 2.14N 19.18N 26.54N

assumption (0 or 1), informativeness (1–5) and grammaticality (1–5). One human
annotator (not one of the authors) annotated 11 generated sentences per relationship per
system (440 sentences in total).

3.5.3 Compared approaches

We compare 4 variations of our method. The variations differ in the way they rank
templates for a given relationship instance. The first variation (Random) ranks the
templates randomly. The second (Most-freq) ranks templates by the number of relation-
ship instances that support the template. The third (Cosine) ranks templates based on
the cosine similarity between the vectors of the relationship instance and the template
(Section 3.4.3). The fourth (Supervised) ranks templates using a learning to rank model
(Section 3.4.3), for which we use LambdaMART with the default number of trees (1000).
We set α = 20 and β = 0.5 (Section 3.4.3). We depict a significant improvement in
performance over Random with N (paired two-tailed t-test, p < 0.05).

3.6 Results

In this section we describe our experimental results. We compare all methods discussed
previously, using the automatic and manual setups, respectively.

3.6.1 Automatic evaluation

Table 3.3 shows the automatic evaluation results. We observe that Supervised and
Cosine outperform Random and Most-freq on all metrics. This is expected since the
former two try to capture the semantic similarity between a relationship instance and
a template. Although Supervised consistently outperforms Cosine, the differences
between Cosine and Supervised are not significant.

We also observe that the scores for the automatic measures are relatively low. This
is because of two reasons: (i) we generally generate much shorter sentences than
the reference sentence as not all information that appears in the reference sentence is
represented in the KG, and (ii) since the reference sentences are extracted automatically,
some of the reference sentences describe a minor aspect of the relationship or do not
discuss the relationship at all.

37



3. Generating Knowledge Graph Fact Descriptions

Table 3.4: Manual evaluation results, averaged per relationship.

Method Validity Informativeness Grammaticality

Random 0.4545 1.98 3.67
Most-freq 0.5000 1.60 3.62
Cosine 0.5636N 2.05 4.00
Supervised 0.5818N 2.18N 3.90

3.6.2 Manual evaluation

Table 3.4 shows the results for manual evaluation. The results follow a similar trend as
in the automatic evaluation; Supervised and Cosine outperform Random and Most-freq
on all metrics. Supervised significantly outperforms Random in terms of validity and
informativeness. The differences between Cosine and Supervised are not significant.

3.6.3 Analysis

We have also examined specific examples and identify cases where the best performing
approach (Supervised) succeeds or fails. In terms of validity, it succeeds in matching
attributes of the relationship instance and the template. E.g., in the context of the
relationship parentOf , it correctly figures out what the genders of the entities are and
the semantically valid expression of the relationship between them, often better than
Cosine, as illustrated by the following example:

(Supervised) “Emperor Francis I (1708 - 1765) was the father of Emperor Leopold II”
(VALID)

(Cosine) “Emperor Francis I was the son of Emperor Leopold II” (INVALID)

Supervised benefits from training a model that combines multiple features such as
the template words with attributes of the relationship instance to describe whether the
relationship is still ongoing or not. One of the main cases where Supervised fails is in
ranking a relationship instance in a temporal dimension with regards to other relationship
instances, as illustrated by the following example for the childOf relationship:

“Thomas Howard was the second son of Henry Howard and Frances de Vere.”
(INVALID: Thomas Howard was the first son of Henry Howard)

The fact that our best performing approach (Supervised) has a relatively low validity
score (0.5818) shows that there is room for improvement in capturing the semantic
similarity between a relationship instance and a template.

In terms of informativeness, Supervised succeeds in offering contextual information
about the relationship instance, such as dates, locations, occupations and film genres.
The fact that informativeness scores are relatively low is because they are dependent
on validity: when a generated sentence was assigned a validity of score 0, it was also
assigned an informativeness score of just 1.
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3.7. Conclusion

Grammaticality scores are high for all the systems with no significant differences.
This is expected as the templates were generated using the same procedure for all
the compared systems. Mainly, grammaticality is harmed when some entities in the
generated sentence have the wrong surface form (e.g., ‘Britain’, ‘British’), which is not
surprising as we do simple surface realization (deciding which surface form of the entity
best fits with the generated sentence) and only use the entity names as surface forms.

3.7 Conclusion

We have addressed the problem of generating descriptions of entity relationships from
KGs. We have introduced a method that first creates sentence templates for a specific
relationship, and then, for a new relationship instance, it generates a novel description by
selecting the best template and filling the template slots with the appropriate entities from
the KG. We have experimented with different scoring functions for ranking templates
for a relationship instance and performed an automatic and a manual evaluation.

When using information about the relationship instance and the template taken from
the KG, both automatic and manual evaluation outcomes are improved. A supervised
method that uses both KG features and other template features (template words, number
of entities) consistently outperforms an unsupervised method on all automatic evaluation
metrics and also in terms of validity and informativeness.

As to future work, our error analysis showed that we need more sophisticated model-
ing for capturing the semantic similarity between a relationship instance and a template,
especially for capturing temporal dimensions that also involve other relationship in-
stances. We also want to explore more sophisticated methods for selecting the correct
surface form for an entity to improve grammaticality. Finally, we aim to evaluate our
method on generating descriptions for less popular KG relationships.

In this chapter, we studied the task of generating KG fact (entity relationship)
descriptions. In the next chapter, we move on to study how to contextualize KG facts
using other, related KG facts.
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4
Contextualizing Knowledge Graph Facts

In Chapter 2 and 3, we studied how retrieve and generate descriptions of knowledge
graph (KG) facts. KG fact descriptions often contain mentions to other, related KG
facts that are not trivial to find given the large size of KGs. In this chapter, we address
RQ3: Can we contextualize a KG query fact by retrieving other, related KG facts?

4.1 Introduction

Knowledge graphs (KGs) have become essential for applications such as search, query
understanding, recommendation and question answering because they provide a unified
view of real-world entities and the facts (i.e., relationships) that hold between them [21,
22, 120, 208]. For example, KGs are increasingly being used to provide direct answers to
user queries [208], or to construct so-called entity cards that provide useful information
about the entity identified in the query. Recent work [25, 75] suggests that search engine
users find entity cards useful and engage with them when they contain information that
is relevant to their search task, for instance in the form of a set of recommended entities
and facts that are related to the query [21]. Previous work has focused on augmenting
entity cards with facts that are centered around, i.e., one-hop away from, the main entity
of the query [75].

However, oftentimes a user is interested in KG facts that by definition involve more
than one entity (e.g., “Who founded Microsoft?” −→ “Bill Gates”). In such cases, we
can exploit the richness of the KG by providing query-specific additional facts that
increase the user’s understanding of the fact as a whole, and that are not necessarily
centered around only one of the entities. Additional relevant facts for the running
example would include Bill Gates’ profession, Microsoft’s founding date, its main
industry and its co-founder Paul Allen (see Figure 4.1). In this case, Bill Gates’ personal
life is less relevant to the fact that he founded Microsoft.

Query-specific relevant facts can also be used in other applications to enrich the
user experience. For instance, they can be used to increase the utility of KG question
answering (QA) systems that currently only return a single fact as an answer to a
natural language question [15, 208]. Beyond QA, systems that focus on automatically
generating natural language from KG facts [99] would also benefit from query-specific

This chapter was published as [187].
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Bill Gates Microsoft

Software

Programmer Paul Allen 1975-04

founderOf

industry

dateFounded

founderO
f

profession

profession

Figure 4.1: A Freebase subgraph that consists of relevant facts to the query fact
founderOf (Bill Gates,Microsoft).

relevant facts, which can make the generated text more natural and human-like. This
becomes even more important for KG facts that involve tail entities, for which natural
language text might not exist for training [186].

In this chapter, we address the task of KG fact contextualization, that is, given a KG
fact that consists of two entities and a relation that connects them, retrieve additional
facts from the KG that are relevant to that fact. This task is analogous to ad-hoc retrieval:
(i) the “query” is a KG fact, (ii) the “documents” are other facts in the KG that are in
the neighborhood of the “query”. We propose a neural fact contextualization method
(NFCM), a method that first generates a set of candidate facts that are part of {1,2}-hop
paths from the entities of the main fact. NFCM then ranks the candidate facts by how
relevant they are for contextualizing the main fact. We estimate our learning to rank
model using supervised data. The ranking model combines (i) features we automatically
learn from data and (ii) those that represent the query-candidate facts with a set of hand-
crafted features we devised or adjusted for this task. Due to the size and heterogeneous
nature of KGs, i.e., the large number of entities and relationship types, we turn to distant
supervision to gather training data. Using another, human-verified test collection we
gauge the performance of our proposed method and compare it with several baselines.
We sum up our contributions as follows.

• We introduce the task of KG fact contextualization where the goal is to, given a
fact that consists of two entities and a relationship that connects them, rank other
facts from a KG that are relevant to that fact.

• We propose NFCM, a method to solve KG fact contextualization using distant
supervision and learning to rank. Our results show that: (i) distant supervision
is an effective means for gathering training data for this task and (ii) a neural
learning to rank model that is trained end-to-end outperforms several baselines
on a human-curated evaluation set.

• We provide a detailed result analysis and insights into the nature of our task.

The remainder of this chapter is organized as follows. We first provide a definition
of our task in Section 4.2 and then introduce our method in Section 4.3. We describe
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Barack
Obama M1

Michelle
Obama

1992-10Hawaii

spouse spouse
marriageDate

bornIn

Figure 4.2: KG subgraph that consists of three facts: bornIn〈Barack Obama,Hawaii〉,
spouseOf 〈Barack Obama,Michelle Obama〉 and marriageDate〈M1, 1992-10〉. M1
is a CVT entity. Note that the third fact is an attribute of the second fact.

our experimental setup and detail our results and analyses in Sections 4.4 and 4.5,
respectively. We conclude with an overview of related work and an outlook on future
directions.

4.2 Problem Statement

In this section we provide background definitions and formally define the task of KG
fact contextualization.

4.2.1 Preliminaries

Let E = En ∪ Ec be a set of entities, where En and Ec are disjoint sets of non-CVT
and CVT entities, respectively.1 Furthermore, let P be a set of predicates. A knowledge
graph K is a set of triples 〈s, p, o〉, where s, o ∈ E and p ∈ P . By viewing each triple
in K as a labelled directed edge, we can interpret K as a labelled directed graph. We
use Freebase as our knowledge graph [23, 128].

A path in K is a non-empty sequence 〈s0, p0, t0〉, . . . , 〈sm, pm, tm〉 of triples from
K such that ti = si+1 for each i ∈ 0,m− 1.

We define a fact as a path in K that either: (i) consists of 1 triple, s0 ∈ E and
t0 ∈ En (i.e., s0 may be a CVT entity), or (ii) consists of 2 triples, s0, t1 ∈ En and
t0 = s1 ∈ Ec (i.e., t0 = s1 must be a CVT entity). A fact of type (i) can be an attribute
of a fact of type (ii), iff they have a common CVT entity (see Figure 4.2 for an example).

Let R be a set of relationships where a relationship r ∈ R is a label for a set of facts
that share the same predicates but differ in at least one entity. For example, spouseOf
is the label of the fact depicted in the top part of Figure 4.2 and consists of two triples.
Our definition of a relationship corresponds to direct relationships between entities, i.e.,
one-hop paths or two-hop paths through a CVT entity. For the remainder of this chapter,
we refer to a specific fact f as r〈s, t〉, where r ∈ R and s, t ∈ E.

1Compound Value Type (CVT) entities are special entities frequently used in KGs such as Freebase and
Wikidata to model fact attributes. See Figure 4.2 for an example.
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Algorithm 3 Fact enumeration for a given query fact fq .

Require: A query fact fq = r〈s, t〉
Ensure: A set of candidate facts F

1: F ← {}
2: for e ∈ {s, t} do
3: for n ∈ GETOUTNEIGHBORS(e) + GETINNEIGHBORS(e) do
4: F.addAll(GETFACTS(e, n))
5: if ISCLASSORTYPE(n) then
6: continue
7: for n2 ∈ GETOUTNEIGHBORS(n) do
8: F.addAll(GETFACTS(n, n2))
9: for n2 ∈ GETINNEIGHBORS(n) do

10: F.addAll(GETFACTS(n2, n))
11: return F

4.2.2 Task definition

Given a query fact fq and a KG K, we aim to find a set of other, relevant facts from K.
Specifically, we want to enumerate and rank a set of candidate facts F = {fc : fc ⊆
K, fc 6= fq} based on their relevance to fq . A candidate fact fc is relevant to the query
fact fq if it provides useful and contextual information. Figure 4.1 shows an example
part of our KG that is relevant to the query fact founderOf 〈Bill Gates,Microsoft〉.
Note that a candidate fact does not have to be directly connected to both entities
of the query fact to be relevant, e.g., profession〈Paul Allen,Programmer〉. Simi-
larly, a fact can be related to one or more entities in the relationship instance, e.g.,
parentOf 〈Bill Gates, Jennifer Katharine Gates〉, but not provide any context, thus be-
ing considered irrelevant.

4.3 Method

In this section we describe our proposed neural fact contextualization method (NFCM)
which works in two steps. First, given a query fact fq , we enumerate a set of candidate
facts F = {fc : fc ⊆ K} (see Section 4.3.1). Second, we rank the facts in F by
relevance to fq to obtain a final ranked list F ′ using a supervised learning to rank model
(see Section 4.3.2). We describe how we use distant supervision to automatically gather
the required annotations to train the supervised learning to rank model in Section 4.4.3.

4.3.1 Enumerating KG facts

In this section we describe how we obtain the set of candidate facts F from K given a
query fact fq = r〈s, t〉. Because of the large size of real-world KGs—which can easily
contain upwards of 50 million entities and 3 billion facts [134]— it is computationally
infeasible to add all possible facts of K in F . Therefore, we limit F to the set of facts
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Figure 4.3: Graph with a subset of the facts that are enumerated for the query fact
spouseOf (Bill Gates,Melinda Gates). The entities of the query fact are shaded.

that are in the broader neighborhood of the two entities s and t. Intuitively, facts that
are further away from the two entities of the query fact are less likely to be relevant.

The procedure we follow is outlined in Algorithm 3. This algorithm enumerates the
candidate facts for fq = r〈s, t〉 that are at most 2 hops away from either s or t. Three
exceptions are made to this rule: (i) CVT entities are not counted as hops, (ii) we do not
include fq in F as it is trivial, and (iii) to reduce the search space, we do not expand
intermediate neighbors that represent an entity class or a type (e.g., “actor”) as these
can have millions of neighbors. Figure 4.3 shows an example graph with a subset of the
facts that we enumerate for the query fact spouseOf 〈Bill Gates,Melinda Gates〉 using
Algorithm 3.

4.3.2 Fact ranking

Next, we describe how we rank the set of enumerated candidate facts F with respect to
their relevance to the query fact fq = r〈s, t〉. The overall methodology is as follows. For
each candidate fact fc ∈ F , we create a pair (fq, fc)—an analog to a query-document
pair—and score it using a function u : (fq, fc) → [0, 1] ∈ R (higher values indicate
higher relevance). We then obtain a ranked list of facts F ′ by sorting the facts in F
based on their score.

We begin by describing the training procedure we follow and continue with the
network architecture we use for learning our scoring function u.
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Learning procedure We train a network that learns the scoring function u(fq, fc)
end-to-end in mini-batches using stochastic gradient descent (we define the network
architecture below). We optimize the model parameters using Adam [92]. During
training we minimize a pairwise loss to learn the function u, while during inference we
use the learned function u to score a query-candidate fact pair (fq, fc). This paradigm
has been shown to outperform pointwise learning methods in ranking tasks, while
keeping inference efficient [49]. Each batch B consists of query-candidate fact pairs
(fq, fc) of a single query fact fq. For constructing B for a query fact fq, we use all
pairs (fq , fc) that are labeled as relevant and sample k pairs (fq , fc) that are labeled as
irrelevant. During training, we minimize the mean pairwise squared error between all
pairs of (fq , fc) in B ×B:

L(B, θ) =
1

|B|
∑

〈x1,x2〉∈B×B

([l(x1)− l(x2)]− [u(x1)− u(x2)])2, (4.1)

where x1 = (fq, fc1) and x2 = (fq, fc2) are query-candidate fact pairs in the setB×B,
l(x) ∈ {0, 1} is the relevance label of a query-candidate fact pair x, |B| is the batch
size, and θ are the parameters of the model which we define below.

Network architecture Figure 4.4 shows the network architecture we designed for
learning the scoring function u(fq, fc). We encode the query fact fq in a vector vq

using an RNN. As we will explain further in that section, we do not model the entities
in the facts independently due to the large number of entities; instead, we model each
entity as an aggregation of its types. Therefore, instead of modeling the candidate
fact fc in isolation and losing per-entity information, we first enumerate all the paths
up to two hops away from both the entities of the query fact fq (s and t) to all the
entities of the candidate fact fc (s′ and t′). Let As denote the set of paths from s to
all the entities of fc. Let At denote the set of paths from t to all the entities of fc.
For each A ∈ {As, At}, we first encode all the paths in A using an RNN, and then
combine the resulting encoded paths using the procedure described later in this section.
We denote the vectors obtained from the above procedure for As and At as vas and
vat, respectively. Then we obtain a vector va = [vas,vat], where [·, ·] denotes the
concatenation operation (middle part of Figure 4.4). Note that we use the same RNN
parameters for all the above operations. To further inform the scoring function, we
design a set of hand-crafted features x (right-most part of Figure 4.4). We detail the
hand-crafted features later in this section.

Finally, MLP-o([vq,va,x]) is a multi-layer perceptron with α hidden layers of
dimension β and one output layer that outputs u(fq, fc). We use a ReLU activation
function in the hidden layers and a sigmoid activation function in the output layer. We
vary the number of layers to capture non-linear interactions between the features in vq ,
va, and x.

The remainder of this section describes how we encode a single fact, how we
combine the representations of a set of facts, and, finally, the hand-crafted features.
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Figure 4.4: Network architecture that learns a scoring function u(fq, fc). Given a
query fact fq = r〈s, t〉 and a candidate fact fc = r ′〈a, b〉 it outputs a score u(fq, fc).
“fq → fc (from e)” is a label for the paths that start from an entity e of the query fact
(either s or t) and end at an entity e′ of the candidate fact fc. Note that p is a variable in
this figure, i.e., it might refer to different predicates.

Encoding a single fact

Recall from Section 4.2.1 that a fact f is a path in the KG. In order to model paths
we turn to neural representation learning. More specifically, since paths are sequential
by nature we employ recurrent neural networks (RNNs) to encode them in a single
vector [48, 71]. This type of modeling has proven successful in predicting missing
links in KGs [48]. One restriction that we have in modeling such paths is the very
large number of entities (∼ 1.5 million entities in our dataset) and, since learning
an embedding for such large numbers of entities requires prohibitively large amounts
of memory and data, we represent each entity using an aggregation of its types [48].
Formally, let W z denote a |Z| × dz matrix, where each row is an embedding of an
entity type z, |Z| is the number of entity types in our dataset and dz is the entity
type embedding dimension. Let W p denote a |P | × dp matrix, where each row is an
embedding of a predicate p, |P | is the number of predicates in our dataset, and dp is
the predicate embedding dimension. In order to model inverse predicates in paths (e.g.,

47



4. Contextualizing Knowledge Graph Facts

Table 4.1: Notation

Name Description Definition

NumTriples Number of triples in K |{〈s, p, t〉 : 〈s, p, t〉 ∈ K}|
TriplesPred(p) Set of triples that have

predicate p
{〈s, p′, t〉 : 〈s, p′, t〉 ∈ K, p′ = p}

TriplesEnt(e) Set of triples that have
entity e

{〈s, p, t〉 : 〈s, p, t〉 ∈ K, s = e ∨ t = e}

TriplesSubj (e) Set of triples that have
entity e as subject

{〈s, p, t〉 : 〈s, p, t〉 ∈ K, s = e}

TriplesObj (e) Set of triples that have
entity e as object

{〈s, p, t〉 : 〈s, p, t〉 ∈ K, t = e}

UniqEnt(T ) The unique set of enti-
ties in a set of triples T

⋃{{s, t} : 〈s, p, t〉 ∈ T}
Types(e) The set of types of en-

tity e
{z : 〈e, type, z〉 ∈ K}

Entities(f) The set of entities of
fact f

⋃{{s, t} : ∀〈s, p, t〉 ∈ f}
Preds(f) The set of predicates of

fact f
{p : 〈s, p, t〉 ∈ f}

Microsoft → founderOf −1 → Paul Allen), we also define a |P | × dp matrix W pi ,
which corresponds to embeddings of the inverse of each predicate [71].

The procedure we follow for modeling a fact f is as follows. For simplicity in
the notation, in this Section we denote a path as a sequence of alternate entities and
predicates [s0, p0, . . . tm], instead of a sequence of triples as defined in Section 4.2.1.
For each entity e ∈ f , we first retrieve the types of e in K. From these, we only keep the
7 most frequent types in K, which we denote as Ze [48]. We then project each z ∈ Ze
to its corresponding type embedding wz ∈W z and perform element-wise sum on these
embeddings to obtain an embedding we for entity e. We project each predicate p ∈ f to
its corresponding embedding wp (wp ∈W pi if p is inverse, wp ∈W p otherwise).

The resulting projected sequence Xf = [ws0 ,wp0 , . . . ,wtm ] is passed to a uni-
directional recurrent neural network (RNN). The RNN has a sequence of hidden states
[h1,h2, . . . ,hn], where hi = tanh(Whhhi−1 + Wxhxi), and Whh and Wxh are
the parameters of the RNN. The RNN is initialized with zero state values. We use the
last state of the RNN hn as the representation of the fact f .

Combining a set of facts

We obtain the representation of the set of encoded facts using element-wise summation
of the encoded facts (vectors). We leave more elaborate methods for combining facts
such as attention mechanisms [12, 48] for future work.

48



4.3. Method

Hand-crafted features

Here, we detail the hand-crafted features x we designed or adjusted for this task.
Table 4.1 lists the notation we use. We generate features based on feature templates
that are divided into three groups: (i) those that give us a sense of importance of a fact,
(ii) those that give us a sense of relevance of (fq, fc), and (iii) a set of miscellaneous
features. Note that we use log-computations to avoid underflows.

(i) Fact importance This group of feature templates give us a sense on how important
a fact f is when taking statistics of the knowledge graphK into account at a global level.
Note that we calculate these features for both facts fq and fc. The first of these feature
templates measures normalized predicate frequency of each predicate p that participates
in fact f (we also include the minimum, maximum and average value for each fact as
metafeatures [24]). This is defined as the ratio of the size of the set of triples that have
predicate p in the KG to the total number of triples:

PredFreq(p) =
|TriplesPred(p)|

NumTriples
. (4.2)

The second feature template is the normalized entity frequency for each entity e that
participates in fact f (we also include the minimum, maximum and average value for
each fact as metafeatures). This is defined as the ratio of the number of triples in which
e occurs in the KG over the number of triples in the KG:

EntFreq(e) =
|TriplesEnt(e)|

NumTriples
. (4.3)

The final feature template in this feature group is path informativeness, proposed
by Pirrò [139], which we apply for both fq and fc (recall from Section 4.2.1 that a
fact f is a path in the KG). This feature is analog to TF.IDF and aims to estimate the
importance of predicates for an entity. The informativeness of a path π is defined as
follows [139]:

I(π) =
1

2|π|
∑

〈s,p,t〉∈π

PFITF out(p, s,K) + PFITF in(p, t,K), (4.4)

where:

PFITFx(p, e,K) = PFx(p, e) ∗ ITF (p), x ∈ {in, out},
where ITF (p) is the inverse triple frequency of predicate p:

ITF (p) = log
NumTriples

|TriplesPred(p)| ,

PF out(p, e) is the outgoing predicate frequency of e when p is the predicate:

PF out(p, e) =
|TriplesSubj (e) ∩ TriplesPred(p)|

|TriplesSubj (e)| ,

and PF in(p, e) is the incoming predicate frequency of e when p is the predicate:

PF in(p, e) =
|TriplesObj (e) ∩ TriplesPred(p)|

|TriplesObj (e)| .
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(ii) Relevance This group of feature templates gives us signal on the relevance of a
candidate fact fc w.r.t. the query fact fq. The first of these feature templates measures
entity similarity for each pair (e1, e2) ∈ Entities(fq)× Entities(fc) (we also include
the minimum, maximum and average entity similarity as metafeatures). We measure
entity similarity using type-based Jaccard similarity:

EntTypeSim(e1, e2) = JaccardSim(Types(e1),Types(e2)). (4.5)

The next feature template in the relevance category is entity distance, which allows
us to reason about the distance of two entities (e1, e2) ∈ Entities(fq)× Entities(fc)
(we also include the minimum, maximum and average entity distance as metafeatures).
This feature is defined as the length of the shortest path between e1 and e2 in K. The
intuition is that we can get a signal for the relevance of fc by measuring how “close”
the entities in fc are to the entities of fq in the KG.

The next set of features measure predicate similarity between every pair of predicates
(p1, p2) ∈ Preds(fq) × Preds(fc) (we also include the minimum, maximum and
average predicate similarity as metafeatures). The intuition is that if fc has predicates
that are highly similar to the predicates in fq, then fc might be relevant to fq. We
measure predicate similarity in two ways. First, by measuring the co-occurrence of
entities that participate in the predicates p1 and p2:

PredCooccSim(p1, p2) = (4.6)
JaccardSim(UniqEnt(TriplesPred(p1)),UniqEnt(TriplesPred(p2))).

For instance, PredCooccSim(p1, p2) would be high for p1 = starredIn and p2 =
directedBy . Second, by measuring the jaccard similarity of the set of predicates in fq
with the set of predicates in fc [139]:

SetPredicatesJaccardSim(fq, fc) = (4.7)
JaccardSim(Preds(fq),Preds(fc)).

Finally, we add a binary feature that captures whether fq and fc have the same CVT
entity, i.e., fc is an attribute of fq .

(iii) Miscellaneous This set of features includes whether fq has a CVT entity (same
for fc). We also include whether an entity is a date (for all entities of fq and fc). Finally,
we include the concatenation of the predicates of fq as a feature using one-hot encoding.

4.4 Experimental Setup

In this section we describe the setup of our experiments that aim to answer RQ3, which
we break down to the following research sub-questions:
RQ3.1 How does NFCM perform compared to a set of heuristic baselines on a crowd-

sourced dataset?
RQ3.2 How does NFCM perform compared to a scoring function that scores candi-

date facts w.r.t. a query fact using the relevance labels gathered from distant
supervision on a crowdsourced dataset?
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Table 4.2: Examples of relationships used in this work.

Domain Relationship

People spouseOf (person, person)
parentOf (person, person)
educatedAt(person, organization)

Business founderOf (person, organization)
boardMemberOf (person, organization)
leaderOf (person, organization)

Film starredIn(person,film)
directorOf (person,film)
producerOf (person,film)

RQ3.3 Does NFCM benefit from both the handcrafted features and the automatically
learned features?

RQ3.4 What is the per-relationship performance of NFCM? How does the number of
instances per relationship affect the ranking performance?

4.4.1 Knowledge graph

We use the latest edition of Freebase as our knowledge graph [23]. We include Freebase
relations from the following set of domains: People, Film, Music, Award, Government,
Business, Organization, Education. Following previous work [122], we exclude triples
that have an equivalent reversed triple.

4.4.2 Dataset

Our dataset consists of query facts, candidate facts, and a relevance label for each
query-candidate fact pair. In order to construct our evaluation dataset we need to start
with a set of relationships. Given that most of our domains are people-centric, we obtain
this set by extracting all relationships from Freebase that have an entity of type Person
as one of the entities. In the end, we are left with 65 unique relationships in total (see
Table 4.2 for example relationships). We then proceed to gather our set of query facts.
For each relationship, we sample at most 2,000 query facts, provided that they have
at least one relevant fact after applying the procedure described in Section 4.4.3. In
total, the dataset contains 62,044 query facts (954.52 on average per relationship). After
gathering query facts for each relation, we enumerate candidate facts for each query
fact using the procedure described in Section 4.3.1. Finally, we randomly split the
dataset per relationship (70% of the query facts for training, 10% for validation, 20%
for testing). Table 4.3 shows statistics of the resulting dataset.

Note that we train and tune the fact ranking models with the training and validation
sets in Table 4.3 respectively, using the automatically gathered relevance labels (see
Section 4.4.3). The test set was only used for preliminary experiments (not reported)
and for constructing our manually curated evaluation dataset (see Section 4.4.4). We
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Table 4.3: Statistics of the dataset gathered using distant supervision (see Section 4.4.3).

Part # query facts # candidate facts
average median max. min.

Training 44,632 1,420 741 9,937 2
Validation 4,983 1,424 749 9,796 3
Test 12,429 1,427 771 9,924 3

describe how we automatically gather noisy relevance labels for our dataset in the next
section.

4.4.3 Gathering noisy relevance labels

Gathering relevance labels for our task is challenging due to the size and heterogeneous
nature of KGs, i.e., having a large number of facts and relationship types. Therefore, we
turn to distant supervision [122] to gather relevance labels at scale. We choose to get a
supervision signal from Wikipedia for the following reasons: (i) it has a high overlap
of entities with the KG we use, and (ii) facts that are in KGs are usually expressed in
Wikipedia articles alongside other, related facts. We filter Wikipedia to select articles
whose main entity is in Freebase, and the entity type corresponds to one of the domains
listed in Section 4.4.1. This results in a set of 1,743,191 Wikipedia articles.

The procedure we follow for gathering relevance labels given a query fact fq and its
set of candidate facts F is as follows. For a query fact fq = r〈s, t〉, we focus on the
Wikipedia article of entity s. First, as Wikipedia style guidelines dictate that only the first
mention of another entity should be linked, we augment the articles with additional entity
links using an entity linking method proposed in [186]. Next, we retain only segments
of the Wikipedia article that contain references to t. Here, a segment refers to the
sentence that has a reference to t and also one sentence before and one after the sentence.
For each such extracted segment, we assume that it expresses the fact fq, which is a
common assumption in gathering noisy training data for relation extraction [122]. From
the segments, we then collect a set of other entities, O, that occur in the same sentence
that mentions t: for computational efficiency, we enforce |O| ≤ 20. Then, we extract
facts for all possible pairs of entities 〈e1, e2〉 ∈ {O ∪ {s, t}} × {O ∪ {s, t}}. If there is
a single fact fc in K that connects e1 and e2, we deem fc relevant for fq. However, if
there are multiple facts connecting e1 and e2 in K, the mention of the fact in the specific
segment is ambiguous and thus we do not deem any of these facts as relevant [170].
The rest of the facts in F are deemed irrelevant for fq .

The distribution of relevant/non-relevant labels in the distantly supervised data is
heavily skewed: out of 87,998,956 facts in total, only 225,032 are deemed to be relevant
(0.26%). This is expected since the candidate fact enumeration step can generate
thousands of facts for a certain query fact (see Section 4.3.1).

As a sanity check, we evaluate the performance of our approach to collect distant
supervision data by sampling 5 query facts for each relation in our dataset. For these
query facts, we perform manual annotations on the extracted candidate facts that were
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deemed as relevant by the distant supervision procedure. We obtain an overall precision
of 76% when comparing the relevance labels of the distant supervision against our
manual annotations. This demonstrates the potential of our distant supervision strategy
for creating training data.

4.4.4 Manually curated evaluation dataset

In order to evaluate the performance of NFCM on the KG fact contextualization task, we
perform crowdsourcing to collect a human-curated evaluation dataset. The procedure
we use to construct this evaluation dataset is as follows. First, for each of the 65
relationships we consider, we sample five query facts of the relationship from the test
set (see Section 4.4.2). Since fact enumeration for a query fact can yield hundreds or
thousands of facts (Section 4.3.1), it is infeasible to consider all the candidate facts
for manual annotation. Therefore, we only include a candidate fact in the set of facts
to be annotated if: (i) the candidate fact was deemed relevant by the automatic data
gathering procedure (Section 4.4.3), or (ii) the candidate fact matches a fact pattern that
is built using relevant facts that appear in at least 10% of the query facts of a certain
relationship. An example fact pattern is parentOf 〈?, ?〉, which would match the fact
parentOf 〈Bill Gates, Jennifer Gates〉.

We use the CrowdFlower platform, and ask the annotators to judge a candidate fact
w.r.t. its relevance to a query fact. We provide the annotators with the following scenario
(details omitted for brevity):

We are given a specific real-world fact, e.g., “Bill Gates is the founder
of Microsoft”, which we call the query fact. We are interested in writing
a description of the query fact (a sentence or a small paragraph). The
purpose of this assessment task is to identify other facts that could be
included in a description of the query fact. Note that even though all facts
presented for assessment will be accurate, not all will be relevant or equally
important to the description of the main fact.

We ask the annotators to assess the relevance of a candidate fact in a 3-graded scale:

• very relevant: I would include the candidate fact in the description of the query
fact; the candidate fact provides additional context to the query fact.

• somewhat relevant: I would include the candidate fact in the description of the
query fact, but only if there is space.

• irrelevant: I would not include the candidate fact in the description of the query
fact.

Alongside each query-candidate fact pair, we provide a set of extra facts that could
possibly be used to decide on the relevance of a candidate fact. These include facts that
connect the entities in the query fact with the entities in the candidate fact. For example,
if we present the annotators with the query fact spouseOf 〈Bill Gates, Melinda Gates〉
and the candidate fact parentOf 〈Melinda Gates, Jennifer Gates〉 we also show the fact
parentOf 〈Bill Gates, Jennifer Gates〉.

53



4. Contextualizing Knowledge Graph Facts

Table 4.4: Relevance label distribution of the crowdsourced evaluation dataset.

Relevance Non-attribute facts (%) Attribute facts (%)

Irrelevant 60.86 34.34
Somewhat relevant 34.49 57.81
Very relevant 4.63 7.84

Each query-candidate fact pair is annotated by three annotators. We use majority
voting to obtain the gold labels, breaking ties arbitrarily. The annotators get a payment
of 0.03 dollars per query-candidate fact pair.

By following the crowdsourcing procedure described above, we obtain 28,281 fact
judgments for 2,275 query facts (65 relations, 5 query facts each). Table 4.4 details
the distribution of the relevance labels. One interesting observation is that facts that
are attributes of other facts (see Section 4.2.1) tend to have relatively more relevant
judgments than the ones that are not. This is expected since some of them are attributes
of the query fact (e.g., date of marriage for a spouseOf query fact). Finally, Fleiss’
kappa is κ = 0.4307, which is considered moderate agreement. Note that all the results
reported in Section 4.5 are on the manually curated dataset described here.

Evaluation metrics We use the following standard retrieval evaluation metrics: MAP,
NDCG@5, NDCG@10 and MRR. In the case of MAP and MRR, which expect binary
labels, we consider “very relevant” and“somewhat relevant” as “relevant”. We report on
statistical significance with a paired two-tailed t-test.

4.4.5 Heuristic baselines

To the best of our knowledge, there is no previously published method that addresses
the task introduced in this chapter. Therefore, we devise a set of intuitive baselines that
are used to showcase that our task is not trivial. We derive them by combining features
we introduced in Section 4.3.2. We define these heuristic functions below:

• Fact informativeness (FI). Informativeness of the candidate fact fc [139, Eq. 4.4].
This baseline is independent of fq .

• Average predicate similarity (APS). Average predicate similarity of all pairs of
predicates (p1, p2) ∈ Preds(fq) × Preds(fc) (Eq. 4.6). The intuition here is
that fc might be relevant to fq if it contains predicates that are similar to the
predicates of fq .

• Average entity similarity (AES). Average entity similarity of all pairs of entities in
(e1, e2) ∈ Entities(fq)×Entities(fc) (Eq. 4.5). The assumption here is that fc
might be relevant to fq if it contains entities that are similar to the entities of fq .
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4.4.6 Implementation details

The models described in Section 4.3.2 are implemented in TensorFlow v.1.4.1 [1].
Table 4.5 lists the hyperparameters of NFCM. We tune the variable hyper-parameters of
this table on the validation set and optimize for NDCG@5.

Table 4.5: Hyperparameters of NFCM, tuned on the validation set.

Description Value(s)

# negative samples k during training [1, 10, 100]
Learning rate [0.01, 0.001, 0.0001]
dz: entity type embedding dimension [64, 128, 256]
dp: Predicate embedding dimension [64, 128, 256]
RNN cell size [64, 128, 256]
RNN cell dropout [0.0, 0.2]
α: # hidden layers of MLP-o [0, 1, 2]
β: # dimension of MLP-o hidden layers [50, 100]
L2 regularization factor for MLP-o kernel [0.0, 0.1, 0.2]

4.5 Results and Discussion

In this section we discuss and analyze the results of our evaluation, answering the
research questions listed in Section 4.4.

In our first experiment, we compare NFCM to a set of heuristic baselines we derived
to answer RQ3.1. Table 4.6 shows the results. We observe that NFCM significantly
outperforms the heuristic baselines by a large margin. We have also experimented with
linear combinations of the above heuristics but the performance does not improve over
the individual ones and therefore we omit those results. We conclude that the task
we define in this chapter is not trivial to solve and simple heuristic functions are not
sufficient.

In our second experiment we compare NFCM with distant supervision and aim
to answer RQ3.2. That is, how does NFCM perform compared to DistSup, a scoring
function that scores candidate facts w.r.t. a query fact using the relevance labels
gathered from distant supervision. The aim of this experiment is to investigate whether
it is beneficial to learn ranking functions based on the signal gathered from distant
supervision, and to see if we can improve performance over the latter. Table 4.7
shows the results. We observe that NFCM significantly outperforms DistSup on MAP,
NDCG@5, and NDCG@10 and conclude that learning ranking functions (and in
particular NFCM) based on the signal gathered from distant supervision is beneficial
for this task. We also observe that NFCM performs significantly worse than DistSup
on MRR. One possible reason for this is that NFCM returns facts that are indeed
relevant but were not selected for annotation and thus assumed not relevant, since
the data annotation procedure is biased towards DistSup (see Section 4.4.4). We
aim to validate this hypothesis by conducting an additional user study in future work.
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Table 4.6: Comparison between NFCM and the heuristic baselines. Significance is
tested between NFCM and AES, the best performing baseline. We depict a significant
improvement of NFCM over AES for p < 0.05 as N.

Method MAP NDCG@5 NDCG@10 MRR

FI 0.1222 0.0978 0.1149 0.1928
APS 0.2147 0.2175 0.2354 0.3760
AES 0.2950 0.3284 0.3391 0.5214

NFCM 0.4874N 0.5110N 0.5289N 0.7749N

Table 4.7: Comparison between NFCM and the distant supervision baseline. We depict
a significant improvement of NFCM over DistSup as N and a significant decrease as H

(p < 0.05).

Method MAP NDCG@5 NDCG@10 MRR

DistSup 0.2831 0.4489 0.3983 0.8256
NFCM 0.4874N 0.5110N 0.5289N 0.7749H

Nevertheless, having an automatic method for KG fact contextualization trained with
distant supervision becomes increasingly important for tail entities for which we might
only have information in the KG itself and not in external text corpora or other sources.

In order to answer RQ3.3, that is, whether NFCM benefits from both the hand-
crafted features and the learned features, we perform an ablation study. Specifically, we
test the following variations of NFCM that only modify the final layer of the architecture
(see Section 4.3.2):

(i) LF: Keeps the learned features (vq and va), and ignores the hand-crafted features
x.

(ii) HF: Keeps the hand-crafted features (x) and ignores the learned features (vq and
va).

We tune the parameters of LF and HF on the validation set. Table 4.8 shows the
results. First, we observe that NFCM outperforms HF by a large margin. Also, NFCM
outperforms LF on all metrics (significantly so for MAP and NDCG@10) which means
that by combining HF and LF we are able to obtain more relevant results at lower
positions of the ranking. We aim to explore more sophisticated ways of combining LF
and HF in future work. In order to verify whether LF and HF have complementary
signals, we plot the per-query differences in NDCG@5 for LF and HF in Figure 4.5.
We observe that the performance of LF and HF varies across query facts, confirming
the hypotheses that LF and HF yield complementary signals.

In order to answer RQ3.4, we conduct a performance analysis per relationship.
Figure 4.6 shows the per-relationship NDCG@5 performance of NFCM – query fact
scores are averaged per relationship. The relationship for which NFCM performs best is
profession , which has a NDCG@5 score of 0.8275. The relationship for which NFCM
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Table 4.8: Comparison between the full NFCM model and its variations. Significance is
tested between NFCM and its best variation (LF). We depict a significant improvement
of NFCM over LF for p < 0.05 as N.

Method MAP NDCG@5 NDCG@10 MRR

HF 0.4620 0.4753 0.4989 0.7180
LF 0.4676 0.4993 0.5134 0.7647

NFCM 0.4874N 0.5110 0.5289N 0.7749
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Figure 4.5: Per query fact differences in NDCG@5 between the variation of NFCM
that only uses the learned features (LF) and the best-performing variation of NFCM that
only uses the hand-crafted features (HF). A positive value indicates that LF performs
better than HF on a query fact and vice versa.

performs worst at is awardNominated , which has a NDCG@5 score of 0.1. Further
analysis showed that awardNominated has a very large number of candidate facts on
average, which might explain the poor performance on that relationship.

Furthermore, we investigate how the number of queries we have in the training set
for each relationship affects the ranking performance. Figure 4.7 shows the results.
From this figure we conclude that there is no clear relationship and thus that NFCM is
robust to the size of the training data for each relationship.

Next, we analyse the performance of NFCM with respect to the number of candidates
per query fact; Figure 4.8 shows the results. We observe that the performance decreases
when we have more candidate facts for a query, although not by a large margin, and that
there does not seem to be a clear relationship between performance and the number of
candidates to rank.

4.6 Related Work

The specific task we introduce in this chapter has not been addressed before, but there
is related work in three main areas: entity relationship explanation, distant supervision,
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Figure 4.6: NDCG@5 for NFCM per relationship.

and fact ranking.

4.6.1 Relationship explanation

Explanations for relationships between pairs of entities can be provided in two ways:
structurally, i.e., by providing paths or sub-graphs in a KG containing the entities, or
textually, by ranking or generating text snippets that explain the connection.

Fang et al. [61] focus on explaining connections between entities by mining relation-
ship explanation patterns from the KG. Their approach consists of two main components:
explanation enumeration and explanation ranking. The first phase generates all patterns
in the form of paths connecting the two entities in the KG, which are then combined
to form explanations. In the final stage, the candidate explanations are ranked using
notions of interestingness. Seufert et al. [164] propose a similar approach for entity
sets. Their method focuses on explaining the connections between entity sets based on
the concept of relatedness cores, i.e., dense subgraphs that have strong relations with
both query sets. Pirrò [139] also provide explanations of the relation between entities
in terms of the top-k most informative paths between a query pair of entities; such
paths are ranked and selected based on path informativeness and diversity, and pattern
informativeness.

As to textual explanations for entity relationships, Voskarides et al. [185] focus on
human-readable descriptions. They model the task as a learning to rank problem for
sentences and employ a rich set of features. Huang et al. [81] build on the aforemen-
tioned work and propose a pairwise ranking model that leverages clickthrough data
and uses a convolutional neural network architecture. While these approaches rank
existing candidate explanations, Voskarides et al. [186] focus on generating explanations
from scratch. They automatically identify the most common sentence templates for
a particular relationship and, for each new relationship instance, these templates are
ranked and instantiated using contextual information from the KG.

The work described above focuses on explaining entity relationships in KGs; no
previous work has focused on ranking additional KG facts for an input entity relationship
as we do in this chapter.
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Figure 4.7: Box plot that shows NDCG@5 per number of training query facts of each
relationship (binned). Each box shows the median score with an orange line and the
upper and lower quartiles (maximum and lower values shown outside each box).

4.6.2 Distant supervision

When obtaining labeled data is expensive, training data can be generated automatically.
Mintz et al. [122] introduce distant supervision for relation extraction; for a pair of
entities that is connected by a KG relation, they treat all sentences that contain those
entities in a text corpus as positive examples for that relation. Follow-up work on
relation extraction address the issue of noise related to distant supervision. Alfonseca
et al. [5], Riedel et al. [151], Surdeanu et al. [172] refine the model by relaxing the
assumptions in the original method or by modeling noisy labels.

Beyond relation extraction, distant supervision has also been applied in other KG-
related tasks. Ren et al. [150] introduce a joint approach entity recognition and classifi-
cation based on distant supervision. Ling and Weld [109] used distant supervision to
automatically label data for fine-grained entity recognition.

4.6.3 Fact ranking

In fact ranking, the goal is to rank a set of attributes with respect to an entity. Hasibi
et al. [75] consider fact ranking as a component for entity summarization for entity
cards. They approach fact ranking as a learning to rank problem. They learn a ranking
model based on importance, relevance, and other features relating a query and the facts.
Aleman-Meza et al. [4] explore a similar task, but rank facts with respect to a pair of
entities to discover paths that contain informative facts between the pair.

Graph matching involves matching two graphs and discovering the patterns of
relationships between them to infer their similarity [34]. Although our task can be
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Figure 4.8: Box plot that shows NDCG@5 per number of candidate facts of each query
fact (binned). Each box shows the median score with an orange line and the upper and
lower quartiles (maximum and lower values shown outside each box).

considered as comparing a small query subgraph (i.e., query triples) and a knowledge
graph, the goal is different from graph matching which mainly concerns aligning two
graphs rather than enhancing one query graph.

Our work differs from the work discussed above in the following major ways. First, we
enrich a query fact between two entities by providing relevant additional facts in the
context of the query fact, taking into account both the entities and the relation of the
query fact. Second, we rank whole facts from the KG instead of just entities. Last, we
provide a distant supervision framework for generating the training data so as to make
our approach scalable.

4.7 Conclusion

In this chapter, we introduced the knowledge graph fact contextualization task and
proposed NFCM, a weakly-supervised method to address it. NFCM first generates
a candidate set for a query fact by looking at 1 or 2-hop neighbors and then ranks
the candidate facts using supervised machine learning. NFCM combines handcrafted
features with features that are automatically identified using deep learning. We use
distant supervision to boost the gathering of training data by using a large entity-tagged
text corpus that has a high overlap with entities in the KG we use. Our experimental
results show that (i) distant supervision is an effective means for gathering training data
for this task, (ii) NFCM significantly outperforms several heuristic baselines for this
task, and (iii) both the handcrafted and automatically-learned features contribute to the
retrieval effectiveness of NFCM.
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4.7. Conclusion

For future work, we aim to explore more sophisticated ways of combining hand-
crafted with automatically learned features for ranking. Additionally, we want to explore
other data sources for gathering training data, such as news articles and click logs. Fi-
nally, we want to explore methods for combining and presenting the ranked facts in
search engine result pages in a diversified fashion.

This chapter concludes our study on the first part of the thesis, which focuses on
how to make structured knowledge more accessible to the user. Next, in Chapter 5, we
address a different research theme, namely improving interactive knowledge gathering.
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Part II

Improving Interactive
Knowledge Gathering
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5
Query Resolution for Conversational

Search with Limited Supervision

In the second part of this thesis, we move to the research theme of improving interactive
knowledge gathering and focus on conversational search. In this Chapter, we aim to
answer RQ4: Can we use query resolution to identify relevant context and thereby
improve retrieval in conversational search?

5.1 Introduction

Conversational AI deals with developing dialogue systems that enable interactive knowl-
edge gathering [64]. A large portion of work in this area has focused on building
dialogue systems that are capable of engaging with the user through chit-chat [104] or
helping the user complete small well-specified tasks [135]. In order to improve the ca-
pability of such systems to engage in complex information seeking conversations [142],
researchers have proposed information seeking tasks such as conversational question
answering (QA) over simple contexts, such as a single-paragraph text [35, 146]. In
contrast to conversational QA over simple contexts, in conversational search, a user
aims to interactively find information stored in a large document collection [45].

In this chapter, we study multi-turn passage retrieval as an instance of conversational
search: given the conversation history (the previous turns) and the current turn query,
we aim to retrieve passage-length texts that satisfy the user’s underlying information
need [46]. Here, the current turn query may be under-specified and thus, we need to
take into account context from the conversation history to arrive at a better expression of
the current turn query. Thus, we need to perform query resolution, that is, add missing
context from the conversation history to the current turn query, if needed. An example of
an under-specified query can be seen in Table 5.1, turn #4, for which the gold standard
query resolution is: “when was saosin ’s first album released?”. In this example, context
from all turns #1 (“saosin”), #2 (“band”) and #3 (“first”) have to be taken into account
to arrive to the query resolution.

Designing automatic query resolution systems is challenging because of phenomena
such as zero anaphora, topic change and topic return, which are prominent in information

This chapter was published as [189].
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5. Query Resolution for Conversational Search with Limited Supervision

Table 5.1: Excerpt from an example conversational dialog. Co-occurring terms in the
conversation history and the relevant passage to the current turn (#4) are shown in
bold-face.

Turn Query

1 who formed saosin?
2 when was the band founded?
3 what was their first album?
4 when was the album released?

resolved: when was saosin ’s first album released?

Relevant passage to turn #4: The original lineup for Saosin, consisting of Burchell,
Shekoski, Kennedy and Green, was formed in the summer of 2003. On June 17,
the band released their first commercial production, the EP Translating the Name.

seeking conversations [207]. These phenomena are not easy to capture with standard
NLP tools (e.g., coreference resolution). Also, heuristics such as appending (part of)
the conversation history to the current turn query are likely to lead to query drift [123].
Recent work has modeled query resolution as a sequence generation task [58, 96, 145].
Another way of implicitly solving query resolution is by query modeling [69, 181, 201],
which has been studied and developed under the setup of session-based search [29, 30].

In this chapter, we propose to model query resolution for conversational search as a
binary term classification task: for each term in the previous turns of the conversation
decide whether to add it to the current turn query or not. We propose QuReTeC (Query
Resolution by Term Classification), a query resolution model based on bidirectional
transformers [182] – more specifically BERT [50]. The model encodes the conversation
history and the current turn query and uses a term classification layer to predict a binary
label for each term in the conversation history. We integrate QuReTeC in a standard
two-step cascade architecture that consists of an initial retrieval step and a reranking
step. This is done by using the set of terms predicted as relevant by QuReTeC as query
expansion terms.

Training QuReTeC requires binary labels for each term in the conversation history.
One way to obtain such labels is to use human-curated gold standard query resolu-
tions [58]. However, these labels might be cumbersome to obtain in practice. On the
other hand, researchers and practitioners have been collecting general-purpose passage
relevance labels, either by the means of human annotations or by the means of weak
signals, e.g., clicks or mouse movements [88]. We propose a distant supervision method
to automatically generate training data, on the basis of such passage relevance labels.
The key assumption is that passages that are relevant to the current turn share context
with the conversation history that is missing from the current turn query. Table 5.1
illustrates this assumption: the relevant passage to turn #4 shares terms with the conver-
sation history. Thus, we label the terms that co-occur in the relevant passages1 and the
conversation history as relevant for the current turn.

1A relevance passage contains not only the answer to the question but also context and supporting facts
that allow the algorithm or the human to reach to this answer.
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Our main contributions can be summarized as follows:
1. We model the task of query resolution as a binary term classification task and propose

to address it with a neural model based on bidirectional transformers, QuReTeC.
2. We propose a distant supervision approach that can use general-purpose passage

relevance data to substantially reduce the amount of human-curated data required to
train QuReTeC.

3. We experimentally show that when integrating the QuReTeC model in a multi-stage
ranking architecture we significantly outperform baseline models. Also, we conduct
extensive ablation studies and analyses to shed light into the workings of our query
resolution model and its impact on retrieval performance.

5.2 Related work

5.2.1 Conversational search
Early studies on conversational search have focused on characterizing information
seeking strategies and building interactive IR systems [16, 17, 43, 131]. Vtyurina
et al. [191] investigated human behaviour in conversational systems through a user
study and find that existing conversational assistants cannot be effectively used for
conversational search with complex information needs. Radlinski and Craswell [143]
present a theoretical framework for conversational search, which highlights the need for
multi-turn interactions. Dalton et al. [46] organize the Conversational Assistance Track
(CAsT) at TREC 2019. The goal of the track is to establish a concrete and standard
collection of data with information needs to make systems directly comparable. They
release a multi-turn passage retrieval dataset annotated by experts, which we use to
compate our method to the baseline methods.

5.2.2 Query resolution
Query resolution has been studied in the context of dialogue systems. Raghu et al.
[145] develop a pipeline model for query resolution in dialogues as text generation.
Kumar and Joshi [96] follow up on that work by using a sequence to sequence model
combined with a retrieval model. However, both these works rely on templates that are
not available in our setting. More related to our work, Elgohary et al. [58] studied query
resolution in the context of conversational QA over a single paragraph text. They use a
sequence to sequence model augmented with a copy and an attention mechanism and a
coverage loss. They annotate part of the QuAC dataset [35] with gold standard query
resolutions on which they apply their model and obtain competitive performance. In
contrast to all the aforementioned works that model query resolution as text generation,
we model query resolution as binary term classification in the conversation history.

5.2.3 Query modeling
Query modeling has been used in session search, where the task is to retrieve documents
for a given query by utilizing previous queries and user interactions with the retrieval
system [29]. Guan et al. [69] extract substrings from the current and previous turn

67



5. Query Resolution for Conversational Search with Limited Supervision

queries to construct a new query for the current turn. Yang et al. [201] propose a query
change model that models both edits between consecutive queries and the ranked list
returned by the previous turn query. Van Gysel et al. [181] compare the lexical matching
session search approaches and find that naive methods based on term frequency weighing
perform on par with specialized session search models. The methods described above
are informed by studies of how users reformulate their queries and why [167], which,
in principle, is different in nature from conversational search. For instance, in session
search users tend to add query terms more than removing query terms, which is not
the case in (spoken) conversational search. Another form of query modeling is query
expansion. Pseudo-relevance feedback is a query expansion technique that first retrieves
a set of documents that are assumed to be relevant to the query, and then selects terms
from the retrieved documents that are used to expand the query [2, 98, 130]. Note that
pseudo-relevance feedback is fundamentally different from query resolution: in order to
revise the query, the former relies on the top-ranked documents, while the latter only
relies on the conversation history.

Distant supervision Distant supervision can be used to obtain large amounts of noisy
training data. One of its most successful applications is relation extraction, first proposed
by Mintz et al. [122]. They take as input two entities and a relation between them, gather
sentences where the two entities co-occur from a large text corpus, and treat those as
positive examples for training a relation extraction system. Beyond relation extraction,
distant supervision has also been used to automatically generate noisy training data
for other tasks such as named entity recognition [204], sentiment classification [152],
knowledge graph fact contextualization [187] and dialogue response generation [149].
In our work, we follow the distant supervision paradigm to automatically generate
training data for query resolution in conversational search by using query-passage
relevance labels.

5.3 Multi-turn Passage Retrieval Pipeline

In this section we provide formal definitions and describe our multi-turn passage retrieval
pipeline. Table 5.2 lists notation used in this chapter.

5.3.1 Definitions

Multi-turn passage ranking Let [q1, . . . , qi−1, qi] be a sequence of conversational
queries that share a common topic T . Let qi be the current turn query and q1:i−1 be the
conversation history. Given qi and q1:i−1, the task is to retrieve a ranked list of passages
L from a passage collection D that satisfy the user’s information need.2

In the multi-turn passage ranking task, the current turn query qi is often underspec-
ified due to phenomena such as zero anaphora, topic change, and topic return. Thus,
context from the conversation history q1:i−1 must be taken into account to arrive at a

2We follow the TREC CAsT setup and only take into account q1:i−1 but not the passages retrieved for
q1:i−1.
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Table 5.2: Notation used in the chapter.

Name Description

terms(x) Set of terms in term sequence x
D Passage collection
qi Query at the current turn i
q1:i−1 Sequence of previous turn queries
q∗i Gold standard resolution of qi
E∗qi Gold standard resolution terms for qi, see Eq. (5.2)
q̂i Predicted resolution of qi
p∗qi A relevant passage for qi

Initial retrieval

Reranking

Query resolution

q i q i+1

̂q i− 1 ̂q i ̂q i+1

q i− 1

Figure 5.1: Illustration of our multi-turn passage retrieval pipeline for three turns.

better expression of the current turn query qi. This challenge can be addressed by query
resolution.

Query resolution Given the conversation history q1:i−1 and the current turn query
qi, output a query q̂i that includes both the existing information in qi and the missing
context of qi that exists in the conversation history q1:i−1.

5.3.2 Multi-turn passage retrieval pipeline

Figure 5.1 illustrates our multi-turn passage retrieval pipeline. We use a two-step
cascade ranking architecture [192], which we augment with a query resolution module
(Section 5.4). First, the unsupervised initial retrieval step outputs the initial ranked
list L1 (Section 5.3.2). Second, the re-ranking step outputs the final ranked list L
(Section 5.3.2). Below we describe the two steps of the cascade ranking architecture.

Initial retrieval step

In this step we obtain the initial ranked list L1 by scoring each passage p in the passage
collection D with respect to the resolved query q̂i using a lexical matching ranking
function f1. We use query likelihood (QL) with Dirichlet smoothing [212] as f1, since
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5. Query Resolution for Conversational Search with Limited Supervision

it outperformed other ranking functions such as BM25 in preliminary experiments over
the TREC CAsT dataset.

Reranking step

In this step, we re-rank the list L1 by scoring each passage p ∈ L1 with a ranking
function f2 to obtain the final ranked list L. To construct f2, we use rank fusion and
combine the scores obtained by f1 (used in initial retrieval step) and a supervised neural
ranker fn. Next, we describe the neural ranker fn.

Supervised neural ranker We use BERT [50] as the neural ranker fn, as it has
been shown to achieve state-of-the-art performance in ad-hoc retrieval [112, 141, 203].
Also, BERT has been shown to prefer semantic matches [141], and thereby can be
complementary to f1, which is a lexical matching method. As is standard when using
BERT for pairs of sequences, the input to the model is formatted as [ <CLS>, q̂i <SEP>,
p], where <CLS> is a special token, q̂i is the resolved current turn query, p is the passage.
We add a dropout layer and a linear layer la on top of the representation of the <CLS>
token in the last layer, followed by a tanh function to obtain fn [112]. We score each
passage p ∈ L1 using fn to obtain Ln . We fine-tune the pretrained BERT model using
pairwise ranking loss on a large-scale single-turn passage ranking dataset [203]. During
training we sample as many negative as positive passages per query.

Rank fusion We design f2 such that it combines lexical matching and semantic
matching [132]. We use Reciprocal Rank Fusion (RRF) [41] to combine the score
obtained by the lexical matching ranking function f1, and the semantic matching
supervised neural ranker fn. We choose RRF because of its effectiveness in combining
individual rankers in ad-hoc retrieval and because of its simplicity (it has only one
hyper-parameter). We define f2 as the RRF of L1 and Ln [41]:

f2(p) =
∑

L′∈{L1,Ln}

1

k + rank(p, L′)
, (5.1)

where rank(p, L′) is the rank of passage p in a ranked list L′, and k is a hyperparam-
eter.3 We score each passage p in the initial ranked list L1 with f2 to obtain the final
ranked list L.

Since developing specialized re-rankers for the task at hand is not the focus of this
work, we leave more sophisticated methods for choosing the neural ranker fn and for
combining multiple rankers as future work. In the next section, we describe our query
resolution model, QuReTeC, which is the focus of this work.

5.4 Query Resolution

In this section we first describe how we model query resolution as term classification
(Section 5.4.1), then present our query resolution model, QuReTeC, (Section 5.4.2), and
finally describe how we generate distant supervision labels for the model (Section 5.4.3).

3We set k = 60 and do not tune it.
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5.4. Query Resolution

5.4.1 Query resolution as term classification in the conversation
history

Previous work has modeled query resolution as a sequence to sequence task [58, 96],
where the source sequence is q1:i and the target sequence is q∗i , where q∗i is a gold stan-
dard resolution of the current turn query qi. For instance, the gold standard resolution
of turn #4 in Table 5.1 is: “When was Saosin’s first album released?”

However, since (i) the initial retrieval step of our pipeline (Section 5.3.2) is a term-
based model that treats queries as bag of words, and (ii) the supervised neural ranker we
use in the re-ranking step (Section 5.3.2) is robust to queries that are not well-formed
natural language texts [203], our query resolution model does not necessarily need to
output a well-formed natural language query but rather a set of terms to expand the
query. Besides, sequence to sequence based models generally need a massive amount
of data for training in order to get reasonable performance due to their generation
objective [59]. Therefore, we model query resolution as a term classification task: given
the conversation history q1:i−1 and the current turn query qi, output a binary label
(relevant or non-relevant) for each term in q1:i−1. Terms in the conversation history
q1:i−1 that are tagged as relevant are appended to the current turn query qi to form the
predicted current turn query resolution q̂i.

We define the set of relevant resolution terms E∗(qi) as:

E∗qi = terms(q∗i ) ∩ terms(q1:i−1) \ terms(qi), (5.2)

where q∗i is a gold standard resolution of the current turn query qi. Under this formula-
tion, the set of relevant terms E∗qi represents the missing context from the conversation
history q1:i−1. For instance, the set of gold standard resolution terms E∗qi for turn #4
in Table 5.1 is {Saosin,first}. Note that E∗qi can be empty if qi = q∗i , i.e., the current
turn query does not need to be resolved, or if terms(q∗i ) ∩ terms(q1:i−1) is empty. In
our experiments terms(q∗i ) ∩ terms(q1:i−1) ≈ terms(q∗i ), and therefore almost all
the gold standard resolution terms can be found in the conversation history.

5.4.2 Query resolution model
In this section, we describe our query resolution model, QuReTeC. Figure 5.2a shows
the model architecture of QuReTeC. Each term in the input sequence is first encoded
using bidirectional transformers [182] – more specifically BERT [50]. Then, a term
classification layer takes each encoded term as input and outputs a score for each term.
We use BERT as the encoder since it has been successfully applied in tasks similar to
ours, such as named entity recognition and coreference resolution [50, 89, 108]. Next
we describe the main parts of QuReTeC in detail, i.e., input sequence, BERT encoder
and Term classification layer.
1. Input sequence. The input sequence consists of all the terms in the queries of the

previous turns q1:i−1 and the current turn qi. It is formed as: [<CLS>, terms(q1),
. . . , terms(qi−1), <SEP>, terms(qi)], where <CLS> and <SEP> are special to-
kens. We add a special separator token <SEP> between the previous turn qi−1
and the current turn qi in order to inform the model where the current turn begins.
Figure 5.2b shows an example input sequence and the gold standard term labels.
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BERT Encoder

Term Classification Layer

Term Score
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(a) QuReTeC model architecture.

W
ho

fo
rm

ed

Sa
os

in
?

al
bu

m

W
he

n

w
asw
as

W
ha

t

fo
rm

ed
?

ba
ndth
e

w
as

W
he

n

al
bu

m
?

fir
st

th
ei

r

re
le

as
ed

th
e

Turn #4 (current)Turn #3Turn #2Turn #1

Input 
Sequence <S

EP
>

Label 0 0 1 -0 -000000 -010 -- -

<C
LS

>

-

(b) Example input sequence and gold standard term labels (1: relevant, 0: non-relevant) for
QuReTeC.

Figure 5.2

2. BERT encoder. BERT first represents the input terms with WordPiece embeddings
using a 30K vocabulary. After applying multiple transformer blocks, BERT outputs
an encoding for each term. We refer the interested reader to the original paper for a
detailed description of BERT [50].

3. Term classification layer. The term classification layer is applied on top of the
representation of the first sub-token of each term [50]. It consists of a dropout layer,
a linear layer and a sigmoid function and outputs a scalar for each term. We mask
out the output of <CLS> and the current turn terms, since we are not interested in
predicting a label for those (see Equation (5.2) for the definition and Figure 5.2b for
an example).
In order to train QuReTeC we need a dataset containing gold standard resolution

terms E∗qi for each qi. The terms in E∗qi are labeled as relevant and the rest of the terms
(terms(q1:i−1)\E∗qi ) as non-relevant. Assuming there exists a gold standard resolution
q∗i for each qi, we can derive E∗qi using Equation (5.2). We use standard binary cross
entropy as the loss function.

5.4.3 Generating distant supervision for query resolution

Recall that the gold standard resolution q∗i includes the information in qi and the missing
context of qi that exists in the conversation history q1:i−1. As described above, we
can train QuReTeC if we have a gold standard resolution q∗i for each qi. Obtaining
such special-purpose gold standard resolutions is cumbersome compared to almost
readily available general-purpose passage relevance labels for qi. We propose a distant
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supervision method to generate labels to train QuReTeC. Specifically, we simply replace
q∗i with a relevant passage p∗qi in Equation (5.2) to extract the set of relevant resolution
terms E∗qi . Table 5.1 illustrates this idea with an example dialogue and the relevant
passage to the current turn query. The gold standard resolution terms extracted with this
distant supervision procedure for this example are {Saosin,first, band}.

Intuitively, the above procedure is noisy and can result in adding terms toE∗qi that are
non-relevant, or adding too few relevant terms to E∗qi . Nevertheless, we experimentally
show in Section 5.6.2 that this distant supervision signal can be used to substantially
reduce the number of human-curated gold standard resolutions required for training
QuReTeC.

The distant supervision method we describe here makes QuReTeC more generally
applicable than other supervised methods such as the method in Elgohary et al. [58]
that can only be trained with gold standard query resolutions. This is because, apart
from manual annotation, query-passage relevance labels can be potentially obtained at
scale by using click logs [88], or weak supervision [49].

5.5 Experimental Setup

5.5.1 Research questions

We aim to answer RQ4, which we break down to the following research sub-questions:
RQ4.1 How does the QuReTeC model perform compared to other state-of-the-art

methods?
RQ4.2 Can we use distant supervision to reduce the amount of human-curated training

data required to train QuReTeC?
RQ4.3 How does QuReTeC’s performance vary depending on the turn of the conversa-

tion?
For all the research questions listed above we measure performance in both an intrinsic
and an extrinsic sense. Intrinsic evaluation measures query resolution performance on
term classification. Extrinsic evaluation measures retrieval performance at both the
initial retrieval and the reranking steps.

5.5.2 Datasets

Extrinsic evaluation – retrieval

The TREC CAsT dataset is a multi-turn passage retrieval dataset [46]. It is the only
such dataset that is publicly available. Each topic consists of a sequence of queries. The
topics are open-domain and diverse in terms of their information need. The topics are
curated manually to reflect information seeking conversational structure patterns. Later
turn queries in a topic depend only on the previous turn queries, and not on the returned
passages of the previous turns, which is a limitation of this dataset. Nonetheless, the
dataset is sufficiently challenging for comparing automatic systems, as we will show in
Section 5.6.1. Table 5.3 shows statistics of the dataset. The original dataset consists of
30 training and 50 evaluation topics. 20 of 50 topics in the evaluation set were annotated
for relevance by NIST assessors on a 5-point relevance scale. We use this set as the
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Table 5.4: Query resolution datasets statistics. In the Split column, we indicate the
where the positive term labels originate from: either gold (gold standard resolutions) or
distant (Section 5.4.3).

Dataset Split #Queries #Terms (per query)

Total Positive

QuAC Train (gold) 20,181 97.96 ± 61.02 4.56 ± 3.88
Train (distant) 31,538 99.78 ± 62.36 6.90 ± 5.59
Dev (gold) 2,196 95.49 ± 58.79 4.49 ± 3.90
Test (gold) 3,373 96.96 ± 59.24 4.30 ± 3.86

CAsT Test (gold) 153 39.97 ± 17.97 1.89 ± 1.62

TREC CAsT test set. The organizers also provided a small set of judgements for the
training set, however we do not use it in our pipeline. The passage collection is the
union of two passage corpora, the MS MARCO [127] (Bing), and the TREC CAR [53]
(Wikipedia passages).4

Intrinsic evaluation – query resolution

The original QuAC dataset [35] contains dialogues on a single Wikipedia article section
regarding people (e.g., early life of a singer). Each dialogue contains up to 12 questions
and their corresponding answer spans in the section. It was constructed by asking
two crowdworkers (a student and a teacher) to perform an interactive dialogue about a
specific topic. Elgohary et al. [58] crowdsourced question resolutions for a subset of the
original QuAC dataset [35]. All the questions in the dev and test splits of [58] have gold
standard resolutions. We use the dev split for early stopping when training QuReTeC
and evaluate on the test set. When training with gold supervision (gold standard query
resolutions), we use the train split from [58], which is a subset of the train split of [35];
all the questions therein have gold standard resolutions. Since QuAC is not a passage
retrieval collection, in order to obtain distant supervision labels (Section 5.4.3), we use
a window of 50 characters around the answer span to extract passage-length texts, and
we treat the extracted passage as the relevant passage. When training with distant labels,
we use the part of the train split of [35] that does not have gold standard resolutions.

The TREC CAsT dataset [46] also contains gold standard query resolutions for its
test set. However, it is too small to train a supervised query resolution model, and we
only use it as a complementary test set.

The two query resolution datasets described above have three main differences.
First, the conversations in QuAC are centered around a single Wikipedia article section
about people whereas the conversations in CAsT are centered around an arbitrary topic.
Second, the answers of the QuAC questions are spans in the Wikipedia section whereas
the CAsT queries have relevant passages that originate from different Web resources
besides Wikipedia. Third, later turns in QuAC do depend on the answers in previous

4The Washington Post collection was also part of the original collection but it was excluded from the
official TREC evaluation process and therefore we do not use it.
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turns, while in CAsT they do not (Section 5.3.1). Interestingly, in Section 5.6.1 we
demonstrate that despite these differences, training QuReTeC on QuAC generalizes
well to the CAsT dataset.

Table 5.4 provides statistics for the two datasets.5 First, we observe that the QuAC
dataset is much larger than CAsT. Also, QuAC has a larger number of terms on average
than CAsT (∼97 vs ∼40) and a larger negative-positive ratio (∼20:1 vs ∼40:1). This
is because in QuAC the answers to the previous turns are included in the conversation
history whereas in CAsT they are not. For this reason, we expect query resolution on
QuAC to be more challenging than on CAsT.

5.5.3 Evaluation metrics

Extrinsic evaluation – retrieval

We report NDCG@3 (the official TREC CAsT evaluation metric), Recall, MAP, and
MRR at rank 1000. We also provide performance metrics averaged per turn to show
how retrieval performance varies across turns.

We report on statistical significance with a paired two-tailed t-test. We depict a
significant increase for p < 0.01 as N.

Intrinsic evaluation – query resolution

We report on Micro-Precision (P), Micro-Recall (R) and Micro-F1 (F1), i.e., metrics
calculated per query and then averaged across all turns and topics. We ignore queries
that are the first turn of the conversation when calculating the mean, since we do not
predict term labels for those.

5.5.4 Baselines

We perform intrinsic and extrinsic evaluation by comparing against a number of query
resolution baselines. Next, we provide a detailed description of each baseline:
• Original This method uses the original form of the query. We explore different

variations for constructing q̂i: (1) current turn only (cur), (2) current turn expanded
by the previous turn (cur+prev), (3) current turn expanded by the first turn (cur+first),
and (4) all turns.

• RM3 [2] A state-of-the-art unsupervised pseudo-relevance feedback model.6 RM3
first performs retrieval and treats the top-n ranked passages as relevant. Then, it
estimates a query language model based on the top-n results, and finally adds the
top-k terms to the original query. As with Original, we report on different variations
for constructing the query: cur, cur+prev, cur+first and all turns. In order to apply
RM3 for query resolution we append the top-k terms to the original query qi to obtain
q̂i.

5Note that the first turn in each topic does not need query resolution because there is no conversation
history at that point and thus the query resolution CAsT test has 20 (the number of topics) fewer queries than
in Table 5.3.

6Note that given the very small size of the TREC CAsT training set we do not compare to more sophisti-
cated yet data-hungry pseudo-relevance feedback models such as [130].
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• NeuralCoref7 A coreference resolution method designed for chatbots. It uses a rule-
based system for mention detection and a feed-forward neural network that predicts
coreference scores. We perform coreference resolution on the conversation history
q1:i−1 and the current turn query qi. The output q̂i consists of qi and the predicted
terms in q1:i−1 where terms in qi refer to.

• BiLSTM-copy [58] A neural sequence to sequence model for query resolution. It
uses a BiLSTM encoder and decoder augmented with attention and copy mechanisms
and also a coverage loss [162]. It initializes the input embeddings with pretrained
GloVe embeddings.8 Given q1:i−1 and qi, it outputs q̂i. It was optimized on the QuAC
gold standard resolutions.

Intrinsic evaluation – query resolution

In order to perform intrinsic evaluation on the aforementioned baselines, we take the
query resolution they output (q̂i) and apply Equation (5.2) by replacing q∗i with q̂i to
obtain the set of predicted resolution terms.

Extrinsic evaluation – initial retrieval

Here, apart from the aforementioned baselines, we also use the following baselines:
• Nugget [69]. Extracts substrings from the current and previous turn queries to build a

new query for the current turn.9

• QCM [201]. Models the edits between consecutive queries and the results list returned
by the previous turn query to construct a new query for the current turn.

• Oracle Performs initial retrieval using the gold standard resolution query. Released
by the TREC CAsT organizers.

Extrinsic evaluation – reranking

Since developing specialized rerankers for multi-turn passage retrieval is not the focus
of this chapter, we evaluate the reranking step using ablation studies. For reference, we
also report on the performance of the top-ranked TREC CAsT 2019 systems [46]:
• TREC-top-auto Uses an automatic system for query resolution and BERT-large for

reranking.
• TREC-top-manual Uses the gold standard query resolution and BERT-large for

reranking.

5.5.5 Implementation & hyperparameters

Multi-turn passage retrieval We index the TREC CAsT collections using Anserini
with stopword removal and stemming.10 In the initial retrieval step (section 5.3.2)
we retrieve the top 1000 passages using QL with Dirichlet smoothing (we set µ =

7https://medium.com/huggingface/state-of-the-art-neural-coreference-
resolution-for-chatbots-3302365dcf30

8https://nlp.stanford.edu/projects/glove/
9We use the nugget version that does not depend on anchors text since they are not available in our setting.

10https://github.com/castorini/anserini
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5. Query Resolution for Conversational Search with Limited Supervision

2500). We use the default value for the fusion parameter k = 60 [41] in Eq. (5.1).
In the reranking step (section 5.3.2) we use a PyTorch implementation of BERT for
retrieval [112]. We use the bert-base-uncased pretrained BERT model. We
fine-tune the BERT reranker with MSMARCO passage ranking dataset [14]. We train
on 100K randomly sampled training triples from its training set and evaluate on 100
randomly sampled queries of its development set. We use the Adam optimizer with a
learning rate of 0.001 except for the BERT layers for which we use a learning rate of
3e−6. We apply dropout with a probability of 0.2 on the output linear layer. We apply
early stopping on the development set with a patience of 2 epochs based on MRR.

Query resolution We use the bert-large-uncased model. We implement
QuReTeC on top of HuggingFace’s PyTorch implementation of BERT.11 We use the
Adam optimizer and tune the learning rate in the range {2e−5, 3e−5, 3e−6}. We use
a batch size of 4 and do gradient clipping with the value of 1. We apply dropout on
the term classification layer and the BERT layers in the range {0.1, 0.2, 0.3, 0.4}. We
optimize for F1 on the QuAC dev (gold) set.

Baselines For RM3, we tune the following parameters: n ∈ {3, 5, 10, 20, 30} and k ∈
{5, 10} and set the original query weight to the default value of 0.8. For Nugget, we set
ksnippet = 10 and tune θ ∈ {0.95, 0.97, 0.99}. For QCM, we tune α ∈ {1.0, 2.2, 3.0},
β ∈ {1.6, 1.8, 2.0}, ε ∈ {0.06, 0.07, 0.08} and δ ∈ {0.2, 0.4, 0.6}. For both Nugget
and QCM we use Van Gysel et al. [181]’s implementation. For fair comparison, we
retrieve over the whole collection rather than just reranking the top-1000 results. The
aformentioned methods are tuned on the small annotated training set of TREC CAsT.
For query resolution, we tune the greedyness parameter of NeuralCoref in the range
{0.5, 0.75}. We use the model of BiLSTM-copy released by [58], as it was optimized
specifically for QuAC with gold standard resolutions.

Preprocessing We apply lowercase, lemmatization and stopword removal to q∗i , q1:i−1
and qi using Spacy12 before calculating term overlap in Equation 5.2.

5.6 Results & Discussion

In this section we present and discuss our experimental results.

5.6.1 Query resolution for multi-turn retrieval

In this subsection we answer RQ4.1: we study how QuReTeC performs compared to
other state-of-the-art methods when evaluated on term classification (Section 5.6.1),
when incorporated in the initial retrieval step (Section 5.6.1) and in the reranking step
(Section 5.6.1).

11https://github.com/huggingface/transformers
12http://spacy.io/
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Table 5.5: Intrinsic evaluation for query resolution on the QuAC test set. Cur, prev, first
and all refer to using the current, previous, first or all turns respectively.

Method P R F1

Original (cur+prev) 22.3 46.4 30.1
Original (cur+first) 41.1 49.5 44.9
Original (all) 12.3 100.0 21.9

NeuralCoref 65.5 30.0 41.2
BiLSTM-copy 67.0 53.2 59.3

QuReTeC 71.5 66.1 68.7

Table 5.6: Intrinsic evaluation for query resolution on the TREC CAsT test set. Cur,
prev, first and all refer to using the current, previous, first, or all turns respectively.

Method P R F1

Original (cur+prev) 32.5 43.9 37.4
Original (cur+first) 43.0 74.0 54.4
Original (all) 18.6 100.0 31.4

RM3 (cur) 35.8 8.3 13.5
RM3 (cur+prev) 34.6 32.5 33.5
RM3 (cur+first) 40.9 32.9 36.5
RM3 (all) 41.5 38.8 40.1

NeuralCoref 83.0 28.7 42.7
BiLSTM-copy 51.5 36.0 42.4

QuReTeC 77.2 79.9 78.5

Intrinsic evaluation

In this experiment we evaluate query resolution as a term classification task.13 Table 5.5
shows the query resolution results on the QuAC dataset. We observe that QuReTeC
outperforms all the variations of Original and the NeuralCoref by a large margin in terms
of F1, precision and recall – except for Original (all) that has perfect recall but at the
cost of very poor precision. Also, QuReTeC substantially outperforms BiLSTM-copy
on all metrics. Note that BiLSTM-copy was optimized on the same training set as
QuReTeC (see Section 5.5.5). This shows that QuReTeC is more effective in finding
missing contextual information from previous turns.

Table 5.6 shows the query resolution results on the CAsT dataset. Generally, we
observe similar patterns in terms of overall performance as in Table 5.5. Interestingly,
we observe that QuReTeC generalizes very well to the CAsT dataset (even though it

13Note that the performance of Original (cur) is zero by definition when using the current turn only (see
Eq. 5.2). Thus, we do not include it in Tables 5.5 and 5.6. Also, RM3 is not applicable in Table 5.5 since
QuAC is not a retrieval dataset.
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Table 5.7: Initial retrieval performance on the TREC CAsT test set for different query
resolution methods. The retrieval model is fixed (same as in Section 5.3.2). Significance
is tested against RM3 (cur+first) since it has the best NDCG@3 among the baselines.

Method Recall MAP MRR NDCG@3

Original (cur) 0.438 0.129 0.310 0.155
Original (cur+prev) 0.572 0.181 0.475 0.235
Original (cur+first) 0.655 0.214 0.561 0.282
Original (all) 0.694 0.190 0.552 0.256

RM3 (cur) 0.440 0.140 0.320 0.158
RM3 (cur+prev) 0.575 0.200 0.482 0.254
RM3 (cur+first) 0.656 0.225 0.551 0.300
RM3 (all) 0.666 0.195 0.544 0.266

Nugget 0.426 0.101 0.334 0.145
QCM 0.392 0.091 0.317 0.127

NeuralCoref 0.565 0.176 0.423 0.212
BiLSTM-copy 0.552 0.171 0.403 0.205

QuReTeC 0.754N 0.272N 0.637N 0.341N

Oracle 0.785 0.309 0.660 0.361

was only trained on QuAC) and outperforms all the baselines in terms of F1 by a large
margin. In contrast, BiLSTM-copy fails to generalize and performs worse than Original
(cur+first) in terms of F1. NeuralCoref has higher precision but much lower recall
compared to QuReTeC. Finally, RM3 has relatively poor query resolution performance.
This indicates that pseudo-relevance feedback is not suitable for the task of query
resolution.

Query resolution for initial retrieval

In this experiment, we evaluate query resolution when incorporated in the initial retrieval
step (Section 5.3.2). We compare QuReTeC to the baseline methods in terms of initial
retrieval performance. Table 5.7 shows the results. First, we observe that QuReTeC
outperforms all the baselines by a large margin on all metrics. Also, interestingly,
QuReTeC achieves performance close to the one achieved by the Oracle performance
(gold standard resolutions). Note that there is still plenty of room for improvement even
when using Oracle, which indicates that exploring other ranking functions for initial
retrieval is a promising direction for future work. QuReTeC outperforms all Original
and RM3 variations, which perform similarly. The session search methods (Nugget
and QCM) perform poorly even compared to the Original variations, which indicates
that session search is different in nature than conversational search. BiLSTM-copy
performs poorly compared to QuReTeC but also compared to the Original variations,
which means that it does not generalize well to CAsT.
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Table 5.8: Reranking performance on the TREC CAsT test set. All the methods in the
first group use QuReTeC for query resolution. Significance is tested against BERT-base.

Method MAP MRR NDCG@3

Initial 0.272 0.637 0.341
BERT-base 0.272 0.693 0.408
RRF (Initial + BERT-base) 0.355N 0.787N 0.476N

Oracle 0.754 0.956 0.926

TREC-top-auto 0.267 0.715 0.436
TREC-top-manual 0.405 0.879 0.589

Query resolution for reranking

In this experiment, we study the effect of QuReTeC when incorporated in the reranking
step (Section 5.3.2). We keep the initial ranker fixed for all QuReTeC models. Table 5.8
shows the results. First, we see that BERT-base improves over the initial retrieval model
that uses QuReTeC for query resolution on the top positions (second line). Second,
when we fuse the ranked listed retrieved by BERT-base and the ranked list retrieval
by the initial retrieval ranker using RRF, we significantly outperform BERT-base on
all metrics (third line). This shows that the two rankers can be effectively combined
with RRF, which is a very simple fusion method that only has one parameter which
we do not tune. We also see that our best model outperforms TREC-top-auto on all
metrics. Furthermore, by comparing RRF (line 3) to Oracle (line 4) we see that there
is still plenty of room for improvement for reranking, which is a clear direction for
future work. This also shows that the TREC CAsT dataset is sufficiently challenging
for comparing automatic systems. Note that TREC-top-manual uses the gold standard
query resolutions and is thereby not directly comparable with the rest of the methods.

5.6.2 Distant supervision for query resolution

In this section we answer RQ4.2: Can we use distant supervision to reduce the amount
of human-curated query resolution data required to train QuReTeC? Figure 5.3 shows
the query resolution performance when training QuReTeC under different settings (see
figure caption for a more detailed description). For QuReTeC (distant full & gold partial)
we first pretrain QuReTeC on distant and then resume training with different fractions
of gold. First, we see that QuReTeC performs competitively with BiLSTM-copy even
when it does not use any gold resolutions (distant full).14 More importantly, when only
trained on distant, QuReTeC performs remarkably well in the low data regime. In fact,
it outperforms BiLSTM-copy (trained on gold) even when using a surprisingly low
number of gold standard query resolutions (200, which is ∼1% of gold). Last, we see
that as we add more labelled data, the effect of distant supervision becomes smaller.

14Also, when trained with distant full, QuReTeC performs better than an artificial method that uses the
label of the distant supervision signal as the prediction in terms of F1 (56.5 vs 41.6). This is in line with
previous work that successfully uses noisy supervision signals for retrieval tasks [49, 187].

81



5. Query Resolution for Conversational Search with Limited Supervision

0
20

0
50

0
1K 2K 5K 10

K
15

K

Number of gold standard query resolutions used

54

56

58

60

62

64

66

68

70

F
1

QuReTeC (distant full & gold partial)

QuReTeC (gold partial)

QuReTeC (gold full)

QuReTeC (distant full)

BiLSTM-copy (gold full)

Figure 5.3: Query resolution performance (intrinsic) on the QuAC test set on different
supervision settings. Gold refers to the QuAC train (gold) dataset and distant refers to
the QuAC train (distant) dataset. Full refers to the whole and partial refers to a part of
the corresponding dataset (gold or distant). The x-axis is plotted in log-scale.

This is expected and is also the case for the model trained on QuAC train (gold).15

In order to test whether our distant supervision method can be applied on different
encoders, we performed an additional experiment where we replaced BERT with a
simple BiLSTM as the encoder in QuReTeC. Similarly to the previous experiment, we
observed a substantial increase in F1 when retraining with 2K gold standard resolutions
(+12 F1) over when only using gold resolutions.

In conclusion, our distant supervision method can be used to substantially decrease
the amount of human-curated training data required to train QuReTeC. This is especially
important in low resource scenarios (e.g. new domains or languages), where large-scale
human-curated training data might not be readily available.

5.6.3 Analysis

In this section we perform analysis on QuReTeC when trained with gold standard
supervision.

Query resolution performance per turn

Here we answer RQ4.3 by analyzing the robustness of QuReTeC at later conversation
turns. We expect query resolution to become more challenging as the conversation
history becomes larger (later in the conversation).

15In fact (not shown in Figure 5.3), performance stabilizes after 15K query resolutions (∼75% of gold full).
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Figure 5.4: Intrinsic query resolution evaluation (term classification performance) for
QuReTeC, averaged per turn.
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Figure 5.5: Initial retrieval performance per turn for different query resolution methods
CAsT test

Intrinsic Figure 5.4 shows the QuReTeC performance averaged per turn on the
QuAC and CAsT datasets. Even though performance decreases towards later turns as
expected, we observe that it decreases very gradually, and thus we can conclude that
QuReTeC is relatively robust across turns.

Extrinsic – initial retrieval Figure 5.5 shows the performance of different query
resolution methods when incorporated in the initial retrieval step. We observe that
QuReTeC is robust to later turns in the conversation, whereas the performance of all
the baseline models decreases faster (especially in terms of recall). For reranking, we
observe similar patterns as with initial retrieval; we do not include those results for
brevity.

Qualitative analysis

Here we perform qualitative analysis by sampling specific instances from the data.
Intrinsic Table 5.9 shows one success and one failure case for QuReTeC from the QuAC
dev set. In the success case (top) we observe that QuReTeC succeeds in resolving “she”
→ {“Bipasha”, “Basu”} and “reviews”→ “Anjabee”. Note that “Anjabee” is a movie
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Table 5.9: Qualitative analysis for QuReTeC on query resolution (intrinsic). We denote
true positive terms with underline and false negative terms in italics. The examples are
sampled from the QuAC dev set.

Success case – no mistakes

Q1: What was Bipasha Basu’s debut?
A1: In 2001, Basu finally made her debut opposite Akshay Kumar in Vijay Galani ’s
Ajnabee.
Q2: Did this help her become well known?
A2: It was a moderate box-office success and attracted unfavorable reviews from
critics.
Q3 (current): Why did she receive unfavorable reviews?

Failure case – misses two relevant terms: dehusking, machine

Q1: How old was Alexander Graham Bell when he made his first invention?
A1: The age of 12.
Q2: What did he invent?
A2: Bell built a homemade device that combined rotating paddles with sets of nail
brushes.
Q3: What was it for?
A3: A simple dehusking machine.
Q4 (current): By inventing this, what happened to allow him to continue inventing
things?

in which Basu acted but is not mentioned explicitly in the current turn. In the failure
case (bottom) we observe that QuReTeC succeeds in resolving “him”→ {“Alexander”,
“Graham” “Bell”} but misses the connection between “this” and “dehusking machine”.

Extrinsic – initial retrieval Table 5.10 shows an example from the CAsT test
set where QuReTeC succeeds and RM3 (cur+first), the best performing baseline for
initial retrieval, fails. First, note that a topic change happens at Q7 (the topic changes
from general real-time databases to Firebase DB). We observe that QuReTeC predicts
the correct terms, and a relevant passage is retrieved at the top position. In contrast,
RM3 (cur+first) fails to detect this topic change and therefore an irrelevant passage is
retrieved at the top position that is about real-time databases on mobile apps but not
about Firebase DB.

5.7 Conclusion

In this chapter, we studied the task of query resolution for conversational search. We
proposed to model query resolution as a binary term classification task: whether to add
terms from the conversation history to the current turn query. We proposed QuReTeC,
a neural query resolution model based on bidirectional transformers. We proposed
a distant supervision method to gather training data for QuReTeC. We found that
QuReTeC significantly outperforms multiple baselines of different nature and is robust
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Table 5.10: Qualitative analysis for initial retrieval (extrinsic) when using QuReTeC or
RM3 (cur+first) for query resolution. The example is sampled from the TREC CAsT
dataset.

Q1: What is a real-time database?
Q2: How does it differ from traditional ones?
Q3: What are the advantages of real-time processing?
Q4: What are examples of important ones?
Q5: What are important applications?
Q6: What are important cloud options?
Q7: Tell me about the Firebase DB?
Q8 (current): How is it used in mobile apps?
Predicted terms – QuReTeC: {“database”, “firebase”, “db” }
Top-ranked passage – QuReTeC
Firebase is a mobile and web application platform . . . Firebase’s initial product was
a realtime database, . . . Over time, it has expanded its product line to become a full
suite for app development . . .

Predicted terms – RM3 (cur+first): {“real”, “time”, “database”}
Top-ranked passage – RM3 (cur+first)
There are two options in Jedox to access the central OLAP database and software
functionality on mobile devices: Users can access reports through the touch-optimized
Jedox Web Server . . . on their smart phones and tablets.

across conversation turns. Also, we found that our distant supervision method can
substantially reduce the required amount of gold standard query resolutions required for
training QuReTeC, using only query-passage relevance labels. This result is especially
important in low resource scenarios, where gold standard query resolutions might not
be readily available.

As for future work, we aim to develop specialized rankers for both the initial retrieval
and the reranking steps that incorporate QuReTeC in a more sophisticated way. Also,
we want to study how to effectively combine QuReTeC with text generation query
resolution methods as well as pseudo-relevance feedback methods. Finally, we aim to
explore weak supervision signals for training QuReTeC [49].

In this chapter, we focused on how to improve interactive knowledge gathering and
studied multi-turn passage retrieval as an instance of conversational search. In Chapter 6,
we focus on a different research theme, namely supporting knowledge exploration for
narrative creation.
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6
News Article Retrieval in Context

for Event-centric Narrative Creation

In the third and final part of this thesis we study the research theme of supporting
knowledge exploration for narrative creation. In this chapter, we address RQ5: Can we
support knowledge exploration for event-centric narrative creation by performing news
article retrieval in context?

6.1 Introduction

Professional writers such as journalists generate narratives centered around specific
events or topics. As shown in recent studies, such writers envision automatic systems
that suggest material relevant to the narrative they are creating [51, 83]. This material
may provide background information or connections that can help writers generate new
angles on the narrative and thus help engage the reader [93].

Previous work has focused on developing automatic systems to support writers
explore content relevant to the narrative they are writing about. Such systems use
content originating from various sources such as as social media [44, 52, 213], political
speeches and conference transcripts [113], or news articles [114].

Writers in the news domain often develop narratives around a single main event,
and refer to other, related events that can serve different functions in relation to the
narrative [180]. These include explaining the cause or the context of the main event
or providing supporting information, among others [37]. Recent work has focused on
automatically profiling news article content (i.e., paragraphs or sentences) in relation to
their discourse function [37, 206].

In this chapter, instead of profiling existing narratives, we consider a scenario where
a writer has generated an incomplete narrative about a specific event up to a certain
point, and aims to explore other news articles that discuss relevant events to include in
their narrative. A news article that discusses a different event from the past is relevant
to the writer’s incomplete narrative if it relates to the narrative’s main event and to the
narrative’s context. Relevance to the narrative’s main event is topical in nature but,
importantly, relevance to the narrative’s context is not only topical: to be relevant to the

This chapter was published as [190].
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Table 6.1: Example incomplete narrative q (consisting of a main event e and context c),
and a news article d∗ that is relevant to q because it is relevant to both the main event e
and to the narrative context c in the sense explained in the main text.

Incomplete narrative q
– Main event (e)
(#1) Malta’s armed forces storm merchant ship taken over by rescued migrants.
(#2) Maltese armed forces on Thursday stormed a merchant vessel taken over by rescued
migrants who were allegedly demanding to be transported to Europe, rather than back
to Libya.
– Narrative context (c)
(#3) In earlier years of Europe’s migration crisis—when flows from the Middle East
and North Africa were much higher—the Mediterranean was patrolled by Italian and
European vessels, as well as by humanitarian groups, which would rescue migrants
from flimsy dinghies and transport them to safety, typically to Italy.

Relevant news article (d∗)
(#4) Italy’s new government sends immigration message by rejecting rescue ship
(#5) Italy’s new populist government has delivered a jolt to European migration politics,
prompting a diplomatic standoff with its refusal to accept a rescue vessel overloaded
with migrants.

narrative’s context, a news article should enable the continuation of the narrative by
expanding the narrative discourse [31]. Table 6.1 shows an example of an incomplete
narrative and a news article relevant to it. The relevant article discusses an event about
a subject mentioned in the narrative context (Italy). Here, the relevant news article is
relevant to the topic of the incomplete narrative (migration crisis) and also relevant to
the narrative context in the sense that it is used by the writer to expand the narrative
by making a comparison: the previous government of Italy was more welcoming to
immigrants than the current. To avoid confusion, in the remainder of this chapter
relevance without further restriction or scope is taken to mean both topical relevance
and relevance to the narrative context.

We model the problem of finding a relevant news article given an incomplete
narrative as a retrieval task where the query is an incomplete narrative and the unit of
retrieval is a news article. We automatically generate retrieval datasets for this task by
harvesting links from existing narratives manually created by journalists. Using the
generated datasets, we analyze the characteristics of this task and study the performance
of different rankers on this task. We find that state-of-the-art lexical and semantic
rankers are not sufficient for this task and that combining those with a ranker that ranks
articles by their reverse chronological order outperforms those rankers alone.

Our main contributions are: (i) we propose the task of news article retrieval in
context for event-centric narrative creation; (ii) we propose an automatic retrieval dataset
construction procedure for this task; and (iii) we empirically evaluate the performance
of different rankers on this task and perform an in-depth analysis of the results to better
understand the characteristics of this task.
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6.2 Problem Statement

6.2.1 Preliminaries
A news article d published at time t consists of its headline H—which introduces the
topic of the article [180]—and a sequence of paragraphs p1, p2, . . .. Each paragraph pi
consists of a sequence of sentences ai,1, ai,2, . . ..

The lead paragraph L of a news article d is its first paragraph p1, which summarizes
the main topic of the article [180].

An event e is characterized by interactions between entities such as countries,
organizations, or individuals—that deviate from typical interaction patterns [32]. We
assume that each news article d is associated with a single main event e.

A link sentence ai,j in article d is a sentence that contains a hyperlink to a news
article d∗.

A context is a sequence of sentences already generated by the writer that introduces
a new idea or subtopic in a narrative.

A query q = (e, c, t) is an incomplete narrative at time t that consists of an event e
and a context c.

6.2.2 Task definition
The task of news article retrieval in context for event-centric narrative creation is defined
as follows. Given a query q = (e, c, t) and a collection of news articles D published
before time t, we need to rank articles in D w.r.t. their relevance to q = (e, c, t). Here,
“relevance to e” is to be interpreted as topical, whereas “relevance to c” is not only
topical, but it should also enable the continuation of the narrative by expanding the
narrative discourse [31]. “Relevance to q” is taken to mean the same as “relevance to
e and to c”. An article relevant to q can thus be used by the writer to create the next
sentence in the yet incomplete narrative. Table 6.1 shows an example query q and a
relevant news article d∗ published at time t∗ < t.

6.3 Retrieval Dataset Construction

6.3.1 Dataset construction procedure
In order to construct a retrieval dataset for our news article retrieval task, we rely on
existing news articles to simulate incomplete narratives as well as relevant documents.
We capitalize on the fact that (complete) news articles often contain links to other news
articles manually inserted by journalists in the form of hyperlinks.

The automatic retrieval dataset construction procedure that we propose takes as
input a news article d and outputs a set of (q, d∗) pairs, where q = (e, c, t) is a query
and d∗ is the (unique) relevant news article to q. We assume that the event e associated
with d is described by the headline H and the lead paragraph L of d [37].

In order to construct the context c of q, we iteratively look for link sentences ai,j
in d that contain a hyperlink to another news article d∗. We enforce i > 1 so that
the paragraph where the link sentence appears is after the lead paragraph. We also
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Table 6.2: Statistics of the retrieval datasets derived from the WaPo and Guardian
newspaper collections. Because of the way we construct the retrieval datasets (see
Section 6.3.1), each query has a single relevant news article.

Dataset Split # q # uniq. d # uniq. d∗ Link sentence (ai,j)
i mean/ j mean/
median median

WaPo Train 32,963 23,537 24,279 7.9/7 2.5/2
Dev. 1,831 1,286 1,585 8.4/8 2.4/2
Test 1,832 1,216 1,555 9.1/9 2.4/2

Guardian Train 31,329 21,730 22,935 7.3/6 2.4/2
Dev. 1,740 1,128 1,526 8.0/7 2.4/2
Test 1,742 1,064 1,532 7.3/7 2.5/2

enforce j > 1 motivated by the fact that links after the first sentence of a paragraph are
tightly related to the main idea of the paragraph, therefore the sentences preceding the
link sentence can be considered as context [73]. If such a link sentence ai,j exists, we
consider the sentences ai,1, . . . , ai,j−1 as the narrative context c and the article d∗ as
the relevant article for q.

Example To illustrate the procedure described above, consider the example in Ta-
ble 6.1. Sentences #1 and #2 in Table 6.1 are the headline and lead paragraph of a news
article d respectively. Sentence #3 in Table 6.1 is the first sentence ai,j−1 of a paragraph
pi, i > 1 in d, which constitutes the narrative context c. The link sentence ai,j (not
shown in the table) is:

But over the past year, Italy has closed its ports to migrants rescued by
humanitarian boats.

where the part in italics is (the anchor text of) a hyperlink to the relevant news article
d∗ shown in Table 6.1, where sentences #4 and #5 are the headline and lead of d∗,
respectively.

6.3.2 Retrieval dataset description
We consider two collections of news articles written in English and published by major
newspapers. The first is a set of news articles published by The Washington Post (WaPo),
released by the TREC News Track [169]. It contains 671,947 news articles and blog
posts published from January 2012 to December 2019. The second is a set of news
articles published by The Guardian, between November 2013 to June 2017, which we
crawl ourselves. We also crawl the out-links of each article in this set; the final set
contains 572,639 news articles published between January 2000 and March 2018.

The articles in both newspapers cover multiple genres and domains. In order
to ensure that the news articles describe real-world events, we filter out blog posts
and opinion news articles, and only keep articles in the following domains: news,
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Figure 6.1: Histogram of the number of tokens in the query event e and the query
context e.
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Figure 6.2: Histogram of day difference between the query and its relevant news article.

world, business, environment, technology, society, science, culture, education, global,
healthcare, media, money, teacher, local, national. After filtering for genre and domain,
we are left with 386,196 articles in WaPo and 185,034 in The Guardian.

We then apply the dataset construction procedure described in Section 6.3.1 to
construct a retrieval dataset for both collections. We split the retrieval datasets chrono-
logically and keep the first 90% for training, the next 5% for development, and the last
5% for testing. Table 6.2 shows basic statistics for both retrieval datasets. Figure 6.1
shows a histogram of the number of tokens in the query event e and the query context c.
We observe that the query context is shorter than the query event in both datasets. Also,
the query event is longer in WaPo than in Guardian because the way those newspapers
perform paragraph splitting is different.

Figure 6.2 shows a histogram of the difference in number of days between the
publication date of the query and the publication date of the relevant news article on the
development sets of the two datasets. The retrieval datasets have a strong recency bias,
which is in line with studies on content generation in the news domain [129]. Typical
examples of recent, relevant articles are those discussing a previous development of a
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Table 6.3: Results of the annotation exercise: assessing relevance of document d∗ w.r.t.
e only (Task 1), and then c (Task 2). We show the fraction of times the annotator labeled
a sample as positive for the task.

Dataset Task 1 Task 2 Either

WaPo 0.90 0.77 0.91
Guardian 0.85 0.83 0.92

query event or of an event mentioned in the narrative context. And a typical example of
a less recent, relevant article can be found when discussing an event that is similar to
one mentioned in the query (e.g., an earthquake) but involving different entities (e.g., a
person, location, or organization).

6.3.3 Retrieval dataset quality

The dataset construction procedure we described in Section 6.3.1 assumes that an
article d∗ is relevant to q since the writer has chosen to link to it in a particular context,
which is a fair assumption to make. Nevertheless, we further assess the quality of
the automatically constructed retrieval datasets with respect to our task definition
(Section 6.2.2) by performing two annotation tasks. In the first task, we show e and d∗

to a human annotator and ask whether they understand their connection (binary). In the
second task, which is done after the completion of the first task, we additionally show
the context c and ask whether it enhances their understanding of the connection of e
and d∗ (binary). The two tasks can help us validate whether d∗ is topically relevant to e,
and relevant to c in a way that enables the continuation of the narrative (Section 6.2.2).

One annotator annotated 100 examples from the development set of each dataset
(i.e., 200 examples in total). In order to assess the quality of the annotations, a second
assessor annotated a subset of 50 examples from each dataset (100 examples in total).
The Cohen’s κ [40] score is 0.61 for Task 1 and 0.50 for Task 2, both of which are
considered moderate agreement.

The results can be seen in Table 6.3. We see that, for both datasets, the context c
enhances the understanding of the connection to d∗ for more than 3/4 of the cases (Task
2). Also, for the vast majority of the cases, either the event e or the context c is sufficient
to understand the connection (third column). We conclude that the automatic dataset
construction procedure we proposed in Section 6.3.1 can produce reliable datasets for
this task.

6.4 Retrieval Method

We follow a standard two-step retrieval pipeline that consists of (1) an unsupervised
initial retrieval step and (2) a re-ranking step [192]. Note that we do not focus on
proposing new methods but rather on studying existing ones on this novel task.
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6.4.1 Initial retrieval

In this step, we score each news article d in D w.r.t. q = (e, c, t) to obtain the initial
ranked list L1. Here, we are interested in achieving high recall at lower depths in the
ranking, since this step is followed by a more sophisticated reranking step. We use
BM25 [153], an unsupervised lexical matching function, which is effective for ad-hoc
retrieval and other tasks, such as question answering [202]. In order to construct the
lexical query, we simply concatenate e and c.

6.4.2 Reranking

Here we rerank the initial ranked list L1 obtained in the previous step by combining
the results of multiple rankers using Reciprocal Rank Fusion (RRF), an unsupervised
ranking fusion function [41]:

∑
L∈L

1

k + rank(d, L)
, (6.1)

where L is a set of ranked lists, rank(d, L) is the rank of article d in the ranked list L,
and k is a parameter, set to its default value (60).

We use the following rankers:

BM25 The initial retrieval step ranker (Section 6.4.1), often used in combination with
more sophisticated ranking models [111].

BERT BERT [50] has recently achieved state-of-the-art performance for retrieval and
recommendation tasks in the news domain [198, 203]. BERT has been shown to prefer
semantic matches and it is often used in combination with lexical matching ranking
functions [141]. Given the query q and a candidate news article d, we follow [113]
and construct the input to BERT as follows: [<CLS> e <unused> c <SEP> d], where
<CLS> is a special token, <unused> is a special token that informs the model where
the context begins and <SEP> is a special token that informs the model where the
document d begins. We add a dropout layer on top of the <CLS> token, and a linear
layer with a scalar output to obtain the final matching score, which is used to rank the
articles in L1. Note that, because of the limit of BERT in the number of tokens, we only
take into account the headline and lead of d.

Recency This ranker simply sorts the candidate articles in L1 by their reversed chrono-
logical order.

Note that we have also experimented with combining the scores of the above rankers as
features in supervised learning to rank models but they only gave minor improvements
over RRF. Thus we do not discuss them in this chapter.
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6.5 Experimental setup

6.5.1 Evaluation metrics

We use standard IR metrics: Mean Reciprocal Rank (MRR) and recall at different
cut-offs (R@20, R@1000). Note that because of the way we construct our dataset
(Section 6.3.1), we only have one relevant news article per query and thus MRR is
equivalent to MAP. We use a cut-off of 20 at recall since we expect writers to be willing
to navigate the ranked list to lower positions [91]. We report on statistical significance
with a paired two-tailed t-test.

6.5.2 Implementation and hyperparameters

We use the BM25 implementation of Anserini [202] with default parameters and retrieve
the top-1000 articles (Section 6.4.1).

We use the OpenNIR implementation of BERT for retrieval [111]. We fine-tune
the bert-base pre-trained model on the training set of each of our datasets separately.
We assign a maximum 300 tokens for the query q and 200 for the article d. We use a
batch size of 16 with gradient accumulation of 2, we apply max grad norm of 1 and
tune the following hyperparameters for MRR on the development set of each dataset
separately: number of negatives {1, 2, 3} and learning rate {5e − 6, 1e − 5, 2e − 5}.
During training we sample one negative example from the initial ranked list obtained in
Section 6.4.1, and train the model with pairwise ranking loss.

Preprocessing and word vectors We use Spacy1 for sentence splitting, POS tagging
and Named Entity Recognition. We use the en core web lg model to obtain word
vectors.

6.6 Results

In this section we present our experimental results.

6.6.1 Initial retrieval

We examine the performance of the initial retrieval step when different variations of the
query q are used. Table 6.4 shows the results. We observe that, for both datasets, when
using both the event e and the context c we get better results than when using either of
the two alone, especially in terms of R@1000. This shows that both the event e and the
context c are important for our task.

In Table 6.4 (bottom row) we also show ranking performance when using the link
sentence as the query (see Section 6.3.1). Even though we do not use the link sentence
as part of the query in our task definition (Section 6.2.2), this can give us a reference
point for the “upper bound” performance in this step, since the link sentence has a high
lexical overlap with the relevant article d∗ [136]. We observe that, indeed, when using

1http://spacy.io/
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Table 6.4: Initial retrieval performance of BM25 on the test sets for different variations
of the query q = (e, c, t), or the link sentence (LS).

WaPo Guardian

Query MRR R@1000 MRR R@1000

e 0.117 0.745 0.104 0.723
c 0.167 0.737 0.154 0.714
e & c 0.172 0.832 0.149 0.806

LS 0.459 0.944 0.427 0.929

Table 6.5: Retrieval performance when reranking the ranked list obtained by BM25
(first row).

WaPo Guardian

Method MRR R@20 MRR R@20

BM25 0.172 0.433 0.149 0.382

Recency 0.086 0.284 0.065 0.065
BERT 0.182 0.451 0.173 0.447

RRF-recency 0.206 0.509 0.195 0.477
RRF 0.236 0.588 0.212 0.533

the link sentence as the query, ranking performance is much higher than when using
q, achieving close to perfect R@1000. Nevertheless, R@1000 when using e & c is
relatively close to when using LS, which is an encouraging result given that in this step
we are more interested in recall.

6.6.2 Reranking

Here, we report results on the individual rankers described in Section 6.4.2 and their
combinations with RRF. Table 6.5 shows the results. First, we see that the performance
of the Recency ranker is poor. Also, we see that BERT outperforms BM25 on both
datasets, while only using the headline and the lead of the candidate news article. RRF-
recency combines BERT and BM25 achieves an increase over BERT. Finally, when
also adding the Recency ranker in RRF, we observe a significant (p < 0.01) increase on
all metrics. We conclude that RRF, albeit simple, is effective in combining the three
rankers and that all three rankers are useful for this task.

6.7 Analysis

In this section we analyze our results along different dimensions to gain further insights
into this task. For our analysis we use the development set of the WaPo and Guardian
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Figure 6.3: MRR vs Jaccard similarity between query q and d∗.
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Figure 6.4: MRR vs Jaccard similarity between narrative’s context c and d∗.

datasets.

6.7.1 Vocabulary gap

The vocabulary gap is a well known challenge in information retrieval [103]. Here, we
analyze the performance of the rankers under comparison for this task based on the
vocabulary gap between the query q and the relevant article d∗.

In Figure 6.3 we observe that the higher the lexical overlap between q and d∗ (small
vocabulary gap) the higher the performance for all rankers, for both datasets. Also,
we see that when the lexical overlap is low (large vocabulary gap), all rankers fail to
bring the relevant article at the top positions of the ranking. This shows that more
sophisticated methods are needed to handle the large vocabulary gap in this task. In
Figure 6.4 we show the lexical overlap between the narrative’s context c only and the
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Figure 6.5: MRR for retrieval methods grouped per day difference of the query and the
relevant article.

relevant d∗. Even though it follows the same trend as in Figure 6.3, we see that BERT
is consistently better than BM25 as the term overlap between the narrative’s context
c and d∗ increases, for both datasets. This shows that BERT is able to better take into
account the narrative’s context c than BM25.

We next show examples of high/low lexical overlap between q and d∗ in Table 6.6.
In the first example (high lexical overlap), we see that because of high term overlap, all
rankers are able to rank d∗ at the top 1–2 positions. In the second example (low lexical
overlap), the relevant article d∗ discusses the execution of Alfredo Prieto: this is a case
in which Morrogh, a prosecutor in Virginia, was involved in (Morrogh is mentioned
in the narrative’s context c). However, the fact that Morrogh is involved in the case is
not mentioned explicitly in d∗ and thus all rankers fail to rank the relevant article at the
top positions. Incorporating the fact that Morrogh is related to Prieto in the ranking
model could potentially be achieved by exploiting knowledge graphs that store event
information [67, 154]. We leave the exploration towards this direction for future work.

6.7.2 Temporal aspects

As discussed in Section 6.3.1, the retrieval datasets we derived for this task have a strong
recency bias. Here, we analyze the performance of the rankers under comparison based
on the temporal aspect, i.e., how recent the relevant article is.

In Figure 6.5 we show the performance of the retrieval methods for different day
differences between the query q and the relevant article d∗. As expected, we observe
that for RRF, which uses the recency signal, the performance increases substantially on
average when the relevant article is recent, and decreases when it is older.

We next look at specific examples to better understand the results. Table 6.7 shows
examples where the relevant article is recent and RRF ranks it at the top of the ranking,
while RRF-recency ranks it lower. In both examples, RRF-recency’s top-ranked article
seems to also be relevant to q, however the writer chose to refer to a more recent
event [129]. Note that the fact that only one article is relevant to each query is an artifact
of our dataset and not of the task itself. Table 6.8 shows examples where the relevant
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Figure 6.6: MRR vs avg. IDF of the entities in the query q.

article is old and RRF-recency ranks it at the top of the ranking, while RRF ranks it
lower. In the first example, the relevant article discusses a development on the injury of
Scherzer, a player of the Washington Nationals team, and RRF-recency correctly brings
that at the top position. However, RRF ranks a more recent event at the top position
that discusses an injury of a different player of the same team. In the second example,
RRF brings at the top position an article that discusses an event about India that is more
recent than the one that the relevant article discusses, however the article is off-topic.

The above phenomena suggest that more sophisticated methods that model recency
should be explored for this task. For instance, it would be interesting to try to predict
which queries are of temporal nature based on the characteristics of the underlying
collection [90]. However, methods that build on features derived from user interactions
are not applicable to our setting [55].

6.7.3 Entity popularity

Entities play a central role in event-centric narratives, especially in the news do-
main [154]. We examine whether entity popularity affects retrieval performance in our
task by measuring the IDF (Inverse Document Frequency) of entities in the query [115].
An entity with a high IDF in the collection is less popular than an entity with a low IDF.

In Figure 6.6 we show the performance depending on the average IDF of the entities
in the query in the underlying collection. We observe that the rankers that use the query
and article text (BM25, BERT, RRF-recency) perform worse for queries with more
popular entities (low IDF) than for queries with less popular entities. This is because
popular entities appear in multiple events, and thus there are many potentially relevant
articles for a query. We also see that RRF, which takes recency into account, is more
robust to entity popularity. This might also be related to the fact that a recent event that
involves a popular entity is more likely to be relevant in general than a less recent event
that involves the same entity (also see examples in Section 6.7.2, Table 6.7).
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6.7.4 Link sentence

Recall that we do not use the link sentence as part of the query (see Section 6.3.1). Thus,
our rankers are not aware of its content. However, we found that in some cases the
link sentence contains information that is crucial for the connection of the complete
narrative and the relevant news article. Thus, in such cases, the query event e and the
narrative’s context c are not sufficient. Table 6.9 shows examples of such cases. Note
that in the first example, the relevant article was not even retrieved in the top-1000 of
the initial retrieval step (see Section 6.4.1). In the second example, the relevant article
is ranked very low by all rankers.

One direction for future work would be to detect parts of the link sentence that
contain such crucial information and add them to the narrative’s context c. This could
be performed as a manual annotation task or modeled as a prediction task [87].

6.8 Related work

6.8.1 Supporting narrative creation

Recent work on developing automatic applications to support writers has focused on
designing tools that track and filter information from social media to support journal-
ists [52, 213]. Cucchiarelli et al. [44] track the Twitter stream and Wikipedia edits to
suggest potentially interesting topics that relate to a new event that a writer can include
in their narrative when reporting on the event. In contrast, instead of relying on external
sources, we aim to retrieve news articles that describe events from the past that can help
the writer expand the incomplete narrative about a specific event.

Perhaps the closest to our task are the works by Maiden and Zachos [114] and
MacLaughlin et al. [113]. Maiden and Zachos [114] focus on suggesting articles that
would help journalists discover new, creative angles on a current incomplete narrative.
The difference with our work is that they aim to suggest creative angles on articles and
retrieve articles depending on the angle the writer selects. In addition, they evaluate
their system in a living lab scenario, whereas we create static retrieval datasets from
historical data and use them to train ranking functions. Evaluating our system in a living
lab scenario would be a promising direction for future work.

MacLaughlin et al. [113] retrieve paragraphs that contain quotes from political
speeches and conference transcripts, so that writers can use them in their incomplete
narratives. Even though their retrieval task definition is similar to ours, our task differs
in that our unit of retrieval is a news article from a large news article collection instead
of a paragraphs from a single document (e.g., a political speech). Moreover, our unit of
retrieval (article) is timestamped, which makes the temporal aspect prominent in our
task.

6.8.2 Context-aware citation recommendation

The task of context-aware citation recommendation is to find articles that are relevant
to a specific piece of text a writer has generated [76]. It has mainly been studied
in the scientific domain [57, 82, 86, 158], but also in the news domain [102]. The
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6. News Article Retrieval in Context for Event-centric Narrative Creation

main difference of the aforementioned works and our task is that we aim to retrieve
articles to expand existing incomplete narratives instead of finding citations for complete
narratives.

6.8.3 Event extraction & retrieval

Events are the starting points of narrative news items. Recent work has focused on
extracting and characterizing events from large streams of documents [32] and extracting
the most dominant events from news articles [36]. In our work, we assume that a news
article is associated with a single main event, which is described by the article’s headline
and lead paragraph [37].

More related to our task is work focused on retrieving events given a query event [102,
163]. However, this work does not consider additional context in the query as we do
and thus it is not directly comparable to ours.

6.9 Conclusion and Future Work

In this chapter, we proposed and studied the task of news article retrieval in context
for event-centric narrative creation. We proposed an automatic dataset construction
procedure and showed that it can generate reliable evaluation sets for this task. Using
the generated datasets, we compared lexical and semantic rankers and found that they
are insufficient. We found that combining those rankers with one that ranks articles
by their reverse chronological order significantly improves retrieval performance over
those rankers alone.

Our analysis showed that the vocabulary gap for this task is large, and therefore
more advanced methods for semantic matching are needed. This could be achieved by
exploiting external knowledge about events stored in knowledge graphs [67]. To this end
we aim to build on insights gained from our studies in Chapters 2, 3 and 4 to improve
semantic matching. For instance, we could first detect KG facts in the query and the
articles and then use the method we proposed in Chapter 2 to retrieve descriptions of
the detected KG facts. The retrieved descriptions can then be used to provide additional
knowledge to the BERT ranker and thus improve semantic matching [137].

Moreover, our analysis showed that the temporal aspect is prominent in this retrieval
task, which was not the case for the tasks we studied in the previous chapters of this
thesis. Therefore, future work would aim to find more robust ways to incorporate the
temporal aspect in the ranking function [90].

Furthermore, we found that this task is more challenging when the query event
involves entities that appear more frequently in the collection, which we plan to further
study in the future. Another direction for future work is to categorize queries in relation
to their discourse function in the narrative [174, 175], for example in relation to their
function with respect to the main event of the narrative [37], and develop specialized
rankers for each category.

We found that in some cases the link sentence contains crucial information for the
connection between the complete narrative and the relevant news article. However,
since the link sentence is not part of the query according to our dataset construction
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6.9. Conclusion and Future Work

procedure, the constructed query may miss this key piece of information to capture
the connection. For future work, we aim to address this limitation by detecting such
information in the link sentence and adding it to the query, or by using natural language
generation techniques to fill in these blanks automatically.

Finally, it is important to note that even though our dataset construction procedure
can generate reliable retrieval datasets, the fact that we only have a single relevant article
for each query may be limiting as more than one article may be relevant. Thus, some of
our findings might be an artifact of that procedure and not the task itself. We plan to
overcome this limitation in future work by asking journalists to qualitatively assess the
output of different rankers to enrich the automatically constructed datasets with more
relevant articles per query [113, 114].

107





7
Conclusions

In this thesis, we studied three research themes aimed at supporting search engines
with knowledge and context: (1) making structured knowledge more accessible to the
user, (2) improving interactive knowledge gathering, and (3) supporting knowledge
exploration for narrative creation. We studied several algorithmic tasks within these
themes and proposed solutions to address them.

In this concluding chapter, we first revisit the research questions that we introduced
in Chapter 1 and describe our main findings in Section 7.1. In Section 7.2, we discuss
limitations and future directions.

7.1 Main Findings

7.1.1 Making structured knowledge more accessible to the user
Within this research theme we asked and answered three research questions motivated
by the need of presenting knowledge graph (KG) facts to users in a natural way. In
Chapter 2, we asked the following question:

RQ1 Given a KG fact and a text corpus, can we retrieve textual descriptions of the fact
from the text corpus?

To answer this question, we formalized the task of retrieving textual descriptions of
KG facts from a corpus of sentences. We developed a method for this task that consists
of two steps. First, we extract and enrich candidate sentences from the corpus and
then rank them by how well they describe the KG fact. In the first step, we detect
sentences in the corpus that contain surface forms of any of the two entities in the KG
fact and apply coreference resolution and entity linking to enrich them. In the second
step, we rank the extracted sentences using learning to rank, that combines a rich set of
features of different types. To evaluate our method, we construct a manually annotated
dataset that contains descriptions of KG facts that involve people. We found that our
method improves performance over state-of-the-art sentence retrieval methods and that
all groups of features contribute to retrieval performance, with relation-based features
being the most important. Moreover, we found that training relationship-dependent
rankers is beneficial to improving retrieval performance. Importantly, we also found that
almost one third of the facts in our dataset did not correspond to any relevant sentence in
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7. Conclusions

the corpus. This is usually the case for facts of which the entities are less popular. Not
being able to provide a meaningful description of certain facts limits the applicability
of our method in real world scenarios. This finding led us to the following research
question in Chapter 3:

RQ2 Given a KG fact, can we automatically generate a textual description of the fact
in the absence of an existing description?

To answer this question, we formalized the task of generating textual descriptions of
KG facts. We proposed a method that first generates sentence templates for a specific
relationship and then, given a specific KG fact selects the most relevant template and
fills it with information from the KG to create a novel sentence. In order to create
sentence templates, we designed a graph-based algorithm that combines information
contained in existing sentences and the KG. In order to select the most relevant template
for a KG fact, we designed a supervised feature-based scoring function. To evaluate
our method, we automatically extracted a dataset for KG fact description generation
and performed both automatic and manual evaluation. We found that our method
can generate grammatically correct and generally informative descriptions, and that a
supervised scoring function outperforms an unsupervised one for selecting templates.
In addition, our error analysis showed that generating KG fact descriptions that are
valid under the KG closed-world assumption is challenging and needs to receive more
attention.

Next, in Chapter 4 we turned to a closely related problem and asked the following
question:

RQ3 Can we contextualize a KG query fact by retrieving other, related KG facts?

To answer this question, we formalized the problem of contextualizing KG facts as a
retrieval task. We designed NFCM, a neural fact contextualization method that first
generates a set of candidate facts that are part of the immediate neighborhood of the
query fact in the KG, and subsequently ranks the candidate facts by how relevant they
are to the query fact. We designed a neural network ranking model that combines
information from multiple paths connecting the query and the candidate facts in the KG
using recurrent neural networks to learn automatic features. We further augmented the
representation power of this model by using existing and novel hand-crafted features.
Since it is expensive to manually obtain human-curated training data to train this model,
we turned to distant supervision to automatically generate training data for this task. We
evaluated NFCM using a human-curated dataset separate from the one used for distant
supervision. We found that when trained on distant supervision, NFCM significantly
outperforms several heuristic baselines on this task. Additionally, we found that NFCM
benefits from both automatically learned and hand-crafted features. Finally, we found
that NFCM is relatively robust to the number of training data for each relationship.

7.1.2 Improving interactive knowledge gathering
We then moved to the theme of improving interactive knowledge gathering and studied
multi-turn passage retrieval as an instance of conversational search. In Chapter 5, we
asked the following question:
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7.1. Main Findings

RQ4 Can we use query resolution to identify relevant context and thereby improve
retrieval in conversational search?

To answer this question, we formulated the task of query resolution for conversational
search as a term classification task. We proposed QuReTeC, a neural term classification
model based on bidirectional transformers, more specifically BERT. QuReTeC encodes
the conversation history and the current turn query and predicts which terms from
the history are relevant to the current turn. We integrated QuReTeC in a standard,
two-step retrieval pipeline by appending the terms predicted as relevant to the current
turn query. We performed evaluation both in terms of term classification and retrieval
performance using a recently constructed multi-turn passage retrieval dataset. We found
that QuReTeC significantly outperforms state-of-the-art methods on this task when
trained on gold standard query resolutions. Furthermore, we found that QuReTeC is
robust across conversation turns. Since collecting such gold standard query resolutions
for training QuReTeC might be cumbersome, we designed a distant supervision method
that automatically generates training data for query resolution using query-passage
relevance labels. We found that this distant supervision method can substantially reduce
the number of gold standard query resolutions required for training QuReTeC, a result
especially important in low resource scenarios.

7.1.3 Supporting knowledge exploration for narrative creation

Our next study was in the theme of supporting knowledge exploration for narrative
creation. In Chapter 6, we asked the following question:

RQ5 Can we support knowledge exploration for event-centric narrative creation by
performing news article retrieval in context?

To answer this question, we formalized the task of event-centric news article retrieval
in context. We proposed an automatic retrieval dataset construction procedure that can
produce reliable datasets for this task. We generated two retrieval datasets using this
procedure and used the generated datasets to evaluate automatic methods for this task.
We found that an unsupervised combination of state-of-the-art lexical and semantic
rankers and a ranker that ranks articles by reverse chronological order outperforms those
rankers alone. We performed an in-depth quantitative and qualitative analysis to acquire
insights into the characteristics of this task. We found that this task has a large vocabulary
gap, which highlights the need for semantic matching that takes into account structured
knowledge about events. In addition, we found that the temporal aspect is prominent in
this task and thus more advanced temporal query and collection characteristics need
to be explored. Moreover, we found that this task is more challenging for queries that
contain entities that appear more frequently in the underlying news article collection.
Last, we found that our dataset construction procedure is sometimes prone to generating
queries that are not sufficiently defined, which is a clear future work direction.

We now reflect on the main question we asked in Chapter 1, namely how to support
search engines in leveraging knowledge while accounting for different types of context.
In the first part of this thesis (Chapters 2, 3 and 4), we proposed tasks and methods
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that make structured knowledge more accessible to the user (when the search engine
proactively provides context to enrich search results) by retrieving existing or generating
novel descriptions of KG facts, and also by contextualizing KG facts with other, related
facts. In the second part of this thesis (Chapter 5), we proposed a method for query
resolution that improves interactive knowledge gathering in conversational search by
adding missing context from the conversation history to the current turn query. In the
third part of this thesis (Chapter 6), we proposed and studied the task of retrieving
news articles that are relevant to the user’s broad query (the query event) and a context
that further specifies the query, thereby supporting knowledge exploration for narrative
creation.

7.2 Future Directions

In this section, we discuss limitations of our study and directions for future work that
would overcome those limitations and further expand our work.

7.2.1 Making structured knowledge more accessible to the user

Validity of KG fact descriptions Ensuring the validity of automatically generated
KG fact descriptions is crucial when presenting such descriptions to the user [65]. In
Chapter 3 we found that generating valid KG fact descriptions is a challenging task.
This is a challenge not only for template-based generation methods such as ours but
also for neural sequence to sequence generation methods [12, 116, 200]. A possible
direction towards overcoming this challenge is to learn discrete templates jointly with
learning how to generate [195]. Another possible direction is to learn to edit existing
descriptions instead of generating descriptions from scratch [72]. Moreover, it would
be interesting to assess the ability of recently developed large-scale pretrained language
models for generating valid KG fact descriptions [144].

Richness of KG fact descriptions In Chapter 4, we proposed NFCM, a neural fact
contextualization method. Relevant facts retrieved by NFCM can be used to improve
KG fact description retrieval by better modeling the relevance of existing descriptions
(Chapter 2). In addition, they can be used to select more informative templates in KG
fact description generation (Chapter 3).

Source of KG fact descriptions In Chapters 2, 3 and 4 we used Wikipedia as the
source of existing descriptions of KG facts. Using other sources of such descriptions
could widen the applicability of our proposed tasks and methods to less popular entities.
Huang et al. [81] performed an initial exploration towards this direction by using web
pages as the source of descriptions, with an application to KG fact description retrieval.
Their results showed that using the web as the source of descriptions poses further
challenges that would be interesting to explore even further.

Query-dependent KG fact information Deciding what information about a KG fact
to present in a SERP may depend on the user’s query [75]. Future work could develop
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query-dependent methods for all three tasks we considered: KG fact description retrieval
and generation, and KG fact contextualization. A study with real search engine users
interacting with KG fact information on SERPs could provide further insights into this
direction.

7.2.2 Improving interactive knowledge gathering

Incorporating the system’s response In Chapter 5, we followed the TREC CAsT
2019 setup and only took into account the previous turn queries (the ones that preceded
the current turn query) but not the passages retrieved by the system for those queries
(the system’s response). In future work, we will evaluate QuReTeC on a more realistic
scenario where the passages retrieved for the previous turn queries are also taken into
account.

Distant supervision for query resolution In Chapter 5, we proposed a distant su-
pervision method for reducing the amount of query resolution training data required
to train QuReTeC. Our distant supervision method relies on query-passage relevance
labels. Future work could address how to combine our distant supervision method with
methods that generate relevance labels with weak supervision [49], pseudo-relevance
feedback [98] or user signals [88]. Also, we would like to explore noise reduction
methods to improve the quality of the distant supervision signal [156].

Term classification and rewriting for query resolution In Chapter 5, we formulated
query resolution for conversational search as a term classification task. This gave us
flexibility not only in terms of modeling but also in terms of where we can get the
supervision signal from. In two studies contemporaneous to ours, query resolution was
formulated as a sequence generation task [179, 209]. Combining the strengths of both
formulations of the query resolution task could result in developing more powerful
models.

Specialized rankers in low resource settings In Chapter 5, we focused on query
resolution for conversational search and used existing rankers for both the initial retrieval
and reranking steps. State-of-the-art neural ranking models rely on large-scale annotated
ranking datasets that are not yet available in conversational search [46, 203]. Therefore,
future work could develop specialized rankers for conversational search in low resource
settings, possibly by learning to perform query resolution and ranking in a joint manner.

7.2.3 Supporting knowledge exploration for narrative creation

Incorporate structured knowledge about events In Chapter 6, we found that the
vocabulary gap for the retrieval task we studied is large, and that the retrieval methods we
considered are not able to effectively account for that. One possible direction for future
work is to incorporate structured knowledge about events (and the entities involved in
them) in the retrieval methods [67, 154]. Such knowledge includes relationships between
entities (which we studied in Chapters 2, 3 and 4), or sub-event relations [10, 68].
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Temporal aspect In Chapter 6, we found that a simple combination of lexical and se-
mantic rankers with a ranker that ranks articles by reverse chronological order improves
performance when the relevant article is recent but harms performance otherwise, as
expected. In future work, we aim to incorporate the temporal aspect in the ranking
function in a more robust way. A possible way to achieve that is to identify temporal phe-
nomena such as trending terms or entities in the underlying news article collection [90]
or in external sources such as social media [44].

Dataset construction In Chapter 6, we proposed a dataset construction procedure
that can produce reliable datasets for this task. The main limitation of this procedure is
that only one article is relevant for each query, even though more than one article may
be relevant. In future work, we aim to ask experts (journalists) to qualitatively assess the
output of different rankers to enrich the automatically constructed datasets with more
relevant articles per query [113, 114]. Another limitation of our dataset construction
procedure is that in some cases the query (usually the narrative context) misses crucial
information for the connection of the complete narrative and the relevant article that is
contained in the link sentence. In future work we aim to ask experts to manually add
such missing information to the narrative context. Since this task can be cumbersome,
we will try to semi-automate this procedure by casting this as a prediction task [87].

Specialized rankers per discourse function Previous work has studied how to cat-
egorize parts of existing narratives according to their discourse function with respect
to the main event of the narrative [37, 175]. We hypothesize that, in the narrative
creation task we studied in Chapter 6, queries that serve a certain discourse function
would have relevant news articles of specific characteristics. In future work, we aim
to categorize queries to different discourse functions and perform manual analysis to
validate this hypothesis. We will then design specialized rankers for each category to
improve retrieval effectiveness.
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Summary

Search engines leverage knowledge to improve information access. Such knowledge
comes in different forms: unstructured knowledge (e.g., textual documents) and struc-
tured knowledge (e.g., relationships between real-world objects and topics). In order to
effectively leverage knowledge, search engines should account for context, i.e., addi-
tional information about the user and the query. In this thesis, we aim to support search
engines in leveraging knowledge while accounting for different types of context.

In the first part of this thesis, we study how to make structured knowledge more
accessible to the user when the search engine proactively provides such knowledge
as context to enrich search results. We focus on knowledge graphs (KGs), which
store world knowledge in the form of facts, i.e., relationships between entities (e.g.,
persons, locations, organizations). Since KG facts are stored in a formal form, they
are not suitable for presentation to end users. As a first task, we study how to retrieve
natural language descriptions of KG facts from a text corpus. We propose a method
that successfully extracts and then ranks descriptions of KG facts. The method breaks
down when a description for a certain KG fact does not exist. This leads us to our
second task, where we study how to automatically generate KG fact descriptions. We
propose a method that first creates sentence templates and then fills them with relevant
information from the KG. KG fact descriptions often contain mentions to other related
facts that can increase the understanding of the fact as a whole. As a third task, we study
how to contextualize KG facts, that is, automatically find facts related to a query fact.
We propose a method that enumerates KG facts in the neighborhood of the query fact
and then ranks them with respect to their relevance to the query fact.

In the second part of this thesis, we move to a different research theme and study how
to improve interactive knowledge gathering. We focus on conversational search, where
the user interacts with the search engine to gather knowledge over large unstructured
knowledge repositories. Here, the search engine should account for context that stems
from interactions between the user and the search engine in a conversational search
session. We focus on multi-turn passage retrieval as an instance of conversational search.
A prominent challenge is that the current turn query may be underspecified. Thus, we
need to perform query resolution, that is, add missing context from the conversation
history to the current turn. We propose to model query resolution as a term classification
task and propose a method to address it.

In the third and final part of this thesis, we focus on a specific type of search engine
users, professional writers in the news domain. We study how to support such writers
create event-narratives by exploring knowledge from a corpus of news articles. We
focus on a scenario where the writer has already generated an incomplete narrative that
consists of a main event and a context, and aims to retrieve news articles that discuss
relevant events from the past. We formally define the task of news article retrieval in
context for event-centric narrative creation. We propose a retrieval dataset construction
procedure for this task that relies on existing news articles to simulate incomplete
narratives and relevant articles. We study the performance of multiple rankers, lexical
and semantic, and perform an in-depth quantitative and qualitative analysis to acquire
insights into the characteristics of this task.
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Samenvatting

Zoekmachines maken gebruik van kennis om de toegang tot informatie te verbeteren.
Dergelijke kennis komt in verschillende vormen voor: ongestructureerde kennis (bijv.
tekstdocumenten) en gestructureerde kennis (bijv. relaties tussen objecten in de echte
wereld en onderwerpen). Om kennis effectief te benutten, moeten zoekmachines
rekening houden met de context, in dit geval, aanvullende informatie over de gebruiker
en de zoekopdracht. In dit proefschrift willen we zoekmachines ondersteunen bij het
benutten van kennis en tegelijkertijd rekening houden met verschillende soorten context.

In het eerste deel van dit proefschrift bestuderen we hoe gestructureerde kennis toe-
gankelijker voor de gebruiker kan worden gemaakt wanneer de zoekmachine proactief
kennis zoals context verschaft om zoekresultaten te verrijken. We richten ons op kennis-
grafen (KG’s), die wereldkennis opslaan in de vorm van feiten, d.w.z. relaties tussen
entiteiten (bijv. personen, locaties, organisaties). Omdat KG-feiten in een formele vorm
worden opgeslagen, zijn ze niet geschikt voor presentatie aan eindgebruikers. Als eerste
taak bestuderen we hoe we beschrijvingen van KG-feiten in natuurlijke taal uit een
tekstcorpus kunnen halen. We stellen een methode voor die met succes de beschrijving
van KG-feiten extraheert en rangschikt. De methode werkt echter niet als er geen
beschrijving voor een bepaald KG-feit bestaat. Dit leidt ons naar onze tweede taak, waar
we bestuderen hoe we automatisch KG-feitbeschrijvingen kunnen genereren. We stellen
een methode voor die eerst zinssjablonen maakt en deze vervolgens vult met relevante
informatie uit de KG. KG-feitbeschrijvingen bevatten vaak vermeldingen van andere
gerelateerde feiten die het begrip van het feit als geheel kunnen vergroten. Als derde
taak bestuderen we hoe we KG-feiten kunnen contextualiseren, dat wil zeggen, automa-
tisch feiten vinden die verband houden met een vraagfeit. We stellen een methode voor
die KG-feiten opsomt in de buurt van het vraagfeit en deze vervolgens rangschikt met
betrekking tot hun relevantie voor het vraagfeit.

In het tweede deel van dit proefschrift stappen we over op een ander onderzoeks-
thema en bestuderen we hoe we interactieve kennisvergaring kunnen verbeteren. We
richten ons op conversational search, waarbij de gebruiker interactie heeft met de zoek-
machine om kennis te vergaren over grote ongestructureerde kennisverzamelingen. Hier
moet de zoekmachine rekening houden met de context die voortkomt uit interacties
tussen de gebruiker en de zoekmachine in een conversatiezoeksessie. We richten ons
op het ophalen van passages in meerdere beurten als een voorbeeld van conversational
search. Een prominente uitdaging is dat de vraag voor een enkele beurt mogelijk te
weinig is gespecificeerd. We moeten dus een zoekopdrachtresolutie uitvoeren, dat wil
zeggen: ontbrekende context uit de gespreksgeschiedenis toevoegen aan de huidige
beurt. We stellen voor om zoekopdrachtresolutie te modelleren als een termclassificati-
etaak en stellen een methode voor om deze aan te pakken.

In het derde en laatste deel van dit proefschrift richten we ons op een specifiek type
gebruikers van zoekmachines, namelijk professionele schrijvers in het nieuwsdomein.
We bestuderen hoe we dergelijke schrijvers kunnen ondersteunen bij het creëren van
verhalen over gebeurtenissen door kennis uit een corpus van nieuwsartikelen te verken-
nen. We richten ons op een scenario waarin de schrijver al een onvolledig verhaal heeft
geschreven dat bestaat uit een hoofdgebeurtenis en een context, en beoogt nieuwsartike-
len op te halen die relevante gebeurtenissen uit het verleden bespreken. We definiëren

125



7. Samenvatting

de taak van het ophalen van nieuwsartikelen formeel in de context voor het creëren van
op gebeurtenissen gerichte verhalen. We stellen voor deze taak een procedure voor het
construeren van een dataset voor, die gebaseerd is op bestaande nieuwsartikelen om
onvolledige verhalen en relevante artikelen te simuleren. We bestuderen de prestaties
van meerdere rangschikmodellen, lexicaal en semantisch, en voeren een diepgaande
kwantitatieve en kwalitatieve analyse uit om inzicht te verwerven in de kenmerken van
deze taak.
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