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1. Introduction

Classical logic has been the principal logic used in applications for many years. One
of its main application areas has been mathematics, simply because it is ideally
suited for the formalization of mathematics. Its model theory and proof theory
have had an enormous impact on the foundations of mathematics. Many logicians
continue to hold the view that logic has four subareas: model theory, proof theory,
recursion theory and set theory. In all these four areas classical logic reigns supreme.

But as soon as we try to apply logic to the more human-oriented applications
arising in computer science, artificial intelligence, natural language processing and
philosophy, we find that we need to depart from the basic features of classical logic.
These departures come in several kinds:

1. extend the language of classical logic with additional operators, connectives,
and quantifiers to service applications involving time, knowledge, belief, neces-
sity, actions, etc.;

2. restrict the language to guarantee better computational or logical properties,
such as (strong forms of) decidability and interpolation;

3. change the basic deductive structure of classical logic to create new logics (intu-
itionistic, relevance, linear, paraconsistent, many-valued, fuzzy, etc.) to obtain
systems whose reasoning mechanisms are closer to the domain being modeled.

For many applications a combined system may need to be used, for example systems
like intuitionistic many-valued logics, or a fuzzy modal logic, or relevance modal
logic etc. At the same time, under pressure from application areas, the notion of
a logic itself has changed; the basic datastructures and concepts of “logic” have
evolved. A theory need no longer be a set of formulae, but it can be a list, or a
list of lists, a tree, or a labeled datastructure in general. Inference mechanisms are
defined on top of these structures. We witness a wide landscape of nonmonotonic
logics (default logic, defeasible logic, circumscription, etc.) and inference mecha-
nisms (negation as failure, abduction, defaults, etc.). Today, a logical system may
be a combination of many of the above and may look very different from classical
logic (see [Gabbay 1996]).

In this chapter we are concerned with the more traditional monotone two-valued
nonclassical logics, and modal logic is the most prominent example of these logics.
Despite this restriction, we are still faced with an overwhelming number of logics.
Encoding these logics into other logics gives us a powerful tool for understanding
them from both a logical, algorithmic, and computational point of view, as we will
see below. Before we come to the main issues of the chapter, we will explain the
main topics being discussed in the context of nonclassical logics; this will enable us
to explain what this chapter is about, and what it is not about.

1.1. Expressive power

The two most important properties of a logic are its expressive power and the
(decidability of) the reasoning tasks that can be performed in the logic, in particular
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theoremhood. In this subsection we focus on expressive power, leaving reasoning
tasks to the next one.

The expressive power of a logic may be analyzed from a number of angles. First
of all, how do we express things in a given logic, or put differently, what is the
syntax of the logic? This may seem a trivial point, but a poor syntax may be an
important barrier to using a given logic.

Second, what do we say in a given logic? That is, what is the meaning of our
well formed formulae (wffs)? This is a non-trivial question, because it is applica-
tion dependent and because it requires a thorough understanding of the intended
application. For example, if one wants to develop a logic of knowledge and belief
[Fagin, Halpern, Moses and Vardi 1995], one has to find a precise characterization
of ‘knowledge’ and ‘belief,” before one can start specifying the corresponding logic.

There are various ways of specifying the meaning of wifs. Usually, this is done
either proof theoretically, semantically or by embedding the logic into an already
established logic. All of these methods specify the meaning of formulae in a rather
indirect way. A proof theoretic specification by means of a Hilbert system, for exam-
ple, is a kind of grammar for generating theorems. The theorems are a distinguished
subset of the well formed formulae, which are supposed to ‘be true’ a-priori, without
any extra assumptions.

A semantic characterization of the meaning of a wif is a mapping of the syn-
tactic elements to a mathematical domain. The latter are usually simple and well
understood, for example sets equipped with functions and relations. Thus, the very
idea of a semantic characterization is to explain a new logical system in terms of
something old, simple and well understood.

This familiar system actually need not be a mathematical domain. It can also be
a previously defined logic. If the wffs of the new logic are translated into the wifs of
a given logic, we speak of embedding or translating the new logic into the given one.
In this way we can use an old logic to explain the meaning and expressive power of
the wifs of the new logic.

Third is the issue of comparing the relative expressive power of logics. As indi-
cated at the start of this section, we often need to depart from a given logic to cater
for the needs of new applications. As a concrete example, one can think of the area
of description logics (see [Calvanese et al. 2001], Chapter 23 of this Handbook),
where lots of logical languages have been explored with varying sets of admissible
connectives and quantifiers. Some versions allow negation to occur only in front of
predicate symbols, which makes them different from logics where negation is al-
lowed to occur everywhere. Others impose restrictions on the arguments of some of
the quantifiers. The resulting plethora of logics creates many theoretical challenges;
two of the most interesting are

o identifying ‘dangerous’ and ‘safe’ constructs in syntax and semantics, which do
or do not make the decision problem harder when present;

e developing tools for comparing the relative expressive power of logics, in terms
of special semantic or algorithmic characteristics;

As we will see below, encoding logics into each other or in some ‘big’ background
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logic, often provides a powerful way of addressing the above challenges.

1.2. Reasoning tasks

In addition to its expressive power, the other important feature of a logic are its
reasoning tasks, and the methods for performing these. Reasoning tasks that have
traditionally been considered include consequence or theoremhood proving, coun-
terexample generation, model checking, subsumption checking, and satisfiability
checking, see [Clarke and Schlingloff 2001, Calvanese et al. 2001] (Chapters 24 and
23 of this Handbook) for examples and details). To simplify our presentation, let
us focus on the first of these.

A first issue to be addressed when studying the problem of consequence checking
for a given logic is decidability of the problem; and if theoremhood is decidable,
what is its complexity? This goes along with the development of decision or — if
theoremhood is not decidable — semi-decision proof procedures.

An actual proof procedure has several layers. The lowest layer consists of the
basic calculus, a set of non-deterministic inference rules. Soundness (the rules iden-
tify only theorems) and completeness (the rules reject any non-theorem) of the
calculus ensures that it works as expected. Since the rules of the basic calculus are
non-deterministic, they generate a search space. The overall efficiency of a proof
procedure depends on how this search space is explored. The next layer in a proof
procedure therefore consists of search strategies. Search strategies, for example or-
dering strategies or selection strategies in predicate logic, prune the search space by
restricting the application of the rules; see [Bachmair and Ganzinger 2001] (Chap-
ter 2 of this Handbook).

Since search strategies cut out large parts of the search space, additional com-
pleteness proofs are called for. The resulting system is still non-deterministic. There-
fore, in a third layer search heuristics are employed to control the application of
the inference rules.

Orthogonal to these three layers is another component of a good proof procedure:
the ability to recognize and eliminate redundancies in the search space. Inference
steps which obviously cannot contribute to the final solution should be avoided
as far as possible. Tautology and subsumption deletion in predicate logic resolu-
tion systems provide typical examples; again, see [Bachmair and Ganzinger 2001]
(Chapter 2 of this Handbook).

Most successful implementations of proof procedures do not only rely on the
strength of the calculus, the strategies, heuristics and redundancy elimination in
the system, but also on sophisticated technical optimizations on various levels. This
ranges from good datastructures and strong indexing techniques for dealing with
large sets of terms and formulae [Graf 1996] to parallel processing on computer
networks.

Let us return to a theme introduced at the start of this section (page 1405). Appli-
cations of logic call for many new logics to be defined. Changing the specification
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of a logic influences most of its key properties, in particular the decidability of
theoremhood, the complexity of the decision problem, the structure of the proof
procedures etc. More concretely, the following have proved to be the key concerns:

e identifying ‘dangerous’ constructs in syntax and semantics, which make the
decision problem harder when present;

e understanding why certain modifications do not influence the complexity of the
decision procedure;

e developing parametrized proof procedures, which work for a whole class of logics
by changing the parameters;

e developing proof procedures for more general logics which automatically be-
come efficient proof procedures for less general logics when faced with a problem
in the less general logic.

As should be clear from the above discussion, proof procedures have many different
aspects to them; and developing procedures for a given logic is a non-trivial task.

1.3. Why encode?

In the previous subsections we have discussed what we take to be the main aspects
of logics, classical or nonclassical, viz. their expressive power and their reasoning
tasks. With the advent of more and more special purpose logics, we are faced
with the daunting task of having to analyze the expressive power and develop
proof procedures for each of these logics. This is where we think that methods
of encoding one logic (the source logic) into another logic (the target logic) may
provide an invaluable tool — quite often they are the only options available.

In particular, methods for encoding a source logic into a target logic can be used
to achieve the following;:

1. To grasp the expressive power, both of the source logic and of the target logic.

2. To export any proof procedures and tools that we may have for the target logic
to the source logic.

3. To grasp the computational costs of various reasoning tasks, again both for the
source logic and for the target logic.

4. To combine two logics, sometimes the most natural solution is to translate both
into the same target logic, and to work inside the target logic (see [Gabbay
1999]).

In the remainder of this chapter we elaborate on these ideas, especially the first
two, and present numerous uses and applications.

The automated reasoning community is by no means the first to think of en-
coding one logic into another as a useful tool. In mathematical logic, the topic of
interpreting one logic inside another one has a long history, and it has in fact been
motivated by much the same motivation as we have given above (see, for instance,
[Hijek and Pudldk 1991]). In a similar spirit, philosophers of science have long been
interested in reducing systems — formal or informal — to each other with a view to
understanding what claims scientific theories are actually making about real world
phenomena [Quine 1953).
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But let us return to automated reasoning matters. We want to raise an important
issue concerning the encoding of logics that some people have found troubling. We
will mostly be encoding ‘small’ decidable source logics into ‘big’ undecidable target
logics, and we will perform reasoning tasks for the source logic within the target
logic, thereby ‘reducing’ a decidable problem to an undecidable one. Surely, it must
be much more effective to reason directly within the source logic, say with the
techniques explained in [Calvanese et al. 2001] (Chapter 23 on description logics in
this Handbook) or [Waaler 2001] (Chapter 22 on tableaux methods for nonclassical
logics)? A number of replies are appropriate. For getting a really efficient system
for a given source logic, one has to exploit the characteristics of its (translated)
formulae as much as possible, and this usually requires special implementations
of any tools that one may have for the target logic. At the time of writing all
systematic comparisons between proof procedures working directly on the original
formulae on the one hand, and proof procedures working at the translated predicate
logic formulae on the other hand have been done using general purpose predicate
logic theorem provers. Predicate logic theorem provers which are highly optimized
for the particular fragment of predicate logic which is the target of the translation
are not available. Nevertheless, it turned out that the general purpose theorem
provers can compete well with highly optimized tableaux provers for the source
logics [Hustadt 1999]. Since all these theorem provers are improving every day, the
comparisons are only snapshots that may be outdated very rapidly; therefore it is
not worth reporting details of the experiments in this chapter.

We think that encoding nonclassical logics into first-order logic is important, not
just for understanding the expressive power and computational powers of the source
logics, but also because it gives users of nonclassical logics access to the sophisti-
cated, state-of-the-art tools that are available and that continue to be developed
in the area of first-order theorem proving. At present, no purpose built theorem
prover for nonclassical logic has the level of sophistication that first-order provers
have. Admittedly, a pre-processing step or a very careful encoding is often needed
to exploit the restricted expressive power of the source logic and to help a general
purpose tool become an efficient system for a given source logic, but even without
this, an encoding gives direct access to valuable tools.

1.4. What this chapter is about

This chapter is about methods for encoding (axiomatizing, translating, simulating)
a nonclassical logic in predicate logic, in particular in first-order predicate logic.
We will focus mainly on matters related to expressive power and reasoning tasks;
specific questions that we will be concerned with are:
1. What are the different options for encoding the formulae in predicate logic?
2. Do particular translation methods work for a whole class of logics, and how do
the differences manifest themselves in the encoding?
3. What is the fragment of predicate logic, into which the formulae of a given logic
or a whole class of logics are translated with a particular translation method?
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4. What kind of proof procedures are adequate for the translated formulae?
5. Can we exploit special features of the source logic to enhance the encoding?
6. Are there general purpose proof procedures for predicate logic, which work well
enough for the translated formulae?
In general, the answers to these questions depend on the particular translation
method being used, and we will see that many of the questions are still open.

In this chapter we take for granted that the enterprise of encoding nonclassical
logics into classical logic has definite merits. We will concentrate on the fundamental
ideas and results about encodings. The main ideas of the most important encoding
techniques are presented in such a way that after studying the method, the reader
should be able to find a suitable encoding for a given new logic herself.

More specifically, this chapter is organized as follows. Section 2 contains basic
definitions and may be skipped on first reading. Section 3 explores the first of a
number of ways of encoding a source logic into a target logic: syntactic encodings; we
discuss the basic ideas and consider the merits of the approach from an automated
reasoning point of view. In Section 4 we consider the standard relational transla-
tion; in this way of encoding we transcribe the semantics of the source logic in the
target logic; we discuss the implications of this approach for our understanding of
the expressive power of the source logic, and we discuss how the approach necessi-
tates different ways of encoding if one is to do efficient automated reasoning for the
source logic. Some of these alternatives are explored in Sections 5 and 6 where we
consider the functional, the optimized functional, and the semi-functional transla-
tion. Further variations on and extensions of these ideas are discussed in Section 7.
Finally, in Section 8 we formulate some conclusions and open questions.

2. Background

The purpose of this subsection is to set the scene for the remainder of the chapter,
by introducing the basic syntactic and semantic prerequisites. We refer the reader
to [Blackburn, de Rijke and Venema 2001] for further details.

2.1. Syntaz

We will assume basic familiarity with first-order logic (FO). Throughout the chapter
we consider a number of nonclassical logics; below we list most of them.

2.1. DEFINITION (Modal Logic). Let P be a collection of proposition letters. The
syntax of propositional (uni-) modal logic is given by the following rule

ML ::= P | =ML | ML A ML | ML | OML.

We freely use the usual boolean abbreviations. The <-operator is usually referred
to as ‘diamond,” and the [0 as ‘box.’
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The language of multi-modal logic is just like the language of uni-modal logic
except that in multi-modal logic we have a collection of diamonds (a) and boxes
[a], where a is taken from some index set. In the setting of description logics, multi-
modal logic is sometimes referred to as ALC; see [Calvanese et al. 2001] (Chapter 23
of this Handbook).

Propositional dynamic logic arises as a special case of multi-modal logic, where the
diamonds and boxes are equipped with structure, corresponding to certain program
forming operators: ; for sequential composition, U for non-deterministic choice, *
for finite iterations, and ? for testing. Let .4 be a collection of atomic programs;
from these we define a collection of complex programs as follows:

R:=A|R;R|RUR|R"|PDL?
By mutual recursion, PDL formulae are defined by
PDL ::=P | -PDL | PDLAPDL | (R)PDL | [R]PDL.

Here, (a)A is read as ‘there exists a terminating execution of the program « which
leads to a state where A holds,” and [@] A means that all terminating executions of
a lead to a state where A holds. Harel [1984] contains lots of background material
on (propositional) dynamic logic. In the setting of description logics, propositional
dynamic logic is sometimes referred to as ALC ry; again, see [Calvanese et al. 2001]
(Chapter 23 of this Handbook).

Consider a multi-modal language with two diamonds, (F') and {P). Temporal logic
arises when we assign very specific readings to (F)A and (P)A: ‘sometime in the
future, A will be the case’ and ‘sometime in the past, A was the case.’

2.2. DEFINITION (Temporal Logic). The language of basic temporal logic is given
by the following rule

BTL := P | -BTL | BTL A BTL | (F)BTL | [F|BTL | (P)BTL | [P|BTL.

Here, [F] (‘it will always be the case that’) and [P] (‘it has always been the case
that’) are dual operators for (F') and (P), respectively, just like O is the dual of <.
Linear time temporal logic (LTL) extends basic temporal logic by the addition
of operators to talk about ‘the next moment in time’ and ‘the previous moment in
time,” and operators to express properties of intervals between two moments.

LTL == P|-LTL|LTLALTL|OLTL |OLTL | U(LTL,LTL) |
OLTL | LTL | S(LTL,LTL).
Here, O is the ‘next time’ operator, and @ is the ‘last time’ operator; (1A stands for
‘always in the future A,” while BA stands for ‘always in the past A;” and the until-

operator U(A, B) is meant to capture that A holds at some point in the future,
and until then, B holds; the since-operator S is its ‘backward’ looking counterpart.
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2.3. DEFINITION (Intuitionistic and Relevance Logic). Propositional intuitionistic
logic (IL) has the same connectives as classical propositional logic, but the im-
plication is weaker than the classical implication.

IL:=P|L|-IL|ILVIL|ILAIL |IL — IL.

Relevance logic is essentially like intuitionistic logic, but with an even weaker im-
plication. The idea is that A — B can only be a valid statement if A must actually
be used to conclude B, i.e., A is relevant for B.

2.4. DEFINITION (Quantified Modal Logic). Quantified modal logic is an extension
of FO in the same way as propositional modal logic is an extension of propositional
logic. Besides all the syntactic elements of FO, there are the two usual modal
operators (I and <.

We now turn to proof-theoretic matters. We first give some general definitions, and
then present derivation systems for each of the logics we have just introduced.

2.5. DEFINITION. A consequence relation b is a relation between two sets (multi-
sets, lists, trees or any other suitable datastructure) of formulae. ¢ F ¢ expresses
that the set (multiset, list, ...) % of formulae is a consequence of the set (multiset,

..) of formulae ¢. A specification of a logic by means of a consequence relation
consists of a set of azxioms

G, o o, ...

and a set of inference rules

b1 1, o i, .
pE.

The axioms are a kind of a-priori consequences. For many logics, finitely many
axioms are sufficient, but nothing stops us from requiring infinitely many axioms.
The inference rules allow us to derive new (output) consequences from a finite or
infinite set of given (input) consequences. Again, there may be finitely many or
infinitely many inference rules, but in most cases this number is very small. The
inference rules may have side conditions restricting there applicability with extra
requirements on the structure of the formulae involved.

More generally, the inference rules may require the non-derivability of some con-
sequences. This means that some of the expressions ¢; F 9; in the input part of the
inference rule may actually occur in the form not ¢;  1);. This gives the system
a nonmonotonic behavior because adding more axioms may cause fewer derived
consequences.

2.6. DEFINITION. The consequence relation + 1 of a Hilbert system (HS) has an
empty set of premises and just a single formula as conclusion. | 1 means that v is
a theorem.
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(FA— (B— A)
FA-B—-C)—>((A—-B) > (A->0)
F(A-B)—A) - A
FAANB = A

. HFAANB -+ B
propositional ! FAs (Bo AAB) 2.1)
part A (AVB)
FB— (AVB)
FA-C)—->(B—-C)>(AVvB—=(0))
F(A4—-B)— (B—-A4)
L F-—A—> A
K +O(A - B) —» (0DA - 0OB) (2.2)
modus FA FA— B 2.3)
ponens B
necessitation FA (2.4)
rule FOA

Table 1: Axioms and rules for K

2.7. DErFINITION (K, K,, and PDL). The basic (uni-) modal logic is called K (af-
ter Kripke), and it is axiomatized by the axioms and rules listed in Table 1.

The diamond operator < is defined in terms of the box operator O by Op <
—||:|—|p,

The set of axioms for the basic multi-modal logic K,,, (where m € N) consists of
(2.1), m copies of the K axiom (2.2) and the necessitation rule, one for each modal
operator [a], and modus ponens (2.3).

An axiom system PDL for propositional dynamic logic is obtained by taking the
K axioms and rules for all operators [R] (R € R) and adding the following
(Comp)  +[a; flA < [a][f]A
(Alt) FlaUB]A & [a]lAA[G]A
(Mix) F[a*]A = A A [a][a*]A
(Ind) Fla*](A = [a]d) = (A — [a*]A)

(Test) F[A?]B < (A — B)
(Mix) and (Ind) are sometimes referred to as the Segerberg axioms; together they
capture the fact that the program a* is « iterated finitely often.
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Extensions of K are obtained by adding further axioms and/or rules to K. For
instance, the logic S4 is obtained by adding the following axioms to K:

(T) FOA—- A

4) FOA— OOA

2.8. DEFINITION (Classical Modal Systems). The so-called classical modal system
[Chellas 1980] is a restriction of K in which the K axiom (2.2) and the necessitation
rules (2.4) are replaced by:

FA& B
FOA«+ OB
This rule ensures that the box operator is syntax independent in the sense that it
does not distinguish equivalent formulae.

In a similar way as with extensions of the modal logic K, one can build logics as
extensions of the system characterized by RE. Examples of other rules are:

FA— B

(RE) (2.5)

M) 51508 (26)
FAAB)—-C
RR) @i 0B) 00 (2.7)

2.9. DEFINITION (Azioms for Temporal Logic). The smallest basic temporal logic
K; consists of the K-axioms for each of [F] and [P], as well as the 4 axiom for
both [F] and [P], and the following two axioms that are meant to express that the
temporal operators explore the same flow of time, but in opposite directions.
(Convl) F A— [PF)A

(Conv2) F A — [F(P)A

The axioms for linear time temporal logic, LTL, consist of the K axioms for [0, O
and @, the Segerberg axioms for O and O, and for B and @, as well as axioms for
functionality and U and S; see [Goldblatt 1992] or [Clarke and Schlingloff 2001]
(Chapter 24 of this Handbook) for details.

2.10. DEFINITION (Azioms for Intuitionistic Logic). An axiom system IL for intu-
itionistic logic is given by
FA— (B— A
FA->B) - (A=-B-0)>(A=0)
FA— (B— AAB)
F(AAB)— A
F(AAB) > B
FA— (AVB)
FB— (AV B)
FA=-C)=>(B—=-C)>(AVvB->()
F(A— B)— ((A— —-B) » —A)
F(A— (-A— B).
The only deduction rule is modus ponens (2.3).
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2.2. Semantics

We will first give a general definition, and then instantiate it for particular logics.
Many two-valued nonclassical logics have a characterization in terms of a so-called
possible worlds semantics.

2.11. DEFINITION (Possible World Semantics). The basis for a possible world se-
mantics is a frame F = (W, S) consisting of a non-empty set W of worlds or states
and some structure S on these worlds. S may be just a binary relation between
worlds (the accessibility relation) as in normal modal logics and in intuitionistic
logic, or a binary relation satisfying special properties (such as the later-than re-
lation in temporal logic), or a set of binary relations as in multi-modal logic, or a
relation between worlds and sets of worlds (the neighborhood relation) as in classical
modal logic, or a ternary relation between worlds as in relevance logic.

An interpretation (or model) S based on a frame F associates a classical in-
terpretation with each world, sometimes subject to some restrictions. In addition,
an interpretation may contain an actual world and, if the logic has quantifiers, a
variable assignment.

Let us now instantiate the general definition for some specific logics. We start with
(uni-) modal logic.

2.12. DEFINITION (Semantics of Modal Logic). A frame, or Kripke frame, for the
(uni-) modal language with just ¢ and O is a structure F = (W, R) consisting of a
non-empty set of worlds W and a binary accessibility relation R on W.

An interpretation, or Kripke model, & = (F, P) consists of a frame F, and a
valuation or predicate assignment P which assigns to each proposition letter p the
subset of worlds where p is interpreted as true. Each model induces a satisfiability
relation |= that determines the truth of a formula at a given actual world w € W.

The satisfiability relation for the basic uni-modal language is given by the fol-
lowing clauses.

S,wkEp iff we P(p) in case pis a predicate symbol
,whkE-A iff not S,wlE A

&0

S,wkEAAB iff QwEA & S,w=B

S,wEAVB iff QwEAor S,wl=B
S,wEOA iff VYv(R(w,v) = S,vEA)
S,wECA i Fv(R(w,v) &S,vEA)

A frame for a multi-modal language whose collection of modal operators is {{a) |
a € R} is a tuple F = (W,{R, | @ € R}). The satisfaction relation for multi-
modal languages is defined just as for the uni-modal language, albeit that every
modal operator () is interpreted using its own relation R,.

A model for the language of propositional dynamic logic is a structure & =
(W,{Ry | @ € R}, P) just as for multi-modal logic, but the difference is that the
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relations R,, (for @ non-atomic) are required to satisfy certain structural constraints:

R.3 = R, o Rg, the relational composition of R, and REg
RaU,B = R,U Rg
R, = U(Ra)", where (R,)° is the identity relation, and

n

(Ra)n+1 = (Ra)n o R,
R4 = {(w,w)]|SwE=A}

A formula ¢ is a semantic consequence of a particular logic, characterized by a
particular frame class, if and only if it is true for all such interpretations, i.e., for
all frames in a given class, for all actual worlds and for all predicate assignments.

Particular logics are characterized by certain frame classes, or in more complex
cases, by certain model classes. To be characterized by a frame class means that
the set of semantic consequences of this logic consists of all formulae which are
interpreted as true in all interpretations based on all frames of this class. For
example, K is characterized by the class of frames (W, R) where R is an arbitrary
binary relation between worlds. Further examples for axioms and the corresponding
properties of the accessibility relation are given in Table 2. It is not always possible
to characterize a logic just by a frame class [van Benthem 1983]. More complex
logics may require special conditions on interpretations, too.

‘ name | axiom | property of R ‘
4 OA — 0O0OA | transitivity
5 OA — OCA | euclidean!
T OA— A reflexivity
B A—-0OCA symmetry
D 04 - A seriality

Table 2: Axioms and their frame properties

2.13. DEFINITION (Semantics of Temporal Languages). The semantics of the tem-
poral languages considered in this chapter are defined as follows. A temporal frame
is a structure F = (W, <) where W should now be thought of as a collection of
points in time, and < is a transitive binary relation on W representing the ‘later-
than’ relation.

The key aspect of the truth definition is in the clauses for the modal operators:

S,wE(F)A i Fv(w<v&S,vE A
SwE(P)YA iff ww<w&S,vEA).

LA relation R is called euclidean if it satisfies Yv, w,u (R(v, w) A R(v,u) = R(w,u)).
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Thus, (F) and (P) are interpreted using the same relation <.

Models for linear time temporal logic are structures & = (W, <, P) where (W, <)
is an initial segment of the natural numbers (w, <) with its natural ordering, and
P is a valuation. The truth conditions for the temporal operators are as follows:

SwkEOA iff S,w+lEA
S,wEOA ff Yww<v=SvEA)

SwEUA,B) il ww<<v&SvEA&Vu(w<u<v=S,ulE B))
S,wE @A ff w>0&S,w—1FA,

while B and S are simply backward looking versions of 00 and U.

2.14. DEFINITION (Semantics of Intuitionistic and Relevance Logic). The seman-
tics of intuitionistic logic can also be defined in terms of possible worlds, but we
need to impose a restriction on assignments. An intuitionistic frame F = (W, R)
consists of a non-empty set of worlds, together with a reflexive and transitive re-
lation R. An interpretation & = (F, P) is similar to an interpretation for modal
logic, but whenever P assigns true to some predicate symbol p at some world w
then it must assign true to p at all w-accessible worlds.

The possible worlds semantics of relevance logic is more complex. It has a ternary
accessibility relation R, a unary function (-)* and a distinguished world 0. A relevant
frame is therefore a 4-tuple F = (W, R, (-)*,0) consisting of a non-empty set of
worlds, a distinguished world 0 € W, a ternary accessibility relation R, and a
unary function (-)* satisfying the following conditions:

Vz R(0,z,x)

Vx,y,z (R(z,y,2) = R(y,z,2))

Vx,y, z,u (v (R(z,y,v) A R(v, z,u)) = Fv (R(z,v,u) A R(y, z,v)))
Vz R(z,z, )

Vz,y,z,2' (R(z,y,2) AN R(0,2',2) = R(z',y, 2))

Vez** =z

Vx,y,z (R(z,y,2) = R(z,z*,y*)).

An interpretation consists of a frame and a predicate assignment P with a restriction
which is similar to the restriction for intuitionistic logic: whenever P assigns true
to some predicate symbol p at some world w then it must assign true to p at all
worlds u with R(0,w,u). The non-standard parts of the satisfiability relation are

S,wEA—->B iff Vu,vRw,u,v)=>SulE A= S,vE B, and
SwE-A il SwEA

2.15. DEFINITION (Semantics of Classical Modal Logic). The axiom K is valid in
all modal logics whose semantics are based on binary accessibility relations. If this
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axiom is undesirable for some reason, a different kind of semantics is necessary,
neighborhood semantics, also called minimal model semantics [Chellas 1980]. In its
weakest version, it just ensures that the modal operators cannot distinguish between
equivalent formulae, or, in other words, if A ++ B is valid then OA < OB is valid,
too.

A neighborhood frame F = (W, N) consists of a non-empty set of possible worlds
and a neighborhood relation N between worlds and sets of worlds. The interpreta-
tion for the classical connectives is the same as for normal modal logics. Only the
interpretation of the modal operators changes. For the weaker version of classical
modal logics the interpretation is:

S,wEUOA iff IV (Nw,V)&WeV & S$,vE A)
Swl OA ff YV (N(w,V)=FweV oS0k A).

If the rule RM (2.6)
FA—B
FOA - OB

holds, then the following stronger semantics is to be used instead

v A)
v E A).

The weak version of the minimal model semantics states that (14 is true in a world
w iff the truth set of A is one of w’s neighborhoods. Therefore, equivalent formulae
are not distinguishable by the box operator. The stronger version of the semantics
weakens this requirement: the truth set of A only needs to be a superset of one of
w’s neighborhoods.

S,wlEOA ff IV(Nw,V)&Vo(veV =
SwECA ff VWN(w,V)=>TFvweV&

R
)

2.16. DEFINITION (Quantified Modal Logic). The semantics of quantified modal
logic has the same kind of frames F = (W, R) with a binary accessibility rela-
tion as normal propositional modal logic. An interpretation & = (F, P, V') consists
of a frame F, an assignment P associating with each world w a classical predicate
logic interpretation P(w), and a variable assignment V.

Each predicate logic interpretation P(w) may associate a different meaning to
the function and predicate symbols. Rigid symbols are function and predicate sym-
bols whose interpretation does not change from world to world, otherwise they are
called flexible symbols. P(w) may even associate a different domain with each world
(varying domain interpretation). Alternatively, the domain may remain the same
for all worlds (constant domain) or increase (decrease) when moving from a world
to an accessible world.

The interpretation P(w)(p) of a function or predicate symbol p must be defined
for all elements of all domains, not only for the domain associated with the world w,
otherwise the following problem arises. For the formula 3z Op(x) the interpretation
of the existential quantifier chooses an element a of the domain of the actual world
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w as the assignment for the variable x. The <-operator guides us to another world
v. We can only interpret p(z) in v’s domain if P(v)(p) is also defined for objects in
the other world’s domains.

Let D(w) denote w’s domain, let Sz /a] be just like &, except that the variable
z is mapped to a, and let $(¢,w) represent the interpretation of the term ¢ in the
world w. Then the satisfiability relation |= is defined as

S,wEqt, ..., tn) i (S,w),...,S(En,w)) € P(g)

in case q is a predicate symbol
,2wiEVzA iff Va(a € D(w) = Sz/al,w = A)
,2wiEIzrA il Ja(e € D(w) & S[z/a],w = A).

After this short summary of the semantics of the most prominent modal-like logics,
we come to the core of this chapter: how to encode these logics into predicate logic.

3. Encoding consequence relations

If we want to encode a given source logic into a target logic, and if the source logic
is given as a Hilbert system, we can try to use the target logic, L2, as a metalevel
language for the source logic, Li. The well-formed formulae (wffs) of L; become
terms of Ly and the axioms and theorems of L; become theorems of Lo. Let us
make this more precise.

A Hilbert system HS — with all predicate symbols implicitly universally quanti-
fied, and where the inference rules have only finitely many (positive) input formulae
and no side conditions — can be encoded in first-order predicate logic (FO) in the
following manner.

3.1. ExaMPLE. Take the source logic to be the uni-modal logic K, and the target
logic is simply FO. To cater for the operators present in the source logic, we take
function symbols fa, fv, f—=, f-, fo, fo in the vocabulary of the target logic. We
form all terms out of constants {c1,ca,c¢s,...} and variables {p1,p2,ps,...}. We
define a translation (-)* assigning to each modal wff A a FO-term A*, as detailed
in Table 3.

We can identify the axioms and theorems of the source logic L; by defining a
predicate Th(z) (z is a theorem) on the terms obtained as translations of L;.More
precisely, in the syntactic way of encoding a logic, formulae are represented as
FO-terms; HS-predicate symbols become universally quantified FO-variables, while
the HS-connectives become FO-function symbols, and the consequence relation F
becomes a unary FO-predicate Th (for theoremhood). The axioms are encoded as
unit clauses and the inference rules are encoded as Horn-formulae.

3.2. EXAMPLE. We build on Example 3.1 to encode a Hilbert system for the modal
logic S4. Recall that S4 can be axiomatized by adding the following axioms on top
of the axioms and rules given for K in Definition 2.7:
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(cn)* = ae,, for the nth constant c,
(pn)* = =, for the nth variable p,
(AANB)" = fA(4",B")
(A—- B)* = f,(4* B
(AvB)" = fu(4%,B")
(4" = f(A9)
@4)" = fo(4")
(CA)" = fo(A").

Table 3: Syntactic encoding

(T FOA— A
(4) FOA - O0A
Take the metalevel translation as specified in Example 3.1. We can identify the
axioms and theorems of S4 by defining a predicate Th(z) (z is a theorem) in
classical logic on the terms (wif) of S4* (the translation of S4).

As the theory 7, of classical logic we take

(universal closure of) Th(t*)

where t* is a variable translation of any S4 axiom, e.g., t* = f_(z, f-(y,x)) as
translation of A — (B — A), plus the metalevel translation of modus ponens and
the necessitation rule:

Vz,y (Th(z) A Th(f-(z,y)) = Th(y)) (3.1)
Vz (Th(z) — Th(fo(z))). (3.2)

Then it follows, for all modal formulae A, that
S4+ A iff 7. F Th(A%).

How does a FO theorem prover behave when fed with the syntactic encoding of a
Hilbert system? Observe first that a UR-resolution or a hyperresolution sequence
with the FO encoding of a Hilbert system corresponds directly to a derivation in the
system itself [McCune and Wos 1992]. Since the clause set obtained from an encoded
Hilbert system is a Horn clause set, the (unique) Herbrand model represents the
theorems of the Hilbert system. Now, the syntactic way of encoding a logic does not
automatically provide a decision procedure for theoremhood within the source logic,
even if this problem is decidable in principle. In particular, UR-resolution with a
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syntactically encoded Hilbert system just enumerates the — usually infinitely many
— theorems of the logic. A non-theorem can therefore never be refuted this way.

Experiments with first-order theorem provers have shown that the search space
for this kind of encoding is very large [McCune and Wos 1992], and therefore the
theorem provers are very slow.

Ohlbach [1998b] has investigated a transformation which can eliminate self-
resolving clauses like the condensed detachment clause (3.1) from a clause set in
a satisfiability preserving way. Self-resolving clauses can be deleted from a clause
set if sufficiently many other clauses, which are consequences of the self-resolving
clauses and the other clauses, are added. For the transitivity clause, for example, it
is sufficient to add for each positive literal in the other clauses one single resolvent
with a selected negative literal of the transitivity clause. Afterwards, transitivity
is not needed anymore. This transformation can also be applied to the condensed
detachment clause.

Unfortunately, it turns out that infinitely many resolvents are to be added before
one can delete a condensed detachment clause. The clauses to add are (for each
positive literal) a resolvent with the first literal in each of the infinitely many clauses
below, which are themselves self-resolvents between the first and third literal of
condensed detachment.

_|Th(f_>(.'li',y)), —|Th($), Th(y)
—|Th(f_>(.’1:', f_>(2:1,z2))), _'Th(m):_'Th(zl)a Th(ZQ)

S Th(f-(z, fo (21, f5 (... 25)))), " Th(z)~Th(z1),...,~ Th(z;_1), Th(z;)

3.3. EXxAMPLE. We illustrate this transformation with Lukasiewicz’s single axiom
axiomatization of the implicational fragment of propositional logic [Lukasiewicz
1970, p. 295]:

Flz—=y) —2—((z—2) = (u—x). (3.3)

The transformation yields

Th(f~(f=(f=(2,9),2), f5(f=(2,2), [+ (u,2))))
Th(f=(f~(2,y),2) A Th(f- (2, )
Th(f=(f~(2,y),2) A Th(f-(2,2)
Th(f=(f—(f=(u1,u2),9),2) A Th(f- (2, f- (u1,u2))) A Th(u) A
Th(f—>(f—>(f—>(ula f—)(uQa U3)), y)a Z) A Th(f—>(za f_>(U1, f_>(U2,U3)))) A
Th(u) A Th(u1) A Th(u2) = Th(us)

which is infinite, but with a very regular structure. With some standard and well-
known tricks one can convert it into a finite clause set suitable as input to any
resolution-based theorem prover. Longer subformulae are replaced with newly de-
fined predicates (g1, -..,q4) and the recursive structure of the infinitely many for-
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mulae above is turned into a ‘generator clause’ (the third but last clause below).
The result is

Th(f—(f=(f=(x,9),2), f5(f=(2,2), f (u,3))))
Th(f_>(f_,(x,y),z) — 1 (.Z‘,Z)
a1 (z,2) = Th(f-(f+(2,2), f+(u, 7))
q1(z,2) AN Th(f-(z,2)) = ¢2(z)
g2(z) = Th(z)
22(z) = ¢3(2)
3 (f=(u,v)) A Th(u) = qa(v)
q4(v) = gs(v)
qs(v) = Th(v).
Experiments have shown that proving theorems from this clause set instead of the
original condensed detachment clause can speed up the theorem prover by a factor
of 50 [Ohlbach 1998b]. But there is no guarantee. In other cases this transformation
has slowed theorem provers down considerably.

To sum up, the direct syntactic encoding of Hilbert systems into FO is certainly not
the optimal way of proving theorems in these logics. Nevertheless, for experimenting
with new logics or for getting alternative formulations of a given logic, this encoding
together with a fast FO theorem prover provides a very useful tool.

One possible obstacle for such experiments is that there is no general recipe for
encoding side conditions of inference rules in FO. This is usually quite complicated
because the side conditions may refer to the syntactic structure of a formula. Here
is a particular example.

3.4. EXAMPLE. In modal logic one of the best-known inference rules with a side
condition is Gabbay’s irreflexivity rule [Gabbay 19815

F-(0Op—>p — A
EA ifp¢A‘

To encode the irreflexivity rule, we need a predicate in(p, A) which checks whether
p occurs in A. The FO-axiom for in would look like

in(p,A) & p=AV
(3B A= f~(B) Ain(p,B)) V
(3A1,A2 A= f%(A]_,AQ) A (m(p, Al) \% in(p, Ag))) V...

Adding this axiom, however, requires equational reasoning. Most FO theorem
provers have serious difficulty with this formulation.

Binary consequence relations ¢ F 1, where both ¢ and v are single formulae, can
be encoded in a similar way as the unary consequence relation of Hilbert systems.
Instead of the unary predicate Th(x) (‘z is a theorem’), we use the binary predicate
D(z,y) (y can be derived from z).
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If ¢ and 9 are more complex datastructures, one has to axiomatize these datas-
tructures. For instance, if the datastructure is a list (as in linear logic), a constant
empty needs to be introduced as well as an associative function symbol append that
takes the FO-encoded formulae as arguments. The axiom X, A + A, for example,
would be encoded as

VX, A D(append(X, A), append(A, empty)).

Unfortunately, automated reasoning based on these kinds of axioms, and either
paramodulation or theory unification for the associativity property of append, be-
comes much more complicated and inefficient than in the Hilbert system case.
Therefore, we think that it is not worthwhile to go into further details here.

The situation is even worse if some of the input consequences of a consequence
relation are negated. not ¢ | 1) means that the input condition is satisfied if ¢ F ¢
is not derivable. This cannot be encoded using the FO-negation, because it requires
a proof that ¢ F ¢ is not a theorem. Another metalevel, which encodes the FO-
derivability relation itself as a predicate, or some Prolog-like operational treatment
(negation by failure) may help here.

To conclude, then, the syntactic encoding of logics is an easy and flexible way
of encoding a nonclassical logic in FO, which imposes only a few conditions on the
source logics being encoded. This flexibility proves to be an advantage as well as a
disadvantage: only very little information about the source logic is actually encoded
into the target logic by means of syntactic encodings.

4. The standard relational translation

If a given nonclassical logic comes with a possible worlds semantics of the kind
described in Section 2.2, there is an alternative to the syntactic encoding that we
have seen in Section 3: we can encode the semantics of the source logic by simply
transcribing it inside the target logic.

Below we will introduce the idea using the uni-modal language, as well as a
number of other ones. In most cases the semantics-based relational encoding is
fairly simple and the reader should have no difficulties in doing something similar
for other logics. After the examples, we will explore the implications of having
this translation for understanding the expressive power of the source logics being
encoded, and for the purposes of reasoning with the source logic. The latter will
also form the motivation for refinements of the relational translation.

4.1. The basic case
The prototypical example for the standard or relational translation is propositional
uni-modal logic. Recall the truth conditions for the modal operators:
S,wEUOA iff Yo(R(w,v)=S,vEA)
SwECA Mff Fv(Rw,v)&S,vEEA).
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From these definitions we can derive the definition of the standard or relational
translation ST, (w, A).

4.1. DEFINITION (Standard Relational Translation). The source logic is uni-modal
logic, and the target logic is FO; its vocabulary of the target logic consists of a
binary predicate symbol R to represent the accessibility relation, and unary predi-
cate symbols to represent proposition letters. Then, the recursive definition for the
standard relational translation is

Tm(w,p) = pw)
ST, ( —A) = ST, (w,A)
STm(w,ANB) = STp(w,A)AST(w,B)
STm(w,AVB) = ST,(w,A)V ST ,(w,B)
STp(w,04) = Yv(R(w,v) = STn(v,A)) (4.1)
ST (w,©A4) = Fv(R(w,v) A ST (v,4)). (4.2)

Now, on the semantic side, Kripke models have all the ingredients to serve as models
for the first-order language that we have just defined: they have a binary relation
for the binary predicate symbol, and they have valuations to cater for the unary
predicate symbols.

4.2. THEOREM. Let A be a modal formula. Then the following hold:

1. For any model S and state w we have that S,w = A iff S E STn(w,A),
where = on the left-hand side is the modal satisfiability relation, and |= on the
right-hand side denotes first-order satisfiability.

2.EAiff EV2 ST (z,A)

Item 1 of the theorem says that when we interpret modal formulae on models we
can view them as first-order formulae, while item 2 says that a modal formula is
valid on all Kripke models iff the universal closure of its standard translation is
valid on all FO models.

4.3. EXAMPLE. ST, (w, A) yields a first-order formula and can be submitted to
a first-order theorem prover. As an example, in the modal logic K, the axiom
O(p — ¢) — (dp — Ogq) is a theorem. Its standard translation Yw (Vv R(w,v) —
(p(v) = q(v)) = (Vv R(w,v) = p(v)) = (Vv R(w,v) — ¢q(v))) is therefore a FO
theorem.

While the standard relational translation was implicit in much of the work in modal
and temporal logic going on in the early 1970s, the first systematic study seems to
be due to [van Benthem 1976].

Recall from Table 2 that many of the well-known modal logics are character-
ized by first-order definable frame classes. For such logics Theorem 4.2 may be
specialized as follows.
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4.4. THEOREM. Let A be a uni-modal formula, and let By, ..., By, be characterized
by first-order frame conditions TB,, ..., TB,, respectively. Then A is a semantic
consequence of KBy ...B, iff (1B, A---AN7B,) = V& ST, (x,A) is a theorem of
first-order logic.

4.5. EXAMPLE. S4 is complete for several semantic interpretations. The one that
we are interested in here is the usual Kripke semantics, where R is a reflexive and
transitive accessibility relation, and w E OA iff Vu (wRu = u E A). Let 7 be the
FO theory

7 = {Vz R(z,2),Vz,y, 2 (R(z,y) A R(y,z) = R(z,2))}-
Then we have, for every modal formula A,
S4E=Aiff 7 =Ve ST (z, A).

Before addressing the issue of reasoning with (translated) modal formulae in greater
depth, we will look at uses of the standard relational translation for nonclassical
logics other than uni-modal logic.

4.2. Further examples

The ideas underlying the standard translation are not restricted to the basic modal
logic K. Below we list some examples.

4.6. EXAMPLE (Multi-Modal Logic). Definition 4.1 can easily be extended to multi-
modal logic; we simply make sure that the vocabulary of the target logic has
‘enough’ binary relation symbols R,, Ry, ...: one for every diamond {(a) and box
[a]. Then, the key clause in the translation becomes

ST m(w,[a]A) = Vv (R (w,v) = ST (v, A)).
So, the formula (a)[b](a)p is translated as
Fv (Ry(w,v) AVu (Rp(v,u) = It (Re(u,t) A (p(t))))).

We leave it to the reader to establish equivalences analogous to those in Theo-
rem 4.2.

4.7. EXAMPLE (Propositional Dynamic Logic). If we want to provide a relational
translation for propositional dynamic logic (PDL), we have to change our target
logic because of the presence of programs of the form a*. Recall that a program a* is
interpreted using the reflexive, transitive closure of R,. But the reflexive, transitive
closure of a relation is not a first-order definable relation (see Definition 2.12).

What is a suitable target logic here? There are many options, but to motivate
our choice recall the definition of the meaning of a PDL program a*:

Ry = Un(Ra)n7
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where R” is defined by R%(z,y) iff z = y, and R"*!(z,y) iff 32 (R"(z, 2) A R(z,y)).
If we are allowed to write infinitely long disjunctions, we see how to capture the
meaning of an iterated program a*:

(Ro)*zy iff (zx =y) V Razy V \/ 21 ... 2 (Rax21 A -+ - A Ry zny).

The infinitary predicate language allows us to write down such formulae. More
precisely, in £,,,,, one is allowed to form formulae just as in first-order logic, but in
addition countably infinite disjunctions and conjunctions are allowed.

Finally, then, the relational translation ST,(-,-) of PDL into L,,, has the fol-
lowing modal clauses:

STp(w, (a)A) = Fv (ST p(wv,a) A ST (v, A)),
where the translation STp,(wv, ) of programs « requires two free variables:

Tp(wv,a) = Rg(w,v) (and similarly for other pairs of variables)
ST (wv aup) = STp(wv,a)V STy(wv, B)
ST (wv a;f) = Fu(STy(wu,a) AST,y(uv, B))
)

Tp(wv,a®) = (w=v)VSTy(wv,a)V

\/ Jui .. up (STp(wur, @) A--- A STy (unv, @)).

n>1

It may be proved that every PDL-formula ¢ is equivalent to its relational translation
on the class of PDL-models.

4.8. EXAMPLE (Linear Temporal Logic). For (linear) temporal logic, too, a rela-
tional translation may be obtained by simply transcribing its truth definitions in
a suitable target logic. Here we can simply take FO for the target logic, and its
vocabulary should contain a binary relation symbol < as well as the usual unary
predicate symbols. Then, the relational translation simply becomes

STy(w,U(A,B)) = Fw(w<vASTi(v,A) A
Vu (w <uAu<v— STi(u, B))).
Observe that this translation needs 2 quantifiers (and three variables), whereas the

translation for uni-modal logic only needs 1 quantifier (and 2 variables). We will
come back to this issue in Subsection 4.3.

4.9. EXAMPLE (Intuitionistic Logic). Recall from Definition 2.14 that the seman-
tics of intuitionistic logic is based on a reflexive, transitive relation and that assign-
ments need to satisfy the following restriction

Vw, u (p(w) A R(w, u) = p(u)) (4.3)
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for each translated proposition letter p. The relational translation for all connectives
except for the implication are as in the modal case. The intuitionistic semantics of
the implication

S,wEA->B iff Vv(R(w,v)
S,wE-4 iff Yu(R(w,v)

yields the relational translation
ST;(w,A— B) = Yv(R(w,v) = (ST;(v,A) = ST;(v, B))) (4.4)

ST;(w,mA) = Yo (R(w,v) = ~8T;(v, A)).

4.10. EXAMPLE (Relevance Logic). The semantics of relevance logic was given in
Definition 2.14. From the definition, the relational translation can be derived:

ST, (w,A— B) = VYu,v(R(w,u,v) = (ST, (u,A) = ST,(v,B)))
ST, (w,—A) —8T . (w*, A).

A formula A is a theorem of relevance logic if it is valid in the distinguished world
0. To check this with a FO theorem prover, ST,.(0, A) has to be proved from the
axioms about R and (-)* that were listed in Definition 2.14. Further, A entails B
in relevance logic if and only if for all interpretations and worlds w, if $,w = A
then &, w = B holds. This can be checked by using a FO-theorem prover to derive
VYw (ST, (w,A) = ST, (w, B)) from the axioms.

4.11. EXAMPLE (Classical Modal Logic). The key parts of the relational transla-
tion for classical modal logic are

ST.(w,04) = 3V (N(w,V)AYu(veV  ST.(v, A))) 40

ST (w,0A4) = VV(N(w,V)—Fw(veV « ST.(v,A))) ’
for the first version (weak semantics), and

ST (w,04) = 3V (N(w,V)AYo(v €V — ST'(v, A))) @

ST (w,0A) = YV (N(w,V) = Jv( eV AST.(v,A4)))

for the second version (stronger semantics).

Since the variable V is interpreted as a set and the membership predicate €
has the usual special meaning, this is not yet a suitable first-order translation. It
is, however, possible to eliminate the set variables and to replace the membership
predicate € with an uninterpreted binary symbol in. Suppose ¢ is the result of one
of the above relational translations of a modal formula. We can add the equivalence

Vw, X (N(w, X) < Ju (N'(w,u) A (Vvin(u,v) & v € X))) (4.8)
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to ¢. Then, ¢ is satisfiable if and only if ¢ A (4.8) is satisfiable. The non-trivial part
is to construct a model ' for ¢ A (4.8) from a model & for ¢. The formulae in ¢
may contain translations of formulae O0A or ¢ A (since OA < —0O-A, this case can
be reduced to the O-case).

Applying (4.8) as a rewrite rule to ST.(w,A) yields:

ST.(w, IZIA)

= IV (N(w,V)AVov €V < ST (v,A))
3V Ju (N (w,u) A (Vvin(u,v) v € V) AVvv €V < ST (v, A))
3V Ju (N (w,

=

“ N'(w,u) A (Vvin(u,v) & v € V) AVvin(u,v) & ST.(v, A))
& Fu(N'(w,u) A @AV Yvin(u,v) & v € V) AVvin(u,v) ¢ ST.(v, A))
< Fu(N'(w,u) AVvin(u,v) & ST.(v, A)).

This way, all occurrences of N can be eliminated from ¢, and subsequently (4.8)
can also be eliminated in a satisfiability-preserving way. N’ and in are now unin-
terpreted binary relations, just as ordinary accessibility relations in normal modal
logics. For the logic with the stronger semantics (4.7) we get a similar translation

ST (w,dA4) <+ Ju(N'(w,u) AVv (in(u,v) = ST.(v, A)))

which is, in fact, equivalent to the relational translation of a normal bi-modal logic
formula (N')[in]A with two modalities corresponding to the two accessibility rela-
tions N’ and in. This justifies a translation from classical modal logic (with strong
neighborhood semantics) to normal bi-modal logic: Tr(OA) = (N')[in] Tr(A)
(cf. also [Gasquet and Herzig 1993]). Due to the equivalence sign at the right-hand
side of (4.6) there is no such simple translation for classical modal logic with weak
neighborhood semantics. Nevertheless, the trick with (4.8) yields a translation into
FO. Unfortunately, the translation usually yields very large clause sets.

4.12. REMARK. The technique for eliminating the set variables and the member-
ship relation is typical for a general technique to modify or improve existing trans-
formations and translations. If A is the result of an existing translation, one adds a
definition & of some relation or function f, occurring in A, to ¢. d must define f in
terms of some new relations or functions, and adding § must be satisfiability pre-
serving. Once this is proved, one can apply the definition of f to A and eliminate f
completely from A. After this, one has to prove that deleting § is also satisfiability
preserving. The net effect is a transformation of A to some A’, which, in most cases,
can be defined as a single rewrite operation.

In [Baaz, Fermiiller and Leitsch 1994] such transformations are called structural
since they preserve much of the structure of the original input formula; see [Baaz
et al. 2001] (Chapter 5 of this Handbook) for the use of abbreviations in the setting
of normal form transformations. In Subsection 5.4 we briefly mention their use in
decision procedures.
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4.13. EXAMPLE (Quantified Modal Logic). The standard relational translation for
the quantified case can also be derived in a straightforward way. Each flexible func-
tion symbol gets an extra argument for the world variable. For a term ¢, ST (w,t)
inserts the variable w into these extra argument positions. For formulating the con-
dition “a in w’s domain” in the quantifiers we introduces a relation in(w,a) and
translate quantified formulae as

ST (w,Vz A) Vz (in(w,z) = ST (w, A)) (4.9)
ST(w,3z A) = 3Tz (in(w,z) A ST (w, A)). (4.10)

The translation rules for the other connectives and operators are as usual. As an
example, take the translation of the well-known Barcan formula:

ST (w,VzOp(z) —» OVz p(z)) =
Vz (in(w,z) = Yv (R(w,v) = P(v,x))) =
Vo (R(w,v) = Vz (in(v,z) = P(v,z)))

The in predicate can be omitted for logics with constant domain interpretation
(in(z,w) is always true). For increasing domain interpretations, however, the extra
axiom Vz,w,v (in(w, z) A R(w,v) — in(v,z)) is needed, and for decreasing domain
interpretations we use the corresponding dual form.

We hope that these examples demonstrate that the standard relational translation
can be derived in a straightforward way from the semantics of the connectives and
quantifiers in the source logic. Since the translation is almost one-to-one, soundness
and completeness proofs are usually straightforward.

Finally, we should point out that it is possible to give a possible worlds semantics
for a very general class of logics, thus allowing the formulae of these logics to be
translated into classical logic (see [Gabbay 1999, Chapter 2]).

4.3. Expressive power

Now that we have introduced the standard relational translation, which identifies
modal languages as fragments of first-order or other predicate logics, let us take
a closer look at what we have actually obtained. We will first consider matters
related to expressive power, and then, in Section 4.4, focus on computing with
translations of nonclassical formulae. In particular, we will first look at semantic
characterizations of the modal fragment in terms of bisimulations; after that we
consider several explanations for the good logical and computational behavior of
the modal fragment.

By Theorem 4.2, a modal formula A of the basic modal language can be viewed
as a unary FO formula a(z). How much of FO does this modal fragment cover?
While this is essentially a syntactic question, the best way to answer it is using
semantic means. The key tool here is provided by the notion of bisimulation.
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4.14. DEFINITION. Let &, §' be two interpretations for the basic modal language.
A bisimulation between § and ' is a non-empty relation Z between the domain
of & and the domain of ', respectively, that satisfies the following conditions:
1. Z-related states satisfy the same proposition letters;
2. if wZw' and R(w,v) in S, then there exists v' € §' such that R'(w',v') in &
and vZv'; and
3. if wZw' and R'(w',v") in &', then there exists v € & such that R(w,v) in &
and vZv'.
The following figure illustrates items 2 and 3:

&

Here, the dotted lines indicate the bisimulation relation, the solid and dashed arrows
indicates the binary relations R and R'.

If there exists a bisimulation linking two states w and w', then we say that w
and w' are bisimilar; two models are called bisimilar if there exists a bisimulation
between them.

4.15. EXAMPLE. Figure 1 contains two bisimilar interpretations & and S'; the p’s
indicate that the proposition letter p is true at the state it decorates. We leave it
to the reader to show that the dotted lines form bisimulation between & and its
unfolding &'.

[ . U3
¢ ®-
S D D g

Figure 1: Bisimilar models

Our second example concerns two states w and w' in two interpretations J and J'
such that there cannot be a bisimulation between w and w'. Consider Figure 2;
here, each interpretation has a single branch of finite length, and, in addition, J’
has one branch of infinite length. Because of this infinite branch, there cannot be
a bisimulation linking the roots w and w'. Observe that, despite this, w and w’ do
satisfy exactly the same modal formulae.

The following result explains why bisimulations matter for modal logic.
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4.16. PROPOSITION. Bisimilar models are modally equivalent. More precisely, let
S and ' be two interpretations for the basic modal logic, and let w and w' be two
states in S and ', respectively. Assume that w and w' are bisimilar. Then, for
every modal formula A we have that S,w = A iff S,w' = A.

It follows from Proposition 4.16 that all FO formulae in the modal fragment (i.e.,
unary FO formulae that are in the range of the standard relational translation) are
preserved under bisimulations in the sense that whenever two interpretations are
bisimilar, then we cannot distinguish between them using formulae from the modal
fragment. The following result states that this behavior is in fact characteristic of
the modal fragment.

4.17. THEOREM. Let a(x) be a unary first-order formula over a vocabulary with a
single binary relation symbol and unary predicate symbols. Then a(x) is (equivalent
to) the standard relational translation of a uni-modal formula iff it is preserved
under bisimulations.

PROOF. The ‘only-if’ direction is just a reformulation of Proposition 4.16. The
‘if” direction requires some work. Given a unary FO formula a(x) with the stated
property, we have to find a modal formula A such that ST, (z, A) is equivalent to
a(x). The key steps in the proof are as follows.

Consider the set MC(a) := {STn(z,A) | Ais modal, a(z) E STm(z,A)}. It
suffices to show that MC(«a) = a. To do so, take an interpretation & and state and
w such that & w | MC(a); we need to show that §,w [ a.

First, we use some general tricks from first-order logic to find an interpretation J
and state v such that J,v = MC(a) U {a(z)}. Then, v (in J) and w (in J) satisfy
the same modal formulae — but they need not be bisimilar. By some general
tricks from first-order logic again, we can massage &, w and J, v into so-called w-
saturated interpretations &, w* and J*,v*, respectively, where it can be shown
that the relation of satisfying the same modal formulae is indeed a bisimulation.
To wrap up the proof, we chase a from J,v to J*,v* (by first-order logic) to $*, w*
(by preservation under bisimulations) to &, w (by first-order logic) — and this is
what we needed. O

Theorem 4.17 is originally due to van Benthem [1976]. During the 1990s many differ-

N

J J

Figure 2: Equivalent but not bisimilar
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ent flavors of Theorem 4.17 were established: for the modal mu-calculus [Janin and
Walukiewicz 1996], for finite models [Rosen 1997], for temporal logic [Kurtonina
and de Rijke 1997], for certain fragments of knowledge representation lan-
guages [Kurtonina and de Rijke 1999], for CTL* [Moller and Rabinovich 1999],
and for description logics [Areces and de Rijke 2000].

Now that Theorem 4.17 has given us a precise characterization of the modal frag-
ment, let us take a closer look at some of its logical and computational properties.
We will see that the fragment behaves very well in many respects, and our main
concern will be to try and understand why this is so. To begin with, the modal
fragment has the finite model property.

4.18. DEFINITION. A set of formulae X is said to have the finite model property if
every satisfiable formula in X is satisfiable in a finite interpretation.

The modal fragment, or equivalently, the uni-modal language, has the finite model
property in a very strong sense: a modal formula is A satisfiable iff it is satisfiable
on an interpretation & with at most 2/4! states, where |A| is the length of A.
Deciding whether a modal formula is satisfiable at all is in fact ‘easier’ than the
strong finite model property may lead one to believe: it is a PSPACE-complete
problem [Ladner 1977].

What is probably more significant from an automated reasoning point of view is
the fact that the modal fragment has the tree model property.

4.19. DEFINITION. A tree model for the basic modal language is an interpretation
S = (W, R, P) where (W, R) is a tree. A set of formulae X is said to have the tree
model property if every satisfiable formula A € X is satisfiable at the root of a tree
model.

Using the notion of bisimulation (Definition 4.14) it is easy to show that the modal
fragment does indeed have the tree model property: let A be a satisfiable modal
formula, and let &, w be such that $,w |= A. Let J,w' be the complete unfolding
of & (starting from w). Then, J is a tree model, and J and $ are bisimilar via a
bisimulation that links w in & to w' in J. Thus, A is satisfied at the root of a tree
model, as desired.

What’s the importance of the tree model property? First, it paves the way for the
use of automata-theoretic tools and tableaux-based decision methods. Moreover, ac-
cording to Vardi [1997] the tree model property is essential for explaining the robust
decidability of the modal fragment. This is the phenomenon that the modal frag-
ment is decidable itself, and of reasonably low complexity, and that these features
are preserved when the fragment is extended by a variety of additional construc-
tions, including counting, transitive closure, and least fixed points.

So far, we have seen a number of examples of the good logical and computational
behavior of the modal fragment: the finite model property, the tree model property,
robust decidability, but there are many more — see [de Rijke 1999]. Why does the
modal fragment enjoy this behavior? Since the early 1980s several answers have
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been suggested. One of the first was due to Gabbay [1981a], who tried to give an
explanation in terms of finite variable fragments; these are defined by restricting
the number of variables (free or bound) that may be used.

4.20. DEFINITION (Finite Variable Fragments). Let k be a natural number. We
write FO* to denote the restriction of first-order logic to formulae of a relational
vocabulary (that is, without function symbols) that contain only the variables vy,

.., Ug. Note that interesting sentences in FOF are not in prenex normal form; on
the contrary, one extensively re-uses variables.

4.21. EXAMPLE. To express that a graph G = (V, E) contains a path of length
4, a sentence in prenex normal form needs 5 variables. By re-using variables, the
property is expressible in FO?, by a sentence of the form

37}13?}2 (E(Ul,vz) A 31)1 (E(Ug,’l}l) A 3’1]2 (E(’Ul,f}g) A 31)1 (E(Ug,Ul))))).

Finite variable fragments have a long history. The earliest systematic study seems to
be due to Henkin [1967] in the setting of algebraic logic; Gabbay [19814] develops the
modal connection, and Immerman and Kozen [1987] study the link with complexity
and database theory. We refer the reader to [Otto 1997] for more on FOF.

What do finite variable fragments have to do with modal logic and with the modal
fragment? Gabbay [19814] observed that we only need two variables to carry out the
standard relational translation; see Table 4. By way of example, consider the formula
OOOp again; using only two variables, its translation becomes ST, (vy, OOOP) =
Fug (R(v1,v2) AVor (R(va,v1) = Jus (R(v1,v2) A p(v2)))).

Tm(vi,p) = p(v1)
ST m (vl, —¢p) = 8T (vi,9)

STm(vi, ¢ AY) = STp(vi,d) A ST (vi,9)
STm(v1,09) = Fvs (R(v1,v2) A ST (v2, P))
ST m (1)1, O¢) = Vs (R(vi,v2) = STm(va,d))

Tm(v2,p) = p(v2)

STy, (1)2, ¢) = —85Tm(v2,9)

STm(a,d A1) = STp(va, ) A ST (v2, )
ST m(v2,09) = Ty (R(va,v1) A ST (v1,P))
STpn(ve,0¢) = Yoy (R(va,v1) = ST (v1,9))

Table 4: Two variables suffice

It is easy to see that for all modal formulae A: S,w E A iff S, w | STy, (w, A).
Hence, the modal fragment is really part of FO2. Does this embedding explain
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the good behavior of the modal fragment? The first decidability result for FO?
was obtained by Scott [1962], who showed that the decision problem for FO? can
be reduced to that of the Godel class, i.e., the set of first-order formulae with
quantifier prefix 3*VV3*. Since the Go6del class without equality is decidable [Godel
1932, Kalmér 1933, Schiitte 1934], Scott’s reduction yields the decidability of FO?
without equality. Mortimer [1975] established decidability of FO? with equality. In
contrast, for k¥ > 3, FO* is undecidable. Moreover, FO* does not have the tree
model property for any k > 2; to see this, simply observe that Vz,y R(x,y) is in
FOZ2. To make matters worse, FO? is not robustly decidable: adding any of counting,
transitive closure, or least fixed points results in undecidable systems [Gréidel, Otto
and Rosen 1997b].

In conclusion, then, finite variable fragments don’t seem to offer a satisfactory ex-
planation for the good logical and computational properties of the modal fragment.
An alternative proposal, launched in the late 1990s stresses the special nature of the
quantifiers occurring in formulae in the modal fragment. Guarded logics [Andréka,
van Benthem and Németi 1998] are defined by restricting quantification in first-
order logic, second-order logic or fixed-point logic in such a way that, semantically
speaking, subformulae can only refer to objects that are ‘nearby’ or ‘guarded.” Syn-
tactically, this means that all quantifiers must be relativized by ‘guards.’

4.22. DEFINITION ((Loosely) Guarded Fragment). The guarded fragment (GF) is
defined as follows
1. Every relational atomic formula Rx;, ... R;, or x; = x; is in GF;
2. GF is closed under boolean connectives
3. GF is closed under guarded quantification: if T and 7 are tuples of variables,
a(Z,y) is an atomic formula, and A(Z,7) is a formula in GF such that free(A) C
free(a) = {Z, 7}, then the formulae

3z (o(Z,9) A AT, 7)) and VI (a(Z,7) = A(7,7))

are in GF as well. (Here, free(A) denotes the set of free variables in A.)
The formula o(Z,7) in item 3 is called a guard.
The loosely guarded fragment (LGF) is obtained by relaxing the third condition
somewhat, to the following.
3'. LGF is closed under loosely guarded quantification: if A(Z,7) is in LGF, and
o(Z,7) = a1 A--+ Ay, is a conjunction of atomic formulae, then

3% (a(Z,7) A A(Z,7)) and VT (a(Z,7) — A(Z,7))

belong to LGF provided that free(A) C free(a) = {Z,7} and for any two
variables z € ¥ and 2’ € {Z,y} there is at least one atom «; that contains both
z and 2'.

Clearly, the modal fragment is part of GF. As a further example, the formula
VaVy (R(z,y) — R(y,z)) is in GF, but transitivity (VzVyVz (R(z,y) A R(y,z) —
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R(z,2))) is not in GF or in LGF. The formula Jy (R(z,y) A Py AVz (R(z,z) A
R(z,y) — Qz)) is in LGF, but not in GF.

The guarded fragment behaves much better — both logically and computation-
ally — than finite variable fragments.

4.23. THEOREM ([Andréka et al. 1998]). GF has the (strong) finite model property.

4.24. THEOREM ([Grédel 2000]). The satisfiability problem for GF is 2EXPTIME-
complete. By imposing an upper bound on the arity of the predicates or on the
number of variables this may be brought down to EXPTIME-completeness.

In addition, we have practical decision methods for GF and LGF [de Nivelle
1998, de Nivelle and de Rijke to appear]. As to the robust decidability of
GF, adding counting, transitivity or functionality statements destroys decidabil-
ity [Gradel 2000]. Ganzinger, Meyer and Veanes [1999] consider the restriction of
the guarded fragment to the two-variable case where, in addition, binary relations
may be specified as transitive. This very restricted form of GF without equality is
undecidable, but when allowing non-unary relations to occur only in guards, the
logic becomes decidable; this latter class contains standard relational translations
of modal logics such as K4, S4, and S5. Transitive closure and least fixed points
can be added to GF or LGF at no additional computational costs [Grédel and
Walukiewicz 1999].

Allin all, the guarded fragment seems to offer a much better syntactic explanation
for the good logical and computational behavior of the modal fragment than finite
variable fragments. But GF is not perfect either: its coverage is too limited to
explain the good behavior of, for instance, linear temporal logic (LTL) and systems
such as S4. Now, LTL can be covered by the loosely guarded fragment LGF [van
Benthem 1997], but S4 is beyond its scope. However, de Nivelle [1999] devised an
extended relational translation method, which introduces new relational symbols to
translate systems like S4 into monadic second-order logic; the scope of this method
remains to be explored.

Capturing nonclassical logics in terms of guarded or guarded-like fragments con-
tinues to be an area of active research.

4.4. Reasoning tasks

We have now got a fairly good understanding of the expressive power of modal
fragments. Let us try to exploit the connection between modal and first-order logic,
and feed our modal reasoning problems to general first-order automated reasoning
tools. Unfortunately, most first-order theorem provers, especially those working
with resolution, simply do not constitute decision procedures for (translated) modal
formulae. Given an unsatisfiable set of clauses C, any complete resolution procedure
will of course generate a contradiction, but the problem is that resolution need not
terminate if C happens to be satisfiable, not even if C belongs to a decidable fragment
(as in the modal case).
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4.25. EXaMPLE. Consider the formula O(p — <p), which is clearly satisfiable.
Proving this amounts to showing that the following set of clauses is satisfiable.

L. =R(c,y) V —p(y) V R(y, £ (y))

2. =R(c,y) vV -p(y) vV p(f(y))
The clauses have two resolvents:

3. =R(c,c) V =p(c) V ~p(f(c)) V p(f*(c))

4. ~R(c, f(y)) V R(f(y), f*(y)) V =R(c,y) V —p(y)-
Clauses 2 and 4 resolve to produce

5. 2R(c, f*(y)) V R(f*(y), f2(y)) V = R(c, f(y)) V = R(c,y) V ~p(y).
Clauses 2 and 5 resolve again to produce an analogue of 5 with even higher term-
complexity, and so on. None of the clauses is redundant and can be deleted. In the
limit our input set has infinitely many resolvents, and this shows that standard
‘plain’ resolution does not terminate for relational translations of satisfiable modal
formulae.

Even for unsatisfiable modal formulae, a ‘plain’ resolution method is not ideal: the
performance may seriously lag behind procedures that have been purpose-built for
modal reasoning. Table 5 illustrates the point with a brief comparison between a
number of tools. The results in columns 24 are taken from [Giunchiglia, Giunchiglia
and Tacchella 2000, Horrocks, Patel-Schneider and Sebastiani 2000]; they were ob-
tained on a Pentium 350Mhz with a time out of 100 seconds; the results in column
were obtained on a Sun ULTRA II 300MHz, with the same time out. The ex-
periments were performed on 9 collections of tests; each collection consists of 21
provable (in K) and 21 unprovable (in K) formulae of increasing difficulty; provable
formulae are indicated with the ‘p’ suffix, unprovable ones with the ‘n’ suffix. If a
system could solve all 21 problems, Table 5 lists a > in the relevant cell; the times
indicated are times spent on solving the most difficult problems in each category.

The systems mentioned are *SAT 1.2 [Giunchiglia et al. 2000], DLP 3.2 [Patel-
Schneider 1998], and TA 1.4 [Hustadt, Schmidt and Weidenbach 1998]. DLP out-
performs the other systems on nearly all tests; it is a tableau-based system which
implements intelligent backtracking. *SAT also implements intelligent backtrack-
ing, and is SAT-based. TA is a translation-based system that does not use the
standard relational translation but the more sophisticated functional translation
(as discussed in Section 5) on top of various resolution refinements. For comparison,
the fifth column, labeled ‘Bliksem 1.10a’ contains figures obtained by feeding the
relational translation to the general purpose FO theorem prover Bliksem [Bli 2000]
in auto mode. The experiments, though superficial, seem to indicate that the rela-
tional translation combined with plain resolution is simply no match.

What’s the cause for the poor performance of general purpose resolution-based
tools compared to purpose-built tools? Plain resolution simply does not exploit the
special nature of the original modal input formulae — we are ‘reducing’ a nicely
decidable logic to an undecidable one, and, thus far, our reduction does not use, for
instance, the finite model property or the tree model property of the modal input.

Roughly speaking, there are two responses to this issue: one which tries to stick
to the standard relational translation as we have defined it in Definition 4.1 and
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*SAT 1.2 DLP3.2 TA 1.4 Bliksem 1.10a

Test Size Time | Size Time | Size Time | Size Time
branch p > 0.21 19 46.06 6 65.76 3 20.78
n 12 94.49 13 53.63 6 65.33 3 32.03

d4 P > 0.06 > 0.05 15 71.11 3 66.57
n > 2.87 > 1.12 14  44.06 1 1.65

dum p > 0.04 > 0.02 17 64.99 3 55.10
n > 0.12 > 0.02 16 65.82 1 4.78

grz p > 0.04 > 0.04 > 0.51 5 81.04
n > 0.01 > 0.05 > 0.33 0 0.00

lin p > 0.01 > 0.03 > 9.24 > 80.57
n > 47.80 > 0.13 > 80.01 4 19.86

path p > 072 > 032 5 25.03 4 26.32
n > 0.96 > 0.36 4 60.84 2 61.96

ph P 8 48.54 7 10.23 6 43.16 5 11.33
n 12 0.60 > 2.69 9 55.13 5 8.21

poly p > 1.73 > 0.11 5 53.48 5 70.46
n > 2.25 > 0.18 4 9.09 4 52.24

t4p p > 0.29 > 0.06 16 88.66 0 0.00
n > 1.28 > 0.13 9 87.72 0 0.00

Table 5: Comparison

refines the resolution procedure to combine it with some kind of preprocessing that
exploits the special nature of the modal input; the other response is to abandon the
translation and use one that somehow encodes more modal information. Sections 5
and 6 below are devoted to a number of alternative translations; the remainder of
the present section is devoted to a brief discussion of the former response.

How can resolution be turned into a decision procedure for formulae that we get
out of the relational translation? During the 1990s special resolution refinements
became available that are aimed at doing just this. Some of this work has been
collected in [Fermiiller, Leitsch, Tammet and Zamov 1993], which includes a decision
procedure for ALC, the description logic counterpart of the modal logic K that uses
orderings plus saturation. We refer the reader to [Fermiiller et al. 2001] (Chapter 25
of this Handbook) for more details on resolution-based decision procedures relevant
for the (relational) modal fragment.

De Nivelle [1998] has given a resolution decision procedure for GF without equal-
ity. In his procedure, a non-liftable ordering is employed, and, as a consequence,
additional work is needed for proving refutational completeness; see [de Nivelle and
de Rijke to appear] for further details. Ganzinger and de Nivelle [1999] describe a
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decision procedure for GF with equality which is based on resolution and superposi-
tion. More precisely, ordered paramodulation with selection is a decision procedure
for GF with equality, and the worst-case time complexity of the decision procedure is
doubly-exponential, which is optimal, given that the logic is 2EXPTIME-complete.
The procedure can be extended to LGF with equality, but is much more involved
there and needs hyper inferences which simultaneously resolve a set of ‘guards.’

Instead of devising resolution decision procedures based on the relational trans-
lation, an alternative approach is to devise preprocessing techniques that enhance
standard resolution by encoding information about the source logic. Areces, Gen-
nari, Heguiabehere and de Rijke [2000] exploit a very strong form of the tree model
property to complement the standard relational translation for K with additional
semantic information. The key idea here is to encode the layering present in tree
models into the syntax of modal formulae, by first translating them into an ex-
tended multi-modal language where each modal depth has its own modal operators
and its own proposition letters, thus avoiding that clauses stemming from different
levels will be resolved.

4.26. ExampLE. Consider the satisfiable formula O(p — <p) from Example 4.25
again. By exploiting the tree model property of modal logic it is easy to see that
O(p — ©p) is satisfiable iff the following two clauses are:

L. =Ri(c,y) V —p1(y) V Ra(y, f(y))

2. =Ri(c,y) Vi (y) V p2(f(y))-
Here, a literal with subscript ¢ corresponds to a modal operator or proposition
letter occurring at modal depth i. Clearly, the set of clauses 1, 2 is saturated — a
dramatic improvement over Example 4.25.

To make things precise, we need an intermediate multi-modal language, whose
collection of modal operators is {<; | ¢ > 0}. Let A be a uni-modal formula, and
let » be a natural number. The translation Tr(A,n) of A into the intermediate
language is defined by

Tr(p,n) := pn
Tr(=B,n) := -=Tr(B,n)
Tr(BAC,n) := Tr(B,n)A Tr(C,n)
Tr(¢B,n) = <puTr(B,n+1).

The layered relational translation LT (A) is the composition of Tr and the relational
translation STp,: LT(A) = ST (w, Tr(A,0)). The following result may be found
in [Areces et al. 2000].

4.27. PROPOSITION. Let A be a uni-modal formula. Then A is satisfiable in K iff
its layered relational translation LT(A) is.

To evaluate the net effects of the additional preprocessing step used in the layered
relational translation, Areces et al. [2000] carry out tests running the resolution-
based prover Bliksem with and without the extra layering on a number of test sets.
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For a start, the tests in Table 5 were carried out for the layered translation, leading
to significant improvements:

Relational Layered

Test Size Time | Size Time
branch p 3 20.78 8 76.36
n 3 32.03 8 70.25

d4 p 3 66.57 11 71.76
n 1 1.65 6 56.36
dum p 3 55.10 > 5.01
n 1 4.78 > 6.45

grz p 5 81.04 > 12.56
n 0 0.00 > 53.79

lin p > 80.57 > 81.28
n 4 19.86 5 73.75
path p 4  26.32 7  50.25
n 2  61.96 4 26.69

ph p 5 11.33 5 11.17
n 5 821 5 7.99

poly p 5 70.46 13 75.76
n 4 5224 14 69.36

t4p p 0 0.00 13 82.77
n 0 0.00 6 55.94

In addition, test were carried out on problems generated by the modal QBF test
set. The latter is the basic yardstick for the TANCS (Tableaux Nonclassical Sys-
tems Comparisons) competition on theorem proving and satisfiability testing for
nonclassical logics [TAN 2000]. It is a random problem generator that has been de-
signed for evaluating solvers of (un-) satisfiability problems for the modal logic K.
The formulae of this benchmark are generated using quantified boolean formulae.
For unsatisfiable formulae, the use of layering results in a reduction in computing
time of up to four orders of magnitude, and an average reduction in the number
of clauses generated by one order of magnitude. For satisfiable formulae, similar
though less dramatic improvements may be observed.

The layered preprocessing step may be combined with any existing decision pro-
cedure. Alternatively, one can devise decision procedures that fully exploit the re-
stricted syntactic nature of the range of the layered relational translation.

To conclude this section, we briefly list what little is known about reasoning with
relational encodings of other nonclassical logics. Proving relevance logic theorems
with a FO theorem prover using the standard translation is possible. The per-
formance of FO theorem provers without extra strategies, however, is quite poor
[Ohlbach and Wrightson 1984]. Moreover, the usual systems do not provide a deci-
sion procedure. Unfortunately, not much is known about special strategies for this
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kind of translated relevance logic formulae, and the same holds true for intuition-
istic logic and for classical modal logic. The guarded and loosely guarded fragment
provide general first-order fragments into which many nonclassical logics can be
embedded via the relational translation and this gives us at least a starting point
for computing with such logics. But, clearly, extensive experimental and theoretical
work is needed here.

5. The functional translation

In the late 1980s and early 1990s the functional translation approach appeared
simultaneously and independently in a number of publications; see [Ohlbach 1988a,
Farifias del Cerro and Herzig 1988, Herzig 1989, Zamov 1989, Auffray and Enjalbert
1992]. The functional translation can provide a considerable improvement of the
behavior of FO theorem provers on translated nonclassical formulae. In this section
we first provide some background material; after that we discuss the expressive
power of the functional translation, as well as the notion of prefix stability, which
gives rise to an optimized functional translation, for which we discuss decidability
results in the final subsection.

5.1. Background

The functional translation is based on an alternative semantics of modal logic. The
fundamental idea is that each binary relation can be defined by a set of (partial or
total) functions.

5.1. PROPOSITION. For any binary relation R on a non-empty set W there is a set
AF R of accessibility functions, that is, a set of partial functions v: W — W, such
that

Vz,y (R(z,y) ¢ (37 : AFR7(z) =y)). (5.1)
Consider the relation R; represented by the arrows in the tree below:

w
K0
wa Xm We X7
There are many different ways to decompose R; into sets of two functions {1, 72}

For example:

NN
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r\* }s r\*“’ %

< -

J /\“/ /

Since the relation is not serial, and there are dead ends, all these y; and 7, are partial
functions. With partial functions there are even more possible decompositions for
a relation. The picture below shows an extreme case where the functions 71, ...,7s

are “as partial as possible”.
N

YANIAN

There is also the other extreme, where each accessibility function is mazimally
defined, i.e., whenever there is some y with R(z,y) then y(z) must be defined. For
total (serial) relations it is therefore always possible to decompose the relation into
a set of total functions. For example, the relation R» displayed on the left-hand side
can be decomposed into the relation on the right-hand side, where all the functions
v; are total:

w

Ulz/ \U)3 w2 3
e ANA
w w w
S S S S SSSO
Y172 V1,72 Y172 Y1,72
These observations can be exploited for a number of manipulations of formula sets

containing a binary relation, and in particular for the relational translation of modal
and intuitionistic logics.

Let us make things more formal. First, we need some notation. To avoid quantifica-
tion over function symbols (in the first-order encoding) as in (5.1), we use a list no-
tation in which any term ~y(z) is rewritten as [z7]. Here, [-, ] denotes the functional
application operation which is defined to be a mapping from a domain W to the set
of all partial functions over W. So complex terms of the form v, (...va(y1(2))...)
become terms of the form [[[[zy1]Y2] - - ]ym]- We usually omit all brackets except
the outermost ones, and write [£y172 . .. ¥m] instead of [[[[zy1]7Y2] - - -]Ym]-

Recall that a relation R is serial if it satisfies Vo3y R(z,y). For serial relations
R it is always possible to define R in terms of a set of total functions. For the
general case that R is not serial, there can be no set AF g of total functions that
‘captures’ R. The problem is that the target logic for the functional translation
cannot cater for partial functions: [z] is a first-order term and will always have an
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interpretation. A standard solution is to adjoin a special element L to the domain
W of the model at hand, thus obtaining W+, and to encode every partial function
~ as a total function which maps the elements for which it is not defined to the
new ‘undefined’ state L. Accordingly, any formula in which such an ‘undefined’
situation occurs, is translated into a conditional formula.
We introduce a special predicate deg, called the dead-end predicate, which is
defined by
Vi (degr(z) <> Yy (y € AFgp — [z7] = 1)) (5.2)

5.2. THEOREM. Let R be a binary relation on a set W, and let Wt = W U {L}.
Then, the following defines R in terms of a set AF g of total functions v: W+ —
W

Va,y : W(R(z,y) ¢ (nder(z) NIy (y € AFR A [27] = 9))), (5.3)

where deg is defined as in (5.2).

The equivalence (5.3) defines any binary relation R in terms of a set AF g of total
functions and a special set deg of states. The right-hand side of (5.3) says that if
z is not a dead-end in R, then there is a total function v which maps z to y. If R
is serial, then dep is the empty set, and (5.3) simplifies to (5.1).

We are ready to define the functional semantics for modal logic.

5.3. DEFINITION. A functional frame is a 4-tuple F = (W, de, AF,[,-]), where W
is a non-empty set, de is a subset of W, AF is a set of total functions v : W — W,
and [-,-] : W x AF — W the functional application operation.

A functional model is a pair & = (F, P), where F is a functional frame, and P
is a valuation. The new truth definition for the diamond operator is

Sw = CAIf w¢ de and Fy: AF (S, [wry] E A),
and dually for the box operator.

It can be shown that any modal logic K3 is complete with respect to a class of
relational frames (or models) iff it is complete with respect to a class of functional
frames (or models); see, for instance, [Schmidt 1997, Chapter 2].

5.4. DEFINITION (Functional Translation). First, we need to specify the target
logic. Following [Schmidt 1997] we use a many-sorted logic with a sort hierarchy
and set declarations for function symbols [Walther 1987]. In this logic, a sort symbol
can be a viewed as a unary predicate and it denotes a subset of the domain.

For the functional translation we introduce the sorts W and AF. The variables
Z, Y, 2, ..., are assumed to be of sort W; the functional variables are denoted by
Y, Y1, Y2, - - -, and are or sort AF. The sort of the operator [-,-] is W x AF - W.

The functional translation FT(t, A) is defined as follows:

FT(t,p) = p(t)
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FT(t,mA) = -=FT(t,A)
FT(t,AVB) = FT(t,A)V FT(t,B)
FT(t,ANB) = FT(t A)AFT(t, B)
FT(t, 0 A) Iy : AF FT([tv], 4), if & is ‘serla,l
—de(t) ATy : AF FT([ty], A), otherwise.
FT(t,04) Vv : AF FT([tv], 4), if O is 'serlal
—de(t) = Vy: AF FT([tv], A), otherwise.

Here, 7y is assumed to be a variable not occurring in ¢.
The functional translation can easily be extended to multi-modal logic. For each
modality M one introduces an extra sort AF ;.

5.5. EXAMPLE. Take the McKinsey formula O0Cp — <OOp. Its functional transla-
tion is
Vz (—de(z) = Vy(~de([zy])A30 p([zvd])) = (~de(x)ATy(~de[zy] — Vi p([z7d])))).

5.6. EXAMPLE (Wise Men Puzzle). This example is a famous puzzle used to illus-
trate the application of modal logic in formalizing the notion of knowledge.
A certain king wishes to determine which one of his three wise men is the wisest.
He arranges them in a circle so that they can see and hear each other and tells
them that he will put a white or black spot on each of their foreheads, but at
least one spot will be white. (In fact all three spots are white.) He offers his favor
to the one who first tells him the color of his own spot. After a while, the wisest
announces that his spot is white. How does he know?
In our formalization we introduce constant symbols a, b, ¢ to name the three wise
men. They are rigid symbols, not depending on the worlds. Modal operators [a],
[b] and [c] are used to encode the notion “wise man a (b, ¢) knows.” For a variable
y, the operator [y] means “wise man y knows.” In addition, we use the standard
O-operator to encode “everybody knows.” The modality associated with this O is
of S5-type; it quantifies over all worlds. The predicate WS (a) means “a has a white
spot.” WS is the only flexible symbol in this example. Let ¢ be the wisest of the
three men. The axioms relevant for solving this puzzle are:
eaF#bAa#bAb#c (All three wise men are different.)
o L(WS(a) vV WS(b) vV WS(c)) (Everybody knows that one of them has a white
spot.)
o O\Vz,yz £y = (-WS(z) — [y]=-WS(z))) (They can see each other. Therefore
they know when any other one has no white spot.)
o [c][b]-[a] WS(a) (¢ knows that b knows that a is not aware of his white spot.)
o [c]-[b] WS(D) (c knows that b is not aware of his white spot.)
The theorem to prove is [¢] WS(c) (¢ knows the color of his own spot).
We use this example also to illustrate some optimizations of the functional trans-
lation. An optimized functional translation and clausification of the axioms and the
negated theorem is:



1444 H.J. OHLBACH, A. NONNENGART, M. DE RUUKE, AND D. GABBAY

) b#a
) c#a
) c#b
4) WS(w,a) Vv WS(w,b) V WS(w,c)?

) z=yV WSw,z)V-WS(wy,],z)?

) WS ([woricvzedal, a)*

)~ WS([wovieds], b)
8) —WS([wd.],c).?
A sequence of UR resolutions proves the theorem:
9 [7,5,1] -~WS([womcdyyal,0)®  ([c](b)]a]l~WS(b))"
10) [9,4,6] WS([wovicdpdda],c)®  ([c](b){a) WS(c))?
11) [10,5,2] WS([wovic,ds];c) ([c](b) WS ()"

12) [11,5,3] WS([wonicl,c) ([]WS(c))

(13) [12,8] empty clause.
The derivations obviously represent nontrivial conclusions. A more intuitive and
comprehensible explanation requires a lot more intermediate steps.

(
(10)
(11)
(12)
)

The following result states that the functional translation is sound and complete.

5.7. THEOREM. Let KX be a modal logic that is complete with respect to a class
of relational models. A modal formula A is a theorem of KX iff the conjunction of
the following formulae is unsatisfiable

1. VpVzx FT(z, %)
2. Vz FT(z,A)
3. (5.9).

2The variable w originates from the O-operator which in this case quantifies over all worlds.
Therefore it is still a “world variable,” not a accessibility function variable.

3The variable w again originates from the [J-operator. The variable y ranges over the three
wise men. The term ry, denotes an accessibility function for the knowledge operator for wise man

4wp is a Skolem constant originating from the negated universal quantifier for the negated
theorem. It denotes the world where the contradiction manifests itself if the unnegated theorem
is in fact universally valid. The terms in the world path yic7y2pde have to be written this way in
order to match 7y in the axiom above; 1. stems from [c], 1 stems from [b] and d, is a Skolem
constant that stems from —[a].

5(8) is the translated negated theorem. d. is the Skolem constant stemming from the negated
[c]-operator.

6The variable w in (5) ranges over all worlds. It can therefore be instantiated with whole
world paths (this requires a theory unification procedure). The unifier for this step is actually
{z = by = a,w = woytcdp}-

¢ knows that b considers that a knows that b does not know the color of his spot.

8The unifier for this step is {y > b,w — woy1c)dpda }

9¢ knows that b considers that a considers that ¢’s spot is white.

10¢ knows that b considers that ¢’s spot is white.
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5.2. Frame properties

Many variants of modal logics and other nonclassical logics are characterized by
properties of the accessibility relation. If these properties are first-order axiomati-
zable, the corresponding axioms can easily be added to the standard translation.
For the functional translation, the axioms must be translated into the functional
language. This is usually straightforward, but the translated axioms are in general
equations. In some cases one can simplify the resulting equations again by pulling
the existential quantifier over the universal quantifiers.
Let us have a look at some examples; consult Table 6 for a summary.

5.8. EXAMPLE. We use the “[zy]” notation. The functional counterpart of reflez-
ivity (the modal logic T) is:

VzIdy: AF [zv] =z
In maximal functional frames one may pull the existential quantifier to the front:
Iy : AFVz [2v] = .

Skolemization then yields Vz [z id] = x, where id is the identity function on worlds.
The result is quite intuitive. It means that every world can be mapped to itself by
an accessibility function, and this is reflexivity.

5.9. EXAMPLE. On serial frames, the functional version of the symmetry axiom
p — OCp (modal logic B) is

Vv 3y, (2 = [27172])

(If v, takes some world z to some world y then 7, takes y back to 71; v2 is some
kind of inverse function to 7. In tree-like frames, it really is the inverse function.)

5.10. EXAMPLE. For the transitivity axiom Op — OOp (modal logic K4) we obtain

Vo, v2 Ty ((mde(x) A =de(fzn])) = [zne] = [27])

(In words: y is the composition of v; and ~,. The equation states that the compo-
sition of accessibility functions is again an accessibility function, mapping worlds
to accessible worlds.)

5.8. Prefix stability and the optimized functional translation

The clause form of functionally translated formulae may contain Skolem functions.
These may cause complex terms to be built up during resolution. It can be shown
that at least for the case of propositional modal logics, Skolem constants are suffi-
cient. This means that functionally translated formulae in clausal form are function



1446 H.J. OHLBACH, A. NONNENGART, M. DE RUUKE, AND D. GABBAY

‘ name ‘ axiom ‘ functional property (without seriality) ‘
D 04 - CA Vi —de(x)
T 04— A VrIy (—de(z) Az = [z7])
B A—-0OCA VzVv36 ((~de(z) = ~de([z7])) A (—de(z) = = = [27d]))
4 OA — 004 | VaVyi, 123y ((mde(z) A =de([zm])) = [z7172] = [27])
5 CA - OCA | VaVyVi3de ((—de(x) — —de([zd])) A (—de(z) — [z7] = [zde]))

Table 6: Axioms and their functional frame properties

free (if world paths are taken as sequences of variables and constants), and this sim-
plifies the development of terminating resolution strategies. The present and the
next subsection are devoted to an explanation of the underlying machinery. The
first concept that we need to understand is prefiz stability.

Skolem functions can be avoided if it is possible to pull existential quantifiers orig-
inating from <-operators over universal quantifiers originating from O-operators.
The following formula illustrates what this means.

Fr(@O¢p) = VYwFT(w,00p) = VYwVyiIye p(Jwyivyz])
& YwIyaVy p([wyiye]).

From a predicate logic point of view, this equivalence does not hold. In general,
we are not allowed to pull existential quantifiers arbitrarily over universal quanti-
fiers. Syntactic properties of functionally translated formulae and certain semantic
features of “functional frames,” however, do indeed guarantee both directions of
the equivalence. The syntactic property is “prefix stability” [Ohlbach 19884] (or
“unique prefix property” [Auffray and Enjalbert 1992]).

5.11. DEFINITION. Consider a term t = [zy17Y2 . .- ViVi+1 - - - Ym] In the target logic
of the functional translation. Any subterm z or [271 . ..7;] (for 1 < i < m) is a prefix
in the term t. The prefiz of a variable ;41 in the term ¢ is the term [zv1 ...7;].

Let T be a set of terms of the form t as above. T is said to be prefix stable if any
variable v of type AF occurring in T has exactly one prefix. That is: for any -, the
set {s | [sy...] occurs in T} is a singleton.

5.12. PROPOSITION. Let A be a modal formula. The set of terms occurring in
FT(w,A) is prefix stable.

Proor. Consider a term [w~ . ..y,7], occurring somewhere in a functionally trans-
lated modal formula; the prefix of v is [w7y; ...7,]. Of course, 7 originates from a
particular modal operator M, and 7 ..., originate from the nested sequence of
modal operators preceding M on the path in the formula tree leading to M. Hence
all other occurrences of v have exactly the same prefix wy; ... v,. 0
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Because prefix stability of terms is such a fundamental concept, Schmidt [1997]
gives an independent definition of a logic, called basic non-optimized path logic,
that emphasizes the particular ordering of the variables occurring in a literal.

5.13. DEFINITION. The language of basic non-optimized path logic is that of
monadic first-order logic extended with a non-associative binary operation [-,-]
and a designated constant [] which plays the role of the initial world variable w
in our functional translation. The sorts are W and AF. There are finitely many
unary predicate symbols p, g, ..., and possibly also a special unary predicate de.
The constant [] has sort W, and the function [-,-] maps pairs of world terms and
functional terms to world terms. Terms are of the form

[[[v1]v2] - - J¥m] or in shorthand notation [y17ya - . . Ym]-

An atomic basic non-optimized path formula over an ordered set of variables
Xi = {m,--.,7} is a monadic literal with an argument, as in p([y1...7]) or
=p([11 ---7]). Complex formulae are defined by induction:
1. Any atomic basic non-optimized path formula over X; is a basic non-optimized
path formula over X;.
2. Fviy1 A and Vv;41 A are basic non-optimized path formulae over X;, whenever
A is a basic non-optimized path formula over X; ;.
3. Any boolean combination of basic non-optimized path formulae over X; is a
basic non-optimized path formula over X;.

A sample basic non-optimized path formula over X3 is the formula
1 (V23 p([v17278]) A V273 =p([717278]))-

5.14. PROPOSITION. Let A be a basic non-optimized path formula. The set of terms
occurring in A is prefic stable.

5.15. PROPOSITION. Let A be a modal formula. Then FT(w,A) is equivalent to a
basic non-optimized path formula.

5.16. PROPOSITION. Let A be a basic non-optimized path formula. Then there exists
a modal formula B such that A is equivalent to FT (w, B).

The results above establish a direct correspondence between KD-formulae and
basic non-optimized path formulae. What about non-serial logics? The modal logic
K can be translated into the modal logic KD adjoined with a special propositional
symbol de. The translation (-)* from K to KD is defined by

p* = p
(nA)* = -4
(AANB)* = A*AB*
(CA* = —denOA*
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Informally, the new propositional symbol de has the same interpretation as the
dead-end predicate of the functional translation: it denotes the set of states at
which the accessibility relation is not defined.

5.17. PROPOSITION. Let A be a modal formula. Then A is provable in K iff A* is
provable in KD.

The optimized functional translation of a modal formula A is obtained by a se-
quence of two transformations: (1) the functional translation FT as discussed in
the preceding subsections, and (2) the quantifier exchange operator T, which swaps
quantifiers according to the following principle:

WS A ¢ V5T A. (5.4)

The crucial argument which allows one to prove that existential quantifiers over ac-
cessibility functions can be pulled over universal quantifiers is of a semantic nature.
There are in general many different ways to decompose a binary relation into sets
of accessibility functions. We are interested in those functional frames which justify
moving existential quantifiers over universal quantifiers. Let us illustrate the basic
idea with an example.

Suppose a formula OOp is true at the state wy, i.e., wy = OCp. This means that
for every world w accessible from w; there is a world accessible from w where p is
true. In terms of the relation symbol R this reads as Vw (R(w1,w) = v (R(w,v) &
v = p)). Consider the situation in the diagram on the left-hand side below. In this
model the formula JvVw (R(w1,w) = R(w,v) & v = p) in which we have swapped
the existential quantifier Jv with the universal quantifier Vw is false.

’U) |:|<>p <a w \76,
2 <>p U’3 ~ ~
°J V’
@ .\ o ‘A
7
P P WP P

But now consider the functional frame in the diagram on the right-hand side. The
numeric labels 7 denote the accessibility functions «;. In the functional language we
can express the fact that OOCp is true at w1 by V36 d(y(w1)) | p. In this model
we can swap the 30 quantifier and the Vv quantifiers. 36V d(y(w1)) | p is true,
because the function 74 (as well as the function ;) maps the worlds wy and w3 to
a world where p holds. Moreover, regardless of which one of the worlds w4, ws, ws
or wy p is true, in this model there is always a function 7; which maps ws and ws
to the right worlds.

It can be shown that in functional frames which are mazimal, i.e., which contain
all maximally defined accessibility functions, moving the existential quantifiers in
front of the universal quantifiers is always justified [Ohlbach and Schmidt 1997].

More precisely, define the functional exrtension of a serial interpretation & =
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(W, R, P) to be the structure §* = (W, R, AF,[-,-], P), where AF is the largest
set of all functions that define R.

5.18. THEOREM. Let A be a modal formula true in a relational interpretation . Let
S* be its functional extension. For the functional translation B of A the following
equivalence is true in *:

V36 B([ztvyt'6t"]) <> 36V B([ztyt'6t'")).

The so-called quantifier exchange operator Y converts a non-optimal path formula
into prenex normal form and moves all quantifiers of functional variables inward as
far as possible according to the rule

IV A becomes VITyA.

For any modal formula A, YFT(w, A) has a quantifier prefix consisting of a uni-
versally quantified world variable followed by a sequence of universally quantified
variables of sort AF, and a sequence of existentially quantified variables of sort AF'.
The quantifier prefix of the negation =Y FT (w, A) is then a sequence of existential
quantifiers followed by a sequence of universal quantifiers.

5.19. ExaMPLE. Consider the McKinsey formula O0Op — $Op. Recall that the D
axiom Op — Op is a theorem of K plus the McKinsey formula. The functional
translation is given by

Vz (Vy36 p([zd]) — Fv'30" p([z+'4"])).
The prefix normal form is
Va3yVo3y've' (p([zyd]) = p([z7'd']))-
Applying Y produces
VzVove'Iy3y' (p([zyd]) — p([z+'6"])).-
And the negation = YVFT (z,00p — <©Op) is given by
323535V (p([273]) A p([7'8])).-

Applying T to a formula A results in a weaker formula A’, since A — A’, for
in general JzVy B implies Vy3y B, but not conversely. The next result provides
conditions under which working with the weaker form does suffice to prove A.

5.20. PROPOSITION. Let K(D)X be a complete (or complete and first-order defin-
able) modal logic. Then, for any modal formula A, A is a theorem of K(D)X iff
Ve FT(z,X) — YVz FT(x,A) is a second-order (or first-order) theorem.
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5.21. PROPOSITION. Let K(D)X be a complete (or complete and first-order de-
finable) modal logic with modus ponens and necessitation as its only proof rules.
Then, for any modal formula A, A is a theorem of K(D)X iff YVx FT(z,%) —
YVz FT(z, A) is a second-order (or first-order) theorem.

The functional language is more expressive than the relational language, and prop-
erties which are second-order in the relational language may become first-order in
the functional language. We should stress that the above results only state that
a formula A is a theorem of K3 iff a weaker theorem follows from weaker frame
properties. The net effect of moving existential quantifiers over universal quanti-
fiers in the functional translation of modal formulae is that complex Skolem terms
are avoided; at most Skolem constants occur in the resulting clausal forms. In the
following subsection we will reap the rewards of this fact. First, however, we will
introduce basic path logics.

5.22. DEFINITION. Path logics are clausal logics. Clauses of basic path logic have
the form p([cde])V—-g([ckA]), and are built from constant symbols, like ¢, e, variables
like 0, &, A, a special constant symbol [| (denoting the empty path), a left associative
operation [-, -], and unary predicate symbols, like p, ¢, as well as V and —.

The only Skolem terms in basic path clauses are constants. Terms, like [cde] and
[ckA], are called paths, and they are required to satisfy prefix stability for variables.

A path formula is a conjunction of basic path clauses. Non-basic path logic arises
when we allow non-empty theories YVz FT(z,¥).

Examples of non-basic path logics are provided by the theories associated with the
modal logics T and K4; their Skolemized formulations are

(right identity) [z id] = z, where id is the identity function, and

(associativity) [z(y o d)] = [zvd], where o is functional composition.

5.23. PROPOSITION. Let C be an operator on first-order formulae such that C(A) is
a clausal form of A. Let A be a modal formula. The set of clauses C(—=YVz FT (z, A))
is a well-formed expression in (basic) path logic, provided that the operation T moves
all existential functional quantifiers inward over all universal quantifiers.

5.4. Decidability of path logic

In this subsection we discuss decidability aspects of path logics, and hence, by
Proposition 5.23, of modal logics. The core idea underlying a resolution-based de-
cision proof for path logic goes back to Joyner Jr. [1976]: let S be a set of path
clauses generated by saturation from a finite input set, and establish the existence
of a term depth bound for terms in S and a bound on the size of any clause in S.
Inference for basic path logic may be performed using resolution with syntac-
tic unification. Now, standard equational reasoning with equations such as (right
identity) and (associativity) is not very efficient. Therefore, it is usually better to
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incorporate the equations into suitable theory unification algorithms for the world
paths, and, hence, to do inference for non-basic path logics with theory resolution.

In [Ohlbach 1988b] unification algorithms for combinations of the above two
properties have been presented and proved to be terminating, sound and complete.
The proof relies heavily on the prefix stability of world-paths. The algorithm is
presented in a Martelli-Montanari style as a number of transformation rules for
sets of equations:

(Decomposition)  f(s1,.-.,8n) = f(t1,-..,tn) = s1 =t &...& s, =1,
(Separation) ss=tt—os=t&s=t

(Identity) sws' =t—> w=[&ss' =t

(Inverse) ssws'=t— w=s"1 &ss' =t

(Path-Separation) ws=tt' 2w =t &s=1t

(Splitting) wss=ttvt = v=vi 1 & w=ttv &ss=uvy t'.

Boldface letters represent longer world-paths, whereas normal letters represent sin-
gle terms. The “Decomposition” and “Separation” rules are sufficient for modal
logics K and KD. The “Identity” rule encodes the reflexivity axiom. It instantiates
a variable with an empty world path. The “Inverse” rule encodes the symmetry
axiom. It goes together with a simplification rule: zz=! = [] and exploits the fact
that the prefix of variables w is always the same. Therefore, all occurrences of sw
which are instantiated with w — s~1 can be simplified to [] in the same way. The
last two rules, “Path-Separation” and “Splitting” encode the transitivity axiom.
They are very similar to the corresponding unification rules for associative func-
tions [Auer 1992]. But due to the prefix stability, the application of these rules
terminates, in contrast to the rules for associative function symbols.

In the basic case of the modal logics K and KD there is at most one most
general unifier for world-paths. In all other cases there are finitely but sometimes
exponentially many most general unifiers. The application of the rules becomes non-
deterministic, requiring a tree-like representation of the intermediate steps in the
unification. The unification algorithm is no longer minimal, and the same solutions
may be computed repeatedly. Schmidt [1998a] presents improved unification rules
for transitivity, where the world paths are unified mainly from left to right, thus
reducing the branching rate of the unification tree.

The optimized functional translation of propositional modal logic formulae yields
clauses without function symbols in the world paths. Moreover, instantiation with
unifiers computed using the above unification rules except “Path-Separation” and
“Splitting” does not increase the length of world-paths. Hence, resolution and fac-
torization do not increase the size of the literals. As a consequence, the number of
condensed!! and not subsumed clauses remains finite.

5.24. THEOREM ([Schmidt 1998]). Any complete resolution procedure with con-
densing is a decision procedure for the satisfiability problem of a finite set of finite
clauses of the basic path logic.

1A clause is condensed iff it is not equivalent to one of its factors.
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The proof of the above result uses the fact that, for basic path logic, there is no
growth of terms, that the basic path logic is closed under resolution with condensing,
and that there is no unbounded growth of the size of clauses.

The result can be formulated more generally, as follows.

5.25. THEOREM. Any complete resolution procedure with condensing and possibly a
normalization function is a decision procedure for the satisfiability problem of finite
clauses in path logics, provided

1. a term depth bound exists,

2. unification is finitary, and

3. the normalization function is effective and returns basic path clauses.

Although any input set is a set of basic path clauses without any non-constant
occurrences of functional terms, the third condition in the above theorem is impor-
tant as theory unification (needed to handle the theories built into non-basic path
logic) may introduce non-constant functional terms.

The first condition in Theorem 5.25 can be interpreted in two ways. First, a term
depth bound exists for the particular resolution procedure. Or, an a priori term
depth bound exists for the particular path logic; the latter can, for instance, be
extracted from the finite model property of the logic. The given term depth can
then be used in a simple blocking mechanism to stop the proof procedure from
generating clauses whose depth is larger than the given value.

Theorem 5.25 describes the class of path logics (in general, with a theory) for
which unrestricted resolution plus condensing is guaranteed to terminate. In par-
ticular, the theorem provides a decidability result for the satisfiability problem for
those modal logics that can be embedded in path logics such that the three condi-
tions in Theorem 5.25 are met.

5.26. THEOREM. Resolution and condensing (combined with any compatible refine-
ment strategies) is a decision procedure for
1. basic path logic and for (the optimized functional translation of) K, KD, S5
and the multi-modal versions of K and KD;
2. (the optimized functional translation of ) K'T, and
3. KD4 and S4.

For practical purposes the solution of using an artificial term depth (as provided
by e.g., the finite model property) is poor [Hustadt et al. 1998]. Hence, the search
space is very large, even for small input formulae. Therefore, from an efficiency
point of view, good search strategies are still badly needed. But due to the above
results, any fair strategy is automatically complete.

5.5. Extensions and variations

The idea behind the functional translation is not restricted to logics with ordinary
binary accessibility relations, and in this subsection we consider the functional
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translation of a number of logics other than uni-modal logic.

To begin with, what’s the functional translation of quantified modal logic? Modal
and intuitionistic formulae that have been translated with the relational translation
have a particular structure which can be exploited to get rid of the introduced binary
relations. For operators of “universal force” the standard translation yields formulae
of the kind Vv (R(w,v) = A(v)) (cf. (4.1), (4.4), (4.5), (4.9)), whereas operators of
existential force are turned into Jv (R(w,v) A A(v)) (cf. (4.2), (4.10)). If it is known
that the relation R is serial, which is the case for the in relation introduced by
the standard translation (4.9), (4.10) for quantifiers,'? then Definition 5.4 can be
applied to the translated operators of universal force, and translated operators of
existential force can be modified in a similar way:

FT(w, f(t1,..-,tn)) = fw, FT(w,t1),...,FT(w,t,)) (5.5)
if f is a function or predicate symbol

FT(w,Vz A(z)) = Vd:AF;, FT(w,A)[z — [wd]]*? (5.6)

FT(w,3z A(z)) = 3d:AF;, FT(w,A)[z — [wd]]. (5.7)

5.27. EXAMPLE. An example for the functional translation of a quantified modal
formula (assuming a serial accessibility relation, but arbitrary domains) is

FT(w, & (Va (Op(z) ADg(z)) = O (Vy p(y) AVzq(2)))) =

Vo, : AR Fvs : AFR p([wy1y273], [wyy261]) A ]
Ivi,72 : AFR v Al et
st AFR V8 o AFy, p([wy1v27s], [wyiy2ysd2]) A
Vo3 : AFy, q([wyiv27s], [wyiy2ys03])

The term [w~;17273] denotes the world accessible from w via 1, a2, 73 transitions;
it corresponds to the first sequence of three nested <¢-operators. The variable is
replaced by the term [wy17y201]; the latter denotes an element in the domain of
the world [w~y17y2]. The function §; maps this world to the domain element. The
quantifier V§; : AF;,, which originated from the Vz-quantifier, ensures that all
domain elements are covered.

Unfortunately, the quantifier exchange operator Y which helped us to turn the
functional translation into the optimized functional translation, cannot be used in
the setting of quantified modal logic. An example (due to Andreas Herzig) shows
what can happen. The formula O(3z (p(z) A OC—p(x))) is true at the world w; of
the following model.

12The interpretations for quantified modal logics are restricted to non-empty domains. Therefore
Vw 3z in(w, z) can always be assumed.

13T (w, A)[z — [wd]] means translating A and then replacing all occurrences of = with [wd].
The translation rules for the domain quantifiers eliminate the in predicate as well. This need not
be done if one wants to keep the domain variables as they are.
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v el

w\
For every world u accessible from w; (these are wy and ws) and for some object z,
p(z) holds (for we, x is a and for ws, x is b), and for every world v accessible from u
(w1) there is a world y accessible from v (w2 and w3 are the candidates) such that
—p(z) holds at y. Now we have to choose either ws or ws and check whether —p(x)
holds. However, © was determined in a previous world, in the case that u = w,, x
is a and in the case that v = w3, x is b. Our choice depends on the path we took
to get to v = w;. This example shows that we must be careful where we apply the

trick of moving existential quantifiers to the front. For quantified modal logic the
trick does not work in general.

ws p(b), ~p(a).

5.28. EXAMPLE. Next, we turn to intuitionistic logic. The “functional version” of
the restriction on the assignment of predicates (4.3) that we find in intuitionistic
logic is

VwVy : AF g (p(w) — p([wy]))- (5.8)

This axiom can easily be turned into a theory resolution rule.
p(s),C

—-p([s't]), D o unifies s and s
Co,Do

5.29. ExaMPLE. Functional translations can always be tried when the binary rela-
tions occur in the typical guarded patterns Vy (R(z,y) — ...) and Jy (R(z,y)A...).
This is the case, for example, in (4.6), the standard translation for classical modal
logics with neighborhood semantics. Here it is the neighborhood predicate N which
can be replaced by functions AF), mapping worlds to their neighborhoods. As-
suming seriality of N (each world has at least one neighborhood) one can define a
functional translation F'T as follows:

FT . (w,04) = 3y:AFnYv(in([wy],v) < FT.(v,A))
FT (w,0A) = Vv:AFy3v(in([wy],v) & FT.(v,A)).

It is possible, although it would not make much sense, to replace the in-predicate
with functions AFj,; in does not occur in the typical modal pattern. Therefore,
the translation introduces equations and in-equations requiring equation handling
in the theorem prover.

The standard translation for classical modal logic with the stronger semantics is

ST.(w,04) = 3IV(N(w,V)AVv(in(V,v) = ST.(v, A)))
ST (w,0A) = VYV (N(w,V)— Jv(in(V,v) A ST.(v, A))).



ENCODING TwWO-VALUED NONCLASSICAL LOGICS 1455

Now it does make sense to replace both relations, N and in, by accessibility func-
tions. Assuming seriality of N and in, i.e., each world has a non-empty neighbor-
hood, we get a much more compact functional translation:

FT'(w,0A4) Jv: AFN V6 € AFy, FT . ([wyd], A)
FT!(w,0A) = Vvy:AFyN36: AF;, FT.([wyd], A).

Intuitively, v maps the world w to a neighborhood of w and § maps this neighbor-
hood back to a world.

5.30. EXAMPLE. It is instructive to see what happens if we try to prove the K-
axiom O(p — ¢) — (Op — Og) using the above translation for classical modal logic.
Since the K-axiom does not hold in classical modal logic, a resolution refutation
should fail. The negation of the K-axiom is O(p — ¢) A Op A O—q. The translation
yields three clauses:

—p([woay]) V g(Jwoay]) a is a Skolem constant
p([woby]) b is a Skolem constant
=q([woye]) ¢ is a Skolem constant.

After one resolution between the first and last clause, giving —p([woac]), no further
inference step is possible. The clause set cannot be refuted.

6. The semi-functional translation

The semi-functional translation combines the advantages of the relational and the
functional translation while trying to avoid their respective disadvantages. One of
the advantages of the relational translation is that the translation result is “nat-
ural” because it mirrors the Kripke-semantics of modal logics. The background
theory to be added to the translation result is simple, and, in particular, does not
introduce “unnecessary” new equations. Its disadvantage is that it produces large
formulae which open huge search spaces for automated theorem provers. The func-
tional translation, on the other hand, provides us with a very compact translation
result. The price for this advantage is that we may have to cope with an additional
equational theory. The introduction of theory-unification algorithms may simplify
matters, though.

The semi-functional translation also produces a fairly compact translation result
(although not as compact as the functional translation) and, like the relational
translation, it does not introduce new equational theories. It even turns out that
its syntactic peculiarities allow us to simplify background theories such that they
can sometimes be reduced to simple unit clauses.

The semi-functional translation is called semi-functional because the operator <
is translated functionally whereas the O is translated as in the relational approach.
Just as with the functional translation its definition depends on whether we consider
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SF(w,p) = p(w)
SF(w,—A) = =SF(w,A)
SF(w,AANB) = SF(w,A)ASF(w,B)
SF(w,04) = VYv:W (R(w,v) = SF(v,A))
SF(w,CA) Iy : AFg SF([wy], A)

Table 7: The semi-functional translation

serial or non-serial accessibility relations. Here, we will focus on the serial case.
For non-serial accessibility relations similar additions have to be made as for the
functional approach (see Nonnengart [1992, 1993, 1995, 1996]).

6.1. DEFINITION. The semi-functional translation from modal logic into first-order
logic is given by the clauses given in Table 7.

Obviously, the only difference between the functional and the semi-functional trans-
lation seems to be the treatment of O-formulae. However, this is not quite the only
difference. We must ensure that 0 and < are dual operators, i.e., that for any for-
mula A it holds that A < —<{0—A. In the functional translation this is obviously
guaranteed. In the semi-functional translation the duality of the translations of [
and < is not automatically given.

6.2. PROPOSITION (Nonnengart [1993, 1995, 1996]). The duality principle OA
—OaA holds if and only if Vw : WY~y : AF g R(w, [wy]) holds.

In words: regardless of the serial modal logic that we are considering, its background
theory must contain the above formula to ensure duality between the modal opera-
tors. This minimal background theory states that every world that is accessible via
the accessibility functions is also accessible via the accessibility relation.

Recall that a formula is in negation normal form if it contains no implication
or equivalence and all negations only occur immediately in front of atoms. Every
formula can easily be transformed into an equivalent formula in negation normal
form.

6.3. THEOREM ([Nonnengart 1995]). Let A be a uni-modal formula in negation
normal form. Then A is unsatisfiable (in the serial case) iff SF(x,A) cannot be
satisfied on any model which satisfies both Yw : WV~ : AFg R(w,[wy]) and the
properties induced by the specific axiom schemata for the modal logic under consid-
eration.

Therefore, the semi-functional translation behaves as desired. But what has been
gained so far? Our aim was to define a translation that produces compact results
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and does not introduce new equations into the background theory of the modal
logic under consideration. The latter is obviously fulfilled by the semi-functional
translation as shown in Theorem 6.3. As for the former, it is easy to show that
after transformation into clause normal form there is no difference in the number
of clauses generated in the semi-functional and in the functional approach (in the
semi-functional approach the clauses are bigger, though). However, there is a third
invariant of this translation approach which turns out to be useful: given a formula
A, the clause normal form of SF(u, A) does not contain any positive R-literal. Thus,
positive R-literals can occur only in the background theory of the modal logic under
consideration. Below, we will take advantage of this fact.

6.1. Saturating background theories

The fact that no positive R-literals occur in semi-functional translation of modal
formulae can be used by pre-computing everything that can possibly be derived
from the background theory, i.e., this theory gets saturated. Such a saturation char-
acterizes the modal logic and is thus independent of the theorem to be proved.

6.4. DEFINITION. We call a clause C p-positive (p-negative) if there is a positive
(negative) occurrence of a p-literal in C. If, in addition, C is not p-negative (not
p-positive) then we call C' pure-p-positive (pure-p-negative).

6.5. DEFINITION ((Partial) Saturation). Let p be a designated predicate symbol
and let C be a set of p-positive clauses. The saturation of C with respect to p is
defined to be the set {C' | C Fyes C and C' is pure-p-positive}, i.e., the set of clauses
we obtain by resolution within C, and whose elements are pure-p-positive.

As an example, consider the clause set {p(a),p(z) V p(f(z))}. The only clause
which is pure-p-positive is p(a). But it is possible to derive more pure-p-positive
clauses by resolution, namely all atoms of the form p(f"(a)), for n > 0.

Knowing about the saturation of a given clause set is often quite helpful.

6.6. LEMMA. Let C be a clause set and let p be a designated predicate symbol. Let
C' C C be the subset of C whose elements are positive with respect to p. If C" is
the saturation of C' with respect to p then C is unsatisfiable iff (C \ C') U C" is
unsatisfiable.

The problem with the above lemma is that saturations are usually infinite. However,
if we are able to find a finite alternative clause set with exactly the same saturation
we can use this one instead.

6.7. THEOREM. Let C be a finite clause set, let p be a designated predicate symbol,
and let D C C contain the p-positive clauses of C. Moreover, let B be a finite set of
p-positive clauses whose saturation with respect to p is identical to D’s saturation
with respect to p. Then C is unsatisfiable iff (C \ D) U B is unsatisfiable.
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Thus, the idea is to extract D and to find a simpler clause set B with the same
saturation.

6.8. ExaMPLE. Consider the simple background theory given by the clauses:

(a)
(F(a)) (6.1)
—p(x) V -p(f(2)) V p(f(f(2)))

Its saturation is {p(f™(a)) | n > 0}. One may prove this is as follows. First, each of
these elements can indeed be derived. A simple induction on n will do. For the in-
duction step assume that p(f*(a)) is derivable for all k£ < n. So both p(f"2(a)) and
p(f"1(a)) are derivable and therefore p(f™(a)) can be obtained by two resolution
steps with the third clause from the original clause set. Thus {p(f™(a)) | n > 0} is
at least contained in the saturation we are looking for.

It remains to show that the saturation is contained in the derived clause set. To
this end we show that any pure p-positive clause which is derivable from {p(f™(a)) |
n > 0} and the p-positive clauses of the clause set under consideration is already
of the form p(f"(a)). Evidently, resolution steps between p(f*(a)), p(f'(a)) and
=p(z) V —p(f(x)) Vp(f(f(x))) are possible only if k =1+ 1 (or I = k+ 1) and they
result in p(f'*2(a)) (p(f*+2(a)) respectively). This derived unit clause does indeed
belong to {p(f™(a)) | n > 0} and we are done.

Now consider the somewhat “simpler” clause set

p
p

p(a)
“p(@) V p(£(2). (6:2)

The saturation of this clause set is also {p(f™(a)) | n > 0} and therefore (Theo-
rem 6.7) this new clause set may be used to replace the original background theory.

Observe that the two clause sets (6.1) and (6.2) are not equivalent. It is the mere
fact that they form a background theory in the sense that they contain the only p-
positive literals occurring anywhere in the clause set being considered which allows
us to perform such a “simplification.” Hence, what we use here is not just that the
background theory is something we know about p but is indeed all we know about

p.

For two well-known serial modal logics the saturation approach does not lead to
anything new, namely KD and KT. However, the background theories for these
modal logics are represented by one or two unit clauses anyway, and, thus, the proof
search will not be influenced too heavily.*

6.9. ExaMPLE. Consider the logic KDB, which is axiomatized by the additional
axiom schemata Op — Op and p — OOp. These two schemata characterize seriality

14 Note that for the logic KD we could incorporate this very unit clause directly in the translation
description. Interestingly, this would result in exactly the same clause set we would get if we applied
the functional translation approach.
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and symmetry of the underlying accessibility relation; see Table 2. Therefore, the
background theory for KDB is:

Yw : WVy: AFg R(w, [wy]) 6.3)
Yu,v: W (R(u,v) = R(v,u)). '

The saturation of this background theory can easily be found, and we end up with

Yw : WYy € AF g R(w, [wy])
Yw : WVy : AF g R([wy], w).

Hence, these two unit clauses are sufficient as the background theory for KDB.
Although this only seems to be a minor improvement over (6.3), such a replacement
at least avoids undesirable cycles in the search space.

6.10. ExamPLE. Consider the modal logic S4, which is characterized by reflexivity
and transitivity (see Table 2); the corresponding axiom schemata are Op — p and
Op — OOp. The background theory is given by

Yw: WVy: AF g R(w, [wy])
Yw : W R(w,w) (6.4)
Vu,v,w: W (R(u,v) A R(v,w) = R(u,w)).

Again, we have to saturate this clause set bearing in mind that this is indeed all we
know about R, for any formula to be proved unsatisfiable (in S4) will not contain
R-positive clauses. Let us show now that the saturation consists of the (infinite)
set of unit clauses of the form {R(w,[wy; ...7v,]) | n > 0}.

To this end we show that the purely positive R-clauses in the background the-
ory (which are R(w,[wy]) and R(w,w)) are contained in this set; this is trivial.
Then we have to show that resolving upon two arbitrary elements of the can-
didate saturation of the transitivity clause does not produce anything new, and
indeed, resolving R(w, [wy1 - ..7v,]) and R(w, [wdy . .. dy,)) with the first two literals
in R(u,v) AR(v,w) = R(u,w) results in R(w, [wy1 ... Vnd1 ...0m,]) which is already
contained in {R(w, [wy1 ...7]) | » > 0}. Finally, we have to show that the candi-
date saturation is not too large, i.e., that each of its elements can in fact be derived
and this follows by a simple induction on n.

At this stage we have found the saturation of the S4 background theory. Next,
we have to find an alternative clause set with the same saturation but which is
somehow simpler than the original one. Finding such an alternative is still to be
performed by a good guess; it is not yet known how this can be automated. For the
present example it is not hard to find a suitable clause set, namely

Yu : W R(u,u)

VYu,v: WVy: AFg (R(u,v) = R(u,[vY])) (©3)
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or, equally simple,

Yu: W R(u,u)
Yu,v: WVvy: AF g (R([uy],v) = R(u,v)).

It is easy to show that the saturation of this clause set is identical to the saturation
of the S4 background theory, and what we have gained is that we may replace the
background theory for S4 by the two simpler clauses in (6.5). In particular, the
deletion of the transitivity clause turns out to be of major importance.

Our next example illustrates the effect of the semi-functional translation together
with saturation with a little example.

6.11. EXaAMPLE. We want to prove the validity of the formula ¢Op < SOOOp in
S4. After negating and translating semi-functionally we end up with the following
clause set (where «, a, b are Skolem constants, f, h, k are Skolem functions and all
variables are assumed to be universally quantified):

~R([yal],u) V =R([vb],v) V ~R([vf(v)],w) V p(u) V p(w)
~R(7v,u) V =p([u.g(w)]) V ~R(7,v) V ~R([vh(v)], w) V —p([wk(w, v)])
R(u,u)
-R(u,v) V R(u, [vy]).
This clause set is much smaller than what we would obtain from the relational

translation; moreover, the search space has been reduced to such an extent that no
standard FO theorem prover will have difficulties with it.

It should now be obvious how a logic like KD4 has to be treated. Its background
theory is described by

Yu: WV~ : AF g R(u, [uy])
Yu,v,w: W ((R(u,v) A R(v,w)) = R(u,w)),

and it can easily be shown that the saturation of this theory is

{R(U, [u71 .- ’Yn]) | n > 1771 : AFR};

i.e., it differs from the saturation of the S4-theory only in that it lacks the reflexivity
clause R(u,u). An alternative clause set for this background theory, with the same
saturation, is easily found:

Vu: WY~y € AF g R(u,[u7])
Vu,v: WVvy: AF g (R(u,v) = R(u,[v7])).

So far only a few modal logics have been examined with respect to semi-functional
translation and saturation of background theories. There is a property which allows
us to broaden the scope of the method, viz. the so-called rootedness property of
modal frames. Let us first have a look at the technique applied to the logic S5.
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6.12. EXAMPLE. S5 can be axiomatized by the schemata Cp — p, Op — OOp,
and p — OOp or, equivalently, by Op — p and Op — OOp. The corresponding
properties of the accessibility relation are reflexivity, transitivity and symmetry in
the former and reflexivity and euclideanness in the latter axiomatization; the two
are obviously equivalent. Now, the saturation of either background theory consists
of all unit clauses of the form {R([uyi ... Vn],[ud1-..m]) | n,m > 0}. Also, it is
easy to find an alternative clause set which is simpler than the original one, but
generates the same saturation. The axioms are

Yu : W R(u,u)
Yu,v: WV : AFg (R(u,v) = R(u,[vv]))
Yu,v: WVvy: AFg (R(u,v) = R([uv],v)),

which are still rather complicated. This background theory can be significantly
simplified if we exploit the fact that we need only consider rooted frames as defined
in [Segerberg 1971].

6.13. DEFINITION (Rooted Frames). A frame F = (W, R) is called rooted if there
exists a world w in W such that for every world v in W it holds that R*(w,v),
where R* denotes the reflexive and transitive closure of R.

Hence, in a rooted frame any world can be reached from an initial world by zero or
more R-steps and it is thus impossible to have two unconnected “islands” of worlds.

6.14. DEFINITION (Generated Frames). Given a frame F = (W, R) and an arbi-
trary world w in W we define W' = {v € W | R*(w,v)} and R' = RN (W' x W").
The frame (W', R') is called the frame generated from F (with initial world w).

Evidently, every generated frame is rooted. Modal logics are not able to distinguish
between rooted and non-rooted frames and this is shown by the following result.

6.15. LEMMA (Segerberg). Let F be a modal logic frame and let S = (F,P) be
an arbitrary interpretation based on F. Let &' = (F', P) where F' is the frame
generated from F. Then, for all worlds v € W' and for all modal formulae A,

S,vEAifS v E A

ProOF. The identity relation is a bisimulation between & and <7, as the reader can
easily check. Hence, the lemma follows by Proposition 4.16. 0

As a consequence of the lemma, we may restrict our attention to rooted frames.
What does rootedness actually mean in (semi-)functional frames?

6.16. LEMMA. A frame (interpretation) is rooted (with initial world w) iff for every
world u there exist some v1,...,v, € AFR (n > 0) such that u = [wWy1Y273 - - - Vn)-
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PROOF. In rooted frames each world u can be reached from the initial world w by

a finite sequence of R-transitions, i.e., there exist worlds wy,...,w,_1 such that
R(w,w1), R(wy,w2), ..., R(wy_1,u). In the extended functional frames this is just
[wy1 .. .7y, for suitable ;. O

We may therefore assume that the property Yu3yy, ..., v, (u = [woy1 - - . vn]) holds,
where wy is the initial world. This can be used for further optimizations of the semi-
functional translation.

6.17. EXAMPLE. Recall from Example 6.12 that the saturation of S5 resulted in an
infinite clause set consisting of unit clauses of the form R([uv; ...yn], [ud1 ... 0m])
with n,m > 0 (and universally quantified variables u, 7;, §;). Now consider the
subset we get after instantiating the variable u with wyg, the initial world. Then
both arguments of the R-literals are of the form wg7; ...v,, where every ~; is
universally quantified, and therefore this term can represent any world. Thus, we
know that (given the rootedness assumption) R([wo¥1 - .- Yn), [Wod1 - . .dm]) can be
simplified to R(v,w), i.e., the universal relation, which obviously subsumes all of
the unit clauses described by R([uv1 ...7n], [u1 ...d0n]). More formally:

VUH’Y].)“‘J’YTL ('LL = [wo’)’l'}’n]) =
Yu, s, 05 R([uvs - - - Ynls [ud - . . 0m]) ¢ Yo, w R(v,w).

Thus, instead of considering the still rather complicated background theory for S5
as described above, we can simplify it.

6.18. ExaMPLE. Consider KD5 and KD45. These are axiomatized by the clause
set
Vu: WVy: AF g R(u, [uy])

VYu,v,w: W (R(u,v) A R(u,w) = R(v,w)) (KD5)

nd
: Vu: Wy : AF g R(u, [uv])
Yu,v,w: W (R(u,v) A R(v,w) = R(u,w)) (KD45)
Vu,v,w: W (R(u,v) A R(u,w) = R(v,w))

respectively, i.e. seriality and euclideanness (for KD5) and, additionally, transitivity
(for KD45). Their saturations consist of the unit clause sets with all elements of
the form R([uy1 ...7vn], [ud1 ... 0n]), where m,n > 1 for KD5, and m > 1 and
n > 0 for KD45; in addition, the saturation of KD5 also contains R(u, [u7]). Both
are quite similar to S5.

Unfortunately, since m > 1 (and n > 1 for KD5) these two arguments are not yet
in the form that the rootedness assumption can be applied. However, since m > 1
we know that m — 1 > 0 and we therefore get for all m > 1 and n > 0, i.e., for
KD45

VuIy, .ok (u=[woys ... k]) =
Yu, s, 05 R([uyr .- Ynl, [ud1 ... 0m]) ¢ Yo, w,vy R(v, [wy]) (6.6)
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and for all m > 1 and n > 1, and so for KD5

Yu Iy, ye (U =woy - YE) =
Vu, i, 05 R([uyt - . . ), [U01 - . . 6m]) € Yo,w,7,8 R([vy], [wd]).  (6.7)

The unit clause R(v, [w7]) that we got for KD45 subsumes the whole saturation
and can therefore be used as the background theory for the logic KD45, whereas
the unit clause R([v7], [wd]) subsumes almost the whole saturation for KD5; the
only clause which is not subsumed is R(u, [uy]) and therefore the background theory
for KD5 can be described by the two unit clauses R(u, [uy]) and R([vy], [wd]).1?

Table 8 summarizes the background theories for well-known serial modal logics in
the setting of the semi-functional translation; all variables are universally quantified.

‘ logic ‘ background theory

KD | R(u,[u"])

KT R(u, [u7]) and R(u,u)

KDB | R(u,[uy]) and R([wy],w)

KD4 | R(u,[uy]) and (R(u,v) = R(u,[vY]))
S4 R(u,u) and R(u,v) = R(u, [vy])
KD5 | R(u,[uy]) and R([uy],[vd])

KD45 | R(u,[vv])

S5 R(u,v)

Table 8: Logics and their background theories

How should these results, and in particular those for the logics S5, KD45, and
KDS5, be interpreted? Their simplicity and generality may be surprising. As
Segerberg found out by examining the model theory for various modal logics
[Segerberg 1971], the characteristic frames for S5 are so-called clusters; that is,
sets of worlds such that each world has access to any other world including itself.
Thus we may assume that the accessibility relation for S5 is the universal relation
over W x W.

The models for KD45 are characterized by either a single cluster (as for S5) or
a single world together with a cluster such that this particular world has access to
each element of the cluster. The characteristic frames for KD5 differ from those
for KD45 in that the single world does not necessarily have access to all elements
in the cluster.

If we compare Segerberg’s results with the saturated background theory we ob-
tained for these logics, we see that for S5 we do indeed find the universal accessi-
bility relation; that for KIDD45 every world does indeed have access to every other

15 Actually, this can be even further simplified, for this first unit clause is subsumed for every
instance but one, namely Vv R(wo, [wo7y]), where wo denotes the initial world. Hence, the two unit
clauses Vv R(wo, [wo7y]) and Yv,w,7,d R([vy], [wd]) would already suffice in case of KD5.
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world which itself is somehow accessed; and that for KD5 any two worlds can
indeed access each other provided both have predecessors. It is remarkable how
Segerberg’s model-theoretic results are mirrored in the saturation approach and
that with essentially syntactic means; the extent of the correspondence remains to
be explored.

6.2. From saturations to inference rules

For many modal logics the semi-functional translation allows us to simplify the
background theory after saturation to a few unit clauses. There are exceptions,
however, for which the saturation is not that successful, although the simplifications
are still significant.

The idea we will pursue in this section is to cast the whole saturation set into
a suitable inference rule instead of trying to find an alternative clause set for the
saturation found. We will illustrate how this can be done for S4. Recall that the
saturation for S4 is

R(u,u)

R(u, [uy])
R(u, [uy1 - .. 7n))

Observe that each first argument of the respective R-literals is a variable and that
each second argument “starts” with the same variable. This observation guarantees
that — given an arbitrary unsatisfiable formula to be refuted — a corresponding
finite and unsatisfiable set of ground instances of clauses taken from this formula
contains negative R-literals only of the form —R(s, [sa1 ... ax)). It suffices to unify
the first argument of such a negative R-literal with a prefiz of its second argument
and thus to forget about the background theory or its saturation.

6.19. DEFINITION (The S4 Inference Rule). Let s and t.oq ..., be two world
terms and let C be a clause. Then the S4 inference rule is the following rule

—R(s,[tay ...a,]) VC n>0,
oC

where o is the most general unifier of (s,t).

The above inference rule is the only inference mechanism that has to be added to
a clause-based theorem prover in order to obtain refutation completeness for S4.

6.20. DEFINITION (The S4 Inference System). The S4 inference system consists
of the standard resolution and factorization rules together with the S4 inference
rule.
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6.21. THEOREM. Let A be a uni-modal formula in negation normal form. Then A
is S4-unsatisfiable iff the S4 inference system refutes Jw SF(w, A).

Similar inference systems can be defined for other (more complicated) modal and
temporal logics; see Nonnengart [1993, 1995, 1996]. Since the functional translation
for modal logics above KD require special unification algorithms, and the optimized
semi-functional translation requires special inference rules, both require modifica-
tions of theorem provers. This has not yet been implemented, and therefore there
are no systematic performance comparisons available.

7. Variations and alternatives

In this section we briefly discuss a number of alternative encodings of nonclassical
logics into first-order logic and into other logics. We begin by mixing syntactic and
semantic encodings. After that we discuss a number of internal, ‘modal-to-modal’
translations that will allow us to use FO tools to reason in non-first-order definable
modal logics. We conclude the section with two flavors of encoding that escape the
first-order realm but that have proved to be important for working with a large
number of logics.

7.1. Mizing Hilbert-style and semantic reasoning

The translation approaches presented so far depend on the semantics of the logic
under consideration, as the translation rules for the connectives and operators are
derived from their semantics. In addition, first-order axiomatizations of the semantic
structures are needed. If the semantics is not clear, or not first-order, the translation
approaches cannot work in the usual way. But, as long as (parts of) the logic have
a suitable Hilbert axiomatization, it is possible to combine Hilbert-style reasoning
with the translation method [Ohlbach 1998a]. To this end the Hilbert system is
encoded in first-order logic, not exactly as shown in Section 3, but similarly. Instead
of the unary truth predicate T, we use a binary truth predicate T'(A4, m). Intuitively
it means “A is true in the model m.”

7.1. DEFINITION (T'-Encoding). A Hilbert axiom A with the predicate variables py,
.., Pn is T-encoded as

Vpi, ..., pn YMT(A,m).

An inference rule “from  A;,...,F Ay infer b A” with the predicate variables
P1,---,Pn is T-encoded as

Vp1y e (YMT(A,m) A--- AVmT(Ag,m) = VmT(A,m)).

If A is a Hilbert axiom or rule then let 7(A4) be its T-encoding.
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The second argument of the T-predicate is completely redundant for the Hilbert
system itself. It becomes important in combination with the second part of the
specification, the “T-encoding” of the semantics of those operators for which a
semantics is known. In the combined method it is not necessary to have a semantics
and a translation rule for all operators. If, however, there is a suitable semantics
for a given operator, it is encoded as a predicate logical equivalence which can be
used immediately as a translation rule.
For example the semantics of the classical connective A (conjunction) is

miEAABiflmEA&mE B.
Using a binary predicate T'(4,m) this can be expressed as a FO equivalence
VA, BYm (T(AAB,m) + (T(A,m)AT(B,m))). (7.1)

The semantics of the other classical connectives can be expressed in a similar way;
observe that the symbols for the Boolean connectives are at the formula level and
at the term level.

Examples for “T-encoded” semantics of nonclassical operators are:

VAVm (T(OA,m) « Vm' R(m,m') = T(A,m")) (7.2)
VAVm (T(CA,m) < 3Im' R(m,m') AT(A,m')) (7.3)
VAVm (T(OA,m) & Vy T(A, [m))) (7.4)
VAVm (T(CA,m) « Ty T(4,[mv]) (7.5)
VAVm (T(OAm) & T(A,m+1)) (7.6)
VA,BYm(T(A— B,m) + Vm'(R(m,m')— T(A,m')— T(B,m"))) (7.7)

Equations (7.2) and (7.3) represent the standard possible worlds semantics for the
modal operators O and < for modal logics above K; (7.4) and (7.5) describe the
corresponding “functional” semantics for modal logics above KD. The « are acces-
sibility functions, (7.6) represents the semantics of the temporal next operator O
in an integer-like time structure, and (7.7) is the semantics of intuitionistic impli-
cation.

The T -encoded semantics for the corresponding connectives and operators can be
used to rewrite (translate) a term-encoded formula to the formula level of predicate
logic. For example, T(O(A A B),m) can be rewritten to

vm' (R(m,m') — T(A A B,m’))
using (7.2) and then, using (7.1), further to
vm' (R(m,m') = (T(A,m") AT(B,m"))).
7.2. DEFINITION (Semantic Normalizing). Given a set S of T-encoded semantics
for some operators, let w5 (T (A, m)) be the formula obtained by applying the equiv-

alences in S to T'(A,m) exhaustively from left to right. We call wg(T'(4,m)) the
semantically normalized or S-normalized formula.
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Semantic normalizing is an equivalence preserving transformation. In other words,
(SAT(A,m)) < (SA7s(T(A,m)))

holds universally. If S represents the semantics of all the connectives and operators
occurring in some (ground) formula A, then Vm wg(T(A,m)) is essentially a FO-
translated nonclassical formula. The only difference to the translation methods
presented above is that in the final result of the translation, literals T'(p,m) are
usually replaced with p(m). Completeness of the semantics means that after the
rewrite step the equivalences are not needed any more.

If p is a constant, there is no big difference between T'(p,m) and p(m). If p,
however, is a predicate variable, then there is a big difference between T'(p, m) and
p(m). The first literal is first-order, whereas the second literal is second-order. For
clause sets of the first kind, the Herbrand Theorem applies. Whenever there is a
refutation proof for some theorem, then there is also a ground refutation proof,
where the variable p in T'(p,m) is instantiated with a term-encoded formula. This
cannot be guaranteed for literals p(m) with predicate variables p. Therefore, in this
case p(m) is stronger than T'(p,m). Since predicate variables implicitly quantify
over formulae in a Hilbert calculus, the first-order version T'(p, m) is appropriate,
but the second-order version p(m) is not.

The set S need not contain T-encoded semantics for all the connectives. For
example, if S only contains the semantics of the classical connectives, then

ms(T(E®Aq) Vr,m))=TO(pAq),m)VT(r,m).

The “A” inside the [0 cannot be rewritten at this step, but it might be rewritten
after some inference steps which bring the A to the top-level of the term.

Semantic normalizing can simplify T-encoded Hilbert axioms. For example the
K-axiom “0A AO(A — B) — OB” for modal logic is T-encoded as

VA, BVYm (T((ODAANO(A — B)) - OB, m)) (7.8)
and S-normalized without using a semantics of the H-operator to
VA,B VYm (T(OA,m) AT(O(A — B),m) —» T(OB,m)). (7.9)
The necessitation rule “from - A derive - OA” is T-encoded as

VA (YmT(A,m) - VmT(OA,m)). (7.10)

7.3. DEFINITION (Mized Problem Specification). A mixed problem specification
(S, 7#,C,~Th) consists of a set S of T-encoded semantics, a set 7 of axioms
for restricting the semantic structures, a set C' of T-encoded Hilbert axioms and
rules and a negated T-encoded candidate theorem of the form IpVgam —T' (A, m).
It represents the problem of proving Vp3gvVm T (A, m) in the logic specified by S, 7
and C.

The problem specification is S-normalized if all atoms T(A,m) in 7x,C,~Th
are S-normalized. The connectives with a semantics definition in S are the defined
connectives. All other connectives are the undefined or ariomatized connectives.
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The above schema is not the most general one. In some logics, for example in
relevance logic, a theorem is supposed to hold only in some selected world 0. In this
case one must refute the formula IpVg—T(A,0) instead of the formula with the Im
quantification. For most logics it is obvious how to adapt this schema.

Equations (7.1)—(7.7) are examples for S. (7.8) and (7.10) are examples for C. 7
may, for example, contain the reflexivity axiom for the accessibility relation R used
in (7.2). It may also contain the restrictions on the assignment which is necessary for
intuitionistic logic: for all propositional constants p: Vm, m' ((T'(p, m)AR(m,m')) —
T(p,m')). The formulae in 77 may actually be represented by theory unification
algorithms, or by theory resolution or constraint rules; see [Nonnengart 1995].

A T-encoded mixed problem specification is first-order and can be given to any
FO theorem prover. Let us illustrate the combination of S-normalizing and resolu-
tion with a simple example from modal logic.

7.4. EXAMPLE. Suppose we want to prove (AA B) — OA from the K-axiom and
the necessitation rule, and we want to use only the semantics of the classical connec-
tives. This means that the S-part of the mixed problem specification (S, 77, C, = Th)
consists of clauses for the booleans only; 7 is empty, and C' contains the K-axiom.
The S-normal form of the T-encoded K-axiom (7.8) is

-T(OA,w) vV -T(O(A — B),w) VT (OB, w). (7.11)
The clause form of the necessitation rule (7.10) is
-T(A, f(A)) vVT(UA,w) (7.12)

where f is a Skolem function. The negation of the T-encoded theorem O(A A B) —
OA is rewritten to

T(O(a A b),wo) (7.13)
=T (Oa, wp) (7.14)

where a, b and wg are Skolem constants. Two resolution steps with (7.11), (7.13)
and (7.14) yield
=T(dO(aAb— a),wo)-

This is resolved with the T-encoded necessitation rule (7.12). The resolvent —=T'(a A
b— a, f(aAb— a)) is rewritten to the following refutable set:

T(a,flaAb— a))
T, flanb— a))
—T(a, fla ANb— a)).

T-encoded Hilbert axioms are particularly suited for logics with a semantics which
is appropriate for translation into predicate logic, but where the class of seman-
tic structures is not first-order axiomatizable. The second-order properties of the
semantics usually correspond to particular Hilbert axioms.
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With some key examples, we show that it is possible to use the basic seman-
tics for translation, whereas the critical Hilbert axioms are just T-encoded, and
not turned into conditions on the semantic structures, which may be second-order.
This simplifies the proof procedures considerably. Moreover, we do not get the com-
pleteness problems related to the transition from implicit quantifiers over formulae
in the Hilbert axiom to second-order quantifiers over predicates in the standard
translation [Sahlqvist 1975].

7.5. ExaMPLE. We show that the McKinsey axiom (see Example 5.19) together
with the transitivity of the accessibility relation implies &(p — Op) (atomicity).
Van Benthem’s semantic proof of this theorem uses the axiom of choice (“it is as
serious as this” [van Benthem 1984]). We use the KD4 possible-worlds semantics
(with seriality and transitivity of the accessibility) for the modal operators instead,
and leave the McKinsey axiom essentially as it is. To make the example small
enough we make use of the functional semantics S = {(7.4),(7.5)}.

The T-encoded and S-normalized McKinsey axiom, using (7.4) and (7.5) for the
modal operators, is

VpVw (3aVz =T (p, [waz]) V IbVy T(p, [whby])) ,

and so we obtain its clause form as —T(p, [wa(w, p)z]) V T(p, [wb(w,p)y]). The
negated theorem O(g A O—gq) is T-encoded and S-normalized to T'(g, [wou]) and
=T (g, [wove(v)]). The empty clause is derivable in two resolution steps using the
(transitive) unifier {p — ¢, w — wp,u — a(wo, ¢)x,v — b(wo, q),y — c(b(wo, q))}-

7.6. EXAMPLE. This example is from temporal logic. To make it more interesting,
we choose an integer-like time structure such that an induction axiom holds:

pAO(p — Op) — Op. (7.15)

Here, the O-operator means “always in the future” and the O-operator means “at
the next moment in time.” The induction axiom (7.15) expresses: “if p holds now,
and at all times ¢ in the future, if p holds at time ¢ then it holds at time £+ 1, then p
will always hold in the future.” The temporal semantics of the [I- and (O-operators
are functionally T-encoded as

Vp Vm (T(Op,m) <« VYm' T(p,[mm'])) (7.16)
Vp Vm (T(Op,m) <+ T(p,[ml)])). (7.17)

As an aside, the “functional” reading of an atom like T'(p, [mms ...my,)]) is that
p holds at a time point determined by starting at time point m, applying the
function my to m to get to time point my(m) and so on. The next time operator
O generates a constant 1, which is to be interpreted as the successor function. For
example T'(p,[mal]) expresses that p holds at time point a(m) + 1. Notice that
[mlal] and [mall] as the second argument of the T-predicate denote different time
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points, because a(m + 1) + 1 may be different from a(m) + 1+ 1. Terms like [mall]
may be abbreviated as [ma2].
The T-encoded induction axiom is

Vp Vm (T (p,m) AVn (T (p, [mn]) = T(p, [mnl])) = Vn T (p,[mn])) (7.18)

and so we get as its clause form

=T (p,m) vV T(p,[mf(p)]) vV T(p,[mn]) (7.19)
=T (p,m) vV =T (p, [mf(p)1]) v T (p, [mn]) (7.20)

Suppose we want to prove the theorem p A Op A O(p — OOp) — Op. After
negation and translation:

(1)  T(a,mo)

(2)  T(a,[mol])

3) -T(a,[moz]) VT (a,[moz2])
(4)  —T(a,[mob])

Here is a refutation:

(6) T(aA Oa,mg) (1), (2), (7.17), (7.1)'6
(6) T(aAQa,[mof(anOa)])VT(an Oa,[men]) (5), (7.19)
()  T(a,[mof(aA Oa)]) (6) S-normalized, (4)17
8) T(a,[mof(an Oa)l])

9) -T(aA Oa,[mof(aA Oa)l])VT(aA Oa,[mon]) (5), (7.20)
(10) —T(a,[mof(an Qa)l])V T (a,[mof(aA Oa)2)) S-normalized, (4)
(11) —=T(a,[mof(an Oa)2]) (10), (8)
(12) —T(a,[mof(a A Oa)]) (11), (3)-2
(13) empty clause (12), (7).

Together with T-encoded semantics definitions, T-encoded Hilbert systems yield
first-order clause sets which can in principle be given to a FO theorem prover.
A lot more efficiency, however, can be gained if extra mechanisms are integrated
into the theorem prover [Ohlbach 1998q]. The interplay between inference steps
and simplification steps using the equivalences as rewrite rules must be carefully
controlled. T-encoded Hilbert axioms and rules can be quite naturally turned into
theory resolution rules and even recursive applications of the theorem prover itself.

16This step actually consists of several steps. First of all, T(a, [mo1]) is turned into T(Oa,mo)
using (7.17). Then T'(a,mo) and T'(Oa,mg) are comprised into T'(a A Oa,mg) using the T-
encoded semantics of A (7.1). A heuristics for triggering these steps is that in the clauses (7.19)
and (7.20) a predicate variable occurs in a Skolem function. This gives rise to the fact that a
conjunction of instances of the second literal, for example T'(a, [mf(a)]) AT (b, [mf(b)]), is different
to T'(a A b,[mf(a A b)]). Therefore one should guide the application of clauses with predicate
variables in Skolem functions such that conjunctions appear at the term level.

17The second literal, T(a A Oa,[mon]) is S-normalized to T(a,[mon]) and T(Oa,[mon]).
T(a, [mon]) is resolved against —T'(a, [mob]), which leaves the first literal of (6) to be S-normalized.
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7.2. Indirect translations

We have already seen two examples of indirect translations of one modal logic into
another one: the translation from classical modal logic to bi-modal logic given to-
wards the end of Example 4.11, and the layered translation discussed on page 1438.
The first results concerning simulations of modal logics in terms of other modal
logics were results of Thomason [1974, 1975], where encodings are used to obtain
substantial negative results. Thomason shows how one can encode multi-modal
logics (and even second-order logic) in uni-modal logic, and obtains incompleteness
results and failure of the finite model property. Kracht and Wolter [1999] define
encodings of non-normal modal logics in terms of polymodal ones to obtain a series
of positive results on axiomatic completeness for non-normal modal logics.

Below, we consider translations from one uni-modal logic into another uni-modal
logic, with the aim of putting tools that are available for the latter to work for
the former. In particular, we consider the translation from S4 into T as proposed
by Cerrito and Cialdea Mayer [1997]. In S4, the 4-axiom Op — OOp allows us to
expand O-formulae to obtain arbitrarily long sequences of O-operators. With the
help of the T-axiom Op — p, on the other hand, we may delete (-operators at will.

The idea of the S4 to T translation is to expand O-formulae sufficiently enough,
such that during the proof search one can get the number of nested O-operators
that are really needed by using the T-axiom to delete the superfluous O-operators.
This technique must be modified somewhat for K4, for which the T-axiom is not
available. In this case, all formulae [JA must be replaced by a conjunction OJA A
OOAA--- AO™A, which yields very large formulae.

The problem is to determine the maximum number of nested O-operators
which will be needed in the proof, just by inspecting the formula. Cerrito and
Cialdea Mayer [1997] found this number by analyzing how often the 4-axiom can
be used in a tableaux refutation of a formula A in negation normal form. They
found that n - (p + 1) nested O-operators are sufficient, where p is the number of
O-subformulae and n is the number of ¢-subformulae of A.

The precise definition of their translation Trga r(A4,n) with a formula A and a
natural number n as arguments is:

Trsar(p,n) = p if pisaliteral

TTs4,T (A A B, TL) = TT'547T (A, TL) A T7‘54’T (B, n)
TrsaT (A V B, n) = Trsart (A, n) V Trsa,T (B, n)

Tf‘s4,T(|:|A, n) = Dn TTs47T (A, n)

Trs47T (QA, TL) = < TT's4,T (A, n) .
The soundness and completeness theorem for this translation says that A is S4-
satisfiable if and only if Trgs r(A,n - (p+ 1)) is T-satisfiable. Cerrito and Cialdea
Mayer’s technique compiles the 4-axiom into the formula so that it will not be

needed during proof search.
Demri and Goré [1998] have applied this idea to the provability logic Grz (for
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= p if pis a literal
TTGrz,S4(_'A;7: = - TrGrz,S4(A7 1- /L)

TrGra,s4(p, %)
)
Trra,sa(AAB,i) = Trgrs,sa(B,i) A TrGgrssa(B, i)
)
)
)

Trgra,sa(A = B,1) = Trgessa(4,0) = Trgrssa(B,1)
Trgra,sa(A = B,0) = Trgessa(A,1) = Trgrssa(B,0)
Trare,sa(0A,1) = OO(Trgrssa(A,1) = OTrgrssa(4,0)) —
TrGra,s4(4,1))
TrGra,sa(0A,0) = OTrgrssa(4,0).

Table 9: TrGrz,sa

Grzegorczyk). Grz is an extension of S4 with the Grz-axiom
(Grz) FOOA - O4) - A) > OA.

This axiom cannot be characterized by a first-order property (see [Blackburn et al.
2001, Chapter 3]). Therefore, the usual translations into FO are not applicable.
Demri and Goré’s translation function Trgrzs4(A,4) works for formulae A which
need not be in negation normal form; see Table 9. The second argument i is merely
used to record the polarity of the subformula.

Exploiting the properties of a cut-free Gentzen calculus for Grz, Demri and Goré
could prove that a formula A is a Grz-theorem if and only if Trgrs,s4(4,1) is a
S4-theorem.

The recursive nature of the translation rule for [JA can cause an exponential blow-
up. This can be avoided using standard renaming techniques. Complex subformulae
which might get duplicated repeatedly are replaced by new predicate symbols.
Adding the definition of these predicate symbols to the original formula usually
does not cause a more than polynomial blow-up. By combining the translations
TrGra,sa, Irsa,r and ST,,, with suitable renamings of subformulae, Demri and
Goré finally obtained a translation from Grz into FO such that the size of the
translated formulae is O((nlogn)?) times the size of the original formula.

Indirect translations like Trgrz,s4 and Trga 1 depend very much on the proof
theoretic properties of the logic. There is no simple recipe for developing indirect
translations. The general idea is to compile Hilbert axioms into the translated for-
mulae. Slight changes to the logic itself, however, may make the translation impos-
sible. Nevertheless, as Trgrz,s4 has shown, this technique may help considerably in
applying FO proof techniques to complex logics with higher-order features (cf. also
[Herzig 1990] which contains a translation from the provability logic G into K4).
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7.8. Translations into SnS

In the previous section we managed to reason with an essentially second-order logic
such as Grz by first-order means. The techniques were very specific, however. The
aim of this section is to explore a more general technique for translation-based
reasoning with modal logics that escape the first-order realm: translating into the
monadic second-order theory of n successor functions. The big advantage of the
approach is the large expressive power of the target logic: it allows us to obtain
decidability results and reasoning procedures for a large class of modal logics.

The set of monadic second-order logic (MSO) formulae includes all atomic for-
mulae s = ¢, and X (s), where s and ¢ are terms and X is a unary set variable.
MSO formulae are closed under the usual boolean connectives, first-order quanti-
fiers over individual variables (3z, Vz), and second-order quantifiers over the set
variables (3X, VX). Let 7T, denote the structure of n (1 < n < w) successor func-
tions; it is the infinite, uniformly n-branching tree, where the i-th successor function
leads to the i-th daughter of a node.

By SnS we denote the monadic second-order theory of m successor functions,
and by WSnS we denote the weak monadic second-order theory of n successor
functions, where the set variables are constrained to range over finite sets only. The
decidability of WSnS is due to Thatcher and Wright [1968] and Doner [1970]. The
decidability of SnS is known as Rabin’s Tree Theorem [Rabin 1969]. The decidability
of WSnS is based on a close correspondence between formulae in WSnS and finite
automata. More precisely, any relation definable in WS2S can also be defined by
a tree automaton that encodes the satisfying assignments to the formula in the
labels on the nodes of the tree that it accepts. The coding is simple: assignment
functions map first-order variables to nodes in 75 and second-order variables to sets
of nodes in 73. The labeling functions on the trees accepted by the automaton do
the opposite: they map nodes to the set of variables to which that is assigned.

When dealing with weak S2S, all sets are finite, so we can restrict ourselves to
automata over finite trees; since efficient minimization techniques exists for finite
trees, this opens the way to the development of automated reasoning tools, at
least in principle. But there are some challenging difficulties. The correspondence
between WS2S and automata is an inductive one, that follows the construction of
formulae. Now, the negation construction on automata only works for deterministic
automata, while the projection function (which implements quantification) yields
non-deterministic automata. Using the subset construction, tree automata may be
determinized, but at the cost of an exponential blow-up. Nevertheless, the logic-
automata connection may be used successfully for a number of purposes.

For a start, it provides a powerful tool for establishing decidability results in
nonclassical logic. Rabin’s Tree Theorem was applied in modal logic almost imme-
diately: Fine [1970] used it to prove decidability results in second-order modal logic
(that is, modal logic in which it is possible to bind propositional variables), and
Gabbay [1971a, 1971b, 1971¢] applied it to a wide range of modal logics in many
different languages. These papers are essential reading for readers interested in the
method, though before tackling them, it’s probably best to first see what Gabbay,
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Hodkinson and Reynolds [1994] have to say on the subject.

Secondly, as indicated above, the decision procedure for WS2S is semantically
based: it translates a WS2S formula A to an automaton A4 that recognizes valu-
ations verifying A. The MONA system [Henriksen, Jensen, Jgrgensen, Klarlund,
Paige, Rauhe and Sandhol 1995] implements this decision procedure. Input to
MONA is a script consisting of a sequence of definitions followed by a formula
A to be proved. MONA computes A4 and, depending on the result, declares A
to be valid or delivers a counter example. Despite the non-elementary worst-case
complexity of WS2S, MONA works well in practice on a large range of problems;
Basin and Klarlund [1998] offer empirical evidence and an analysis of why this is
the case. At the time of writing there are no experimental results evaluating the
performance of tools such as MONA on nonclassical logics such as propositional
dynamic logic.

7.4. Translations into weak set theories

The final approach towards translation-based automated reasoning for modal logic
that we want to mention here is due to Montanari, Policriti, and their colleagues and
students. In [D’Agostino, Montanari and Policriti 1995] they propose a translation
of modal logic into (weak) set theories that works for all normal complete finitely
axiomatizable modal logics, not just for the ones that are complete with respect to a
first-order definable class of structures. In particular, the method is also applicable
if the modal logic at hand is specified with Hilbert axioms only.

The basic idea is to represent a Kripke frame as a set, with the accessibility
relation modeled using the membership relation €. For computational reasons the
set theory that axiomatizes € should be a finitely (first-order) axiomatizable theory
Q. Given a modal formula A(py,...,pn), its translation as a set-theoretic term with
variables z, 1, ..., x, is written as A*(z,x1,...,%,). The latter represents the set
of states in the frame x in which the formula A holds.

To make things precise, we start by specifying the theory ; its (first-order)
language contains relation symbols €, C, and function symbols U, \, and Pow (the
power set operation). The axioms are z e yUz ¢z €yVez €z;z €y\z o €
yNz ¢ z;2 Cy o Vz(z €x - z € y); and z € Pow(y) < z C y. Observe that this
theory € lacks both the extensionality and foundation axioms found in traditional
set theories; in fact, the authors prefer to work with set-theoretic universes satisfying
the anti-foundation axiom AFA [Aczel 1988].

Now, the translation (-)* is defined as follows:

Py o= m (AvB)* = A*UB* )
(mA)* = x| A* (OA)* = Pow(A*),
where z is a variable different from z; (i = 1,...,n).
7.7. THEOREM. For any finitely aziomatizable modal logic L = K+ B(ay, ..., amn),

where B(ay,...,qy) is an aziom schema, the following are equivalent:
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1. l—L A(pl,.. -;pn)
2. QF Vz (Trans(x) A Aziomp(z) = Va1 ...V, (x C A*(x,21,...,25))).

Here, Trans(z) is short for Vy(y € z — y C z), and Aziomy(z) is short for
vyl . vym (.CL' - B*(xayla' 7ym))

Instead of translating Hilbert axioms, one may use a semantics for L whenever
it is available. Furthermore, the method is easily extended to poly-modal logics.
As to actual reasoning with the set theories into which modal logics are translated,
D’Agostino et al. [1995] consider the use of theory resolution; to this end, skolemized
versions of Q must be decidable [Policriti and Schwartz 1992]. At the time of writing,
experimental results comparing the approach to other translation-based approaches
to automated reasoning in modal logic are not available.

Van Benthem, D’Agostino, Montanari and Policriti [1997] extend the connection
between modal logic and set theory outlined above to capture a larger part of the
non r.e. notion of modal logical consequence. The notion of validity on so-called
general frames [Blackburn et al. 2001, Chapter 5] — and hence modal derivability
in its full strength — can be captured by modifying the translation (f) without
changing the underlying set theory 2. To deal with so-called extended modal log-
ics [de Rijke 1993], there is a further proposal to enrich the underlying set theory
) containing, essentially, the Godel constructible functions that allows one to cap-
ture weak monadic second-order logic [van Benthem, D’Agostino, Montanari and
Policriti 1998].

8. Conclusion

In this chapter we have discussed various ways of translating nonclassical logics into
first-order predicate logic. We have tried to explain the basic ideas and principles
to help the reader understand and apply the ideas to his or her own logic.

Nonclassical logics presented as Hilbert systems can be translated into FO by
encoding the formulae as FO-terms. This is the easiest and most flexible way of en-
coding a nonclassical logic in FO. Unfortunately, FO theorem provers are extremely
inefficient for this kind of encoding.

Many familiar nonclassical logics, however, enjoy a sound and complete possible
worlds semantics. We have shown how to derive a relational translation directly
from their semantics. The main purpose of the translation idea is to use the re-
sults, tools, and techniques from the target logic, in particular theorem provers, for
proving translated theorems. Unfortunately, standard inference techniques for FO
do not automatically provide decision procedures for the corresponding fragments.
To overcome this we presented modifications of the translation method.

The layered relational translation encodes a very strong form of the tree model
property; it can be used as a preprocessing technique for existing tools. Resolution
(with factoring and condensing) refined by a very simple ordering may be used as
a decision procedure for the resulting modal fragment.

Another, more dramatic, modification of the relational translation starts from the
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observation that binary relations can be decomposed into sets of functions. In the
resulting functional translation, reasoning about accessible worlds is incorporated
into the unification algorithm. Resolution becomes a decision procedure without
any special strategies. Specifying frame classes in the functional style may intro-
duce equations. This is an advantage if the equations can be turned into a theory
unification algorithm, and the algorithm can actually be incorporated in a prover.
Unfortunately, only the developer of a theorem prover is usually able to do this.

To overcome this problem we introduced the semi-functional translation. In the
case of modal logic it translates the O-operator functionally and the O-operator re-
lationally. The characteristic frame properties are specified relationally. Using satu-
ration techniques one can simplify the characteristic frame axioms considerably. In
the end we achieved the best of both kinds of translations: small translated formu-
lae and the possibility to do a considerable part of the reasoning about accessible
worlds within the (standard) unification algorithm, and an optimized treatment of
the characteristic frame axioms without having to change the implementation of
the unification algorithm.

Finally, we presented a few examples of indirect translations for modal logics
where the Hilbert axioms are compiled into modal formulae. This way one can
even translate logics with second-order properties into first-order logic. The tech-
niques, however, are very specific to the logics, and require a detailed analysis of a
Gentzen or sequent type proof system. More widely applicable solutions for logics
with second-order properties are provided by translations into SnS, or into weak
set theories.

In the course of this chapter we have touched on many open issues, ranging from
examining the performance of provers on (translated) nonclassical logics other than
familiar modal logics (page 1440), to the connection between Segerberg’s cluster-
based analysis of modal logics and saturating background theories in the semi-
functional translation approach (page 1464).

The big issue that drives the field as a whole, however, is how we can encode,
by syntactic means, the restricted nature of source logics inside the target logic.
We have seen several proposals, formulated in terms of special fragments such as
finite variable fragments or guarded fragments, or in terms of modified translations
such as the layered, functional, and semi-functional translation. It is not the actual
syntax that matters here. The satisfiability problem for the logics we consider is usu-
ally PSPACE-hard or worse [Ladner 1977, Fagin et al. 1995, Blackburn et al. 2001].
Therefore, the performance of satisfiability checkers depends more on the strategies
and heuristics than on the actual syntax, whether it is the original or the translated
one. Different syntactic presentations, however, may give more or less easy access to
the information which is relevant for strategies and heuristics to guide the search.
What really matters is the right combination of the syntactic presentation of the
satisfiability problem and the corresponding search control mechanisms. For the
time being there is no clear winner among the different approaches.

To conclude the chapter, we return to an issue raised in the introduction to this
chapter: at the end of the day, what should one use: direct, purpose-built proof
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tools for nonclassical logics, or indirect, translation-based ones? The problem of
finding efficient proof procedures for the translated formulae has not yet been solved
satisfactorily. The main reason for this is that the original motivation for developing
translation methods came from the desire to use existing predicate logic theorem
provers for proving theorems in nonclassical logics without making any changes
to the implementation of the theorem prover. This works, but only to a certain
extent. Experience has shown that we need special, purpose-built refinements to
complement our translations if we are going to keep up with dedicated tools, and
more importantly, if we are going to get acceptable performance.
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