
Dynamic Query Modeling for Related Content Finding

Daan Odijk†

d.odijk@uva.nl
Edgar Meij‡

emeij@yahoo-inc.com
Isaac Sijaranamual†

i.b.sijaranamual@uva.nl
Maarten de Rijke†

derijke@uva.nl
† University of Amsterdam, Amsterdam, The Netherlands

‡ Yahoo Labs, London, United Kingdom

ABSTRACT
While watching television, people increasingly consume additional
content related to what they are watching. We consider the task
of finding video content related to a live television broadcast for
which we leverage the textual stream of subtitles associated with
the broadcast. We model this task as a Markov decision process
and propose a method that uses reinforcement learning to directly
optimize the retrieval effectiveness of queries generated from the
stream of subtitles. Our dynamic query modeling approach signif-
icantly outperforms state-of-the-art baselines for stationary query
modeling and for text-based retrieval in a television setting. In par-
ticular we find that carefully weighting terms and decaying these
weights based on recency significantly improves effectiveness.
Moreover, our method is highly efficient and can be used in a live
television setting, i.e., in near real time.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing

Keywords
Information retrieval; Query representation; Text streams

1. INTRODUCTION
The way we watch television is changing: a growing number

of people do so either on an interactive device or with such a de-
vice nearby [31]. Razorfish [36] found that 38% of “mobile mul-
titaskers” access content that is related to the TV program they are
watching. The consumption of TV programs can trigger searches
for related information or content, e.g., for a broader perspective or
to dive deeper into a topic. Thus, we require effective methods to
support these emerging information needs. Since people increas-
ingly expect to have related content directly available instead of
having to search for it—especially in a TV watching setting—we
need to minimize the disruption of having to manually search for
related content. An ideal system would therefore present related
content in an automatic and timely fashion.
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This new and emerging television landscape is beginning to gen-
erate new and interesting information retrieval problems. For in-
stance, Blanco et al. [8] perform text-based retrieval in a TV setting
and Odijk et al. [32] consider the problem of linking encyclopedic
content to a live television stream. Given the highly diverse set
of information sources to be retrieved, including web pages, social
media, and other video content, we focus in this paper on infor-
mation needs stemming from live television news broadcasts and
provide an approach for retrieving archived video content.

Consider watching a news bulletin as motivation for our retrieval
task. As a news item is being covered, users may find themselves
interested in watching background video material on one or more
of the main entities or themes of the item, either to view at that very
moment or to bookmark for later consumption. In order to present
users with related video items that provide relevant background in-
formation, we require an algorithm that is able to automatically
select video items for each news item as it is being broadcast. The
output of a system implementing such an algorithm is depicted in
Figure 1. Up to four related video items are suggested in an over-
lay on top of the news broadcast, each consisting of a keyframe
and title; in the screenshot the left-most suggestion is highlighted
(indicated by the red rectangle). The scenario that we cover in this
paper is one in which a user interrupts or pauses the newscast to
find videos relevant to the current news item to learn more about
the topic. The content retrieved to complement the ongoing broad-
cast is not personalized but should be related to the broadcast and
interesting for a wide audience.

Figure 1: Screenshot of a smart TV application showing related
items as an overlay on top of a live TV news broadcast.

In the setting of live television news, a constant stream of subti-
tles is typically available, generated with only a very slight delay as
an aid for the hearing-impaired. To be able to retrieve related con-
tent, we analyze these subtitles and generate search queries from
the stream that we subsequently use to search a video news archive.
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As a news item is being broadcast, additional textual information
capturing the content of the news item becomes available. Thus,
the challenge that we face is to iteratively incorporate this new in-
formation as it appears in the stream to generate and maintain an
effective query model, and to do so in near real time.

In this paper we propose our solution: a dynamic query mod-
eling approach that explicitly considers the dynamics of stream-
ing sources and is suited for the near real-time setting of live TV.
We cast the task of finding video content related to a live televi-
sion broadcast as a Markov decision process (MDP) and use rein-
forcement learning to optimize the retrieval effectiveness of queries
based on a stream of live television subtitles [4, 38, 39]. We sig-
nificantly outperform state-of-the-art baselines for stationary query
modeling [26] and for text-based retrieval in a television setting [8].
Thus, in this paper, we make the following contributions:

(1) We formalize the task of related content finding to a live tele-
vision broadcast as a Markov decision process.

(2) We propose a dynamic query modeling approach, using rein-
forcement learning to optimize a retrieval model that is suffi-
ciently efficient to be run in near real time in a live television
setting and that significantly improves retrieval effectiveness
over state-of-the-art baselines for stationary query modeling
and for text-based retrieval in a television setting.

(3) We provide a thorough evaluation and an analysis of when
and why our approach works. We find that adding more
weighted query terms and decaying term weights based on
their recency significantly improve the effectiveness. Static
term features derived from the target collection and back-
ground corpora are more important for selecting effective
query terms than dynamic features that are dependent on the
stream of subtitles.

The remainder of the paper is organized as follows. Related work
is discussed in Section 2. Section 3 describes our approach to dy-
namic query modeling. Our experimental setup is detailed in Sec-
tion 4. Results are presented and analyzed in Section 5 and dis-
cussed further in Section 6. We conclude in Section 7.

2. RELATED WORK
Dynamic query modeling is related to a number of tasks in infor-

mation retrieval. We discuss related work on search in a streaming
setting, on query modeling, on temporal relevance feedback, and
on reinforcement learning and MDPs in information retrieval.

Search in a streaming setting. We use dynamic query model-
ing to find related content based on a textual stream. Similarly,
keyword modeling has been studied in a streaming setting, e.g.,
analyzing transcripts of automatic speech recognition (ASR) [11]
and meetings [37]. In this setting, the subsequent task of searching
based on the stream is not considered.

VideoCLEF [24] features a linking task aimed at linking video
content to related resources across languages. Noisy ASR for Dutch
is used to produce links to target English Wikipedia articles. Odijk
et al. [32] study the task of finding relevant background informa-
tion for a second screen in a live TV setting. They approach this
as an entity linking problem and propose a graph-based context
model. Although both deal with streaming textual content, neither
studies the task of search. The MediaEval Search and Hyperlinking
task considers two related tasks: finding a known item in broadcast
video and providing video hyperlinks for specific anchors. The first
is a video retrieval task and for the second task participants focused
on the multimedia aspect, e.g., by using image-based retrieval ap-

proaches. Our work differs because we model the entire textual
stream and base our approach on modeling effective queries.

Henzinger et al. [18] propose an approach to find relevant news
articles during broadcast news. Every 15 seconds, they produce
a two term query, using a “history feature,” consisting of the last
three blocks of text. Recent work by Blanco et al. [8] on Ya-
hoo! IntoNews builds and improves on the work of Henzinger et al.
[18]. Their focus is on the problem of detecting a change of topic,
for which they propose several segmentation approaches. After
segmentation, queries are generated using a bag-of-word approach
with TF.IDF scores for each term. We include the query modeling
approach of Blanco et al. [8] as our first baseline.

Generic methods to automatically segment (e.g., TextTiling [17])
have been extensively studied and shown to perform well in the
streaming settings of new event detection [1] and story segmenta-
tion, a subtask of topic detection and tracking (TDT). Specific seg-
mentation approaches have been proposed for streaming settings
similar to ours (such as [8, 18]). Our dynamic query modeling
approach can be applied after using these segmentation methods,
instead of the relatively simple TF.IDF approaches used in [8, 18].
This would improve retrieval effectiveness, as we will see below in
the comparison with Blanco et al. [8]’s baseline. Furthermore, our
approach of decaying term weights based on their recency might
provide a combined solution for the segmentation and query mod-
eling problems. In future work, we plan to further investigate the
use of decaying term weights in a setting where we need to address
segmentation. However, the subtitles that we work with are gen-
erated from an auto-cue and thus contain markings indicating the
start and finish of an item. Segmenting items or switching from one
news item to the next will therefore not be covered in this paper.

Query modeling. A natural way of looking at search in streaming
settings is to view it as a query modeling task, where the aim is to
model an effective query based on a larger volume of text. This
task has two distinct aspects: (i) query reduction and (ii) content-
based query suggestion. The former deals with reformulating long
or descriptive queries to shorter and more effective queries. Driv-
ing this research is that shorter queries are not only more likely to
retrieve more focused results, they are also more efficient to pro-
cess [5]. The latter task is to generate queries and the methods used
here are similar to those used for query reduction. Content-based
query suggestion has been used for linking news archives across
modalities [10] and for generating phrasal-concept queries in lit-
erature search with pseudo-relevant feedback [22]. It differs from
content-based recommendation, where a user profile or user inter-
actions are also available. Bendersky et al. [7] propose a hybrid
approach using content-based heuristics and signals from user in-
teractions to retrieve video suggestions for related YouTube videos.
Such a hybrid approach is not feasible in our scenario, as we have
no user interactions that relate to the live TV content.

The state of the art in query modeling is formed by a family of
related methods, e.g., [23, 26]. The typical approach is to produce
query terms, score each, and generate one or more queries. Term
scoring is often based on term features taken from large background
corpora. Queries are selected based on query difficulty prediction
features; these require an initial retrieval round, and as such are not
feasible in real time. Lee and Croft [27] generate queries from tex-
tual passages by extracting noun phrases or named entities; a condi-
tional random field is used to find selections that optimize retrieval
effectiveness. In a web search setting, Kumaran and Carvalho [23]
cast query reduction as a sub-query ranking problem. Given a long
query, they generate all possible sub-queries for which they sub-
sequently predict query quality and use learning to rank to select



the best. Balasubramanian et al. [2] improve web search results by
dropping query terms and estimating reductions in query difficulty.

Methods to improve the retrieval effectiveness of descriptive que-
ries are proposed in [6, 25, 26]. Lease et al. [25, 26] generate que-
ries of up to six terms by sampling term weights and then comput-
ing a metric to learn query term weights. Bendersky and Croft [5]
extract key concepts from verbose queries to improve retrieval. An
extended approach with parameterized query expansion is particu-
larly effective for verbose queries [6]. Similar features are used in
[6, 26, 27]; the first two obtain comparable scores on descriptive
queries. We propose a dynamic query modeling approach that is
tailored for use in a streaming setting and outperforms the station-
ary baseline based on Lease et al. [26]. Our work differs in that we
explicitly model the dynamic nature of streaming sources and in
that we generate more complex queries (e.g., using field weights).

The dynamic nature of a document collection is studied in tem-
poral information retrieval (IR), that specifically deals with model-
ing temporal patterns to improve information retrieval. Efron [14]
uses linear time series models for weighting terms, where the time
series are computed on the target document collections. Similarly,
Peetz et al. [34] use temporal bursts in a microblog collection to
reweigh query terms for improved retrieval. Our work differs in
that we model temporal dynamics in the stream of subtitles from
which we generate queries. We discuss experiments in which we
also model temporal dynamics on the collection side in Section 6.

Reinforcement learning and MDPs. We model the task of find-
ing video content related to a live television broadcast as a Markov
decision process (MDP) [15] and base our approach on methods
from reinforcement learning (RL) [38]. RL intertwines the con-
cepts of optimal control and learning by trial and error. Central
is the concept of an “agent” optimizing its actions by interacting
with the environment. This is achieved by learning a policy that
maps states to actions. An MDP is a specific type of reinforcement
learning problem that was proposed before the field was known as
reinforcement learning. In an MDP, we decide on the optimal ac-
tion in a Markov process [4]. The Markov property holds when the
policy for a state is independent on the previous states. A Markov
state thus has to represent the entire history of previous states as far
as this is relevant for the value of the policy.

MDPs have been used to model diverse IR problems, e.g., to ex-
plicitly model user behavior in session search [16, 28, 29]. Jin et al.
[21] utilize reinforcement learning and MDPs to improve ranking
over multiple search result pages. Guan et al. [16] decrease weights
of new terms based on past rewards, whereas Luo et al. [28] model
session search as a dual-agent stochastic game. Investigating the
design choices for MDPs, they find that technology selection and
explicit feedback are most effective in session search [29].

In our setting, new subtitles keep coming in, hence we are deal-
ing with a non-stationary MDP. More specifically, because the
decision of what action to choose does not influence the states
that emerge from the environment, this is considered an associa-
tive search task [3]. Perhaps the best studied application of rein-
forcement learning in IR is such an associative search task, online
learning to rank [19, 35, 40]. Here, a retrieval system is optimized
based on noisy feedback from user interactions. Our work differs
from the work listed above in that we are not just optimizing rank-
ing, but we focus primarily on query generation.

3. DYNAMIC QUERY MODELING
The search task we address is to find relevant content for a dy-

namic textual stream. We analyze the stream of subtitles that comes
with television broadcasts and generate search queries from this

stream. We subsequently use these to search a news video archive.
Our dynamic query modeling (DQM) approach is designed to take
streaming textual data as input and combines a retrieval model that
defines a set of hyperparameters w with a learning approach that op-
timizes these hyperparameters w based on feedback. For learning,
we regard the retrieval model as a black box with hyperparameters
that affect the retrieval process and we obtain feedback based on the
retrieval results. Our learning approach is therefore able to directly
optimize for retrieval effectiveness. Figure 2 depicts the retrieval
model and Figure 3 summarizes the learning approach. We discuss
the learning approach in more detail in Section 3.3. The retrieval
model and its hyperparameters will be further detailed below in
Section 3.2, after we describe the terminology we will use.

3.1 Terminology
In the context of using subtitles for content linking, Odijk et al.

[32] define dynamic textual streams as sources that continually pro-
duce “chunks” of text. A chunk is the amount of subtitle text that
can be displayed on a single screen. Hence, chunks do not neces-
sarily form a grammatical sentence. However, as these chunks are
produced to be read in sequence, syntactic phrases generally do not
cross chunk boundaries. Chunks are relatively short, containing
about seven terms on average. Chunks form a growing sequence
S = 〈s1,s2, . . .〉, where each si is a chunk. The task we address in
this paper is to generate, in real time, a query qi for chunk si (hav-
ing observed chunks s1, . . . , si−1) that is able to retrieve relevant
video content at that point in the broadcast.

3.2 Retrieval model
The retrieval model we employ consists of four major parts, which

are depicted in Figure 2 and described in Algorithm 1. Our re-
trieval model consists of four steps. First, we incrementally up-
date a list of candidate query terms that we obtain from the tex-
tual stream of subtitles. We then compute a score for each term
with a weighted sum of term features. Next, we generate a query
from the scored query term candidates. The generated queries are
complex, consisting of many weighted query terms, and they are
selected from the highest scoring query term candidates. Finally,
we retrieve the results. The retrieval model defines a set of hyper-
parameters w = wd ∪ws∪w f ∪wn∪we that each alter the retrieval
process. The hyperparameters wd and ws can be construed as fea-
ture weights and w f as field weights, while hyperparameters wn
and we alter the number of selected query terms and the decay of
query term candidate scores respectively. We provide more details
with respect to these hyperparameters later in this section.

For the first step, generating query term candidates, we employ
a bag-of-words approach which has proven to be effective in most
retrieval settings, including settings similar to ours [26]. We gener-
ate a list of query term candidates by tokenizing the subtitles (line 2
in Algorithm 1). All terms from the subtitles in the video segment
are considered as query term candidates. For each query term can-
didate we keep track of when we last saw this term (line 3).
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Figure 2: DQM retrieval model for textual streams, consisting
of four steps: (1) query term candidate generation; (2) query
term candidate scoring; (3) query generation; (4) retrieval.



Table 1: Dynamic term features for stream S. Table 2: Static term features and their per corpus availability.

TF(t) Frequency of the term t in S
TF.IDF(t) TF(t), multiplied by IDF(t)

in the target collection

AugmentedTF(t) 0.5+ 0.5∗TF(t)
max{TF(t ′):t ′∈C}

Capitalized(t) Binary feature to indicate
whether t has appeared capi-
talized in S

Target Google Wikipedia

collection Web1T title body anchors

P(t,c) Probability of term t appearing in c X
TF(t,c) Frequency of term t in c X X X
DF(t,c) Number of docs in c where t occurs X X X X

IDF(t,c) log |c|
DF(t,c) , where |c| is number of docs X X X X

RIDF(t,c) Residual IDF [13] X X

Algorithm 1: Dynamic query modeling
Input: Textual stream S = 〈s1, . . .〉.
Output: Stream of complex queries Q = 〈q1, . . .〉, where each

query qi is a set of (term, field, weight) tuples.
Data: Set of hyperparameters:

wd weights of dynamic features,
ws weights of static features,
we decay rate for a query term candidate weight,
wn number of query terms for complex query,
w f weight for each document f ield.

1 foreach new chunk in S do
Step 1: Generate query term candidates

2 Tokenize the new chunk.
3 Update term candidates with new terms and last seen index.

Step 2: Assign score to each query term candidate
4 Compute static features for new candidates.
5 foreach query term candidate do
6 Compute dynamic features for each candidate term.
7 Compute query term candidate score as the weighted

sum of feature values, using weights wd and ws.
8 Decay query term candidate score with e−we·i, where i

is the relative age of term t in the stream thus far (0 for
the current chunk and 1 for the first chunk).

Step 3: Generate complex query
9 Select top wn query term candidates with highest score.

10 Generate complex query with individual field weights w f .

The next step in the DQM retrieval model is to assign a score to
each of the candidate query terms. A score for a query term candi-
date is initially computed as a weighted sum of the term’s features.
The feature weights are hyperparameters ws and wd for the retrieval
model. We use a set of term features that are either static for the
term or updated dynamically with the stream of text. The static
features are computed once for each new query term candidate in
the stream (line 4). The dynamic features are updated in each new
state for all query term candidates (line 6). The dynamic and static
features are listed in Tables 1 and 2 respectively.

The dynamic features are computed with information from the
textual stream S. They include the term frequency TF(t) and aug-
mented term frequency, intended to prevent a bias towards longer
documents. TF.IDF(t) is computed using the target collection. The
Capitalized(t) feature indicates whether a term appeared capital-
ized in the stream, ignoring the beginning of a sentence. The in-
tuition behind this is that a person or location is likely to appear
capitalized and might be an effective query term.

We also compute five static features over three corpora (see Ta-
ble 2). The first corpus we compute static features for is the target
collection, where the features indicate whether the candidate query

term will be effective in searching that collection. The two other
corpora provide an indication of how common a term is across the
web and in different document fields of an encyclopedic source.
Both our subtitle source and the descriptions for the video items in
our target collection are in Dutch. We therefore use the Dutch uni-
grams of the Google Web1T [9] corpus as counts of how common
a term is on web pages. The counts were generated from approxi-
mately one hundred billion tokens. We use Wikipedia, with articles
separated into title, body and anchor, as a source to indicate how
common a term is in an encyclopedic text. Each should provide
different clues about a term. A term appearing in the title might
be more important than one appearing in the body. Likewise, if a
term is used as anchor text, it might describe well what it refers
to. Our five static features include the frequency of a term t, the
number of documents it appears in and the probability of observing
term t in the corpus c. From the document frequency we derive
the inverse document frequency (IDF) and the residual IDF. This
is the difference between the observed IDF and the value predicted
by a Poisson model [13]: RIDF(t,c) = IDF(t,c)− log2

1
1−eTF(t,c)/|c| ,

where |c| is the number of documents in c. Not all features can
be computed for each corpus, e.g., the Google Web1T collection
lacks document counts. The sets of dynamic and static features are
extended with logarithmically transformed values. All 38 resulting
features are min-max normalized.

For each query term candidate we compute a score as the weighted
sum of all 38 features multiplied by an exponential term decay fac-
tor (lines 7 and 8 in Algorithm 1). This term decay factor is com-
puted separately for each term candidate, based on how recently the
term was observed in the stream S. The intuition behind this is that
a more recently mentioned term might be more relevant than one
that has not recently been mentioned. Hyperparameter we governs
the decay rate. Concretely, we multiply the weighted sum of fea-
tures with e−we·i, where i is the relative age of term t in the stream
thus far. This relative age ranges from 0 to 1 and is 0 for the cur-
rent chunk and 1 for the first chunk in the stream. The number of
steps between 0 and 1 is equal to and increases with the number of
chunks between the current and the first chunk in the stream.

The third step in the DQM retrieval model is to generate a com-
plex query (lines 9 and 10 in Algorithm 1). From the ranked query
term candidates we generate complex queries for the top n terms,
where n is based on a hyperparameter wn. The weights for each
term in the resulting query are set to the score produced in the
query term candidate scoring stage. We explicitly allow for neg-
ative weights for term features which may cause negative term can-
didate scores. In this case we omit the term, resulting in a query
with fewer query terms. We extend the query with learned field
weights, allowing the model to learn to attribute more importance
to specific fields, such as the title of a video. The field weights w f
are also exposed as hyperparameters.

The final step in the DQM retrieval model is to retrieve the re-
sults. For this we use a state-of-the-art search engine that uses lan-
guage modeling for retrieval and is described further in Section 4.
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Figure 3: DQM learning approach. A textual stream is pro-
cessed using a retrieval model that defines a set of hyperpa-
rameters. Feedback on the retrieval results is used to optimize
the hyperparameters.

Algorithm 2: Our implementation of the Dueling Bandits Gra-
dient Descent algorithm [40].
Input: step size δ , learning rate α , initial weights w1, retrieval

function retrieve, a metric, maxIterations
1 w = w1
2 for i ∈ {1, ..,maxIterations} do
3 Sample small step ε of maximally length δ .
4 w′ = w+ε

|w+ε|
5 a = retrieve( f ∗w)
6 b = retrieve( f ∗w′)
7 d = metric(b)−metric(a)
8 if d > 0 then w = w+α∗ε

|w+α∗ε|

3.3 Learning
The learning approach (depicted in Figure 3) considers the re-

trieval model as a black box that defines a set of hyperparameters,
altering the retrieval process in a complex manner (cf. Section 3.2).
We regard this learning problem as an MDP. A new state occurs
when a new chunk of subtitles presents itself. In our setting we op-
timize the action of generating a query based on feedback in terms
of retrieval effectiveness. We obtain this feedback by generating
search results through our retrieval model that is governed by a set
of hyperparameters. In reinforcement learning (RL) terms, we re-
gard these hyperparameters as the policy that we are optimizing.

RL differs from supervised machine learning in that it explicitly
deals with optimizing actions for the whole problem space based
on goals within an uncertain environment. RL’s trial and error type
of learning fits well with the nature of our problem. We do not
just optimize a single problem dimension, i.e., a combination of
ranking features, but we optimize the entire process, from selecting
and scoring candidate terms to generating a complex query.

We learn an optimal policy using the Dueling Bandits Gradient
Descent (DBGD) algorithm [40], detailed in Algorithm 2. This al-
gorithm iteratively tries a new policy w′ that is a small change from
the current best policy w. Based on feedback on the effects of both
policies w′ and w, it finds a winning policy. From this comparison
it decides to keep the current policy w or to move the current best
policy in the direction of w′. By iteratively updating the current best
policy w, DBGD performs hill climbing to obtain an optimal policy
based on the feedback. It thus obtains hyperparameter settings that
optimize retrieval effectiveness for our DQM retrieval model.

DBGD has two parameters: step size δ for generating a new w′

and learning rate α . Here, δ controls how big a change in weights
we compare the current best to. The learning rate α controls how
large a step is taken towards a better weight vector once it is found.
We initially set the weights w1 randomly for the feature weights wd
and ws and the number of terms wn to 10. We initialize the retrieval
model, with equal field weights w f and a decay term wd of 0.

To compare the effects of two policies w and w′, we retrieve re-
sults produced by the DQM retrieval model for both policies. We
are not in a position to experiment with actual users from whom
we could obtain online feedback, e.g., using interleaved compari-
son methods [35]. We therefore use offline relevance assessments.
For both retrieval results (obtained through w and w′), we compute
a retrieval performance metric. This can be any metric; see Sec-
tions 4 and 5.3. Based on the outcomes, we decide whether the
new policy w′ is better than the current best policy w. In case of a
draw, the current best is kept. If we were to use feedback from live
user interactions, the feedback would be more noisy; we explore
how noisy feedback affects learning in the analysis in Section 5.3.

Since the items of a news broadcast are segmented, our task can
be performed naturally on subsequences, which we call “video seg-
ments” (i.e., episodes in RL terminology). The last chunk of a
video segment produces a special state, the terminal state. It is
followed by a reset to the start state. DQM is episodic with an in-
definite horizon, i.e., episodes are finite, but without a predefined
length. The policy we optimize is generic across episodes, i.e., it
does not consider any episode-specific information and will not be
reset after a terminal state. Our view of this learning problem as an
episodic MDP fits well with the segmented nature of TV news.

A typical issue for any RL problem is deciding when to learn:
should we explore new policy options or exploit the current policy.
We assume that users are interested in related content near the end
of an episode, as this is where they will have learned most about a
topic. We therefore chose to only do an explorative learning action
in the terminal state of an episode. In the other states, we exploit
the current best policy. This way, we obtain less feedback but opti-
mize the policy at the states where it is most important to perform
optimal.

4. EXPERIMENTAL SETUP
We seek to answer the following research questions regarding

our proposed model:

RQ1 Does dynamic query modeling improve retrieval effective-
ness over state-of-the-art stationary query modeling baselines?

RQ2 What do the components of the DQM retrieval model con-
tribute to effectiveness?

We ask the following research question regarding our reinforce-
ment learning approach:

RQ3 How do the reinforcement learning parameters, choice of op-
timization metric and noisy feedback influence the speed of
the learning process and the resulting retrieval effectiveness?

To answer these research questions, we create an annotated dataset
and set up experiments. Below, we describe the dataset, experi-
mental set-up and detail our evaluation.
Subtitles. We obtain a dataset of subtitles for the hearing impaired
from the Dutch eight o’clock evening news broadcast of the Ned-
erlandse Omroep Stichting (NOS), the Dutch public news broad-
caster. We selected this as our source because its content is diverse
and volatile; it may cover items broadly and for minutes, or just
very briefly. A news broadcast typically lasts about 25 minutes
and contains around ten items, which we refer to as video segments
or episodes in RL terms. A typical video segment consists of 44
chunks of on average seven terms per chunk and 306 terms per
video segment. For evaluation purposes, seven news broadcasts
are randomly selected from broadcasts dated May 2013, contain-
ing 50 video segments in total. The video segments do not overlap



in main topic. The subtitles are prepared based on the text for the
teleprompter or auto-cue. It therefore contains markings to indicate
when a new video segment starts.
Collection. As our target collection we use the video archive of
the same news broadcaster, NOS, which contains individual news
item videos. The video items are often taken from news broadcasts,
but can also be longer versions of interviews or aimed to provide
further background. This collection is publicly available and can be
crawled via their website.1 Our index covers the years 2011–2013
and contains 37,884 video items, with an average of 40 video items
per day. For our experiments, we limit the queries to only the video
items that were published before the news broadcast. We consider
the title, description and tags as different textual fields. Note that
we do not use any video specific information and thus regard the
video items simply as textual metadata records.
Ground truth. To establish ground truth for our evaluation,2 we
ask assessors to read the subtitles of a video segment and then rate
videos for relevance. These items are obtained by pooling the top
rankings for each baseline to on average 79 videos per segment.
The video items in the pool are presented in random order. We
train two assessors and each one annotated half of the video seg-
ments. Our instructions to the assessors were: Imagine that you
interrupted the news broadcast after the segment because you’re
interested in watching related video content. How would you rate
each video? We use a five-point scale to capture the level of rele-
vance of each video [12] (with the usual labels perfect, excellent,
good, fair and bad). The distribution of the ratings over the respec-
tive labels from perfect to bad is 5%, 5%, 8%, 16% and 66%. This
suggests that the task is not an easy task, but there are plenty of
good videos to rank. For each video item, the assessors are pro-
vided with all metadata (title, date, description, keywords) and can
watch and explore the original video to make a better judgement.3

Evaluation. In our setting, a viewer is searching for related video
content for a news broadcast item, most likely at the end of an item
or just after it has finished. We therefore evaluate the retrieval effec-
tiveness at the end of a video segment or in RL terms, the terminal
state of an episode. In the DQM setting, it is important to provide
the most relevant video and to provide them as high in the rank-
ing as possible. In a live TV setting, a user would not examine a
full result list, but only a limited number of video items. As our
main evaluation metric we choose normalized discounted cumula-
tive gain (nDCG) [20], as it can handle graded relevance assess-
ments and takes positional importance into account. We compute
nDCG for the entire result list and for the first five positions as
nDCG@5, skipping video items that were not annotated. We per-
form leave-one-out cross validation to evaluate our approach. For
each video segment we train an individual model where all other
video segments serve as training material. We then evaluate the ef-
fectiveness on the video segment that was left out of the training
set. We consider nDCG@5 more relevant for our setting but opti-
mize for nDCG as it is smoother than nDCG@5 and already gives
high importance to the retrieved documents at the top of the rank-
ing. We assume that taking the improvements in ranking below the
fifth position into account will benefit learning in the long run. We
revisit this decision in the analysis of our approach (Section 5).
Retrieval engine. For all experiments we use the language mod-
eling and inference network-based Indri retrieval model [30], with
stopword removal and without stemming. We use Dirichlet smooth-
ing with smoothing parameter µ set to the default 2500.
1 http://nos.nl 2 http://ilps.science.uva.nl/resources/sigir2015-dqm
3 We evaluate assessor-agreement over a set of 25 videos from five
doubly annotated segments; Spearman’s rank correlation measures
0.8636, signaling good agreement.

Baselines. Since we evaluate at the end of a video segment, we
can compare to stationary baselines. For these baselines, we con-
catenate all subtitles of a video segment to form a single pseudo
document. Based on this pseudo document we search for related
video content. In this way, the task becomes similar to the more-
like-this task, that is supported by many search engines. We include
two stationary approaches, that we label “Baseline” and “Modified
Lease.” The first, “Baseline”, uses the top-10 terms from a bag-
of-words model of the pseudo document, ranked by TF.IDF score
(where the document frequency is computed on the target collec-
tion). This baseline is how Blanco et al. [8] perform query mod-
eling in their text-based retrieval approach for TV. The second sta-
tionary approach (“Modified Lease”) is comparable to the state-of-
the-art model of Lease et al. [26]. The retrieval model is based on
regression to learn queries that consist of no more than six terms.
The terms are selected and weighted based on supervised machine
learning (regularized linear regression) using a bag-of-words rep-
resentation of the pseudo document. The features we use for the
Modified Lease baseline are the same as for our DQM approach,
excluding the features based on Wikipedia (not used in [26]). Fur-
thermore, we choose not to include the simple part-of-speech fea-
tures and the lexical context features (the word before and word
after) from their model. These features get relatively low weights
in [26] and are less applicable in our setting than in their descriptive
queries setting (hence, we dub this approach “Modified Lease”).

5. RESULTS & ANALYSIS
We describe the results of our experiments and investigate the

effectiveness of our DQM approach, following the three research
questions listed in the previous section.

5.1 Retrieval effectiveness
To answer RQ1, we compare the effectiveness of DQM to that of

the stationary baselines. Table 3 shows the performance in terms of
retrieval effectiveness. Both baselines show a decent performance
with an nDCG score of around 0.7. We cannot directly compare
the performance of the baselines to that of Lease et al. [26], as they
report on different collections and use shorter descriptive queries.
Surprisingly, the modified Lease approach is not able to signifi-
cantly improve on the less complex baseline. A plausible explana-
tion for this is the limited number of query terms in the modified
Lease approach; see the analysis in Section 5.2 below.

Rows 3–8 of Table 3 show the retrieval effectiveness of our DQM
approach, building up from a basic approach (labeled DQM−) to

Table 3: Retrieval effectiveness of the dynamic query model-
ing (DQM) approach vs the two baselines. Significant differ-
ences, tested using a two-tailed paired t-test, are indicated with
− (none), M (p < 0.05) and N (p < 0.01); the position of the
symbol indicates whether the comparison is against row 1 (left
most), row 2 (center) or row 3 (right most).

Method nDCG@5 nDCG

1. Baseline [8] 0.6486 −H 0.6113 −H

2. Modified Lease [26] 0.6994− − 0.6484− H

3. DQM− 0.7570N− 0.7393NN

4. DQM− + field weights 0.7651NM− 0.7566NNM

5. DQM− + term weighting 0.7814NN− 0.7845NNN

6. DQM− + term and field weighting 0.7781NN− 0.7945NNN

7. DQM− + decayed term weighting 0.7940NNN 0.7897NNN

8. DQM 0.8005NNN 0.8072NNN

http://nos.nl
http://ilps.science.uva.nl/resources/sigir2015-dqm
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Figure 4: Improvement in terms of nDCG for DQM over the
baseline, where each bar represents a video segment.

the full DQM approach. DQM− uses only the dynamic and static
term features to select query terms. It is, however, already able
to significantly improve nDCG over both baselines (row 3). Next,
we look at the weighting in DQM. Enabling field weighting gives
a small boost in retrieval effectiveness (row 4). If we enable term
weighting based on the machine learned scores, the model performs
significantly better on the full result list, although the effect is not
significantly present on nDCG@5 (row 5). Interestingly, adding
field weights to the term weighting approach results in a drop of
retrieval effectiveness for the top five, but improved effectiveness
for the full rank list (row 6). Enabling term weight decay without
field weights gives an additional boost towards a significantly bet-
ter approach than the base approach, both on the top five and the
full result list (row 7). Finally, our full DQM approach in row 8
significantly improves over the stationary baselines and the base
DQM− approach. The effects are similar in nDCG and nDCG@5,
although they are more clear for nDCG, i.e., the full ranked list.

To investigate where our approach works, we look at the effec-
tiveness per video segment compared to the baseline. We plot the
difference in nDCG in Figure 4. Our approach is able to substan-
tially improve retrieval effectiveness for the bulk of the video seg-
ments. There are seven segments where our approach hurts perfor-
mance. A closer look at these reveals that they mostly already have
a high nDCG score for the baseline. There does not seem to be an
influence of the length of the segments.

We further study the effectiveness across video segments by sep-
arating the nDCG scores into their components: the DCG score and
the perfect DCG score. Perfect DCG is the DCG score obtained
when the documents are ideally ranked according to the ground
truth. If a ranking is ideal, the DCG score is equal to the perfect
DCG score and nDCG is equal to 1. We plot the DCG scores ver-
sus the perfect DCG scores in Figure 5, for the top five and the
full result list. A perfect nDCG score would be on the diagonal.
The closer a result is to the bottom, the lower the nDCG score.
We see a similar pattern for the full ranked list as for the top five,
although more distinctly for the top five. DQM is able to obtain
perfect scores for video segments with both high and low perfect
DCG scores. However, we also perform below perfect; this does
not seem to be related to the perfect score that can be obtained.

We look in more detail at three video segments that are far from
the diagonal (and thus have a low nDCG score), marked in Figure 5
as 1, 2 and 3. Interestingly, segments 1 and 3 are in the top five most
improved by our approach and segment 2 is one of the few that is
hurt by DQM (respectively the 4th and the 5th bar from the left
and the 4th from the right in Figure 4). Segment 1 is broad, linking
French protests against a new law on gay marriage to a movie at the
Cannes film festival. Segment 3 is a short item about the increase in
ATM robberies and segment 2 is a broad item about the relationship
between the Netherlands and Germany, on the occasion of a trade
summit. From this we can see that, although DQM gets substantial
improvements for broad items, there is still something to be gained.
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Figure 5: DCG for DQM versus perfect DCG for each video
segment for the top five (left) and for the full result list (right).
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Figure 6: Feature and field weights for the DQM approach.
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5.2 Analysis of components
To answer RQ2, we investigate the contribution of the compo-

nents of our approach. The learned values of the DQM retrieval
model hyperparameters are plotted in Figure 6. Looking at field
weights w f , we observe that different values are learned, the high-
est weight is twice the value of the lowest weight. The highest
weight is given to the longer description field. The keywords get a
higher weight than the title field.

Number of weighted query terms. Next, we turn to the number
of weighted query terms that DQM generates. In our experiments,
this parameter was set through RL to a value close to 100 terms.
This can include terms with very small weights or even negative
weights (and thus not included in the final query). This is a sub-
stantially larger number than the fixed number of 6 query terms
in the Lease approach. We investigate the impact on the retrieval
effectiveness of DQM and the baselines; see Figure 7. From this
figure we observe that both baselines clearly benefit from adding
more terms to the query. The modified Lease approach consistently
outperforms the baseline approach. Interestingly, for the baseline
approach, adding more query terms than around 30 does not further
improve the effectiveness on the top five results, but does steadily
improve the effectiveness on the entire ranked list. The modified
Lease approach actually shows a drop in effectiveness on the top
five when using more than around 50 query terms. For any number
of query terms, DQM consistently outperforms both the baseline
and Modified Lease on both metrics. For DQM, the retrieval ef-
fectiveness in terms of nDCG for the top five results and the entire
result list show a qualitatively similar pattern. The effectiveness of
DQM increases with the number of query terms, until it reaches a
plateau at around 40 query terms.

Term decay. In our experiments the term decay factor we was
set through RL to a value of 0.5601. Our retrieval model thus has
a mild preference for more recent terms. With this decay factor
query term candidates from the first chunk are given a score that is
57% lower than the most recent terms. In Table 3, we observed a
small boost in retrieval effectiveness when enabling decayed term
weights for our full DQM approach. Interestingly, adding term de-
cay to our baseline gives an nDCG improvement of 11.90% for the
top 5 and 16.29% for the full ranked list. This suggests that term
decay does indeed contribute to improving retrieval effectiveness.
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Figure 7: Baseline retrieval effectiveness with different number of query terms as measured on the top five (nDCG@5, left) and on
the entire result list (nDCG, right). The settings used in our main experiments are marked with a star.

Term feature weights. Next, we turn to the term feature weights
wd and ws, plotted in Figure 6. We observe that a diverse set of
features receive high weights; there is no single most important
feature. The highest weights are assigned to the dynamic features.
Of the static features, the collection features receive the highest
weights, specifically the logarithm of the document frequency. For
Wikipedia-based features, the log IDF in text receives the highest
weight. The weights for features derived from the title and an-
chor text are substantially smaller than for the all Wikipedia text.
For Web1T, the log term probability receives the highest weight.
Five features receive negative weights, most notably the document
frequency in Wikipedia text and the frequency in Web1T. These
weights indicate a natural negative bias for common terms.
Contributions of components. We perform an ablation study
and disable parts of DQM to investigate the effects on the retrieval
effectiveness; see Table 4. We evaluate the effectiveness of our
DQM approach with specific sets of term features disabled. These
results are presented in rows 2–6 of Table 4. On rows 2 and 3, we
see the effects of disabling respectively the entire set of dynamic
and of static term features. Both result in a significant drop of per-
formance. In fact, if we disable all static term features, the per-
formance on the top five drops below the modified Lease baseline.
Clearly, the static term features are essential for the performance
of DQM. This makes it surprising that the dynamic term features
obtain the highest weights. To further investigate this, we disable
specific subsets of static term features. We observe from rows 4–6
in Table 4 that disabling any of the subsets significantly degrades
the performance of DQM. For Web1T, this effect is not significant
in the top five and not as significant as for the Wikipedia and col-
lection features. Lastly, we investigate whether our strong static
term features are strong enough by themselves, without the other
features. The results in rows 7–9 of Table 4 show a qualitatively
similar pattern to rows 4–6. Using only one subset of the static
term features and no dynamic features significantly degrades the
performance, although all variants still outperform our baselines.
Using only Wikipedia for term features comes closest to our full
DQM model, but it still performs significantly worse.

5.3 Learning
To answer the reinforcement learning related research question

RQ3, we investigate how DQM learns by looking at learning curves.
These curves are generated by evaluating the DQM model at each
iteration on the left-out video segments. The curves are averaged
over five runs for each of the 50 video segments and are thus com-
parable to the numbers in Tables 3 and 4.
Reinforcement learning parameters. First, we turn to the two
parameters of the DBGD algorithm: the step size δ and the learning
rate α . δ determines the distance between the current best weights
and the new weights. The learning rate α is the size of the step

Table 4: Ablation analysis of the contributions of DQM term
feature sets to retrieval effectiveness. Significant differences,
tested using a two-tailed paired t-test against row 1, are indi-
cated for rows 2–9 with − (none), O (p < 0.05) and H (p < 0.01).

Method nDCG@5 nDCG

1. Full Dynamic Query Modeling (DQM) 0.8005 0.8072

2. without static features 0.6884H 0.6721H

3. without dynamic features 0.7823− 0.7698H

4. without Web1T features 0.8012− 0.7967O

5. without Wikipedia features 0.7459H 0.7485H

6. without Collection features 0.7421H 0.7267H

7. with only Web1T features 0.7387H 0.7377H

8. with only Wikipedia features 0.7633O 0.7617H

9. with only Collection features 0.7571O 0.7583H

taken towards the best scoring weight vector. We explore different
values for δ and α and plot the results in Figure 8a.

We can observe from Figure 8a that for the same step size δ ,
a larger learning rate means that we reach higher effectiveness in
fewer iterations. A larger step size δ will also result in faster learn-
ing, although there appears to be a risk in setting the δ to high.
Despite early gains when using δ = 0.5 and α = 0.2, at around 75
iterations, it gets taken over by the run with the much smaller step
size of δ = 0.1 and higher learning rate of α = 0.5. At α = 0.5
the medium step size δ = 0.25 appears to be able to better learn the
subtleties when the effectiveness reaches a plateau, in comparison
with the higher learning rate α = 0.5.

Next, we investigate how optimizing for nDCG influences the
performance as measured by nDCG@5. In Figure 8b we plot nDCG
and nDCG@5 for runs in which we optimize either the nDCG or
the nDCG@5 metric. We observe a consistently higher nDCG
value when optimizing nDCG versus optimizing nDCG@5. In-
terestingly, we also see a consistently higher nDCG@5 value, con-
firming our idea that optimizing nDCG will also optimize nDCG@5.

Noisy feedback. DQM is also suited for use in a setting where
feedback comes from user interaction and thus is not always per-
fect. We study how well it can deal with noisy feedback. For this
we run a variant of DQM where we replace the comparison in the
DBGD algorithm with a noisy comparison. This noisy comparison
randomly returns a random comparison outcome. The noise level
controls how often this occurs, where a noise level of zero is equal
to our regular setting and a noise level of one results in completely
random feedback. The results of this analysis are presented in Fig-
ure 8c. We observe that given completely random feedback, DQM
will not improve in terms of effectiveness. However, it will also
not degrade in performance. Adding more noise to the feedback
for DQM will increase the number of iterations it takes to learn an
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Figure 8: Learning curves showing the development in terms of
effectiveness for the DQM approach across learning iterations.
Metrics are computed using leave-one-out cross validation and
averaged over five runs and 50 video segments at each iteration.

optimal value, but an optimal value will be found even with highly
noisy feedback. This suggests that DQM is also suited for use in a
setting where feedback comes from user interaction.

6. DISCUSSION
We see two obvious improvements to retrieval effectiveness for

our DQM approach, which we will discuss here. First, we could
use pseudo-relevance feedback (PRF) to do query expansion, an ap-
proach shown to be effective for generating phrasal-concept queries
in literature search [22]. To increase recall, the original query is
expanded with pseudo-relevant terms taken from the top retrieved
documents. We experimented with enabling pseudo-relevant feed-
back. For the baseline, this increases nDCG with 3.5% for the top
five and 7.3% for the full ranked list. We observed no improvement
in retrieval effectiveness for DQM when enabling PRF. A possible
explanation is that DQM’s retrieval model uses many query terms,
selected partly based on term statistics for the target collection. In-
stead of Indri’s out-of-the-box PRF approach, a PRF approach that

is tailored to our DQM retrieval model and the complex queries that
it produces might be able to improve retrieval effectiveness.

Second, a plausible assumption is that more recent videos might
be more relevant. We therefore also explored using temporal docu-
ment priors, specifically ones inspired by human memory [33]. The
DQM learning approach found no preference for recent documents
and we observed no improvements in retrieval effectiveness with a
temporal document prior compared to without one. An analysis of
our ground truth confirmed that more recent documents were not
found to be more relevant. This might be due to our retrospective
annotation of the ground truth. In a live TV setting, with feedback
from actual user interactions, more experimentation with a tempo-
ral document prior (e.g., a Weibull decay) would be advised.

So far, the discussion of our results has focused on effectiveness.
However, our target setting is live TV, where efficiency is of great
importance. To verify that we can efficiently perform DQM in near
real time, we compute the average number of chunks we process
per second on a single core machine, averaged over ten passes over
all 50 video segments. DQM is able to process 23.9 chunks per
second. Odijk et al. [32] report that they observe an average of
0.24 chunks per second in a live TV setting similar to ours, two
orders of magnitude less than what we are able to achieve.

7. CONCLUSION
We formalized the task of finding video content related to a live

television broadcast as a Markov decision process and proposed a
reinforcement learning approach to directly optimize retrieval ef-
fectiveness. We showed that our approach significantly improves
retrieval effectiveness over state-of-the-art stationary baselines, while
remaining sufficiently efficient to be used in near real time in a
live television setting. We have shown that each DQM retrieval
model component contributes to the overall effectiveness. A larger
number of weighted query terms significantly improve effective-
ness. Static term features that are dependent on the target collec-
tion and background corpora are more important for selecting ef-
fective query terms than dynamic features derived from the stream
of subtitles. Decaying term weights based on their recency further
improves retrieval effectiveness.

Regarding our reinforcement learning approach we have found
that a medium explorative step size and a larger learning rate are the
best choice in our setting. We have shown that optimizing nDCG
also yields the best nDCG@5 scores. Lastly, we showed that our
reinforcement learning based approach to DQM still learns effec-
tively when feedback becomes noisy. This suggests that our DQM
approach is also suited for use in a setting where feedback comes
from user interaction.

To understand the broader applicability of our work, it helps to
point out that DQM is a task that combines two traditional basic
information retrieval tasks: search and filtering. In a typical search
task the query changes and the collection remains static. In a typical
document filtering task, a standing query is used to filter a stream
of documents. Our task concerns both. Similar tasks exist, such
as summarizing social media in real time and finding replications
of news articles while they appear. We believe that our DQM ap-
proach is applicable to those tasks too.

As to future work, we plan to explore learning from noisy feed-
back from actual user interactions. DQM generates a single query
in each state. It may be useful to generate multiple queries and
merge either queries or results. Similarly, an extension that explic-
itly generates temporally or topically diverse results may enhance
the user experience. We could model this as a slot filling prob-
lem, where we have four video slots for which we select the most
interesting video to show a user.
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