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ABSTRACT
Optimizing ranking systems based on user interactions is a well-

studied problem. State-of-the-art methods for optimizing rank-

ing systems based on user interactions are divided into online

approaches – that learn by directly interacting with users – and

counterfactual approaches – that learn from historical interactions.

Existing online methods are hindered without online interventions

and thus should not be applied counterfactually. Conversely, coun-

terfactual methods cannot directly benefit from online interven-

tions.

We propose a novel intervention-aware estimator for both coun-

terfactual and online Learning to Rank (LTR). With the introduction

of the intervention-aware estimator, we aim to bridge the online/-

counterfactual LTR division as it is shown to be highly effective in

both online and counterfactual scenarios. The estimator corrects

for the effect of position bias, trust bias, and item-selection bias by

using corrections based on the behavior of the logging policy and

on online interventions: changes to the logging policy made during

the gathering of click data. Our experimental results, conducted

in a semi-synthetic experimental setup, show that, unlike existing

counterfactual LTR methods, the intervention-aware estimator can

greatly benefit from online interventions.
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1 INTRODUCTION
Ranking systems form the basis for most search and recommenda-

tion applications [16]. As a result, the quality of such systems can

greatly impact the user experience, thus it is important that the un-

derlying ranking models perform well. The Learning to Rank (LTR)

field considers methods to optimize ranking models. Traditionally

this was based on expert annotations. Over the years the limitations

of expert annotations have become apparent; some of the most im-

portant ones are: (i) they are expensive and time-consuming to

acquire [6, 22]; (ii) in privacy-sensitive settings expert annotation

is unethical, e.g., in email or private document search [28]; and
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(iii) often expert annotations appear to disagree with actual user

preferences [23].

User interaction data solves some of the problems with expert

annotations: (i) interaction data is virtually free for systems with

active users; (ii) it does not require experts to look at potentially

privacy-sensitive content; (iii) interaction data is indicative of users’

preferences. For these reasons, interest in LTR methods that learn

from user interactions has increased in recent years. However, user

interactions are a form of implicit feedback and generally also af-

fected by other factors than user preference [14]. Therefore, to be

able to reliably learn from interaction data, the effect of factors

other than preference has to be corrected for. In clicks on rank-

ings three prevalent factors are well known: (i) position bias: users
are less likely to examine, and thus click, lower ranked items [7];

(ii) item-selection bias: users cannot click on items that are not dis-

played [19, 21]; and (iii) trust bias: because users trust the ranking
system, they are more likely to click on highly ranked items that

they do not actually prefer [2, 14]. As a result of these biases, which

ranking system was used to gather clicks can have a substantial

impact on the clicks that will be observed. Current LTR methods

that learn from clicks can be divided into two families: counterfac-
tual approaches [15] – that learn from historical data, i.e., clicks

that have been logged in the past – and online approaches [30] –
that can perform interventions, i.e., they can decide what rankings

will be shown to users. Recent work has noticed that some coun-

terfactual methods can be applied as an online method [11], or vice

versa [5, 31]. Nonetheless, every existing method was designed for

either the online or counterfactual setting, never both.

In this work, we propose a novel estimator for both counterfac-

tual and online LTR from clicks: the intervention-aware estimator.
The intervention-aware estimator builds on ideas that underlie the

latest existing counterfactual methods: the policy-aware estima-

tor [19] and the affine estimator [25]; and expands them to consider

the effect of online interventions. It does so by considering how

the effect of bias is changed by an intervention, and utilizes these

differences in its unbiased estimation. As a result, the intervention-

aware estimator is both effective when applied as a counterfactual

method, i.e., when learning from historical data, and as an online

method where online interventions lead to enormous increases

in efficiency. In our experimental results the intervention-aware

estimator is shown to reach state-of-the-art LTR performance in

both online and counterfactual settings, and it is the only method

that reaches top-performance in both settings.

The main contributions of this work are:

(1) A novel intervention-aware estimator that corrects for position

bias, trust bias, item-selection bias, and the effect of online

interventions.
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(2) An investigation into the effect of online interventions on state-

of-the-art counterfactual and online LTR methods.

2 INTERACTIONS WITH RANKINGS
The theory in this paper assumes that three forms of interaction

bias occur: position bias, item-selection bias, and trust bias.

Position bias occurs because users only click an item after exam-

ining it, and users are more likely to examine items displayed at

higher ranks [7]. Thus the rank (a.k.a. position) at which an item

is displayed heavily affects the probability of it being clicked. We

model this bias using 𝑃 (𝐸 = 1 | 𝑘): the probability that an item 𝑑

displayed at rank 𝑘 is examined by a user 𝐸 [28].

Item-selection bias occurs when some items have a zero proba-

bility of being examined in some displayed rankings [21]. This can

happen because not all items are displayed to the user, or if the

ranked list is so long that no user ever considers the entire list. We

model this bias by stating: ∃𝑘,∀𝑘 ′, (𝑘 ′ > 𝑘 → 𝑃 (𝐸 = 1 | 𝑘 ′) = 0),
i.e., there exists a rank 𝑘 such that items ranked lower than 𝑘 have

no chance of being examined. The distinction between position

bias and item-selection bias is important because some methods

can only correct for the former if the latter is not present [19].

Finally, trust bias occurs because users trust the ranking system

and, consequently, are more likely to perceive top ranked items as

relevant even when they are not [14]. We model this bias using:

𝑃 (𝐶 = 1 | 𝑘, 𝑅, 𝐸): the probability of a click conditioned on the

displayed rank 𝑘 , the relevance of the item 𝑅, and examination 𝐸.

To combine these three forms of bias into a single click model,

we follow Agarwal et al. [2] and write:

𝑃 (𝐶 = 1 | 𝑑, 𝑘, 𝑞)
= 𝑃 (𝐸 = 1 | 𝑘)

(
𝑃 (𝐶 = 1 | 𝑘, 𝑅 = 0, 𝐸 = 1)𝑃 (𝑅 = 0 | 𝑑, 𝑞)
+ 𝑃 (𝐶 = 1 | 𝑘, 𝑅 = 1, 𝐸 = 1)𝑃 (𝑅 = 1 | 𝑑, 𝑞)

)
,

(1)

where 𝑃 (𝑅 = 1 | 𝑑, 𝑞) is the probability that an item 𝑑 is deemed

relevant w.r.t. query 𝑞 by the user. An analysis on real-world in-

teraction data performed by Agarwal et al. [2], showed that this

model better captures click behavior than models that only capture

position bias [28] on search services for retrieving cloud-stored

files and emails.

To simplify the notation, we follow Vardasbi et al. [25] and adopt:

𝛼𝑘 = 𝑃 (𝐸 = 1 | 𝑘)
(
𝑃 (𝐶 = 1 | 𝑘, 𝑅 = 1, 𝐸 = 1)
− 𝑃 (𝐶 = 1 | 𝑘, 𝑅 = 0, 𝐸 = 1)

)
,

𝛽𝑘 = 𝑃 (𝐸 = 1 | 𝑘)𝑃 (𝐶 = 1 | 𝑘, 𝑅 = 0, 𝐸 = 1).
(2)

This results in a compact notation for the click probability (1):

𝑃 (𝐶 = 1 | 𝑑, 𝑘, 𝑞) = 𝛼𝑘𝑃 (𝑅 = 1 | 𝑑, 𝑞) + 𝛽𝑘 . (3)

For a single ranking 𝑦, let 𝑘 be the rank at which item 𝑑 is displayed

in 𝑦; we denote 𝛼𝑘 = 𝛼𝑑,𝑦 and 𝛽𝑘 = 𝛽𝑑,𝑦 . This allows us to specify

the click probability conditioned on a ranking 𝑦:

𝑃 (𝐶 = 1 | 𝑑,𝑦, 𝑞) = 𝛼𝑑,𝑦𝑃 (𝑅 = 1 | 𝑑, 𝑞) + 𝛽𝑑,𝑦 . (4)

Finally, let 𝜋 be a ranking policy used for logging clicks, where

𝜋 (𝑦 | 𝑞) is the probability of 𝜋 displaying ranking 𝑦 for query 𝑞,

then the click probability conditioned on 𝜋 is:

𝑃 (𝐶 = 1 | 𝑑, 𝜋, 𝑞) =
∑︁
𝑦

𝜋 (𝑦 | 𝑞)
(
𝛼𝑑,𝑦𝑃 (𝑅 = 1 | 𝑑, 𝑞) + 𝛽𝑑,𝑦

)
. (5)

The proofs in the remainder of this paper will assume this model

of click behavior.

3 BACKGROUND
In this section we cover the basics on LTR and counterfactual LTR.

3.1 Learning to Rank
The field of LTR considers methods for optimizing ranking systems

w.r.t. ranking metrics. Most ranking metrics are additive w.r.t. docu-

ments; let 𝑃 (𝑞) be the probability that a user-issued query is query

𝑞, then the metric reward R commonly has the form:

R(𝜋) =
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝜆(𝑑 | 𝐷𝑞, 𝜋, 𝑞)𝑃 (𝑅 = 1 | 𝑑, 𝑞). (6)

Here, the 𝜆 function scores each item 𝑑 depending on how 𝜋 ranks

𝑑 when given the preselected item set 𝐷𝑞 ; 𝜆 can be chosen to match

a desired metric, for instance, the common Discounted Cumulative

Gain (DCG) metric [12]:

𝜆DCG (𝑑 | 𝐷𝑞, 𝜋, 𝑞) =
∑︁
𝑦

𝜋 (𝑦 | 𝑞)
(
log

2
(rank(𝑑 | 𝑦) + 1)

)−1

. (7)

Supervised LTR methods can optimize 𝜋 to maximize R if rele-

vances 𝑃 (𝑅 = 1 | 𝑑, 𝑞) are known [16, 29]. However in practice,

finding these relevance values is not straightforward.

3.2 Counterfactual Learning to Rank
Over time, limitations of the supervised LTR approach have be-

come apparent. Most importantly, finding accurate relevance values

𝑃 (𝑅 = 1 | 𝑑, 𝑞) has proved to be impossible or infeasible in many

practical situations [27]. As a solution, LTR methods have been

developed that learn from user interactions instead of relevance

annotations. Counterfactual LTR concerns approaches that learn

from historical interactions. Let D be a set of collected interaction

data over 𝑇 timesteps; for each timestep 𝑡 it contains the user is-

sued query 𝑞𝑡 , the logging policy 𝜋𝑡 used to generate the displayed

ranking 𝑦𝑡 , and the clicks 𝑐𝑡 received on the ranking:

D = {(𝜋𝑡 , 𝑞𝑡 , 𝑦𝑡 , 𝑐𝑡 )}𝑇𝑡=1
, (8)

where 𝑐𝑡 (𝑑) ∈ {0, 1} indicates whether item 𝑑 was clicked at

timestep 𝑡 . While clicks are indicative of relevance they are also

affected by several forms of bias, as discussed in Section 2.

Counterfactual LTR methods utilize estimators that correct for

bias to unbiasedly estimate the reward of a policy 𝜋 . The prevalent

methods introduce a function Δ̂ that transforms a single click signal

to correct for bias. The general estimate of the reward is:

ˆR(𝜋 | D) = 1

𝑇

𝑇∑︁
𝑡=1

∑︁
𝑑∈𝐷𝑞𝑡

𝜆(𝑑 | 𝐷𝑞𝑡 , 𝜋, 𝑞)Δ̂(𝑑 | 𝜋𝑡 , 𝑞𝑡 , 𝑦𝑡 , 𝑐𝑡 ) . (9)

We note the important distinction between the policy 𝜋 for which

we estimate the reward, and the policy 𝜋𝑡 that was used to gather

interactions. During optimization only 𝜋 is changed in order to

maximize the estimated reward.

The original Inverse-Propensity-Scoring (IPS) based estimator

introduced by Wang et al. [27] and Joachims et al. [15] weights
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clicks according to examination probabilities:

Δ̂IPS (𝑑 | 𝑦𝑡 , 𝑐𝑡 ) =
𝑐𝑡 (𝑑)

𝑃 (𝐸 = 1 | 𝑦𝑡 , 𝑑)
. (10)

This estimator results in unbiased optimization under two require-

ments. First, every relevant item must have a non-zero examination

probability in all displayed rankings:

∀𝑡,∀𝑑 ∈ 𝐷𝑞𝑡 (𝑃 (𝑅 = 1 | 𝑑, 𝑞𝑡 ) > 0→ 𝑃 (𝐸 = 1 | 𝑦𝑡 , 𝑑) > 0) . (11)

Second, the click probability conditioned on relevance on examined

items should be the same on every rank:

∀𝑘, 𝑘 ′
(
𝑃 (𝐶 | 𝑘, 𝑅, 𝐸 = 1) = 𝑃 (𝐶 | 𝑘 ′, 𝑅, 𝐸 = 1)

)
, (12)

i.e., no trust bias is present. These requirements illustrate that this

estimator can only correct for position bias, and is biased when

item-selection bias or trust bias is present. For a proof we refer to

previous work by Joachims et al. [15] and Vardasbi et al. [25].

Oosterhuis and de Rijke [19] adapt the IPS approach to correct

for item-selection bias as well. They weight clicks according to

examination probabilities conditioned on the logging policy, instead

of the single displayed ranking on which a click took place. This

results in the policy-aware estimator:

Δ̂aware (𝑑 | 𝜋𝑡 , 𝑞𝑡 , 𝑐𝑡 ) =
𝑐𝑡 (𝑑)

𝑃 (𝐸 = 1 | 𝜋𝑡 , 𝑞𝑡 , 𝑑)

=
𝑐𝑡 (𝑑)∑

𝑦 𝜋 (𝑦 | 𝑞𝑡 )𝑃 (𝐸 = 1 | 𝑦,𝑑, 𝑞𝑡 )
.

(13)

This estimator can be used for unbiased optimization under two

assumptions. First, every relevant item must have a non-zero ex-

amination probability under the logging policy:

∀𝑡,∀𝑑 ∈ 𝐷𝑞𝑡 (𝑃 (𝑅 = 1 |, 𝑑, 𝑞𝑡 ) > 0→ 𝑃 (𝐸 = 1 | 𝜋𝑡 , 𝑑, 𝑞𝑡 ) > 0) . (14)
Second, no trust bias is present as described in Eq 12. Importantly,

this first requirement can be met under item-selection bias, since a

stochastic ranking policy can always provide every item a non-zero

probability of appearing in a top-𝑘 ranking. Thus, even when not

all items can be displayed at once, a stochastic policy can provide

non-zero examination probabilities to all items. For a proof of this

claim we refer to previous work by Oosterhuis and de Rijke [19].

Lastly, Vardasbi et al. [25] prove that IPS cannot correct for trust

bias. As an alternative, they introduce an estimator based on affine

corrections. This affine estimator penalizes an item displayed at

rank 𝑘 by 𝛽𝑘 while also reweighting inversely w.r.t. 𝛼𝑘 :

Δ̂
affine
(𝑑 | 𝑦𝑡 , 𝑐𝑡 ) =

𝑐𝑡 (𝑑) − 𝛽𝑑,𝑦𝑡
𝛼𝑑,𝑦𝑡

. (15)

The 𝛽 penalties correct for the number of clicks an item is expected

to receive due to its displayed rank, instead of its relevance. The

affine estimator is unbiased under a single assumption, namely

that the click probability of every item must be correlated with its

relevance in every displayed ranking:

∀𝑡,∀𝑑 ∈ 𝐷𝑞𝑡 , 𝛼𝑑,𝑦𝑡 ≠ 0. (16)

Thus, while this estimator can correct for position bias and trust

bias, it cannot correct for item-selection bias. For a proof of these

claims we refer to previous work by Vardasbi et al. [25].

We note that all of these estimators require knowledge of the

position bias (𝑃 (𝐸 = 1 | 𝑘)) or trust bias (𝛼 and 𝛽). A lot of existing

work has considered how these values can be inferred accurately [2,

8, 28]. The theory in this paper assumes these values are known.

This concludes our description of existing counterfactual estima-

tors on which our method expands. To summarize, each of these

estimators corrects for position bias, one also corrects for item-

selection bias, and another also for trust bias. Currently, there is no

estimator that corrects for all three forms of bias together.

4 RELATEDWORK
One of the earliest approaches to LTR from clicks was introduced

by Joachims [13]. It infers pairwise preferences between items from

click logs and uses pairwise LTR to update an SVM ranking model.

While this approach had some success, in later work Joachims et al.

[15] notes that position bias often incorrectly pushes the pairwise

loss to flip the ranking displayed during logging. To avoid this

biased behavior, Joachims et al. [15] proposed the idea of counter-

factual LTR, in the spirit of earlier work by Wang et al. [27]. This

led to estimators that correct for position bias using IPS weighting

(see Section 3.2). This work sparked the field of counterfactual LTR

which has focused on both capturing interaction biases and opti-

mization methods that can correct for them. Methods for measuring

position bias are based on EM optimization [28], a dual learning ob-

jective [4], or randomization [3, 8]; for trust bias only an EM-based

approach is currently known [2]. Agarwal et al. [1] showed how

counterfactual LTR can optimize neural networks and DCG-like

methods through upper-bounding. Oosterhuis and de Rijke [19]

introduced an IPS estimator that can correct for item-selection bias

(see Section 3.2), while also showing that the LambdaLoss frame-

work [29] can be applied to counterfactual LTR. Lastly, Vardasbi

et al. [25] proved that IPS estimators cannot correct for trust bias

and introduced an affine estimator that is capable of doing so (see

Section 3.2). There is currently no known estimator that can correct

for position bias, item selection bias, and trust bias simultaneously.

The other paradigm for LTR from clicks is online LTR [30]. The

earliest method, Dueling Bandit Gradient Descent (DBGD), sam-

ples variations of a ranking model and compares them using online

evaluation [10]; if an improvement is recognized the model is up-

dated accordingly. Most online LTR methods have increased the

data-efficiency of DBGD [9, 24, 26]; later work found that DBGD is

not effective at optimizing neural models [17] and often fails to find

the optimal linear-model even in ideal scenarios [18]. To these limi-

tations, alternative approaches for online LTR have been proposed.

Pairwise Differentiable Gradient Descent (PDGD) takes a pairwise

approach but weights pairs to correct for position bias [17]. While

PDGD was found to be very effective and robust to noise [11], it

can be proven that its gradient estimation is affected by position

bias, thus we do not consider it to be unbiased. In contrast, Zhuang

and Zuccon [31] introduced Counterfactual Online Learning to

Rank (COLTR), which takes the DBGD approach but uses a form

of counterfactual evaluation to compare candidate models. Despite

making use of counterfactual estimation, Zhuang and Zuccon [31]

propose the method solely for online LTR.

Interestingly, with COLTR the line between online and counter-

factual LTR methods starts to blur. Recent work by Jagerman et al.

[11] applied the original counterfactual approach [15] as an online

method and found that it lead to improvements. Furthermore, Ai
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et al. [5] noted that with a small adaptation PDGD can be applied

to historical data. Although this means that some existing methods

can already be applied both online and counterfactually, no method

has been found that is the most reliable choice in both scenarios.

5 AN ESTIMATOR OBLIVIOUS TO ONLINE
INTERVENTIONS

Before we propose our main contribution, the intervention-aware

estimator, we will first introduce an estimator that simultaneously

corrects for position bias, item-selection bias, and trust bias, without

considering the effects of interventions. Subsequently, the resulting

intervention-oblivious estimator will serve as a method to contrast

the intervention-aware estimator with.

Section 3.2 described how the policy-aware estimator corrects

for item-selection bias by taking into account the behavior of the

logging policy used to gather clicks [19]. Furthermore, Section 3.2

also detailed how the affine estimator corrects for trust bias by

applying an affine transformation to individual clicks [25]. We will

now show that a single estimator can correct for both item-selection

bias and trust bias simultaneously, by combining the approaches of

both these existing estimators.

First we note the probability of a click conditioned on a single

logging policy 𝜋𝑡 can be expressed as:

𝑃 (𝐶 = 1| 𝑑, 𝜋𝑡 , 𝑞) =
∑

𝑦 𝜋𝑡 (𝑦 | 𝑞)
(
𝛼𝑑,𝑦𝑃 (𝑅 = 1 | 𝑑, 𝑞) + 𝛽𝑑,𝑦

)
(17)

= E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞]𝑃 (𝑅 = 1 | 𝑑, 𝑞) +E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞] .
where the expected values of 𝛼 and 𝛽 conditioned on 𝜋𝑡 are:

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞] =
∑

𝑦 𝜋𝑡 (𝑦 | 𝑞)𝛼𝑑,𝑦,
E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞] =

∑
𝑦 𝜋𝑡 (𝑦 | 𝑞)𝛽𝑑,𝑦 .

(18)

By reversing Eq. 17 the relevance probability can be obtained from

the click probability. We introduce our intervention-oblivious esti-
mator, which applies this transformation to correct for bias:

Δ̂IO (𝑑 | 𝑞𝑡 , 𝑐𝑡 ) =
𝑐𝑡 (𝑑) −E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞𝑡 ]

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞𝑡 ]
. (19)

The intervention-oblivious estimator brings together the policy-

aware and affine estimators: on every click it applies an affine trans-

formation based on the logging policy behavior. Unlike existing

estimators, we can prove that the intervention-oblivious estimator

is unbiased w.r.t. our assumed click model (Section 2).

Theorem 5.1. The estimated reward ˆR (Eq. 9) using the intervention-
oblivious estimator (Eq. 19) is unbiased w.r.t. the true reward R (Eq. 6)
under two assumptions: (1) our click model (Eq. 4), and (2) the click
probability on every item, conditioned on the logging policies per
timestep 𝜋𝑡 , is correlated with relevance:

∀𝑡,∀𝑑 ∈ 𝐷𝑞𝑡 E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞𝑡 ] ≠ 0. (20)

Proof. Using Eq. 17 and Eq. 27 the relevance probability can be

derived from the click probability by:

𝑃 (𝑅 = 1 | 𝑑, 𝑞) =
𝑃 (𝐶 = 1 | 𝑑, 𝜋𝑡 , 𝑞) −E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞]

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞]
. (21)

Eq. 21 can be used to show that Δ̂IO is an unbiased indicator of

relevance:

E𝑦,𝑐

[
Δ̂IO (𝑑 | 𝑞𝑡 , 𝑐𝑡 ) | 𝜋𝑡

]

0 200 400

0.1

0.2 Eȳ[αd | πt, q]
Et,ȳ[αd | ΠT , q]

0 200 400

10

20
1/Eȳ[αd | πt, q]
1/Et,ȳ[αd | ΠT , q]

Timestep𝑇 Timestep𝑇

Figure 1: Example of an online intervention and the weights
used by the intervention-oblivious and intervention-aware
estimators for a single item as more data is gathered.

= E𝑦,𝑐

[
𝑐𝑡 (𝑑) −E𝑡,𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞𝑡 ]

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞𝑡 ]
| 𝜋𝑡 , 𝑞𝑡

]
(22)

=
E𝑦,𝑐 [𝑐𝑡 (𝑑) | 𝜋𝑡 , 𝑞𝑡 ] −E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞𝑡 ]

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞𝑡 ]

=
𝑃 (𝐶 = 1 | 𝑑, 𝜋𝑡 , 𝑞𝑡 ) −E𝑦 [𝛽𝑑 | 𝜋𝑡 , 𝑞𝑡 ]

E𝑦 [𝛼𝑑 | 𝜋𝑡 , 𝑞𝑡 ]
= 𝑃 (𝑅 = 1 | 𝑑, 𝑞𝑡 ) .

Finally, combining Eq. 6 with Eq. 9 and Eq. 23 reveals that
ˆR based

on the intervention-oblivious estimator Δ̂IO is unbiased w.r.t. R:
E𝑡,𝑞,𝑦,𝑐

[
ˆR(𝜋 | D)

]
(23)

=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝜆(𝑑 | 𝐷𝑞, 𝜋, 𝑞)
1

𝑇

𝑇∑︁
𝑡=1

E𝑦,𝑐

[
Δ̂IO (𝑑 | 𝑐, 𝑞) | 𝜋𝑡 , 𝑞

]
=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝜆(𝑑 | 𝐷𝑞, 𝜋, 𝑞)𝑃 (𝑅 = 1 | 𝑑, 𝑞) = R(𝜋). □

5.1 Example with an Online Intervention
Existing estimators for counterfactual LTR are designed for a sce-

nario where the logging policy is static: ∀(𝜋𝑡 , 𝜋𝑡 ′) ∈ D, 𝜋𝑡 = 𝜋𝑡 ′ .

However, we note that if an online intervention takes place [11],

meaning that the logging policy was updated during the gathering

of data: ∃(𝜋𝑡 , 𝜋𝑡 ′) ∈ D, 𝜋𝑡 ≠ 𝜋𝑡 ′ , the intervention-oblivious estima-

tor is still unbiased. This was already proven in Theorem 5.1 because

its assumptions cover both scenarios where online interventions

do and do not take place.

However, the individual corrections of the intervention-oblivious

estimator are only based on the single logging policy that was de-

ployed at the timestep of each specific click. It is completely oblivi-

ous to the logging policies applied at different timesteps. Although

this does not lead to bias in its estimation, it does result in unintu-

itive behavior. We illustrate this behavior in Figure 1, here a logging

policy that results in E[𝛼𝑑 | 𝜋𝑡 , 𝑞] = 0.25 for an item 𝑑 is deployed

during the first 𝑡 ≤ 100 timesteps. Then an online intervention

takes place and the logging policy is updated so that for 𝑡 > 100,

E[𝛼𝑑 | 𝜋𝑡 , 𝑞] = 0.05. The intervention-oblivous estimator weights

clicks inversely toE[𝛼𝑑 | 𝜋𝑡 ]; so clicks for 𝑡 ≤ 100 will be weighted

by 1/0.25 = 4 and for 𝑡 > 100 by 1/0.05 = 20. Thus, there is a sharp

and sudden difference in how clicks are treated before and after

𝑡 = 100. What is unintuitive about this example is that the way

clicks are treated after 𝑡 = 100 is completely independent of what

the situation was before 𝑡 = 100. For instance, consider another

item 𝑑 ′ where ∀𝑡,E[𝛼𝑑′ | 𝜋𝑡 , 𝑞] = 0.05. If both 𝑑 and 𝑑 ′ are clicked
on timestep 𝑡 = 101, these clicks would both be weighted by 20,



Unifying Online and Counterfactual Learning to Rank WSDM ’21, March 8–12, 2021, Jerusalem, Israel

despite the fact that 𝑑 has so far been treated completely different

than 𝑑 ′. One would expect that in such a case the click on 𝑑 should

be weighted less, to compensate for the high E[𝛼𝑑 | 𝜋𝑡 , 𝑞] it had
in the first 100 timesteps. The question is whether such behavior

can be incorporated in an estimator without introducing bias.

6 THE INTERVENTION-AWARE ESTIMATOR
Our goal for the intervention-aware estimator is to find an estimator

whose individual corrections are not only based on single logging

policies, but instead consider the entire collection of logging policies

used to gather the data D. Importantly, this estimator should also

be unbiased w.r.t. position bias, item-selection bias and trust bias.

For ease of notation, we use Π𝑇 for the set of policies that gath-

ered the data inD: Π𝑇 = {𝜋1, 𝜋2, . . . , 𝜋𝑇 }. The probability of a click
can be conditioned on this set:

𝑃 (𝐶 = 1 | 𝑑,Π𝑇 , 𝑞)

=
1

𝑇

𝑇∑︁
𝑡=1

∑̄︁
𝑦

𝜋𝑡 (𝑦 | 𝑞)
(
𝛼𝑑,𝑦𝑃 (𝑅 = 1 | 𝑑, 𝑞) + 𝛽𝑑,𝑦

)
= E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞]𝑃 (𝑅 = 1 | 𝑑, 𝑞) +E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞],

(24)

where the expected values of 𝛼 and 𝛽 conditioned on Π𝑇 are:

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞] =
1

𝑇

∑𝑇
𝑡=1

∑
𝑦 𝜋𝑡 (𝑦 | 𝑞)𝛼𝑑,𝑦,

E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞] =
1

𝑇

∑𝑇
𝑡=1

∑
𝑦 𝜋𝑡 (𝑦 | 𝑞)𝛽𝑑,𝑦 .

(25)

Thus 𝑃 (𝐶 = 1 | 𝑑,Π𝑇 , 𝑞) gives us the probability of a click given that
any policy fromΠ𝑇 could be deployed.We propose our intervention-
aware estimator that corrects for bias using the expectations condi-

tioned on Π𝑇 :

Δ̂IA (𝑑 | 𝑞𝑡 , 𝑐𝑡 ) =
𝑐𝑡 (𝑑) −E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞𝑡 ]

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞𝑡 ]
. (26)

The salient difference with the intervention-oblivious estimator is

that the expectations are conditioned on Π𝑇 , all logging policies

in D, instead of an individual logging policy 𝜋𝑡 . While the differ-

ence with the intervention-oblivious estimator seems small, our

experimental results show that the differences in performance are

actually quite sizeable. Lastly, we note that when no interventions

take place the intervention-oblivious estimator and intervention-

aware estimators are equivalent. Because the intervention-aware

estimator is the only existing counterfactual LTR estimator whose

corrections are influenced by online interventions, we consider it

to be a step that helps to bridge the gap between counterfactual

and online LTR.

Before we revisit our online intervention example with our novel

intervention-aware estimator, we prove that it is unbiased w.r.t. our

assumed click model (Section 2).

Theorem 6.1. The estimated reward ˆR (Eq. 9) using the intervention-
aware estimator (Eq. 26) is unbiased w.r.t. the true reward R (Eq. 6)
under two assumptions: (1) our click model (Eq. 4), and (2) the click
probability on every item, conditioned on the set of logging policies
Π𝑇 , is correlated with relevance:

∀𝑞,∀𝑑 ∈ 𝐷𝑞, E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞] ≠ 0. (27)

Proof. Using Eq. 24 and Eq. 27 the relevance probability can be

derived from the click probability by:

𝑃 (𝑅 = 1 | 𝑑, 𝑞) =
𝑃 (𝐶 = 1 | 𝑑,Π𝑇 , 𝑞) −E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞]

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞]
. (28)

Eq. 28 can be used to show that Δ̂IA is an unbiased indicator of

relevance:

E𝑡,𝑦,𝑐

[
Δ̂IA (𝑑 | 𝑞𝑡 , 𝑐𝑡 ) | Π𝑇

]
= E𝑡,𝑦,𝑐

[
𝑐𝑡 (𝑑) −E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞𝑡 ]

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞𝑡 ]
| Π𝑇 , 𝑞𝑡

]
(29)

=
E𝑡,𝑦,𝑐 [𝑐𝑡 (𝑑) | Π𝑇 , 𝑞𝑡 ] −E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞𝑡 ]

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞𝑡 ]

=
𝑃 (𝐶 = 1 | 𝑑,Π𝑇 , 𝑞𝑡 ) −E𝑡,𝑦 [𝛽𝑑 | Π𝑇 , 𝑞𝑡 ]

E𝑡,𝑦 [𝛼𝑑 | Π𝑇 , 𝑞𝑡 ]
= 𝑃 (𝑅 = 1 | 𝑑, 𝑞𝑡 ) .

Finally, combining Eq. 30 with Eq. 9 and Eq. 6 reveals that
ˆR based

on the intervention-aware estimator Δ̂IA is unbiased w.r.t. R:

E𝑡,𝑞,𝑦,𝑐

[
ˆR(𝜋 | D)

]
=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝜆(𝑑 | 𝐷𝑞, 𝜋, 𝑞)E𝑡,𝑦,𝑐

[
Δ̂IA (𝑑 | 𝑐, 𝑞) | Π𝑇 , 𝑞

]
=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝜆(𝑑 | 𝐷𝑞, 𝜋, 𝑞)𝑃 (𝑅 = 1 | 𝑑, 𝑞) (30)

= R(𝜋) . □

6.1 Online Intervention Example Revisited
We will now revisit the example in Figure 1, but this time consider

how the intervention-aware estimator treats item 𝑑 . Unlike the

intervention-oblivious estimator, clicks are weighted by E[𝛼𝑑 |
Π𝑇 ] whichmeans that the exact timestep 𝑡 of a click does not matter,

as long as 𝑡 < 𝑇 . Furthermore, the weight of a click can change as

the total number of timesteps 𝑇 increases. In other words, as more

data is gathered, the intervention-aware estimator retroactively

updates the weights of all clicks previously gathered.

We see that this behavior avoids the sharp difference in weights

of clicks occurring before the intervention 𝑡 ≤ 100 and after 𝑡 > 100.

For instance, for a click on 𝑑 occuring at 𝑡 = 101 while 𝑇 = 400,

results inE[𝛼𝑑 | Π𝑇 ] = 0.1 and thus a weight of 1/0.1 = 10. This is

much lower than the intervention-oblivious weight of 1/0.05 = 20,

because the intervention-aware estimator is also considering the

initial period where E[𝛼𝑑 | 𝜋𝑡 , 𝑞] was high. Thus we see that the
intervention-aware estimator has the behavior we intuitively ex-

pected: it weights clicks based on how the itemwas treated through-

out all timesteps. In this example, it leads weights considerably

smaller than those used by the intervention-oblivious estimator.

In IPS estimators, low propensity weights are known to lead to

high variance [15], thus we may expect that the intervention-aware

estimator reduces variance in this example.

6.2 An Online and Counterfactual Approach
While the intervention-aware estimator takes into account the effect

of interventions, it does not prescribe what interventions should

take place. In fact, it will work with any interventions that result
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in Eq. 27 being true, including the situation where no intervention

takes place at all. For clarity, we will describe the intervention

approach we applied during our experiments here. Algorithm 1

displays our online/counterfactual approach. As input it requires a

starting policy (𝜋0), a choice for 𝜆, the 𝛼 and 𝛽 parameters, a set of

intervention timesteps (Φ), and the final timestep 𝑇 .

The algorithm starts by initializing an empty set to store the

gathered interaction data (Line 2) and initializes the logging policy

with the provided starting policy 𝜋0. Then for each timestep 𝑖 in

Φ the dataset is expanded using the current logging policy so that

|D| = 𝑖 (Line 5). In other words, for 𝑖−|D| timesteps 𝜋 is used to dis-

play rankings to user-issued queries, and the resulting interactions

are added to D. Then a policy is optimized using the available data

in D which becomes the new logging policy. For this optimization,

we split the available data in training and validation partitions in

order to do early stopping to prevent overfitting. We use stochastic

gradient descent where we use 𝜋0 as the initial model; this practice

is based on the assumption that 𝜋0 has a better performance than

a randomly initialized model. Thus, during optimization, gradient

calculation uses the intervention-aware estimator on the training

partition of D, and after each epoch, optimization is stopped if the

intervention-aware estimator using the validation partition of D
suspects overfitting. Each iteration results in an intervention as the

resulting policy replaces the logging policy, and thus changes the

way future data is logged. After iterating over Φ is completed, more

data is gathered so that |D| = 𝑇 and optimization is performed

once more. The final policy is the end result of the procedure.

We note that, depending on Φ, our approach can be either online,

counterfactual, or somewhere in between. If Φ = ∅ the approach
is fully counterfactual since all data is gathered using the static 𝜋0.

Conversely, if Φ = {1, 2, 3, . . . ,𝑇 } it is fully online since at every

timestep the logging policy is updated. In practice, we expect a fully

online procedure to be infeasible as it is computationally expensive

and user queries may be issued faster than optimization can be

performed. In our experiments we will investigate the effect of the

number of interventions on the approach’s performance.

7 EXPERIMENTAL SETUP
Our experiments aim to answer the following research questions:

RQ1 Does the intervention-aware estimator lead to higher per-

formance than existing counterfactual LTR estimators when

online interventions take place?

RQ2 Does the intervention-aware estimator lead to performance

comparable with existing online LTR methods?

We use the semi-synthetic experimental setup that is common in

existing work on both online LTR [9, 17, 18, 31] and counterfactual

LTR [15, 21, 25]. In this setup, queries and documents are sampled

from a dataset based on commercial search logs, while user interac-

tions and rankings are simulated using probabilistic click models.

The advantage of this setup is that it allows us to investigate the

effects of online interventions on a large scale while also being easy

to reproduce by researchers without access to live ranking systems.

We use the publicly-available YahooWebscope dataset [6], which

consists of 29 921 queries with, on average, 24 documents prese-

lected per query. Query-document pairs are represented by 700

features and five-grade relevance annotations ranging from not

Algorithm 1 Our Online/Counterfactual LTR Approach

1: Input: Starting policy: 𝜋0; Metric weight function: 𝜆;

Inferred bias parameters: 𝛼 and 𝛽 ;

Interventions steps: Φ; End-time: 𝑇 .

2: D ← {} // initialize data container
3: 𝜋 ← 𝜋0 // initialize logging policy
4: for 𝑖 ∈ Φ do
5: D ← D ∪ gather(𝜋, 𝑖 − |D|) // observe 𝑖 − |D | timesteps
6: 𝜋 ← optimize(D, 𝛼, 𝛽, 𝜋0) // optimize based on available data
7: D ← D ∪ gather(𝜋,𝑇 − |D|) // expand data to𝑇
8: 𝜋 ← optimize(D, 𝛼, 𝛽, 𝜋0) // optimize based on final data
9: return 𝜋

relevant (0) to perfectly relevant (4). The queries are divided into

training, validation and test partitions.

At each timestep, we simulate a user-issued query by uniformly

sampling from the training and validation partitions. Subsequently,

the preselected documents are ranked according to the logging

policy, and user interactions are simulated on the top-5 of the

ranking using a probabilistic click model. We apply Eq. 3 with

𝛼 = [0.35, 0.53, 0.55, 0.54, 0.52] and 𝛽 = [0.65, 0.26, 0.15, 0.11, 0.08];
the relevance probabilities are based on the annotations from the

dataset: 𝑃 (𝑅 = 1 | 𝑑, 𝑞) = 0.25 · relevance_label(𝑑, 𝑞). The values
of 𝛼 and 𝛽 were chosen based on those reported by Agarwal et al.

[2] who inferred them from real-world user behavior. In doing so,

we aim to emulate a setting where realistic levels of position bias,

item-selection bias, and trust bias are present.

All counterfactual methods use the approach described in Sec-

tion 6.2. To simulate a production ranker policy, we use supervised

LTR to train a ranking model on 1% of the training partition [15].

The resulting production ranker has much better performance than

a randomly initialized model, yet still leaves room for improvement.

We use the production ranker as the initial logging policy. The size

of Φ (the intervention timesteps) varies per run, and the timesteps

in Φ are evenly spread on an exponential scale. All ranking models

are neural networks with two hidden layers, each containing 32 hid-

den units with sigmoid activations. Gradients are calculated using

a Monte-Carlo method following Oosterhuis and de Rijke [20]. All

policies apply a softmax to the document scores produced by the

ranking models to obtain a probability distribution over documents.

Clipping is only applied on the training clicks, denominators of

any estimator are clipped by 10/
√︁
|D| to reduce variance. Early

stopping is applied based on counterfactual estimates of the loss

using (unclipped) validation clicks.

The following methods are compared: (i) The intervention-aware

estimator. (ii) The intervention-oblivious estimator. (iii) The poli-

cy-aware estimator [19]. (iv) The affine estimator [25]. (v) PDGD [17],

we apply PDGD both online and as a counterfactual method. As

noted by Ai et al. [5], this can be done by separating the logging

models from the learnedmodel and, basing the debiasingweights on

the logging function. (vi) Biased PDGD, identical to PDGD except

that we do not apply the debiasing weights. (vii) COLTR [31]. We

compute the Normalized DCG (NDCG) of both the logging policy

and of a policy trained on all available data. Every reported result is

the average of 20 independent runs, figures plot the mean, shaded
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Figure 2: Comparison of counterfactual LTR estimators. Top:
Counterfactual runs (no interventions); Bottom: Online runs
(50 interventions). Results based on an average of 20 runs,
shaded area indicates the 90% confidence bounds.

areas indicate 90% confidence bounds. To facilitate reproducibility,

our implementation will be made publicly available.

8 RESULTS AND DISCUSSION
8.1 Comparison with Counterfactual LTR
To answer the first research question: whether the intervention-
aware estimator leads to higher performance than existing counterfac-
tual LTR estimators when online interventions take place, we consider
Figure 2 which displays the performance of LTR using different

counterfactual estimators.

First we consider the top of Figure 2 which displays performance

in the counterfactual setting where the logging policy is static.
1

We clearly see that the affine estimator converges at a suboptimal

point of convergence, a strong indication of bias. The most probable

cause is that the affine estimator is heavily affected by the pres-

ence of item-selection bias. In contrast, neither the policy-aware

estimator nor the intervention-aware estimator have converged

after 10
8
queries. However, very clearly the intervention-aware

estimator quickly reaches a higher performance. While the theory

guarantees that it will converge at the optimal performance, we

were unable to observe the number of queries it requires to do

so. From the result in the counterfactual setting, we conclude that

by correcting for position-bias, trust-bias, and item-selection bias

the intervention-aware estimator already performs better without

online interventions.

Second, we turn to the bottom of Figure 2 which considers the

online setting where the estimators perform 50 online interventions

during logging. We see that online interventions have a positive

effect on all estimators; leading to a higher performance for the

affine and policy-aware estimators as well. However, interventions

also introduce an enormous amount of variance for the policy-

aware and intervention-oblivious estimators. In stark contrast, the

1
Since under a static logging policy the intervention-aware and the intervention-

oblivious estimators are equivalent, our conclusions apply to both in this setting.
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Figure 3: Effect of online interventions on LTR with the
intervention-aware estimator. Results based on an average
of 20 runs, shaded area indicates the 90% confidence bounds.

amount of variance of the intervention-aware estimator hardly

increases while it learns much faster than the other estimators.

Thus we answer the first research question positively: the inter-

vention-aware estimator leads to higher performance than existing

estimators, moreover, its data-efficiency becomes even greater when

online interventions take place.

8.2 Effect of Interventions
To better understand how much the intervention-aware estimator

benefits from online interventions, we compared its performance

under varying numbers of interventions in Figure 3. It shows both

the performance of the resulting model when training from the

logged data (top), as the performance of the logging policy which

reveals when interventions take place (bottom). When comparing

both graphs, we see that interventions lead to noticeable immediate

improvements in data-efficiency. For instance, when only 5 inter-

ventions take place the intervention-aware estimator needs more

than 20 times the amount of data to reach optimal performance as

with 50 interventions. Despite these speedups there are no large

increases in variance. From these observations, we conclude that

the intervention-aware estimator can effectively and reliably uti-

lize the effect of online interventions for optimization, leading to

enormous increases in data-efficiency.

8.3 Comparison with Online LTR
In order to answer the second research question: whether the inter-
vention-aware estimator leads to performance comparable with exist-
ing online LTR methods, we consider Figure 4 which displays the

performance of two online LTR methods: PDGD and COLTR and

the intervention-aware estimator with 100 online interventions.

First, we notice that COLTR is unable to outperform its initial

policy, moreover, we see its performance drop as the number of

iterations increase. We were unable to find hyper-parameters for

COLTR where this did not occur. It seems likely that COLTR is

unable to deal with trust-bias, thus causing this poor performance.
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Figure 4: Comparison with online LTR methods. Results
based on an average of 20 runs, shaded area indicates the
90% confidence bounds.

However, we note that Zhuang and Zuccon [31] already show

COLTR performs poorly when no bias or noise is present, suggest-

ing that it is perhaps an unstable method overall.

Second, we see that the difference between PDGD and the inter-

vention-aware estimator becomes negligible after 2 · 10
4
queries.

Despite PDGD running fully online, and the intervention-aware

estimator only performing 100 interventions in total. We do note

that PDGD initially outperforms the intervention-aware estima-

tor, thus it appears that PDGD works better with low numbers of

interactions. Additionally, we should also consider the difference

in overhead: while PDGD requires an infrastructure that allows

for fully online learning, the intervention-aware estimator only

requires 100 moments of intervention, yet has comparable perfor-

mance after a short initial period. By comparing Figure 4 to Figure 2,

we see that the intervention-aware estimator is the first counter-

factual LTR estimator that leads to stable performance while being

comparably efficient with online LTR methods.

Thus we answer the second research question positively: besides

an initial period of lower performance, the intervention-aware esti-

mator has comparable performance to online LTR and only requires

100 online interventions to do so. To the best of our knowledge, it

is the first counterfactual LTR method that can achieve this feat.

8.4 Understanding the Effectiveness of PDGD
Now that we concluded that the intervention-aware estimator

reaches performance comparable to PDGD when enough online

interventions take place, the opposite question seems equally in-

teresting: Does PDGD applied counterfactually provide performance
comparable to existing counterfactual LTR methods?

To answer this question, we ran PDGD in a counterfactual way

following Ai et al. [5], both fully counterfactual and with only 100

interventions. The results of these runs are displayed in Figure 5.

Quite surprisingly, the performance of PDGD ran counterfactually

and with 100 interventions, reaches much higher performance than

the intervention-aware estimator without interventions. However,
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Figure 5: Effect of online interventions on PDGD. Results
based on an average of 20 runs, shaded area indicates the 90%
confidence bounds.

after a peak in performance around 10
6
queries, the PDGD perfor-

mance starts to drop. This drop cannot be attributed to overfitting,

since online PDGD does not show the same behavior. Therefore,

we must conclude that PDGD is biased when not ran fully online.

This conclusion does not contradict the existing theory, since Oost-

erhuis and de Rijke [17] only proved it is unbiased w.r.t. pairwise
preferences. In other words, PDGD is not proven to unbiasedly

optimize a ranking metric, thus also not proven to converge on the

optimal model. This drop is particularly unsettling because PDGD

is a continuous learning algorithm: there is no known early stop-

ping method for PDGD. Yet these results show there is a great risk

in running PDGD for too many iterations if it is not applied fully

online. To answer our PDGD question: although PDGD reaches

high performance when run counterfactually and appears to have

great data-efficiency initially, it appears to converge at a suboptimal

biased model. Thus we cannot conclude PDGD is a reliable method

for counterfactual LTR.

To better understand PDGD, we removed its debiasing weights

resulting in the performance shown in Figure 4 (Biased-PDGD).

Clearly, PDGD needs these weights to reach optimal performance.

Similarly, from Figure 5 we see it also needs to be run fully online.

This makes the choice between the intervention-aware estimator

and PDGD complicated: on the one hand, PDGD does not require us

to know the 𝛼 and 𝛽 parameters, unlike the intervention-aware es-

timator; furthermore, PDGD has better initial data-efficiency even

when not run fully online. On the other hand, there are no the-

oretical guarantees for the convergence of PDGD, and we have

observed that not running it fully online can lead to large drops

in performance. It seems the choice ultimately depends on what

guarantees a practitioner prefers.

9 CONCLUSION
In this paper, we have introduced an intervention-aware estimator:

an extension of existing counterfactual approaches that corrects
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for position-bias, trust-bias, and item-selection bias, while also con-

sidering the effect of online interventions. Our results show that

the intervention-aware estimator outperforms existing counterfac-

tual LTR estimators, and greatly benefits from online interventions

in terms of data-efficiency. With only 100 interventions it is able

to reach performance comparable to state-of-the-art online LTR

methods.

With the introduction of the intervention-aware estimator, we

hope to further unify the fields of online LTR and counterfactual

LTR as it appears to be the most reliable method for both settings.

Future work could investigate what kind of interventions work best

for the intervention-aware estimator.
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