
Efficient and Accurate
Forecasting in Large-scale

Settings

Olivier Sprangers

Efficient and Accurate
Forecasting in Large-scale

Settings

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties
ingestelde

commissie, in het openbaar te verdedigen in
de Agnietenkapel

op donderdag 5 september 2024, te 13:00 uur

door

Olivier Rudolf Sprangers

geboren te Alkmaar

Promotiecommissie

Promotor: prof. dr. M. de Rijke Universiteit van Amsterdam
Co-promotor: dr. ing. S. Schelter Universiteit van Amsterdam

Overige leden: dr. V.O. Degeler Universiteit van Amsterdam
prof. dr. P.T. Groth Universiteit van Amsterdam
dr. T. Januschowski Zalando
prof. dr. E. Kanoulas Universiteit van Amsterdam
prof. dr. G.M. Koole Vrije Universiteit Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research was carried out at the Information Retrieval Lab at the
University of Amsterdam. This research was (partially) funded by Ahold
Delhaize,1 through AIRLab.

Printed by Ridderprint, Alblasserdam

ISBN: 978-94-6483-952-4

Copyright © 2024 Olivier Sprangers, Amsterdam, The Netherlands

1https://www.aholddelhaize.com/

https://www.aholddelhaize.com/

Acknowledgements

Surprisingly, I found this chapter the hardest to start with. I have many
people I’d like to thank, but thinking about whom I’d like to acknowledge
led me to reconstruct my entire PhD-journey. This journey already started
when I concluded my Master’s degree back in 2012, after which it would
have been a lot more convenient to embark on a PhD. But that’s playing
Captain Hindsight, and it’s easy to predict the past knowing the future –
if it wasn’t hard to know what’s up ahead, you wouldn’t be reading this
thesis!

So, I’ll start this chapter by thanking those who have been the closest
to me throughout this journey: Mariska, my parents, Maaike, Anne-Marie,
Pieter, my family, my friends, and, of course, my annoying but sweet dog.
I definitely couldn’t have done this without the love and support from all
of you; you – quite literally – enabled me to see clearly.

Next, it feels most natural that I should start with thanking my former
Master thesis advisors, Robert and Gabriel. They always believed in me
and suggested I should do a PhD. They definitely planted the seed for the
years to come.

I’d like to thank my colleagues from my first job, who always believed
in me even though I completely lost and destroyed myself somewhere
along the job. A key thing I learned there – mostly from Richard – is
simplicity. I used to have a knack for making huge, complex models. It’s
as if you need to go through a phase of complexity to realize that simpler
solutions are often preferable over complex ones, but it’s also harder to
find this simple solution. I hope I applied that mindset in this thesis, and
I hope I can continue that mindset for the years to come.

In my second job I had my first venture into large-scale forecasting, as
I needed to predict payment rates of credit portfolios. I should especially
thank Joost and Erwin for my time there. They taught me useful project
management skills that I could apply throughout my PhD. However, in
this job I also realized that maybe I should still undertake a PhD.

I switched jobs again and became responsible for the pricing team
of a major Dutch e-commerce company. This further sparked the seed

iii

for undertaking the PhD, as I found it extremely annoying that I couldn’t
level with the data scientists at the lowest level of understanding. I’d
like to thank Andres for the discussions we had. Even though I was
sometimes annoyed at the time, these discussions did make me realize
I should still really do the PhD. I should also thank Marijn for giving
useful advice on doing a PhD and Ellen, for teaching me how to mentor
someone (although it’s always easy to mentor people who are that good).

And then I took the plunge! Thank you Maarten, for giving me this
opportunity, your patience when working with me and always providing
care when needed. Sebastian, thank you for helping me with all of my
work and especially for being there for all my day-to-day quick questions.
Both you and Maarten have been great mentors to me and hopefully we
can work together again in the future. I’d like to thank my colleagues
from the forecasting team at bol, who made me feel welcome and offered
the support I needed to test my ideas within an industry setting. The
partnership with bol even resulted in two publications together with
bol colleagues – one with Wander and one with Barrie – so thank you
both for that. Also a word of thanks to my fellow AIRLab colleagues –
Mozdeh, Sami, Mariya, Ming, Arezoo, Shubha, Barrie and Stefan – it
was always great to chat about work and other random stuff, and I’ll
miss the brainstorm sessions we had. Also, without the support of Petra
and Ivana I don’t think I could have been able to do my job, so thank
you for your unwavering support of the research lab. Of course, my
Master students also played an important role too. It turned out to be very
fulfilling to see a student grow throughout her/his thesis project, and their
enthusiasm for their projects often helped revitalize my own motivation
for the PhD. I’m grateful for my PhD committee – Victoria, Paul, Tim,
Evangelos and Ger – for ploughing through this thesis in order to assess
it. I hope you enjoyed reading it and I hope we can work together in the
future. Finally, a word of thanks to all the other great colleagues I worked
with over the years. Even though some of you might not realize it, you
helped me through this process.

Olivier
Amsterdam, April 2024

Contents

Acknowledgements iii

1 Introduction 1
1.1 Thesis Scope and Research Questions 2
1.2 Main Contributions . 5
1.3 Thesis Overview . 8
1.4 Origins . 8

2 Parameter Efficient Deep Probabilistic Forecasting 11
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Methodology . 16
2.4 Experimental Setup . 21
2.5 Results & Discussion 26

2.5.1 Forecasting Effectiveness 26
2.5.2 Forecasting Efficiency 27
2.5.3 Effect of Student’s t(3)-distribution 33
2.5.4 Effect of Forward-looking Module 35
2.5.5 Effect of Hyperparameters 37

2.6 Conclusion and Future Work 37

Appendices 41
2.A Supplemental Materials 41

3 Probabilistic Gradient Boosting Machines 47
3.1 Introduction . 48
3.2 Related Work . 50
3.3 Background . 52
3.4 Probabilistic Gradient Boosting Machines (PGBM) . . . 53

3.4.1 Probabilistic Forecasting 53
3.4.2 Stochastic Leaf Weights 54
3.4.3 Update Equations 55

v

Contents

3.4.4 PGBM . 56
3.4.5 Analysis & Discussion 59

3.5 Experiments . 61
3.5.1 UCI Regression Benchmarks 61
3.5.2 Hierarchical Time Series 69

3.6 Conclusion . 71

Appendices 73
3.A Derivation of Stochastic Leaf Weights 73

3.A.1 Expectation . 73
3.A.2 Variance . 74

3.B Reproducibility . 75

4 Hierarchical Forecasting at Scale 79
4.1 Introduction . 80
4.2 Related Work . 82
4.3 Background . 84

4.3.1 Problem Definition 84
4.3.2 Scaling Issues of Hierarchical Forecasting Methods 85

4.4 Sparse Hierarchical Loss 87
4.5 Experiments . 91

4.5.1 Public Datasets 91
4.5.2 Proprietary Datasets 102

4.6 Conclusion . 104

Appendices 107
4.A Derivation of Gradient and Second-order derivative . . . 107
4.B Derivation of Gradient of Toy Example 108
4.C M5 Dataset . 109
4.D M5 Model Training & Optimization 110
4.E Experiments . 110

5 Serenade 115
5.1 Introduction . 116
5.2 Related Work . 118
5.3 Background . 119
5.4 Vector-Multiplication-Indexed-Session kNN (VMIS-kNN)121
5.5 Serenade . 124

vi

Contents

5.5.1 Design Considerations 125
5.5.2 Implementation 125

5.6 Experimental Evaluation 128
5.6.1 VMIS-kNN . 129
5.6.2 Serenade . 133

5.7 Learnings & Conclusion 139

6 Conclusion 143
6.1 Summary of Findings 143
6.2 Future Work . 146

Bibliography 149

Summary 161

Samenvatting 163

vii

1
Introduction

You own an ice cream store. It’s the end of the day, but you need to
prepare the ice cream ingredients for tomorrow. How many ice creams
will you sell tomorrow? This is a typical forecasting question: you
are interested in predicting the future (the number of ice creams you
will sell tomorrow), so that you can make better decisions today (what
preparations you need to take today). To answer this forecasting question,
a reasonable approach for you to take would be to look at the number of
ice creams that were sold today as well as in the past, such as yesterday,
or last week. In addition, you might want to use some information about
tomorrow – you expect higher ice cream sales in weekends, as well
as in summer versus winter. You might even add information from a
good weather forecast for tomorrow you found online. Happy with the
information you collected, you start building a model to forecast the
number of ice creams that you will sell.

Whilst building your forecast model, you realize there is a big differ-
ence between the ice cream demand for different ice cream flavours. In
addition, different ice cream flavours also typically sell in different sizes
in your store. Finally, you realize that you can prepare the ingredients for
the next seven days in advance. You also understand that the further into
the future, the more uncertain you are of the ice cream demand. You now
realize that you have to answer many forecasting questions rather than
just a single one: for each ice cream flavour, for each ice cream size, for
each of the next seven days, you want to know the number of ice creams
you will sell, ideally with a notion of the uncertainty around each of these
forecasts. Would you take the same approach to answer each of these
forecasting questions?

This forecasting challenge is central to this thesis: how can we answer

1

1. Introduction

all these individual forecasting questions as efficiently and accurately
as possible? It is not difficult to answer these forecasting questions
only efficiently: for example, we could just use the same fixed constant
prediction for every individual forecasting question. Highly efficient –
we do not need a large quantity of resources to get our answer – but
also probably highly inaccurate – our forecast will likely be far from the
actual value. Conversely, it is also relatively easy to create only accurate
forecasts: you hire a large team of smart forecasting practitioners who
meticulously create a forecasting model for every individual forecasting
question. Probably highly accurate, but also highly inefficient. Thus,
the challenge is to solve these forecasting questions both efficiently and
accurately.

Throughout this thesis, we visit a diverse set of forecasting problems,
each in its own way suffering from inefficiencies when applying existing
approaches to a large set of forecasting questions concurrently. We
find many ways of improving efficiency whilst maintaining accuracy in
these forecasting problems, and propose new directions for research into
forecasting efficiency.

1.1 Thesis Scope and Research Questions

We give a brief overview of the scope of this thesis and the main research
questions that will be answered.

The classical approach to forecasting is to learn a single model for
each time series separately. As we saw in our ice cream example, this
can quickly become time consuming when multiple forecasts are needed.
Recently, a number of neural network architectures have been proposed
[37, 76, 81] to address the disadvantages of classical forecasting methods.
These neural architectures leverage the increasing availability of data,
and enable the training of a single model that can produce forecasts for
multiple time series over multiple time steps. The transformer [131]
is one such neural architecture that has recently shown state-of-the-art
performance on a set of real world forecasting datasets [80]. However,
it requires a large number of parameters to achieve these state-of-the-
art results compared to existing neural architecture-based probabilistic
forecasting methods. The disadvantage of an increase in parameters is
the associated higher energy cost of training and prediction, and higher

2

1.1. Thesis Scope and Research Questions

storage cost. This naturally leads us to our first research question:

Research Question 1: How can we efficiently generate probabilistic
forecasts with neural networks for large-scale settings?

To answer this question, we investigate neural network architectures that
require fewer parameters whilst maintaining the same level of forecasting
performance. In addition, we investigate how we can use the information
available in our data more smartly in these neural architectures. Finally,
we investigate how we can use a different loss function to improve
forecasting performance and reduce training complexity.

Next, we turn to models of a different architecture, motivated by
working with our industry partners Albert Heijn and bol, a grocery chain
and e-commerce platform, respectively. Within the forecasting teams
of these companies, neural networks are not often used for (probabilis-
tic) forecasting. Instead, Gradient Boosting Machines (GBM) are the
bread-and-butter for (probabilistic) forecasting for large-scale problems
in these companies. Interestingly, existing implementations of Gradient
Boosting Machines often require training multiple models for probabilis-
tic forecasting (e.g., LightGBM [68] or xgboost [24] require a separate
model for each quantile of the forecast), or require computing expensive
second-order derivative statistics [NGBoost, 34]. This motivates our
second research question:

Research Question 2: How can we efficiently generate probabilistic fore-
casts with Gradient Boosting Machines (GBM) for large-scale settings?

We answer this question by investigating how we can turn the determinis-
tic predictions of GBM into stochastic predictions. We find that a small
set of modifications to the main prediction equations of GBM allows us
to create probabilistic predictions using a single model only.

Now that we have an idea on how to efficiently generate (probabilistic)
forecasts for large-scale settings using two of the most commonly used
large-scale forecasting methods (neural networks and GBM), we observe
that in all of these methods, we typically only create forecasts for the
lowest granularity of time series. However in industry, forecasts at the
lowest granularity – often the individual product level – are required but
we also need forecasts at higher granularities, for example at the category,
department or regional level, as higher level forecasts are often needed

3

1. Introduction

in logistics and financial planning [21]. Second, forecasts at different
time granularities are required, for example daily or weekly forecasts.
It is common that separate forecast models are made for each separate
(temporal) granularity, and as such these forecasts may not be coherent
with each other. Hierarchical forecasting [61] and temporal hierarchical
forecasting techniques [12, 101, 125] aim to solve the problem of creating
forecasts that are coherent with respect to a pre-specified cross-sectional
and/or temporal hierarchy of the underlying time series. Unfortunately,
existing hierarchical forecasting methods scale poorly to settings with
millions of time series, motivating our third research question:

Research Question 3: How can we efficiently generate hierarchical
forecasts for large-scale settings?

We answer this question by investigating the use of a specialised loss
function that directly optimizes both cross-sectional and temporal hierar-
chical structures. The benefit of performing hierarchical forecasting in
an end-to-end manner by means of a specialised loss function is that we
remove the need for a post-processing step, as is customary in existing
hierarchical forecasting methods [12, 61, 134].

In our final research chapter, we turn to another forecasting problem
often encountered at our industry partners: recommendations. We inves-
tigate state-of-the-art methods for session-based recommendation and
surprisingly find that the most simple method gives the most accurate
results. This motivates our final research question:

Research Question 4: How can we efficiently generate session-based
recommendations at the scale of bol?

We answer this question by investigating how to efficiently implement
Vector-Session kNN (VS-kNN) – one of the relatively simple methods
that gives strong performance in offline tests – at the scale of bol.

This concludes the overview of the research questions that are an-
swered in this thesis. Next, we turn to an overview of the main contribu-
tions of this thesis.

4

1.2. Main Contributions

1.2 Main Contributions

We divide our contributions into three parts: theoretical, empirical, and
software contributions.

Theoretical contributions

• We introduce the Bidirectional Temporal Convolutional Network,
or BiTCN for short, a neural network that can achieve on-par or
better forecasting results than competing methods whilst requiring
an order of magnitude fewer parameters (Sprangers et al. [119],
Chapter 2).

• We introduce Probabilistic Gradient Boosting Machines (PGBM),
a method that can generate accurate probabilistic predictions using
gradient boosting machines whilst using only a single model rather
than multiple models (Sprangers et al. [118], Chapter 3).

• We design a sparse hierarchical loss function that enables direct
end-to-end training of cross-sectional and temporal hierarchical
forecasts in large-scale settings (Sprangers et al. [120], Chapter 4).

• We introduce Vector-Multiplication-Indexed-Session kNN, which
we abbreviate to VMIS-kNN, an index-based variant of a state-of-
the-art nearest neighbor algorithm for session-based recommenda-
tion, which scales to use cases with hundreds of millions of clicks
to search through (Kersbergen et al. [71], Chapter 5).

Empirical contributions

• We empirically verify that we achieve state-of-the-art forecasting
performance with BiTCN on four real-world datasets. We evalu-
ate on point forecast error metrics (sMAPE, NRMSE) as well as
on probabilistic forecast error metrics (quantile loss percentiles)
(Sprangers et al. [119], Chapter 2).

• We show that BiTCN (1) requires an order of magnitude fewer
parameters than the second-best scoring transformer-based method,
and (2) employs a simpler architecture than WaveNet [130] – an
autoregressive neural network based on a TCN – which placed

5

1. Introduction

second in a Kaggle forecasting competition [69]. The result is
that BiTCN can be trained using cheaper hardware because it
requires less memory (approx. 2–4x less GPU memory, depending
on batch size). Moreover, BiTCN also requires at least 20% less
energy during training, thereby reducing costs to train the model
(Sprangers et al. [119], Chapter 2).

• We demonstrate the benefits of choosing a Student’s t(3)-distribu-
tion for the probabilistic forecasting setting, which enables us to
eliminate a training hyperparameter compared to using a Gaussian
distribution for probabilistic forecasting, and it results in a more
stable training regime (Sprangers et al. [119], Chapter 2).

• We demonstrate state-of-the-art point performance and probabilis-
tic performance of PGBM on a set of regression benchmarks
(Sprangers et al. [118], Chapter 3).

• We show that PGBM’s probabilistic performance can be optimized
after training the model, which allows practitioners to choose dif-
ferent posterior distributions without needing to retrain the model
(Sprangers et al. [118], Chapter 3).

• Our implementation of PGBM trains up to several orders of mag-
nitude faster on larger datasets than competing methods, and our
implementation allows the use of complex differentiable loss func-
tions, where we observed up to 10% improvement in point fore-
casting performance and up to 300% improvement in probabilistic
forecasting performance (Sprangers et al. [118], Chapter 3).

• We empirically demonstrate that our sparse hierarchical loss func-
tion can outperform existing hierarchical forecasting reconciliation
methods by up to 10% (Sprangers et al. [120], Chapter 4).

• We show how our sparse hierarchical loss function scales to large-
scale settings and demonstrate a reduction of both training and
prediction time of up to an order of magnitude compared to the
best hierarchical forecasting reconciliation methods (Sprangers
et al. [120], Chapter 4).

• We present the results of an offline test of our method for the
primary product demand forecasting model at bol, a European

6

1.2. Main Contributions

e-commerce company with a catalogue of millions of unique prod-
ucts, demonstrating an improvement of 2% on RMSE and 10% on
MAE as compared to the baseline forecasting system (Sprangers
et al. [120], Chapter 4).

• We discuss design decisions and implementation details of our
production recommender system Serenade, which applies stateful
session-based recommendation with VMIS-kNN, and can handle
more than 1,000 requests per second with a response latency of less
than seven milliseconds in the 90th percentile (Kersbergen et al.
[71], Chapter 5).

• To the best of our knowledge, we provide the first empirical evi-
dence that the superior predictive performance of VMIS-kNN/VS-
kNN from offline evaluations translates to superior performance
in a real world e-commerce setting; we find Serenade to drasti-
cally increase a business-specific engagement metric by several
percent, compared to the legacy system at bol (Kersbergen et al.
[71], Chapter 5).

Software contributions

• We provide an open source implementation of BiTCN, as well as a
suite of existing common neural network probabilistic forecasting
methods, at https://github.com/elephaint/pedpf.

• We provide an open source implementation of PGBM, a Python
pip-installable package that is fully compatible with Scikit-learn
[97], at https://github.com/elephaint/pgbm.

• We provide an open source implementation of common hierarchical
forecasting methods at https://github.com/elephaint/
hierts.

• We make available under open license our implementation of Sere-
nade, the session-based recommender system currently in produc-
tion at bol, at https://github.com/bolcom/serenade.

7

https://github.com/elephaint/pedpf
https://github.com/elephaint/pgbm
https://github.com/elephaint/hierts
https://github.com/elephaint/hierts
https://github.com/bolcom/serenade

1. Introduction

1.3 Thesis Overview

In this section we shortly explain how this thesis is structured, and provide
a guideline for how to read the thesis. In Chapters 2–5, we address each
of the four research questions set out above. Each of these chapters can be
read independently, as the required background information is contained
in each chapter as well as the relevant related work. We conclude the
thesis and provide avenues for future work in Chapter 6.

1.4 Origins

The chapters in this thesis are based on the following papers:

• Chapter 2
O. Sprangers, S. Schelter, and M. de Rijke. Parameter-Efficient
Deep Probabilistic Forecasting. International Journal of Forecast-
ing, 39(1):332–345, Jan. 2023. ISSN 0169-2070. doi: 10.1016/j.
ijforecast.2021.11.011

OS did conceptualization of this study, methodology, experiments,
software and writing – original draft preparation, reviewing, and
editing. SSC and MdR aided in reviewing and editing of the paper.

• Chapter 3
O. Sprangers, S. Schelter, and M. de Rijke. Probabilistic Gradi-
ent Boosting Machines for Large-Scale Probabilistic Regression.
In Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, KDD ’21, pages 1510–1520, New
York, NY, USA, Aug. 2021. Association for Computing Machinery.
ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467278

OS did conceptualization of this study, methodology, experiments,
software and writing – original draft preparation, reviewing, and
editing. SSC and MdR aided in reviewing and editing of the paper.

• Chapter 4
O. Sprangers, W. Wadman, S. Schelter, and M. de Rijke. Hierarchi-
cal Forecasting at Scale. International Journal of Forecasting, In
Press, Mar. 2024. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2024.

8

1.4. Origins

02.006

This work was done while OS was part of the forecasting team at
bol. OS did conceptualization of this study, methodology, experi-
ments, software and writing – original draft preparation, reviewing,
and editing. WW and SSC provided support for the experiments,
and aided in reviewing and editing of the paper. MdR aided in
reviewing and editing of the paper.

• Chapter 5
B. Kersbergen, O. Sprangers, and S. Schelter. Serenade - Low-
Latency Session-Based Recommendation in e-Commerce at Scale.
In Proceedings of the 2022 International Conference on Manage-
ment of Data, pages 150–159, Philadelphia, USA, June 2022. ACM.
ISBN 978-1-4503-9249-5. doi: 10.1145/3514221.3517901

BK did conceptualization of this study, implemented VMIS-kNN,
executed the microbenchmarks, implemented Serenade, and ex-
ecuted the experiments at bol. OS designed VMIS-kNN, imple-
mented VMIS-kNN and executed the microbenchmarks of VMIS-
kNN. SSC did conceptualization of this study and implemented
VMIS-kNN. All authors contributed to the writing.

Work on the thesis also benefited from insights and experiences gained
through work on the following publications:

• S. Deng, O. Sprangers, M. Li, S. Schelter, and M. de Rijke. Domain
Generalization in Time Series Forecasting. ACM Transactions on
Knowledge Discovery from Data, Jan. 2024. ISSN 1556-4681. doi:
10.1145/3643035

• S. Schelter, S. Grafberger, S. Guha, O. Sprangers, B. Karlaš, and
C. Zhang. Screening Native ML Pipelines with “ArgusEyes”. In
CIDR: Conference on Innovative Data Systems Research, 2021

• O. Sprangers, R. Babuška, S. P. Nageshrao, and G. A. D. Lopes.
Reinforcement Learning for Port-Hamiltonian Systems. IEEE
Transactions on Cybernetics, 45(5):1017–1027, May 2015. ISSN
2168-2275. doi: 10.1109/TCYB.2014.2343194

9

2
Parameter Efficient Deep
Probabilistic Forecasting

With the increasing availability of large volumes of data, a number
of neural architectures have been proposed that can provide probabilistic
forecasts for multiple time series using just a single model [37, 76, 80,
81]. In particular, transformer-based methods [80, 131] achieve state-of-
the-art performance on real-world probabilistic forecasting benchmarks.
However, these methods require a large number of parameters to be
learned, which imposes high memory requirements on the computational
resources for training such models. This leads us to our first research
question:

Research Question 1: How can we efficiently generate
probabilistic forecasts with neural networks for large-scale
settings?

To address this question, we introduce a novel Bidirectional Temporal
Convolutional Network (BiTCN), which requires an order of magnitude
fewer parameters than a common transformer-based approach. Our model
combines two Temporal Convolutional Networks (TCNs): the first net-
work encodes future covariates of the time series, whereas the second
network encodes past observations and covariates. We jointly estimate
the parameters of an output distribution via these two networks. Experi-
ments on four real-world datasets show that our method performs on par
with four state-of-the-art probabilistic forecasting methods, including a

This chapter was published as: O. Sprangers, S. Schelter, and M. de Rijke.
Parameter-Efficient Deep Probabilistic Forecasting. International Journal of Forecast-
ing, 39(1):332–345, Jan. 2023. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.11.011.

11

2. Parameter Efficient Deep Probabilistic Forecasting

transformer-based approach and WaveNet, on two point metrics (sMAPE,
NRMSE) as well as on a set of range metrics (quantile loss percentiles) in
the majority of cases. Secondly, we demonstrate that our method requires
significantly fewer parameters than transformer-based methods, which
means the model can be trained faster with significantly lower memory
requirements, which as a consequence reduces the infrastructure cost for
deploying these models.

2.1 Introduction

The classical approach to forecasting is to learn a single model for each
time series separately. However, creating such models often requires care-
ful manual intervention from forecasting practitioners, which becomes
impractical when the number of time series to be forecast is large (e.g.,
when the task is to forecast store demand for each product of a retail
chain [21, 74, 124]). Moreover, decision makers often prefer probabilistic
forecasts to point forecasts because they are interested in a quantification
of the uncertainty of the forecast [21]. However, probabilistic forecasts
may require a set of models for each time series, which further increases
the disadvantages of using a single model for each time series. In this
chapter, we address this problem of probabilistic forecasting for multiple
time series.

Recently, a number of neural network architectures have been pro-
posed [37, 76, 81] to address the disadvantages of classical forecasting
methods. These neural architectures leverage the increasing availabil-
ity of data in the aforementioned application domains, and enable the
training of a single model that can produce forecasts for multiple time
series over multiple time steps. The transformer [131] is one such neural
architecture that has recently shown state-of-the-art performance on a
set of real world forecasting datasets [80]. However, it requires a large
number of parameters to achieve these state-of-the-art results compared
to existing neural architecture-based probabilistic forecasting methods.

In this chapter, we demonstrate that it is possible to achieve on-par
or better results than a transformer with an architecture that requires an
order of magnitude fewer parameters. We achieve this by

(1) Smartly encoding available future information;

12

2.1. Introduction

(2) Applying a simple temporal convolutional architecture; and

(3) Leveraging the Student’s t(3)-distribution as a loss function to
optimize parameters of our method.

Our BiTCN is based on two TCNs, as detailed in Section 2.3. The
first network encodes future covariates of the time series, whereas the
second network encodes past observations and covariates. This method
allows us to preserve temporal information of sequence data, and is
computationally more efficient by requiring fewer sequential operations
than the commonly used bidirectional LSTM. The output of both our
networks is used to estimate the parameters of a Student’s t(3)-distribution
of our forecast.

Next to introducing BiTCN, we contribute:

• We empirically verify that we achieve state-of-the-art forecasting
performance with BiTCN on four real-world datasets (Sections 2.4
and 2.5). We evaluate on point forecast error metrics (sMAPE,
NRMSE) as well as on probabilistic forecast error metrics (quantile
loss percentiles).

• We show how BiTCN is designed (1) to require an order of mag-
nitude fewer parameters than the second-best scoring transfor-
mer-based method, and (2) to employ a simpler architecture than
WaveNet [130] – an autoregressive neural network based on a TCN
– which placed second in a Kaggle forecasting competition [69].
The result is that our model can be trained using cheaper hardware
because it requires less memory (approx. 2–4x less GPU memory,
depending on batch size). Moreover, our method also requires at
least 20% less energy during training, thereby reducing cost to train
the model.

• We demonstrate the benefits of choosing a Student’s t(3)-distribu-
tion for the probabilistic forecasting setting (Section 2.5.3), which
enables us to eliminate a training hyperparameter compared to
using a Gaussian distribution for probabilistic forecasting, and it
results in a more stable training regime.

13

2. Parameter Efficient Deep Probabilistic Forecasting

2.2 Related Work

Time series forecasting is a broad topic that is being studied in various
scientific disciplines, such as econometrics, economics and machine
learning. Traditional forecasting models such as ARIMA [22] and Expo-
nential Smoothing [60] rely on considering the time series individually,
and thus create separate models for each time series (typically referred
to as local methods [93]). These local methods may be more difficult to
apply in contemporary large-scale forecasting applications as maintaining
individual models per time series may be impractical and these methods
typically struggle to forecast unseen time series with little or no past
observations. Moreover, Montero-Manso and Hyndman [93] have also
demonstrated such local methods are typically outperformed by global
methods (i.e. methods that create a single global model across all time
series).

Recently, neural networks (in the form of sequence-to-sequence mod-
els) have been successfully applied to various autoregressive problems,
such as speech generation with WaveNet [130] and probabilistic forecast-
ing with DeepAR [107]. We refer to [89] for a more formal introduction
to sequence-to-sequence modeling for time series, and to [93] for a study
of the benefits of global models compared to local models for time series.

Recurrent neural networks RNNs, usually in the form of Long-Short
Term Memory (LSTM) [53] modules, have been widely applied to the
forecasting problem; Fischer and Krauss [37], Laptev et al. [76], Li et al.
[81] provide recent examples of applications to financial markets, taxi
services and traffic forecasting, respectively. Moreover, RNN models
have been succesful at winning several forecasting competitions, such as
the LSTM-based ES-RNN method that won the M4 forecasting competi-
tion [86], and the LSTM-based method that won the Kaggle Webtraffic
competition.1 The downside of employing RNN models in forecasting
is that the recurrent nature of the model leads to slow training times,
and long-term dependencies may not be properly captured. To improve
the long-term memory of RNNs, attention mechanisms [14] have been
combined with RNNs in [25, 75]. However, these methods still rely
on the sequential training of RNN modules. Hewamalage et al. [51]

1https://github.com/Arturus/kaggle-web-traffic

14

https://github.com/Arturus/kaggle-web-traffic

2.2. Related Work

provide a recent extensive study comparing RNN-based forecasting meth-
ods to classical approaches such as ARIMA and ETS, which concludes
that RNN-based forecasting methods can be competitive to classical
approaches in many scenarios.

Attention-only models The transformer [131] has been introduced in
the domain of Natural Language Processing (NLP) to enable efficient
parallel training of sequence-to-sequence problems. Recently, the trans-
former has been adopted to the problem of probabilistic forecasting by Li
et al. [80], who employ a decoder-only model with convolutional sparse
attention to reduce memory consumption of the base transformer and
enhance its forecasting performance. This method currently achieves
state-of-the-art results on the various public datasets commonly used in
probabilistic forecasting papers.

Temporal convolutional networks TCNs employ stacked dilated Con-
volutional Neural Networks (CNNs) to overcome the limitations of RNNs
[15]. The benefit of this architecture is that it allows for fast training like
the transformer model, whilst having significantly lower memory con-
sumption. This enables larger batch sizes during training which, in turn,
speeds up training. Temporal convolutional networks have been applied
to autoregressive problems in speech generation with Wavenet [130], and
achieved the second place in a Kaggle sales forecasting competition [69].
A more recent method closely related to ours is introduced in [113],
where a matrix factorization method is combined with a standard TCN to
provide point forecasts.

Our method is different in that we do not employ matrix factorization,
and study the problem of probabilistic forecasting instead of point fore-
casting. Probabilistic forecasting with TCNs has recently been conducted
by Chen et al. [27]. Our work in this chapter differs from this work in
that (1) our core temporal module is simpler as it uses fewer components,
(2) our focus is on parameter efficient probabilistic forecasting, and (3) we
introduce a forward-looking module to encode future covariates.

15

2. Parameter Efficient Deep Probabilistic Forecasting

2.3 Methodology

We introduce the problem setting of probabilistic forecasting, and de-
scribe the core components of our method. We end the section by detail-
ing the choice of our loss function.

Probabilistic forecasting A time series is a sequence of ordered mea-
surements {yt, yt+1, . . . }, in which we assume the timestep t to be con-
stant (e.g., a day, an hour). Denote the set of N time series as {yi,1:t0}Ni=1

and {ai,1:t0}Ni=1 a set of additional attributes. We are interested in model-
ing the conditional distribution

p(yi,t0:T |yi,1:t0 ,ai,1:T ;µθ, σθ)

=
T∏

t=t0

p (yi,t|yi,1:t−1, ai,1:T ;µθ, σθ)

=
T∏

t=t0

p (yi,t|xi,1:T ;µθ, σθ) ,

(2.1)

where t0 and T denote the start and end of the forecast, respectively, and
(µθ, σθ) the location and scale parameters of a distribution parameterized
by θ, which we learn with our model. We estimate separate output distri-
bution parameters for each timestep in the forecast window. The input to
our network consists of the concatenation of lagged target variables ylag

and additional attributes in the form of numerical covariates acov (e.g., a
day-of-the-week indicator) and categorical covariates acat (e.g., a time
series identifier). We denote this concatenation by x.

Dilated convolutions We observe that future covariates on time series
are usually available at the time of forecasting, such as item information,
or time indicators (e.g., day-of-the-week or indicators for promotion days
or holidays). We would like to encode all such knowledge of the future
into a latent state on which the forecast of the current timestamp can
be conditioned. To achieve this, we create a TCN consisting of dilated
convolutions that look forward in time, instead of backward. More
formally, the forward dilated convolution operation F on an element s of

16

2.3. Methodology

a sequential input x ∈ Rn and a filter f ∈ Rk can be defined as [15]:

F (s) =
k−1∑
j=0

f(j) · xs+d·j, (2.2)

with filter size k, dilation factor d, and s + d · j indicating the forward
steps. For a backward (causal) dilated convolution, s + d · j in (2.2)
becomes s − d · j. We stack N layers with dilation 2i−1 for layer i to
obtain a ‘receptive field‘ for the TCN of size 1 + (k − 1)(2N − 1). The
receptive field is the effective sequence length the network can condition
its forecast on. For example, if a forecasting problem requires taking into
account sequences of a length up to 500 time steps, example valid options
for the kernel size and number of layers N would be (k = 3, N = 8),
(k = 7, N = 7) or (k = 11, N = 6). It is necessary to add right (left)
padding of size (k − 1) · 2i−1 for the forward (backward) convolution
at each ith layer to maintain a constant sequence length throughout the
network. Many existing forecasting methods already incorporate future
covariate information. However, our approach is novel due to the fact
that:

(1) The temporal structure of the covariates is maintained vis-a-vis
feed-forward networks to incorporate such information, and

(2) Dilated convolutions enable more efficient training than, e.g., a
bidirectional LSTM, which requires more sequential operations
during training (we refer to Section 2.5 for a discussion on the
computational efficiency).

We considered an alternative design with an unmasked multi-head at-
tention module [131] as a ‘look-forward’ layer. We decided against this
design however, as preliminary experiments indicated relatively poor
results in terms of parameter / performance balance (many additional
parameters required for incremental accuracy gains) – see Section 2.5 for
a discussion on the complexity of multi-head attention layers.

Temporal blocks Inspired by the work in [15, 130], we construct
temporal blocks by stacking dilated convolutions. A single layer of
our TCN is displayed in Figure 2.1. Each TCN layer in our network
consists of a block that contains a dilated convolution, a GELU activation

17

2. Parameter Efficient Deep Probabilistic Forecasting

Dilated

convolution
GELU Dropout Dense

N layers

hN-1

hN

oN +

o+

Figure 2.1: Temporal block.

[50], dropout and a dense layer. A Gaussian Error Linear Unit (GELU)
multiplies an input x with the cumulative distribution function Φ(x) of
the Gaussian distribution, i.e.

GELU(x) = xP (X ≤ x) = xΦ(x) (2.3)

≈ 0.5x
(
1 + tanh

[√
0.5π

(
x+ 0.044715x3

)])
and provides a ‘softer’ activation than the commonly used Rectified
Linear Unit (ReLU), which generally improves performance [50].

Each layer produces a hidden state hN and an output oN ; the latter
is summed over all layers to provide the output of the network. Weight
normalization [106] is applied to the dilated convolution and dense mod-
ules. Our temporal block is simpler than the ones used in WaveNet, as it
does not require a gated activation unit, but instead relies solely on the
GELU activation as non-linearity. In Section 2.5.1, we will show that this
simplification has a positive effect on performance.

Our method employs two temporal blocks; the first block consists of
N layers and encodes the past observations and covariates of time series
with backward dilated convolutions, whereas the second block consists
of N + 1 layers and encodes future covariates with forward dilated
convolutions. The additional layer in the second block is required to
enlarge the receptive field of the forward looking module, as the sequence
length of the covariates and categorical inputs exceeds the dimension
of the input and output sequence length in order to facilitate sufficient
look-forward for later timesteps in the forecast. This is to ensure that
later timesteps of the forecast also receive sufficient future covariate
information to condition the forecast on. A 3-layer example of how these
temporal blocks employ backward and forward dilated convolutions to
condition the forecast is pictured in Figure 2.2.

Within the forward TCN, grouped convolutions are employed to
reduce the number of parameters needed. The intuition behind this

18

2.3. Methodology

1 T Tc

future covariates

1

2

3

la
y

er
s

t0+1

Figure 2.2: An illustration of how 3 stacked TCN layers enable condition-
ing the forecast at t = t0 + 1 on both past and future information using
forward and backward dilated convolutions with kernel size 3 and dilation
2i−1 for the i-th layer. The blue dots represent the input sequence, the
yellow dots the output sequence and the green dots the additional future
covariates on which the forecast can be conditioned. The red connections
indicate the backward looking convolutions, and the purple connections
the forward looking convolutions. For clarity purposes, some inner con-
volutional connections are shown with dashed lines.

choice is that the future covariates usually contain less information than
the past covariates and lags, and thereby require fewer parameters for
encoding. We employ dense layers with dropout before the temporal
blocks to scale the input dimensions to the hidden dimension of the
network. Finally, dense output layers provide the location µ and scale
σ of the output distribution. These layers are activated with a softplus
activation to ensure that their output remains positive (this activation may
be removed in case the possibility of a negative output is desired) and a
small number ϵ is added to ensure numerical stability of the scale output.
The pseudocode of our resulting method, which we call Bidirectional
Temporal Convolutional Network (BiTCN), is shown in Algorithm 2.1
and graphically depicted in Figure 2.3.

Output distribution Although BiTCN allows the use of many para-
metric (e.g., Gaussian) or non-parametric (e.g., Quantile) distribution
functions, we use a Student’s t-distribution with three degrees of freedom
in our experiments as fixed parameterized distribution. The probability

19

2. Parameter Efficient Deep Probabilistic Forecasting

Algorithm 2.1 BiTCN pseudocode

Input: ylag ∈ RT×dbatch×dinput , acov ∈ RTc×dbatch×dcov ,
acat ∈ RTc×dbatch×dcat

Output: µ, σ

1: aemb = Embedding(acat)
2: xlag = Concat(ylag, acov[:dl], aemb[:dl])
3: xcov = Concat(acov, aemb)
4: hlag = Drop(Dense(xlag))
5: hcov = Drop(Dense(xcov))
6: olag = Backward Temporal Block(hlag)
7: ocov = Forward Temporal Block(hcov)
8: o = Concat(ocov[:dl],olag)
9: µ = SoftPlus(Dense(o))

10: σ = SoftPlus(Dense(o)) + ϵ
11: return µ, σ

density function of this distribution for a variable y is given by:

f(y) =
2

π
√
3
(
1 + y2

3

)2 (2.4)

and we aim to minimize the log-likelihood loss

L(θ|y) = log

(
f

(
y − µθ

σθ

))
, (2.5)

where µ and σ are the outputs of our network for a given time series at
a certain timestep. There are several benefits of using this distribution.
First, the Student’s t-distribution can be seen as a fat-tailed version of the
Gaussian distribution, which makes it a natural candidate for estimating
real-valued quantities without prior information on the true distribution.
The benefit of a fat-tailed distribution is two-fold:

(1) This allows our model to capture rare events better, and

(2) The log-likelihood loss is numerically stable around a large range
of input values.

20

2.4. Experimental Setup

N+1 layers

ocov

+

olag

Dense

Emb Dense

Dense

acat
+

acov

ylag

+

xcov

xlag

hcov

hlag

Forward

Temporal block

N layers

Backward

Temporal block

Figure 2.3: Overall network of BiTCN. First, in the top half, the cate-
gorical inputs acat are embedded using an embedding layer. The result
is combined with the available covariates acov to result in the input Xcov,
which includes all available (covariate) information about the past and
future. This is then led through a linear layer and a temporal block that
looks forward across all the future information. In the bottom half, the
lagged target ylag is combined with the available historical covariate
and categorical information to result in the input Xlag. This is then led
through a linear layer and an autoregressive temporal block (i.e. standard
dilated convolutions). The outputs of both halfs are joined by adding
them together at the right time stamp and a final linear layer provides the
location and scale of our output distribution.

The disadvantage of fixing a distribution a priori is the imposition of a
defined distribution on the output, which may not reflect the true under-
lying distribution properly. However, we observe this to be no issue in
practice.

To facilitate a better comparison between architectures, our loss func-
tion is used for each method in our experimental section comparing
forecasting accuracy across competing methods. We will demonstrate
the benefits of choosing the Student’s t(3)-distribution over the Gaussian
distribution in Section 2.5.3.

2.4 Experimental Setup

Datasets We employ four real-world datasets to investigate the proba-
bilistic forecasting performance of the BiTCN architecture.

• Electricity [129] Hourly electricity consumption for 370
clients over a 3 year period. The task is to forecast electricity

21

2. Parameter Efficient Deep Probabilistic Forecasting

consumption per client for the next 24 hours given the previous 7
days. The training/validation/test split is 80/10/10 based on date.

• Traffic [128] 15 months of hourly data describing the occu-
pancy rate, between 0 and 1, of different car lanes of the San
Francisco bay area freeways. We forecast occupancy rate per lane
for the next 24 hours given the previous 7 days. The training/vali-
dation/test split is 80/10/10 based on date.

• Favorita [66] A dataset from Kaggle that contains 4 years of
daily sales data for store-product combinations taken from a retail
chain. The task is to forecast the log sales for all product-store
combinations for the next 30 days based on the previous 90 days.
The training data consists of data between 01-01-2013 and 02-09-
2013. We validate on samples between the dates 03-09-2013 and
03-10-2013, and we test on the remaining data up to 31-03-2014.
The target and lagged input variables are log-transformed.

• WebTraffic [67] 145k time series of daily Wikipedia pageviews
in the period 2015-2017. The task is to forecast the number of
pageviews for the next 30 days given the previous 90 days. We use
a selection of 10k time series with the largest number of pageviews
in the training period (which is up to 31-12-2016).

We provide more detailed descriptions of the datasets in Table 2.A.1
in 2.A.

The Electricity and Traffic datasets provide an indication
of forecasting performance on relatively regular time series, with a small
number of future covariates available to condition our forecast on (i.e.,
a few time-based features such as day of the week and hour of the day).
Favorita and WebTraffic contain more irregular time series, and
the first also contains a rich set of covariates. For each dataset, we
add categorical covariates and numerical covariates consisting mainly of
time series identifiers, time indicators (day-of-week, month) and other
indicators (e.g., holiday). The time indicators are represented by two
Fourier terms [58] to represent the periodic nature of, e.g., days or months
(i.e., the first day of the week should be close to the last day of the week)
as follows:

covariatesin = sin

(
covariate ·

(
2 · π

period

))
(2.6)

22

2.4. Experimental Setup

covariatecos = cos

(
covariate ·

(
2 · π

period

))
. (2.7)

The categorical and numerical covariates are assumed to be known a
priori, i.e., we include these variables in the forward-look of BiTCN. For
all datasets except Favorita, we employ the scaling mechanism from
[107] for normalizing the outputs and lagged outputs to our network:

y =
y

1 + 1
t0

∑t0
i=0 yi

. (2.8)

Again, we refer to Table 2.A.1 in the Appendix for further details on the
datasets.

Baseline models We compare BiTCN against five state-of-the-art fore-
casting methods of different neural architectures:

• DeepAR [107]. An LSTM-based generic probabilistic forecasting
framework.

• ML-RNN [133]. An encoder-decoder probabilistic forecasting
framework that uses an LSTM to encode past observations and co-
variates and two MLP decoders to generate probabilistic forecasts.
This method also uses future covariate information to condition its
forecast on.

• transformerConv [80]. A transformer-based forecasting model
augmented with causal convolutions, which has shown state-of-the-
art results on the Electricity and Traffic dataset.

• TCN [15]. A standard TCN, as employed for probabilistic forecast-
ing by [27].

• WaveNet [130]. which has been used to achieve the second place
in a Kaggle sales forecasting competition [69].

In addition, we compare BiTCN against three traditional forecasting
methods and one popular machine learning package:

• Seasonal Naive. The seasonal naive baseline, where we simply
take the observation from the last period as our forecast. Since
our datasets exhibit clear seasonality (either daily or weekly), this
provides a sensible baseline.

23

2. Parameter Efficient Deep Probabilistic Forecasting

• ETS [54]. The exponential smoothing method, including Holt-
Winters’ seasonal and trend components.

• Theta [11]. The theta method, a univariate forecasting method that
uses the local curvature of the time series.

• LightGBM [68]. A highly popular Gradient Boosting package on
which the winning solution of the M5 forecasting competition [88]
was based.

Training and optimization We implemented, trained and evaluated
BiTCN and each neural network method using PyTorch [96] and our goal
is available online on Github.2 For DeepAR, we used the hyperparameters
from [107], for ML-RNN from [133] and for transformerConv, we used
the hyperparameters from [80]. For TCN, WaveNet and BiTCN we
selected a kernel size and hidden size to establish a comparable parameter
budget as DeepAR, as this is the state-of-the-art in terms of parameter
budget compared against in this study. An overview of the key model
hyperparameters is given in Table 2.1. Finally, we optimized learning
rate and batch size for each dataset and method by performing a limited
grid search using the following settings:

• Learning rate: {0.001, 0.0005, 0.0001}.

• Batch size: {128, 256, 512}, except for DeepAR and ML-RNN for
which we used {64, 128, 256}.

We run each experiment for 100 epochs with an early stopping criterion of
5 epochs. We train, validate and test each method for 5 different random
seeds for the neural network weight initialization. We optimize the
parameters of each method using Adam [72]. The results of the limited
grid search for each method and dataset are given in Figures 2.A.1–2.A.4
in the Appendix. For the forecasting performance evaluation, we report
the evaluation metrics on the test set of the best performing {(learning
rate, batch size)} combination according to Figures 2.A.1–2.A.4.

For the traditional forecasting methods, we use the statsmodels
Python package and fit a model on each input sequence of our test set. For
the probabilistic forecasts, we use the generated prediction intervals if the

2https://github.com/elephaint/pedpf

24

https://github.com/elephaint/pedpf

2.4. Experimental Setup

Table 2.1: Key model hyperparameters.
DeepAR ML-RNN TransformerConv TCN WaveNet BiTCN

state size 40 30 demb + dcov + dlag 20 20 12
layers 3 1 3 5 5 5
kernel size n.a. n.a. 9 9 9 9
heads n.a. n.a. 8 n.a. n.a. n.a.
dropout 0.1 n.a. 0.1 0.1 n.a. 0.1
receptive field ∞ ∞ ∞ 249 249 497

method provides these. For LightGBM, we create 9 separate models for
each quantile 0.1, 0.2, . . . , 0.9 using quantile regression and recursively
apply each model to forecast each time step in our forecast. We use
Optuna [7] to find the best hyperparameters for LightGBM, which we
apply to all datasets.

Evaluation We employ a set of point accuracy metrics and range accu-
racy metrics to evaluate forecasting performance. For point accuracy, we
use symmetric Mean Absolute Percentage Error (sMAPE) and Normal-
ized Root Mean Squared Error (NRMSE) [8]:

sMAPE =
1

n

n∑
t=t0

2|yt − ŷt|
|yt|+ |ŷt|

(2.9)

NRMSE =

√
1
n

∑n
t=t0

(yt − ŷt)
2 · 1yt ̸=0∑n

t=t0
|yt|+ 1yt=0

, (2.10)

where n = T − t0 denotes the number of forecast steps and 1yt=0 is
an indicator function to scale the metric when the observed target value
equals zero. Note that the sMAPE ranges from 0−200%. The NRMSE is
essentially the normal root mean squared error, but normalized to account
for differences in values of each individual time series. Each forecasting
metric has its advantages and disadvantages; we also considered using a
popular one-step ahead metric such as the MASE [57], but considered
this inappropriate for our task (which is multistep forecasting). For range
accuracy, the normalized quantile loss function [107] is used for the
quantiles p = {0.1, 0.5, 0.9}:

Q(yi, ŷi, p) = 2 · |(y − ŷ) · (1y≤ŷ − p)| (2.11)

25

2. Parameter Efficient Deep Probabilistic Forecasting

Q(y, ŷ, p) =

∑
i Q(yi, ŷi, p)∑

i yi

. (2.12)

Finally, we show the mean quantile performance over the 9 quantiles in
the range p = {0.1, 0.2, . . . , 0.9}.

2.5 Results & Discussion

First, we demonstrate the forecasting performance of BiTCN on a set
of real-world datasets to substantiate our claim that BiTCN achieves
state-of-the-art forecasting performance with fewer parameters than com-
peting methods (Section 2.5.1). Second, we will show the benefit of
our architecture by studying the forecasting efficiency in terms of model
complexity, training time and energy cost (Section 2.5.2). Finally, we
study the impact of our design choices, such as employing the Student’s
t(3)-distribution (Section 2.5.3), the effect of our forward-looking mod-
ule (Section 2.5.4) and how BiTCN’s performance is impacted by its
hyperparameters (Section 2.5.5).

2.5.1 Forecasting Effectiveness

We report the forecasting performance in Tables 2.2–2.3. Although simi-
lar model dimensions are used for each method across the experiments,
parameter counts for each model may be different per experiment due to
the size of the embedding dimension required to embed the categorical
input vector acat, which has a different dimension for each dataset.

We observe the following per dataset:

• Electricity: BiTCN performs on par with the best methods
WaveNet and TransformerConv.

• Traffic: BiTCN performs on par with the best methods.

• Favorita: BiTCN outperforms or performs similar to competing
methods on all metrics.

• WebTraffic: BiTCN performs similar to best-performing meth-
od TCN on mean quantile loss and in line with other methods on
the other metrics.

26

2.5. Results & Discussion

On average, BiTCN ranks highest at an overall average ranking of 1.75.
Given these observations, we conclude that BiTCN can achieve state-of-
the-art results on a set of real world probabilistic forecasting tasks whilst
using significantly fewer parameters than the second best performing
method, TransformerConv (average ranking of 2.25).

Secondly, even though not a primary objective of our paper, we
confirm the findings from [80, 107] that traditional methods such as
Seasonal Naive, ETS and Theta are outperformed by neural network
methods on the task of multistep probabilistic forecasting.

Finally, we find that LightGBM performs reasonable but not as well
as expected. We attribute this to our experimental setup. First, to facilitate
a like-for-like comparison to neural network-based methods, we use the
same features for LightGBM as we provide to our neural networks. In
practice, practitioners often spend a lot of time to engineer features that
provide a better signal to a LightGBM model, which typically improves
performance. Second, we apply the LightGBM model recursively, which
means that any bias and variance that enters the model may be propagated
to future timesteps. This issue is confirmed by results from the M5
competition, where most participants created separate LightGBM models
for every timestep to avoid this bias/variance propagation. However,
for our setting this would imply creating not only a separate model per
quantile, but also per timestep. This would give LightGBM a somewhat
unfair advantage compared to neural network based methods.

2.5.2 Forecasting Efficiency

Model complexity As can be seen from Tables 2.2–2.3, BiTCN re-
quires almost an order of magnitude fewer parameters than the Trans-
formerConv. This is an indication that our architecture is more efficient,
and possibly a better choice for the task of probabilistic forecasting than
existing neural architectures. To understand its computational complexity,
we are mainly interested in the sizes of the following parameters (we
study the impact of varying these parameters in Section 2.5.2):

• N , the number of layers of a neural network;

• k, the kernel size of a convolution;

• T , the sequence length used in the network;

27

2. Parameter Efficient Deep Probabilistic Forecasting

Ta
bl

e
2.

2:
Fo

re
ca

st
in

g
re

su
lts

on
va

ri
ou

s
po

in
ta

nd
ra

ng
e

ac
cu

ra
cy

m
et

ri
cs

fo
rt

he
E
l
e
c
t
r
i
c
i
t
y

an
d
T
r
a
f
f
i
c

da
ta

se
t.

Fo
rt

he
ne

ur
al

ne
tw

or
k

m
et

ho
ds

,w
e

re
po

rt
m

ea
n

m
et

ri
cs

ov
er

5
di

ff
er

en
ts

ee
ds

of
pa

ra
m

et
er

in
iti

al
iz

at
io

ns
pe

rm
et

ho
d,

w
ith

st
an

da
rd

de
vi

at
io

n
of

th
e

m
et

ri
c

in
br

ac
ke

ts
.L

ow
er

is
be

tte
r,

bo
ld

in
di

ca
te

s
be

st
m

et
ho

d
fo

rt
he

m
et

ri
c.

R
an

k
de

no
te

s
th

e
ra

nk
of

th
e

m
et

ho
ds

ac
ro

ss
th

e
fo

ur
m

et
ri

cs
fo

re
ac

h
da

ta
se

t(
lo

w
er

is
be

tte
r)

.
N

o.
Po

in
tm

et
ri

cs
R

an
ge

m
et

ri
cs

R
an

k

D
at

as
et

/M
et

ho
d

pa
ra

m
et

er
s

sM
A

PE
N

R
M

SE
Q

(0
.5

)
m

Q

E
l
e
c
t
r
i
c
i
t
y

Se
as

on
al

N
ai

ve
0

0.
11

2
0.

71
9

0.
07

8
0.

07
8

8
E

T
S

10
0k

0.
20

1
1.

75
5

0.
15

2
0.

13
6

11
T

he
ta

20
k

0.
17

7
1.

57
5

0.
14

1
0.

16
4

10
L

ig
ht

G
B

M
2M

0.
08

9
0.

67
9

0.
06

5
0.

07
7

5
D

ee
pA

R
45

k
0.

09
9

(0
.0

04
4)

0.
67

1
(0

.0
14

2)
0.

06
9

(0
.0

01
0)

0.
05

7
(0

.0
00

9)
7

M
L

-R
N

N
2.

9M
0.

11
5

(0
.0

02
9)

0.
82

9
(0

.0
55

5)
0.

08
6

(0
.0

03
0)

0.
06

8
(0

.0
02

4)
9

T
C

N
46

k
0.

10
3

(0
.0

01
7)

0.
66

8
(0

.0
12

1)
0.

06
8

(0
.0

01
1)

0.
05

6
(0

.0
01

0)
6

W
av

eN
et

48
k

0.
09

3
(0

.0
02

6)
0.

64
6

(0
.0

09
5)

0.
06

3
(0

.0
00

5)
0.

05
2

(0
.0

00
5)

2
Tr

an
sf

or
m

er
C

on
v

41
5k

0.
08

3
(0

.0
01

4)
0.

65
8

(0
.0

23
7)

0.
06

2
(0

.0
01

2)
0.

05
2

(0
.0

01
0)

1
B

iT
C

N
49

k
0.

08
9

(0
.0

00
9)

0.
64

8
(0

.0
09

0)
0.

06
3

(0
.0

00
3)

0.
05

2
(0

.0
00

3)
2

T
r
a
f
f
i
c

Se
as

on
al

N
ai

ve
0

0.
35

1
0.

66
7

0.
28

5
0.

28
5

9
E

T
S

10
0k

0.
48

3
0.

69
3

0.
37

1
0.

34
8

10
T

he
ta

20
k

0.
51

2
3.

41
3

0.
98

0
0.

97
0

11
L

ig
ht

G
B

M
2M

0.
12

8
0.

35
8

0.
11

1
0.

11
4

4
D

ee
pA

R
57

k
0.

17
9

(0
.0

18
2)

0.
40

8
(0

.0
27

4)
0.

13
1

(0
.0

14
1)

0.
11

1
(0

.0
12

6)
8

M
L

-R
N

N
2.

4M
0.

14
0

(0
.0

02
1)

0.
38

7
(0

.0
02

6)
0.

12
3

(0
.0

01
7)

0.
10

2
(0

.0
01

3)
7

T
C

N
57

k
0.

15
0

(0
.0

12
8)

0.
37

3
(0

.0
07

4)
0.

11
7

(0
.0

02
7)

0.
09

8
(0

.0
02

3)
6

W
av

eN
et

60
k

0.
16

5
(0

.0
05

4)
0.

35
7

(0
.0

02
8)

0.
10

8
(0

.0
01

8)
0.

09
1

(0
.0

01
5)

3
Tr

an
sf

or
m

er
C

on
v

37
2k

0.
13

0
(0

.0
03

5)
0.

35
3

(0
.0

02
0)

0.
10

5
(0

.0
02

0)
0.

08
9

(0
.0

01
4)

1
B

iT
C

N
61

k
0.

12
7

(0
.0

00
5)

0.
37

2
(0

.0
14

2)
0.

10
8

(0
.0

00
5)

0.
09

1
(0

.0
00

4)
2

28

2.5. Results & Discussion

Ta
bl

e
2.

3:
Fo

re
ca

st
in

g
re

su
lts

on
va

ri
ou

s
po

in
ta

nd
ra

ng
e

ac
cu

ra
cy

m
et

ri
cs

fo
rt

he
F
a
v
o
r
i
t
a

an
d
W
e
b
T
r
a
f
f
i
c

da
ta

se
t.

Fo
rt

he
ne

ur
al

ne
tw

or
k

m
et

ho
ds

,w
e

re
po

rt
m

ea
n

m
et

ri
cs

ov
er

5
di

ff
er

en
ts

ee
ds

of
pa

ra
m

et
er

in
iti

al
iz

at
io

ns
pe

rm
et

ho
d,

w
ith

st
an

da
rd

de
vi

at
io

n
of

th
e

m
et

ri
c

in
br

ac
ke

ts
.L

ow
er

is
be

tte
r,

bo
ld

in
di

ca
te

s
be

st
m

et
ho

d
fo

rt
he

m
et

ri
c.

R
an

k
de

no
te

s
th

e
ra

nk
of

th
e

m
et

ho
ds

ac
ro

ss
th

e
fo

ur
m

et
ri

cs
fo

re
ac

h
da

ta
se

t(
lo

w
er

is
be

tte
r)

.
N

o.
Po

in
tm

et
ri

cs
R

an
ge

m
et

ri
cs

R
an

k

D
at

as
et

/M
et

ho
d

pa
ra

m
et

er
s

sM
A

PE
N

R
M

SE
Q

(0
.5

)
m

Q

F
a
v
o
r
i
t
a

Se
as

on
al

N
ai

ve
0

1.
00

1
4.

54
1

1.
05

3
1.

05
3

10
E

T
S

10
0k

1.
02

4
4.

29
7

1.
02

1
0.

84
2

8
T

he
ta

20
k

1.
06

0
2.

36
9

0.
84

4
0.

92
2

8
L

ig
ht

G
B

M
2M

0.
87

9
1.

56
2

0.
48

9
0.

39
6

5
D

ee
pA

R
61

k
0.

57
4

(0
.1

82
3)

1.
68

0
(0

.1
04

0)
0.

54
3

(0
.0

21
6)

0.
42

2
(0

.0
15

0)
5

M
L

-R
N

N
1.

9M
0.

68
9

(0
.0

13
2)

1.
40

6
(0

.0
48

3)
0.

46
1

(0
.0

07
9)

0.
36

2
(0

.0
06

4)
4

T
C

N
61

k
0.

61
2

(0
.0

98
9)

1.
32

3
(0

.0
56

2)
0.

44
0

(0
.0

21
0)

0.
35

0
(0

.0
13

4)
3

W
av

eN
et

66
k

0.
71

1
(0

.0
26

1)
1.

62
3

(0
.1

77
3)

0.
51

2
(0

.0
42

7)
0.

40
5

(0
.0

31
9)

7
Tr

an
sf

or
m

er
C

on
v

21
0k

0.
67

3
(0

.0
04

6)
1.

31
9

(0
.0

60
2)

0.
43

9
(0

.0
17

9)
0.

34
6

(0
.0

12
9)

1
B

iT
C

N
66

k
0.

67
4

(0
.0

01
5)

1.
31

7
(0

.0
17

9)
0.

43
2

(0
.0

04
9)

0.
34

7
(0

.0
03

3)
1

W
e
b
T
r
a
f
f
i
c

Se
as

on
al

N
ai

ve
0

0.
35

7
4.

70
9

0.
41

4
0.

41
4

10
E

T
S

10
0k

0.
31

1
4.

09
6

0.
35

0
0.

35
9

8
T

he
ta

20
k

0.
33

8
4.

13
2

0.
34

0
0.

47
6

9
L

ig
ht

G
B

M
2M

0.
26

0
4.

02
2

0.
27

3
1.

00
2

6
D

ee
pA

R
23

8k
0.

27
9

(0
.0

05
4)

4.
00

3
(0

.2
52

6)
0.

28
2

(0
.0

06
0)

0.
24

4
(0

.0
05

0)
5

M
L

-R
N

N
2.

4M
0.

24
6

(0
.0

06
4)

4.
02

7
(0

.0
26

9)
0.

27
0

(0
.0

04
8)

0.
23

4
(0

.0
05

1)
4

T
C

N
23

9k
0.

23
4

(0
.0

03
4)

3.
71

8
(0

.1
69

2)
0.

25
3

(0
.0

04
8)

0.
23

1
(0

.0
04

6)
1

W
av

eN
et

24
1k

0.
23

6
(0

.0
03

7)
3.

95
3

(0
.3

08
3)

0.
26

8
(0

.0
12

9)
0.

24
4

(0
.0

10
7)

2
Tr

an
sf

or
m

er
C

on
v

63
0k

0.
24

6
(0

.0
06

5)
4.

19
1

(0
.3

36
8)

0.
30

1
(0

.0
22

5)
0.

27
3

(0
.0

19
8)

6
B

iT
C

N
24

2k
0.

25
4

(0
.0

06
2)

3.
98

8
(0

.2
17

7)
0.

26
7

(0
.0

05
7)

0.
23

2
(0

.0
04

1)
2

29

2. Parameter Efficient Deep Probabilistic Forecasting

• dh, the hidden dimension of the network; and

• dout, the number of output channels of a convolutional layer.

The computational complexity of each of our TCN layers can be
computed by adding the computational complexity of respectively the
convolution layer, the activation, and the dense output layer:

O(k · T · dh · dout + T 2 + dout · dh · T 2) =

O(k · T · d2h + dh · T 2), (2.13)

where in BiTCN, dout = 4 · dh. Hence, the complexity for an N -layer
network of our architecture is O(N · (k · T · d2h + dh · T 2)) with O(1)
sequential operations per layer. In comparison, an LSTM-based architec-
ture such as DeepAR has a computational complexity of O(N · (T ·dh2)),
but requires O(T) sequential operations, which significantly slows down
training when sequence length increases.

Finally, transformer-based architectures have a computational com-
plexity of O(N ·(T ·dh2+dh ·T 2)) and require O(1) sequential operations
[131], but through the use of dilated convolutions in the self-attention
mechanism the computational complexity of the transformer architecture
of [80] becomes O(N · (k · T · dh2 + dh · T 2)), with k the kernel size
of the dilated convolutions. Hence, the computational complexity of the
TransformerConv architecture is equal to that of BiTCN, however in prac-
tice this leads to different outcomes. Even though BiTCN requires more
layers to ensure a sufficient receptive field, it requires a much smaller hid-
den dimension throughout the network. In contrast, the TransformerConv
network requires fewer layers but a higher hidden dimension in order to
support sufficient model capacity for each of the attention heads.

Model complexity compared to non-neural methods We find that
BiTCN requires signficantly fewer parameters than LightGBM. What
causes this? Suppose we would like to have a probabilistic forecast for
28 days, for 9 quantiles. This requires at least 9 models in the GBT
setting. In our setting, each GBT consists of approximately 2000 trees,
and is trained with a maximum number of leaf nodes of 127. Hence,
this yields 254k parameters. Then, we have 9 such models, yielding
approximately 2M parameters. If one would opt for separate models
for each forecast day, one would require 28 · 2M = 64M parameters,

30

2.5. Results & Discussion

which is orders of magnitude larger than comparable NN-based solutions.
What causes this difference in model size? Ultimately, this is due to the
fact that NN methods are better representational learning methods, or
stated differently, these methods better learn to compress the data. In
a NN-based solution, an existing set of parameters is modified during
learning. GBTs however, work incrementally, and add parameters for
each iteration. Hence, these models do not compress the data as much as
the NN does, yielding models that have a higher complexity.

Training time One of the benefits of a model with fewer parameters
is that ceteris paribus it can be trained faster. Therefore, we compare
training times for each method in the left plane of Figure 2.4. For each
method, the left side of Figure 2.4 shows the mean quantile loss on the
test set as compared against the training time. The training times are
normalized against a DeepAR baseline. We observe that BiTCN is the
only algorithm that sits in the lower left corner – which implies smallest
training time with the lowest quantile loss on the test set – for each of the
datasets. Also, we observe that LightGBM’s training time is comparable
to those of NN methods, which is mostly due to its requirement to create
separate models for each individual quantile in the forecast. Note that
the latter finding is subject to hardware considerations, as the LightGBM
models are trained on CPU whilst the neural models are trained on a
GPU.

Energy cost Even though one method may train faster than the other,
the energy cost for training may still exceed the energy cost of training
other models, due to an increased resource consumption. Therefore, we
analyze the consumed energy for training each model in the right half
plane of Figure 2.4. For this experiment, we ran each method separately
and sequentially for a single epoch, and measured the average GPU
board power draw of a nVidia GTX 1080Ti using GPU-Z. During each
experiment, we fixed the number of CPU threads available to the training
process and there were no other processes running on the GPU used for
measuring energy cost. The obtained result indicates the total average
amount of energy in Joules that is required to compute a single epoch
for each method. This energy consumption is then multiplied with the
average number of epochs (across the 5 seeds) required to train each
method to obtain the overall GPU energy cost. Finally, we normalize

31

2. Parameter Efficient Deep Probabilistic Forecasting

0.050

0.075

0.100

0.125

0.150
M

ea
n

Qu
an

til
e

lo
ss

deepar
transformer_conv
tcn
wavenet
bitcn

mlrnn
seasonalnaive
ets
theta
lightgbm

0.055

0.060

0.065
deepar
transformer_conv
tcn

wavenet
bitcn
mlrnn

0.2

0.4

0.6

0.8

1.0

M
ea

n
Qu

an
til

e
lo

ss

deepar
transformer_conv
tcn
wavenet
bitcn

mlrnn
seasonalnaive
ets
theta
lightgbm

0.090

0.095

0.100

0.105

0.110 deepar
transformer_conv
tcn

wavenet
bitcn
mlrnn

0.4

0.6

0.8

1.0

M
ea

n
Qu

an
til

e
lo

ss

deepar
transformer_conv
tcn
wavenet
bitcn

mlrnn
seasonalnaive
ets
theta
lightgbm

0.36

0.38

0.40

0.42 deepar
transformer_conv
tcn

wavenet
bitcn
mlrnn

0 2 4 6 8 10 12
Training time

0.2

0.4

0.6

0.8

1.0

M
ea

n
Qu

an
til

e
lo

ss

deepar
transformer_conv
tcn
wavenet
bitcn

mlrnn
seasonalnaive
ets
theta
lightgbm

0 2 4 6 8 10 12
Energy cost

0.23

0.24

0.25

0.26

0.27 deepar
transformer_conv
tcn

wavenet
bitcn
mlrnn

Figure 2.4: Running time (left) and energy cost (right) compared to
mean quantile loss on the test set for respectively Electricity (top),
Traffic, Favorita and Webtraffic (bottom) datasets, where
DeepAR is the baseline.

this energy cost against a DeepAR baseline. BiTCN is the strongest
performer across all the datasets, as it sits in the lower left corner on each
graph. We now see a more clear distinction between TransformerConv
and the other methods, and its performance is now less favourable, as it
requires a higher energy consumption on every dataset compared to the
other methods, and we see energy consumption differences of 20% up
to an order of magnitude compared to BiTCN. In practice, this result is
beneficical for practitioners who are interested in optimizing electricity
and cooling costs, which commonly represent a significant portion of
data center operating cost [122].

Memory usage The transformer’s memory consumption scales qua-
dratically with sequence length [80], as all activations of the multi-head
attention layers need to be stored during a forward pass of the network
to use during the backward pass. In contrast, for temporal convolutional
architectures memory consumption predominantly scales with (1) the
number of layers required to obtain a sufficient receptive field, and (2) the
number of parameters of these layers. This enables training these models
using less memory, which in turn enables the use of cheaper resources.
In Table 2.4 we show the GPU memory consumption during training

32

2.5. Results & Discussion

Table 2.4: GPU memory consumption in Gigabytes during training of
BiTCN compared to TransformerConv.

Batch size / Dataset BiTCN TransformerConv Ratio (x)

128
Electricity 1.54 3.43 2.23
Traffic 1.52 3.37 2.21
Favorita 1.34 2.15 1.60
WebTraffic 1.36 2.20 1.61
256
Electricity 1.91 6.61 3.46
Traffic 1.90 6.55 3.45
Favorita 1.49 3.47 2.33
WebTraffic 1.51 3.46 2.30
512
Electricity 2.62 10.20 3.89
Traffic 2.60 10.18 3.91
Favorita 1.77 5.95 3.36
WebTraffic 1.78 5.95 3.33

compared between BiTCN and TransformerConv across datasets. When
comparing similar batch sizes, we observe a difference in memory con-
sumption of 2–4x. In practice, this means that BiTCN models can be
trained on much cheaper GPUs. For example, a TransformerConv model
with batch size 512 requires a high-end video card such as the nVidia
RTX 2080Ti (which is equipped with 11GB of GPU memory) to train the
model on the Electricity and Traffic datasets, whereas a similar
batch size BiTCN model would only require a low-end RTX 2060. The
first card typically retails for over USD 1000, whereas the latter can be
acquired starting from USD 300 on Amazon.

2.5.3 Effect of Student’s t(3)-distribution

To illustrate the benefits of using a Student’s t(3)-distribution for proba-
bilistic forecasting, we re-run the experiments from Section 2.5.1 on the
Electricity and Traffic datasets for BiTCN using a parameter-
ized Gaussian output distribution. We keep the same training settings as
before, however we note that the Gaussian distribution in our forecasting
setting requires clipping gradients to achieve a stable training regime.
This requires tuning yet another hyperparameter – the maximum gradient
norm. Why is this clipping necessary? It is a direct consequence of

33

2. Parameter Efficient Deep Probabilistic Forecasting

Table 2.5: Forecasting results of BiTCN on various point and range
accuracy metrics comparing Student’s t(3)-distribution with the Gaussian
distribution as loss function. Lower is better, bold indicates best loss
function for the method. We report mean metrics over 5 different seeds
per method with standard deviation in brackets.

Point metrics Range metrics

Dataset / Method sMAPE NRMSE Q(0.5) mQ

Electricity
Gaussian 0.117 (0.0054) 0.713 (0.0280) 0.076 (0.0036) 0.062 (0.0023)
Student’s t(3) 0.089 (0.0009) 0.648 (0.0090) 0.063 (0.0003) 0.052 (0.0003)

Traffic
Gaussian 0.175 (0.0089) 0.404 (0.0763) 0.141 (0.0016) 0.115 (0.0012)
Student’s t(3) 0.127 (0.0005) 0.372 (0.0142) 0.108 (0.0005) 0.091 (0.0004)

the ‘thin-tailedness’ of the probability density function of the Gaussian,
which is illustrated in Figure 2.5. The thin tail of the Gaussian distri-
bution causes the log-probability to exert numerical instability during
training. In contrast, a fat-tailed distribution such as the Student’s t(3)-
distribution enables a stabler training regime. Aside from this practical
disadvantage, a thin-tailed distribution is also expected to perform worse
on forecasting for processes that do not follow a normal distribution in
their output data. We confirm this expectation by observing the results
in Table 2.5, where we compare the forecasting performance with a
Gaussian as output distribution vis-a-vis the Student’s t(3)-distribution.
On both Electricity and Traffic datasets, we see performance
differences of 5–15% when using a Gaussian output distribution instead
of a Student’s t(3)-distribution. For the Traffic dataset, the differ-
ences are generally larger, which is expected as this dataset is relatively
skewed towards zero and hence benefits more from using an output dis-
tribution that has a heavier tail such as the Student’s t(3)-distribution.
Finally, we also observe lower variance in our test scores for the Student’s
t(3) distribution, which indicates a more stable training regime for this
loss function. Our conclusion from this experiment is that the Student’s
t(3)-distribution improves forecasting performance whilst removing a hy-
perparameter from the optimization problem and enabling a more stable
training regime.

34

2.5. Results & Discussion

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(y
)

Gaussian vs Student's t(3)-distribution
Gaussian
Student's t(3)

Figure 2.5: The probability density function of the normal distribu-
tion (Gaussian with (loc, scale) = (0,1)) compared to the Student’s t(3)-
distribution with (loc, scale) = (0,1). The normal distribution has a thin
tail compared to the Student’s t(3)-distribution.

2.5.4 Effect of Forward-looking Module

To study the effect of our forward-looking module, we re-run the ex-
periments from Section 2.5.1 on every dataset where we disable the
forward-looking module. We report the results in Table 2.6. We observe
a positive impact of about 0–2% from the forward-module in all but
one dataset, and especially in the Traffic and Favorita datasets.
Especially for the Favorita dataset this is expected, as this dataset
provides very informative future covariates (e.g., whether there is a holi-
day on a particular day). In contrast, the other datasets mostly contain
covariates related to the day of the week or day of the month, which are
less informative.

35

2. Parameter Efficient Deep Probabilistic Forecasting

Ta
bl

e
2.

6:
Fo

re
ca

st
in

g
re

su
lts

on
po

in
ta

nd
ra

ng
e

ac
cu

ra
cy

m
et

ri
cs

,a
bl

at
in

g
fo

ro
ur

fo
rw

ar
d-

lo
ok

in
g

m
od

ul
e.

W
e

re
po

rt
m

ea
n

m
et

ri
cs

ov
er

5
di

ff
er

en
ts

ee
ds

of
pa

ra
m

et
er

in
iti

al
iz

at
io

ns
pe

rm
et

ho
d,

w
ith

st
an

da
rd

de
vi

at
io

n
of

th
e

m
et

ri
c

in
br

ac
ke

ts
.L

ow
er

is
be

tte
r,

bo
ld

in
di

ca
te

s
be

st
m

et
ho

d
fo

rt
he

m
et

ri
c.

N
o.

Po
in

tm
et

ri
cs

R
an

ge
m

et
ri

cs

D
at

as
et

/M
et

ho
d

pa
ra

m
et

er
s

sM
A

PE
N

R
M

SE
Q

(0
.5

)
m

Q

E
l
e
c
t
r
i
c
i
t
y

B
iT

C
N

49
k

0.
08

9
(0

.0
00

9)
0.

64
8

(0
.0

09
0)

0.
06

3
(0

.0
00

3)
0.

05
2

(0
.0

00
3)

B
iT

C
N

(w
/o

fo
rw

ar
d)

40
k

0.
08

9
(0

.0
01

2)
0.

64
7

(0
.0

05
0)

0.
06

4
(0

.0
00

5)
0.

05
3

(0
.0

00
4)

T
r
a
f
f
i
c

B
iT

C
N

61
k

0.
12

7
(0

.0
00

5)
0.

37
2

(0
.0

14
2)

0.
10

8
(0

.0
00

5)
0.

09
1

(0
.0

00
4)

B
iT

C
N

(w
/o

fo
rw

ar
d)

52
k

0.
12

8
(0

.0
00

7)
0.

54
6

(0
.3

42
7)

0.
11

2
(0

.0
06

2)
0.

09
4

(0
.0

04
7)

F
a
v
o
r
i
t
a

B
iT

C
N

66
k

0.
67

4
(0

.0
01

5)
1.

31
7

(0
.0

17
9)

0.
43

2
(0

.0
04

9)
0.

34
7

(0
.0

03
3)

B
iT

C
N

(w
/o

fo
rw

ar
d)

58
k

0.
68

3
(0

.0
02

4)
1.

39
0

(0
.0

30
6)

0.
46

0
(0

.0
08

4)
0.

36
6

(0
.0

05
8)

W
e
b
T
r
a
f
f
i
c

B
iT

C
N

24
2k

0.
25

4
(0

.0
06

2)
3.

98
8

(0
.2

17
7)

0.
26

7
(0

.0
05

7)
0.

23
2

(0
.0

04
1)

B
iT

C
N

(w
/o

fo
rw

ar
d)

23
3k

0.
25

2
(0

.0
05

5)
4.

00
4

(0
.1

90
3)

0.
26

5
(0

.0
04

6)
0.

23
2

(0
.0

03
2)

36

2.6. Conclusion and Future Work

2.5.5 Effect of Hyperparameters
Finally, we briefly study the impact of the choice of key hyperparameters
of BiTCN. We reran a set of experiments for several choices of hyper-
parameters on the Electricity and Traffic dataset for which we
display the results in Table 2.7. We highlight a number of interesting
observations:

• Probabilistic forecasting performance of BiTCN seems relatively
robust against a wide set of hyperparameter choices, as we com-
monly observe differences of 0–5% in mean quantile loss when
varying hyperparameters, and BiTCN would rank as a top per-
former among the competing methods in Tables 2.2–2.3 for nearly
all of the various hyperparameter settings.

• BiTCN’s performance improves when the hidden dimension dh
(and thus the number of parameters) is increased. Conversely,
performance also significantly degrades when the hidden dimen-
sion is reduced. However, an increased hidden size can result
in both higher (Electricity) and lower (Traffic) training
time and energy cost, which is due to the experiment requiring
a greater (Electricity) and a fewer (Traffic) number of
epochs when increasing the hidden dimension. Also, the increased
running time and energy cost is still less than that of the Trans-
formerConv (ref. Figure 2.4), further demonstrating that our archi-
tecture achieves the same performance but does so more efficiently.

• The dropout rate pd seems very important, as excluding it by setting
it to zero results in a large performance hit for both datasets.

• It seems beneficial to increase the kernel size k of the convolutions,
as performance generally increases when k is higher.

2.6 Conclusion and Future Work

In this chapter, we set out to find more parameter efficient methods of
probabilistic forecasting. We hypothesized that by (1) smartly leveraging
future covariate information often available in real-world settings, (2) us-
ing a simple convolutional architecture, and (3) employing a Student’s

37

2. Parameter Efficient Deep Probabilistic Forecasting

Ta
bl

e
2.

7:
Se

ns
iti

vi
ty

of
sM

A
PE

,m
ea

n
qu

an
til

e
lo

ss
,t

ra
in

in
g

tim
e

an
d

en
er

gy
co

st
of

B
iT

C
N

w
he

n
va

ry
in

g
ke

y
hy

pe
rp

ar
am

et
er

s:
th

e
ba

tc
h

si
ze

b s
,t

he
hi

dd
en

si
ze

d
h
,t

he
ke

rn
el

si
ze

k
,t

he
nu

m
be

ro
fl

ay
er

s
N

an
d

th
e

dr
op

ou
tr

at
e

p d
.F

or
ea

ch
ro

w
,o

nl
y

th
e

va
lu

e
lis

te
d

is
ch

an
ge

d
w

ith
re

sp
ec

tt
o

th
e

ba
se

ca
se

.
N

o.
b s

d
h

k
N

p d
sM

A
PE

m
Q

Tr
ai

ni
ng

E
ne

rg
y

pa
ra

m
et

er
s

tim
e

co
st

E
l
e
c
t
r
i
c
i
t
y

B
as

e
ca

se
49

k
51

2
12

9
5

0.
1

0.
08

9
0.

05
2

1.
00

1.
00

25
6

0.
09

1
(2

.4
%

)
0.

05
4

(2
.7

%
)

0.
82

0.
75

12
8

0.
09

1
(2

.1
%

)
0.

05
3

(1
.2

%
)

0.
94

0.
69

16
6k

24
0.

08
3

(-
6.

0%
)

0.
05

1
(-

1.
9%

)
1.

54
1.

82
19

k
6

0.
09

6
(8

.1
%

)
0.

05
4

(2
.4

%
)

0.
77

0.
68

39
k

3
7

0.
09

5
(7

.4
%

)
0.

05
5

(4
.6

%
)

0.
48

0.
46

42
k

5
6

0.
09

0
(1

.6
%

)
0.

05
3

(1
.5

%
)

0.
76

0.
73

50
k

7
6

0.
08

9
(0

.3
%

)
0.

05
3

(0
.9

%
)

0.
78

0.
76

55
k

11
5

0.
08

7
(-

2.
3%

)
0.

05
3

(0
.2

%
)

1.
00

1.
02

0.
0

0.
10

1
(1

3.
2%

)
0.

05
4

(2
.1

%
)

0.
62

0.
60

0.
2

0.
09

3
(5

.3
%

)
0.

05
4

(2
.2

%
)

0.
71

0.
71

0.
3

0.
09

4
(5

.6
%

)
0.

05
3

(1
.8

%
)

1.
14

1.
09

T
r
a
f
f
i
c

B
as

e
ca

se
61

k
51

2
12

9
5

0.
1

0.
12

7
0.

09
1

1.
00

1.
00

25
6

0.
12

8
(0

.6
%

)
0.

09
0

(-
1.

0%
)

1.
14

1.
05

12
8

0.
12

6
(-

0.
6%

)
0.

09
0

(-
1.

2%
)

1.
56

1.
14

17
8k

24
0.

12
6

(-
1.

2%
)

0.
08

8
(-

2.
7%

)
0.

88
1.

02
31

k
6

0.
13

8
(8

.3
%

)
0.

09
9

(9
.2

%
)

0.
95

0.
79

51
k

3
7

0.
12

8
(1

.0
%

)
0.

09
2

(1
.2

%
)

1.
34

1.
25

54
k

5
6

0.
12

7
(-

0.
2%

)
0.

09
(-

0.
8%

)
1.

34
1.

24
62

k
7

6
0.

12
6

(-
1.

2%
)

0.
08

9
(-

2.
1%

)
1.

22
1.

23
67

k
11

5
0.

12
6

(-
0.

5%
)

0.
09

3
(3

.0
%

)
0.

91
0.

95
0.

0
0.

21
3

(6
7.

7%
)

0.
14

3
(5

7.
9%

)
0.

53
0.

55
0.

2
0.

13
(1

.9
%

)
0.

09
3

(2
.5

%
)

1.
05

1.
06

0.
3

0.
13

4
(5

.8
%

)
0.

09
6

(6
.2

%
)

0.
78

0.
77

38

2.6. Conclusion and Future Work

t(3)-distribution, it is possible to achieve state-of-the-art probabilistic
forecasting performance compared to existing transformer-based meth-
ods whilst requiring significantly fewer parameters. We find that our
method BiTCN confirms these expectations, as we observe state-of-the-
art forecasting effectiveness on a set of real-world benchmarks, even
though BiTCN (i) uses an order of magnitude fewer parameters than the
second-best transformer-based method, (ii) requires at least 20% less
energy, and (iii) about a quarter of the amount of memory to train the
model on a GPU.

We believe that these findings qualify BiTCN as a generic proba-
bilistic forecasting method among practitioners, due to its simplicity and
computational efficiency.

Even though we observed the benefit of encoding future information
to condition the current forecast on, the effect was relatively limited and
even absent in some scenarios.

For future work, we would therefore like to further investigate the
benefit of this part of BiTCN by applying BiTCN in an industrial retail
environment with thousands of products and stores, where a large set of
historical data and future covariate information is available to condition a
forecast on. An example of such a setting is the M5 forecasting dataset
[88].

Secondly, we aim to investigate how our method scales to very long
sequences (e.g., as in speech generation problems or high-frequency
trading problems), where we expect to see more benefit of the forward-
looking module. Finally, we intend to investigate creating a richer set of
output distributions, in line with the recent work by Gasthaus et al. [42],
which would further generalize our method by removing the choice of an
output distribution.

In the next chapter, we turn to models of a different architecture, mo-
tivated by working with our industry partners Albert Heijn and bol, a
grocery chain and e-commerce platform, respectively. Within the fore-
casting teams of these companies, neural networks are not often used for
(probabilistic) forecasting. Instead, Gradient Boosting Machines (GBM)
are the bread-and-butter for (probabilistic) forecasting for large-scale
problems in these companies. Thus, we seek to investigate how we can
improve forecasting efficiency of these methods.

39

Appendices

2.A Supplemental Materials

Table 2.A.1 contains detailed descriptions of the datasets used in the
chapter.

41

2. Parameter Efficient Deep Probabilistic Forecasting

Ta
bl

e
2.

A
.1

:D
at

as
et

de
sc

ri
pt

io
ns

E
l
e
c
t
r
i
c
i
t
y

T
r
a
f
f
i
c

F
a
v
o
r
i
t
a

W
e
b
T
r
a
f
f
i
c

tim
e

se
ri

es
#

37
0

96
3

17
0k

10
k

tim
e

se
ri

es
de

sc
ri

pt
io

n
cu

st
om

er
s

tr
af

fic
la

ne
s

ite
m

-s
to

re
co

m
bi

na
tio

ns
w

ik
ip

ed
ia

pa
ge

s
ta

rg
et

R
+

[0
,1
]

R
+

R
+

tr
ai

n
sa

m
pl

es
#

50
0k

50
0k

50
0k

50
0k

va
lid

at
io

n
sa

m
pl

es
#

7k
7k

10
k

7k
te

st
sa

m
pl

es
#

7k
7k

10
k

7k
tim

e
st

ep
t

ho
ur

ho
ur

da
y

da
y

in
pu

ts
eq

ue
nc

e
le

ng
th

t 0
16

8
16

8
90

90
ou

tp
ut

se
qu

en
ce

le
ng

th
T
−
t 0

24
24

30
30

co
va

ri
at

e
se

qu
en

ce
le

ng
th

T
c

50
0

50
0

15
0

15
0

ca
te

go
ri

ca
lc

ov
ar

ia
te

s
#

1
1

2
1

em
be

dd
in

g
di

m
en

si
on

d
em

b
20

20
[8

,3
]

20
nu

m
er

ic
al

co
va

ri
at

es
d
co
v

7
5

7
8

la
gg

ed
in

pu
ts

d
la
g

1
1

1
1

ca
te

go
ri

ca
lc

ov
ar

ia
te

de
sc

ri
pt

io
n

cu
st

om
er

id
la

ne
id

ite
m

id
st

or
e

id
pa

ge
id

nu
m

er
ic

al
co

va
ri

at
es

de
sc

ri
pt

io
n

M
on

th
si

n
M

on
th

co
s

D
ay

O
fW

ee
k

si
n

D
ay

O
fW

ee
k

co
s

H
ou

rO
fD

ay
si

n
H

ou
rO

fD
ay

co
s

O
nl

in
e

D
ay

O
fW

ee
k

si
n

D
ay

O
fW

ee
k

co
s

H
ou

rO
fD

ay
si

n
H

ou
rO

fD
ay

co
s

A
va

ila
bl

e

H
ol

id
ay

O
n

pr
om

ot
io

n
O

n
sa

le
D

ay
O

fW
ee

k
si

n
D

ay
O

fW
ee

k
co

s
M

on
th

si
n

M
on

th
co

s

D
ay

O
fW

ee
k

si
n

D
ay

O
fW

ee
k

co
s

D
ay

O
fM

on
th

si
n

D
ay

O
fM

on
th

co
s

M
on

th
si

n
M

on
th

co
s

W
ee

kO
fY

ea
r

si
n

W
ee

kO
fY

ea
r

co
s

la
gg

ed
in

pu
td

es
cr

ip
tio

n
ta

rg
et

la
gg

ed
ta

rg
et

la
gg

ed
ta

rg
et

la
gg

ed
ta

rg
et

la
gg

ed

42

2.A. Supplemental Materials

0 20 40 60 80 100

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

deepar / 0.001
64
128
256

0 20 40 60 80 100

1.00

0.75

0.50

0.25
deepar / 0.0005

64
128
256

0 20 40 60 80 100

1.00

0.75

0.50

0.25
deepar / 0.0001

64
128
256

0 20 40 60 80 100

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

transformer_conv / 0.001
128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
transformer_conv / 0.0005

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
transformer_conv / 0.0001

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

tcn / 0.001
128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
tcn / 0.0005

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
tcn / 0.0001

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

wavenet / 0.001
128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
wavenet / 0.0005

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25
wavenet / 0.0001

128
256
512

0 20 40 60 80 100

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

mlrnn / 0.001
64
128
256

0 20 40 60 80 100

1.00

0.75

0.50

0.25
mlrnn / 0.0005

64
128
256

0 20 40 60 80 100

1.00

0.75

0.50

0.25
mlrnn / 0.0001

64
128
256

0 20 40 60 80 100
Epochs

1.00

0.75

0.50

0.25

Va
lid

at
io

n
lo

ss

bitcn / 0.001
128
256
512

0 20 40 60 80 100
Epochs

1.00

0.75

0.50

0.25
bitcn / 0.0005

128
256
512

0 20 40 60 80 100
Epochs

1.00

0.75

0.50

0.25
bitcn / 0.0001

128
256
512

Figure 2.A.1: Training epochs versus validation loss for each method and
learning rate for the Electricity dataset. The legends in the graphs
denote the tested batch sizes.

43

2. Parameter Efficient Deep Probabilistic Forecasting

0 20 40 60 80 100

4

3

2

Va
lid

at
io

n
lo

ss

deepar / 0.001
64
128
256

0 20 40 60 80 100

4

3

2
deepar / 0.0005

64
128
256

0 20 40 60 80 100

4

3

2
deepar / 0.0001

64
128
256

0 20 40 60 80 100

4

3

2

Va
lid

at
io

n
lo

ss

transformer_conv / 0.001
128
256
512

0 20 40 60 80 100

4

3

2
transformer_conv / 0.0005

128
256
512

0 20 40 60 80 100

4

3

2
transformer_conv / 0.0001

128
256
512

0 20 40 60 80 100

4

3

2

Va
lid

at
io

n
lo

ss

tcn / 0.001
128
256
512

0 20 40 60 80 100

4

3

2
tcn / 0.0005

128
256
512

0 20 40 60 80 100

4

3

2
tcn / 0.0001

128
256
512

0 20 40 60 80 100

4

3

2

Va
lid

at
io

n
lo

ss

wavenet / 0.001
128
256
512

0 20 40 60 80 100

4

3

2
wavenet / 0.0005

128
256
512

0 20 40 60 80 100

4

3

2
wavenet / 0.0001

128
256
512

0 20 40 60 80 100

4

3

2

Va
lid

at
io

n
lo

ss

mlrnn / 0.001
64
128
256

0 20 40 60 80 100

4

3

2
mlrnn / 0.0005

64
128
256

0 20 40 60 80 100

4

3

2
mlrnn / 0.0001

64
256

0 20 40 60 80 100
Epochs

4

3

2

Va
lid

at
io

n
lo

ss

bitcn / 0.001
128
256
512

0 20 40 60 80 100
Epochs

4

3

2
bitcn / 0.0005

128
256
512

0 20 40 60 80 100
Epochs

4

3

2
bitcn / 0.0001

128
256
512

Figure 2.A.2: Training epochs versus validation loss for each method and
learning rate for the Traffic dataset. The legends in the graphs denote
the tested batch sizes. For ML-RNN, batch size 128 with learning rate
0.0001 resulted in repeated errors, therefore it is omitted in this graph.

44

2.A. Supplemental Materials

0 20 40 60 80 100
3

2

1

0

Va
lid

at
io

n
lo

ss

deepar / 0.001
64
128
256

0 20 40 60 80 100
3

2

1

0
deepar / 0.0005

64
128
256

0 20 40 60 80 100
3

2

1

0
deepar / 0.0001

64
128
256

0 20 40 60 80 100
3

2

1

0

Va
lid

at
io

n
lo

ss

transformer_conv / 0.001
128
256
512

0 20 40 60 80 100
3

2

1

0
transformer_conv / 0.0005

128
256
512

0 20 40 60 80 100
3

2

1

0
transformer_conv / 0.0001

128
256
512

0 20 40 60 80 100
3

2

1

0

Va
lid

at
io

n
lo

ss

tcn / 0.001
128
256
512

0 20 40 60 80 100
3

2

1

0
tcn / 0.0005

128
256
512

0 20 40 60 80 100
3

2

1

0
tcn / 0.0001

128
256
512

0 20 40 60 80 100
3

2

1

0

Va
lid

at
io

n
lo

ss

wavenet / 0.001
128
256
512

0 20 40 60 80 100
3

2

1

0
wavenet / 0.0005

128
256
512

0 20 40 60 80 100
3

2

1

0
wavenet / 0.0001

128
256
512

0 20 40 60 80 100
3

2

1

0

Va
lid

at
io

n
lo

ss

mlrnn / 0.001
64
128
256

0 20 40 60 80 100
3

2

1

0
mlrnn / 0.0005

64
128
256

0 20 40 60 80 100
3

2

1

0
mlrnn / 0.0001

64
128
256

0 20 40 60 80 100
Epochs

3

2

1

0

Va
lid

at
io

n
lo

ss

bitcn / 0.001
128
256
512

0 20 40 60 80 100
Epochs

3

2

1

0
bitcn / 0.0005

128
256
512

0 20 40 60 80 100
Epochs

3

2

1

0
bitcn / 0.0001

128
256
512

Figure 2.A.3: Training epochs versus validation loss for each method
and learning rate for the Favorita dataset. The legends in the graphs
denote the tested batch sizes.

45

2. Parameter Efficient Deep Probabilistic Forecasting

0 10 20 30 40 50 60

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

deepar / 0.001
64
128
256

0 10 20 30 40 50 60

0.5

1.0

1.5
deepar / 0.0005

64
128
256

0 10 20 30 40 50 60

0.5

1.0

1.5
deepar / 0.0001

64
128
256

0 10 20 30 40 50 60

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

transformer_conv / 0.001
128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
transformer_conv / 0.0005

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
transformer_conv / 0.0001

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

tcn / 0.001
128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
tcn / 0.0005

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
tcn / 0.0001

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

wavenet / 0.001
128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
wavenet / 0.0005

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5
wavenet / 0.0001

128
256
512

0 10 20 30 40 50 60

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

mlrnn / 0.001
64
128
256

0 10 20 30 40 50 60

0.5

1.0

1.5
mlrnn / 0.0005

64
128
256

0 10 20 30 40 50 60

0.5

1.0

1.5
mlrnn / 0.0001

64
128
256

0 10 20 30 40 50 60
Epochs

0.5

1.0

1.5

Va
lid

at
io

n
lo

ss

bitcn / 0.001
128
256
512

0 10 20 30 40 50 60
Epochs

0.5

1.0

1.5
bitcn / 0.0005

128
256
512

0 10 20 30 40 50 60
Epochs

0.5

1.0

1.5
bitcn / 0.0001

128
256
512

Figure 2.A.4: Training epochs versus validation loss for each method and
learning rate for the WebTraffic dataset. The legends in the graphs
denote the tested batch sizes.

46

3
Probabilistic Gradient Boosting

Machines

Motivated by working with our industry partners Albert Heijn and
bol, a grocery chain and e-commerce platform, respectively, we now
turn to a different class of models: Gradient Boosting Machines (GBM).
Within the forecasting teams of these companies, GBM are the most used
model class for forecasting for large-scale time series problems. However,
creating probabilistic predictions is difficult with existing GBM-based
solutions: they either require training multiple models or they become
too computationally expensive to be useful for large-scale settings. This
motivates our second research question:

Research Question 2: How can we efficiently generate
probabilistic forecasts with Gradient Boosting Machines
(GBM) for large-scale settings?

We propose Probabilistic Gradient Boosting Machines (PGBM), a method
to create probabilistic predictions with a single ensemble of decision
trees in a computationally efficient manner. PGBM approximates the leaf
weights in a decision tree as a random variable, and approximates the
mean and variance of each sample in a dataset via stochastic tree ensem-
ble update equations. These learned moments allow us to subsequently
sample from a specified distribution after training.

This chapter was published as: O. Sprangers, S. Schelter, and M. de Rijke. Prob-
abilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, KDD ’21, pages 1510–1520, New York, NY, USA, Aug. 2021. Association for
Computing Machinery. ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467278.

47

3. Probabilistic Gradient Boosting Machines

We empirically demonstrate the advantages of PGBM compared to
existing state-of-the-art methods: (i) PGBM enables probabilistic esti-
mates without compromising on point performance in a single model,
(ii) PGBM learns probabilistic estimates via a single model only (and
without requiring multi-parameter boosting), and thereby offers a speedup
of up to several orders of magnitude over existing state-of-the-art meth-
ods on large datasets, and (iii) PGBM achieves accurate probabilistic
estimates in tasks with complex differentiable loss functions, such as
hierarchical time series problems, where we observed up to 10% improve-
ment in point forecasting performance and up to 300% improvement in
probabilistic forecasting performance.

3.1 Introduction

Forecasting practioners are increasingly interested in probabilistic fore-
casts instead of point forecasts, in order to obtain a notion of uncertainty
of the forecast [21]. Even though probabilistic forecasting techniques
have been around for quite some time, applying these techniques in large-
scale industrial settings often remains challenging. For example, retailers
may require thousands of new forecasts for each product for each store.
In this setting, traditional confidence interval techniques based on single
model estimates are often computationally too expensive to execute on
a daily basis [88]. Existing GBM-based methods for probabilistic fore-
casting often require training multiple models (e.g., LightGBM [68] or
xgboost [24] require a separate model for each quantile of the forecast),
or require computing expensive second-order derivative statistics [NG-
Boost, 34]. Therefore, we aim to find a method that efficiently generates
high-quality probabilistic forecasts with a single model using GBMs.

We address the challenge of large-scale probabilistic forecasting by
proposing a novel, simple probabilistic forecasting method that leverages
the popular GBM paradigm to provide accurate probabilistic forecasts in
large-scale data settings (Section 3.4). We demonstrate that our approach
achieves state-of-the-art point performance as well as probabilistic per-
formance in forecasting tasks while only training a single ensemble of
Gradient Boosted Decision Trees (GBDT). Our proposed method, Prob-
abilistic Gradient Boosting Machines (PGBM), consists of two steps:
1. We treat the leaf weights in each tree as random variables that we

48

3.1. Introduction

approximate during training via the sample mean and sample variance
of the samples in each leaf, and 2. We obtain an accurate estimate of the
conditional mean and variance of our target for each sample by sequen-
tially adding these random variables for each new tree. After training,
we obtain a learned mean and variance for each sample, which can be
used during prediction. Based on the learned mean and variance, we can
specify a distribution from which to obtain our probabilistic forecast after
training. Our PGBM is simple as its learning procedure is comparable
to standard gradient boosting such as LightGBM [68] or xgboost [24]
while it requires only few additional computation steps during training
and prediction. However, contrary to these existing methods, our method
only requires training a single ensemble of decision trees to obtain a
model capable of providing probabilistic predictions.

We empirically demonstrate that PGBM offers state-of-the-art point
and probabilistic regression performance on 11 datasets of various sizes
(Section 3.5.1). Therefore, PGBM provides the advantages of exist-
ing state-of-the-art point prediction gradient boosting packages such
as LightGBM or xgboost, as well as the advantage of a state-of-the-
art probabilistic prediction package such as NGBoost. In addition, we
show how to optimise PGBM’s probabilistic estimates after training by
varying a single hyperparameter and choosing different sets of posterior
distributions. This offers the benefit of training a model only once, and
optimizing for probabilistic performance thereafter. Neither existing
standard gradient boosting packages or probabilistic packages such as
NGBoost offer this. Furthermore, we demonstrate that our GPU-based
implementation of PGBM trains an order of magnitude faster than ex-
isting state-of-the-art probabilistic gradient boosting methods on large
datasets. Finally, we showcase the use of PGBM on the problem of
probabilistic hierarchical time series forecasting, demonstrating that our
implementation enables the optimization of complex differentiable loss
functions without manually specifying an analytical gradient and hessian
(in contrast to existing gradient boosting packages that rely on a priori
specification of an analytical gradient and hessian).

In summary, we contribute:

• We introduce PGBM, a gradient boosting framework for proba-
bilistic regression problems (Section 3.4);

• We demonstrate state-of-the-art point performance and probabilis-

49

3. Probabilistic Gradient Boosting Machines

tic performance of PGBM on a set of regression benchmarks (Sec-
tion 3.5.1);

• We show that PGBM’s probabilistic performance can be optimized
after training the model, which allows practitioners to choose dif-
ferent posterior distributions without needing to retrain the model
(Section 3.5.1);

• Our implementation of PGBM trains up to several orders of mag-
nitude faster on larger datasets than competing methods (Sec-
tion 3.5.1), and our implementation allows for the use of com-
plex differentiable loss functions, where we observed up to 10%
improvement in point forecasting performance and up to 300% im-
provement in probabilistic forecasting performance (Section 3.5.2).

3.2 Related Work

Traditional forecasting methods such as ARIMA [22] allow for probabilis-
tic forecasts through specification of confidence intervals [58]. However,
creating a confidence interval in these methods often requires assuming
normality of the distribution of the target variable or its residuals. Gener-
alized Additive Models for Shape, Scale and Location (GAMLSS) [104]
is a framework that allows for a more flexible choice of distribution of
the target variable in probabilistic regression problems. A disadvantage
is that the model needs to be pre-specified, limiting flexibility of this
method. Prophet [124] is a more recent example of generalized addi-
tive models applied to the probabilistic forecasting setting. However,
Prophet has been shown to underperform other contemporary probabilis-
tic forecasting methods [8, 113] and to have difficulties scaling to very
large datasets [113]. Other Bayesian methods exhibiting similar issues
include Bayesian Additive Regression Trees (BART) [28], which requires
computationally expensive sampling techniques to obtain probabilistic
predictions.

GBMs [38] are widely used for regression problems such as fore-
casting [24]. Popular GBM implementations such as LightGBM [68]
or xgboost [24] have won various machine learning competitions [24].
The winning solution of the accuracy track of the recent M5 forecasting
competition was based on a set of LightGBM models, and 4 out of the

50

3.2. Related Work

top-5 solutions used LightGBM models in their solutions [88]. However,
GBMs are not naturally equipped to provide probabilistic forecasts as
these models return point predictions, requiring multiple models when a
practitioner desires a range of predictions. For example, the uncertainty
track of the M5 forecasting competition required contestants to provide
a set of quantiles for a hierarchical time series problem. The winning
solution was based on 126 (!) separate LightGBM models, one for each
requested quantile and time series aggregation level [88]. To address
these limitations, NGBoost [34] allows for probabilistic regression with a
single GBM by using the natural gradient to boost multiple parameters of
a pre-specified distribution. Compared to NGBoost, our method PGBM
does not require a natural gradient; it can achieve better or on-par predic-
tive uncertainty estimates, without sacrificing performance on the point
forecast of the same model as does NGBoost. Ben Taieb et al. [18] also
propose boosted additive models for probabilistic forecasting. Our work
is different in that we use GBMs with stochastic leaf weights to estimate
the conditional mean and variance simultaneously for each estimator.
Gouk et al. [44] present a method for incrementally constructing decision
trees using stochastic gradient information. Our method is different in
that (i) we focus on the general case of probabilistic regression instead
of incremental online learning of trees and (ii) we obtain our stochastic
estimates by approximating the ratio of the gradient and hessian.

Outside of the GBM context, decision trees have also been used
for probabilistic regression problems in Quantile Regression Forests
(QRF) [91]. However, this method requires storing all observations when
computing leaf weights of a decision tree, which makes this method less
suitable for large datasets. In addition, GBMs commonly outperform
random forests on regression tasks, making the former a better choice
when performance is a key consideration.

Contemporary large-scale probabilistic forecasting techniques of-
ten leverage the power of neural networks, such as DeepAR [107] or
transformer-based models [80, 82]. However, in practice GBMs still
seem the technique of choice — only one out of the top-5 solutions in the
M5 uncertainty forecasting competition used a neural network method as
its primary probabilistic forecasting tool.

In summary, we contribute the following on top of the related work
discussed above: (i) PGBM is a single-parameter boosting method that
achieves state-of-the-art point and probabilistic estimates using a sin-

51

3. Probabilistic Gradient Boosting Machines

gle model, (ii) PGBM allows for choosing an output distribution after
training, which means the probabilistic forecast can be optimized after
training, (iii) our implementation allows training of larger datasets up to
several orders of magnitude faster than the existing state-of-the-art, and
(iv) our implementation allows for using complex differentiable loss func-
tions, which removes the need to calculate an analytical gradient, thereby
opening up a wider set of problems that can be effectively addressed.

3.3 Background

Gradient boosting optimizes a loss function by iteratively adding a set
of weak learners into an ensemble [38]. Each new weak learner is added
sequentially, such that this new learner reduces the aggregate error from
the existing ensemble of weak learners. Typically, the weak learners are
decision trees due to their strong empirical performance; and we also
choose them as base learners in this chapter following the formalization
of gradient boosting with decision trees due to Chen and Guestrin [24].
In gradient boosting, at each iteration k, we seek to construct a decision
tree f (k)(xi) such that the update equation for our estimate for sample i
reads:

ŷ
(k)
i = ŷ

(k−1)
i − αf (k)(xi), (3.1)

in which α denotes the learning rate, typically chosen to be less than 1,
such that only a tiny portion of each new base learner is added to the
overall estimate at each iteration. We will derive a different set of update
equations for PGBM in Section 3.4.3. To construct the decision tree f (k),
we greedily split our training data based on its input features x into left
(IL) and right (IR) nodes by maximizing the following gain:

G =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
, (3.2)

where λ is a regularization parameter, I = IL∪IR, and gi, hi are the gradi-
ent and hessian, respectively, with respect to ŷ

(k−1)
i of some differentiable

loss function that we aim to minimize, for example the mean-squared

52

3.4. Probabilistic Gradient Boosting Machines (PGBM)

error loss in case of a regression problem.1,2 When constructing the de-
cision tree, Eq. (3.2) is evaluated at each node to find the best possible
split gain G∗ among all features in the input x, and typically a split is
made if the gain exceeds a certain threshold. If no split is made, the node
becomes a leaf and the corresponding leaf weight wj follows from:

wj = −
∑

i∈Ij gi∑
i∈Ij hi + λ

, (3.3)

in which j ∈ {0, 1, . . . , T}, with T the total number of leaves in our tree.
We typically stop learning the tree if some pre-defined criterion is met,
for example if no more splits with a positive split gain according to Eq.
(3.2) can be made or the tree reaches a pre-defined fixed number of leaves.
After training the tree, the output f (k)(xi) for a particular sample is then
simply the leaf weight wj , or:

ŷ
(k)
i = ŷ

(k−1)
i − αwj. (3.4)

3.4 Probabilistic Gradient Boosting Machines
(PGBM)

We introduce Probabilistic Gradient Boosting Machines (PGBM). We
introduce our problem setting, the core components of PGBM, and end
with an analysis and discussion of PGBM.

3.4.1 Probabilistic Forecasting
We are interested in the problem of probabilistic forecasting. More
generally, we are interested in the problem of probabilistic regression, in
which one aims to estimate a conditional probability distribution P (y|x)
of some target scalar variable y based on a set of inputs x. In the case of
probabilistic forecasting, x commonly includes lagged target variables

1Some researchers refer to this method as Newton boosting rather than gradient
boosting [115], as it employs a second-order derivative.

2Unlike [24], we drop the regularization term γT . We have no need for this regu-
larization parameter, as the number of leaves T is a hyperparameter that needs to be
specified in our method. Note also that the parameter γ is in fact by default set to zero
in the xgboost implementation of [24].

53

3. Probabilistic Gradient Boosting Machines

as well as additional covariates. We are interested in finding a model
f(x) that provides us with an estimate of the mean µ and variance σ2 of
a target distribution such that we can obtain a sample of an estimate ŷ by
sampling from a specified distribution D after training:

(µŷ, σ
2
ŷ) = f(x) (3.5)

ŷ ∼ D(µŷ, σ
2
ŷ). (3.6)

We construct our model f(x) using gradient boosting. In order to find
the estimate for the mean and variance of our target distribution, we next
derive formulas for stochastic leaf weights (Eq. (3.3)) and new update
equations (Eq. (3.4)).

3.4.2 Stochastic Leaf Weights
By creating stochastic leaf weights, we are able to learn a mean and
variance of each leaf weight in each tree, thus enabling us to learn a
mean and variance for each sample in our dataset. We assume that the
gradient and hessian of our loss function are random variables with a
mean (µg, µh) and finite variance (σ2

g , σ
2
h) and covariance σ2

gh, which we
approximate separately in each tree for each instance set Ij using the
sample mean, sample variance and sample covariance for the nj samples
in an instance set Ij:

µg ≈ gj =
1

nj

∑
i∈Ij

gi (3.7)

µh ≈ hj =
1

nj

∑
i∈Ij

hi (3.8)

σ2
g ≈ σ2

gj
=

1

nj − 1

∑
i∈Ij

(gi − g)2 (3.9)

σ2
h ≈ σ2

hj
=

1

nj − 1

∑
i∈Ij

(hi − h)2 (3.10)

σ2
gh ≈ σ2

ghj
=

1

nj − 1

∑
i∈Ij

(gi − g)(hi − h). (3.11)

Note that the sample variance and covariance require the Bessel correction
nj − 1 in order to obtain an unbiased estimate of the true variance and

54

3.4. Probabilistic Gradient Boosting Machines (PGBM)

covariance. Moreover, the Central Limit Theorem dictates that we obtain
our true mean and variance if nj → ∞. However, for tiny datasets,
nj is typically a small number as each leaf may only contain a few
samples and thereby using sample statistics might be inappropriate. In
the Experiments section (Section 3.5), we will demonstrate that we are
still able to provide accurate probabilistic estimates even in such cases.
Next, we write Eq. (3.3) in terms of the sample mean of the gradient and
hessian:

wj = −
1
nj

∑
i∈Ij gi

1
nj

∑
i∈Ij hi +

1
nj
λ
= −

gj

hj + λj

. (3.12)

Now, we can model the expectation and variance of the leaf weight wj

using the sample statistics as follows (dropping the subscript j on the
right-hand side for readability):

µj = E

[
g

(h+ λ)

]
≈ g

(h+ λ)
−

σ2
gh

(h+ λ)2
+

gσ2
h

(h+ λ)3
(3.13)

σ2
j = V

[
g

(h+ λ)

]
≈

σ2
g

(h+ λ)2
+

g2σ2
h

(h+ λ)4
− 2

gσ2
gh

(h+ λ)3
. (3.14)

We refer the reader to Appendix 3.A for the derivation of Eq. (3.13)–
(3.14). Note that for most common loss functions, such as the mean-
squared error, the two final terms of Eq. (3.13)–(3.14) are zero as the
hessian h has no variation. When training a decision tree f (k), we store
the obtained expectation and variance of each leaf of each tree and use
these results to obtain our final estimate for the mean and variance using
the update equations described in the next subsection.

3.4.3 Update Equations
Apart from the stochastic leaf weights, we require new update equations
(Eq. (3.4)) in order to update the estimate for our mean and variance when
adding a new tree at each iteration. These new update equations allow us
to aggregate the stochastic weights over all the trees. For these equations,
we make use of the following rules for the mean µ and variance σ2 of
some random variables (A,B) and a constant c:

µ(A−cB) = µA − c · µB

55

3. Probabilistic Gradient Boosting Machines

σ2
cB = c2σ2

B

σ2
(A−cB) = σ2

A + c2σ2
B − 2c · σ2

(A,B)

σ2
(A,B) = ρ(A,B)σAσB,

in which ρ denotes Pearson’s correlation coefficient between the variables
(A,B). Using these rules, we can modify Eq. (3.4) to arrive at the
formulas for the expectation E and variance V of our estimate ŷ

(k)
i :

µ
ŷ
(k)
i

= E
[
ŷ
(k)
i

]
= µ

ŷ
(k−1)
i
− α · µj(k) (3.15)

σ2

ŷ
(k)
i

= V
[
ŷ
(k)
i

]
= σ2

ŷ
(k−1)
i

+ α2σ2
j(k) − 2αρσ

ŷ
(k−1)
i

σj(k) , (3.16)

where the hyperparameter ρ denotes the correlation coefficient between
trees k and k−1. We provide further discussion around ρ in Section 3.4.5.
Finally, the learned expectation and variance can be used for creating
probabilistic predictions of new samples after training our model by
sampling from a distribution parameterized by these learned quantities:

ŷ
(k)
i ∼ D

(
µ
ŷ
(k)
i
, σ2

ŷ
(k)
i

)
. (3.17)

We are now ready to fully present our method PGBM.

3.4.4 PGBM
Algorithm We provide a succint overview of the procedures for training
and prediction with Probabilistic Gradient Boosting Machines (PGBM)
in Algorithms 3.1 & 3.2.

Training (Algorithm 3.1) In PGBM, gradient boosting is performed
comparable to LightGBM [68] or xgboost [24], and PGBM employs
global equal density histogram binning to bin continuous features into
discrete bins in order to reduce the computational effort required to find
the optimal split decision (Line 1). At the start of training, we initialize
the estimate ŷ, typically with the mean of the training set in a regression
setting (Line 2). Then, gradient boosting is performed for a fixed number
of iterations by first computing the gradient and hessian (Lines 4–5)
of the training set and optionally choosing a subsample of the dataset
(commonly referred to as bootstrapping, Line 6) on which to build the

56

3.4. Probabilistic Gradient Boosting Machines (PGBM)

decision tree. The decision tree is then constructed up to a fixed number
of leaves (Line 7) by first selecting the samples in the current node
(Line 8), second by finding the best split for this node (Line 9), and third
by splitting the current node or creating stochastic leaf weights if no split
can be made (Line 10), for example, when the split does not result in
a positive gain according to Eq. (3.2). After the tree construction has
finished, predictions for the entire training set are generated (Line 11)
and the overall estimate is updated (Line 12) and the process repeats for
the next iteration.

Note that the learned variance is only used to create the probabilistic
estimate in the prediction algorithm; it can also serve as a validation
criterion during training (for example, by performing a prediction step on
a validation set and deciding based on some probabilistic metric whether
to continue training or not).

Prediction (Algorithm 3.2) During prediction, we initialize the estimate
using the stored initial estimate of the training set (Line 1). Then, we
make predictions on the dataset by iterating over all the trees (Line 2)
using our new update equations (Line 3). Finally, we obtain our proba-
bilistic estimate by sampling from a distribution parameterized by our
learned mean and variance (Line 4).

Implementation We implement PGBM in PyTorch [96] and offer it as
a Python package.3 PyTorch offers (multi-)GPU acceleration by default,
which allows us to scale PGBM to problems involving a large number
of samples (we trained on datasets of over 10M samples) as we can
distribute training across multiple GPUs. More importantly, our imple-
mentation allows for the use of the automated differentiation engine of
PyTorch, such that we can employ arbitrary complex differentiable loss
functions without requiring an analytical gradient and hessian. This is
in stark contrast to existing popular packages such as LightGBM [68]
or xgboost [24], where custom loss functions require the manual deriva-
tion of an analytical gradient and hessian. We provide an example of
this benefit in Section 3.5.2. Note that PGBM can be made compat-
ible with existing gradient boosting packages relatively easily too, as
it only requires storing one additional sample statistic (the variance),
changing the update equations according to Section 3.4.3 and choosing

3https://github.com/elephaint/pgbm

57

https://github.com/elephaint/pgbm

3. Probabilistic Gradient Boosting Machines

Algorithm 3.1 PGBM training algorithm

Input: Input dataset X ∈ Rn×f with n samples and f features, target
output y ∈ Rn, differentiable loss function l(y, ŷ) and model
hyperparameters.
Output:

1: Bin features such that for each feature |x| ≤ max bins
2: Set initial estimate ŷ, e.g. to mean y of target output
3: for k = 1 to num iterations do
4: Compute gradient g(k) = ∇ŷ(k)l(y, ŷ)

5: Compute hessian h(k) = ∇2
ŷ(k)l(y, ŷ)

6: Select subsample of input dataset as instance set I1
7: for j = 1 to max leaves do
8: Select instance set Ij of X,g(k),h(k)

9: Find best split for all (features, bins) (Eq. (3.2))
10: Create split if split criteria are met else create stochastic leaf

weight (Eq. (3.7)–(3.14))
11: Predict X to obtain µ

(k)
ŷ (Eq. (3.15))

12: Update estimate ŷ = µ
(k)
ŷ

Algorithm 3.2 PGBM prediction algorithm

Input: Input dataset X ∈ Rn×f with n samples and f features, target
distribution D and model hyperparameters.
Output:

1: Set initial estimate ŷ to mean y of training dataset
2: for k = 1 to num iterations do
3: Predict X to obtain (µ

(k)
ŷ , σ

2(k)
ŷ) (Eq. (3.15)–(3.16))

4: Draw n samples ŷ ∼ D
(
µŷ(k) , σ2

ŷ(k)

)

58

3.4. Probabilistic Gradient Boosting Machines (PGBM)

a distribution D after training to sample from. We also offer PGBM
using a fork of Scikit-learn’s [97] HistGradientBoostingRegressor, such
that it can be used as a drop-in replacement for pipelines employing
HistGradientBoostingRegressor.

Furthermore, we implemented a custom CUDA kernel that integrates
with PyTorch to calculate the optimal splitting decision (Eq. (3.2)), the
most compute intensive part of PGBM. Our kernel leverages the parallel
processing power of modern CUDA-capable GPUs, by parallelizing the
split decision across the sample and feature dimension using parallel
reductions. We demonstrate the effectiveness of our GPU training in
Section 3.5.1.

3.4.5 Analysis & Discussion

Computational complexity Even though two parameters – a mean and
variance – are learned in PGBM, the trees are constructed comparable to
standard gradient boosting such as in [24, 68]. Therefore, the additional
cost of our second parameter is negligible as only the sample statistics
need to be calculated in the leaves. In contrast to NGBoost [34], PGBM
also does not require calculation of a natural gradient, which involves the
inversion of many small matrices. PGBM’s runtime generally scales with
the number of samples, the number of features and the number of bins
used to bin the features, in accordance with existing GBM packages.

Higher-order moments and leaf sample quantiles We only consider
the first two moments of a distribution (i.e., the mean and variance) to
derive our stochastic leaf weights, which limits the output distribution D
to distributions parameterized using location and scale parameters (i.e.,
our learned mean and variance). This is a limitation compared to, e.g.,
NGBoost [34]. We considered calculating higher order sample statistics
such as the sample skewness (third moment) and sample kurtosis (fourth
moment), however the disadvantage is that (i) there is no unbiased sample
statistic for those measures, (ii) deriving approximations of the form of
Eq. (3.13)–(3.14) becomes exceedingly complex, and (iii) higher-order
sample statistics require more samples in order for the sample statistic to
provide a reasonable estimate of the true statistic. Moreover, as we learn
separate sample statistics for each leaf in each tree, we are still able to
model complex distributions over the entire dataset using distributions

59

3. Probabilistic Gradient Boosting Machines

parameterized only by location and scale parameters. Finally, one could
also store the sample quantile information of each leaf and draw samples
according to the stored quantile information. This would remove the need
for specifying a particular distribution. While this seems an attractive
option, calculating sample quantile information for each leaf is computa-
tionally difficult as it requires an expensive sorting operation, and storing
a sufficient number of sample quantiles to reap the full benefits of this
method requires storing at least 2–3x the number of leaf weights. In short,
there is no real need to use higher order moments or leaf sample quantiles
to provide accurate probabilistic estimates as we show in Section 3.5.1.

Output sampling PGBM allows one to sample from different output
distributions after training, which allows practitioners to train their model
by minimizing some point metric (e.g., RMSE) and after training try
different distributions for optimizing the probabilistic forecast based on
some validation metric. The key benefit is that this allows PGBM to
achieve state-of-the-art point forecasting performance as well as accurate
probabilistic forecasting performance using the same model. We will
demonstrate this in Section 3.5.1. Note that practitioners can also opti-
mize the probabilistic forecast by using a loss function that optimizes the
probabilistic forecast.

Split decisions and tree dependence In PGBM, split decisions in the
tree are not recomputed based on the stochasticity of the leaf weights,
even though it could be argued that this would be appropriate when sam-
pling from the trees. We intentionally avoid this as it is computationally
expensive to recompute split decisions after training when sampling from
the learned distribution. Secondly, by sequentially adding the mean and
variance of each tree we omit the explicit covariance between tree k and
trees k−2, k−3, . . ., and only model the covariance between subsequent
trees. We implicitly model both these effects using a single constant
correlation hyperparameter ρ (Eq. (3.16)), which we further analyze in
Section 3.5.1.

Hessian distribution The distribution of the hessian h should have
a support of [0,∞) to avoid division by zero in Eq. (3.13)–(3.14), or
equivalently, we require the sum of the hessians (plus regularization

60

3.5. Experiments

constant λ) of all samples in an instance set Ij of a leaf to be positive.
For common convex loss functions such as the mean-squared error this
is not an issue, however for non-convex loss functions this might pose a
problem in rare cases where all hessians in an instance set add up to zero.
In those cases, numerical issues can usually be avoided by requiring a
decent (e.g., > 10) minimum number of samples in each leaf in a tree –
this can be set as a hyperparameter in PGBM.

3.5 Experiments

First, we first demonstrate how PGBM can provide accurate point and
probabilistic predictions on a set of common regression benchmark
datasets from the UCI Machine Learning Repository (Section 3.5.1).
We show how PGBM allows practitioners to optimize their probabilistic
estimate after training, thereby removing the need to retrain a model
under different posterior distribution assumptions. Next, we demonstrate
the efficiency of our implementation of PGBM compared to existing gra-
dient boosting methods. Finally, we demonstrate PGBM on the problem
of forecasting for hierarchical time series, which requires optimizing a
complex loss function for which deriving an analytical gradient is too
complex (Section 3.5.2). Our experiments are run on open data, and our
experimentation code is available online.4

3.5.1 UCI Regression Benchmarks
Task We perform probabilistic regression on a set of regression datasets.
Our goal is to obtain the lowest probabilistic prediction score as well as
the lowest point performance score.

Evaluation We evaluate the probabilistic performance of each method
using the Continuously Ranked Probability Score (CRPS), which is a
measure of discrepancy between the empirical cumulative distribution
function of an observation y and the cumulative distribution F of a
forecast ŷ [139]:

C =

∫
[F (ŷ)− 1(ŷ ≥ y)]2dŷ, (3.18)

4Repository at https://github.com/elephaint/pgbm

61

https://github.com/elephaint/pgbm

3. Probabilistic Gradient Boosting Machines

in which 1 denotes the indicator function. We compute the empirical
CRPS based on 1,000 sample predictions generated by the trained models
on the test set. We evaluate point performance using Root Mean Squared

Error (RMSE):
√

1
n

∑n
i (yi − ŷi)2. We present these metrics relative to

the median of PGBM over all the folds tested for a dataset, and we refer
the reader to Table 3.B.1 of Appendix 3.B for further details.

Protocol We follow the same protocol as Duan et al. [34], and create 20
random folds for each dataset except for msd, for which we only create
one. For each of these folds, we keep 10% of the samples as test set. The
remaining 90% is first split into an 80/20 validation/training set to find
the number of training iterations that results in the lowest validation score.
After validation, the full 90% training set is trained using the number
of iterations found in the validation step. As output distribution for the
probabilistic prediction we use a normal distribution, similar to Duan
et al. [34].

Baseline models For probabilistic performance, we compare against
NGBoost [34], which has recently been shown to outperform other com-
parable methods on the current set of benchmarks. We use the same
settings for NGBoost as in [34]. For point performance, we also compare
to LightGBM [68], one of the most popular and best-performing gradient
boosting packages available. We configure LightGBM to have the same
settings as PGBM.

PGBM For all datasets, we use the same hyperparameters for PGBM,
except that we use a bagging fraction of 0.1 for msd in correspondence
with Duan et al. [34]. Our training objective in PGBM is to minimize
the mean-squared error (MSE). We refer the reader to Table 3.B.2 of
Appendix 3.B for an overview of key hyperparameters of each method.

Results We provide the results of our first experiment in Figures 3.1–3.2
and observe the following:

• On probabilistic performance, PGBM outperforms NGBoost on
average by approximately 15% as demonstrated by the relatively
lower CRPS across all but one dataset (msd, where the difference

62

3.5. Experiments

is tiny). This is remarkable, as the training objective in PGBM is to
minimize the MSE, rather than optimize the probabilistic forecast
as does NGBoost.

• PGBM outperforms NGBoost on all datasets on point performance,
and on average by almost 20%, which is in line with expectation
as we explicitly set out to optimize the MSE as training objective
in PGBM in this experiment. However, as becomes clear from
this result, PGBM does not have to sacrifice point performance in
order to provide state-of-the-art probabilistic estimates nonetheless.
Compared to LightGBM, PGBM performs slightly worse on aver-
age (approx. 3%) on point performance. We suspect this is due to
implementation specifics.

The main takeaway from this experiment is that even though we only
optimized for a point metric (MSE) in PGBM, we were still able to
achieve similar probabilistic performance compared to a method that
explicitly optimizes for probabilistic performance.

Analysis: correlation hyperparameter We perform a brief analysis
of the correlation hyperparameter ρ (Eq. (3.16)). This hyperparameter
controls the dependence between variance estimates of subsequent trees
in PGBM, and is critical for probabilistic performance. Figure 3.3a
shows the CRPS evaluated on the validation set at different settings for
ρ for each dataset for a single fold. We normalized the CRPS scores
on the lowest CRPS for each dataset. Across all datasets, the CRPS
seems to follow a parabolic shape and consequently there seems to be
an optimal choice for ρ across different datasets: a value of 0.02–0.07
typically seems appropriate. Empirically, we found that an initial value
of ρ = log10 n

100
, where n denotes the size of the training set generally

works well and therefore we used that in our experiments as default value.
Intuitively, the positiveness of the correlation between subsequent trees
seems logical: if the leaf weight of a given tree shifts more positively
(negatively) as a result of stochasticity, the residual on which the next
tree will be constructed shifts in the same direction. Consequently, the
leaf weights of this next tree will also shift in the same direction, thus
exhibiting a positive correlation with the previous tree’s leaf weights.
Furthermore, larger datasets tend to cluster together in behavior, as can
be seen from the curves for the protein, msd, kin8nm, power and

63

3. Probabilistic Gradient Boosting Machines

0.5

1.0

1.5

2.0

2.5

C
R

P
S

yacht

0.9

1.0

1.1

1.2

boston

0.8

1.0

1.2

energy

0.75

1.00

1.25

1.50

1.75
concrete

0.9

1.0

1.1

wine

1.0

1.1

1.2

1.3

C
R

P
S

kin8nm

1.0

1.1

1.2

power

1.0

1.1

1.2

1.3

naval

1.00

1.05

1.10

1.15
protein

0.996

0.998

1.000
msd

pgbm ngboost

Figure 3.1: Results for probabilistic performance (CRPS) for each dataset
for each method, with the smallest dataset yacht in the top left corner
and the largest dataset msd in the lower right corner. Lower is better,
and results have been indexed against the median test score of PGBM.
PGBM outperforms NGBoost in probabilistic performance.

64

3.5. Experiments

0.5

1.0

1.5

R
M

S
E

yacht

0.8

1.0

1.2

boston

0.75

1.00

1.25

1.50

1.75
energy

0.75

1.00

1.25

1.50

1.75
concrete

0.9

1.0

1.1

wine

0.8

1.0

1.2

R
M

S
E

kin8nm

0.9

1.0

1.1

1.2

power

1.0

1.2

1.4

naval

1.0

1.1

protein

1.000

1.002

1.004

1.006

1.008
msd

pgbm ngboost lightgbm

Figure 3.2: Results for point performance (RMSE) for each dataset for
each method, with the smallest dataset yacht in the top left corner and
the largest dataset msd in the lower right corner. Lower is better, and
results have been indexed against the median test score of PGBM. PGBM
outperforms NGBoost in point performance and performs on par with
LightGBM.

65

3. Probabilistic Gradient Boosting Machines

0.05 0.00 0.05
Tree correlation

1.0

1.1

1.2

1.3

1.4

1.5
No

rm
al

ize
d

CR
PS

boston
concrete
energy
kin8nm

msd
naval
power

protein
wine
yacht

(a)

0.05 0.00 0.05
Tree correlation

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
CR

PS

msd (8)
msd (32)

msd (128)
protein (8)

protein (32)
protein (128)

(b)
Figure 3.3: Normalized CRPS on the validation set for different settings
of tree correlation hyperparameter ρ, (a) for all datasets and (b) for
protein and msd when trained using a maximum number of leaves
per tree of {8, 32, 128}.

naval datasets. It seems that for larger datasets, typically larger settings
for ρ are appropriate. Our hypothesis is that for trees containing many
samples per leaf, the correlation between subsequent trees is higher, as
more samples in the tree’s leaves will generally imply that the model has
not yet (over)fit to the training set and there is likely more information
left in the residuals compared to the situation where there are few samples
per leaf. This would explain the behavior observed in Figure 3.3a as we
train each model with a maximum of 8 leaves per tree, resulting in more
samples per leaf for larger datasets. We test this hypothesis by training
the relatively larger protein and msd datasets using different settings
for the maximum number of leaves, for which we show the results in
Figure 3.3b. Confirming our hypothesis, we indeed observe the optimal
correlation parameter decreasing when we train PGBM using a higher
number of maximum leaves per tree (i.e., the minimum of the parabola
shifts to the left).

Analysis: posterior distribution One of the key benefits of PGBM
is that it allows us to optimize the probabilistic estimate after training,
as the choice of distribution D in Eq. (3.6) is independent from the
training process. This offers the benefit of training to optimize a certain
point metric such as RMSE, and choosing the distribution that best

66

3.5. Experiments

fits the learned mean and variance after training by validating a set of
distribution choices on a validation set. To demonstrate this benefit, we
repeated the experiments from our first experiment for a single fold. For
each dataset, we evaluated the learned model on CRPS on the validation
set for a set of common distributions and a range of tree correlations
ρ = {0.00, 0.01, . . . , 0.09}. The optimal choice of distribution and tree
correlation on the validation set was subsequently used for calculating
the CRPS on the test set. We report the results in Table 3.1, where ‘Base
case’ refers to the base case scenario from our first experiment, where
we chose a Normal distribution and a tree correlation hyperparameter of
ρ = log10 n

100
across all datasets, and ‘Optimal’ refers to the result on the

test set when choosing the distribution and tree correlation according to
the lowest CRPS on the validation set. We see that for most datasets,
the minimum CRPS on the validation set is similar across choices of
distribution, which implies that it is more beneficial to optimize the tree
correlation rather than the choice of output distribution for these datasets.
On the test set, we see improved scores compared to the base case on all
but the smallest dataset, thereby showcasing the benefit of optimizing
the probabilistic forecast after training. We would advice practitioners to
start with a generic distribution such as the normal or Student’s t(3), and
optimize the probabilistic estimate after training by testing for different
tree correlations and distribution choices.

Analysis: training time Our implementation in PyTorch allows us
to use GPU training by default, which allows us to significantly speed
up training for larger datasets. We demonstrate this benefit in Table 3.2
where we compare training times for datasets of different size against
a baseline of PGBM (we refer to Table 3.B.3 in the Appendix for the
absolute timings). For this experiment, we also included the higgs
dataset, which is a 10M sample UCI dataset commonly used to benchmark
gradient boosting packages. For PGBM, we show results for training
on GPU-only and CPU-only. NGBoost does not offer GPU training and
runs on top of the default scikit-learn decision tree regressor. We ran
our experiments on a 6-core machine with a nVidia RTX 2080Ti GPU.
As can be seen, PGBM is up to several orders of magnitude faster than
NGBoost as the dataset size increases. This demonstrates that PGBM and
our implementation allow practitioners to solve probabilistic regression
problems for datasets much larger than NGBoost.

67

3. Probabilistic Gradient Boosting Machines

Ta
bl

e
3.

1:
R

es
ul

ts
fo

r
pr

ob
ab

ili
st

ic
(C

R
PS

)
pe

rf
or

m
an

ce
fo

r
ea

ch
da

ta
se

tw
he

n
va

ry
in

g
th

e
po

st
er

io
r

di
st

ri
bu

tio
n

an
d

tr
ee

co
rr

el
at

io
ns

on
th

e
va

lid
at

io
n

se
t(

le
ft

)a
nd

su
bs

eq
ue

nt
ly

us
in

g
th

e
op

tim
al

ch
oi

ce
of

di
st

ri
bu

tio
n

an
d

tr
ee

co
rr

el
at

io
n

on
th

e
te

st
se

t(
rig

ht
).

B
es

tr
es

ul
ts

on
va

lid
at

io
n

an
d

te
st

se
ta

re
in

bo
ld

.W
e

re
po

rt
th

e
m

in
im

um
C

R
PS

on
th

e
va

lid
at

io
n

se
ta

cr
os

s
al

lt
he

tr
ee

co
rr

el
at

io
ns

te
st

ed
pe

rd
is

tr
ib

ut
io

n.
V

al
id

at
io

n
se

t
Te

st
se

t

D
at

as
et

N
or

m
al

St
ud

en
t’s

t(
3)

L
og

is
tic

L
ap

la
ce

L
og

N
or

m
al

G
um

be
l

W
ei

bu
ll

Po
is

so
n

N
eg

B
in

om
ia

l
B

as
e

O
pt

im
al

y
a
c
h
t

0.
37

0.
37

0.
37

0.
37

0.
44

0.
38

0.
37

0.
75

9.
7

0.
18

0.
19

b
o
s
t
o
n

1.
41

1.
40

1.
39

1.
39

1.
4

1.
42

1.
39

1.
58

12
.2

7
2.

08
2.

06
e
n
e
r
g
y

0.
62

0.
61

0.
62

0.
61

0.
62

0.
62

0.
63

1.
25

16
.1

5
0.

64
0.

64
c
o
n
c
r
e
t
e

2.
21

2.
21

2.
21

2.
19

2.
23

2.
26

2.
22

2.
38

3.
59

2.
69

2.
64

w
i
n
e

0.
32

0.
33

0.
32

0.
32

0.
32

0.
32

0.
32

0.
59

0.
64

0.
35

0.
34

k
i
n
8
n
m

0.
08

0.
08

0.
08

0.
08

1.
04

0.
08

0.
08

0.
26

0.
26

0.
08

0.
08

p
o
w
e
r

1.
86

1.
86

1.
86

1.
86

1.
86

1.
87

1.
88

5.
22

45
4.

34
1.

81
1.

80
n
a
v
a
l

0.
00

0.
00

0.
00

0.
00

0.
02

0.
00

0.
00

0.
22

0.
22

0.
00

0.
00

p
r
o
t
e
i
n

2.
18

2.
18

2.
18

2.
18

45
.3

2.
17

2.
54

2.
15

2.
15

2.
14

2.
12

m
s
d

4.
74

4.
73

4.
74

4.
73

4.
74

4.
88

4.
69

11
.1

6
19

82
.1

9
4.

78
4.

74

68

3.5. Experiments

Table 3.2: Training time for 2,000 iterations for 5 datasets of different size
as a fraction of PGBM-gpu training time. Bold indicates probabilistic
forecasting method with the lowest training time.

Probabilistic forecast Point forecast

Dataset PGBM-gpu PGBM-cpu NGBoost LightGBM

wine (n=1,599) 1.00 0.41 0.20 0.01
naval (n=12k) 1.00 1.62 1.05 0.02
protein (n=46k) 1.00 3.09 3.39 0.02
msd (n=515k) 1.00 26.85 48.83 0.09
higgs (n=10,5M) 1.00 101.76 147.78 0.43

In general, for smaller datasets, training on cpu offers the best timings
for the two methods. We include the relative timings to LightGBM for
reference in Table 3.2, which shows that PGBM even becomes competi-
tive to LightGBM for the largest dataset (higgs). However, the timings
for LightGBM represent the timings to train a single LightGBM model.
If one is interested in obtaining a probabilistic forecast, the timings would
be multiplied by the number of quantiles required. Hence, for a fine-
grained probability distribution, the timings would be 5–10x higher for
LightGBM, again demonstrating the effectiveness of our implementation
for probabilistic forecasting.

3.5.2 Hierarchical Time Series
Task So far, our experimental results were obtained using the mean-
squared error as objective function for which an analytical gradient and
hessian can be easily derived. In this experiment, we apply PGBM to
the problem of hierarchical time series forecasting, which is a problem
where our loss function is rather complex, so that it becomes very tedious
to manually calculate an analytical gradient and hessian for it:

L =
N∑
j

wj(yj − ŷj)
2, (3.19)

where wj is the weight of the j-th time series, and N is the number of
time series. In hierarchical time series, we aggregate time series across
multiple levels. For example, in the case of two time series and two

69

3. Probabilistic Gradient Boosting Machines

levels, N = 3 and our loss for each series reads L1 = w1(y1 − ŷ1)
2,

L2 = w2(y2 − ŷ2)
2, L3 = w3((y1 + y2) − (ŷ1 + ŷ2))

2 with w1, w2, w3

weights of each series, for example 0.25, 0.25, 0.5. Hence, the gradient
and hessian of L with respect to the first estimate ŷ1 becomes ∂L

∂ŷ1
=

−w1(2y1−2ŷ1)−w3(2y1+2y2−2ŷ1+2ŷ2) and ∂2L
∂2ŷ1

= 2w1+2w3. It is
clear that deriving this result analytically becomes increasingly complex
when the number of levels and the number of time series increases, which
necessitates the use of autodifferentiation packages such as PyTorch if
we are interested in optimizing this objective.

Dataset We use a subset of the dataset from the M5 forecasting com-
petition [88], in which participants were asked to provide hierarchical
forecasts for Walmart retail store products. We use a single store and
create forecasts for a single day. For each store, we are interested not only
in accurately forecasting individual item sales, but also in optimizing the
aggregate sales per day, aggregate sales per day per category and aggre-
gate sales per day per department. Hence, we obtain four levels for our
weighted loss function: (i) individual items, (ii) category aggregates per
day, (iii) department aggregates per day, and (iv) total daily aggregates.
For more details on the data and preprocessing we refer to Appendix 3.B.

Protocol We compare against a baseline of LightGBM, NGBoost and
PGBM trained with the regular mean-squared error objective. All models
are trained using the same hyperparameters. We validate on the last 28
days of the training dataset and pick the number of iterations resulting in
the lowest item RMSE on this validation set. After validating, we retrain
on the entire dataset for the number of optimal iterations and test on a
held out test set of 28 days (with the first day starting the day after the
last day in the validation set). We use the Normal distribution with a
tree correlation of ρ = log10 n

100
to generate our probabilistic forecasts for

PGBM.

Results We evaluate our model on RMSE and CRPS for each aggrega-
tion and the results are displayed in Table 3.3. We observe that using the
weighted MSE that incorporates our four levels of aggregation results in
a similar point forecast score for individual items, but in a much better
forecast for the aggregations – differences up to 10% compared to the

70

3.6. Conclusion

Table 3.3: Point (RMSE) and probabilistic (CRPS) forecasting perfor-
mance for the M5 dataset across aggregations when using MSE or
weighted MSE (only for PGBM) as training objective. Lower is bet-
ter, best results are indicated in bold.

RMSE CRPS

PGBM NGBoost LightGBM PGBM NGBoost
objective MSE wMSE MSE MSE MSE wMSE MSE

Individual1 2.00 2.00 2.01 2.00 0.77 0.93 0.78
Category2 67.9 67.6 77.4 70.0 72.6 40.4 82.0
Department3 108 101 129 111 160 59 184
Total4 213 190 276 225 472 136 560

1. n = 85, 372. 2. n = 196. 3. n = 84. 4. n = 28.

second-best point performance of PGBM are observed. Secondly, we
see that the gain using the weighted MSE increases at hierarchically
higher aggregation levels such as ‘total by date’. This is important, as
this implies that we are able to generate item-level forecasts that are
more consistent with higher-level aggregates. Finally, we observe that
item-level CRPS is worse in the weighted MSE setting compared to
the regular MSE setting, whereas our probabilistic estimate for higher
aggregations improves up to 300% when using the weighted MSE. This
can be expected: in the MSE setting, each individual item forecast ‘does
not consider’ aggregates in the category or department, whereas in the
weighted MSE setting, item forecasts are optimized to also consider the
impact on the overall aggregations. All in all, this experiment demon-
strates the benefit of our implementation: we can optimize over more
complex loss functions, thereby enabling probabilistic forecasts of more
complex problems such as hierarchical time series problems.

3.6 Conclusion

In this chapter we introduced PGBM, a method for probabilistic regres-
sion using gradient boosting machines. PGBM creates probabilistic
estimates by using stochastic tree leaf weights based on sample statistics.
By combining the learned weights for each subsequent tree, PGBM learns
a mean and variance for samples in a dataset which can be used to sample
from an arbitrary distribution of choice. We demonstrated that PGBM

71

3. Probabilistic Gradient Boosting Machines

provides state-of-the-art probabilistic regression results across a range of
small to large datasets. Benefits of PGBM compared to existing work are
that (i) PGBM is a single-parameter boosting method that optimizes a
point regression but achieves state-of-the-art probabilistic estimates using
the same model, (ii) PGBM enables the choice of an output distribution
after training, which means practitioners can optimize the choice of distri-
bution without requiring retraining of the model, (iii) our implementation
allows training of larger datasets up to several orders of magnitude faster
than the existing state-of-the-art, and (iv) our implementation in PyTorch
allows using complex differentiable loss functions which removes the
need to calculate an analytical gradient as is common in existing gradient
boosting packages. We demonstrated the latter benefit for the problem
of hierarchical time series forecasting, where we observed up to 10%
improvement in point performance and up to 300% improvement in
probabilistic forecasting performance.

Limitations of PGBM are that it only learns the mean and variance
in a tree, which limits the choice of output distribution. However, we
observed no negative performance effects in our experiments thereof.

In the future, we intend to further work on the theoretical error bounds
of PGBM. Under mild assumptions, sample statistics in each leaf of each
tree appropriately represent the true statistics of the samples in each
leaf provided a sufficient number of samples. However, we have yet
to determine appropriate theoretical error bounds on the final estimated
statistics when considering the simplifications we make during decision
tree learning, such as the greedy approximate split finding, using a limited
number of tree leaves, our approximation to the stochastic leaf weights,
keeping decision points constant and treating the correlation between
subsequent trees as a constant across samples and trees. Regarding
the latter, we also expect that the probabilistic estimate can be further
improved by using a better approximation to the tree correlations instead
of our choice of keeping it fixed across trees and samples.

In the next chapter, we further dive into the problem of hierarchical
forecasting, which we briefly touched upon in this chapter. We find
that existing hierarchical forecasting techniques scale relatively poorly
to large-scale problem settings, and investigate methods that overcome
these limitations.

72

Appendices

3.A Derivation of Stochastic Leaf Weights

3.A.1 Expectation
We approximate the mean in each leaf by using a second-order Taylor ap-
proximation of the expectation of a function of the two random variables
(g, h) around the point a = (g, h):

E[f(g, h)] = E[f(a) + f ′
g(a)(g − g) + f ′

h(a)(h− h)

+
1

2
f ′′
gg(a)(g − g)2 + f ′′

gh(a)(g − g)(h− h)

+
1

2
f ′′
hh(a)(h− h)2 +H], (3.20)

with H denoting the higher-order terms that we drop for our estimate.
Using the laws of expecations we then obtain:

E[f(g, h)] ≈ E[f(a)] + E[f ′
g(a)(g − g)] + E[f ′

h(a)(h− h)]

+ E[
1

2
f ′′
gg(a)(g − g)2] + E[f ′′

gh(a)(g − g)(h− h)]

+ E[
1

2
f ′′
hh(a)(h− h)2] (3.21)

= E[f(a)] + f ′
g(a)E[(g − g)]︸ ︷︷ ︸

0

+f ′
h(a)E[(h− h)]︸ ︷︷ ︸

0

+
1

2
f ′′
gg(a)E[(g − g)2]︸ ︷︷ ︸

σ2
g

+f ′′
gh(a)E[(g − g)(h− h)]︸ ︷︷ ︸

σ2
gh

+
1

2
f ′′
hh(a)E[(h− h)2]︸ ︷︷ ︸

σ2
g

(3.22)

= E[f(a)] +
1

2
f ′′
gg(a)σ

2
g + f ′′

gh(a)σ
2
gh

+
1

2
f ′′
hh(a)σ

2
h, (3.23)

73

3. Probabilistic Gradient Boosting Machines

with σ2
gh denoting the covariance of the gradient and the hessian. For a

function f(g, h) = g
h

, we have:

f ′
g = h−1

f ′
h = −gh−2

f ′′
gg = 0

f ′′
gh = −h−2

f ′′
hh = 2gh−3.

Substituting and using a = (g, h), f(a) = g

h
:

E[f(g, h)] ≈ E[f(a)]− h−2(a)σ2
gh + gh−3(a)σ2

h (3.24)

=
g

h
−

σ2
gh

h
2 +

gσ2
h

h
3 . (3.25)

Finally, we can include the regularization constant λ to arrive at the final
estimate of the expectation for the leaf weight wj . This constant only
affects the mean of the random variable h, therefore we can safely add it
to the terms containing h:

E

[
g

(h+ λ)

]
≈ g

(h+ λ)
−

σ2
gh

(h+ λ)2
+

gσ2
h

(h+ λ)3
. (3.26)

Note that we can obtain the first-order Taylor approximation of the mean
by dropping the last two terms of Eq. (3.26):

E

[
g

(h+ λ)

]
≈ g

(h+ λ)
. (3.27)

3.A.2 Variance
For the variance, we start with the definition of variance for a function
f(g, h):

V [f(g, h)] = E
[
(f(g, h)− E[f(g, h)])2

]
. (3.28)

We perform a first-order Taylor expansion of f(g, h) around the point
a = (g, h) and we substitute the first-order approximation of the mean:

V [f(g, h)] ≈ E
[(

f(a) + f ′
g(a)(g − g) + f ′

h(a)(h− h)

74

3.B. Reproducibility

− E[f(a)]
)2]

(3.29)

= E[(f ′
g(a)(g − g) + f ′

h(a)(h− h))2] (3.30)

= E[f
′2
g (a)(g − g)2 + f

′2
h (a)(h− h)2

+ 2f ′
g(a)(g − g)f ′

h(a)(h− h)] (3.31)

= f
′2
g (a)E[(g − g)2] + f

′2
h (a)E[(h− h)2]

+ 2f ′
g(a)f

′
h(a)E[(g − g)(h− h)] (3.32)

= h
−2
σ2
g + g2h

−4
σ2
h − 2gh

−3
σ2
gh (3.33)

=
σ2
g

h
2 +

g2σ2
h

h
4 − 2

gσ2
gh

h
3 . (3.34)

Finally, including the regularization constant λ we obtain:

V

[
g

(h+ λ)

]
≈

σ2
g

(h+ λ)2
+

g2σ2
h

(h+ λ)4
− 2

gσ2
gh

(h+ λ)3
. (3.35)

3.B Reproducibility

We report absolute scores and dataset statistics for the UCI benchmark in
Table 3.B.1. An overview of the key hyperparameters for each method
for both experiments is given in Table 3.B.2, and absolute timings for the
timings of Table 3.2 in Table 3.B.3. An overview of the M5 dataset is
given in Table 3.B.4. We refer to our code at https://github.com/
elephaint/pgbm for further details, such as the features of the M5
dataset, which mainly comprise lagged target variables, time indicators
(e.g., day-of-week), event indicators (e.g., holidays) and item indicators.

75

https://github.com/elephaint/pgbm
https://github.com/elephaint/pgbm

3. Probabilistic Gradient Boosting Machines

Ta
bl

e
3.

B
.1

:
R

es
ul

ts
fo

r
pr

ob
ab

ili
st

ic
(C

R
PS

)
an

d
po

in
t(

R
M

SE
)

pe
rf

or
m

an
ce

fo
r

ea
ch

da
ta

se
t.

W
e

re
po

rt
m

ea
n

m
et

ri
cs

ov
er

al
lf

ol
ds

pe
rm

et
ho

d
an

d
in

di
ca

te
th

e
st

an
da

rd
de

vi
at

io
n

in
br

ac
ke

ts
.L

ow
er

is
be

tte
r.

C
R

PS
R

M
SE

D
at

as
et

fo
ld

s
sa

m
pl

es
fe

at
ur

es
PG

B
M

N
G

B
oo

st
PG

B
M

N
G

B
oo

st
L

ig
ht

G
B

M

y
a
c
h
t

20
30

8
6

0.
22

(0
.0

70
)

0.
32

(0
.1

04
)

0.
63

(0
.2

13
)

0.
75

(0
.2

97
)

0.
64

(0
.2

81
)

b
o
s
t
o
n

20
50

6
13

1.
61

(0
.2

01
)

1.
73

(0
.2

36
)

3.
05

(0
.5

07
)

3.
31

(0
.6

61
)

3.
11

(0
.6

75
)

e
n
e
r
g
y

20
76

8
8

0.
21

(0
.0

34
)

0.
25

(0
.0

22
)

0.
35

(0
.0

62
)

0.
49

(0
.0

55
)

0.
29

(0
.0

75
)

c
o
n
c
r
e
t
e

20
1,

03
0

8
2.

06
(0

.3
35

)
2.

95
(0

.3
26

)
3.

97
(0

.7
59

)
5.

50
(0

.6
42

)
3.

80
(0

.7
62

)
w
i
n
e

20
1,

59
9

11
0.

33
(0

.0
34

)
0.

34
(0

.0
24

)
0.

60
(0

.0
54

)
0.

62
(0

.0
43

)
0.

60
(0

.0
50

)
k
i
n
8
n
m

20
8,

19
2

8
0.

07
(0

.0
02

)
0.

10
(0

.0
02

)
0.

13
(0

.0
05

)
0.

17
(0

.0
03

)
0.

11
(0

.0
03

)
p
o
w
e
r

20
9,

56
8

4
1.

81
(0

.0
53

)
2.

01
(0

.1
20

)
3.

35
(0

.1
53

)
3.

70
(0

.2
22

)
3.

20
(0

.1
40

)
n
a
v
a
l

20
11

,9
34

14
0.

00
(0

.0
00

)
0.

00
(0

.0
00

)
0.

00
(0

.0
00

)
0.

00
(0

.0
00

)
0.

00
(0

.0
00

)
p
r
o
t
e
i
n

20
45

,7
30

9
2.

19
(0

.0
30

)
2.

44
(0

.0
38

)
3.

98
(0

.0
56

)
4.

50
(0

.0
59

)
3.

82
(0

.0
58

)
m
s
d

1
51

5,
34

5
90

4.
78

4.
75

9.
09

9.
16

9.
11

h
i
g
g
s

1
10

,5
00

,0
00

28
0.

25
3

0.
23

8
0.

41
8

0.
41

9
0.

41
4

76

3.B. Reproducibility

Table 3.B.2: Key hyperparameters for the UCI benchmark and hierarchi-
cal time series experiment.

UCI benchmark Hierarchical time series

PGBM NGBoost LightGBM PGBM LightGBM NGBoost

min split gain 0 0 0 0 0 0
min data in leaf 1 1 1 1 1 1
max bin 64 n.a. 64 1024 1024 n.a.
max leaves 8 n.a. 8 64 64 64
max depth -1 3 -1 -1 -1 -1
learning rate 0.1 0.01 0.1 0.1 0.1 0.1
n estimators 2000 2000 2000 1000 1000 1000
feature fraction 1.0 1.0 1.0 0.7 0.7 0.7
bagging fraction 1.0 1.0 1.0 0.7 0.7 0.7
seed 1 1 1 1 1 1
lambda 1.0 n.a. 1.0 1.0 1.0 n.a.
early stopping n.a. n.a. n.a. 20 20 20

Table 3.B.3: Average time in seconds for running 2,000 iterations for
each dataset on the UCI benchmark datasets. For msd and higgs, a
bagging fraction of 0.1 was used.

Probabilistic forecast Point forecast

Dataset PGBM-gpu PGBM-cpu NGBoost LightGBM

wine (n=1,599) 100 41 20 1
naval (n=12k) 103 167 108 2
protein (n=46k) 115 355 389 2
msd (n=515k) 136 3,645 6,628 12
higgs (n=10,5M) 316 32,200 46,744 135

Table 3.B.4: M5 dataset description.

M5

time series # 3,049
time series description item product sales
target R+

train samples # 2,415,359
validation samples # 85,372
test samples # 85,372
time step t day
features # 48

77

4
Hierarchical Forecasting at Scale

Now that we have an idea on how to efficiently generate (probabilistic)
forecasts for large-scale settings using two of the most commonly used
large-scale forecasting methods (neural networks and Gradient Boosting
Machines (GBM)), we observe that in all of these methods, we typically
only create forecasts for the lowest granularity of time series, for example
in the case of product demand forecasting. However, in e-commerce
we often find ourselves in need of forecasts for both lower- and higher
(temporal) granularities, such as product category demand forecasts.
These granularities can be formalized through the use of a hierarchy.
Hierarchical forecasting techniques allow for the creation of forecasts that
are coherent with respect to a pre-specified hierarchy of the underlying
time series. However, existing hierarchical forecasting techniques scale
poorly when the number of time series increases, which limits their
applicability at a scale of millions of products. This motivates our third
research question:

Research Question 3: How can we efficiently generate
hierarchical forecasts for large-scale settings?

In this chapter, we propose to learn a coherent forecast for millions
of products with a single bottom-level forecast model by using a loss
function that directly optimizes the hierarchical product structure. We
implement our loss function using sparse linear algebra, such that the
number of operations in our loss function scales quadratically rather
than cubically with the number of products and levels in the hierarchical

This chapter was published as: O. Sprangers, W. Wadman, S. Schelter, and M. de
Rijke. Hierarchical Forecasting at Scale. International Journal of Forecasting, In Press,
Mar. 2024. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2024.02.006.

79

4. Hierarchical Forecasting at Scale

structure. The benefit of our sparse hierarchical loss function is that
it provides practitioners a method of producing bottom-level forecasts
that are coherent to any chosen cross-sectional or temporal hierarchy.
In addition, removing the need for a post-processing step as required in
traditional hierarchical forecasting techniques reduces the computational
cost of the prediction phase in the forecasting pipeline, as well as its
deployment complexity.

In our tests on the public M5 dataset, our sparse hierarchical loss
function performs up to 10% better as measured by RMSE and MAE
compared to the baseline loss function. Next, we implement our sparse
hierarchical loss function within an existing gradient boosting-based
forecasting model at bol, a large European e-commerce platform. At
bol, each day a forecast for the weekly demand of every product for the
next twelve weeks is required. In this setting our sparse hierarchical loss
resulted in an improved forecasting performance as measured by RMSE
of about 2% at the product level, as compared to the the baseline model,
and an improvement of about 10% at the product level as measured
by MAE. Finally, we found an increase in forecasting performance of
about 5–10% (both RMSE and MAE) when evaluating the forecasting
performance across the cross-sectional hierarchies that we defined. These
results demonstrate the usefulness of our sparse hierarchical loss applied
to a production forecasting system at a major e-commerce platform.

4.1 Introduction

In e-commerce, we are often faced with two forecasting challenges. First,
forecasts at the lowest granularity — often the individual product level
— are required but we also need forecasts at higher granularities, for
example at the category, department, or regional level, as higher level
forecasts are often needed in logistics and financial planning. Second,
forecasts at different time granularities are required, for example daily
or weekly forecasts. It is common that separate forecast models are
made for each separate (temporal) granularity, and as such these forecasts
may not be coherent with each other. Hierarchical forecasting [61] and
temporal hierarchical forecasting techniques [12, 101, 125] aim to solve
the problem of creating forecasts that are coherent with respect to a
pre-specified cross-sectional and/or temporal hierarchy of the underlying

80

4.1. Introduction

time series.

Challenges with existing cross-sectional and temporal hierarchical
forecasting techniques Reconciliation methods adjust the forecasts for
each level in the hierarchy by minimizing the errors at each forecast level.
These methods are applied as a post-processing step that requires a matrix
inversion that scales cubically with the number of products or product
hierarchies [12, 61, 134]. In settings with millions of products such as in
e-commerce, this becomes computationally expensive at prediction time.
Neural network methods can optimize for the hierarchy in an end-to-end
manner, however, these are either multivariate methods that scale poorly
to millions of time series [100] or they can only optimize for the temporal
hierarchy [101].

Sparse loss function In order to overcome these scaling issues, we de-
sign a sparse hierarchical loss (HL) function that directly optimizes both
cross-sectional and temporal hierarchical structures. Our corresponding
sparsity-aware implementation ensures that the number of operations
in our loss function scales quadratically rather than cubically with the
number of products and levels in the hierarchical structure, enabling
computationally efficient training. The benefit of our sparse hierarchi-
cal loss function is that it provides practitioners a method of producing
bottom-level forecasts that are coherent to any chosen cross-sectional and
temporal hierarchy. In addition, removing the need for a post-processing
step as used in traditional hierarchical forecasting techniques reduces the
computational cost of the prediction phase in the forecasting pipeline.
Furthermore, this also reduces the deployment complexity of the fore-
casting pipeline.

Evaluation We evaluate our sparse HL function on a gradient-boosted
forecasting system on the public M5 dataset [88] and a proprietary dataset
from our e-commerce partner. For the M5 dataset, we demonstrate that
our implementation provides up to 10% better forecasting performance
as measured by both RMSE and MAE compared with (i) reconciliation
methods and (ii) baseline bottom-level forecasting methods that use a
standard loss function. For the proprietary dataset, we present the results
of an offline test on the product-level forecast system of bol, a European

81

4. Hierarchical Forecasting at Scale

e-commerce company with a catalog of millions of unique products. We
find that our sparse HL function improves the forecasting performance
by about 2% on RMSE and 10% on MAE as compared to the baseline
forecasting system. This demonstrates the usefulness of our sparse HL
function in a large-scale setting.

Contributions In summary, we contribute:

1. We design a sparse hierarchical loss function that enables direct
end-to-end training of cross-sectional and temporal hierarchical
forecasts in large-scale settings in Section 4.4.

2. We empirically demonstrate that our sparse hierarchical loss func-
tion can outperform existing hierarchical forecasting reconciliation
methods by up to 10% in Section 4.5.1. Contrary to most end-to-
end hierarchical forecasting methods that leverage neural networks
[100, 101], we use LightGBM [68] as our base forecasting model,
a highly popular gradient boosting-based forecasting method that
is widely used in industry [64] and was used by the majority of the
top performing solutions in the M5 forecasting competition [88].

3. We show that our sparse hierarchical loss function scales to large-
scale settings and demonstrate a reduction of both training and
prediction time of up to an order of magnitude compared to the
best hierarchical forecasting reconciliation methods (Section 4.5.1).

4. We present the results of an offline test of our method for the
primary product demand forecasting model at bol, a European
e-commerce company with a catalogue of millions of unique prod-
ucts, demonstrating an improvement of 2% on RMSE and 10%
on MAE as compared to the baseline forecasting system, in Sec-
tion 4.5.2.

4.2 Related Work

Forecasting for large-scale settings Contemporary large-scale fore-
casting applications require forecasting many time series concurrently
[21]. In academia, there has been a surge in the use of neural network-
based forecasting methods, which are methods that commonly learn a

82

4.2. Related Work

single forecast model that can produce forecasts for many time series.
We refer the interested reader to the recent survey of Benidis et al. [20]
for an overview of these methods. However, tree-based methods topped
the M5 forecasting competition [88], which is believed to be due to the
strong implementations available of these algorithms [64], such as the
LightGBM [68] or XGBoost [24] packages. Our own experience within
bol confirms this view: the ease of use, execution speed and strong default
performance are key reasons a tree-based method is often the default
choice when creating a new forecasting model.

Hierarchical forecasting Hierarchical forecasting [17, 19, 61, 62, 134]
and temporal hierarchical forecasting techniques [12, 16, 101, 125] aim
to solve the problem of creating forecasts that are coherent with respect
to a pre-specified cross-sectional and/or temporal hierarchy of the un-
derlying time series. We divide hierarchical forecasting methods into
Reconciliation methods and Other methods.

Reconciliation methods. For a detailed overview of reconciliation
methods, we refer the interested reader to the recent survey of Athana-
sopoulos et al. [13]. Reconciliation methods solve the hierarchical fore-
casting problem as a post-processing step by reconciling the forecasts to
a pre-specified cross-sectional and/or temporal hierarchy [17, 19, 43, 61,
62, 95, 134]. Limitations of these approaches are (i) that they require a
post-processing step, (ii) computing the reconciliation may be computa-
tionally expensive, as we show in Section 4.3.2, and (iii) approaches that
are computationally less expensive tend to perform worse, as we show
in Section 4.5. Recent work by Ben Taieb [16] and Ben Taieb and Koo
[17] has improved forecasting performance of previous reconciliation
approaches but at the expense of even higher computational costs, as we
explain in Section 4.3.

Other methods. In [100, 101] neural network-based end-to-end hi-
erarchical probabilistic forecasting method are proposed to solve the
hierarchical forecasting problem. More recently and most closely related
to our work, Han et al. [47] introduced SHARQ, a method that reconciles
probabilistic hierarchical forecasts during training by employing a reg-
ularized loss function that aims to improve hierarchical consistency of
bottom-up forecasts through regularization. However, the regularization
does not strictly enforce the cross-sectional hierarchy in this method.

83

4. Hierarchical Forecasting at Scale

4.3 Background

To understand our problem setting and the issues we identify with ex-
isting hierarchical forecasting methods, we introduce the hierarchical
forecasting problem and common methods of solving the hierarchical
forecasting problem.

4.3.1 Problem Definition

Suppose we have n time series written as yt ∈ Rn, where t denotes the
time stamp. We are interested in finding h-step ahead estimates ŷh of
the time series yT+h using past values y1, . . . , yT . In our hierarchical
forecasting setting, we aim to create forecasts for many time series
concurrently, whilst adhering to pre-specified hierarchical relationships
that exist between the time series. This can be formalized as follows
[13, 59]:

ỹh = SGŷh , (4.1)

where S ∈ {0, 1}n × nb is a matrix that defines the hierarchical rela-
tionship between the nb bottom-level time series and the na = n − nb

aggregations, G ∈ Rnb × n is a matrix that encapsulates the contribu-
tion of each forecast to the final estimate, and ỹh ∈ Rn is the vector of
forecasts adjusted for the hierarchy. We can use the matrix G to define
various forecast contribution scenarios. Note that we can straightfor-
wardly extend Eq. (4.1) to the setting of temporal hierarchies [12, 101]
by considering forecasts of different time granularities in our vector of
base forecasts ŷh and using an appropriate choice of S to aggregate series
of a different time granularity. We will show how cross-sectional and
temporal hierarchical forecasting can be combined in Section 4.4.

The optimal solution to the problem in Eq. (4.1) can be found using
Reconciliation methods and Other methods.

Reconciliation methods MinTShrink [13, 134] and variants find the op-
timal G matrix by solving a minimization problem that has the following
solution (ref. Theorem 1 of [134]):

G = (J − JWU(UTWU)−1UT) , (4.2)

84

4.3. Background

in which S is partitioned as ST = [CT Inb
], J = [0nb × na Inb

], UT =
[Ina − C]. In MinTShrink, W is estimated using the shrunk empirical
covariance estimate of [109]. Simpler choices for W , such as the identity
matrix, reduce the solution to the Ordinary Least Squares (OLS) solution
of [61]. In ERM, Ben Taieb and Koo [17] note than MinTShrink and
variants rely on the assumption of unbiasedness of the base forecasts.
They relax this assumption by formulating the hierarchical reconciliation
problem as an Empirical Risk Minimization problem, introducing the
ERM method. In addition, they propose two regularized variants of ERM
aimed at reducing forecast variance.

Other methods Hier-E2E [100] solves the problem of Eq. (4.1) by
learning a neural network model that combines the forecasting and rec-
onciliation step in a single model, resulting in an end-to-end solution
removing the need for a post-processing step. Similarly, COPDeepVAR
[101] is an end-to-end neural network method that enforces temporal
hierarchies, however this is a univariate method that is not able to enforce
structural hierarchies (i.e., cross-sectional hierarchies) simultaneously,
and therefore not suited to our task. SHARQ [47] also moves the recon-
ciliation step into the training phase and achieves reconciliation using
a regularized loss function, where the regularization enforces the co-
herency. However, this method does not enforce absolute coherency to
the hierarchy.

4.3.2 Scaling Issues of Hierarchical Forecasting Meth-
ods

Our main motivation for this chapter are the limitations of prior work for
problem settings with many time series.

Scaling issues with reconciliation methods In reconciliation methods,
we encounter the following issues when scaling to many time series:

• The reconciliation is performed as a post-processing step, and thus
has to be performed as an additional step after generating the base
forecasts. Even though G in Eq. (4.1) needs to be computed only
once using Eq. (4.2), the reconciliation still needs to be performed
after each base forecast is produced. Also, G ideally is sparse

85

4. Hierarchical Forecasting at Scale

[17], but no reconciliation method guarantees this, so computing
Eq. (4.1) will generally be a dense matrix-vector product that scales
with the number of time series.

• For MinTShrink [134], estimating W according to the method of
[109] is computationally expensive, with a computational complex-
ity of O(Nn2), where N denotes the number of training samples
used to compute the shrunk covariance estimate. In addition, the
shrunk covariance estimate of [109] is not guaranteed to give con-
sistent results in high-dimensional settings [126], making it less
applicable for problem settings with many time series. Finally,
the estimate for W will generally be a dense matrix, so we cannot
make use of efficient sparse algorithms to solve Eq. (4.2). However,
even for simpler, sparse choices of W (such as the identity matrix
of OLS [61]), we still need to invert a matrix of size na × na in
order to solve Eq. (4.2), which becomes computationally costly for
problems with many aggregations, which naturally arise in retail
forecasting scenarios. For example, for the M5 retail forecasting
competition [87], na = 12, 350, even though there are only 3,049
unique products in this dataset.

• For ERM and its regularized variants [17], we need to either invert
multiple dense matrices that scale quadratically with the number
of time series, or we need to compute a Kronecker product that
scales quadratically with the number of time series, followed by
an expensive lasso search procedure. Improving the computational
complexity of the ERM methods is also mentioned in [17] as an
avenue for future work.

Scaling issues with other methods Hier-E2E [100] is a multivariate
method, which means both input and output of the neural network scale
with the number of time series. For neural networks, this significantly
adds to the training cost and parameter cost as a large number of pa-
rameters are required to handle all the separate time series. This in turn
requires GPUs with more memory to train these models, which increases
cost to operate them.

86

4.4. Sparse Hierarchical Loss

4.4 Sparse Hierarchical Loss

In this section we present our main technical contribution, the sparse
hierarchical loss. First, we show how cross-sectional and temporal hierar-
chical forecasting can be combined. Then, we introduce our loss function
and demonstrate it via a toy example.

Combining cross-sectional and temporal hierarchical forecasting
We are interested in finding forecasts that can be aggregated according
to a pre-specified cross-sectional hierarchy Scs ∈ {0, 1}ncs × ncs

b and
temporal hierarchy Ste ∈ {0, 1}nte × nte

b :

ỹcs
h = ScsGcsŷcs

h , (4.3)

ỹte = SteGteŷte . (4.4)

These equations can be interpreted as follows:

• In Eq. (4.3), we aggregate ncs
b bottom-level time series from the

same forecast h across a set of ncs = ncs
b + ncs

a cross-sectional
aggregations.

• In Eq. (4.4), we aggregate each time series consisting of nte
b time-

steps across a set of nte = nte
b + nte

a temporal aggregations, hence
we drop the subscript h.

We will only create bottom-level forecasts, thus Gcs = [0ncs
b
× ncs

a Incs
b
]

and Gte = [0nte
b
× nte

a Inte
b
], yielding:

ỹcs
h = Scsŷncs

b
h , (4.5)

ỹte = Steŷnte
b , (4.6)

where ŷncs
b

h and ŷnte
b denote the bottom-level base forecasts for the cross-

sectional and temporal hierarchies, respectively. Considering only bottom-
level forecasts has a number of benefits: (i) each forecast is coherent
to any hierarchy by design, and (ii) we reduce the number of required
forecasts from n to nb, which can be a significant reduction (there is
no need for a forecast for na aggregations in the hierarchy). We now
construct a matrix of bottom-level base forecasts Ŷnb ∈ Rncs

b × nte
b , in

87

4. Hierarchical Forecasting at Scale

which the columns represent the forecasts of the bottom-level time series
at a timestep h. This allows us to combine (4.5) and (4.6) as follows:

Ỹ = ScsŶnb(Ste)⊺ , (4.7)

in which Ỹ ∈ Rncs × nte represents the matrix of forecasts aggregated
according to both cross-sectional and temporal hierarchies. Equivalently,
we can aggregate our bottom-level ground truth values Ynb ∈ Rncs

b × nte
b :

Y = ScsYnb(Ste)⊺ . (4.8)

Sparse hierarchical loss To find the best forecasts for the hierarchi-
cal forecasting problem (4.7), we try to find a forecasting model using
gradient-based optimization of the following loss function:

L =
∑[

1

2

((
Y− Ỹ

)
⊙
(
Y− Ỹ

))
⊘
(
dcsdte

)]
, (4.9)

in which
∑

denotes the sum over all ncs × nte elements of the matrix
contained in the summation, ⊙ denotes element-wise multiplication, ⊘
denotes element-wise division, and the vectors dcs and dte read:

dcs = lcsScs1cs , (4.10)

dte =
(
lteSte1te

)⊺
, (4.11)

where Scs1cs and Ste1te denote the row-sum of Scs and Ste, respectively,
and lcs and lte denote the number of levels in hierarchies Scs and Ste,
respectively. We will detail the necessity of the element-wise division of
Eq. (4.9) by the matrix (dcsdte) later in this section. Note that Eq. (4.9)
shares similarities with the Weighted Root Mean Squared Error from the
M5 competition [88].

We can derive the gradient and the second-order derivative of (4.9)
with respect to the bottom-level forecasts Ŷnb (ref. 4.A for the full deriva-
tion):

∂L

∂Ỹ
=
(
Ỹ− Y

)
⊘
(
dcsdte

)
, (4.12)

∂L

∂Ŷnb

= (Scs)⊺
(
∂L

∂Ỹ

)
Ste , (4.13)

∂2L

∂
(

Ŷnb

)2 = (Scs)⊺
(
1⊘

(
dcsdte

))
Ste . (4.14)

88

4.4. Sparse Hierarchical Loss

Analysis The best possible forecast is achieved when the loss (4.9) is
minimized, or equivalently when the gradient (4.12) is zero:

∂L

∂Ỹ
=
(
Ỹ− Y

)
⊘
(
dcsdte

)
,

=
(
ScsŶnb(Ste)⊺ − ScsYnb(Ste)⊺

)
⊘
(
dcsdte

)
,

=
(
Scs
(

Ŷnb − Ynb

)
(Ste)⊺

)
⊘
(
dcsdte

)
,

which becomes zero when Ŷnb = Ynb . Thus, the best forecast model
is found when each bottom-level forecast equals the ground truth. This
is equivalent to the standard (i.e., non-hierarchical) squared error loss
often used in forecasting problems. We argue that our hierarchical loss
gradient can be seen as a smoothed gradient compared to the standard
squared error loss gradient (i.e., Ŷnb − Ynb). For example, consider the
canonical case where we have two bottom-level time series (ncs

b = 2)
consisting of two timesteps (nte

b = 2). Furthermore, suppose we have a
single cross-sectional aggregation (the sum of the two time series, thus
ncs
a = 1 and ncs = ncs

a + ncs
b = 3), and a single temporal aggregation

(the sum of the two timesteps, thus nte
a = 1 and nte = nte

a + nte
b = 3).

Finally, there are two levels in our cross-sectional hierarchy and in our
temporal hierarchy, thus lcs = 2 and lte = 2. The standard squared error
loss gradient for this problem is:

[
∂L

∂ŷ0,0
∂L

∂ŷ0,1
∂L

∂ŷ1,1
∂L

∂ŷ1,1

]
=

[
e0,0 e0,1
e1,0 e1,1

]
, (4.15)

in which ei,j denotes the bottom-level forecast error (ŷi,j − yi,j) of the
i-th bottom-level timeseries and j-th timestep, respectively. For our
hierarchical loss, Eq. (4.7) reads:

Ỹ =

1 1
1 0
0 1


︸ ︷︷ ︸

Scs

[
ŷ0,0 ŷ0,1

ŷ1,0 ŷ1,1

]
︸ ︷︷ ︸

Ŷnb

[
1 1 0
1 0 1

]
︸ ︷︷ ︸

(Ste)⊺

, (4.16)

89

4. Hierarchical Forecasting at Scale

and the gradient of the loss with respect to the bottom level time series
Eq. (4.13) reads (ref. 4.B for the full derivation):[

∂L
∂ŷ0,0

∂L
∂ŷ0,1

∂L
∂ŷ1,1

∂L
∂ŷ1,1

]
=

[
9
16
e0,0 +

3
16
e1,0 +

3
16
e0,1 +

1
16
e1,1

9
16
e1,0 +

3
16
e0,0 +

3
16
e1,1 +

1
16
e0,1

9
16
e0,1 +

3
16
e0,1 +

3
16
e1,1 +

1
16
e1,0

9
16
e1,1 +

3
16
e1,0 +

3
16
e0,1 +

1
16
e0,0

]
.

(4.17)

When we compare this result to the standard squared error loss gradient
Eq. (4.15), we find that we smooth the bottom-level gradient by adding
to it portions of the gradients of all cross-sectional and temporal aggrega-
tions the bottom-level series belongs to. This derivation also shows the
motivation of adding the denominator matrix (dcsdte) to the loss function
(4.9): it is neccessary to scale the aggregation gradients by the number
of elements in the aggregation, otherwise the magnitude of the gradient
grows with the number of time series and the number of levels in the
hierarchy, which we found to be undesirable when trying to facilitate
stable learning. Thus, we add (portions of) the average gradient of the
aggregations to the bottom-level gradient.

Sparsity Scs and Ste are highly sparse. For example, Scs has at most
ncs
b l

cs non-zero elements: the number of bottom-level time series mul-
tiplied by the number of aggregations in the hierarchy. Hence, the
overall sparsity of Scs is given by 1 − ncs

b lcs

ncsncs
b

. For the M5 dataset [87],
ncs
b = 3, 049, lcs = 12, ncs = 42, 840, corresponding to a sparsity of

99.97%. Next, the matrix of bottom-level ground truth values Ynb in (4.8)
may be sparse too, for example in the case of products that are not on sale
for every timestep nte

b in the dataset. All these sources of sparsity motivate
the use of sparse linear algebra when computing Eqs. (4.9)–(4.14).

Implementation We implement the hierachical loss Eq. (4.9), the
bottom-level gradient Eqs. (4.12)–(4.13) and second-order derivative
Eq. (4.14) in Python using the sparse library from SciPy [132]. Note that
Eqs. (4.12)–(4.13) can be rearranged:

∂L

∂Ŷ
=

(Scs)⊺

dcs
(
Ỹ− Y

) Ste

dte
, (4.18)

90

4.5. Experiments

such that the parts before and after the brackets can be precomputed as
they do not depend on the forecast values Ỹ, avoiding a costly division
operation inside a training iteration. Also note that the second-order
derivative Eq. (4.14) does not depend on the forecast values Ỹ, so it
can be precomputed as well. Our implementation, including the code to
reproduce the experiments on public data from Section 4.5, is available
on GitHub.1

4.5 Experiments

In this section we empirically verify the usefulness of our sparse hi-
erarchical loss. First, we evaluate forecasting accuracy using a set of
experiments on the public M5 dataset [87]. Then, we evaluate our sparse
hierarchical loss in an offline experiment on a proprietary dataset from
our e-commerce partner.

4.5.1 Public Datasets
Task & dataset Our task is to forecast product demand. We use the M5
dataset [87] for our offline, public dataset experiments. The M5 dataset
contains product-level sales from Walmart for 3,049 products across 10
stores in the USA. Furthermore, the dataset contains 12 cross-sectional
product aggregations (e.g., department, region), which allow us to test
hierarchical forecasting performance. We preprocess the dataset resulting
in a set of features as described in Appendix 4.C. We forecast 28 days
into the future.

Baseline models For our baseline forecasting model, we primarily use
LightGBM [68], trained to predict one-day ahead. We subsequently re-
cursively generate predictions for 28 days. Tree-based models dominated
the M5 forecasting competition due to their strong performance and ease
of use [64, 88]. Moreover, our e-commerce partner’s primary product
forecasting is a LightGBM-based model, so we expect results from offline
experiments on public datasets to transfer to our proprietary setting when
using the same base forecasting model. We compare the performance
of our LightGBM models against traditional statistical methods ARIMA

1https://github.com/elephaint/hfas/

91

https://github.com/elephaint/hfas/

4. Hierarchical Forecasting at Scale

[22], ETS [60], Theta [11], SeasonalNaive [59], Naive [59] and Croston
[30]. We note that deep learning-based approaches are becoming more
prevalent in e-commerce [74], especially with the rise of the transformer-
architecture in forecasting models [80, 82]. We consider this for future
work, and did not consider this for our study as (i) the cloud cost to oper-
ate these models is 10x higher for our e-commerce partner as compared
to a tree-based model, and (ii) none of the neural network-based methods
are able to scale to the size of our e-commerce partner, as explained in
Section 4.3.2.

Experimental setup We consider the following scenarios to test our
hierarchical sparse loss function against baseline forecasting systems:

1. Bottom-up. We train a single global model on only the bottom-
level time series. Subsequently, the bottom-level forecasts are
aggregated to obtain the aggregated (reconciled) forecasts.

2. Separate aggregations. We train separate models for ev-
ery aggregation in the hierarchy, resulting in 12 models for the
entire M5 dataset.

3. Global. We train a single global model on all time series in the
dataset, including all the aggregations.

For the first scenario in our experiments (Bottom-up), we vary both
the objective (i.e., the loss function that is optimized by LightGBM) and
the evaluation metric (i.e., the loss function that governs early-stopping
during hyperparameter optimization). For the objective, we consider the
squared error loss (SL), the Tweedie loss (TL) and our sparse hierarchical
loss (HL). The Tweedie loss is a loss function that assumes that the
time series follow a distribution somewhere in between a Poisson and a
Gamma distribution, which is useful in zero-inflated settings such as retail
demand forecasting. It is a loss function that was favored by contestants
in the M5 forecasting competition [64], and it is the loss also used in the
primary forecasting system of our e-commerce partner.

For the latter two scenarios, we will obtain non-coherent forecasts.
Thus, these methods require a reconciliation post-processing step to
reconcile the forecasts to the hierarchy. We employ the following cross-
sectional reconciliation methods:

92

4.5. Experiments

• Base. No reconciliation is performed.

• OLS. Ordinary Least Squares (OLS) [61], where W in Eq. (4.2) is
the identity matrix.

• WLS-struct. and WLS-var. Weighted Least Squares (WLS) [134],
where W in Eq. (4.2) is a diagonal matrix containing the sum of the
rows of S (WLS-struct) or the in-sample forecast errors (WLS-var),
respectively.

• MinT-shrink. Trace Minimization [134], where W in Eq. (4.2)
is the shrunk covariance matrix of in-sample forecast errors. We
also experimented with using the non-shrunk covariance matrix
of the in-sample forecast errors (MinT-cov), but this produced
erroneous/high variance results, which we attribute to precisely
the motivation to shrink the covariance matrix in MinT-shrink: to
reduce the variance when the number of time series considered
becomes very large.

• ERM. The Empirical Risk Minimization (ERM) method [17]. Due
to computational issues explained in Section 4.3.2, we were not
able to apply the regularized ERM variants to our experiments, but
only the unregularized variant.

We optimize the hyperparameters of each of the LightGBM models by
Bayesian hyperparameter optimization using Optuna [7]. The settings
for the hyperparameter optimization can be found in Appendix 4.D.
Each model is trained for 10 different random seeds, and our results are
based on the mean and standard deviation of those 10 rollouts. For the
traditional statistical methods we use Nixtla’s StatsForecast [41], which
includes automatic optimization of the hyperparameters of the statistical
methods.

Evaluation We evaluate our results for every aggregation in the hier-
archy using the Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) [59]. In the results section, we present the RMSE / MAE
relative to the Bottom-up scenario using the squared-loss objective
with the squared-loss metric. For absolute values and standard deviation
of the results, see 4.E.

93

4. Hierarchical Forecasting at Scale

Results – LightGBM as baseline model For our first experiment, we
only consider cross-sectional hierarchies (i.e., Ste = Inte

b
). We present

our results on relative RMSE using LightGBM as baseline model in
Table 4.4 and conclude the following:

• The best performing method is the Bottom-up-scenario com-
bined with our sparse hierarchical loss as objective, outperforming
the baseline by 0–20% across aggregations. This holds for both
settings in which we use our sparse hierarchical loss.

• Even when we only use our sparse hierarchical loss as an evaluation
metric during training whilst optimizing the standard squared loss
(the SL/HL scenario), we already see a small improvement of ±5%
across aggregations.

• Even though the Tweedie loss improves over the baseline loss, our
sparse hierarchical loss function still outperforms it by±5% across
aggregations.

• From the reconciliation methods, MinT-shrink and WLS-var per-
form best in the Separate aggregations-scenario, although
the performance delta across aggregations is still ±5-30% as com-
pared to the best (our) method.

For relative MAE, we present our results in Table 4.5. We find that overall,
our sparse hierachical loss still performs best by ±5% compared to other
loss functions and scenarios. However, the results are more nuanced:
we find that MinT-shrink in the Separate aggregations-scenario
performs strong as well. In addition, we also find that the Tweedie loss
(TL) performs relatively well. This finding corroborates the usefullness
of the TL in intermittent demand settings, such as retail, where zero
demand is often observed.

Next, we compare our findings against the forecasting results when
employing different baseline models in Table 4.1. For brevity, we only
show the metrics for all time series combined (incl. aggregations). In
addition, we only show a single reconciliation method for the other
baseline models, as we found little difference in results when employing
different reconciliation methods. We then find that in terms of RMSE,
our sparse hierachical loss outperforms the other baseline models by at
least 50%, and in terms of MAE by at least 10%. This verifies that on

94

4.5. Experiments

Table 4.1: Forecasting results for all time series (incl. aggregations) on
the M5 dataset, using different baseline models. We show absolute and
relative RMSE and MAE. Lower is better, and bold indicates the best
performing method.

RMSE MAE

Model Reconciliation Abs. Rel. Abs. Rel.

LightGBM (SL/SL) None 22.39 1.00 2.20 1.00
LightGBM (HL/HL) None 19.54 0.87 2.10 0.95
LightGBM (HL/SL) None 19.59 0.88 2.10 0.95
ARIMA MinT-shrink 39.88 1.78 2.43 1.10
ETS MinT-shrink 36.48 1.63 2.35 1.07
Theta MinT-shrink 36.66 1.64 2.39 1.08
Croston None 39.40 1.76 2.76 1.25
Naive None 74.91 3.35 3.95 1.80
Seasonal Naive None 39.40 1.76 2.76 1.25

this dataset and with this type of problem, using a more complex model
such as LightGBM greatly improves forecasting performance, as was
also shown in the M5 forecasting competition [88].

Analysis: impact of hierarchy We investigate the impact of the choice
of hierarchy.

Temporal hierarchies. As we noted before, we only used cross-
sectional aggregations in our first experiments. We now also include
temporal aggregations by aggregating our bottom-level time series across
years, weeks and months. We ablate for every setting and show the
results in Table 4.2. Interestingly, we find that using temporal hierarchies
jointly with cross-sectional hierarchies reduces forecasting performance
by ±35% (RMSE) and ±17% (MAE). This setting is even worse than
only using temporal hierarchies, which performs worse than using only
cross-sectional hierarchies by ±26% (RMSE) and ±12% (MAE). We
further analyze these results by studying the RMSE across the forecast
days in Table 4.3. As noted before, we forecast 28 days ahead, and each
forecast is created by recursively applying the one-step ahead LightGBM
model. We find that as we forecast further into the future, the setting with
only using cross-sectional aggregations starts to perform better by up to

95

4. Hierarchical Forecasting at Scale

Table 4.2: Forecasting results for all time series (incl. aggregations)
on the M5 dataset, ablating for the use of cross-sectional and temporal
hierarchies. We show absolute and relative RMSE and MAE, with the
standard deviation in brackets. Lower is better, and bold indicates the
best performing method. Note that when not using cross-sectional nor
temporal aggregations, the hierarchical loss is equal to the standard
squared error loss.

Hierarchies RMSE MAE

Cross-sectional Temporal Abs. Rel. Abs. Rel.

No No 22.39 (0.16) 1.00 2.20 (0.01) 1.00
Yes No 19.54 (0.38) 0.87 2.10 (0.01) 0.95
Yes Yes 29.81 (1.52) 1.33 2.47 (0.04) 1.12
No Yes 26.65 (0.32) 1.19 2.36 (0.01) 1.07
Random No 25.62 (4.75) 1.14 2.31 (0.15) 1.05

20% as compared to the baseline where we do not use any aggregations.
Again, the setting where we employ temporal hierarchies too shows
relatively bad performance across all forecast day buckets.

Random hierarchies. In hierarchical forecasting problems, the aggre-
gation matrices Scs and Ste are commonly fixed a priori and considered
constant during training and prediction. As we are performing the recon-
ciliation in an end-to-end fashion during training, we can modify these
matrices at every iteration. This allows us to understand the robustness
of our solution to possible misspecification of the hierarchy, and more
generally, to what extent the choice of the hierarchy has an effect on fore-
casting performance. We perform an experiment by randomly sampling
an Scs-matrix at every iteration of the LightGBM training process. At
every iteration, we sample uniformly at random (i) a number of levels for
the cross-sectional hierarchy and (ii) a number of maximum categories
for the level and construct a random Scs-matrix to be used in the gradient,
Eq. (4.13), and hessian, Eq. (4.14). We validate and test on the ‘true’ Scs-
matrix. We present the results in Table 4.2 and Table 4.3, under ‘Random’.
We find that performance deteriorates by about 30% as compared to the
baseline, and we also find that our results in this experiment show higher
variance compared to the baseline methods. Thus, misspecification of the
hierarchy can severely deteriorate forecasting performance.

96

4.5. Experiments

Table 4.3: Forecasting results for all time series (incl. aggregations)
on the M5 dataset, ablating for the use of cross-sectional and temporal
hierarchies. We show relative RMSE for several forecasting day buckets
of the forecast. Lower is better, and bold indicates the best performing
method.

Hierarchies Forecast day

Cross-sectional Temporal 1–7 8–14 15–21 22–28

No No 1.00 1.00 1.00 1.00
Yes No 0.98 0.99 0.81 0.80
Yes Yes 1.75 1.50 0.96 1.66
No Yes 1.37 1.24 0.97 1.41
Random No 1.25 1.16 1.00 1.32

Analysis: time complexity We investigate the computational time
complexity required to perform training and prediction for each scenario
and present the results in Table 4.6. The training and prediction time
complexity is indicated by how the training time and prediction time,
respectively, scales with respect to the default LightGBM training and
prediction time complexity. We first investigate the case where we only
consider cross-sectional hierarchies. This case is indicated by ‘HL’ in
Table 4.6. First, we note that adding our hierarchical loss objective adds a
component to the time complexity that scales with (ncs

b)
3, as we need to

compute (4.12). However, our sparse implementation of the hierarchical
loss reduces this component from (ncs

b)
3 to (ncs

b)
2 lcs, effectively reducing

the scaling from cubic to quadratic in the number of bottom-level time
series, as lcs is generally small. In the reconciliation scenarios, we always
need to compute a matrix inversion to solve Eq. (4.2) that scales cubically
with the number of cross-sectional aggregations ncs

a or with the total
number of time series ncs. The first is not problematic as generally
ncs
a ≪ ncs

b in large-scale settings, but methods with this time complexity
consequently trade in performance, as we observed in Table 4.4. To
empirically verify the differences in asymptotic time complexity, we
recorded the training and prediction time for each scenario. We show
timings for training and prediction for a single store of the M5 dataset (4M
training samples) and for the entire M5 dataset (52M training samples),
to provide an indication of scaling when the problem size increases by an

97

4. Hierarchical Forecasting at Scale

Ta
bl

e
4.

4:
Fo

re
ca

st
in

g
re

su
lts

fo
r

al
l

st
or

es
on

th
e

M
5

da
ta

se
t,

us
in

g
L

ig
ht

G
B

M
as

ba
se

lin
e

m
od

el
.

W
e

re
po

rt
re

la
tiv

e
R

M
SE

as
co

m
pa

re
d

to
th

e
ba

se
lin

e
(s

ho
w

n
in

ita
lic

).
L

ow
er

is
be

tte
r,

an
d

bo
ld

in
di

ca
te

s
be

st
m

et
ho

d
fo

r
th

e
ag

gr
eg

at
io

n,
ta

ki
ng

in
to

ac
co

un
ts

ta
nd

ar
d

de
vi

at
io

n
of

th
e

be
st

m
et

ho
d

ac
ro

ss
th

e
10

se
ed

s.
Fo

ra
bs

ol
ut

e
va

lu
es

an
d

st
an

da
rd

de
vi

at
io

n
of

th
e

re
su

lts
,s

ee
A

pp
en

di
x

4.
E

.T
he

B
ot

to
m

-u
p

sc
en

ar
io

us
in

g
th

e
H

L
lo

ss
co

m
m

on
ly

ou
tp

er
fo

rm
s

al
lo

th
er

sc
en

ar
io

s.
St

or
e

Pr
od

uc
t

St
at

e

Sc
en

ar
io

/O
bj

ec
tiv

e
M

et
ri

c
R

ec
on

ci
lia

tio
n

Pr
od

uc
t

D
ep

ar
tm

en
t

C
at

eg
or

y
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
St

or
e

St
at

e
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
To

ta
l

A
ll

se
ri

es

B
o
t
t
o
m
-
u
p

SL
SL

N
on

e
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
SL

H
L

N
on

e
1.

00
0.

97
0.

95
0.

98
0.

97
0.

98
0.

99
1.

00
0.

98
0.

96
0.

99
1.

00
0.

98
H

L
H

L
N

on
e

1.
00

0.
88

0.
80

0.
93

0.
89

0.
93

0.
97

0.
99

0.
89

0.
84

0.
88

0.
87

0.
87

H
L

SL
N

on
e

1.
00

0.
88

0.
81

0.
94

0.
90

0.
94

0.
96

0.
98

0.
89

0.
84

0.
88

0.
87

0.
88

T
L

H
L

N
on

e
1.

00
0.

95
0.

96
0.

99
1.

00
1.

00
0.

99
1.

00
0.

97
0.

98
0.

98
0.

96
0.

97
T

L
SL

N
on

e
1.

00
0.

94
0.

93
1.

00
1.

00
1.

00
0.

99
1.

00
0.

97
0.

98
0.

98
0.

93
0.

96
T

L
T

L
N

on
e

1.
17

2.
72

2.
81

1.
76

1.
83

1.
73

1.
52

1.
33

2.
15

2.
18

2.
08

2.
71

2.
38

S
e
p
.

a
g
g
.

SL
SL

B
as

e
1.

00
1.

44
1.

29
1.

19
1.

14
1.

14
1.

01
0.

99
1.

23
1.

34
1.

27
1.

60
1.

35
SL

SL
O

L
S

1.
00

1.
39

1.
41

1.
10

1.
06

1.
07

1.
00

1.
00

1.
20

1.
19

1.
23

1.
50

1.
30

SL
SL

W
L

S-
st

ru
ct

1.
00

1.
26

1.
37

1.
03

1.
05

1.
02

0.
99

0.
99

1.
11

1.
16

1.
16

1.
39

1.
23

SL
SL

W
L

S-
va

r
1.

00
1.

12
1.

23
0.

99
1.

02
0.

99
0.

99
0.

99
1.

03
1.

09
1.

07
1.

22
1.

12
SL

SL
M

in
T-

sh
ri

nk
1.

00
1.

15
1.

27
0.

97
0.

99
0.

97
1.

00
1.

00
1.

03
1.

09
1.

09
1.

30
1.

15
SL

SL
E

R
M

1.
22

1.
25

1.
29

1.
07

1.
03

1.
07

1.
17

1.
22

1.
17

1.
14

1.
22

1.
49

1.
26

G
l
o
b
a
l

SL
SL

B
as

e
1.

02
1.

33
1.

45
1.

09
1.

10
1.

10
1.

03
1.

03
1.

25
1.

27
1.

81
1.

57
1.

46
SL

SL
O

L
S

1.
01

1.
32

1.
39

1.
07

1.
09

1.
16

1.
02

1.
02

1.
20

1.
25

1.
38

1.
49

1.
34

SL
SL

W
L

S-
st

ru
ct

1.
01

1.
38

1.
54

1.
08

1.
13

1.
11

1.
03

1.
02

1.
19

1.
28

1.
27

1.
55

1.
36

SL
SL

W
L

S-
va

r
1.

01
1.

51
1.

70
1.

18
1.

27
1.

22
1.

03
1.

02
1.

31
1.

43
1.

38
1.

66
1.

48
SL

SL
M

in
T-

sh
ri

nk
1.

03
1.

26
1.

41
1.

05
1.

10
1.

15
1.

06
1.

05
1.

11
1.

17
1.

24
1.

54
1.

30
SL

SL
E

R
M

1.
21

1.
59

1.
69

1.
26

1.
28

1.
34

1.
20

1.
23

1.
45

1.
49

1.
61

1.
80

1.
59

98

4.5. Experiments

Ta
bl

e
4.

5:
Fo

re
ca

st
in

g
re

su
lts

fo
r

al
l

st
or

es
on

th
e

M
5

da
ta

se
t,

us
in

g
L

ig
ht

G
B

M
as

ba
se

lin
e

m
od

el
.

W
e

re
po

rt
re

la
tiv

e
M

A
E

as
co

m
pa

re
d

to
th

e
ba

se
lin

e
(s

ho
w

n
in

ita
lic

).
L

ow
er

is
be

tte
r,

an
d

bo
ld

in
di

ca
te

s
be

st
m

et
ho

d
fo

rt
he

ag
gr

eg
at

io
n,

ta
ki

ng
in

to
ac

co
un

ts
ta

nd
ar

d
de

vi
at

io
n

of
th

e
be

st
m

et
ho

d
ac

ro
ss

th
e

10
se

ed
s.

Fo
ra

bs
ol

ut
e

va
lu

es
an

d
st

an
da

rd
de

vi
at

io
n

of
th

e
re

su
lts

,s
ee

A
pp

en
di

x
4.

E
.

St
or

e
Pr

od
uc

t
St

at
e

Sc
en

ar
io

/O
bj

ec
tiv

e
M

et
ri

c
R

ec
on

ci
lia

tio
n

Pr
od

uc
t

D
ep

ar
tm

en
t

C
at

eg
or

y
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
St

or
e

St
at

e
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
To

ta
l

A
ll

se
ri

es

B
o
t
t
o
m
-
u
p

SL
SL

N
on

e
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
SL

H
L

N
on

e
1.

00
0.

98
0.

96
0.

98
0.

98
0.

99
1.

00
1.

00
0.

97
0.

97
1.

00
1.

02
0.

99
H

L
H

L
N

on
e

0.
99

0.
81

0.
78

0.
90

0.
89

0.
94

0.
98

0.
99

0.
85

0.
83

0.
89

0.
88

0.
95

H
L

SL
N

on
e

0.
99

0.
81

0.
77

0.
90

0.
90

0.
94

0.
98

0.
99

0.
85

0.
83

0.
89

0.
87

0.
95

T
L

H
L

N
on

e
0.

98
0.

83
0.

82
0.

93
0.

94
0.

96
0.

97
0.

98
0.

88
0.

89
0.

92
0.

88
0.

95
T

L
SL

N
on

e
0.

99
0.

85
0.

84
0.

95
0.

95
0.

98
0.

98
0.

99
0.

90
0.

91
0.

96
0.

90
0.

96
T

L
T

L
N

on
e

1.
02

2.
06

2.
39

1.
47

1.
61

1.
65

1.
14

1.
07

1.
69

1.
88

1.
97

2.
86

1.
29

S
e
p
.

a
g
g
.

SL
SL

B
as

e
1.

00
1.

11
1.

06
1.

02
1.

10
1.

08
0.

96
0.

97
1.

03
1.

15
1.

20
1.

55
1.

02
SL

SL
O

L
S

0.
96

1.
08

1.
16

1.
01

0.
99

1.
00

0.
96

0.
97

1.
00

1.
01

1.
12

1.
49

0.
99

SL
SL

W
L

S-
st

ru
ct

0.
97

0.
99

1.
13

0.
92

0.
95

0.
95

0.
96

0.
97

0.
93

0.
98

1.
04

1.
42

0.
98

SL
SL

W
L

S-
va

r
0.

98
0.

91
1.

00
0.

91
0.

92
0.

92
0.

96
0.

97
0.

90
0.

93
0.

95
1.

16
0.

96
SL

SL
M

in
T-

sh
ri

nk
0.

97
0.

93
1.

05
0.

90
0.

90
0.

91
0.

96
0.

97
0.

89
0.

92
0.

98
1.

30
0.

96
SL

SL
E

R
M

1.
18

1.
17

1.
21

1.
09

1.
06

1.
07

1.
19

1.
22

1.
11

1.
12

1.
19

1.
57

1.
18

G
l
o
b
a
l

SL
SL

B
as

e
1.

04
1.

04
1.

17
1.

00
1.

02
1.

05
0.

99
0.

99
1.

04
1.

09
1.

62
1.

58
1.

05
SL

SL
O

L
S

0.
98

1.
09

1.
17

1.
05

1.
07

1.
13

0.
99

1.
00

1.
09

1.
13

1.
27

1.
50

1.
03

SL
SL

W
L

S-
st

ru
ct

0.
99

1.
09

1.
26

0.
98

1.
01

1.
04

1.
00

0.
99

1.
00

1.
07

1.
15

1.
57

1.
02

SL
SL

W
L

S-
va

r
0.

99
1.

24
1.

40
1.

09
1.

13
1.

13
1.

01
1.

00
1.

14
1.

21
1.

25
1.

69
1.

06
SL

SL
M

in
T-

sh
ri

nk
0.

99
1.

13
1.

24
1.

06
1.

08
1.

15
1.

02
1.

01
1.

05
1.

07
1.

15
1.

60
1.

04
SL

SL
E

R
M

1.
17

1.
49

1.
62

1.
30

1.
34

1.
37

1.
19

1.
20

1.
39

1.
49

1.
58

1.
96

1.
27

99

4. Hierarchical Forecasting at Scale

order of magnitude. First, we note that using our sparse implementation
of the HL reduces training time by a factor of 3× when training for all
stores. Second, our sparse HL has a prediction time similar to the baseline
(SL).

Next, we find that the training time of our sparse hierarchical loss
is two orders of magnitude faster than reconciliation methods in the
Separate aggregations-scenario. This is mainly due to the many
individual models that need to be trained in this scenario and thus shows
a clear benefit of having just a single model. We observe an order of
magnitude difference in prediction time when comparing the sparse
hierarchical loss to the Separate aggregations-scenario when
predictinf all stores. Again, this shows a clear benefit of having just a
single model for this forecasting task.

For the Global-scenario, we see that reconciliation methods require
a smaller training time when training for all stores (about twice less),
however that scenario also did not give strong forecasting performance
as we established in Table 4.4. Also, the prediction time using our sparse
HL is an order of magnitude lower. As ML costs in production systems
mainly consist of prediction costs, having a lower prediction time is
beneficial.2

Finally, we also show the time complexity of using both cross-
sectional and temporal hierarchies jointly, as indicated by ‘HL+’ in
Table 4.6. Adding temporal hierarchies adds another matrix multipli-
cation that scales with the number of timesteps to the complexity. In
our experiments, we find that adding temporal hierarchies results in a
twice higher training time when training for all stores and a 50% higher
prediction time when predicting for all stores. We view it as potential
future work to investigate how to perform this end-to-end learning of
both cross-sectional and temporal hierarchies even more efficiently.

To conclude, we showed that our sparse HL incurs some additional
training overhead but no additional prediction overhead as compared to
the base case SL, whereas it does not require the additional reconciliation
step that reconciliation methods require.

2For example, Google designed its first TPU for inference: https:
//techcrunch.com/2017/05/17/google-announces-second-
generation-of-tensor-processing-unit-chips.

100

https://techcrunch.com/2017/05/17/google-announces-second-generation-of-tensor-processing-unit-chips
https://techcrunch.com/2017/05/17/google-announces-second-generation-of-tensor-processing-unit-chips
https://techcrunch.com/2017/05/17/google-announces-second-generation-of-tensor-processing-unit-chips

4.5. Experiments

Ta
bl

e
4.

6:
C

om
pu

ta
tio

na
lt

im
e

co
m

pl
ex

ity
an

d
ob

se
rv

ed
tim

in
gs

in
se

co
nd

s
fo

r
al

ls
ce

na
ri

os
.

T
he

co
m

pl
ex

ity
is

in
di

ca
te

d
by

ho
w

re
sp

ec
tiv

el
y

th
e

tr
ai

ni
ng

tim
e

an
d

pr
ed

ic
tio

n
tim

e
sc

al
es

w
ith

re
sp

ec
tt

o
th

e
de

fa
ul

tL
ig

ht
G

B
M

tr
ai

ni
ng

/p
re

di
ct

io
n

tim
e
L

,w
he

re
n
te b

de
no

te
s

th
e

nu
m

be
r

of
tim

es
te

ps
pe

r
tim

e
se

ri
es

,n
cs b

de
no

te
s

th
e

nu
m

be
r

of
bo

tto
m

-l
ev

el
tim

e
se

ri
es

in
th

e
hi

er
ar

ch
y,
n
cs

l
b

th
e

nu
m

be
r

of
tim

e
se

ri
es

in
ea

ch
le

ve
li

n
th

e
hi

er
ar

ch
y

an
d
lc
s

th
e

nu
m

be
ro

fl
ev

el
s

in
th

e
cr

os
s-

se
ct

io
na

lh
ie

ra
rc

hy
,n

cs
(n

te
)t

he
to

ta
ln

um
be

ro
fc

ro
ss

-s
ec

tio
na

l(
te

m
po

ra
l)

ag
gr

eg
at

io
ns

,
an

d
n
a
=

n
−
n
b
.

C
om

pl
ex

ity
Tr

ai
ni

ng
tim

e
(s

)
Pr

ed
ic

tio
n

tim
e

(s
)

Sc
en

ar
io

/O
bj

.
M

et
ri

c
R

ec
on

ci
lia

tio
n

Tr
ai

ni
ng

Pr
ed

ic
tio

n
1

st
or

e
A

ll
st

or
es

1
st

or
e

A
ll

st
or

es

B
o
t
t
o
m
-
u
p

SL
SL

N
on

e
O
(L(n

te b
n
cs b

))
O
(L
(nte b

n
cs b

) +n
te b
(n

cs b
)3
)

8
17

3
1.

1
11

H
L

(d
en

se
)

H
L

(d
en

se
)

N
on

e
O
(L
(n

te b
n
cs b
+
n
te b
(n

cs b
)3
))

O
(L
(nte n

cs
) +n

te b
(n

cs b
)3
)

14
1,

18
5

1.
1

10

H
L

(s
pa

rs
e)

H
L

(s
pa

rs
e)

N
on

e
O
(L
(n

te b
n
cs b
+
n
te b
(n

cs b
)2
lc
s
))

O
(L
(nte n

cs
) +n

te b
(n

cs b
)2
lc
s
)

12
31

8
0.

1
11

H
L

+
(s

pa
rs

e)
H

L
+

(s
pa

rs
e)

N
on

e
O
(L
(n

te b
n
cs b
+
n
te b
(n

cs b
)2
lc
s
n
cs b

(nte b

) 2 lte
)) O

(L
(nte n

cs
) +n

te b
(n

cs b
)2
lc
s
n
cs b

(nte b

) 2 lte
)

72
3

15

S
e
p
.

a
g
g
.

SL
SL

B
as

e

O
(lc

s
·L
(n

cs
l

b
n
te

l
b

))
O
(lc

s
·L
(n

cs
l

b
n
te

l
b

))
11

36
,0

18

4.
4

10
3

SL
SL

O
L

S
O
(lc

s
·T
(n

cs
l

b
n
te

l
b

) +
(n

cs a
)3
)

4.
5

14
9

SL
SL

W
L

S-
st

ru
ct

O
(lc

s
·T
(n

cs
l

b
n
te

l
b

) +
(n

cs a
)3
)

4.
5

15
1

SL
SL

W
L

S-
va

r
O
(lc

s
·T
(n

cs
l

b
n
te

l
b

) +
(n

cs a
)3
)

4.
5

15
1

SL
SL

M
in

T-
sh

ri
nk

O
(lc

s
·T
(n

cs
l

b
n
te

l
b

) +
(n

cs
)3
)

5.
8

30
5

SL
SL

E
R

M
O
(lc

s
·T
(n

cs
l

b
n
te

l
b

) +
(n

cs
)3
)

6.
0

23
9

G
l
o
b
a
l

SL
SL

B
as

e

O
(L(n

te
n
cs
))

O
(T(n

te
n
cs
))

4
17

3

2.
4

71

SL
SL

O
L

S
O
(T
(nte n

cs
) +(

n
cs a
)3
)

2.
5

11
8

SL
SL

W
L

S-
st

ru
ct

O
(T
(nte n

cs
) +(

n
cs a
)3
)

2.
5

12
0

SL
SL

W
L

S-
va

r
O
(T
(nte n

cs
) +(

n
cs a
)3
)

2.
5

12
0

SL
SL

M
in

T-
sh

ri
nk

O
(T
(nte n

cs
) +(

n
cs
)3
)

4.
2

27
4

SL
SL

E
R

M
O
(T
(nte n

cs
) +(

n
cs
)3
)

4.
0

20
7

101

4. Hierarchical Forecasting at Scale

Table 4.7: Comparison of dataset characteristics between the M5 dataset
and the proprietary dataset. We split the weekly demand by weekly
demand buckets, and show the percentage of samples and percentage of
demand for each bucket.

Weekly % samples % demand

demand M5 Proprietary M5 Proprietary

0 40.73% 34.15% 0% 0%
1 7.92% 19.23% 1.02% 3.99%
2–10 33.28% 37.31% 20.93% 31.6%
11-100 17.21% 8.89% 57.38% 46.01%
101–500 0.84% 0.39% 18.59% 14.27%
501+ 0.02% 0.02% 2.08% 4.13%

Total 100.00% 100.00% 100.00% 100.00%

4.5.2 Proprietary Datasets

At our e-commerce partner bol, a LightGBM-based forecasting model
is used as the primary product forecasting model. The model is used to
forecast weekly product demand for 12 weeks. Every day, 12 separate
models are trained, each tasked to forecast demand for a single week for
every product. The model is used to forecast the majority of the products
on sale at any moment, which are approximately 5 million unique items.
We investigate the use of our sparse hierarchical loss function as a drop-in
replacement for the existing Tweedie loss that is used within the company.

Dataset The offline dataset consists of 36M training samples from the
period January 2017 to the end of June 2021. We test on 55M samples
from the period July 2021 to January 2022. We show statistics of the
proprietary dataset as compared to the M5 dataset in Table 4.7, in which
we split the weekly demand of both datasets according to weekly demand
buckets used by our e-commerce partner. In Table 4.7, we find that the
M5 dataset and our proprietary dataset share demand characteristics in
terms of sparsity (i.e., zero demand), which is 41% for M5 and 34%
for our proprietary dataset, respectively. In general, we find that the
two datasets share sufficient weekly demand density characteristics to
warrant using our sparse HL on our proprietary dataset. The proprietary

102

4.5. Experiments

dataset contains 19 proprietary features, which are similar to those used
in the M5 dataset (ref. Table 4.C.1), and consist of (i) product categorical
features, (ii) weekly demand (target) lagged features, and (iii) seasonality
features.

Experimental setup The baseline model for every weekly forecast
model is a LightGBM model with a Tweedie loss (TL). We replace
the TL with our HL and investigate forecasting performance on the
test set. We apply log-scaling to the target values. For the HL, we
use the proprietary aggregations product group and seasonality group,
each containing respectively ±70 and ±6,000 unique values. We have
ncs
b = ±5M bottom-level time series and ncs

a = ±6, 070 aggregated
time series across lcs = 4 levels: product (bottom-level), product group,
seasonality group and total.

Results On average, we find that our sparse HL outperforms the existing
TL model by about 1–2% on RMSE and ±10% on MAE. We further
investigate the performance by investigating how the RMSE and MAE
vary across the 12 forecasting horizons and weekly demand buckets,
and present the results in Figures 4.1–4.2. We find that our sparse HL
performs best on both RMSE and MAE on the lower weekly demand
buckets (up to 100 products sold per week), where it outperforms the TL
averaged over all the forecasting horizons. The TL is clearly better for
higher weekly demand buckets, commonly outperforming the HL and
SL by up to 5%. Next, we investigate forecasting performance across
the cross-sectional hierarchies that we defined. We show the results
in Figure 4.3. We find that for most forecasting horizons, the HL and
SL outperform the TL, with an average outperformance of the HL over
the TL of ±10% at the product level, ±5% at product group level and
±4–7% at seasonality group level. Hence, we are able to confirm some
of the results we found in the M5 experiment, although the baseline SL
performed quite strong in this experiment as well. We believe this is
due to the M5 experiment having much more hierarchical levels (12 as
compared to the 4 we used for our proprietary dataset experiment), since
the HL is equal to the SL in the case of no hierarchies, and with fewer
hierarchies the HL thus becomes closer to the SL. Hence, we believe our
HL is most useful in settings with both many timeseries as well as many
hierarchies.

103

4. Hierarchical Forecasting at Scale

5 10
horizon

0.6
0.8
1.0
1.2

RM
SE

Weekly demand: 0-1

5 10
horizon

0.6
0.8
1.0
1.2

Weekly demand: 2-10

5 10
horizon

0.6
0.8
1.0
1.2

RM
SE

Weekly demand: 11-100

5 10
horizon

0.6
0.8
1.0
1.2

Weekly demand: 101-500

5 10
horizon

0.6
0.8
1.0
1.2

RM
SE

Weekly demand: 501+

Hierarchical Loss
Tweedie Loss
Squared Loss

Figure 4.1: Forecasting results for the primary product forecasting model
at our e-commerce partner bol. We show RMSE by weekly demand
bucket relative to the Tweedie loss baseline for each forecasting horizon
(week). The Hierarchical loss outperforms the Tweedie loss on smaller
weekly demand buckets.

To conclude, we find that this experiment demonstrates the usefulness
of our sparse HL applied to a production forecasting system at a major
e-commerce platform.

4.6 Conclusion

In this chapter, we introduced a sparse hierarchical loss function to per-
form hierarchical forecasting in large-scale settings. We demonstrated
that we are able to outperform existing hierarchical forecasting methods
both in terms of performance as measured by RMSE and MAE by up
to 10% as well as in terms of computational time required to perform
the end-to-end hierarchical forecasting in large-scale settings, reducing
prediction time as compared to the best hierarchical forecasting recon-

104

4.6. Conclusion

5 10
horizon

0.6
0.8
1.0
1.2

M
AE

Weekly demand: 0-1

5 10
horizon

0.6
0.8
1.0
1.2

Weekly demand: 2-10

5 10
horizon

0.6
0.8
1.0
1.2

M
AE

Weekly demand: 11-100

5 10
horizon

0.6
0.8
1.0
1.2

Weekly demand: 101-500

5 10
horizon

0.6
0.8
1.0
1.2

M
AE

Weekly demand: 501+

Hierarchical Loss
Tweedie Loss
Squared Loss

Figure 4.2: Forecasting results for the primary product forecasting model
at our e-commerce partner bol. We show MAE by weekly demand bucket
relative to the Tweedie loss baseline for each forecasting horizon (week).
The Hierarchical loss outperforms the Tweedie loss on smaller weekly
demand buckets.

ciliation method by an order of magnitude. We empirically verified our
sparse hierarchical loss in an offline test for bol, where we confirmed the
results from our offline test on the public M5 dataset.

In addition to our main contributions, one of our main learnings
has been that we could not find a benefit of having multiple models
for separate aggregations in the hierarchy, as the bottom-up scenario
we employed consistently outperformed other scenarios. Secondly, we
did not find a benefit of training a model whilst adhering to both cross-
sectional and temporal hierarchies jointly.

Limitations of our work in this chapter are that we did not consider the
probabilistic forecasting setting, where reconciled forecasts are required
across an entire forecast distribution.

For future work, we aim to extend our work to the setting of proba-

105

4. Hierarchical Forecasting at Scale

Hierarchical Loss Tweedie Loss Squared Loss

5 10
0.6
0.8
1.0
1.2

RM
SE

5 10
0.6
0.8
1.0
1.2

M
AE

Products

5 10
0.6
0.8
1.0
1.2

RM
SE

5 10
0.6
0.8
1.0
1.2

M
AE

Product group

5 10
horizon

0.6
0.8
1.0
1.2

RM
SE

5 10
horizon

0.6
0.8
1.0
1.2

M
AE

Seasonality group

Figure 4.3: Forecasting results for the primary product forecasting model
at our e-commerce partner bol. We show RMSE (left column of figures)
and MAE (right column of figures) by aggregation level relative to the
Tweedie loss baseline for each forecasting horizon (week). The Hierar-
chical loss commonly outperforms the Tweedie loss on every aggregation
level.

bilistic forecasting by combining our sparse hierarchical loss with existing
probabilistic forecasting frameworks from Chapter 3 or from other frame-
works [48, 121]. In addition, we seek to further investigate solutions for
efficiently combining cross-sectional and temporal hierarchies.

In our final research chapter, we turn to another forecasting problem
often encountered at our industry partners: recommendations. We inves-
tigate state-of-the-art methods for session-based recommendation and
surprisingly find that the most simple method gives the most accurate
results.

106

Appendices

4.A Derivation of Gradient and Second-order
derivative

We have the following loss function (Eq. (4.9)):

L =
∑[

1

2

((
Y− Ỹ

)
⊙
(
Y− Ỹ

))
⊘
(
dcsdte

)]
. (4.19)

First, note that L is a scalar, as we sum over all ncs × nte elements of
the matrix contained in the summation. We can expand this summation
as follows:

L =

(
1
2

(
Y0,0 − Ỹ0,0

)2)
(dcsdte)0,0

+ · · ·+

(
1
2

(
Yncs,nte − Ỹncs,nte

)2)
(dcsdte)ncs,nte

, (4.20)

with Yi,j , Ỹi,j and (dcsdte)i,j denoting the i, j-th entry of the matrices
Y, Ỹ and (dcsdte), respectively. The derivative of L with respect to the
first element Ỹ0,0 is the standard squared error loss gradient divided by
(dcsdte)1,1, as all other terms in the summation cancel out:

∂L

∂Ỹ0,0

=

(
Ỹ0,0 − Y0,0

)
(dcsdte)0,0

. (4.21)

The second derivative of L with respect to the first element Ỹ0,0 then
reads:

∂2L

∂
(
Ỹ0,0

)2 =
1

(dcsdte)0,0
. (4.22)

We can then straightforwardly generalize the first and second derivative
to the matrix case, such that the first and second derivative of L with
respect to the matrix Ỹ read:

∂L

∂Ỹ
=
((

Ỹ− Y
)
⊘
(
dcsdte

))
, (4.23)

107

4. Hierarchical Forecasting at Scale

∂2L

∂
(
Ỹ
)2 =

(
1⊘

(
dcsdte

))
, (4.24)

with 1 denoting a matrix of ones of the same size as Ỹ. As L is a scalar
and Ỹ ∈ Rncs × nte , the derivative ∂L

∂Ỹ is a matrix of the same size as Ỹ.
Similarly, ∂2L

∂(Ỹ)
2 is a matrix of the same size as Ỹ, as we only consider

the second-order derivatives with respect to the same component in Ỹ.
To get to the gradient of L with respect to the bottom-level forecasts
Ŷnb , we need to collect every gradient component in ∂L

∂Ỹ that contains a
bottom-level forecast element. We can achieve this by multiplying the
derivatives by our summing matrices Scs and Ste:

∂L

∂Ŷnb︸ ︷︷ ︸
Rncs

b
× nte

b

= (Scs)⊺︸ ︷︷ ︸
Rncs

b
× ncs

(
∂L

∂Ỹ

)
︸ ︷︷ ︸
Rncs × nte

Ste︸︷︷︸
Rnte × nte

b

, (4.25)

∂2L

∂
(

Ŷnb

)2
︸ ︷︷ ︸
Rncs

b
× nte

b

= (Scs)⊺︸ ︷︷ ︸
Rncs

b
× ncs

(
∂2L

∂
(
Ỹ
)2
)

︸ ︷︷ ︸
Rncs × nte

Ste︸︷︷︸
Rnte × nte

b

. (4.26)

4.B Derivation of Gradient of Toy Example

We have the following hierarchical forecasting problem:

Ỹ =

1 1
1 0
0 1


︸ ︷︷ ︸

Scs

[
ŷ0,0 ŷ0,1

ŷ1,0 ŷ1,1

]
︸ ︷︷ ︸

Ŷnb

[
1 1 0
1 0 1

]
︸ ︷︷ ︸

(Ste)⊺

,

which results in the following gradient:[
∂L

∂ŷ0,0
∂L

∂ŷ0,1
∂L

∂ŷ1,1
∂L

∂ŷ1,1

]
= (Scs)⊺

[(
Scs
(

Ŷnb − Ynb

)
(Ste)⊺

)
⊘
(
dcsdte

)]
Ste ,

= (Scs)⊺
[(

Scs
(

Ŷnb − Ynb

)
(Ste)⊺

)
⊘
(
(lcsScs1cs)

(
lteSte1te

)⊺)]
Ste ,

108

4.C. M5 Dataset

=

[
1 1 0
1 0 1

][([1 1
1 0
0 1

]([
ŷ0,0 ŷ0,1
ŷ1,0 ŷ1,1

]
−
[

y0,0 y0,1
y1,0 y1,1

])[
1 1 0
1 0 1

])

⊘ ((2 [2 1 1]⊺) (2 [2 1 1]))

][1 1
1 0
0 1

]
,

=

[
1 1 0
1 0 1

]
[1 1

1 0
0 1

]
e0,0︷ ︸︸ ︷

ŷ0,0 − y0,0

e0,1︷ ︸︸ ︷
ŷ0,1 − y0,1

ŷ1,0 − y1,0︸ ︷︷ ︸
e1,0

ŷ1,1 − y1,1︸ ︷︷ ︸
e1,1

[1 1 0
1 0 1

]
⊘

[
16 8 8
8 4 4
8 4 4

]][
1 1
1 0
0 1

]
,

=
[
1 1 0
1 0 1

] [1
16

(e0,0 + e1,0 + e0,1 + e1,1)
1
8
(e0,0 + e1,0)

1
8
(e0,1 + e1,1)

1
8
(e0,0 + e0,1)

1
4
e0,0

1
4
e0,1

1
8
(e1,0 + e1,1)

1
4
e1,0

1
4
e1,1

] [
1 1
1 0
0 1

]
,

=

[
1
16
(e0,0 + e1,0 + e0,1 + e1,1) +

1
8
(e0,0 + e1,0) +

1
8
(e0,0 + e0,1) +

1
4
e0,0

1
16
(e0,0 + e1,0 + e0,1 + e1,1) +

1
8
(e0,0 + e1,0) +

1
8
(e1,0 + e1,1) +

1
4
e1,0

1
16
(e0,0 + e1,0 + e0,1 + e1,1) +

1
8
(e0,1 + e1,1) +

1
8
(e0,0 + e0,1) +

1
4
e0,1

1
16
(e0,0 + e1,0 + e0,1 + e1,1) +

1
8
(e0,1 + e1,1) +

1
8
(e1,0 + e1,1) +

1
4
e1,1

]
,

=

[
9
16
e0,0 +

3
16
e1,0 +

3
16
e0,1 +

1
16
e1,1

9
16
e0,1 +

3
16
e0,1 +

3
16
e1,1 +

1
16
e1,0

9
16
e1,0 +

3
16
e0,0 +

3
16
e1,1 +

1
16
e0,1

9
16
e1,1 +

3
16
e1,0 +

3
16
e0,1 +

1
16
e0,0

]
.

4.C M5 Dataset

For each of the scenarios of our experiments in Section 4.5, we construct
a set of features for the LightGBM model as given in Table 4.C.1. To
facilitate the most ‘fair’ comparison across methods, each model has the
same features, and for the time series aggregations in the hierarchy we
construct the features taken over the aggregation. We refer the reader to
[87] for a detailed description of the dataset.

109

4. Hierarchical Forecasting at Scale

Table 4.C.1: Features used for the M5 dataset in our experiments.

Feature Description

Aggregation Aggregation level in the hierarchy
Value Identifier of time series of this aggregation
sales lag1-7 Lagged sales (target) (7 features)
sales lag28 Sales 28 days ago
sales lag56 Sales 56 days ago
sales lag364 Sales last year
sales lag1 mavg7 Moving average of sales last 7 days
sales lag1 mavg28Moving average of sales last 28 days
sales lag1 mavg56Moving average of sales last 56 days
dayofweek Day of the week
dayofmonth Day of the month
weekofyear Week of year
monthofyear Month of year
sell price avg Sell price (average if aggregation)
sell price changeDay-to-day change in sell price
weeks on sale avg Weeks on sale
snap CA State indicator for California
snap TX State indicator for Texas
snap WI State indicator for Wyoming
event type 1 enc Encoded events
event type 2 enc Encoded events

4.D M5 Model Training & Optimization

We optimize the hyperparameters of our LightGBM models using Optuna
[7], using the settings found in Table 4.D.1. The validation is performed
on a rolling-forward basis for 3 validation sets, where we use three years
of data to predict the next 28 days ahead. After the hyperparameter
optimization procedure, we use the average number of iterations at which
the lowest validation loss was achieved across the 3 validation sets as the
number of estimators to use in our final model. The final model uses the
last three years of data preceding the first day in the test set.

4.E Experiments

110

4.E. Experiments

Ta
bl

e
4.

D
.1

:
K

ey
hy

pe
rp

ar
am

et
er

s
us

ed
in

ou
r

ex
pe

ri
m

en
ts

.
T

he
pa

ra
m

et
er

s
w

ith
a

se
ar

ch
ra

ng
e

in
cl

ud
ed

ar
e

op
tim

iz
ed

in
a

hy
pe

rp
ar

am
et

er
se

ar
ch

.
Pa

ra
m

et
er

D
es

cr
ip

tio
n

D
ef

au
lt

va
lu

e
Se

ar
ch

ra
ng

e

n
e
s
t
i
m
a
t
o
r
s

N
um

be
ro

ft
re

es
in

ea
ch

m
od

el
20

00
L

ow
es

tv
al

id
at

io
n

lo
ss

n
t
r
i
a
l
s

N
um

be
ro

fo
pt

im
iz

at
io

n
tr

ia
ls

to
ru

n
10

0
l
e
a
r
n
i
n
g
r
a
t
e

L
ea

rn
in

g
ra

te
0.

05
n
v
a
l
i
d
a
t
i
o
n
s
e
t
s

N
um

be
ro

fv
al

id
at

io
n

se
ts

3
n
d
a
y
s
t
e
s
t

N
um

be
ro

fd
ay

s
in

va
lid

at
io

n
an

d
te

st
se

ts
28

m
a
x
l
e
v
e
l
s
r
a
n
d
o
m

M
ax

.n
um

be
ro

fl
ev

el
s

w
he

n
us

in
g

a
ra

nd
om

hi
er

ar
ch

y
2

m
a
x
c
a
t
e
g
o
r
i
e
s
p
e
r

r
a
n
d
o
m
l
e
v
e
l

M
ax

.c
at

eg
or

ie
s

pe
rl

ev
el

in
th

e
ra

nd
om

hi
er

ar
ch

y
10

00
h
i
e
r
f
r
e
q

Fr
eq

ue
nc

y
of

pe
rf

or
m

in
g

th
e

ra
nd

om
iz

ed
hi

er
ar

ch
ic

al
ag

gr
eg

at
io

n
1

u
n
i
f
o
r
m
(
1,

10
)

l
a
m
b
d
a
l
1

L
1-

re
gu

la
ri

za
tio

n
0

l
o
g
u
n
i
f
o
r
m
(
10

−
8
,

10
1
)

l
a
m
b
d
a
l
2

L
2-

re
gu

la
ri

za
tio

n
0

l
o
g
u
n
i
f
o
r
m
(
10

−
8
,

10
1
)

n
u
m
l
e
a
v
e
s

M
ax

.n
um

be
ro

fl
ea

ve
s

pe
rt

re
e

31
u
n
i
f
o
r
m
(
23
,

21
0
)

f
e
a
t
u
r
e
f
r
a
c
t
i
o
n

Fr
ac

tio
n

of
fe

at
ur

es
to

us
e

to
bu

ild
a

tr
ee

1.
0

u
n
i
f
o
r
m
(
0.
4,

1.
0)

b
a
g
g
i
n
g
f
r
a
c
t
i
o
n

Fr
ac

tio
n

of
tr

ai
ni

ng
sa

m
pl

es
to

us
e

to
bu

ild
a

tr
ee

1.
0

u
n
i
f
o
r
m
(
0.
4,

1.
0)

b
a
g
g
i
n
g
f
r
e
q

Fr
eq

ue
nc

y
at

w
hi

ch
to

cr
ea

te
a

ne
w

ba
gg

in
g

ba
tc

h
1.

0
u
n
i
f
o
r
m
(
1,

7)
m
i
n
c
h
i
l
d
s
a
m
p
l
e
s

M
in

im
um

nu
m

be
ro

fs
am

pl
es

pe
rl

ea
f

20
l
o
g
u
n
i
f
o
r
m
(
5,

50
00
)

111

4. Hierarchical Forecasting at Scale

Ta
bl

e
4.

E
.1

:F
or

ec
as

tin
g

re
su

lts
fo

ra
ll

st
or

es
on

th
e

M
5

da
ta

se
t.

W
e

re
po

rt
m

ea
n

R
M

SE
sc

or
es

ac
ro

ss
10

ra
nd

om
se

ed
s

w
ith

st
an

da
rd

de
vi

at
io

n
in

br
ac

ke
ts

.L
ow

er
is

be
tte

r.
St

or
e

Pr
od

uc
t

St
at

e

Sc
en

./O
bj

.
M

et
ri

c
R

ec
on

ci
lia

tio
n

Pr
od

uc
t

D
ep

ar
tm

en
t

C
at

eg
or

y
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
St

or
e

St
at

e
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
To

ta
l

A
ll

se
ri

es

B
o
t
t
o
m
-
u
p

SL
SL

N
on

e
2.

11
(0

.0
0)

58
0

(3
.9

5)
10

96
(1

3.
71

)
11

0
(0

.6
0)

20
7

(1
.2

1)
41

6
(2

.0
7)

8.
8

(0
.0

3)
4.

26
(0

.0
1)

26
3

(1
.3

0)
51

0
(3

.8
1)

99
7

(8
.4

4)
20

86
(3

8.
53

)
22

.4
(0

.1
6)

SL
H

L
N

on
e

2.
11

(0
.0

0)
56

4
(5

.5
8)

10
39

(1
4.

64
)

10
7

(0
.7

4)
20

0
(1

.6
9)

40
8

(2
.3

7)
8.

76
(0

.0
6)

4.
25

(0
.0

1)
25

6
(1

.3
0)

49
0

(3
.9

3)
98

3
(5

.9
3)

20
79

(3
3.

46
)

21
.8

(0
.1

5)
H

L
H

L
N

on
e

2.
11

(0
.0

0)
51

1
(8

.9
3)

88
2

(2
0.

54
)

10
2

(0
.9

0)
18

5
(1

.4
8)

38
8

(4
.2

1)
8.

5
(0

.0
2)

4.
21

(0
.0

1)
23

3
(2

.4
2)

42
7

(4
.7

8)
87

8
(1

7.
17

)
18

19
(7

8.
42

)
19

.5
(0

.3
8)

H
L

SL
N

on
e

2.
11

(0
.0

0)
51

1
(9

.4
7)

88
6

(2
4.

67
)

10
3

(1
.0

8)
18

7
(2

.1
2)

39
0

(3
.8

0)
8.

46
(0

.0
4)

4.
19

(0
.0

1)
23

4
(3

.1
5)

43
0

(7
.1

8)
88

1
(1

5.
27

)
18

13
(6

4.
6)

19
.6

(0
.3

6)
T

L
H

L
N

on
e

2.
11

(0
.0

0)
54

9
(9

.2
1)

10
55

(2
2.

68
)

10
9

(0
.5

8)
20

7
(1

.2
7)

41
5

(2
.5

8)
8.

73
(0

.0
3)

4.
25

(0
.0

1)
25

6
(2

.0
9)

50
2

(5
.0

4)
97

8
(1

3.
8)

20
07

(6
3.

57
)

21
.8

(0
.3

4)
T

L
SL

N
on

e
2.

11
(0

.0
0)

54
4

(7
.6

6)
10

17
(2

5.
23

)
11

0
(0

.4
0)

20
8

(1
.2

0)
41

6
(2

.4
1)

8.
68

(0
.0

4)
4.

25
(0

.0
1)

25
6

(1
.5

5)
49

7
(5

.2
3)

97
2

(7
.6

7)
19

43
(4

1.
21

)
21

.5
(0

.2
5)

T
L

T
L

N
on

e
2.

46
(0

.0
0)

15
79

(9
.7

1)
30

75
(2

0.
5)

19
3

(0
.8

7)
37

9
(1

.8
4)

71
7

(5
.1

7)
13

.4
1

(0
.0

5)
5.

68
(0

.0
2)

56
6

(3
.1

1)
11

11
(6

.4
2)

20
74

(1
8.

68
)

56
46

(6
0.

40
)

53
.3

(0
.3

9)

S
e
p
.

a
g
g
.

SL
SL

B
as

e
2.

11
(0

.0
0)

83
5

(2
3.

47
)

14
17

(6
9.

78
)

13
0

(1
.8

6)
23

6
(5

.2
5)

47
4

(8
.7

1)
8.

88
(0

.0
2)

4.
23

(0
.0

1)
32

2
(1

1.
48

)
68

2
(1

9.
02

)
12

69
(4

7.
11

)
33

39
(8

6.
79

)
30

.1
(0

.2
1)

SL
SL

O
L

S
2.

11
(0

.0
0)

80
4

(1
4.

22
)

15
48

(2
2.

24
)

12
0

(1
.4

9)
22

0
(1

.9
5)

44
3

(2
.3

7)
8.

77
(0

.0
2)

4.
25

(0
.0

1)
31

5
(4

.1
5)

60
5

(7
.9

8)
12

22
(9

.6
9)

31
25

(2
4.

25
)

29
.1

(0
.2

2)
SL

SL
W

L
S-

st
ru

ct
2.

10
(0

.0
0)

73
1

(8
.5

5)
15

05
(1

6.
09

)
11

3
(0

.5
8)

21
7

(1
.1

3)
42

6
(2

.1
7)

8.
71

(0
.0

2)
4.

23
(0

.0
1)

29
1

(2
.3

8)
59

1
(4

.8
2)

11
53

(7
.5

3)
29

09
(2

3.
52

)
27

.6
(0

.2
2)

SL
SL

W
L

S-
va

r
2.

11
(0

.0
0)

64
7

(7
.2

3)
13

45
(1

8.
95

)
10

9
(0

.5
1)

21
1

(1
.4

3)
41

1
(2

.0
6)

8.
72

(0
.0

3)
4.

24
(0

.0
1)

27
2

(2
.0

6)
55

5
(5

.5
8)

10
68

(8
.7

7)
25

41
(3

1.
06

)
25

.1
(0

.2
5)

SL
SL

M
in

T-
sh

ri
nk

2.
11

(0
.0

0)
66

7
(1

8.
15

)
13

97
(4

4.
32

)
10

6
(1

.1
5)

20
6

(3
.1

4)
40

5
(5

.4
5)

8.
76

(0
.0

2)
4.

24
(0

.0
1)

27
2

(4
.9

2)
55

8
(1

2.
59

)
10

91
(2

2.
52

)
27

06
(8

0.
28

)
25

.8
(0

.6
3)

SL
SL

E
R

M
2.

58
(0

.0
1)

72
8

(4
8.

01
)

14
11

(1
18

.3
6)

11
7

(3
.6

6)
21

3
(8

.7
3)

44
3

(2
0.

5)
10

.3
0

(0
.1

0)
5.

21
(0

.0
4)

30
7

(1
4.

61
)

58
3

(3
3.

15
)

12
15

(7
5.

3)
31

01
(2

58
.2

9)
28

.1
(1

.8
3)

G
l
o
b
a
l

SL
SL

B
as

e
2.

16
(0

.0
0)

77
1

(5
4.

94
)

15
87

(2
56

.0
6)

12
0

(2
.1

1)
22

7
(8

.8
1)

45
8

(1
8.

45
)

9.
09

(0
.0

5)
4.

4
(0

.0
1)

32
9

(1
8.

51
)

65
0

(3
1.

09
)

18
07

(1
20

3.
62

)
32

73
(3

38
.7

1)
32

.8
(6

.6
0)

SL
SL

O
L

S
2.

13
(0

.0
1)

76
4

(5
8.

91
)

15
24

(1
81

.3
8)

11
7

(1
0.

32
)

22
7

(2
7.

24
)

48
4

(1
09

.1
4)

8.
99

(0
.0

5)
4.

34
(0

.0
3)

31
6

(4
2.

99
)

63
7

(1
07

.6
3)

13
71

(4
17

.8
4)

31
14

(4
17

.3
8)

29
.9

(2
.5

2)
SL

SL
W

L
S-

st
ru

ct
2.

13
(0

.0
0)

80
0

(4
5.

37
)

16
86

(1
03

.8
6)

11
8

(2
.5

2)
23

5
(5

.9
6)

46
3

(1
1.

90
)

9.
09

(0
.0

3)
4.

35
(0

.0
1)

31
4

(1
0.

72
)

65
1

(2
4.

97
)

12
64

(5
5.

94
)

32
31

(2
79

.9
6)

30
.4

(1
.6

8)
SL

SL
W

L
S-

va
r

2.
14

(0
.0

1)
87

6
(4

3.
62

)
18

67
(1

06
.7

7)
13

0
(2

.3
1)

26
3

(7
.1

0)
50

8
(1

8.
51

)
9.

10
(0

.0
5)

4.
35

(0
.0

1)
34

5
(1

1.
71

)
72

7
(3

0.
30

)
13

74
(8

0.
66

)
34

63
(2

83
.0

5)
33

.2
(1

.8
4)

SL
SL

M
in

T-
sh

ri
nk

2.
18

(0
.0

2)
73

0
(5

0.
73

)
15

45
(1

55
.6

5)
11

5
(2

.4
2)

22
8

(5
.9

7)
47

8
(1

9.
61

)
9.

29
(0

.1
6)

4.
46

(0
.0

6)
29

3
(1

2.
06

)
59

9
(3

3.
27

)
12

35
(8

9.
41

)
32

11
(4

32
.0

2)
29

.1
(2

.3
3)

SL
SL

E
R

M
2.

56
(0

.1
4)

92
3

(1
13

.3
9)

18
57

(2
71

.2
3)

13
8

(1
6.

52
)

26
5

(3
4.

54
)

55
8

(1
05

.8
7)

10
.5

2
(0

.6
2)

5.
23

(0
.3

4)
38

2
(5

6.
45

)
76

2
(1

18
.5

4)
16

07
(3

71
.3

4)
37

52
(6

69
.3

6)
35

.7
(3

.7
4)

112

4.E. Experiments

Ta
bl

e
4.

E
.2

:
Fo

re
ca

st
in

g
re

su
lts

fo
r

al
ls

to
re

s
on

th
e

M
5

da
ta

se
t.

W
e

re
po

rt
m

ea
n

M
A

E
sc

or
es

ac
ro

ss
10

ra
nd

om
se

ed
s

w
ith

st
an

da
rd

de
vi

at
io

n
in

br
ac

ke
ts

.L
ow

er
is

be
tte

r.
St

or
e

Pr
od

uc
t

St
at

e

Sc
en

./O
bj

.
M

et
ri

c
R

ec
on

ci
lia

tio
n

Pr
od

uc
t

D
ep

ar
tm

en
t

C
at

eg
or

y
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
St

or
e

St
at

e
D

ep
ar

tm
en

t
C

at
eg

or
y

To
ta

l
To

ta
l

A
ll

se
ri

es

B
o
t
t
o
m
-
u
p

SL
SL

N
on

e
1.

07
(0

.0
0)

42
0

(5
.5

1)
77

2
(1

2.
94

)
70

(0
.4

3)
13

1
(0

.8
4)

31
2

(2
.2

7)
4.

41
(0

.0
1)

2.
2

(0
.0

0)
18

1
(1

.4
5)

34
3

(2
.5

7)
81

2
(7

.4
6)

16
28

(2
4.

81
)

2.
2

(0
.0

1)
SL

H
L

N
on

e
1.

07
(0

.0
0)

41
0

(5
.8

2)
74

3
(1

2.
96

)
68

(0
.3

7)
12

8
(0

.7
5)

30
9

(1
.7

9)
4.

39
(0

.0
1)

2.
19

(0
.0

0)
17

7
(1

.2
9)

33
2

(2
.2

5)
80

8
(5

.3
4)

16
53

(4
0.

22
)

2.
2

(0
.0

1)
H

L
H

L
N

on
e

1.
06

(0
.0

0)
34

2
(7

.5
4)

59
8

(1
8.

24
)

63
(0

.5
8)

11
7

(1
.3

6)
29

3
(4

.2
6)

4.
33

(0
.0

1)
2.

18
(0

.0
0)

15
4

(2
.0

1)
28

3
(4

.6
1)

72
4

(1
4.

31
)

14
27

(8
1.

18
)

2.
1

(0
.0

1)
H

L
SL

N
on

e
1.

06
(0

.0
0)

34
0

(6
.2

)
59

7
(1

8.
44

)
63

(0
.5

6)
11

7
(1

.1
9)

29
4

(3
.0

6)
4.

33
(0

.0
1)

2.
18

(0
.0

0)
15

4
(1

.9
1)

28
4

(4
.4

9)
72

5
(1

3.
35

)
14

17
(5

7.
53

)
2.

1
(0

.0
1)

T
L

H
L

N
on

e
1.

05
(0

.0
0)

35
0

(4
.5

)
63

4
(1

0.
36

)
65

(0
.1

7)
12

2
(0

.4
9)

29
9

(1
.6

9)
4.

27
(0

.0
1)

2.
15

(0
.0

0)
16

0
(0

.6
9)

30
5

(1
.9

5)
74

7
(9

.0
7)

14
25

(5
0.

6)
2.

1
(0

.0
0)

T
L

SL
N

on
e

1.
06

(0
.0

0)
35

9
(4

.1
8)

64
7

(1
0.

08
)

66
(0

.2
5)

12
4

(0
.5

2)
30

5
(1

.5
4)

4.
3

(0
.0

1)
2.

17
(0

.0
0)

16
4

(1
.2

7)
31

1
(2

.8
4)

77
8

(4
.1

9)
14

57
(2

8.
24

)
2.

1
(0

.0
0)

T
L

T
L

N
on

e
1.

09
(0

.0
0)

86
6

(4
.9

)
18

43
(1

1.
88

)
10

2
(0

.4
4)

21
0

(1
.1

)
51

5
(4

.9
5)

5.
03

(0
.0

1)
2.

35
(0

.0
0)

30
6

(1
.4

8)
64

5
(3

.7
5)

16
01

(1
7.

55
)

46
47

(5
9.

66
)

2.
8

(0
.0

1)

S
e
p
.

a
g
g
.

SL
SL

B
as

e
1.

07
(0

.0
0)

46
7

(1
3.

86
)

81
9

(3
6.

81
)

71
(0

.6
2)

14
4

(2
.9

6)
33

6
(9

.3
6)

4.
23

(0
.0

1)
2.

13
(0

.0
0)

18
7

(4
.2

4)
39

3
(1

1.
11

)
97

1
(5

0.
11

)
25

23
(1

05
.3

)
2.

2
(0

.0
0)

SL
SL

O
L

S
1.

03
(0

.0
0)

45
5

(8
.0

8)
89

5
(1

0.
88

)
70

(0
.7

3)
12

9
(0

.8
7)

31
1

(1
.7

6)
4.

24
(0

.0
1)

2.
13

(0
.0

0)
18

1
(1

.8
1)

34
5

(2
.8

4)
91

0
(9

.0
7)

24
30

(4
5.

28
)

2.
2

(0
.0

1)
SL

SL
W

L
S-

st
ru

ct
1.

03
(0

.0
0)

41
7

(2
.5

6)
87

6
(8

.9
9)

64
(0

.2
8)

12
4

(0
.6

6)
29

8
(1

.6
4)

4.
22

(0
.0

0)
2.

12
(0

.0
0)

16
8

(1
)

33
4

(2
.2

7)
84

2
(6

.1
1)

23
15

(2
2.

33
)

2.
1

(0
.0

0)
SL

SL
W

L
S-

va
r

1.
04

(0
.0

0)
38

3
(3

.3
3)

77
1

(1
0.

62
)

63
(0

.2
5)

12
0

(0
.6

6)
28

6
(1

.4
8)

4.
24

(0
.0

0)
2.

13
(0

.0
0)

16
2

(1
)

31
8

(2
.7

5)
77

0
(6

.8
7)

18
87

(3
2.

1)
2.

1
(0

.0
0)

SL
SL

M
in

T-
sh

ri
nk

1.
04

(0
.0

0)
39

3
(1

0.
24

)
81

1
(2

7.
92

)
62

(0
.5

6)
11

8
(1

.6
4)

28
3

(4
.3

3)
4.

23
(0

.0
1)

2.
13

(0
.0

0)
16

2
(2

.4
4)

31
6

(7
.3

3)
79

6
(1

8.
35

)
21

16
(8

1.
24

)
2.

1
(0

.0
1)

SL
SL

E
R

M
1.

26
(0

.0
0)

49
0

(2
8.

29
)

93
5

(9
1.

26
)

76
(1

.9
9)

13
9

(5
.8

)
33

5
(1

7.
11

)
5.

26
(0

.0
3)

2.
67

(0
.0

1)
20

1
(7

.9
)

38
3

(2
2.

22
)

96
6

(6
3.

05
)

25
59

(2
96

.3
5)

2.
6

(0
.0

4)

G
l
o
b
a
l

SL
SL

B
as

e
1.

12
(0

.0
1)

43
6

(2
2.

31
)

90
0

(1
56

.9
4)

70
(1

.0
1)

13
3

(3
.8

4)
32

6
(1

5.
88

)
4.

37
(0

.0
1)

2.
18

(0
.0

1)
18

8
(8

.0
4)

37
3

(1
3.

48
)

13
14

(6
11

.3
6)

25
69

(3
20

.8
7)

2.
3

(0
.0

4)
SL

SL
O

L
S

1.
05

(0
.0

1)
45

6
(3

2.
4)

90
6

(9
7.

58
)

73
(1

1.
48

)
13

9
(2

8.
62

)
35

2
(9

3.
72

)
4.

38
(0

.0
3)

2.
19

(0
.0

4)
19

7
(4

1.
58

)
38

8
(1

03
.1

7)
10

33
(3

36
.4

6)
24

41
(3

89
.8

9)
2.

3
(0

.1
3)

SL
SL

W
L

S-
st

ru
ct

1.
05

(0
.0

0)
45

6
(1

7.
42

)
97

0
(5

3.
68

)
68

(0
.8

3)
13

3
(2

.1
)

32
3

(7
.3

1)
4.

4
(0

.0
1)

2.
18

(0
.0

1)
18

1
(3

.3
)

36
8

(1
0.

47
)

93
7

(4
0.

46
)

25
52

(2
58

.9
4)

2.
2

(0
.0

2)
SL

SL
W

L
S-

va
r

1.
06

(0
.0

0)
52

2
(1

8.
96

)
10

82
(5

9.
2)

76
(0

.8
)

14
8

(3
.1

3)
35

3
(1

3.
72

)
4.

43
(0

.0
2)

2.
19

(0
.0

1)
20

6
(4

.7
5)

41
5

(1
4.

39
)

10
17

(6
2.

93
)

27
44

(2
60

.6
5)

2.
3

(0
.0

2)
SL

SL
M

in
T-

sh
ri

nk
1.

06
(0

.0
1)

47
4

(2
4.

59
)

96
0

(9
2.

69
)

74
(1

.5
6)

14
1

(3
.1

3)
35

8
(1

1.
28

)
4.

49
(0

.0
6)

2.
22

(0
.0

2)
19

0
(7

)
36

7
(2

2.
7)

93
5

(8
7.

38
)

26
05

(4
24

.6
1)

2.
3

(0
.0

3)
SL

SL
E

R
M

1.
25

(0
.0

6)
62

5
(6

0.
87

)
12

52
(1

48
.1

5)
90

(9
.2

5)
17

5
(2

4.
13

)
42

6
(8

5.
57

)
5.

26
(0

.2
9)

2.
65

(0
.1

4)
25

2
(3

4.
4)

51
2

(8
9.

23
)

12
85

(3
10

.6
)

31
90

(6
36

.5
8)

2.
8

(0
.1

9)

113

5
Serenade

In this chapter, we turn to another forecasting problem often encoun-
tered at our industry partners: recommendations. Session-based recom-
mendation predicts the next item with which a user will interact, given a
sequence of her past interactions with other items. This machine learning
problem targets a core scenario in e-commerce platforms, which aim to
recommend interesting items to buy to users browsing the site. Session-
based recommenders are difficult to scale due to their exponentially large
input space of potential sessions. This impedes offline precomputation of
the recommendations, and implies the necessity to maintain state during
the online computation of next-item recommendations. This motivates
our final research question:

Research Question 4: How can we efficiently generate
session-based recommendations at the scale of bol?

We propose Vector-Multiplication-Indexed-Session kNN (VMIS-kNN),
an adaptation of a state-of-the-art nearest neighbor approach to session-
based recommendation, which leverages a prebuilt index to compute
next-item recommendations with low latency in scenarios with hundreds
of millions of clicks to search through. Based on this approach, we design
and implement the scalable session-based recommender system Serenade,
which is in production usage at bol.
We evaluate the predictive performance of VMIS-kNN, and show that
Serenade can answer a thousand recommendation requests per second

This chapter was published as: B. Kersbergen, O. Sprangers, and S. Schelter.
Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale.
In Proceedings of the 2022 International Conference on Management of Data, pages
150–159, Philadelphia, USA, June 2022. ACM. ISBN 978-1-4503-9249-5. doi: 10.
1145/3514221.3517901.

115

5. Serenade

with a 90th percentile latency of less than seven milliseconds in scenarios
with millions of items to recommend. Furthermore, we present results
from a three week long online A/B test with up to 600 requests per second
for 6.5 million distinct items on more than 45 million user sessions from
our e-commerce platform. To the best of our knowledge, we provide
the first empirical evidence that the superior predictive performance of
nearest neighbor approaches to session-based recommendation in offline
evaluations translates to superior performance in a real world e-commerce
setting.

5.1 Introduction

Session-based recommendation targets a core scenario in e-commerce
and online browsing. Given a sequence of interactions of a visitor with a
selection of items, we want to recommend to the user the next item(s) of
interest to interact with [78, 83, 84, 102]. This machine learning problem
is crucial for e-commerce platforms [70].

Challenges in scaling session-based recommendation Scaling ses-
sion-based recommender systems is a difficult undertaking, because the
input space (sequences of item interactions) for the recommender system
is exponentially large (of size |I|n for all possible sessions of length
n from a set of items I), which renders it impractical to precompute
recommendations offline and serve them from a data store. This is in
stark contrast to classical collaborative-filtering based recommendations
[73, 108], which are relatively static as they rely on long-term user
behavior [110]. Instead, session-based recommenders have to maintain
state in order to react to online changes in the evolving user sessions,
and compute next item recommendations with low latency [10, 70] in
real-time.

Recent research indicates that nearest neighbor methods provide
state-of-the-art performance for session-based recommendation, and even
outperform complex neural network-based approaches in offline eval-
uations [70, 84]. It is however unclear whether this superior offline
performance also translates to increased user engagement in real-world
recommender systems. Furthermore, it is unclear whether the academic
nearest neighbor approaches scale to industrial use cases, where they

116

5.1. Introduction

have to efficiently search through hundreds of millions of historical clicks
while adhering to strict service-level-agreements for response latency.
This scalability challenge is further complicated by the fact that the ap-
plied session similarity functions do not constitute a metric space (e.g.,
due to lack of symmetry), which renders common approximate nearest
neighbor search techniques inapplicable.

VMIS-kNN In order to tackle the scalability challenge, we present
Vector-Multiplication-Indexed-Session kNN (VMIS-kNN) in Section 5.4,
an adaption of the state-of-the-art session-based recommendation algo-
rithm VS-kNN [84]. VMIS-kNN leverages a prebuilt index to compute
next-item recommendations in milliseconds for scenarios with hundreds
of millions of clicks in historical sessions to search through. Our approach
can be viewed as the joint execution of a join between evolving and his-
torical sessions on matching items and two aggregations to compute the
similarities. During this joint execution, we minimise intermediate results,
control the memory usage and prune the search space with early stop-
ping. As a consequence, VMIS-kNN drastically outperforms VS-kNN
in terms of latency and scalability (Section 5.6.2), while still provid-
ing the desired prediction quality advantages over neural network-based
approaches (Section 5.6.1).

Serenade Finally, we present the design and implementation of our
scalable session-based recommender system Serenade, which employs
VMIS-kNN, and can serve a thousand recommendation requests per sec-
ond with a 90th percentile latency of less than seven milliseconds in
scenarios with millions of items to recommend. Our system runs in the
Google Cloud-based infrastructure of bol, a large European e-commerce
platform, and is in production usage. We discuss design decisions of
Serenade, such as stateful recommendation servers, which colocate the
evolving user sessions together with update and recommendation re-
quests (Section 5.5.1). Additionally, we describe implementation and
deployment details (Section 5.5.2), as well as insights into the remarkably
low operational costs for our system (Section 5.7).

Offline and online evaluation We conduct an extensive evaluation to
validate the predictive performance and low latency of VMIS-kNN in

117

5. Serenade

Section 5.6.1. For the Serenade system, we present results from a load
test with more than 1,000 requests per second, and the outcome of a three
week long online A/B test of our system on the live e-commerce platform
in Section 5.6.2. Our system is available under an open license.1

Contributions In summary, we contribute:

• We present VMIS-kNN, an index-based variant of a state-of-the-
art nearest neighbor algorithm to session-based recommendation,
which scales to use cases with hundreds of millions of clicks to
search through (Section 5.4).

• We discuss design decisions and implementation details of our
production recommender system Serenade, which applies stateful
session-based recommendation with VMIS-kNN, and can handle
more than 1,000 requests per second with a response latency of
less than seven milliseconds in the 90th percentile (Section 5.5).

• To the best of our knowledge, we provide the first empirical evi-
dence that the superior predictive performance of VMIS-kNN/VS-
kNN from offline evaluations translates to superior performance in
a real world e-commerce setting; we find Serenade to drastically
increase a business-specific engagement metric by several percent,
compared to our legacy system (Section 5.6.2).

5.2 Related Work

Research on recommender systems [26, 29, 39, 46, 49, 85, 98, 103,
116, 137, 140–142] is a growing field, with a close connection to in-
dustry use cases [127, 135, 136], as illustrated by the famous “Netflix
Prize” competition [73]. Translating academic progress into deploy-
able solutions has proven to be very difficult though [70], exemplified
by the fact that the winning solution of the Netflix prize never went
into production [9]. Nearest neighbor-based recommendations, which
are the focus of our work, are a classical approach to recommenda-
tion mining [23, 77, 108, 110, 111], and are widely deployed in indus-
try [31, 32, 35, 56, 94]. Despite their popularity, these approaches are

1https://github.com/bolcom/serenade

118

https://github.com/bolcom/serenade

5.3. Background

typically outperformed by matrix factorisation- and deep learning-based
methods in offline evaluations on classical collaborative filtering prob-
lems [73].

However, recent research indicates that nearest neighbor-based ap-
proaches provide state-of-the-art performance and outperform neural
networks in sequence-based recommendation tasks. An example for such
a task is session-based recommendation, which is the focus of our work,
where recent studies [63, 70, 84] indicate that nearest neighbor-based
methods outperform previously proposed neural networks [52, 78, 83,
138]. Similar results have been obtained for the more general sequence-
based recommendation task of next basket recommendation (where the
set of items in a future shopping basket has to be predicted). Here, the
nearest neighbor-based state-of-the-art approach TIFU-kNN [55] and
simple popularity-based approaches [79] outperform neural networks as
well.

5.3 Background

We introduce session-based recommendation and the Vector-Session-
kNN method. Given an evolving session (a sequence of interactions with
a set of items I) at time t, the goal of session-based recommendation is
to accurately predict the next item that the user will interact with at time
t+ 1.

Vector-Session-kNN Vector-Session kNN (VS-kNN) [84] is a state-of-
the-art nearest neighbor based approach to session-based recommenda-
tion, which outperforms current deep learning approaches for this task. In
VS-kNN, we have a set of historical sessions H ∈ {0, 1}|I| represented as
binary vectors in item space, and an evolving user session s(t) ∈ {0, 1}|I|
at time t, as well as a function ω(s) which replaces the non-zero en-
tries of s with integers denoting the insertion order of the items in s(t).
Algorithm 5.1 describes how VS-kNN computes its recommendations
for an evolving session s(t). First a recency-based sample Hs of size
m is taken from all historical sessions Hs that share at least one item
with the evolving session (Lines 5–6). Next, we compute the k closest
sessions Ns from Hs according to the similarity π(ω(s(t)))⊤h (Line 7),
which applies an element-wise decay function π to the entries denoting

119

5. Serenade

Algorithm 5.1 Vector-Session-kNN.

1: function VS-KNN(s(t),H, π, λ,m, k)
2: Input: Evolving session s(t), set of historical sessions H, decay function π,
3: match weight function λ, sample size m, number of neighbors k.
4: Output: Scored list of recommended next items d.

5: Hs ← historical sessions that share at least one item with s
6: Hs ← recency-based sample of size m from Hs

7: Ns ← k closest sessions h ∈ Hs according to similarity
π(ω(s(t)))⊤h

8: for each item i occuring in the sessions Ns do
9: di ←

∑
n∈Ns

1n(i) · 1
|s(t)| · λ(max(ω(s(t))⊙ n)) ·

π(ω(s(t)))⊤n · (1 + log |H|
hi
)

return item scores d

the insertion order in the evolving session. All items occurring in these
neighboring sessions are finally scored (Lines 8–9) by summing their
similarities (the previously computed decayed dot product) weighted
by a non-linear function λ applied to the position max(ω(s(t)) ⊙ n) of
the most recent shared item between the evolving session s(t) and the
neighbor session n. The session similarity contribution is additionally
weighted by a factor of one over the session length, and by a factor of
one plus the “inverse document frequency” log |H|

hi
of the item, where hi

denotes the number of historical sessions containing item i (a common
technique from information retrieval to de-emphasise highly frequent
items). Note that the indicator function 1n(i) is 1 if item i occurs in the
historical session n and 0 otherwise.

Toy example We provide a toy example for the session similarity
and match weighting computation executed by VS-kNN. Assume that
we have an evolving session s(t) = [0 1 1 0 1] representing interactions
with the three items [1,2,4] and a historical session h = [0 0 1 0 1]

representing interaction with the items [2,4]. The function ω gives us
the chronological insertion order for the evolving session, e.g., ω(s(t)) =
[0 1 2 0 3] of the items in s(t), starting from the first item (item 1 with
insertion time 1) to the most recent item (item 4 with insertion time

120

5.4. Vector-Multiplication-Indexed-Session kNN (VMIS-kNN)

3). The insertion order is used to weight matches between the items
of the evolving session and the historical session, and the weights are
determined by the decay function π, which is a hyperparameter of VS-
kNN. A common choice for π is to divide the insertion time by the
session length, e.g., π(ω(s(t))i) = ω(s(t))i / ||s(t)||1. The similarity is
finally determined by computing the decayed dot product π(ω(s(t)))⊤h
between the evolving session s(t) and historical session h as the sum of
the decayed weights for the intersection of the sessions (the shared items),
e.g., π(ω(s(t)))⊤h = [0 1

3
2
3

0 3
3
] ⊤ [0 0 1 0 1] = 2

3
+ 3

3
= 5

3
.

After finishing the session similarity computation, VS-kNN com-
putes item scores from the similarities (Lines 8–9). The score for an
item is the weighted sum of similarities with s(t) from the k closest
historical sessions n ∈ Ns in which the item occurs. The weights for
this sum are computed by the matching function λ, which is applied
to the insertion time max(ω(s(t)) ⊙ n) of the most recent shared item
between s(t) and n. The default choice for λ in VS-kNN is 1 − (0.1 ·
(max(ω(s(t))⊙ n))) for insertion times less than 10 and zero otherwise.
For our toy example, the contribution of the matching function for h looks
as follows: λ(max(ω(s(t)) ⊙ h)) = λ(max([0 1 2 0 3] ⊙ [0 0 1 0 1])) =
λ(max([0 0 2 0 3])) = λ(3) = 0.7.

5.4 Vector-Multiplication-Indexed-Session kNN
(VMIS-kNN)

In the following, we present our scalable, index-based adaption of VS-
kNN: Vector-Multiplication-Indexed-Session kNN (VMIS-kNN).

VMIS-kNN operates on an index structure (M, t), which we build
from a large dataset of historical sessions. We create a hash index M
from an item i to an array mi of the m most recent historical sessions in
which the item occurs. Note that m is a hyperparameter of VMIS-kNN,
which denotes the size of the recency-based sample from which session
similarity candidates are taken. Each array mi of session identifiers for
an item i is stored in descending timestamp order of the sessions (i.e., the
most recent historical session h that contained the item i is the first entry
in the vector mi). The key benefit of this data structure is to allow us
amortised constant-time access to the m most recent sessions containing
an item.

121

5. Serenade

Furthermore, we maintain an array t where an entry th denotes the
integer timestamp for a historical session h. This again provides constant
time random access during the online computation of the session similar-
ity score across all the items in an evolving session, as we use consecutive
integer identifiers for historical sessions. Algorithm 5.2 describes the in-
dividual steps and data structures that VMIS-kNN leverages for efficient
session-based recommendation based on our index data structure.

Index-based session similarity At the heart of VMIS-kNN is the effi-
cient computation of the neighbor sessions Ns for an evolving session s(t)

using our previously introduced index structure (M, t) in the function
neighbor sessions from index in Line 8.

We first initialize a set of temporary hashmaps and heaps (Line 11)
which serve as buffers for intermediate results during the computation.
Next, VMIS-kNN starts the item intersection loop, which iterates over
the items in an evolving session s(t) in reverse order (Line 12). Our
approach processes an evolving session s(t) in inverse insertion order,
such that the most recent (and therefore most important) items of an
evolving session are visited first. We then add the item identifier i to the
temporary hashset d, such that duplicate items in the evolving session
can be skipped (Lines 13–14). Next, we look up the item in our inverted
index M to obtain the vector mi containing up to m historical session
identifiers (Line 15). We then compute the decay score πi based on the
item’s position in the evolving session (Line 16).

Now, we start a loop over each historical session j in mi (Line 17). If
we have already encountered this historical session for a different item, we
add the current decay score πi to the session score rj (Line 19). However,
if the historical session is not yet part of our temporary similarity score
hashmap r, we first obtain the timestamp tj of the historical session
(Line 21). If our temporary similarity score hashmap r contains less than
m items, we insert the session identifier j and session similarity score
rj as (key, value)-pair into r, and we insert the session identifier j and
session timestamp tj as (key, value)-pair into a min-heap bt (Lines 22–25).
If our temporary similarity score hashmap r already contains m sessions,
we need to investigate whether to remove the oldest session. Therefore,
we first retrieve the oldest session and corresponding timestamp from the
heap bt (Line 27).

If the current historical session j is more recent than the oldest session,

122

5.4. Vector-Multiplication-Indexed-Session kNN (VMIS-kNN)

we need to remove the oldest session from our temporary similarity score
hashmap r and heap bt, and update both with the values from the current
historical session j (Lines 28–32). Finally, we extract the top-k scored
sessions from the max-heap Ns in the top-k similarity loop and return
them (Line 34).

VMIS-kNN computes the final item scores by using the pre-computed
session similarity rn for a neighboring historical session n. We however
simplify the item scoring function from Line 9 of Algorithm 5.1 in two
ways: (i) we remove the constant factor 1/|s(t)| applied to each similarity
(which does not change the neighbor ranking), and (ii) we use a weight of
log |H|

hi
instead of (1 + log |H|

hi
) for the similarities, which gives us better

results in offline evaluations on held-out data.
A particular advantage of VMIS-kNN is its support for early stopping,

which allows us to skip certain historical sessions during the similarity
computation: we can immediately break the session for-loop if our current
historical session j is older than the eldest session l in our heap bt as
mi is already sorted in descending timestamp order, and will not contain
more recent sessions in later positions (Line 33).

Time complexity The time complexity of the online computation of our
similarity score is dominated by the linear time required to execute the
three for-loops (Lines 12, 17 and 34) and the logarithmic time required to
modify the heaps bt (Lines 25, 32) and Ns (Lines 35, 38, 39), yielding
a theoretical time complexity of O(|s(t)| · m · log2m + m · log2 k) =
O(|s(t)| ·m · log2m) as k ≤ m. Thus, the time complexity only depends
on: (i) the number of items in the evolving session s(t), which we cap
at a maximum value, and (ii) the number m denoting how many recent
historical sessions to consider. Hence, the time complexity of our im-
plementation is (theoretically) independent of the number of historical
sessions |H| and the number of unique items |I| in our dataset. As a
micro-optimisation, we leverage octonary heaps [2] instead of binary
heaps, which have more children per node, and therefore provide better
performance for workloads like ours with frequent insertions.

Space complexity The space complexity of the index for VMIS-kNN
is dominated by the storage cost O(|I| ·m) for the hashmap holding the
inverted index M, which maps unique item indices to the m most recent
historical sessions containing the item.

123

5. Serenade

Evolving
Sessions

Session
Similarity

Index

...
Shop Frontend

Parallel Index
Generation

Historical
Session
Database

Stateful Recommendation
Servers

Evolving
Sessions

Session
Similarity

Index

Data-parallel batch generation of our
session similarity index from the last
180 days of browsing activities via Spark

Serenade pods maintain partitioned copies
of the evolving user sessions, and compute
next-item recommendations from the
replicated session similarity index

recommendation
requests with evolving
session updates

The shop frontend issues requests for
session-based next item recommendations
and renders them to user devices

index
replication

offline index generation online serving of next-item recommendations

Figure 5.1: High level architecture of the Serenade recommendation sys-
tem. The offline component (left) generates a session similarity index [1]
from several billion historical click events via a parallel Spark job in reg-
ular intervals. The online serving machines (right) maintain state about
the evolving user sessions [2], and leverage the session similarity index
to compute next item recommendations with VMIS-kNN in response to
recommendation requests from the shopping frontend [3].

From a classical query processing perspective, VMIS-kNN conducts
two aggregations (identifying the m most recent sessions with an item
match, and computing their similarities) on the result of a join between
the items of the evolving session s(t) and the historical sessions H. The
efficiency of VMIS-kNN derives from the fact that we jointly execute
the join and subsequent aggregations in Algorithm 5.2, while only main-
taining intermediate results of a size proportional to the final outputs
(instead of first materialising the potentially large complete join result
before running the aggregations).

5.5 Serenade

We present the design and implementation of our scalable recommender
system Serenade, which leverages VMIS-kNN (Section 5.4) and provides
recommendations on the product detail pages of bol.

124

5.5. Serenade

5.5.1 Design Considerations

At the core of the design of our production system are two questions:
(i) how to maintain the session similarity index over time, and (ii) how to
efficiently serve next-item recommendations with low latency?

Index maintenance We execute the index computation in an offline
manner once per day with a data-parallel implementation of the relational
operations required for the index generation. This batch job is easy to
schedule and scale; note that Serenade will thus only see sessions for new
items on the platform with a delay of one day. This “cold-start” issue is
no problem in practice however, because our e-commerce platform has
a separate, specialised system for presenting new and trending items to
users.

Low latency serving of next-item recommendations The biggest
challenge in our system is to serve session-based recommendations with
a low latency for a catalog containing millions of items (our business
constraint is to respond in 50 ms or less for at least 90% of all requests).
As discussed in Section 5.1, we cannot precompute the recommendations
due to the exponentially large input space of potential sessions, and we
cannot apply approximate nearest neighor search techniques because our
similarity function is not a metric. As a consequence, our recommenda-
tion servers have to be stateful, by maintaining copies of the evolving
sessions, to be able to compute recommendations online on request. We
decide to replicate our session index to all recommendation servers, and
colocate the session storage with the update and recommendation re-
quests, so that we only have to use machine-local reads and writes for
maintaining sessions and computing recommendations. Note that similar
techniques are often used to accelerate joins [36].

5.5.2 Implementation

The high-level architecture of Serenade (derived from our design deci-
sions in Section 5.5.1) is illustrated in Figure 5.1. Serenade consists of
two components: The offline component (shown in the left part of the
figure) builds the session index from click data and is implemented as
an Apache Spark pipeline. The online component (shown in the right

125

5. Serenade

part of the figure) computes and serves session-based recommendations
with VMIS-kNN, and is implemented as a REST application. Note that
Serenade builds upon existing Google Cloud infrastructure rented by bol.

Offline index generation The index generation [1] from historical click
data is implemented as a parallel dataflow computation in Apache Spark
using Spark MLLib pipeline steps [92] as abstraction, and executed in
regular intervals (typically once per day) in Google Dataproc. It uses
historical click data from the last 180 days of our platform (stored in
Google BigQuery) as its input, which amounts to roughly 2.3 billion
user-item interactions. The output of the Spark job is a compressed
representation of our index, stored in the distributed filesystem in the
Apache Avro format. The index data is later on ingested by Serenade’s
serving component, where it requires around 13 gigabytes of memory.

Online serving of next item recommendations The serving compo-
nent of Serenade is responsible for computing next item recommenda-
tions with VMIS-kNN in response to session updates. We implement
this serving component in Rust, as a web application based on the Ac-
tix [1] framework. The shopping frontend contacts our Serenade servers
whenever a user generates new item interactions in their session (e.g., by
visiting a product detail page). The Serenade servers update the state of
the evolving user session [2], and respond to the shopping frontend with
a list of 21 recommended next items for the user (the number of items
required by the UI in the frontend) based on a VMIS-kNNprediction [3].
The VMIS-kNN predictions leverage the previously computed offline
index. We additionally apply business rules to the recommendations to
remove unavailable products and to filter for adult products.

Colocation of evolving sessions and session updates As discussed in
Section 5.5.1, we need to colocate the evolving sessions with the recom-
mendation requests and session updates to be able to compute up-to-date
recommendations with low latency. We maintain the evolving sessions in
a local key-value store (RocksDB [4]) directly on the serving machines,
to avoid additional network reads and writes. For colocation, we have
to partition both the evolving sessions and the recommendation requests
(which also contain the session updates) over the serving machines, based

126

5.5. Serenade

on their session identifier. In order to guarantee that all the update/rec-
ommendation requests for a particular session are always handled by
the same machine, we configure request routing via “sticky sessions”
provided by Kubernetes’ session affinity functionality [3]. The communi-
cation with RocksDB turns out to be extremely fast; in a microbenchmark
with 10 million operations for our workload, we found the 99th percentile
of the read latency to be 5 microseconds, and the 99th percentile of the
write latency to be 18 microseconds. This colocation approach provides
a big latency improvement over network reads and writes to a distributed
key-value store like BigTable, where the response latency for lookups is
already 15ms on the 99.5 percentile in our experience.

Discussion Our colocation approach can be viewed as a trade-off be-
tween reducing the response latency and guaranteeing fault tolerance for
the session data, as the session data could be temporarily lost in cases
of machines failures or elastic scaling of the machine pool. However,
this turns out to be no problem in practice for several reasons: (i) our
service proved to be very stable, we encountered no issues in a long A/B
test running for several weeks (details will be described in Section 5.6.2),
where no elastic scaling was required, as a small set of cheap machines
with a low number of cores could reliably handle hundreds of request
per second, and (ii) the sessions are very short-lived anyways, we only
leverage the most recent interactions for recommendations (which also
have the highest impact on the session similarities), their loss would
not have a drastic impact, as the recommender would quickly collect
new interactions, and (iii) the sessions are additionally tracked by other
parts of our e-commerce platform for analytics. It is not the task of the
recommendation system to store them permanently, on the contrary, we
configure RocksDB to remove the data for a session after 30 minutes of
inactivity.

Deployment We deploy our recommendation servers via a Docker
image managed by Kubernetes. The image is created by our continuous
integration infrastructure, and we leverage a multi-stage build. In the first
stage, we download all dependencies and compile our Rust application
(which results in a large image with a size of several gigabytes); in
the second stage, we reduce the size of this image by only retaining
the compiled application and the runtime dependencies. The image for

127

5. Serenade

Serenade is then pushed into a Docker repository. The application is
deployed to a Google Kubernetes Engine cluster, alongside with load
balancing pods (istio sidecars [5]) which provide us with the
session affinity routing required for colocating the evolving user sessions
and recommendation requests on our machines.

Depersonalisation We are required to provide non-personalised recom-
mendations for users who do not give consent to leverage their session
history for personalisation. This is comparatively easy to implement with
VMIS-kNN: we create a non-personalised variant which only leverages
the currently displayed item on the product detail page for recommenda-
tion. This depersonalisation can be applied in real-time (e.g., when a user
revokes their consent to personalisation), as each request from the shop
frontend includes a binary flag denoting the status of the user consent.

5.6 Experimental Evaluation

In the following, we first evaluate the prediction quality and index design
of VMIS-kNN in Section 5.6.1, and subsequently evaluate the scalability
and business performance of Serenade in offline experiments and an
online A/B test (Section 5.6.2). We provide the code for our experiments
on Github.2

Datasets We leverage a combination of public and proprietary click
datasets from e-commerce for our offline experiments. We experiment
with the publicly available [84] datasets retailrocket (an e-commerce
dataset from the company “Retail Rocket”) and rsc15 (a dataset used in
the 2015 ACM RecSys Challenge), which are commonly used in com-
parative studies on session-based recommendation [84]. In addition, we
create the non-public datasets ecom-1m, ecom-60m, ecom-90m and ecom-
180m by sampling data from our e-commerce platform with increasing
numbers of clicks. The statistics of these datasets are shown in Table 5.1.
Each dataset consists of tuples denoting the session id, item id
and timestamp of a click event on the platform.

Our proprietary dataset ecom-180m is more than six times larger
than the largest publicly available dataset rsc15. We additionally show

2https://github.com/bolcom/serenade-experiments-sigmod

128

https://github.com/bolcom/serenade-experiments-sigmod

5.6. Experimental Evaluation

Table 5.1: Public and proprietary datasets for evaluation.
retailr rsc15 ecom-1m ecom-60m ecom-90m ecom-180m

clicks 86,635 31,708,461 1,152,438 67,017,367 89,883,761 189,317,506
sessions 23,318 7,981,581 214,490 10,679,757 13,799,762 28,824,487
items 21,276 37,483 110,988 1,760,602 2,263,670 3,305,412
days 10 181 30 29 91 91
public? yes yes no no no no

clicks per session
p25 2 2 2 2 2 2
p50 2 3 4 4 4 4
p75 4 4 6 7 7 7
p99 19 19 28 36 38 39

statistics of the distribution of clicks per session in the form of its 25th,
50th, 75th and 99th percentile. We find that the majority of sessions on
e-commerce platforms is very short (e.g., the median number of clicks per
session is less than five) and that these statistics are very similar across
all six datasets. In the tail, the sessions from our platform are about twice
as long though compared to the public datasets (e.g., the 99th percentile
is around 38 clicks in our data and 19 clicks in the public datasets).

5.6.1 VMIS-kNN

State-of-the-Art Prediction Quality

Before evaluating systems-related aspects, we run a sanity check ex-
periment for the predictive performance of VMIS-kNN. We aim to
confirm that VMIS-kNN also outperforms current neural-network based
approaches in the task of session-based recommendation in e-commerce
(as recently shown for VS-kNN [70, 84]).

Experimental setup We replicate the setup from [70, 84], and compare
the predictive performance of VMIS-kNN against three recent neural
network-based approaches to session-based recommendation (GRU4Rec
[52], NARM [78] and STAMP [83]) on various clickstream datasets
sampled from our e-commerce platform. We create five versions of the
ecom-1m dataset by sampling a million clicks from certain months in the
past as historical sessions, and measure the prediction quality of the top
20 recommended items for each session of the subsequent day.

129

5. Serenade

We optimise the hyperparameters of each approach on samples of
the training data, and report the average for each metric over all our
evaluation datasets. We report the metric values averaged over all five
versions of ecom-1m.

Results and discussion We first investigate the Mean Average Preci-
sion (MAP@20), Precision (Prec@20) and Recall (R@20), which denote
to what extent an approach correctly predicts the next items in a session.
VMIS-kNN outperforms the neural approaches in all of these metrics.
Its MAP@20 is .0268 compared to .0251 for the best performing neural
approach (GRU4Rec); the Prec@20 of VMIS-kNN is .0722 compared to
.0680 for the best performing neural approach (NARM in this case); and
VMIS-kNN’s R@20 is .378 compared to .359 for the best performing
neural approach GRU4Rec. We additionally look at the Mean Recipro-
cal Rank (MRR@20), which puts a stronger weight on the immediate
next item in a session. Again, VMIS-kNN outperforms all neural-based
approaches with an MRR@20 of .286 compared to .255 for the best
performing neural method (GRU4Rec in this case).

In summary, we confirm that the findings from recent studies on the
state-of-the-art performance of VS-kNN also hold for VMIS-kNN on
our proprietary data. It is an open question, why neural networks do
not outperform conceptually simpler methods in sequential recommen-
dation. There is recent evidence that neural networks have difficulties
capturing item frequency information [55], and that many researchers do
not adequately compare their proposed neural methods against simple
baselines [79, 84].

Sensitivity to Hyperparameter Choices

Next, we investigate the sensitivity of VMIS-kNN to its hyperparameters:
the number of neighbors k and the number of most recent sessions per
item m.

Experimental setup We run an exhaustive grid search over 55 combi-
nations of the hyperparameters (the k most similar sessions out of the m
most recent sessions) for our four large datasets ecom-60m, ecom-90m,
ecom-180m and rsc15, where we use the last day as held-out test set.

130

5.6. Experimental Evaluation

50
50
0
1.
5k

k
ecom-60m
MRR@20

ecom-90m
MRR@20

ecom-180m
MRR@20

rsc15
MRR@20

20 50 5001k 10k
m

50
50
0
1.
5k

k

Prec@20

20 50 5001k 10k
m

Prec@20

20 50 5001k 10k
m

Prec@20

20 50 5001k 10k
m

Prec@20

Figure 5.2: Sensitivity of MRR@20 and Prec@20 to the hyperparameters
k (the number of neighbors) and m (the number of most recent sessions
per item) in our proprietary datasets.

Results and discussion Figure 5.2 illustrates the results of the grid
search for MRR@20 and Prec@20 on our datasets with a heatmap where
lighter colors indicate better metric values. We observe a unimodal
distribution of the resulting metric values for each dataset and metric. The
results differ (i) based on dataset, e.g., all samples from our proprietary
data show similar outcomes, while the distribution for rsc15 is very
different, and (ii) based on metric, e.g., hyperparameters that work well
for MRR (which focuses on the position of the first correctly predicted
relevant item) do not necessary provide the best performance for Precision
(which considers all correctly predicted relevant items). Our results
indicate that VMIS-kNN is easy to tune via offline grid search for a given
dataset and target metric.

Index Design

Next, we run a microbenchmark comparing VMIS-kNN vs VS-kNN to
validate the performance of our index-based similarity computation.

Experimental setup We experiment with our index and similarity
computation (refered to as VMIS-kNN) from Section 5.4 and compare
it against two baseline implementations: (i) VS-kNN – a baseline im-
plementation that mimics VS-kNN’s similarity computation by holding
the historical data in hashmaps, and first identifying the m most recent
sessions with at least one shared item before computing the similarities,

131

5. Serenade

ecom-1m retailrocket rsc15 ecom-60m ecom-90m ecom-180m
dataset

10

103

105

107
ru

nt
im

e
(m

ic
ro

s)

X X XX X X

VS-Py VMIS-Diff VMIS-Java VMIS-SQL VMIS-kNN

100 250 500 1000
sample size m

100

101

102

103

ru
nt

im
e

(m
ic

ro
s)

VS-kNN VMIS-kNN-no-opt VMIS-kNN

Figure 5.3: (Top) Median and 90th percentile of the computation time per
session in microseconds (log-scale) for different VMIS-kNN implemen-
tations; (Bottom) Microbenchmark runtimes in microseconds (log-scale)
for VMIS-kNN vs. VS-kNN on the ecom-1m dataset with k = 100.

and (ii) VMIS-kNN-no-opt, a basic variant of VMIS-kNN, which does
not contain several optimisations such as early stopping or using octonary
heaps instead of binary heaps.

We conduct a micro-benchmark on the ecom-1m dataset. We ask each
variant to compute the k closest sessions for the sessions from the test
set, and we randomly pick the number of items (e.g., the session length)
for each session to include in the computation. We repeat this experiment
ten times for various values of m (the number of most recent sessions
to consider) with six threads, and measure the execution times for k =
100 (trying other values of k did not significantly change the results).
We implement all algorithms in Rust 1.54 and run the comparison on a
machine with an i9-10900KF CPU @ 3.7GHz with ten cores and 64GB
of RAM, running Windows 10 21H1.

Results and discussion The bottom plot in Figure 5.3 shows the re-
sulting runtimes in microseconds for each of our variants. The results
are consistent across all values of m: We find that both VMIS-kNN and
VMIS-kNN-no-opt drastically outperform the VS-kNN baseline by a factor

132

5.6. Experimental Evaluation

of three to five. We attribute this observation to the optimised access
patterns in the index of VMIS-kNN, which allows us to avoid costly
set intersection operations, and the minimisation of intermediate results
with our heap data structures (Section 5.4). We furthermore observe
that VMIS-kNN consistently outperforms VMIS-kNN-no-opt by 6% to
12% which validates our micro optimisations such as early stopping and
leveraging octonary heaps instead of binary heaps.

5.6.2 Serenade

Next, we evaluate our Serenade system. We validate our implementation
choices (Section 5.6.2), run a load test for the system in Section 5.6.2,
and finally present the results from a three week long A/B test on the live
platform (Section 5.6.2).

Validation of Implementation Choices

We present an offline experiment which focuses on the performance
of our index-based VMIS-kNN approach. We compare our Rust-based
implementation against implementations in other programming languages
and computational engines to validate our design choice of a custom
implementation in Rust. Note that we provide the source code for the
alternative implementations in our experiment repository as well.

Experimental setup We compare our Rust-based VMIS-kNN imple-
mentation against four other implementations:

• VS-Py – a Python-based implementation of the original VS-kNN
approach, based on the reference code [6] from the original VS-
kNN paper; we expect this variant to be non-competitive as it is a
mere research implementation;

• VMIS-Diff – an implementation of VMIS-kNN in Differential
Dataflow [90], which computes the recommendations incremen-
tally via joins and aggregations; this variant allows us to evaluate
the benefits of an incremental similarity computation for growing
sessions;

133

5. Serenade

• VMIS-Java – an implementation of VMIS-kNN in Java, which
stores the historical session data in Java hashmaps; the purpose of
this variant is to evaluate the effects of not having full control over
the memory management during the similarity computation (and
instead relying on a garbage collector);

• VMIS-SQL – an implementation of VMIS-kNN in SQL, which
leverages the embeddable analytical database engine DuckDB [99]
in version 0.2.2; the purpose of this variant is to evaluate whether a
custom implementation of the approach is necessary; we note that
we found it very difficult to express the similarity computation in
plain SQL, as it required several deeply nested subqueries;

We ensure through evaluations on held-out data that all variants are cor-
rectly implemented and provide equal predictive performance. We expose
the historical session data from our public and proprietary datasets to
each of these baselines. Next, we ask each implementation to sequen-
tially compute next-item recommendations with a single thread for the
growing evolving sessions in the test set of each dataset, and measure
the prediction time in microseconds. We run each implementation on
a n1-highmem-8 instance in the Google cloud with 50 gigabytes of
RAM, and use m = 5000 and k = 100 as hyperparameter settings.

Results and discussion The top plot of Figure 5.3 illustrates the result-
ing runtimes from our experiment for the different datasets and baseline
implementations. Note that we plot the median and 90th percentile (p90)
of these runtimes on a logarithmic scale in a single bar, where the lighter
top part denotes the 90th percentile runtime. Our VMIS-kNN implemen-
tation consistently outperforms all the baselines both in terms of median
and p90 runtime; it is more than two orders of magnitude faster than the
Python reference implementation, and more than one order of magnitude
faster than the differential dataflow implementation. The second-best
implementation is the Java baseline, which is still outperformed by an
order of magnitude for the 90th percentile runtime on all datasets ex-
cept the small ecom-1m dataset. When we look at the results for larger
datasets, we additionally observe that several baselines start to encounter
memory issues (even though they can use 50 gigabytes of RAM), and
fail to complete the computation. This happens for the Python imple-
mentation (which relies on pandas dataframes internally), for the SQL

134

5.6. Experimental Evaluation

implementation as well as for the Java variant. Note that our Serenade
implementation provides a p90 runtime of at most 1.7 milliseconds on all
datasets. We attribute this to the fact that our implementation allows us
to carefully control memory allocation and to avoid the materialisation of
large intermediate results (such as the complete set of item matches with
the historical sessions). We observe that the differential implementation
always manages to compute results; however, the incremental computa-
tion does not pay off runtime-wise, because differential dataflow has to
index all intermediate results due to its support for updates in response
to input data changes (which is not required in our use case). Finally,
we find the SQL implementation to be non-competitive and to not scale
to large datasets, which we attribute to the large intermediates from the
nested subqueries, and which confirms that a custom implementation of
VMIS-kNN is more suitable to scale to large datasets.

Offline Load Test

We finally run a load test in our staging environment to validate that
Serenade is able to handle peak production workloads.

Experimental setup We leverage a setup that resembles our production
environment: Serenade’s index is built from the last 180 days of browsing
activities, covering 6.5 million distinct items. We deploy Serenade on two
Kubernetes pods, running on shared core n1-standard-16 instances
in the Google Cloud, where each pod gets provisioned with three cores
from an Intel Xeon CPU @ 2.00GHz and 16 GB of RAM.

We generate a simulated load of more than 1,000 requests per second
by replaying historical traffic via a load generator application for several
hours. We measure the response latency of Serenade as well as the core
usage on the machines.

Results and discussion Figure 5.4 plots the resulting response latency
and core usage for our load test. We find that Serenade gracefully handles
the load of more than 1,000 requests per second, and responds within
less than 7 milliseconds in 90 percent of the cases (p90) and in less than
15 milliseconds in 99.5% of the cases (p99.5). Each instance uses only
one of the three provisioned cores for most of the time. We base our
production experiments in the following on the outcomes of this load test.

135

5. Serenade

500

1000
re

qu
es

ts
p

er
se

co
nd

0

100

200

300

co
re

us
ag

e
(%

)

Serving machine 1 Serving machine 2

21:30 22:30 23:30
time

5
10
15
20

la
te

nc
y

(m
s)

p99.5 p90 p75

Figure 5.4: Requests per second, core usage in percent and response
latency during a load test with more than 1,000 requests per second.
Serenade handles about 500 requests per second per core with a 90th
percentile latency of less than seven milliseconds.

Online Evaluation in an A/B Test

We present results from a three week long online A/B test on our e-
commerce platform, where we compared two variants of Serenade against
our existing legacy recommendation system (refered to as legacy), which
applies a variant of classic item-to-item collaborative filtering [108].

Experimental setup We show Serenade’s recommendations on the
product detail page of our e-commerce platform, in a slot titled ‘other cus-
tomers also viewed’. We evaluate two different variants of Serenade: the
first variant serenade-hist leverages the last two items from each evolving
session to compute predictions, while the second variant serenade-recent
only leverages the most recent item. We set the hyperparameters of VS-
kNN to m = 500 and k = 500, which provide a reasonable trade-off
between prediction quality in offline experiments and index size. We run
the test for 21 days, in which more than 45 million randomly assigned
user sessions were subjected to the recommendations from our variants.
We ensure that both the legacy system and Serenade consume the same

136

5.6. Experimental Evaluation

200

400

600
re

qu
es

ts
/s

ec

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

day of the month

5

10

15

la
te

nc
y

(m
s) p99.5 p90 p75

Figure 5.5: Requests per second and response latency per hour during
our three week long A/B test on the live platform. Serenade responds
within less than seven milliseconds in 90% of the cases, even for peak
times with more than 600 requests per second.

click data as input at the same time (once per night). Serenade builds
its index from the last 180 days of data; after filtering, its daily training
data consists of around 111 million sessions with 582 million distinct
user-item interactions and contains 6.5M distinct items. We measure
the request load to the recommendation system, the response latency
(as experienced from the shop frontend) and several business-specific
engagement metrics.

Results and discussion We discuss the systems- and business-specific
outcomes of our A/B test.

Response latency Our most important systems-related metric is the
response latency. Our recommendation systems have to adhere to a strict
SLA of responding in less than 50 milliseconds, otherwise requests would
be discarded. Recent research also indicates that fast response times help
with the acceptance of recommendations in general [70]. Our system
architecture and implementation decisions (Section 5.5) are tailored to
allow for low latency responses of our system. This is confirmed by

137

5. Serenade

the experimental results illustrated in Figure 5.5, which plots different
percentiles of the response latency distribution over the three weeks of
our A/B test, and shows the load of the system (in terms of the number
of requests per second) for comparison. The request load varies between
200 and 600 requests per second over the day. We find that Serenade’s
response latencies are very low, the 90th percentile is consistenly around
5 milliseconds, and even the 99.5th percentile is below 10 milliseconds in
the majority of cases. This confirms that Serenade exhibits a consistently
fast, and stable low-latency response behavior.

CPU usage and operational cost We deploy Serenade analogously
to the setup from the load test in Section 5.6.2: We leverage two Ku-
bernetes pods, running on shared core n1-standard-16 instances in
the Google Cloud, where each pod gets provisioned with cores of an
Intel Xeon CPU @ 2.00GHz and 16 GB of RAM. Even with such low
resources, Serenade is able to gracefully handle the request workload.
We reconfirm the findings from our load test (Section 5.6.2), as Serenade
only exhibits a core usage of less than 36% (less than one core) in cases
with over 500 requests per second. We also observe a well-behaved linear
scaling (with a gentle slope) of the core usage with the number of requests
per second.

Customer engagement Systems-related metrics are important for suc-
cessfully operating a recommender system, however in the end the rec-
ommender system has to perform well in business-related metrics to be
valuable for an e-commerce platform. As VMIS-kNN outperforms other
approaches in offline evaluations (Section 5.6.1), we are interested to
determine how this behavior translates to customer engagement in our
A/B test. For that, we measure a conversion-related business metric for
the engagement with recommendations on the product detail page.

We find that our session-based recommenders drastically increase this
engagement metric for the slot on the product detail page. Serenade-hist
exhibits a 2.85% increase in the business metric (compared to legacy),
and serenade-recent even shows an increase of 5.72% (both findings are
statistically significant). When we control for the overall impact on a site-
wide level however, we find that serenade-recent exhibits a cannibalising
behavior, as it drives down the engagement of other slots on the product

138

5.7. Learnings & Conclusion

detail page (e.g., the ‘often bought together’ slot). We do not observe this
effect for serenade-hist though, rendering it the preferred variant.

Summary We find that Serenade easily handles the load of up to 600
requests per second during our A/B test and consistently generates its
recommendations with very low response latency (less than seven mil-
liseconds in the 90th percentile). We furthermore find that the session-
based recommendations produced by VMIS-kNN significantly increase
customer engagement compared to classical item-to-item recommenda-
tions (as produced by our legacy system). We would like to highlight
that, to the best of our knowledge, we are the first to provide empirical
evidence that the superior offline performance of VS-kNN/VMIS-kNN
also translates to superior performance in terms of business metrics in
a live, real recommender system. This is often not the case for aca-
demic recommendation approaches, the winning solution of the highly
popularised Netflix prize, for example, never went into production [9].

5.7 Learnings & Conclusion

In this chapter we presented our nearest neighbor approach VMIS-kNN
as well as the design and implementation of our scalable session-based
recommender system Serenade. We conducted an extensive offline evalu-
ation of VMIS-kNN and Serenade to validate our design decisions, and
detailed results on the latency, throughput and predictive performance of
our recommender system from an online A/B test with up to 600 requests
per second for 6.5 million distinct items on more than 45 million user
sessions on bol’s e-commerce platform.

In addition to the contributions listed in Section 5.1, we would like
to highlight Serenade’s low operational cost: We run two instances
with three cores each in the Google cloud (provisioned on shared core
n1-standard-16 instances) for the serving pods, and require 40 min-
utes on 75 machines of type n1-highmem-8 for creating the index
with Spark every day, which results in a total operational cost of less
than 30 euros per day for Serenade. As discussed in Section 5.6.2, Ser-
enade only leverages one of the three cores on each instance, and we
only provision the other cores to be prepared for peak loads, e.g., during
denial-of-service attacks.

139

5. Serenade

This low cost becomes especially attractive when we compare it
with the high cost to train deep learning models. As an example, a
neural learning-to-rank model on our platform incurs at least an order
of magnitude more cost to be operated on a daily basis, and additionally
requires GPU machines for training, which are often a contested resource
in the cloud.

In future work, we intend to explore whether we can run our similarity
computations on a compressed version of the index, and whether we can
incrementally maintain the index with a system such as Differential
Dataflow [90].

This concludes the final research chapter of this thesis. In the next chapter,
we summarize our findings and provide avenues for future work.

140

5.7. Learnings & Conclusion

Algorithm 5.2 Vector-Multiplication-Indexed-Session kNN
(VMIS-kNN)
1: function VMIS-KNN(s(t), (M, t), π, λ,m, k)
2: Input: Evolving session s(t), session similarity index (M, t), decay function π,
3: sample size m, match weight function λ, number of neighbors k.
4: Output: Scored list of recommended next items d.

5: (Ns, r)← neighbor sessions from index(s(t), (M, t), π,m, k)

6: for each item i occuring in the sessions Ns do
7: di ←

∑
n∈Ns

1n(i) · λ(max(ω(s(t))⊙ n)) · rn · log |H|
hi

return item scores d

8: function NEIGHBOR SESSIONS FROM INDEX(s(t), (M, t), π,m, k)
9: initialize hashmap r for temporary similarity scores, min-heap bt of cap-

10: acity m for the most recent similar historical sessions, hashset d for already
11: processed items, max-heap Ns of capacity k for closest sessions
12: for item i ∈ s(t) in reverse insertion order do ▷ Item intersection loop
13: if i /∈ d then
14: insert i into d
15: mi ← most recent sessions for item i from inverted index M
16: πi ← decay weight π(ω(s(t)))i of item i in session s(t)

17: for session j ∈mi do
18: if j ∈ keys(r) then
19: rj ← rj + πi

20: else
21: tj ← timestamp of session j fetched from index t
22: if |r| < m then
23: rj ← πi

24: insert (j, rj) into r
25: insert (j, tj) into bt

26: else
27: (l, tl)← current heap root of bt

28: if tj > tl then
29: rj ← πi

30: remove (l, rl) from r
31: insert (j, rj) into r
32: update heap root of bt with (j, tj)
33: else break

34: for (j, rj) ∈ r do ▷ Top-k similarity loop
35: if |Ns| < k then insert (j, rj) into Ns

36: else
37: (n, rn)← current heap root of Ns

38: if rj > rn then update heap root of Ns with (j, rj)
39: else if rj = rn and tj > tn then update heap root of Ns with (j, rj)

40: return Ns

141

6
Conclusion

In this thesis we investigated the forecasting problem for large-scale
settings: how can we efficiently and accurately generate forecasts when
we need to generate many of them? We have shown (i) how we can
improve the efficiency and accuracy of different model classes for point-
and probabilistic forecasting in Chapters 2–3, (ii) how we can effi-
ciently leverage cross-sectional and temporal information of time series
in Chapter 4 and (iii) how we can modify, implement and productionize
a state-of-the-art academic recommender system in Chapter 5.

In this chapter, we first look back at the research questions from
Chapter 1 and summarize our findings to these questions in Section 6.1.
Finally, we conclude with our view on future work in Section 6.2.

6.1 Summary of Findings

Research Question 1: How can we efficiently generate probabilistic
forecasts with neural networks for large-scale settings?

In Chapter 2 we introduced Bidirectional Temporal Convolutional Net-
work (BiTCN), a neural network that can be used for probabilistic fore-
casting for large-scale settings that requires an order of magnitude fewer
parameters than a common transformer-based approach. Experiments on
four real-world datasets showed that BiTCN performs on par with four
state-of-the-art probabilistic forecasting methods, including a transformer-
based approach and WaveNet, on two point metrics (sMAPE, NRMSE)
as well as on a set of range metrics (quantile loss percentiles) in the
majority of cases. Secondly, we demonstrated that our method requires

143

6. Conclusion

significantly fewer parameters than transformer-based methods, which
means the model can be trained faster with significantly lower memory
requirements, which as a consequence reduces the infrastructure cost for
deploying these models.

Research Question 2: How can we efficiently generate probabilistic fore-
casts with Gradient Boosting Machines (GBM) for large-scale settings?

Motivated by the use of GBM at our industry partnerss, we proposed
Probabilistic Gradient Boosting Machines (PGBM) in Chapter 3, a
method to create probabilistic predictions with a single ensemble of
decision trees in a computationally efficient manner. We empirically
demonstrated the advantages of PGBM compared to existing state-of-
the-art methods: (i) PGBM enables probabilistic estimates without com-
promising on point performance in a single model, (ii) PGBM learns
probabilistic estimates via a single model only (and without requiring
multi-parameter boosting), and thereby offers a speedup of up to sev-
eral orders of magnitude over existing state-of-the-art methods on large
datasets, and (iii) PGBM achieves accurate probabilistic estimates in
tasks with complex differentiable loss functions, such as hierarchical
time series problems, where we observed up to 10% improvement in
point forecasting performance and up to 300% improvement in proba-
bilistic forecasting performance. We thus found that we can efficiently
generate accurate probabilistic forecasts using another common class of
machine learning models (GBM), whilst retaining accuracy.

Research Question 3: How can we efficiently generate hierarchical
forecasts for large-scale settings?

In Chapter 4, we further investigated the problem of hierarchical fore-
casting, which we briefly touched upon in Chapter 3. We found that
existing hierarchical forecasting techniques scale relatively poorly to
large-scale problem settings, and investigated methods that overcome
these limitations. We proposed to learn a coherent forecast for millions
of products with a single bottom-level forecast model by using a loss
function that directly optimizes the hierarchical product structure. By
removing the need for a post-processing step as required in traditional
hierarchical forecasting techniques, we reduced the computational cost of

144

6.1. Summary of Findings

the prediction phase in the forecasting pipeline, as well as its deployment
complexity.

In our tests on the public M5 dataset, our sparse hierarchical loss
function performed up to 10% better as measured by RMSE and MAE
compared to the baseline loss function. Next, we implemented our sparse
hierarchical loss function within an existing gradient boosting-based
forecasting model at bol. In this setting our sparse hierarchical loss
resulted in an improved forecasting performance as measured by RMSE
of about 2% at the product level, as compared to the baseline model, and
an improvement of about 10% at the product level as measured by MAE.
Finally, we found an increase in forecasting performance of about 5–10%
(both RMSE and MAE) when evaluating the forecasting performance
across the cross-sectional hierarchies that we defined. These results
demonstrated the usefulness of our sparse hierarchical loss applied to a
production forecasting system at a major e-commerce platform.

Research Question 4: How can we efficiently generate session-based
recommendations at the scale of bol?

In Chapter 5, we turned to another forecasting problem often encountered
at our industry partners: recommendations. We investigated state-of-the-
art methods for session-based recommendation and surprisingly found
that the most simple method gave the most accurate results. We proposed
Vector-Multiplication-Indexed-Session kNN (VMIS-kNN), an adapta-
tion of a state-of-the-art nearest neighbor approach to session-based
recommendation, which leverages a prebuilt index to compute next-item
recommendations with low latency in scenarios with hundreds of millions
of clicks to search through. Based on this approach, we designed and
implemented the scalable session-based recommender system Serenade,
which is in production usage at bol.

We evaluated the predictive performance of VMIS-kNN, and showed
that Serenade can answer a thousand recommendation requests per second
with a 90th percentile latency of less than seven milliseconds in scenarios
with millions of items to recommend. Furthermore, we presented results
from a three week long online A/B test with up to 600 requests per second
for 6.5 million distinct items on more than 45 million user sessions from
our e-commerce platform. To the best of our knowledge, we provided
the first empirical evidence that the superior predictive performance of

145

6. Conclusion

nearest neighbor approaches to session-based recommendation in offline
evaluations translates to superior performance in a real world e-commerce
setting.

6.2 Future Work

Each of the questions we answered throughout this thesis leads to new
questions, and thus, potential for future work. In this section we briefly
discuss the possibilities for future work.

Probabilistic forecasting. First, in the area of large-scale probabilistic
forecasting, we demonstrated how to learn the parameters of a fixed
distribution using a neural network (Chapter 2) and using GBM (Chap-
ter 3). An exciting opportunity for future work is to relax the constraint
of choosing a distribution a priori as in Chapter 2 or a distribution that
is limited to the (location, scale)-family of distributions as in Chapter 3.
There are several works that have tried to solve this problem, for ex-
ample for neural networks by implicit quantile regression [45] or by
directly learning the empirical quantile function of the data [42], and for
GBM by ensembling approaches [48] or by using conformal prediction
[105]. However, these methods have their limitations too, and generating
distribution-free probabilistic forecasts efficiently at large-scale remains
a difficult issue to tackle. Second, the increasing success of Large Lan-
guage Models (LLMs) has motivated its application to the time series
domain, and early work on generalized time series models is starting to
surface [40]. This presents an interesting efficiency tradeoff: the cost
to train such a large model may be huge due to the required amount of
training data and sheer model size, but if it can be subsequently applied
to many use cases it can be very resourch efficient as we can ‘amortize’
the cost of training across a large set of use cases.

Structured forecasting. In the area of hierarchical forecasting that
we discussed in Chapter 4, we see potential for work that can leverage
both temporal and structural information more efficiently than existing
methods – even though this was our main aim in Chapter 4. Next, we see
that forecasting practitioners are increasingly interested in understanding
the causal relationships between inputs and outputs in a forecasting

146

6.2. Future Work

model. For example, what is the causal effect of changing a price on the
demand of the product that a retailer sells? Traditional causal inference
techniques are commonly hard to apply to the time series domain due to
the temporal nature of the data, whereas traditional forecasting methods
commonly ‘ignore’ the causal treatment/outcome paradigm by simply
treating every input as a statistical covariate, rather than a causal treatment
effect. Hence, further bringing together these fields might improve both
causal understanding of the underlying process that is forecast as well as
improve forecasting performance.

Decision making. As we started this thesis with, a forecast is typically
a tool to improve decision making. We did not discuss this part in this
thesis, but it would be a natural extension for future work to extend
beyond forecasting into decision making. For example, a probabilistic
forecasting model can be used as a simulator to generate possible process
paths, which can in turn be optimized, for example using Reinforcement
Learning (RL) [123] approaches. Typical practioner questions that such
approaches could answer are ‘what price should I set my product at to
maximize my profit’ or ‘what product do I need to put on the shelves’?

Recommender systems. In the area of (session-based) recommender
systems we see a disconnect between academic research and industry
practice. In Chapter 5 we found that simple methods commonly outper-
form complex, neural network-based methods on our task even though
these neural network techniques have been highly succesful in other
application areas. Hence, it seems that there is still an opportunity to
investigate better representation learning methods for (session-based)
recommender systems. Secondly, in Chapter 5 we found that complex
methods can be hard to apply in practice due to their high running time.
Reducing the running time of (session-based) recommender systems is
an exciting avenue for future work, for example by using approximation
techniques and/or leveraging accelators [65, 114].

147

Bibliography

[1] Actix Web. https://actix.rs, 2021. (Cited on page 126.)
[2] D-ary heap. https://docs.rs/dary heap/0.3.0/dary heap/, 2021. (Cited on

page 123.)
[3] Kubernetes networking services. https://kubernetes.io/docs/concepts/services-

networking/service/, 2021. (Cited on page 127.)
[4] RocksDB. https://rocksdb.org, 2021. (Cited on page 126.)
[5] Istio sidecars. https://istio.io/latest/docs/reference/config/networking/sidecar/,

2021. (Cited on page 128.)
[6] VS-kNN reference implementation. https://github.com/rn5l/session-

rec/blob/master/algorithms/knn/vsknn.py, 2021. (Cited on page 133.)
[7] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-

generation Hyperparameter Optimization Framework. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, pages 2623–2631, New York, NY, USA, July
2019. Association for Computing Machinery. ISBN 978-1-4503-6201-6. doi:
10.1145/3292500.3330701. (Cited on pages 25, 93, and 110.)

[8] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,
T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella,
A. C. Türkmen, and Y. Wang. GluonTS: Probabilistic and Neural Time Series
Modeling in Python. Journal of Machine Learning Research, 21(116):1–6, 2020.
ISSN 1533-7928. (Cited on pages 25 and 50.)

[9] X. Amatriain. Building Industrial-scale Real-World Recommender Systems.
RecSys, pages 7–8, 2012. (Cited on pages 118 and 139.)

[10] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of Response Latency on
User Behavior in Web Search. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval, pages
103–112, 2014. (Cited on page 116.)

[11] V. Assimakopoulos and K. Nikolopoulos. The Theta Model: A Decomposition
Approach to Forecasting. International Journal of Forecasting, 16(4):521–530,
Oct. 2000. ISSN 0169-2070. doi: 10.1016/S0169-2070(00)00066-2. (Cited on
pages 24 and 92.)

[12] G. Athanasopoulos, R. J. Hyndman, N. Kourentzes, and F. Petropoulos. Fore-
casting with Temporal Hierarchies. European Journal of Operational Research,
262(1):60–74, Oct. 2017. ISSN 0377-2217. doi: 10.1016/j.ejor.2017.02.046.
(Cited on pages 4, 80, 81, 83, and 84.)

[13] G. Athanasopoulos, R. J. Hyndman, N. Kourentzes, and A. Panagiotelis. Forecast
Reconciliation: A Review. International Journal of Forecasting, In Press, 2024.
(Cited on pages 83 and 84.)

[14] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly

149

6. Bibliography

Learning to Align and Translate. In Y. Bengio and Y. LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. (Cited on
page 14.)

[15] S. Bai, J. Z. Kolter, and V. Koltun. An Empirical Evaluation of Generic Convolu-
tional and Recurrent Networks for Sequence Modeling. arXiv:1803.01271 [cs],
Apr. 2018. (Cited on pages 15, 17, and 23.)

[16] S. Ben Taieb. Sparse and Smooth Adjustments for Coherent Forecasts in Tempo-
ral Aggregation of Time Series. In Proceedings of the Time Series Workshop at
NIPS 2016, pages 16–26. PMLR, Feb. 2017. (Cited on page 83.)

[17] S. Ben Taieb and B. Koo. Regularized Regression for Hierarchical Forecasting
Without Unbiasedness Conditions. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1337–
1347, Anchorage AK USA, July 2019. ACM. ISBN 978-1-4503-6201-6. doi:
10.1145/3292500.3330976. (Cited on pages 83, 85, 86, and 93.)

[18] S. Ben Taieb, R. Huser, R. J. Hyndman, and M. G. Genton. Probabilistic Time
Series Forecasting with Boosted Additive Models: An Application to Smart
Meter Data. Technical report, Monash University, Department of Econometrics
and Business Statistics, 2015. (Cited on page 51.)

[19] S. Ben Taieb, J. W. Taylor, and R. J. Hyndman. Coherent Probabilistic Forecasts
for Hierarchical Time Series. In International Conference on Machine Learning,
pages 3348–3357, July 2017. (Cited on page 83.)

[20] K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen,
J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, F.-X. Aubet, L. Callot,
and T. Januschowski. Deep Learning for Time Series Forecasting: Tutorial
and Literature Survey. ACM Computing Surveys, 55(6):1–36, July 2023. ISSN
0360-0300, 1557-7341. doi: 10.1145/3533382. (Cited on page 83.)

[21] J.-H. Böse, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, D. Salinas,
S. Schelter, M. Seeger, and Y. Wang. Probabilistic Demand Forecasting at Scale.
Proceedings of the VLDB Endowment, 10(12):1694–1705, Aug. 2017. ISSN
21508097. doi: 10.14778/3137765.3137775. (Cited on pages 4, 12, 48, and 82.)

[22] G. E. P. Box and D. A. Pierce. Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models. Journal of the
American Statistical Association, 65(332):1509–1526, 1970. ISSN 0162-1459.
doi: 10.2307/2284333. (Cited on pages 14, 50, and 92.)

[23] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. StreamRec:
A Real-Time Recommender System. SIGMOD, pages 1243–1246, 2011. (Cited
on page 118.)

[24] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 785–794, San Francisco California USA,
Aug. 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
(Cited on pages 3, 48, 49, 50, 52, 53, 56, 57, 59, and 83.)

[25] T. Chen, H. Yin, H. Chen, L. Wu, H. Wang, X. Zhou, and X. Li. TADA: Trend
Alignment with Dual-Attention Multi-task Recurrent Neural Networks for Sales

150

Prediction. In 2018 IEEE International Conference on Data Mining (ICDM),
pages 49–58, Singapore, Nov. 2018. IEEE. ISBN 978-1-5386-9159-5. doi:
10.1109/ICDM.2018.00020. (Cited on page 14.)

[26] T. Chen, H. Yin, H. Chen, R. Yan, Q. V. H. Nguyen, and X. Li. Air: Attentional
Intention-aware Recommender Systems. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 304–315. IEEE, 2019. (Cited on
page 118.)

[27] Y. Chen, Y. Kang, Y. Chen, and Z. Wang. Probabilistic Forecasting with Temporal
Convolutional Neural Network. Neurocomputing, 399:491–501, July 2020. ISSN
0925-2312. doi: 10.1016/j.neucom.2020.03.011. (Cited on pages 15 and 23.)

[28] H. A. Chipman, E. I. George, and R. E. McCulloch. BART: Bayesian Additive
Regression Trees. The Annals of Applied Statistics, 4(1):266–298, Mar. 2010.
ISSN 1932-6157. doi: 10.1214/09-AOAS285. (Cited on page 50.)

[29] K.-J. Cho, Y.-C. Lee, K. Han, J. Choi, and S.-W. Kim. No, That’s Not My
Feedback: TV Show Recommendation Using Watchable Interval. In 2019 IEEE
35th International Conference on Data Engineering (ICDE), pages 316–327.
IEEE, 2019. (Cited on page 118.)

[30] J. D. Croston. Forecasting and Stock Control for Intermittent Demands. Opera-
tional Research Quarterly (1970-1977), 23(3):289–303, 1972. ISSN 0030-3623.
doi: 10.2307/3007885. (Cited on page 92.)

[31] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google News Personalization:
Scalable Online Collaborative Filtering. WWW, pages 271–280, 2007. (Cited on
page 118.)

[32] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,
M. Lambert, B. Livingston, and D. Sampath. The YouTube Video Recommenda-
tion System. RecSys, pages 293–296, 2010. (Cited on page 118.)

[33] S. Deng, O. Sprangers, M. Li, S. Schelter, and M. de Rijke. Domain Generaliza-
tion in Time Series Forecasting. ACM Transactions on Knowledge Discovery
from Data, Jan. 2024. ISSN 1556-4681. doi: 10.1145/3643035.

[34] T. Duan, A. Avati, D. Ding, K. K. Thai, S. Basu, A. Ng, and A. Schuler. NGBoost:
Natural Gradient Boosting for Probabilistic Prediction. ICML, 2020. (Cited on
pages 3, 48, 51, 59, and 62.)

[35] T. Dunning and E. Friedman. Practical Machine Learning: Innovations in
Recommendation. O’Reilly Media, Inc., 2014. (Cited on page 118.)

[36] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPherson. Co-
Hadoop: Flexible Data Placement and Its Exploitation in Hadoop. Proceedings
of the VLDB Endowment, 4(9):575–585, 2011. (Cited on page 125.)

[37] T. Fischer and C. Krauss. Deep Learning with Long Short-Term Memory
Networks for Financial Market Predictions. European Journal of Operational
Research, 270(2):654–669, Oct. 2018. ISSN 0377-2217. doi: 10.1016/j.ejor.
2017.11.054. (Cited on pages 2, 11, 12, and 14.)

[38] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, 29(5):1189–1232, 2001. ISSN 0090-5364. (Cited on
pages 50 and 52.)

[39] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, and D. Jin. Neural

151

6. Bibliography

Multi-Task Recommendation from Multi-Behavior Data. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 1554–1557. IEEE,
2019. (Cited on page 118.)

[40] A. Garza and M. Mergenthaler-Canseco. TimeGPT-1. arXiv:2310.03589 [cs,
stat], Oct. 2023. (Cited on page 146.)

[41] F. Garza, M. Mergenthaler Canseco, C. Challú, and K. G. Olivares. StatsForecast:
Lightning fast forecasting with statistical and econometric models. In PyCon,
Salt Lake City, USA, 2022. (Cited on page 93.)

[42] J. Gasthaus, K. Benidis, Y. Wang, S. S. Rangapuram, D. Salinas, V. Flunkert, and
T. Januschowski. Probabilistic Forecasting with Spline Quantile Function RNNs.
In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 1901–1910, Apr. 2019. (Cited on pages 39 and 146.)

[43] D. Girolimetto and T. Di Fonzo. Point and Probabilistic Forecast Reconciliation
for General Linearly Constrained Multiple Time Series. Statistical Methods &
Applications, In Press, May 2023. doi: 10.1007/s10260-023-00738-6. (Cited on
page 83.)

[44] H. Gouk, B. Pfahringer, and E. Frank. Stochastic Gradient Trees. In Asian
Conference on Machine Learning, pages 1094–1109. PMLR, Oct. 2019. (Cited
on page 51.)

[45] A. Gouttes, K. Rasul, M. Koren, J. Stephan, and T. Naghibi. Probabilistic Time
Series Forecasting with Implicit Quantile Networks. In Proceedings of the Time
Series Workshop at ICML 2021, volume 139. PMLR, July 2021. (Cited on
page 146.)

[46] L. Guo, H. Yin, Q. Wang, B. Cui, Z. Huang, and L. Cui. Group Recommendation
with Latent Voting Mechanism. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 121–132. IEEE, 2020. (Cited on page 118.)

[47] X. Han, S. Dasgupta, and J. Ghosh. Simultaneously Reconciled Quantile Fore-
casting of Hierarchically Related Time Series. In Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, pages 190–198.
PMLR, Mar. 2021. (Cited on pages 83 and 85.)

[48] H. Hasson, B. Wang, T. Januschowski, and J. Gasthaus. Probabilistic Forecasting:
A Level-Set Approach. In Advances in Neural Information Processing Systems,
volume 34, pages 6404–6416. Curran Associates, Inc., 2021. (Cited on pages 106
and 146.)

[49] J. He, J. Qi, and K. Ramamohanarao. A Joint Context-Aware Embedding for
Trip Recommendations. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 292–303. IEEE, 2019. (Cited on page 118.)

[50] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs).
arXiv:1606.08415 [cs], Nov. 2018. (Cited on page 18.)

[51] H. Hewamalage, C. Bergmeir, and K. Bandara. Recurrent Neural Networks
for Time Series Forecasting: Current status and future directions. International
Journal of Forecasting, 37(1):388–427, Jan. 2021. ISSN 0169-2070. doi: 10.
1016/j.ijforecast.2020.06.008. (Cited on page 14.)

[52] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-Based Recom-
mendations with Recurrent Neural Networks. In 4th International Conference

152

on Learning Representations (ICLR 2016), Conference Track Proceedings, San
Juan, Puerto Rico, 2016. (Cited on pages 119 and 129.)

[53] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735. (Cited on page 14.)

[54] C. C. Holt. Forecasting Seasonals and Trends by Exponentially Weighted Moving
Averages. International Journal of Forecasting, 20(1):5–10, Jan. 2004. ISSN
0169-2070. doi: 10.1016/j.ijforecast.2003.09.015. (Cited on page 24.)

[55] H. Hu, X. He, J. Gao, and Z.-L. Zhang. Modeling Personalized Item Frequency
Information for Next-Basket Recommendation. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1071–1080, 2020. (Cited on pages 119 and 130.)

[56] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. TencentRec: Real-time
Stream Recommendation in Practice. SIGMOD, pages 227–238, 2015. (Cited
on page 118.)

[57] R. J. Hyndman. Another look at Forecast-Accuracy Metrics for Intermittent
Demand. Foresight: The International Journal of Applied Forecasting, page 4,
June 2006. (Cited on page 25.)

[58] R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice.
OTexts, 2018. (Cited on pages 22 and 50.)

[59] R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice
(3rd Ed). OTexts: Melbourne, Australia, 2021. (Cited on pages 84, 92, and 93.)

[60] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder. Forecasting with
Exponential Smoothing: The State Space Approach. Springer Science & Business
Media, June 2008. ISBN 978-3-540-71918-2. (Cited on pages 14 and 92.)

[61] R. J. Hyndman, R. A. Ahmed, G. Athanasopoulos, and H. L. Shang. Optimal
Combination Forecasts for Hierarchical Time Series. Computational Statistics &
Data Analysis, 55(9):2579–2589, Sept. 2011. ISSN 0167-9473. doi: 10.1016/j.
csda.2011.03.006. (Cited on pages 4, 80, 81, 83, 85, 86, and 93.)

[62] R. J. Hyndman, A. J. Lee, and E. Wang. Fast Computation of Reconciled
Forecasts for Hierarchical and Grouped Time Series. Computational Statistics
& Data Analysis, 97:16–32, May 2016. ISSN 0167-9473. doi: 10.1016/j.csda.
2015.11.007. (Cited on page 83.)

[63] D. Jannach and M. Ludewig. When Recurrent Neural Networks Meet the
Neighborhood for Session-Based Recommendation. RecSys, pages 306–310,
2017. (Cited on page 119.)

[64] T. Januschowski, Y. Wang, K. Torkkola, T. Erkkilä, H. Hasson, and J. Gasthaus.
Forecasting with Trees. International Journal of Forecasting, 38(4):1473–1481,
Oct. 2022. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.10.004. (Cited on
pages 82, 83, 91, and 92.)

[65] J. Johnson, M. Douze, and H. Jégou. Billion-Scale Similarity Search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, July 2021. ISSN 2332-7790. doi:
10.1109/TBDATA.2019.2921572. (Cited on page 147.)

[66] Kaggle. Corporación Favorita Grocery Sales Forecasting.
https://kaggle.com/c/favorita-grocery-sales-forecasting, 2017. (Cited on

153

6. Bibliography

page 22.)
[67] Kaggle. Web Traffic Time Series Forecasting. https://kaggle.com/c/web-traffic-

time-series-forecasting, 2017. (Cited on page 22.)
[68] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in
Neural Information Processing Systems 30, pages 3146–3154. Curran Associates,
Inc., 2017. (Cited on pages 3, 24, 48, 49, 50, 56, 57, 59, 62, 82, 83, and 91.)

[69] G. Kechyn, L. Yu, Y. Zang, and S. Kechyn. Sales Forecasting Using WaveNet
within the Framework of the Kaggle Competition. arXiv:1803.04037 [cs], Mar.
2018. (Cited on pages 6, 13, 15, and 23.)

[70] B. Kersbergen and S. Schelter. Learnings from a Retail Recommendation System
on Billions of Interactions at Bol.com. ICDE, 2021. (Cited on pages 116, 118,
119, 129, and 137.)

[71] B. Kersbergen, O. Sprangers, and S. Schelter. Serenade - Low-Latency Session-
Based Recommendation in e-Commerce at Scale. In Proceedings of the 2022
International Conference on Management of Data, pages 150–159, Philadelphia,
USA, June 2022. ACM. ISBN 978-1-4503-9249-5. doi: 10.1145/3514221.
3517901. (Cited on pages 5 and 7.)

[72] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Pro-
ceedings of the 3rd International Conference on Learning Representations, Dec.
2014. (Cited on page 24.)

[73] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recom-
mender Systems. Computer, 42(8), 2009. (Cited on pages 116, 118, and 119.)

[74] M. Kunz, S. Birr, M. Raslan, L. Ma, and T. Januschowski. Deep Learning Based
Forecasting: A Case Study from the Online Fashion Industry. In Forecasting
with Artificial Intelligence: Theory and Applications, Palgrave Advances in
the Economics of Innovation and Technology, pages 279–311. Springer Nature
Switzerland, Cham, 2023. ISBN 978-3-031-35879-1. doi: 10.1007/978-3-031-
35879-1 11. (Cited on pages 12 and 92.)

[75] G. Lai, W.-C. Chang, Y. Yang, and H. Liu. Modeling Long- and Short-Term
Temporal Patterns with Deep Neural Networks. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, SIGIR
’18, pages 95–104, Ann Arbor, MI, USA, June 2018. ISBN 978-1-4503-5657-2.
doi: 10.1145/3209978.3210006. (Cited on page 14.)

[76] N. Laptev, J. Yosinski, E. L. Li, and S. Smyl. Time-series Extreme Event
Forecasting with Neural Networks at Uber. In ICML 2017 Time Series Workshop,
2017. (Cited on pages 2, 11, 12, and 14.)

[77] J. J. Levandoski, M. Sarwat, M. F. Mokbel, and M. D. Ekstrand. RecStore: An
Extensible and Adaptive Framework for Online Recommender Queries inside
the Database Engine. EDBT, pages 86–96, 2012. (Cited on page 118.)

[78] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural Attentive Session-Based
Recommendation. CIKM, pages 1419–1428, 2017. (Cited on pages 116, 119,
and 129.)

[79] M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A Next Basket Recom-
mendation Reality Check. ACM Transactions on Information Systems, 41(4):

154

116:1–116:29, Apr. 2023. ISSN 1046-8188. doi: 10.1145/3587153. (Cited on
pages 119 and 130.)

[80] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan. Enhancing
the Locality and Breaking the Memory Bottleneck of Transformer on Time Series
Forecasting. In Advances in Neural Information Processing Systems 32, pages
5244–5254. Curran Associates, Inc., 2019. (Cited on pages 2, 11, 12, 15, 23, 24,
27, 30, 32, 51, and 92.)

[81] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion Convolutional Recurrent Neural
Network: Data-Driven Traffic Forecasting. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. (Cited on pages 2,
11, 12, and 14.)

[82] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister. Temporal Fusion Transformers for
Interpretable Multi-Horizon Time Series Forecasting. International Journal of
Forecasting, 37(4):1748–1764, Oct. 2021. ISSN 0169-2070. doi: 10.1016/j.
ijforecast.2021.03.012. (Cited on pages 51 and 92.)

[83] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. STAMP: Short-Term Atten-
tion/Memory Priority Model for Session-Based Recommendation. KDD : pro-
ceedings. International Conference on Knowledge Discovery & Data Mining,
pages 1831–1839, 2018. (Cited on pages 116, 119, and 129.)

[84] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach. Performance Comparison
of Neural and Non-Neural Approaches to Session-Based Recommendation. In
Proceedings of the 13th ACM Conference on Recommender Systems, pages
462–466, 2019. (Cited on pages 116, 117, 119, 128, 129, and 130.)

[85] S. Madisetty. Event Recommendation Using Social Media. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 2106–2110. IEEE,
2019. (Cited on page 118.)

[86] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. The M4 Competition:
100,000 Time Series and 61 Forecasting Methods. International Journal of
Forecasting, 36(1):54–74, Jan. 2020. ISSN 0169-2070. doi: 10.1016/j.ijforecast.
2019.04.014. (Cited on page 14.)

[87] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. The M5 Competition: Back-
ground, Organization, and Implementation. International Journal of Forecasting,
Sept. 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.07.007. (Cited on
pages 86, 90, 91, and 109.)

[88] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. M5 Accuracy Competition:
Results, Findings, and Conclusions. International Journal of Forecasting, 38(4):
1346–1364, Oct. 2022. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.11.013.
(Cited on pages 24, 39, 48, 51, 70, 81, 82, 83, 88, 91, and 95.)

[89] Z. Mariet and V. Kuznetsov. Foundations of Sequence-to-Sequence Modeling
for Time Series. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 408–417, Apr. 2019. (Cited on page 14.)

[90] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential Dataflow. In
CIDR, 2013. (Cited on pages 133 and 140.)

[91] N. Meinshausen. Quantile Regression Forests. Journal of Machine Learning

155

6. Bibliography

Research, 7(35):983–999, 2006. ISSN 1533-7928. (Cited on page 51.)
[92] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

DB. Tsai, M. Amde, S. Owen, et al. Mllib: Machine Learning in Apache Spark.
The Journal of Machine Learning Research, 17(1):1235–1241, 2016. (Cited on
page 126.)

[93] P. Montero-Manso and R. J. Hyndman. Principles and Algorithms for Forecast-
ing Groups of Time Series: Locality and Globality. International Journal of
Forecasting, June 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.03.004.
(Cited on page 14.)

[94] S. Owen. Mahout in Action, volume 10. Manning Shelter Island, NY, 2012.
(Cited on page 118.)

[95] A. Panagiotelis, G. Athanasopoulos, P. Gamakumara, and R. J. Hyndman. Fore-
cast Reconciliation: A Geometric View with New Insights on Bias Correction.
International Journal of Forecasting, 37(1):343–359, Jan. 2021. ISSN 0169-
2070. doi: 10.1016/j.ijforecast.2020.06.004. (Cited on page 83.)

[96] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. (Cited on pages 24 and 57.)

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12(85):2825–2830,
2011. ISSN 1533-7928. (Cited on pages 7 and 59.)

[98] A. Pfadler, H. Zhao, J. Wang, L. Wang, P. Huang, and D. L. Lee. Billion-Scale
Recommendation with Heterogeneous Side Information at Taobao. In 36th IEEE
International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020, pages 1667–1676. IEEE, 2020. doi: 10.1109/ICDE48307.
2020.00148. (Cited on page 118.)

[99] M. Raasveldt and H. Mühleisen. DuckDB: An Embeddable Analytical Database.
In Proceedings of the 2019 International Conference on Management of Data,
pages 1981–1984, 2019. (Cited on page 134.)

[100] S. S. Rangapuram, L. D. Werner, K. Benidis, P. Mercado, J. Gasthaus, and
T. Januschowski. End-to-End Learning of Coherent Probabilistic Forecasts for
Hierarchical Time Series. In Proceedings of the 38th International Conference
on Machine Learning, pages 8832–8843. PMLR, July 2021. (Cited on pages 81,
82, 83, 85, and 86.)

[101] S. S. Rangapuram, S. Kapoor, R. S. Nirwan, P. Mercado, T. Januschowski,
Y. Wang, and M. Bohlke-Schneider. Coherent Probabilistic Forecasting of
Temporal Hierarchies. In Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, pages 9362–9376. PMLR, Apr. 2023. (Cited
on pages 4, 80, 81, 82, 83, 84, and 85.)

[102] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke. RepeatNet: A Repeat

156

Aware Neural Recommendation Machine for Session-Based Recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4806–4813, 2019. (Cited on page 116.)

[103] F. Ricci, L. Rokach, and B. Shapira. Introduction to Recommender Systems.
In Recommender Systems Handbook, pages 1–35. Springer, 2011. (Cited on
page 118.)

[104] R. A. Rigby and D. M. Stasinopoulos. Generalized Additive Models for Location,
Scale and Shape. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 54(3):507–554, 2005. ISSN 1467-9876. doi: 10.1111/j.1467-9876.
2005.00510.x. (Cited on page 50.)

[105] Y. Romano, E. Patterson, and E. Candes. Conformalized Quantile Regression.
In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. (Cited on page 146.)

[106] T. Salimans and D. P. Kingma. Weight Normalization: A Simple Reparameteri-
zation to Accelerate Training of Deep Neural Networks. In Advances in Neural
Information Processing Systems 29, pages 901–909. Curran Associates, Inc.,
2016. (Cited on page 18.)

[107] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. DeepAR: Probabilistic
Forecasting with Autoregressive Recurrent Networks. International Journal of
Forecasting, Oct. 2019. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2019.07.001.
(Cited on pages 14, 23, 24, 25, 27, and 51.)

[108] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-Based Collaborative
Filtering Recommendation Algorithms. In Proceedings of the 10th International
Conference on World Wide Web, pages 285–295, 2001. (Cited on pages 116, 118,
and 136.)

[109] J. Schäfer and K. Strimmer. A Shrinkage Approach to Large-Scale Covariance
Matrix Estimation and Implications for Functional Genomics. Statistical Appli-
cations in Genetics and Molecular Biology, 4(1), Jan. 2005. ISSN 1544-6115,
2194-6302. doi: 10.2202/1544-6115.1175. (Cited on pages 85 and 86.)

[110] S. Schelter, C. Boden, and V. Markl. Scalable Similarity-Based Neighborhood
Methods with MapReduce. RecSys, pages 163–170, 2012. (Cited on pages 116
and 118.)

[111] S. Schelter, U. Celebi, and T. Dunning. Efficient Incremental Cooccurrence
Analysis for Item-Based Collaborative Filtering. In Proceedings of the 31st
International Conference on Scientific and Statistical Database Management,
pages 61–72, 2019. (Cited on page 118.)

[112] S. Schelter, S. Grafberger, S. Guha, O. Sprangers, B. Karlaš, and C. Zhang.
Screening Native ML Pipelines with “ArgusEyes”. In CIDR: Conference on
Innovative Data Systems Research, 2021.

[113] R. Sen, H.-F. Yu, and I. S. Dhillon. Think Globally, Act Locally: A Deep Neural
Network Approach to High-Dimensional Time Series Forecasting. In Advances in
Neural Information Processing Systems 32, pages 4838–4847. Curran Associates,
Inc., 2019. (Cited on pages 15 and 50.)

[114] A. Shanbhag, H. Pirk, and S. Madden. Efficient Top-K Query Processing
on Massively Parallel Hardware. In Proceedings of the 2018 International

157

6. Bibliography

Conference on Management of Data, SIGMOD ’18, pages 1557–1570, New
York, NY, USA, May 2018. Association for Computing Machinery. ISBN
978-1-4503-4703-7. doi: 10.1145/3183713.3183735. (Cited on page 147.)

[115] F. Sigrist. Gradient and Newton Boosting for Classification and Regression.
Expert Systems with Applications, Oct. 2020. ISSN 0957-4174. doi: 10.1016/j.
eswa.2020.114080. (Cited on page 53.)

[116] J. Song, Z. Li, Z. Hu, Y. Wu, Z. Li, J. Li, and J. Gao. PoisonRec: An Adaptive
Data Poisoning Framework for Attacking Black-Box Recommender Systems. In
2020 IEEE 36th International Conference on Data Engineering (ICDE), pages
157–168. IEEE, 2020. (Cited on page 118.)

[117] O. Sprangers, R. Babuška, S. P. Nageshrao, and G. A. D. Lopes. Reinforcement
Learning for Port-Hamiltonian Systems. IEEE Transactions on Cybernetics,
45(5):1017–1027, May 2015. ISSN 2168-2275. doi: 10.1109/TCYB.2014.
2343194.

[118] O. Sprangers, S. Schelter, and M. de Rijke. Probabilistic Gradient Boosting
Machines for Large-Scale Probabilistic Regression. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21,
pages 1510–1520, New York, NY, USA, Aug. 2021. Association for Computing
Machinery. ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467278. (Cited
on pages 5 and 6.)

[119] O. Sprangers, S. Schelter, and M. de Rijke. Parameter-Efficient Deep Proba-
bilistic Forecasting. International Journal of Forecasting, 39(1):332–345, Jan.
2023. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.11.011. (Cited on pages 5
and 6.)

[120] O. Sprangers, W. Wadman, S. Schelter, and M. de Rijke. Hierarchical Forecasting
at Scale. International Journal of Forecasting, In Press, Mar. 2024. ISSN 0169-
2070. doi: 10.1016/j.ijforecast.2024.02.006. (Cited on pages 5, 6, and 7.)

[121] K. Stankeviciute, A. M. Alaa, and M. van der Schaar. Conformal Time-series
Forecasting. In Advances in Neural Information Processing Systems, volume 34,
pages 6216–6228. Curran Associates, Inc., 2021. (Cited on page 106.)

[122] E. Strubell, A. Ganesh, and A. McCallum. Energy and Policy Considerations
for Modern Deep Learning Research. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(09):13693–13696, Apr. 2020. ISSN 2374-3468. doi:
10.1609/aaai.v34i09.7123. (Cited on page 32.)

[123] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning. The MIT Press, Cambridge, Massachusetts,
nachdruck edition, 2014. ISBN 978-0-262-19398-6. (Cited on page 147.)

[124] S. J. Taylor and B. Letham. Forecasting at Scale. The American Statistician, 72
(1):37–45, Jan. 2018. ISSN 0003-1305. doi: 10.1080/00031305.2017.1380080.
(Cited on pages 12 and 50.)

[125] F. Theodosiou and N. Kourentzes. Forecasting with Deep Temporal Hierarchies,
Sept. 2021. (Cited on pages 4, 80, and 83.)

[126] A. Touloumis. Nonparametric Stein-type Shrinkage Covariance Matrix Estima-
tors in High-Dimensional Settings. Computational Statistics & Data Analysis,
83:251–261, Mar. 2015. ISSN 01679473. doi: 10.1016/j.csda.2014.10.018.

158

(Cited on page 86.)
[127] M. Tsagkias, T. H. King, S. Kallumadi, V. Murdock, and M. de Rijke. Challenges

and Research Opportunities in Ecommerce Search and Recommendations. In
ACM SIGIR Forum, volume 54, pages 1–23. ACM New York, NY, USA, 2021.
(Cited on page 118.)

[128] UCI. PEMS-SF Data Set. https://archive.ics.uci.edu/ml/datasets/PEMS-SF, 2009.
(Cited on page 22.)

[129] UCI. Electricity LoadDiagrams20112014 Data Set.
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014,
2014. (Cited on page 21.)

[130] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. In The 9th ISCA Speech Synthesis Workshop, Sunnyvale,
CA, USA, 13-15 September 2016, page 125. ISCA, 2016. (Cited on pages 5, 13,
14, 15, 17, and 23.)

[131] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is All you Need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.,
2017. (Cited on pages 2, 11, 12, 15, 17, and 30.)

[132] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. Van Der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Har-
ris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. Van Mulbregt, SciPy 1.0
Contributors, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeck-
ner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson,
C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasech-
nik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young,
G. A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P.
Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick,
J. L. Schönberger, J. V. De Miranda Cardoso, J. Reimer, J. Harrington, J. L. C.
Rodrı́guez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville,
M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk,
N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer,
S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Os-
hima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie,
T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza.
SciPy 1.0: Fundamental algorithms for scientific computing in Python. Na-
ture Methods, 17(3):261–272, Mar. 2020. ISSN 1548-7091, 1548-7105. doi:
10.1038/s41592-019-0686-2. (Cited on page 90.)

[133] R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka. A Multi-Horizon
Quantile Recurrent Forecaster. 31st Conference on Neural Information Process-
ing Systems (NIPS2017), Time Series Workshop. Long Beach, CA, USA., June
2018. (Cited on pages 23 and 24.)

159

6. Bibliography

[134] S. L. Wickramasuriya, G. Athanasopoulos, and R. J. Hyndman. Optimal Forecast
Reconciliation for Hierarchical and Grouped Time Series Through Trace Mini-
mization. Journal of the American Statistical Association, 114(526):804–819,
Apr. 2019. ISSN 0162-1459, 1537-274X. doi: 10.1080/01621459.2018.1448825.
(Cited on pages 4, 81, 83, 84, 86, and 93.)

[135] C.-M. Wong, F. Feng, W. Zhang, C.-M. Vong, H. Chen, Y. Zhang, P. He, H. Chen,
K. Zhao, and H. Chen. Improving Conversational Recommendation System
by Pretraining on Billions Scale of Knowledge Graph. ICDE, 2021. (Cited on
page 118.)

[136] X. Xie, F. Sun, X. Yang, Z. Yang, J. Gao, W. Ou, and B. Cui. Explore User
Neighborhood for Real-time E-commerce Recommendation. ICDE, 2021. (Cited
on page 118.)

[137] H. Yin, Q. Wang, K. Zheng, Z. Li, J. Yang, and X. Zhou. Social Influence-Based
Group Representation Learning for Group Recommendation. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 566–577. IEEE,
2019. (Cited on page 118.)

[138] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He. A Simple Convo-
lutional Generative Network for Next Item Recommendation. WSDM, pages
582–590, 2019. (Cited on page 119.)

[139] M. Zamo and P. Naveau. Estimation of the Continuous Ranked Probability Score
with Limited Information and Applications to Ensemble Weather Forecasts.
Mathematical Geosciences, 50(2):209–234, Feb. 2018. ISSN 1874-8953. doi:
10.1007/s11004-017-9709-7. (Cited on page 61.)

[140] Y. Zheng, C. Gao, X. He, Y. Li, and D. Jin. Price-Aware Recommendation with
Graph Convolutional Networks. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 133–144. IEEE, 2020. (Cited on page 118.)

[141] X. Zhou, D. Qin, X. Lu, L. Chen, and Y. Zhang. Online Social Media Recom-
mendation over Streams. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 938–949. IEEE, 2019.

[142] Z. Zolaktaf, R. Babanezhad, and R. Pottinger. A Generic Top-n Recommendation
Framework for Trading-off Accuracy, Novelty, and Coverage. In 2018 IEEE
34th International Conference on Data Engineering (ICDE), pages 149–160.
IEEE, 2018. (Cited on page 118.)

160

Summary

In this thesis we investigate the forecasting problem for large-scale
settings: how can we efficiently and accurately generate forecasts when
we need to generate many of them?

Motivated by the increasing availability of large volumes of data and
the ever increasing popularity of neural network models we investigate
how we can improve the efficiency and accuracy of neural network
models for point- and probabilistic forecasting in Chapter 2. We find
that we can achieve better forecasting accuracy whilst reducing resource
consumption – leading to reduced operational costs – by designing a
neural network that requires an order of magnitude fewer parameters as
compared to existing neural network probabilistic forecasting models.
However, we also see that outside academia, there is a different class
of models that is commonly used to solve the point- and probabilistic
forecasting problem at a larger scale.

Thus, in Chapter 3, we investigate a similar question, but for a dif-
ferent class of models: how can we improve the efficiency and accuracy
of Gradient Boosting Machines (GBM) models for point- and proba-
bilistic forecasting? We propose Probabilistic Gradient Boosting Ma-
chines (PGBM), a method to create probabilistic predictions with a single
ensemble of decision trees in a computationally efficient manner. We
empirically demonstrate the advantages of PGBM compared to existing
comparable state-of-the-art methods and find that PGBM can produce
probabilistic estimates without compromising on point performance, us-
ing a single model only, thereby greatly improving forecasting efficiency
as compared to existing methods.

In Chapter 4 we investigate the problem of hierarchical forecasting,
which is the forecasting problem where time series need to adhere to a
cross-sectional or temporal hierarchy, for example product groupings at a
grocery store. We find that existing hierarchical forecasting techniques
scale relatively poorly to large-scale problem settings and propose to
learn a coherent forecast for millions of time series with a single bottom-
level forecast model by using a loss function that directly optimizes

161

6. Summary

the hierarchical structure. This reduces the computational cost of the
prediction phase in the forecasting pipeline, as well as its deployment
complexity, whilst maintaining forecasting accuracy. We demonstrate the
benefit in an offline test at bol, and show forecast improvements of up to
10%.

Finally, in Chapter 5, we study another forecasting problem often
encountered in industry: session-based recommendation. We investigate
state-of-the-art methods for session-based recommendation and find that
the most simple method gives the most accurate results. We propose
Vector-Multiplication-Indexed-Session kNN (VMIS-kNN), an adapta-
tion of a state-of-the-art nearest neighbor approach to session-based
recommendation, which leverages a prebuilt index to compute next-item
recommendations with low latency in scenarios with hundreds of mil-
lions of clicks to search through. Based on this approach, we design
and implement a scalable session-based recommender system Serenade,
which is in production usage at bol.

162

Samenvatting

In dit proefschrift onderzoeken we het voorspellingsprobleem voor
grootschalige omgevingen: hoe kunnen we efficiënt en nauwkeurig voor-
spellingen maken als we er veel moeten genereren?

Gemotiveerd door de toenemende beschikbaarheid van grote hoeveel-
heden data en de steeds toenemende populariteit van neurale netwerk-
modellen onderzoeken we in Hoofdstuk 2 hoe we de efficiëntie en
nauwkeurigheid van neurale netwerkmodellen voor punt- en probabilis-
tische voorspellingen kunnen verbeteren. We stellen vast dat we een
betere voorspellingsnauwkeurigheid kunnen bereiken en tegelijkertijd het
energie- en geheugenverbruik kunnen verminderen – wat leidt tot lagere
operationele kosten – door een neuraal netwerk te ontwerpen dat een
orde van grootte minder parameters vereist in vergelijking met bestaande
probabilistische voorspellingsmodellen die gebruik maken van neurale
netwerken. We zien echter ook dat er buiten de academische wereld een
andere klasse modellen bestaat die gewoonlijk wordt gebruikt om het
punt- en probabilistische voorspellingsprobleem op grotere schaal op te
lossen.

Daarom onderzoeken we in Hoofdstuk 3 een soortgelijke vraag,
maar voor een andere klasse modellen: hoe kunnen we de efficiëntie
en nauwkeurigheid van Gradient Boosting Machines (GBM)-modellen
voor punt- en probabilistische voorspellingen verbeteren? We introduc-
eren Probabilistic Gradient Boosting Machines (PGBM), een methode
om probabilistische voorspellingen te maken met een enkel ensemble van
beslissingsbomen op een computationeel efficiënte manier. We demon-
streren empirisch de voordelen van PGBM vergeleken met bestaande
vergelijkbare methoden en ontdekken dat PGBM probabilistische schat-
tingen kan produceren zonder concessies te doen aan de puntprestaties,
gebruikmakend van slechts een enkel model, waardoor de voorspellingsef-
ficiëntie aanzienlijk wordt verbeterd in vergelijking met bestaande meth-
oden.

In Hoofdstuk 4 onderzoeken we het probleem van hiërarchische voor-
spellingen, het voorspellingsprobleem waarbij tijdreeksen gebonden zijn

163

6. Samenvatting

aan een (temporele) hiërarchie, zoals bijvoorbeeld productgroeperin-
gen in een supermarkt. We constateren dat bestaande hiërarchische
voorspellingstechnieken relatief slecht kunnen worden geschaald naar
grootschalige probleemsituaties en stellen voor om een hiërarchisch co-
herente voorspelling voor miljoenen tijdreeksen te leren met een enkel
voorspellingsmodel op het laagste niveau door gebruik te maken van
een verliesfunctie die de hiërarchische structuur direct optimaliseert. Dit
vermindert de rekenkosten van de voorspellingsfase in de voorspellings-
pijplijn, evenals de complexiteit ervan, terwijl de voorspellingsnauwkeu-
righeid behouden blijft. We demonstreren het voordeel in een offline test
bij bol en laten voorspelde verbeteringen zien tot wel 10%.

Tenslotte bestuderen we in Hoofdstuk 5 een ander voorspellingsprob-
leem dat vaak voorkomt in de praktijk: op online-sessies gebaseerde
aanbevelingen. We onderzoeken de modernste methoden voor sessiege-
baseerde aanbevelingen en komen tot de conclusie dat de meest een-
voudige methode de meest nauwkeurige resultaten oplevert. We intro-
duceren Vector-Multiplication-Indexed-Session kNN (VMIS-kNN), een
aanpassing van een bestaande kNN-methode voor sessiegebaseerde aan-
bevelingen. VMIS-kNN maakt gebruik van een vooraf gebouwde index
om aanbevelingen voor het volgende item te berekenen met lage latentie
in scenario’s met honderden miljoenen clicks om doorheen te zoeken. Op
basis van deze aanpak ontwerpen en implementeren we een schaalbaar,
op sessies gebaseerd aanbevelingssysteem Serenade, dat in productie is
bij bol.

164

	Acknowledgements
	Introduction
	Thesis Scope and Research Questions
	Main Contributions
	Thesis Overview
	Origins

	Parameter Efficient Deep Probabilistic Forecasting
	Introduction
	Related Work
	Methodology
	Experimental Setup
	Results & Discussion
	Forecasting Effectiveness
	Forecasting Efficiency
	Effect of Student's t(3)-distribution
	Effect of Forward-looking Module
	Effect of Hyperparameters

	Conclusion and Future Work

	Appendices
	Supplemental Materials

	Probabilistic Gradient Boosting Machines
	Introduction
	Related Work
	Background
	Probabilistic Gradient Boosting Machines (PGBM)
	Probabilistic Forecasting
	Stochastic Leaf Weights
	Update Equations
	PGBM
	Analysis & Discussion

	Experiments
	UCI Regression Benchmarks
	Hierarchical Time Series

	Conclusion

	Appendices
	Derivation of Stochastic Leaf Weights
	Expectation
	Variance

	Reproducibility

	Hierarchical Forecasting at Scale
	Introduction
	Related Work
	Background
	Problem Definition
	Scaling Issues of Hierarchical Forecasting Methods

	Sparse Hierarchical Loss
	Experiments
	Public Datasets
	Proprietary Datasets

	Conclusion

	Appendices
	Derivation of Gradient and Second-order derivative
	Derivation of Gradient of Toy Example
	M5 Dataset
	M5 Model Training & Optimization
	Experiments

	Serenade
	Introduction
	Related Work
	Background
	Vector-Multiplication-Indexed-Session kNN (VMIS-kNN)
	Serenade
	Design Considerations
	Implementation

	Experimental Evaluation
	VMIS-kNN
	Serenade

	Learnings & Conclusion

	Conclusion
	Summary of Findings
	Future Work

	Bibliography
	Summary
	Samenvatting

