
Differentiable Unbiased Online Learning to Rank
Harrie Oosterhuis

University of Amsterdam

oosterhuis@uva.nl

Maarten de Rijke

University of Amsterdam

derijke@uva.nl

ABSTRACT
Online Learning to Rank (OLTR) methods optimize rankers based

on user interactions. State-of-the-art OLTRmethods are built specif-

ically for linear models. Their approaches do not extend well to

non-linear models such as neural networks. We introduce an en-

tirely novel approach to OLTR that constructs a weighted differen-

tiable pairwise loss after each interaction: Pairwise Differentiable

Gradient Descent (PDGD). PDGD breaks away from the traditional

approach that relies on interleaving or multileaving and extensive

sampling of models to estimate gradients. Instead, its gradient is

based on inferring preferences between document pairs from user

clicks and can optimize any differentiable model. We prove that

the gradient of PDGD is unbiased w.r.t. user document pair prefer-

ences. Our experiments on the largest publicly available Learning

to Rank (LTR) datasets show considerable and significant improve-

ments under all levels of interaction noise. PDGD outperforms

existing OLTR methods both in terms of learning speed as well as

final convergence. Furthermore, unlike previous OLTR methods,

PDGD also allows for non-linear models to be optimized effectively.

Our results show that using a neural network leads to even bet-

ter performance at convergence than a linear model. In summary,

PDGD is an efficient and unbiased OLTR approach that provides a

better user experience than previously possible.

CCS CONCEPTS
• Information systems→ Learning to rank;

KEYWORDS
Learning to rank; Online learning; Gradient descent

ACM Reference Format:
Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable Unbiased

Online Learning to Rank. In The 27th ACM International Conference on
Information and Knowledge Management (CIKM ’18), October 22–26, 2018,
Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3269206.3271686

1 INTRODUCTION
In order to benefit from unprecedented volumes of content, users

rely on ranking systems to provide them with the content of their

liking. Learning to Rank (LTR) in Information Retrieval (IR) con-

cerns methods that optimize ranking models so that they order

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00

https://doi.org/10.1145/3269206.3271686

documents according to user preferences. In web search engines

suchmodels combine hundreds of signals to rank web-pages accord-

ing to their relevance to user queries [21]. Similarly, ranking models

are a vital part of recommender systems where there is no explicit

search intent [18]. LTR is also prevalent in settings where other

content is ranked, e.g., videos [5], products [19], conversations [28]

or personal documents [38].

Traditionally, LTR has been applied in the offline setting where a
dataset with annotated query-document pairs is available. Here, the

model is optimized to rank documents according to the relevance an-

notations, which are based on the judgements of human annotators.

Over time the limitations of this supervised approach have become

apparent: annotated sets are expensive and time-consuming to cre-

ate [4, 22]; when personal documents are involved such a dataset

would breach privacy [38]; the relevance of documents to queries

can change over time, like in a news search engine [8, 20]; and

judgements of raters are not necessarily aligned with the actual

users [31].

In order to overcome the issues with annotated datasets, previ-

ous work in LTR has looked into learning from user interactions.

Work along these lines can be divided into approaches that learn
from historical interactions, i.e., in the form of interaction logs [17],

and approaches that learn in an online setting [39]. The latter regard

methods that determine what to display to the user at each impres-

sion, and then immediately learn from observed user interactions

and update their behavior accordingly. This online approach has

the advantage that it does not require an existing ranker of decent

quality, and thus can handle cold-start situations. Additionally, it

is more responsive to the user by updating continuously and in-

stantly, therefore allowing for a better experience. However, it is

important that an online method can handle biases that come with

user behavior: for instance, the observed interactions only take

place with the displayed results, i.e., there is selection bias, and

are more likely to occur with higher ranked items, i.e., there is

position bias. Accordingly, a method should learn user preferences

w.r.t. document relevance, and be robust to the forms of noise and

bias present in the online setting. Overall, the online LTR approach

promises to learn ranking models that are in line with user prefer-

ences, in a responsive matter, reaching good performance from few

interactions, even in cold-start situations.

Despite these highly beneficial properties, previous work in

Online Learning to Rank (OLTR) has only considered linear models

[16, 33, 39] or trivial variants thereof [23]. The reason for this is

that existing work in OLTR has worked with the Dueling Bandit

Gradient Descent (DBGD) algorithm [39] as a basis. While very

influential and effective, we identify two main problems with the

gradient estimation of the DBGD algorithm:

(1) Gradient estimation is based on sampling model variants from

a unit circle around the current model. This concept does not

https://doi.org/10.1145/3269206.3271686
https://doi.org/10.1145/3269206.3271686
https://doi.org/10.1145/3269206.3271686

extend well to non-linear models. Computing rankings for vari-

ants is also computationally costly for larger complex models.

(2) It uses online evaluation methods, i.e., interleaving or multileav-

ing, to determine the gradient direction from the resulting set

of models. However, these evaluation methods are designed for

finding preferences between ranking systems, not (primarily)

for determining how a model should be updated.

As an alternative we introduce Pairwise Differentiable Gradient De-
scent (PDGD), the first unbiased OLTR method that is applicable to

any differentiable ranking model. PDGD infers pairwise document

preferences from user interactions and constructs an unbiased gra-

dient after each user impression. In addition, PDGD does not rely

on sampling models for exploration, but instead models rankings as

probability distributions over documents. Therefore, it allows the

OLTR model to be very certain for specific queries and perform less

exploration in those cases, while being much more explorative in

other, uncertain cases. Our results show that, consequently, PDGD

provides significant and considerable improvements over previous

OLTR methods. This indicates that its gradient estimation is more

in line with the preferences to be learned.

In this work, we answer the following three research questions:

RQ1 Does using PDGD result in significantly better performance

than the current state-of-the-art Multileave Gradient De-

scent?

RQ2 Is the gradient estimation of PDGD unbiased?

RQ3 Is PDGD capable of effectively optimizing different types of

ranking models?

To facilitate replicability and repeatability of our findings, we pro-

vide open source implementations of PDGD and our experiments

under the permissive MIT open-source license.
1

2 RELATEDWORK
2.1 Learning to rank
LTR can be applied to the offline and online setting. In the of-

fline setting LTR is approached as a supervised problem where

the relevance of each query-document pair is known. Most of the

challenges with offline LTR come from obtaining annotations. For

instance, gathering annotations is time-consuming and expensive

[4, 22, 27]. Furthermore, in privacy sensitive-contexts it would be

unethical to annotate items, e.g., for personal emails or documents

[38]. Moreover, for personalization problems annotators are unable

to judge what specific users would prefer. Also, (perceived) rele-

vance chances over time, due to cognitive changes on the user’s

end [37] or due to changes in document collections [8] or the real

world [20]. Finally, annotations are not necessarily aligned with

user satisfaction, as judges may interpret queries differently from

actual users [31]. Consequently, the limitations of offline LTR have

led to an increased interest in alternative approaches to LTR.

2.2 Online learning to rank
OLTR is an attractive alternative as it learns directly from inter-

acting with users [39]. By doing so it attempts to solve the issues

with offline annotations that occur in LTR, as user preferences

1
https://github.com/HarrieO/OnlineLearningToRank

are expected to be better represented by interactions than with of-

fline annotations [30]. Unlike methods in the offline setting, OLTR

algorithms have to simultaneously perform ranking while also op-

timizing their ranking model. In other words, an OLTR algorithm

decides what rankings to display to users, while at the same time

learning from the interactions with the presented rankings. While

the potential of learning in the online setting is great, it has its own

challenges. In particular, the main difficulties of the OLTR task are

bias and noise. Any user interaction that does not reflect their true

preference is considered noise, this happens frequently e.g., clicks

often occur for unexpected reasons [31]. Bias comes in many forms,

for instance, selection bias occurs because interactions only involve

displayed documents [38]. Another common bias is position bias, a

consequence from the fact documents at the top of a ranking are

more likely to be considered [40]. An OLTR method should thus

take into account the biases that affect user behavior while also

being robust to noise, in order to learn the true user preferences.
OLTR methods can be divided into two groups [41]:model-based

methods that learn the best ranked list under some model of user

interaction with the list [29, 35], such as a click model [6], and

model-free algorithms that learn the best ranker in a family of

rankers [13, 39]. Model-based methods may have greater statistical

efficiency but they give up generality, essentially requiring us to

learn a separate model for every query. For the remainder of this

paper, we focus on model-free OLTR methods.

2.3 DBGD and beyond
State-of-the-art (model-free) OLTR approaches learn user prefer-

ences by approaching optimization as a dueling bandit problem [39].

They estimate the gradient of the model w.r.t. user satisfaction by

comparing the current model to sampled variations of the model.

The original DBGD algorithm [39] uses interleaving methods to

make these comparisons: at each interaction the rankings of two

rankers are combined to create a single result list. From a large

number of clicks on such a combined result list a user preference

between the two rankers can reliably be inferred [15]. Conversely,

DBGD compares its current ranking model to a different slight vari-

ation at each impression. Then, if a click is indicative of a preference

for the variation, the current model is slightly updated towards it.

Accordingly, the model of DBGD will continuously update itself

and oscillate towards an inferred optimum.

Other work in OLTR has used DBGD as a basis and extended

upon it. Notably, Hofmann et al. [13] have proposed a method that

guides exploration by only sampling variations that seem promising

from historical interaction data. Unfortunately, while this approach

provides faster initial learning, the historical data introduces bias

which leads to the quality of the ranking model to steadily de-

crease over time [25]. Alternatively, Schuth et al. [33] introduced

Multileave Gradient Descent (MGD), this extension replaced the

interleaving of DBGD with multileaving methods. In turn the mul-

tileaving paradigm is an extension of interleaving where a set of

rankers are compared efficiently [24, 32, 34]. Conversely, multileav-

ing methods can combine the rankings of more than two rankers

and thus infer preferences over a set of rankers from a single click.

MGD uses this property to estimate the gradient more effectively

by comparing a large number of model variations per user impres-

sion [25, 33]. As a result, MGD requires fewer user interactions

to converge on the same level of performance as DBGD. Another

alternative approach was considered by Hofmann et al. [14], who

inject the ranking from the current model with randomly sampled

documents. Then, after each user impression, a pairwise loss is

constructed from inferred preferences between documents. This

pairwise approach was not found to be more effective than DBGD.

Quite remarkably, all existing work in OLTR has only considered

linear models. Recently, Oosterhuis and de Rijke [23] recognized

that a tradeoff unique to OLTR arises when choosing models. High

capacity models such as neural networks [2] require more data than

simpler models. On the one hand, this means that high capacity

models need more user interactions to reach the same level of

performance, thus giving a worse initial user experience. On the

other hand, high capacity models are capable of finding better

optima, thus lead to better final convergence and a better long-term

user experience. This dilemma is named the speed-quality tradeoff,

and as a solution a cascade of models can be optimized: combining

the initial learning speed of a simple model with the convergence of

a complex one. But there are more reasons why non-linear models

have so far been absent from OLTR. Importantly, the DBGD was

designed for linear models from the ground up; relying on a unit

circle to sample model variants and averaging models to estimate

the gradient. Furthermore, the computational cost of maintaining

an extensive set of model variants for large and complex models

makes this approach very impractical.

Our contribution over the work listed above is an OLTR method

that is not an extension of DBGD, instead it computes differentiable

pairwise loss to update its model. Unlike the existing pairwise

approach, our loss function is unbiased and our exploration is per-

formed using the model’s confidence over documents. Finally, we

also show that this is the first OLTR method to effectively optimize

neural networks in the online setting.

3 METHOD
In this section we introduce a novel OLTR algorithm: PDGD. First,

Section 3.1 describes PDGD in detail, before Section 3.2 formalizes

and proves the unbiasedness of themethod. Table 1 lists the notation

we use.

3.1 Pairwise Differentiable Gradient Descent
PDGD revolves around optimizing a ranking model fθ (d) that takes
a feature representation of a query-document pair d as input and

outputs a score. The aim of the algorithm is to find the parameters

θ so that sorting the documents by their scores in descending or-

der provides the most optimal rankings. Because this is an online

algorithm, the method must first decide what ranking to display

to the user, then after the user has interacted with the displayed

ranking, it may update θ accordingly.

Unlike previous OLTR approaches, PDGD does not rely on any

online evaluation methods. Instead, a Plackett-Luce (PL) model is

applied to the ranking function fθ (·) resulting in a distribution over

the document set D:

P(d |D) =
efθ (d)∑

d ′∈D efθ (d
′)
. (1)

Table 1: Main notation used in the paper.

Notation Description

d , dk , dl document

d feature representation of a query-document pair

D set of documents

R ranked list

R∗ the reversed pair ranking R∗(dk ,dl ,R)
Ri document placed at rank i
ρ preference pair weighting function

θ parameters of the ranking model

fθ (·) ranking model with parameters θ
f (dk) ranking score for a document from model

click(d) a click on document d
dk =rel dl two documents equally preferred by users

dk >rel dl a user preference between two documents

dk >c dl document preference inferred from clicks

document 1

document 2

document 3

document 4

document 5

(a)

document 3

document 2

document 1

document 4

document 5

(b)
Figure 1: Left: a click on a document ranking R and the in-
ferred preferences of d3 over {d1,d2,d4}. Right: the reversed
pair ranking R∗(d1,d3,R) for the document pair d1 and d3.

A ranking R to display to the user is then created by sampling from

the distributionk times, where after each placement the distribution

is renormalized to prevent duplicate placements. PL models have

been used before in LTR. For instance, the ListNet method [3]

optimizes such a model in the offline setting. With Ri denoting
the document at position i , the probability of the ranking R then

becomes:

P(R |D) =
k∏
i=1

P(Ri |D \ {R1, . . . ,Ri−1}). (2)

After the ranking R has been displayed to the user, they have the

option to interact with it. The user may choose to click on some

(or none) of the documents. Based on these clicks, PDGD will infer

preferences between the displayed documents. We assume that

clicked documents are preferred over observed unclicked docu-

ments. However, to the algorithm it is unknown which unclicked

documents the user has considered. As a solution, PDGD relies on

the assumption that every document preceding a clicked document

and the first subsequent unclicked document was observed, as il-

lustrated in Figure 1a. This preference assumption has been proven

useful in IR before, for instance in pairwise LTR on click logs [17]

and recently in online evaluation [24]. We will denote preferences

between documents inferred from clicks as: dk >c dl where dk is

preferred over dl .

Algorithm 1 Pairwise Differentiable Gradient Descent (PDGD).

1: Input: initial weights: θ1; scoring function: f ; learning rate η.
2: for t ← 1 . . .∞ do
3: qt ← receive_query(t) // obtain a query from a user
4: Dt ← preselect_documents(qt) // preselect documents for query
5: Rt ← sample_list(fθt ,Dt) // sample list according to Eq. 1
6: ct ← receive_clicks(Rt) // show result list to the user
7: ∇fθt ← 0 // initialize gradient
8: for dk >c dl ∈ ct do
9: w ← ρ(dk ,dl ,R,D) // initialize pair weight (Eq. 5)

10: w ← w e fθt (dk)e fθt (dl)

(e fθt (dk)+e fθt (dl))2
// pair gradient (Eq. 4)

11: ∇fθt ← ∇θt +w(f
′
θt
(dk) − f ′θt

(dl)) // model gradient (Eq. 4)

12: θt+1 ← θt + η∇fθt // update the ranking model

Then θ is updated by optimizing pairwise probabilities over the

preference pairs; for each inferred document preference dk >c dl ,
the probability that the preferred document dk is sampled before

dl is sampled is increased [36]:

P(dk ≻ dk) =
P(dk |D)

P(dk |D) + P(dl |D)
=

ef (dk)

ef (dk) + ef (dl)
. (3)

We have chosen for pairwise optimization over listwise optimiza-

tion because a pairwise method can be made unbiased by reweigh-

ing preference pairs. To do this we introduce the weighting function

ρ(dk ,dl ,R,D) and estimate the gradient of the user preferences by

the weighted sum:

∇fθ (·)

≈
∑

dk>cdl

ρ(dk ,dl ,R,D) [∇P(dk ≻ dl)]

=
∑

dk>cdl

ρ(dk ,dl ,R,D)
efθ (dk)efθ (dl)

(efθ (dk) + efθ (dl))2

(
f ′θ (dk) − f ′θ (dl)

)
.

(4)

The ρ function is based on the reversed pair ranking R∗(dk ,dl ,R),
which is the same ranking as R with the position of dk and dl
swapped. An example of a reversed pair ranking is illustrated in

Figure 1b. The idea is that if a preference for dk >c dl is inferred
in R and both documents are equally relevant, then the reverse

preference dl >c dk is equally likely to be inferred in R∗(dk ,dl ,R).
The ρ function reweighs the found preferences to the ratio between

the probabilities of R or R∗(dk ,dl ,R) occurring:

ρ(dk ,dl ,R,D) =
P(R∗(dk ,dl ,R)|D)

P(R |D) + P(R∗(dk ,dl ,R)|D)
. (5)

This procedure has similarities with importance sampling [26];

however, we found that reweighing according to the ratio between

R and R∗ provides a more stable performance, since it produces

less extreme values. Section 3.2 details exactly how ρ creates an

unbiased gradient.

Algorithm 1 describes the PDGD method step by step: Given the

initial parameters θ1 and a differentiable scoring function f (Line 1),

the method waits for a user-issued query qt to arrive (Line 3). Then
the preselected set of documentsDt for the query is fetched (Line 4),

in our experiments these preselections are given in the LTR datasets

that we use. A result list R is sampled from the current model

(Line 5 and Equation 1) and displayed to the user. The clicks from

the user are logged (Line 6) and preferences between the displayed

documents inferred (Line 8). The gradient is initialized (Line 7), and

for each pair document pair dk , dl such that dk >c dl , the weight
ρ(dk ,dl ,R,D) is calculated (Line 9 and Equation 5), followed by the

gradient for the pair probability (Line 10 and Equation 4). Finally,

the gradient for the scoring function f is weighted and added to the

gradient (Line 11), resulting in the estimated gradient. The model

is then updated by taking an η step in the direction of the gradient

(Line 12). The algorithm again waits for the next query to arrive

and thus the process continues indefinitely.

PDGD has some notable advantages over Multileave Gradient

Descent (MGD) [33]. Firstly, it explicitly models uncertainty over

the documents per query, thus PDGD is able to have high confi-

dence in its ranking for one query, while being completely uncertain

for another query. As a result, it will vary the amount of exploration

per query, allowing it to avoid exploration in cases where it is not

required and focussing on areas where it can improve. In contrast,

MGD does not explicitly model confidence: its degree of exploration

is only affected by the norm of its linear model [23]. Consequently,

MGD is unable to vary exploration per query nor is there a way to

directly measure its level of confidence. Secondly, PDGD works for

any differentiable scoring function f and does not rely on sampling

model variants. Conversely, MGD is based around sampling from

the unit sphere around a model; this approach is very ineffective

for non-linear models. Additionally, sampling large models and

producing rankings for them can be very computationally expen-

sive. Besides these beneficial properties, our experimental results

in Section 5 show that PDGD achieves significantly higher levels

of performance than MGD and other previous methods.

3.2 Unbiased gradient estimation
The previous section introduced PDGD; this section answers RQ2:
is the gradient estimation of PDGD unbiased?

First, Theorem 3.1 will provide a definition of unbiasedness w.r.t.

user document pair preferences. Then we state the assumptions we

make about user behavior and use them to prove Theorem 3.1.

Theorem 3.1. The expected estimated gradient of PDGD can be
written as a weighted sum, with a unique weight αk ,l for each possible
document pair dk and dl in the document collection D:

E[∇fθ (·)] =
∑

dk ,dl ∈D

αk ,l (f
′
θt
(dk) − f ′θt

(dl)). (6)

The signs of the weights αk ,l adhere to user preferences between
documents. That is, if there is no preference:

dk =r el dl ⇔ αk ,l = 0; (7)

if dk is preferred over dl :

dk >r el dl ⇔ αk ,l > 0; (8)

and if dl is preferred over dk :

dk <r el dl ⇔ αk ,l < 0. (9)

Therefore, in expectation PDGD will perform updates that adhere to
the preferences between the documents in every possible document
pair.

Assumptions. To prove Theorem 3.1 the following assumptions

about user behavior will be used:

Assumption 1. We assume that clicks from a user are position biased

and conditioned on the relevance of the current document and the

previously considered documents. For a click on a document in

ranking R at position i the probability can be written as:

P(click(Ri)|{R0, . . . ,Ri−1,Ri+1}). (10)

For ease of notation, we will denote the set of “other documents”

as {. . .} from here on.

Assumption 2. If there is no user preference between two docu-

ments dk ,dl , denoted by dk =rel dl , we assume that each is equally

likely to be clicked given the same context:

dk =rel dl ⇒ P(click(dk)|{. . .}) = P(click(dl)|{. . .}). (11)

Assumption 3. If a document in the set of documents being con-

sidered is replaced with an equally preferred document the click

probability is not affected:

dk =rel dl ⇒ P(click(Ri)|{. . . ,dk }) = P(click(Ri)|{. . . ,dl }). (12)

Assumption 4. Similarly, given the same context if one document

is preferred over another, then it is more likely to be clicked:

dk >rel dl ⇒ P(click(dk)|{. . .}) > P(click(dl)|{. . .}). (13)

Assumption 5. Lastly, for any pair dk >rel dl , the considered doc-

ument set {. . . ,dk } and the same set with dk replaced {. . . ,dl }.
We assume that the preferred dk in the context of {. . . ,dl } is more

likely to be clicked than dl in the context of {. . . ,dk }:

dk >rel dl ⇒ P(click(dk)|{. . . ,dk }) > P(click(dl)|{. . . ,dl }). (14)

These are all the assumptions we make about the user. With these

assumptions, we can proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We denote the probability of inferring

the preference of dk over dl in ranking R as P(dk >c dl |R). Then
the expected gradient ∇fθ (·) of PDGD can be written as:

E[∇fθ (·)] =
∑
R

∑
dk ,dl ∈D

[
P(dk >c dl |R) · P(R) ·

ρ(dk ,dl ,R,D) · [∇P(dk ≻ dl)]

]
.

(15)

We will rewrite this expectation using the symmetry property of

the reversed pair ranking:

Rn = R∗(dk ,dl ,R
m) ⇔ Rm = R∗(dk ,dl ,R

n). (16)

First, we define a weight ωR
k ,l for every document pair dk ,dl and

ranking R so that:

ωR
k ,l = P(R)ρ(dk ,dl ,R,D)

=
P(R |D)P(R∗(dk ,dl ,R)|D)

P(R |D) + P(R∗(dk ,dl ,R)|D)
.

(17)

Therefore, the weight for the reversed pair ranking is equal:

ω
R∗(dk ,dl ,R)
k ,l = P(R∗(dk ,dl ,R))ρ(dk ,dl ,R

∗(dk ,dl ,R),D)

= ωR
k ,l .

(18)

Then, using the symmetry of Equation 3 we see that:

∇P(dk ≻ dl) = −∇P(dl ≻ dk). (19)

Thus, with R∗ as a shorthand for R∗(dk ,dl ,R), the expectation can

be rewritten as:

E[∇fθ (·)] =∑
dk ,dl ∈D

∑
R

ωR
i , j

2

(
P(dk >c dl |R) − P(dl >c dk |R

∗)

)
·[

∇P(dk ≻ dl)

]
,

(20)

proving that the expected gradient matches the form of Equation 6.

Then to prove that Equations 7, 8, and 9 are correct we will show

that:

dk =rel dl ⇒ P(dk >c dl |R) = P(dl >c dk |R
∗), (21)

dk >rel dl ⇒ P(dk >c dl |R) > P(dl >c dk |R
∗), (22)

dk <rel dl ⇒ P(dk >c dl |R) < P(dl >c dk |R
∗). (23)

If a preferenceRi >c Rj is inferred then there are only three possible
cases based on the positions:

(1) The clicked document succeeds the unclicked document by

more than one position: i + 1 > j.
(2) The clicked document precedes the unclicked document by

more than one position: i − 1 < j.
(3) The clicked document is one position before or after the

unclicked document: i = j + 1 ∨ i = j − 1.

In the first case the clicked document succeeds the other by more

than one position, the probability of an inferred preference is then:

i + 1 > j ⇒ P(Ri >c Rj |R) =

P(ci |Ri , {. . . ,Rj }) ·

(1 − P(cj |Rj , {. . .})).
(24)

Combining Assumption 2 and 3 with Equation 24 proves Equa-

tion 21 for this case. Furthermore, combining Assumption 4 and 5

with Equation 24 proves Equations 22 and 23 for this case as well.

Then the second case is when the clicked document appearsmore

than one position before the unclicked document, the probability

of the inferred preference is then:

i + 1 < j ⇒ P(Ri >c Rj |R) =

P(ci |Ri , {. . .}) ·

(1 − P(cj |Rj , {. . . ,Ri })) ·

P(crem),

(25)

where P(crem) denotes the probability of an additional click that is

required to add Rj to the inferred observed documents. First, due

to Assumption 1 this probability will be the same for R and R∗:

P(crem |Ri ,Rj ,R) = P(crem |Ri ,Rj ,R∗). (26)

Combining Assumption 2 and 3 with Equation 25 also proves Equa-

tion 21 for this case. Furthermore, combining Assumption 4 and 5

with Equation 25 also proves Equation 22 and 23 for this case as

well.

Table 2: Instantiations of Cascading Click Models [10] as
used for simulating user behavior in experiments.

P(click = 1 | R) P(stop = 1 | click = 1,R)

R 0 1 2 3 4 0 1 2 3 4

perf 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0

nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9

inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Lastly, in the third case the clicked document is one position

before or after the other document, the probability of the inferred

preference is then:

i = j + 1 ∨ i = j − 1⇒ P(Ri >c Rj |R) =

P(ci |Ri , {. . . ,Rj }) ·

(1 − P(cj |Rj , {. . . ,Ri })).
(27)

Combining Assumption 3 with Equation 27 proves Equation 21 for

this case as well. Then, combining Assumption 5 with Equation 27

also proves Equation 22 and 23 for this case. □

This concludes our proof of the unbiasedness of PDGD. Hence,

we answer RQ2 positively: the gradient estimation of PDGD is

unbiased. We have shown that the expected gradient is in line with

user preferences between document pairs.

4 EXPERIMENTS
In this section we detail the experiments that were performed to

answer the research questions in Section 1.

4.1 Datasets
Our experiments are performed over five publicly available LTR

datasets; we have selected three large labelling sets from commer-

cial search engines and two smaller research datasets. Every dataset

consists of a set of queries with each query having a corresponding

preselected document set. The exact content of the queries and

documents are unknown, each query is represented only by an

identifier, but each query-document pair has a feature representa-

tion and relevance label. Depending on the dataset, the relevance

labels are graded differently; we have purposefully chosen datasets

that have at least two grades of relevance. Each dataset is divided

in training, validation and test partitions.

The oldest datasets we use are MQ2007 and MQ2008 [27] which
are based on the Million Query Track [1] and consist of 1,700 and

800 queries. They use representations of 46 features that encode

ranking models such as TF.IDF, BM25, Language Modeling, Page-

Rank, and HITS on different parts of the documents. They are

divided into five folds and the labels are on a three-grade scale from

not relevant (0) to very relevant (2).
In 2010Microsoft released theMSLR-WEB30k andMLSR-WEB10K

datasets [27], which are both created from a retired labelling set

of a commercial web search engine (Bing). The former contains

30,000 queries with each query having 125 assessed documents on

average, query-document pairs are encoded in 136 features, The

latter is a subsampling of 10,000 queries from the former dataset.

For practical reasons only MLSR-WEB10K was used for this paper.

Also in 2010 Yahoo! released an LTR dataset [4]. It consists of 29,921

queries and 709,877 documents encoded in 700 features, all sampled

from query logs of the Yahoo! search engine. Finally, in 2016 a LTR

dataset released by the Istella search engine [7]. It is the largest

with 33,118 queries, an average of 315 documents per query and

220 features. These three commercial datasets all label relevance

on a five-grade scale: from not relevant (0) to perfectly relevant (4).

4.2 Simulating user behavior
For simulating users we follow the standard setup for OLTR simula-

tions [11, 14, 25, 33, 42]. First, queries issued by users are simulated

by uniformly sampling from the static dataset. Then the algorithm

determines the result list of documents to display. User interac-

tions with the displayed list are then simulated using a cascade click
model [6, 10]. This models a user who goes through the documents

one at a time in the displayed order. At each document, the user

decides whether to click it or not, modelled as a probability condi-

tioned on the relevance label R: P(click = 1 | R). After a click has

occurred, the user’s information needmay be satisfied and theymay

then stop considering documents. The probability of a user stop-

ping after a click is modelled as P(stop = 1 | click = 1,R). For our
experiments κ = 10 documents are displayed at each impression.

The three instantiations of cascade click models that we used

are listed in Table 2. First, a perfect user is modelled who considers

every document and solely clicks on all relevant documents. The

second models a user with a navigational task, where a single

highly relevant document is searched. Finally, an informational
instantiation models a user without a specific information need,

and thus typically clicks on many documents. These models have

varying levels of noise, as each behavior depends on the relevance

labels of documents with a different degree.

4.3 Experimental runs
For our experiments three baselines are used. First, MGD with

Probabilistic Multileaving [25]; this is the highest performing exist-

ing OLTR method [23, 25]. For this work n = 49 candidates were

sampled per iteration from the unit sphere with δ = 1; updates

are performed with η = 0.01 and zero initialization was used. Ad-

ditionally, DBGD is used for comparison as it is one of the most

influential methods, it was run with the same parameters except

that only n = 1 candidate is sampled per iteration. Furthermore,

we also let DBGD optimize a single hidden-layer neural network

with 64 hidden nodes and sigmoid activation functions with Xavier
initialization [9]. These parameters were also found most effective

in previous work [14, 25, 33, 39].

Additionally, the pairwise method introduced by Hofmann et al.

[14] is used as a baseline. Despite not showing significant improve-

ments over DBGD in the past [14], the comparison with PDGD

is interesting because they both estimate gradients from pairwise

preferences. For this baseline, η = 0.01 and ϵ = 0.8 is used; these

parameters are chosen to maximize the performance at conver-

gence [14].

Runs with PDGD are performed with both a linear and neural

ranking model. For the linear ranking model η = 0.1 and zero ini-

tialization was used. The neural network has the same parameters

as the one optimized by DBGD, except for η = 0.1.

Table 3: Offline performance (NDCG) for different instantiations ofCCM (Table 2). The standard deviation is shown in brackets,
bold values indicate the highest performance per dataset and clickmodel, significant improvements over the DBGD,MGD and
pairwise baselines are indicated by △ (p < 0.05) and ▲ (p < 0.01), no losses were measured.

MQ2007 MQ2008 MSLR-WEB10k Yahoo istella

perfect

DBGD (linear) 0.483 (0.023) 0.683 (0.024) 0.331 (0.010) 0.684 (0.010) 0.448 (0.014)

DBGD (neural) 0.463 (0.025) 0.670 (0.026) 0.319 (0.014) 0.676 (0.016) 0.429 (0.017)

MGD (linear) 0.494 (0.022) 0.690 (0.019) 0.333 (0.003) 0.714 (0.002) 0.496 (0.004)

Pairwise (linear) 0.479 (0.022) 0.674 (0.017) 0.315 (0.003) 0.709 (0.001) 0.252 (0.002)

PDGD (linear) 0.511 (0.017) ▲ ▲ ▲ ▲ 0.699 (0.024) ▲ ▲ ▲ ▲ 0.427 (0.005)
▲ ▲ ▲ ▲ 0.736 (0.004) ▲ ▲ ▲ ▲ 0.573 (0.004)

▲ ▲ ▲ ▲

PDGD (neural) 0.509 (0.020)
▲ ▲ ▲ ▲ 0.698 (0.024)

▲ ▲ ▲ ▲ 0.430 (0.006) ▲ ▲ ▲ ▲ 0.733 (0.005)
▲ ▲ ▲ ▲ 0.575 (0.006) ▲ ▲ ▲ ▲

navigational

DBGD (linear) 0.461 (0.025) 0.670 (0.025) 0.319 (0.011) 0.661 (0.023) 0.401 (0.015)

DBGD (neural) 0.430 (0.033) 0.646 (0.031) 0.304 (0.019) 0.649 (0.029) 0.382 (0.024)

MGD (linear) 0.426 (0.020) 0.662 (0.015) 0.321 (0.003) 0.706 (0.009) 0.405 (0.004)

Pairwise (linear) 0.476 (0.022) 0.677 (0.018) 0.312 (0.003) 0.696 (0.004) 0.209 (0.002)

PDGD (linear) 0.496 (0.019) ▲ ▲ ▲ ▲ 0.695 (0.021) ▲ ▲ ▲ ▲ 0.406 (0.015) ▲ ▲ ▲ ▲ 0.725 (0.005) ▲ ▲ ▲ ▲ 0.540 (0.008) ▲ ▲ ▲ ▲

PDGD (neural) 0.493 (0.020)
▲ ▲ ▲ ▲ 0.692 (0.019)

▲ ▲ ▲ ▲ 0.386 (0.019)
▲ ▲ ▲ ▲ 0.722 (0.006)

▲ ▲ ▲ ▲ 0.532 (0.011)
▲ ▲ ▲ ▲

informational

DBGD (linear) 0.411 (0.036) 0.631 (0.036) 0.299 (0.017) 0.620 (0.035) 0.360 (0.028)

DBGD (neural) 0.383 (0.047) 0.595 (0.053) 0.276 (0.033) 0.603 (0.040) 0.316 (0.057)

MGD (linear) 0.406 (0.021) 0.647 (0.036) 0.318 (0.003) 0.676 (0.043) 0.387 (0.005)

Pairwise (linear) 0.478 (0.022) 0.677 (0.018) 0.311 (0.003) 0.690 (0.006) 0.183 (0.001)

PDGD (linear) 0.487 (0.021) ▲ ▲ ▲ ▲ 0.690 (0.022) ▲ ▲ ▲ ▲ 0.368 (0.025) ▲ ▲ ▲ ▲ 0.713 (0.008) ▲ ▲ ▲ ▲ 0.532 (0.010) ▲ ▲ ▲ ▲

PDGD (neural) 0.483 (0.022)
▲ ▲ ▲ 0.686 (0.022)

▲ ▲ ▲ ▲ 0.355 (0.021)
▲ ▲ ▲ ▲ 0.709 (0.009)

▲ ▲ ▲ ▲ 0.525 (0.012)
▲ ▲ ▲ ▲

4.4 Metrics and tests
Two aspects of performance are evaluated seperately: the final

convergence and the ranking quality during training.

Final convergence is addressed in offline performance which is

the average NDCG@10 of the ranking model over the queries in the

held-out test-set. The offline performance is measured after 10,000

impressions at which point most ranking models have reached

convergence. The user experience during optimization should be

considered as well, since deterring users during training would

compromise the goal of OLTR. To address this aspect of evaluation

online performance has been introduced [12]; it is the cumulative

discounted NDCG@10 of the rankings displayed during training.

For T sequential queries with Rt as the ranking displayed to the

user at timestep t , this is:

Online_Performance =
T∑
t=1

NDCG(Rt) · γ (t−1). (28)

This metric models the expected reward a user receives with a γ
probability that the user stops searching after each query. We follow

previous work [23, 25] by choosing a discount factor of γ = 0.9995,

consequently queries beyond the horizon of 10,000 queries have a

less than 1% impact.

Lastly, all experimental runs are repeated 125 times, spread

evenly over the available dataset folds. Results are averaged and a

two-tailed Student’s t-test is used for significance testing. In total,

our results are based on more than 90,000,000 user impressions.

5 RESULTS AND ANALYSIS
Our main results are displayed in Table 3 and Table 4, showing

the offline and online performance of all methods, respectively.

Additionally, Figure 2 displays the offline performance on theMSLR-

WEB10k dataset over 30,000 impressions and Figure 3 over 1,000,000

impressions. We use these results to answer RQ1 – whether PDGD

provides significant improvements over existing OLTR methods

– and RQ3 – whether PDGD is successful at optimizing different

types of ranking models.

5.1 Convergence of ranking models
First, we consider the offline performance after 10,000 impressions

as reported in Table 3. We see that the DBGD and MGD baselines

reach similar levels of performance, withmarginal differences at low

levels of noise. Our results seem to suggest that MGD provides an

efficient alternative to DBGD that requires fewer user interactions

and is more robust to noise. However, MGD does not appear to have

an improved point of convergence over DBGD, Figure 2 further

confirms this conclusion. Additionally, Table 3 and Figure 3 reveal

thats DBGD is incapable of training its neural network so that it

improves over the linear model, even after 1,000,000 impressions.

Alternatively, the pairwise baseline displays different behavior,

providing improvements over DBGD andMGD onmost datasets un-

der all levels of noise. However, on the istella dataset large decreases

in performance are observed. Thus it is unclear if this method

provides a reliable alternative to DBGD or MGD in terms of con-

vergence. Figure 2 also reveals that it converges within several

0 5000 10000 15000 20000 25000 300000.2

0.3

0.4

0.5

ND
CG

perfect

DBGD (linear)
DBGD (neural)

MGD (linear)
Pairwise (linear)

PDGD (linear)
PDGD (neural)

0 5000 10000 15000 20000 25000 300000.2

0.3

0.4

0.5

ND
CG

navigational

0 5000 10000 15000 20000 25000 30000
impressions

0.2

0.3

0.4

0.5

ND
CG

informational

Figure 2: Offline performance (NDCG) on the MSLR-
WEB10k dataset under three different click models, the
shaded areas indicate the standard deviation.

hundred impressions, while DBGD or MGD continue to learn and

considerably improve over the total 30,000 impressions. Because

the pairwise baseline also converges sub-optimally under the per-

fect click model, we do not attribute its suboptimal convergence to

noise but to the method being biased.

Conversely, Table 3 shows that PDGD reaches significantly higher

performance than all the baselines within 10,000 impressions. Im-

provements are observed on all datasets under all levels of noise,

especially on the commercial datasets where increases up to 0.17

NDCG are observed. Our results also show that PDGD learns faster

than the baselines; at all time-steps the offline performance of

PDGD is at least as good or better than all other methods, across

all datasets. This increased learning speed can also be observed in

Figure 2. Besides the faster learning it also appears as if PDGD con-

verges at a better optimum than DBGD or MGD. However, Figure 2

reveals that DBGD does not fully converge within 30,000 itera-

tions. Therefore, we performed an additional experiment where

PDGD and DBGD optimize models over 1,000,000 impressions on

the MSLR-WEB10k dataset, as displayed in Figure 3. Clearly the

performance of DBGD plateaus at a considerably lower level than

that of PDGD. Therefore, we conclude that PDGD indeed has an

improved point of final convergence compared to DBGD and MGD.

Finally, Figure 2 and 3 also shows the behavior predicted by

the speed-quality tradeoff [23]: a more complex model will have

a worse initial performance but a better final convergence. Here,

0 200000 400000 600000 800000 10000000.2

0.3

0.4

0.5

ND
CG

perfect

DBGD (linear)
DBGD (neural)

PDGD (linear)
PDGD (neural)

Pairwise (linear)

0 200000 400000 600000 800000 10000000.2

0.3

0.4

0.5

ND
CG

navigational

0 200000 400000 600000 800000 1000000
impressions

0.2

0.3

0.4

0.5

ND
CG

informational

Figure 3: Long-term offline performance (NDCG) on the
MSLR-WEB10k dataset under three clickmodels, the shaded
areas indicate the standard deviation.

we see that depending on the level of interaction noise the neural

model requires 3,000 to 20,000 iterations to match the performance

of a linear model. However, in the long run the neural model does

converge at a significantly better point of convergence. Thus, we

conclude that PDGD is capable of effectively optimizing different

kinds of models in terms of offline performance.

In conclusion, our results show that PDGD learns faster than

existing OLTRmethods while also converging at significantly better

levels of performance.

5.2 User experience during training
Besides the ranking models learned by the OLTR methods, we also

consider the user experience during optimization. Table 4 shows

that the online performance of DBGD and MGD are close to each

other; MGD has a higher online performance due to its faster learn-

ing speed [25, 33]. In contrast, the pairwise baseline has a sub-

stantially lower online performance in all cases. Because Figure 2

shows that the learning speed of the pairwise baseline sometimes

matches that of DBGD and MGD, we attribute this difference to

the exploration strategy it uses. Namely, the random insertion of

uniformly sampled documents by this baseline appears to have a

strong negative effect on the user experience.

The linear model optimized by PDGD has significant improve-

ments over all baseline methods on all datasets and under all click

models. This improvement indicates that the exploration of PDGD,

Table 4: Online performance (Discounted Cumulative NDCG, Section 4.4) for different instantiations of CCM (Table 2). The
standard deviation is shown in brackets, bold values indicate the highest performance per dataset and click model, significant
improvements and losses over the DBGD, MGD and pairwise baselines are indicated by △ (p < 0.05) and ▲ (p < 0.01) and by ▽

and ▼, respectively.

MQ2007 MQ2008 MSLR-WEB10k Yahoo istella

perfect

DBGD (linear) 675.7 (21.8) 843.6 (40.8) 533.6 (15.6) 1159.3 (31.6) 589.9 (19.2)

DBGD (neural) 602.7 (58.1) 776.9 (67.4) 481.2 (53.0) 1135.7 (41.3) 494.3 (60.5)

MGD (linear) 689.6 (15.3) 858.6 (40.6) 558.7 (6.4) 1203.9 (9.9) 670.9 (8.6)

Pairwise (linear) 458.4 (13.3) 616.6 (25.8) 345.3 (4.6) 1027.2 (9.2) 64.5 (2.1)

PDGD (linear) 797.3 (17.3) ▲ ▲ ▲ ▲ 959.7 (43.4) ▲ ▲ ▲ ▲ 691.4 (12.3) ▲ ▲ ▲ ▲ 1360.3 (10.8) ▲ ▲ ▲ ▲ 957.5 (9.4) ▲ ▲ ▲ ▲

PDGD (neural) 743.7 (18.8)
▲ ▲ ▲ ▲ 925.4 (43.3)

▲ ▲ ▲ ▲ 619.2 (13.6)
▲ ▲ ▲ ▲ 1319.6 (10.1)

▲ ▲ ▲ ▲ 834.0 (22.2)
▲ ▲ ▲ ▲

navigational

DBGD (linear) 638.6 (29.7) 816.9 (42.0) 508.2 (21.6) 1129.9 (32.2) 538.2 (29.0)

DBGD (neural) 573.7 (68.4) 740.3 (69.7) 465.8 (52.0) 1116.0 (45.7) 414.3 (96.2)

MGD (linear) 635.9 (14.7) 824.5 (34.0) 538.1 (7.6) 1181.7 (20.0) 593.2 (9.7)

Pairwise (linear) 459.9 (12.9) 618.6 (25.2) 347.3 (5.4) 1031.2 (9.0) 72.6 (2.2)

PDGD (linear) 703.0 (17.9) ▲ ▲ ▲ ▲ 903.1 (40.7) ▲ ▲ ▲ ▲ 578.1 (16.0) ▲ ▲ ▲ ▲ 1298.4 (33.4) ▲ ▲ ▲ ▲ 704.1 (33.5) ▲ ▲ ▲ ▲

PDGD (neural) 560.9 (14.6)
▼ ▽ ▼ ▲ 788.7 (38.5)

▼ ▲ ▼ ▲ 448.1 (12.3)
▼ ▼ ▼ ▲ 1176.1 (17.0)

▲ ▲ ▽ ▲ 390.2 (35.1)
▼ ▼ ▼ ▲

informational

DBGD (linear) 584.2 (41.1) 757.4 (56.9) 477.2 (32.2) 1110.0 (37.0) 436.8 (57.4)

DBGD (neural) 550.8 (75.7) 720.9 (79.0) 444.7 (60.9) 1091.2 (48.6) 322.9 (121.0)

MGD (linear) 618.8 (21.7) 815.1 (44.5) 540.0 (7.7) 1159.1 (40.0) 581.8 (10.7)

Pairwise (linear) 462.6 (14.4) 619.6 (25.0) 349.7 (6.6) 1034.1 (9.0) 77.0 (2.4)

PDGD (linear) 704.8 (30.5) ▲ ▲ ▲ ▲ 907.9 (42.0) ▲ ▲ ▲ ▲ 567.3 (36.5) ▲ ▲ ▲ ▲ 1266.7 (50.0) ▲ ▲ ▲ ▲ 731.5 (80.0) ▲ ▲ ▲ ▲

PDGD (neural) 594.6 (23.0)
△ ▲ ▼ ▲ 818.3 (39.6)

▲ ▲ ▲ 470.1 (19.4)
▽ ▲ ▼ ▲ 1178.1 (22.8)

▲ ▲ ▲ ▲ 484.3 (64.8)
▲ ▲ ▼ ▲

which uses a distribution over documents, does not lead to a worse

user experience. In conclusion, PDGD provides a considerably bet-

ter user experience than all existing methods.

Finally, we also discuss the performance of the neural models

optimized by PDGD and DBGD. This model has both significant

increases and decreases in online performance varying per dataset

and amount of interaction noise. The decrease in user experience is

predicted by the speed-quality tradeoff [23], as Figure 2 also shows,

the neural model has a slower learning speed leading to a worse

initial user experience. A solution to this tradeoff has been proposed

by Oosterhuis and de Rijke [23], which optimizes a cascade of

models. In this case, the cascade could combine the user experience

of the linear model with the final convergence of the neural model,

providing the best of both worlds.

5.3 Improvements of PDGD
After having discussed the offline and online performance of PDGD,

we will now answer RQ1 and RQ3.
First, concerning RQ1 (whether PDGD performs significantly

better than MGD), the results of our experiments show that models

optimized with PDGD learn faster and converge at better optima

than MGD, DBGD, and the pairwise baseline, regardless of dataset

or level of interaction noise. Moreover, the level of performance

reached with PDGD is significantly higher than the final conver-

gence of any other method. Thus, even in the long run DBGD

and MGD are incapable of reaching the offline performance of

PDGD. Additionally, the online performance of a linear model opti-

mized with PDGD is significantly better across all datasets and user

models. Therefore, we answer RQ1 positively: PDGD outperforms

existing methods both in terms of model convergence and user

experience during learning.

Then, with regards to RQ3 (whether PDGD can effectively opti-

mize different types of models), in our experiments we have suc-

cessfully optimized models from two families: linear models and

neural networks. Both models reach a significantly higher level of

performance of model convergence than previous OLTR methods,

across all datasets and degrees of interaction noise. As expected, the

simpler linear model has a better initial user experience, while the

more complex neural model has a better point of convergence. In

conclusion, we answer RQ3 positively: PDGD is applicable to dif-

ferent ranking models and effective for both linear and non-linear

models.

6 CONCLUSION
In this paper, we have introduced a novel OLTR method: PDGD

that estimates its gradient using inferred pairwise document pref-

erences. In contrast with previous OLTR approaches PDGD does

not rely on online evaluation to update its model. Instead after

each user interaction it infers preferences between document pairs.

Subsequently, it constructs a pairwise gradient that updates the

ranking model according to these preferences.

We have proven that this gradient is unbiased w.r.t. user pref-

erences, that is, if there is a preference between a document pair,

then in expectation the gradient will update the model to meet

this preference. Furthermore, our experimental results show that

PDGD learns faster and converges at a higher performance level

than existing OLTR methods. Thus, it provides better performance

in the short and long term, leading to an improved user experience

during training as well. On top of that, PDGD is also applicable

to any differentiable ranking model, in our experiments a linear

and a neural network were optimized effectively. Both reached

significant improvements over DBGD and MGD in performance at

convergence. In conclusion, the novel unbiased PDGD algorithm

provides better performance than existing methods in terms of con-

vergence and user experience. Unlike the previous state-of-the-art,

it can be applied to any differentiable ranking model.

Future research could consider the regret bounds of PDGD;

these could give further insights into why it outperforms DBGD

based methods. Furthermore, while we proved the unbiasedness of

our method w.r.t. document pair preferences, the expected gradi-

ent weighs document pairs differently. Offline LTR methods like

LambdaMART [2] use a weighted pairwise loss to create a listwise

method that directly optimizes IR metrics. However, in the online

setting there is no metric that is directly optimized. Instead, future

work could see if different weighing approaches are more in line

with user preferences. Another obvious avenue for future research

is to explore the effectiveness of different ranking models in the on-

line setting. There is a large collection of research in ranking models

in offline LTR, with the introduction of PDGD such an extensive

exploration in models is now also possible in OLTR.

Code
To facilitate reproducibility of the results in this paper, we are

sharing the code used to run the experiments in this paper at

https://github.com/HarrieO/OnlineLearningToRank.

Acknowledgements
This research was partially supported by the Netherlands Organi-

sation for Scientific Research (NWO) under project nr. 612.001.551.

REFERENCES
[1] James Allan, Ben Carterette, Javed A Aslam, Virgil Pavlu, Blagovest Dachev, and

Evangelos Kanoulas. 2007. Million query track 2007 overview. In TREC. NIST.
[2] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:

An overview. Technical Report. Microsoft Research.

[3] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to

rank: From pairwise Approach to listwise approach. In ICML. ACM, 129–136.

[4] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge

Overview. Journal of Machine Learning Research 14 (2011), 1–24.

[5] Sergiu Chelaru, Claudia Orellana-Rodriguez, and Ismail Sengor Altingovde. 2014.

How useful is social feedback for learning to rank YouTube videos? World Wide
Web 17, 5 (2014), 997–1025.

[6] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Morgan & Claypool Publishers.

[7] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,

Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking

with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 15.

[8] Susan T. Dumais. 2010. The web changes everything: Understanding and sup-

porting people in dynamic information environments. In ECDL. Springer, 1.
[9] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In AISTATS. 249–256.
[10] Fan Guo, Chao Liu, and Yi M Wang. 2009. Efficient multiple-click models in web

search. In WSDM. ACM, 124–131.

[11] Jing He, Chengxiang Zhai, and Xiaoming Li. 2009. Evaluation of methods for

relative comparison of retrieval systems based on clickthroughs. In CIKM. ACM,

2029–2032.

[12] Katja Hofmann. 2013. Fast and Reliably Online Learning to Rank for Information
Retrieval. Ph.D. Dissertation. University of Amsterdam.

[13] Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten de Rijke. 2013.

Reusing historical interaction data for faster online learning to rank for IR. In

WSDM. ACM, 183–192.

[14] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2011. Balancing Explo-

ration and Exploitation in Learning to Rank Online. In ECIR. Springer, 251–263.
[15] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2011. A probabilistic

method for inferring preferences from clicks. In CIKM. ACM, 249–258.

[16] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2012. Balancing Explo-

ration and Exploitation in Listwise and Pairwise Online Learning to Rank for

Information Retrieval. Information Retrieval 16, 1 (2012), 63–90.
[17] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In

KDD. ACM, 133–142.

[18] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. 2013. Learning to rank

for recommender systems. In RecSys. ACM, 493–494.

[19] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017. On

application of learning to rank for e-commerce search. In SIGIR. ACM, 475–484.

[20] Damien Lefortier, Pavel Serdyukov, and Maarten de Rijke. 2014. Online explo-

ration for detecting shifts in fresh intent. In CIKM. ACM, 589–598.

[21] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[22] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. 2007. LETOR:

Benchmark Dataset for Research on Learning to Rank for Information Retrieval.

In LR4IR ’07.
[23] Harrie Oosterhuis and Maarten de Rijke. 2017. Balancing speed and quality in

online learning to rank for information retrieval. In CIKM. ACM, 277–286.

[24] Harrie Oosterhuis and Maarten de Rijke. 2017. Sensitive and scalable online

evaluation with theoretical guarantees. In CIKM. ACM, 77–86.

[25] Harrie Oosterhuis, Anne Schuth, and Maarten de Rijke. 2016. Probabilistic

Multileave Gradient Descent. In ECIR. Springer, 661–668.
[26] Art B Owen. 2013. Monte Carlo theory, methods and examples. Monte Carlo

Theory, Methods and Examples. Art Owen (2013).

[27] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[28] Filip Radlinski and Nick Craswell. 2017. A theoretical framework for conversa-

tional search. In CHIIR. 117–126.
[29] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse

rankings with multi-armed bandits. In ICML. ACM Press, 784–791.

[30] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. 2008. How does click-

through data reflect retrieval quality?. In CIKM. ACM, 43–52.

[31] Mark Sanderson. 2010. Test Collection Based Evaluation of Information Retrieval

Systems. Foundations and Trends in Information Retrieval 4, 4 (2010), 247–375.
[32] Anne Schuth, Robert-Jan Bruintjes, Fritjof Büttner, Joost van Doorn, and others.

2015. Probabilistic multileave for online retrieval evaluation. In SIGIR. ACM,

955–958.

[33] Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016.

Multileave gradient descent for fast online learning to rank. In WSDM. ACM,

457–466.

[34] Anne Schuth, Floor Sietsma, Shimon Whiteson, Damien Lefortier, and Maarten

de Rijke. 2014. Multileaved Comparisons for Fast Online Evaluation. In CIKM.

ACM, 71–80.

[35] Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. 2013. Ranked

Bandits in Metric Spaces: Learning Diverse Rankings over Large Document

Collections. Journal of Machine Learning Research 14, 1 (2013), 399–436.

[36] Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, and Eyke Hüllermeier. 2015.

Online rank elicitation for Plackett-Luce: A dueling bandits approach. In NIPS.
604–612.

[37] Pertti Vakkari and Nana Hakala. 2000. Changes in relevance criteria and problem

stages in task performance. Journal of Documentation 56 (2000), 540–562.

[38] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In SIGIR. ACM, 115–

124.

[39] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information

retrieval systems as a dueling bandits problem. In ICML. 1201–1208.
[40] Yisong Yue, Rajan Patel, and Hein Roehrig. 2010. Beyond position bias: Examining

result attractiveness as a source of presentation bias in clickthrough data. In

WWW. ACM, 1011–1018.

[41] Masrour Zoghi, Tomáš Tunys, Mohammad Ghavamzadeh, Branislav Kveton,

Csaba Szepesvari, and Zheng Wen. 2017. Online Learning to Rank in Stochastic

Click Models. In ICML. 4199–4208.
[42] Masrour Zoghi, Shimon Whiteson, Maarten de Rijke, and Remi Munos. 2014.

Relative confidence sampling for efficient on-line ranker evaluation. InWSDM.

73–82.

https://github.com/HarrieO/OnlineLearningToRank

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning to rank
	2.2 Online learning to rank
	2.3 DBGD and beyond

	3 Method
	3.1 Pairwise Differentiable Gradient Descent
	3.2 Unbiased gradient estimation

	4 Experiments
	4.1 Datasets
	4.2 Simulating user behavior
	4.3 Experimental runs
	4.4 Metrics and tests

	5 Results and Analysis
	5.1 Convergence of ranking models
	5.2 User experience during training
	5.3 Improvements of PDGD

	6 Conclusion
	References

