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Abstract  We address the feature extraction problem for document ranking in information 
retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In 
LifeRank, we regard each document collection for ranking as a matrix, referred to as the 
original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) 
can be generated as the product of the original matrix and a transformation matrix. The 
transformation matrix projects high-dimensional document vectors into lower dimensions. 
Theoretically, there could be very large transformation matrices, each leading to a new 
generated matrix. In LifeRank, we produce a transformation matrix so that the generated 
new matrix can match the learning to rank problem. Extensive experiments on benchmark 
datasets show the performance gains of LifeRank in comparison with state-of-the-art fea-
ture selection algorithms.
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1  Introduction

Document ranking is an essential component of information retrieval systems and web 
search engines. Recently, machine learning-based ranking techniques, referred to as “learn-
ing to rank,” have given rise to an active and growing research area, both in the information 
retrieval and machine learning communities (Cao et al. 2007; Freund et al. 2003; Joachims 
et al. 2009; Niu et al. 2012; Xu and Li 2007). A large number of learning to rank algo-
rithms have been proposed, which incorporate more and more useful features, aiming to 
improve the performance of the ranking algorithms (Liu 2011). In a supervised setting, 
they first collect a set of training data, which includes a set of queries, each associated 
with a list of documents labeled by relevance degrees; with the training dataset, they train 
a ranking model that can order unseen documents according to their degree of relevance 
(Joachims et al. 2007). In this situation, dimension reduction inevitably becomes an impor-
tant issue (Geng et al. 2007).

Firstly, dimension reduction can enhance the accuracy for many machine learning prob-
lems, including learning to rank. With dimension reduction techniques, a small set of more 
discriminative and less redundant features can be selected or generated for learning. Thus, 
better results could be achieved, as overfitting becomes less likely (Ng 2004). Also, the 
generalization ability of machine learning models could depend on the radius of training 
data points, which may decrease when the number of features decreases (Blum and Lang-
ley 1997; Geng et al. 2007; Weston et al. 2000; Wolf and Bileschi 2005).

Secondly, large number of features leads to high complexity in most learning to rank 
algorithms. Therefore, dimension reduction often leads to significant improvements in 
training and prediction efficiency, while maintaining, or having a limited negative impact 
on, accuracy. With accuracy being the primary metric, efficiency has also emerged as a 
crucial issue for evaluating learning to rank algorithms (Cao et  al. 2007; Chapelle et  al. 
2011; Wang et al. 2015). Training datasets and ranking features continue to expand, so as 
to obtain more accurate models. Furthermore, as a consequence of the dynamic character 
of the Web, ranking models need to be re-learned repeatedly, and the interval between re-
learning procedures decreases sharply (Liu 2011). With dimension reduction techniques, 
fewer features are used, resulting in more efficient training and prediction.

Generally, there are two types of dimension reduction algorithms: feature selection and 
feature extraction. The former aims to select a subset of the original features for learn-
ing, while the latter attempts to generate a small set of new features from the original fea-
tures (Blum and Langley 1997; Motoda and Liu 2002; Wyse et al. 1980). Recently, feature 
selection for ranking has been investigated intensively (Geng et al. 2007; Gupta and Rosso 
2012; Lai et al. 2013; Laporte et al. 2014; Naini and Altingövde 2014; Pan et al. 2009; Yu 
et al. 2009). To the best of our knowledge, the advantages of feature extraction have not yet 
been explored in learning to rank.

In this study, we address the feature extraction problem for learning to rank. In com-
parison with feature selection, the feature extraction problem has a much larger search 
space. For example, given n original features, feature selection selects a subset of fea-
tures of size k (where k < n ) for learning. Here, for a particular value of k, the search 

space of the problem contains 
(
n

k

)
 possible solutions. The full search space that can 

include any number of features (i.e., all values of k in range 1 to n), would lead to 2n − 1 
solutions. In comparison, for linear feature extraction, each extracted feature is a linear 
combination of original n features. Since the coefficient associated with each original 
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feature can be any real number, the search space becomes infinite. The search space of 
non-linear feature extraction would be even larger, as it also includes solutions involv-
ing non-linear combinations of features (e.g. polynomial combinations). Hence, with a 
larger search space, feature extraction has a greater possibility to achieve better perfor-
mance than feature selection.

To address the problem of linear feature extraction for learning to rank, we propose Lif-
eRank, a Linear feature extraction algorithm for Ranking. LifeRank regards each dataset 
for training, validation or test as a matrix, referred to as an original matrix, where each 
row vector represents a document with a set of features. With a given original matrix for 
training � , LifeRank attempts to discover a transformation matrix � , so that a new matrix 
(dataset) �′ can be generated as the product of the original matrix and a transformation 
matrix, i.e., �� = �� . Thus � projects high-dimensional document vectors in � into lower-
dimensional ones in �′ . Theoretically, there could be a very large number of possible trans-
formation matrices, each leading to a new generated matrix. LifeRank attempts to discover 
a transformation matrix to transform the original matrix (dataset) into a low-rank one for 
dimension reduction, on which learning to rank algorithms can achieve optimum results in 
comparison with other dimension-reduced matrices.

Our problem formulation is similar to principal component analysis (PCA) (Jolliffe 
2002), and thus our algorithm LifeRank can be understood from the perspective of PCA. 
PCA is one of the most popular dimension reduction techniques in machine learning. When 
PCA is performed using singular valued decomposition (SVD) (Lange 2010), the given 
matrix � can be approximately decomposed into three low-rank matrices � ≈ ���⊤ . Here, 
� is composed of the singular values of � , � and � are composed of the left and right sin-
gular vectors of � respectively, and �⊤� = �⊤� = � is equal to the identity matrix. Thus a 
new matrix �� = �� ≈ �� . However, it should be noted that while PCA calculates �′ as 
an approximation of � , in LifeRank � is transformed to �′ using a transformation matrix.

In LifeRank, we formulate the learning to rank task by using a classical pairwise loss 
function. A pairwise loss function is used because such functions are fundamental, straight-
forward and intuitive for ranking. Besides, pairwise loss functions are consistent with the 
assumption that the labels of documents to rank lie in a rank-differentiable probability 
space (Lan et al. 2012), and they are upper bounds of measure-based ranking errors (Chen 
et al. 2009). In the generated matrix, the column vectors represent the features. Since opti-
mization over orthogonal features is beneficial to many machine learning problems (Shalit 
and Chechik 2014; Shivanna and Bhattacharyya 2014), we utilize the Lagrange multipliers 
method (Arfken 2013; Bertsekas 1999) to impose orthonormality constraints on the col-
umn (feature) vectors of the transformed matrix, and then use gradient descent for optimi-
zation. With the transformation matrix � , the training, validation and test datasets can be 
directly generated with matrix product.

Note that (1) LifeRank generalizes feature selection algorithms for the learning to rank 
task. Feature selection can be regarded as optimizing a transformation matrix � so that 
the column vectors of � meet the orthonormality constraints and each element in � can 
only be either 0 or 1. (2) Although some deep learning-based ranking algorithms (Seve-
ryn and Moschitti 2015) also aim to generate a set of features for ranking, our problem is 
completely different: we try to construct our features based on some predesigned ranking 
features like term frequency (TF) and inverse document frequency (IDF), which have been 
comprehensively used in conventional learning to rank algorithms like Ranking SVM (Cao 
et al. 2006; Joachims et al. 2009) and RankBoost (Freund et al. 2003). Deep learning-based 
algorithms, however, try to build features based on word-level features in a corpus that dif-
fer substantially from conventional ranking features.
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Our main contributions are as follows: (1) We address the feature extraction problem 
for learning to rank. Feature extraction is a category of comprehensively used dimension 
reduction techniques in many machine learning problems for performance gains in accu-
racy and efficiency, but to the best of our knowledge, feature extraction and its advantages 
have not been explored in learning to rank yet. (2)  We propose LifeRank, a linear fea-
ture extraction algorithm that generates datasets to be utilized by the learning to rank task. 
(3) We perform extensive experiments on benchmark datasets and present the performance 
gains of LifeRank in comparison with the state-of-the-art feature selection algorithms.

The remainder of the paper is organized as follows. Section  2 reviews related work; 
Sect.  3 defines the feature extraction problem for ranking; Sect.  4 proposes LifeRank, a 
gradient descent-based algorithm. Section 5 introduces our experimental setup. Section 6 
reports the experimental results, and Sect. 7 concludes the paper.

2 � Related work

We discuss three types of related work: learning to rank, feature selection for ranking, and 
feature extraction for ranking.

2.1 � Learning to rank for information retrieval

Learning to rank has received increased attention from both the machine learning and 
information retrieval community. While there is a growing interest in online learning to 
rank (Schuth et al. 2016) and in counterfactual learning to rank from online data (Joachims 
et  al. 2018), the bulk of the work on learning to rank concerns offline learning to rank, 
where explicit human annotations are used to label query, document pairs. Offline learning 
to rank is the focus of this paper. Given its effectiveness, many algorithms have been pro-
posed, which mainly fall into three categories (Chapelle et al. 2011; Liu 2009): pointwise, 
pairwise, and listwise.

Pointwise approaches, such as Pranking (Crammer and Singer 2001), McRank (Li et al. 
2007) and Subset Ranking (Cossock and Zhang 2008), view each document in the training 
dataset as a learning instance, and utilize a classification or regression technique to predict 
the relevance categories or numerical/ordinal relevance scores for unlabeled data. Pairwise 
approaches, such as Ranking SVM (Cao et  al. 2006; Joachims et  al. 2009), RankBoost 
(Freund et al. 2003), RankNet (Burges et al. 2005), FRank (Tsai et al. 2007), LambdaRank 
(Burges et al. 2007), and BoltzRank (Volkovs and Zemel 2009), regard a pair of documents 
as a learning instance, and try to learn a binary classifier that can predict the more relevant 
document to the given query from each pair of documents. Then the ranked lists of docu-
ments can be aggregated based on the pairwise preferences of the documents. Listwise 
approaches, such as ListNet (Cao et al. 2007), SVM-MAP (Yue et al. 2007), NDCGBoost 
(Valizadegan et al. 2009), take the entire ranked list of documents as a learning instance, 
and attempt to construct a ranking model that can directly predict the full rankings of the 
documents. Recently, some hybrid algorithms have been proposed, such as FocusedRank 
(Niu et al. 2012), MixRank (Busa-Fekete et al. 2013), targeting improvements in learning 
accuracy, efficiency, or both. More algorithms are surveyed in Chapelle et al. (2011), Liu 
(2009, 2011).

With the incorporation of more and more useful features for performance gains, dimen-
sion reduction inevitably becomes an important issue in the ranking problem (Geng et al. 
2007). With effective dimension reduction techniques, not only the efficiency of the 
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algorithms could be improved, but also accuracy could be enhanced as a result of using 
more discriminative features with less redundancy and noise. Furthermore, the generaliza-
tion of the ranking model can also be increased as a result of using fewer features (Geng 
et al. 2007).

2.2 � Feature selection for ranking

Recently, considerable efforts have been made on feature selection for ranking. Geng et al. 
(2007) present GAS, one of the first attempts to incorporate the importance and similar-
ity of features for ranking. In particular, it evaluates the importance of features with rank-
ing metrics like MAP (Baeza-Yates and Ribeiro-Neto 1999) and NDCG (Järvelin and 
Kekäläinen 2002), and estimates the similarity between features using agreement between 
rankings, e.g., with Kendall � correlation coefficient (Kendall 1948). Then it greedily 
selects a subset of features with maximum total importance scores and minimum total 
similarity scores. Metzler (2007) proposes a greedy feature selection algorithm to be used 
within the Markov random field model for information retrieval. The model automatically 
generates models that are more effective than, or as effective as, models created by care-
fully selecting the features manually. Pan et  al. (2009) investigate a boosted regression 
trees-based feature selection algorithm. It evaluates the importance of the features based 
on boosted trees. Then it selects features by maximizing the discounted importance of the 
features, where the importance of each feature is discounted by feature similarity. Yu et al. 
(2009) propose RankWrapper and RankSelect, two feature weighting and selection algo-
rithms for learning to rank. They utilize ranking distances of nearest data points in order to 
identify the key features for ranking, demonstrating significant efficiency gains in compari-
son with GAS.

Gupta and Rosso (2012) present a Kullback–Leibler (KL) divergence-based divergence 
metric, and select a subset of features for ranking based on features’ expected divergence 
over the relevance classes and the importance of features. Lai et al. (2013) propose a joint 
convex optimization formulation for minimizing ranking errors while simultaneously con-
ducting feature selection. This optimization formulation provides a flexible framework in 
which various importance measures and similarity measures of the features can easily be 
incorporated. Naini and Altingövde (2014) adopt three greedy diversification strategies, 
maximal marginal relevance, MaxSum dispersion and modern portfolio theory, to the 
problem of feature selection for ranking. Laporte et  al. (2014) propose a general frame-
work for feature selection in learning to rank based on support vector machine (SVM); they 
investigate both classical convex regularizations (such as L1 and weighted L1) and non-
convex regularization terms (such as log penalty, Minimax Concave Penalty (MCP) and Lp 
pseudo norm with p < 1 ). Furthermore, they provided an accelerated proximal approach 
for solving the convex problems and a re-weighted L1 scheme to address the non-convex 
regularizations.

All of these algorithms are meant to address feature selection for ranking. To the best of 
our knowledge, there is no work targeting feature extraction for ranking.

2.3 � Feature extraction techniques

Feature extraction has been used extensively used in various machine learning scenarios 
for performance gains in terms of accuracy and efficiency. Given its effectiveness, many 
approaches have been proposed, which are either linear or non-linear algorithms.
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The main linear technique for feature extraction is principal component analy-
sis (PCA) (Jolliffe 2002), which performs a linear mapping of high-dimensional data 
into a lower-dimensional space in such a way that the variance of the data in the low-
dimensional representation is maximized. Canonical-correlation analysis (CCA) (Har-
doon et al. 2004) is another popular linear feature extraction algorithm, which attempts 
to discover linear combinations of the original features that have maximal correlation 
with each other. In addition, several probabilistic algorithms, including probabilistic 
PCA (Tipping and Bishop 1999), probabilistic CCA (Bach and Jordan 2005) and prob-
abilistic partial CCA (Mukuta and Harada 2014), have been proposed, where a set of 
latent variables are introduced for probabilistically interpreting these models.

Non-linear feature extraction algorithms can combine the original features to gen-
erate a set of features in a non-linear way. For example, the locally linear embedding 
(LLE) method (Roweis and Saul 2000) learns the global structure of non-linear mani-
folds to yield low-dimensional, neighborhood-preserving embeddings of high-dimen-
sional inputs. Isomap (Tenenbaum et al. 2000) is capable of discovering the non-linear 
degrees of freedom that underly complex natural observations. It can efficiently com-
pute a globally optimal solution and can be guaranteed to converge asymptotically to 
the true structure. Besides, some kernel techniques have been proposed to transform 
linear feature extraction algorithms into nonlinear ones. For example, kernel PCA 
(Schölkopf et  al. 1998) is a non-linear form of principal component analysis (PCA), 
which can efficiently compute principal components in high-dimensional feature 
spaces through the use of integral operator kernel functions.

Although feature extraction techniques have been extensively investigated and 
shown to demonstrate promising performance gains, to the best of our knowledge, they 
have not been explored yet in the context of the ranking problem.

3 � Problem statement

3.1 � Learning to rank for information retrieval

Let  be a collection of documents, each represented by a vector of feature values. In 
information retrieval systems, given a query q, a list of documents from  is returned 
as search results, where the documents are ranked according to their estimated rel-
evance to q. Given a query q, the ground truth, i.e., relevance judgments of documents 
with respect to q (produced by human experts) is defined as a function rel ∶  → ℕ0 , 
where ℕ0 is the set of natural numbers (including 0).

Let f ∶  → ℝ be a ranking function assigning real valued relevance scores to doc-
uments. The goodness of ranking functions can be evaluated by a measure s, such as 
precision at n (P@n), mean average precision ( MAP ) (Baeza-Yates and Ribeiro-Neto 
1999), or normalized discount cumulative gain ( NDCG@n ) (Järvelin and Kekäläinen 
2002).

Definition 1  (Learning to rank) Given a training dataset  and an evaluation measure 
s, the problem of learning to rank is to learn a ranking function f from  such that s(f) is 
maximized.
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3.2 � Dimension reduction for ranking

In learning to rank, each dataset  can be regarded as a document matrix �m×n with m 
rows (documents) and n columns (features). In particular, �i is the i-th row of � , and 
�i

⊤ is a n-dimensional (column) vector that represents a document with n features. Let 
g ∶ ℝ

n
→ ℝ

k ( k ≤ n ) be a mapping that projects an n-dimensional vector space into a 
k-dimensional space. Let L(⋅) be the loss function for the learning to rank task. Our prob-
lem is to discover a mapping function g such that the obtained dataset �� = g(�) mini-
mizes the loss function.

Definition 2  (Dimension reduction for ranking) Let �m×n be a document matrix with m 
columns and n rows, where each column �i⊤ is a n-dimensional vector, representing a doc-
ument with n features. Let  be the set of all possible mapping functions, where each ele-
ment g ∶ ℝ

n
→ ℝ

k ( k ≤ n ) is used to project an n-dimensional vector space into a k-dimen-
sional space. The dimension reduction for the learning to rank task tries to discover an 
optimum mapping function g∗ ∈  such that:

where L(⋅) is the loss function for the learning to rank task. Then the new dataset can be 
generated with g∗(�).

In this paper, we consider linear feature extraction for learning to rank as it is the sim-
plest and most straightforward feature extraction technique in machine learning. Here, each 
generated feature is a linear combination of the original features. It utilizes a transforma-
tion matrix � to achieve the effectiveness of the mapping function, aiming to discover an 
optimal matrix � such that the obtained dataset �� = �� results in a minimal value of the 
loss function.

The problem can be understood from the perspective of PCA (Jolliffe 2002). Using 
PCA, the given matrix � can be approximately decomposed into three lower-rank matrices:

where � is composed of the singular values of � , � and � are composed of the left and 
right singular vectors of � respectively, and �⊤� = �⊤� = � (the identity matrix). Thus, a 
new matrix �′ can be generated as follows:

The role of the transformation matrix � in LifeRank is very similar to the right singular 
matrix � in PCA, where � maps the document vectors to another space spanned by the 
columns of � before transforming them through � and going back through � . Hence, in 
LifeRank we consider the orthonormality constraints of � in our optimization process, i.e., 
�⊤� = �.

Definition 3  (Constrained linear feature extraction for ranking) Let �m×n be a document 
matrix, where the transpose of each row, i.e., �i⊤ = �i is a n-dimensional vector, represent-
ing a document with n features. Linear feature extraction for ranking aims to optimize a 
transformation matrix �n×k by solving the following optimization problem, so that a new 
document matrix ��

m×k
= �m×n�n×k can be generated, where each document vector �i can 

be projected into k-dimensional vector ��
i
= �⊤�i:

(1)arg min
g∈

L(g(�)),

(2)� ≈ ���⊤,

(3)�� = �� ≈ ��.
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where L(⋅) is the loss function for the learning to rank task.
Based on the optimized mapping function g, the new dataset can be generated by taking 

the product of the original matrix and the transformation matrix, i.e., �� = ��.

We have used the example of PCA to help us explain the mechanism of LifeRank. How-
ever, it should be noted that in PCA �′ is calculated as an approximation of � , whereas in 
LifeRank we generate a transformed representation of the initial matrix, in order to achieve 
a better ranking performance. Hence, unlike PCA, �′ as computed in Definition 3 is not an 
approximation of � , but a transformation.

4 � The LifeRank algorithm

Given a high-dimensional dataset  , LifeRank generates a new low-dimensional dataset  ′ 
in two phases. In the first phase, LifeRank first preprocesses the training dataset  into an 
original matrix � . Then LifeRank optimizes the transformation matrix � for � according to 
the loss function in Eq. 4. In the second phase, LifeRank generates low-dimensional training, 
validation and test matrices with the projection of � . Then LifeRank constructs new datasets 
based on the low-dimensional data matrices.

4.1 � Phase I: Generation of the transformation matrix

In this study, we utilize a classic pairwise learning to rank loss function to implement the 
function L(⋅) in Definition 3. Pairwise loss functions are chosen because apart from being rela-
tively simple and straightforward, they are also intuitive choices for ranking. Besides, with the 
assumption that the labels of documents to rank lie in a rank-differentiable probability space, 
pairwise loss functions are consistent (Lan et al. 2012) and provide upper bounds for measure-
based ranking errors like NDCG (Chen et al. 2009). Thus, minimizing a pairwise loss function 
will maximize the ranking measures (Lan et al. 2012).

First of all, the training dataset  is preprocessed into an original matrix � and other infor-
mation �X consisting of identities of the documents and queries, relevance labels, etc. Let 
D = {�1, �2,… , �m} be the set of columns (document vectors) in the matrix �⊤

m×n
 . We regard 

each pair of vectors (�i, �j) ∈ D × D as an instance, and the label yi,j ∈ {+1,−1} indicates 
whether the relevance of the i-th document is higher or lower than the j-th document, corre-
sponding to the given query. Let {�1, �2,… , �k} be the column vectors of � . We try to discover 
a k-dimensional vector of weights � such that:

where the first part calculates the log loss of the ranking accuracy, the second part is the l2 
norm of the parameters for regularization, and � is the coefficient of the regularization term 
for trade-off.

(4)
arg min

�

L(��) such that �⊤� = �,

(5)

arg min�,�,b

∑

∀(�i,�j),i≠j

log
(
1 + e−yi,j(�

⊤�⊤(�i−�j)+b)
)
+

𝜆

2
||�||2

such that �⊤
i
�j =

{
1, i = j

0, i ≠ j
,∀i, j = 1, 2,… , k,
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We optimize the constrained loss function based on the Lagrange multipliers method 
(Arfken 2013; Bertsekas 1999) in Eq. 5. Let

where � is a matrix with k columns and k rows, and elements �i,j . Then, the optimum � , � 
and b for minimizing  are the exact results of Eq. 5.

In Phase I, we utilize gradient descent to generate the training dataset and the transforma-
tion matrix. Initially, we assign all 1s to the vector �k×1 so that all of the generated features 
in the ranking model have the same initial weight. We initialize the transformation matrix 
� in a random manner, following work on matrix generalization problems like matrix fac-
torization-based collaborative filtering (Koren et al. 2009). After initialization, the weight 
vector � and the factorized matrix can be updated iteratively with gradient descent until 
reaching convergence or the maximum number of iterations with the given learning rate. 
The gradients of the function  with respect to the variables are calculated as follows:

where �1, �2,… �n are the column vectors of � . Since gradient descent generally does not work 
with Lagrange multipliers, we use the basic differential multiplier method (BDMM) (Platt 
and Barr 1988) for optimization, where the sign inversion for � in Eq. 8 makes the optimiza-
tion stable. Given a learning rate � , the update formulas of the gradient descent method are:

(6)

(�,�, b,�) =
∑

∀(�i,�j),i≠j

log
(
1 + e−yi,j(�

⊤�⊤(�i−�j)+b)
)
+

𝜆

2
||�||2 +

∑

i,j=1,…,k∧i≠j

𝛼i,j�
⊤

i
�j +

k∑

i=1

𝛼i,i
(
1 − �⊤

i
�i
)
,

(7)

∇� =
∑

∀(�i ,�j),i≠j

−yi,j�
⊤
(
�i − �j

)

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

+ 𝜆�

∇�l
 =

∑

∀(�i ,�j),i≠j

−yi,jwl

(
�i − �j

)

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

+

∑

i≠l

(𝛼l,i + 𝛼i,l)�i − 2𝛼l,l�l, l = 1,… , k

𝜕

𝜕b
=

∑

∀(�i ,�j),i≠j

−yi,j

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

𝜕

𝜕𝛼i,j
=

{
�⊤
i
�j, i ≠ j

1 − �⊤
i
�j, i = j

∀i, j = 1,… , k,

(8)

� ← � − �∇�

�l ← �l − �∇�l
, for l = 1,… , k

b ← b − �
�

�b

�i,j ← �i,j + �
�

��i,j
, for i, j = 1,… , k.
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4.2 � Phase II: Generation of low‑rank datasets

In LifeRank, Phase II generates all of the datasets for learning to rank, including the 
training, validation and test datasets. According to Definition 3, for each original matrix 
� , the generated matrix �′ can be obtained as a product of the original dataset � and the 
transformation matrix � , formally �� = �� . Then, the new low-dimensional dataset  ′ 
can be generated by integrating matrix �′ with other information �X that was filtered in 
the preprocessing step in Phase I.

4.3 � Pseudocode

The pseudocode of LifeRank as a dimension reduction algorithm for ranking is sum-
marized in Algorithm 1. Given the number of generated features k and a set of standard 
learning to rank datasets, including a training dataset  , a validation dataset  and a test 
dataset  , LifeRank tries to output new low-dimensional datasets  ′ ,  ′ and  ′ for train-
ing, validation and test, respectively, for the learning to rank procedure.

Algorithm  1 implements the two phases of LifeRank: (I)  Lines  1–8 generate 
the transformation matrix � based on the original training dataset  ; (II)  Using � , 
lines 9–10 generate the low-dimensional matrices for training �′ , validation �′ and test 
�′ . Then, line 11 constructs the low-dimensional training, validation and test datasets by 
directly integrating the low-rank matrices and their corresponding information filtered 
in the preprocessing steps in lines 1 and 9.

4.4 � Discussion

In this section, we reveal a connection between the feature selection for ranking problem 
and the linear feature extraction for ranking problem. In particular, from the perspective 
of linear transformations of matrices, the feature selection for ranking problem can be 
defined as in Definition 4.
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Definition 4  (Feature selection for ranking) Let �m×n be a document matrix, where 
the transpose of each row �i⊤ = �i is an n-dimensional vector, representing a document 
with n features. Feature selection for ranking aims to optimize a transformation matrix 
�n×k by solving the following optimization problem, so that a new document matrix 
��

m×k
= �m×n�n×k can be generated, where each n-dimensional document vector �i can be 

projected into a k-dimensional vector ��
i
= �⊤�i:

Based on the optimized mapping function g, the new low-rank matrix can be generated as a 
product of the original matrix and the transformation matrix, i.e., �� = ��.

The k columns of the transformation � mentioned in Defintion 4 present the k iterations 
of the feature selection processes. The constraints in Eq. 9 guarantee that there is only one 
“1” in each column of the transformation matrix � and the others are all “0,” indicating 
that each feature selection process only selects one feature. The second constraint �⊤� = � 
guarantees that the position of the unique “1” in each column is different from other col-
umns, which is the index of the selected feature in that step.

Since the elements in the transformation matrix � can be any real numbers in Defini-
tion 3 while they are only either 0 or 1 in Definition 4, Definition 3 generalizes Defini-
tion 4, i.e., the problem of linear feature extraction for ranking generalizes the problem of 
feature selection for ranking. Because of this, linear feature extraction is expected to out-
perform or be at least as good as any feature selection technique. The linear feature extrac-
tion is expected to use more computational resources than feature selection, since former 
deals with the search space in real numbers and the latter with binary case. However, this 
computational overhead is the tradeoff for the higher performance expected to be achieved 
by the extracted features, when utilized for learning to rank.

5 � Experimental setup

5.1 � Research questions

We list the research questions that guide the remainder of the paper. 

RQ1	� What is the performance of LifeRank in generating low-dimensional datasets? 
Does LifeRank outperform state-of-the-art feature selection algorithms? (See 
Sect. 6.1)

RQ2	� Can the importance and redundancy of the features generated by LifeRank outper-
form those selected by feature selection algorithms? (See Sect. 6.2)

RQ3	� What is the effect of the orthonormality constraints of the transformation matrix 
in Eq.  4? Does it help enhance the performance of ranking predictions? (See 
Sect. 6.3.)

5.2 � Datasets

In this study, we use the MQ2007 and MQ2008 datasets from LETOR 4.0 (Qin and Liu 
2013) and OHSUMED from LETOR 3.0 (Qin et al. 2010) to evaluate our algorithm. The 

(9)arg min
�

L(g(��)) such that

{
∀ti,j ∈ � ∶ ti,j = {0, 1}

�⊤� = �.
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LETOR1 datasets are commonly used benchmarks in learning to rank. LETOR 4.0 is the 
latest version, which was released in July 2009. It uses the Gov2 web page collection ( ∼
25M pages) and two query sets from the Million Query track of TREC 2007 and TREC 
2008, which are referred to as MQ2007 and MQ2008. We use both MQ2007 and MQ2008 
in our experiments. In MQ2007, there are about 1700 queries and about 70,000 query-doc-
ument pairs, while MQ2008 has 800 queries and about 15,000 query-document pairs for 
training, validation and testing. In both datasets, each query-document pair has 46 features. 
We also use the OHSUMED dataset from LETOR 3.0, which was released in December 
2008. OHSUMED is extracted from the online medical information database MEDLINE. 
It contains 106 queries and about 16,000 query-document pairs, where each query-docu-
ment pair has 45 features.

In all the datasets that we use, relevance of documents with respect to queries is judged 
at three levels: 2 (definitely relevant), 1 (partially relevant), and 0 (not relevant). In our 
experiments, we use five-fold cross validation. In each fold, 60% queries are used for train-
ing, 20% for validation and and the remaining 20% for testing. The performance numbers 
reported are averaged over the five folds.

5.3 � Baselines

LifeRank aims to generate low-dimensional datasets for ranking. In this paper, we utilize 
three baselines to evaluate the datasets generated by our algorithm: 

Original datasets:	� We firstly use the original LETOR datasets as our 
first baseline, on which no selection or generation 
has been performed.

Datasets generated by GAS:	� GAS (Geng et  al. 2007) incorporates importance 
and similarity information of the features into rank-
ing. It greedily selects a subset of features by maxi-
mizing the total importance scores meanwhile mini-
mizing the total similarity scores.

Datasets generated by FSMRank:	� FSMRank (Lai et al. 2013) trains a feature selection 
model with machine learning, which can select a 
subset of features meanwhile minimizing the rank-
ing errors.

We then run Linear Regression (Lawson and Hanson 1995)-based learning to rank and 
RankSVM2 (Joachims et  al. 2009) to determine how well these datasets can address the 
ranking problem. The former makes pointwise predictions on the relevance of the docu-
ments by linear regression, which is implemented in the RankLib learning to rank toolkit.3 
The latter predicts pairwise ranking relation between each pair of documents directly by 
support vector machine (SVM). These are classical pointwise and pairwise learning to rank 
algorithms, respectively, with which we can clearly demonstrate the effects of dimension 
reduction.

1  http://resea​rch.micro​soft.com/en-us/um/beiji​ng/proje​cts/letor​/.
2  https​://www.cs.corne​ll.edu/peopl​e/tj/svm_light​/svm_rank.html.
3  https​://sourc​eforg​e.net/p/lemur​/wiki/RankL​ib/.

http://research.microsoft.com/en-us/um/beijing/projects/letor/
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/
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Since LifeRank uses a linear approach for feature extraction, it is expected to show 
effectiveness mainly for linear learning-to-rank methods. This is the reason why we have 
chosen SVMRank and Linear Regression for experimentation.

5.4 � Evaluation measures

5.4.1 � Measures for ranking

We use two standard ranking accuracy metrics to evaluate the rankings generated by learn-
ing to rank algorithms: mean average precision (MAP) (Baeza-Yates and Ribeiro-Neto 
1999) and normalized discount cumulative gain (NDCG@n) (Järvelin and Kekäläinen 
2002).

Statistical significance of observed differences between the performance of two runs is 
tested using a two-tailed paired t-test and is denoted using▲ (or ▼) for strong significance 
for � = 0.01 ; or △ (or ▽) for weak significance for � = 0.05.

5.4.2 � Measures for features

We consider two metrics to evaluate the quality of the features: importance and redundancy.
The importance of each feature can be evaluated by the ranking performance when the 

feature is used as a ranking model to order the documents. In particular, we use NDCG@5 
for evaluation. Since for calculating these measures, for some features larger values cor-
respond to higher ranks while for others smaller values lead to higher ranks, we utilize 
the strategy in GAS (Geng et al. 2007) for evaluation: We order the documents twice in 
ascending and descending manners respectively, and take the larger score as the impor-
tance score of the features. Then we calculate the average importance of the features as the 
importance of the set of features F = {f1, f2,… , fk}:

where the function eva( , fi) returns the evaluation results of the ranking model fi on the 
dataset .

The redundancy of features can be defined as the average similarity between each pair 
of features. In practice, we regard each feature as a ranking model to order the documents, 
and then calculate the similarity between each pair of features as the average similarity of 
their document rankings associated to different queries. Let Q be the set of queries in the 
given dataset, each associated with a set of documents for ranking. The redundancy of the 
features F = {f1, f2,… , fk} is calculated as follows:

where �(q)

i
 is the ranking of the document associated to the query q when the feature fi is 

used as the ranking model to order the documents. In this paper, we take the absolute value 
of Kendall’s � correlation coefficient (Kendall 1948) as the similarity metric for rankings:

Imp(F) =
1

k

k∑

i=1

max
{
eva( , fi), eva( ,−fi)

}
,

Rdd(F) =
2

k(k − 1)

∑

fi,fj∈F,i>j

1

|Q|
∑

q∈Q

sim
(
𝜎
(q)

i
, 𝜎

(q)

j

)
,
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where Nc and Nd are the numbers of the concordant pairs and discordant pairs respectively 
between rankings �i and �j.

The range of �
(
�i, �j

)
 is [−1, 1] , where the sign indicates that the correlation between 

�i and �j is either positive or negative, and the absolute value indicates the strength of the 
correlation. Since positive and negative values should not neutralize and we only consider 
the strength of the correlations, we take the absolute value of Kendall’s � as the similarity 
metric in the definition of redundancy.

6 � Experimental results

6.1 � Performance on generated datasets

Tables 1, 2 and 3 list the results obtained in our experiments on the MQ2007, MQ2008 and 
OHSUMED datasets, respectively. They show the NDCG@1–10 and MAP scores for the 
RankSVM and Linear Regression learning to rank algorithms on 4 categories of datasets: 
the original datasets and 3 datasets generated by dimension reduction algorithms including 
GAS, FSMRank and our LifeRank. For each dimension reduction algorithm, we consider k 
generated features, with k = 5 , 10, 15, 20. The results for the original dataset in the tables 
are independent of the value of k, but are repeated nevertheless for ease of comparison. The 
values in bold represent the best performance among GAS, FSMSVM and LifeRank.  

Overall, from the tables we can see that: (1)  The performance of ranking algorithms 
can be maintained or slightly improved on the datasets generated by dimension reduction 
techniques. (2) The performance of the ranking algorithms on the datasets generated by 
LifeRank is higher than those generated by GAS and FSMRank in most cases. Let us now 
take a closer look.

6.1.1 � Performance of RankSVM

For RankSVM, we can see that LifeRank clearly shows improvements over the original 
datasets for all the three benchmarks (MQ2007, MQ2008 and OHSUMED) in terms of 
NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5 , where the per-
formance of LifeRank as well as the other generated datasets does not beat the original 
dataset. We can also see from the tables that LifeRank clearly outperforms other generated 
datasets (GAS and FSMSVM) on NDCG@1–10 for all the benchmarks and all values of k.

In terms of MAP, LifeRank outperforms the other generated datasets in most cases. 
The few exceptions include the case for MQ2007, when GAS has a higher MAP for k = 5 . 
For MQ2008, FSMSVM attains slightly higher MAP score than LifeRank for k = 10 
and k = 20 , but these differences are not significant. Also, for OHSUMED when k = 5 , 
the MAP score attained by LifeRank is lower than FSMSVM and GAS, but it is still an 
improvement over the original dataset.

(10)�
(
�i, �j

)
=

Nc − Nd

Nc + Nd

,
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6.1.2 � Performance of linear regression

Also in the case of Linear Regression, for all three benchmarks (MQ2007, MQ2008 and 
OHSUMED) LifeRank clearly shows improvements over the original datasets in terms of 
NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5 , where the origi-
nal dataset performs better than LifeRank as well as the other generated datasets.

On NDCG@1–10, for MQ2007 LifeRank gives the best performance for all values of 
k, except for k = 20 , where GAS gives the best performance. For MQ2008, LifeRank gives 
the best performances for k = 5 and k = 10 on NDCG@1–10. However, for k = 15 and 
k = 20 , there is mixed performance where all GAS, FSMSVM and LifeRank give best 
performances in certain cases. For, OHSUMED, LifeRank gives the best performance on 
NDCG@1–10 in most cases.

In terms of MAP, LifeRank gives the best performance for MQ2007 for k = 5 
and k = 10 , whereas for k = 15 and k = 20 the best performance is given by GAS. For 
MQ2008, LifeRank outperforms others for all values of k, except for k = 15 where the best 
performance is given by GAS. Moreover, for OHSUMED, FSMSVM outperforms the oth-
ers for k = 5 and k = 15 , while LifeRank gives the best performance for k = 10 . In case of 
k = 20 , there is a tie between LifeRank and FSMSVM.

6.1.3 � Statistical significance overview

In Tables 1, 2 and 3, markups are provided to denote the statistical significance between 
LifeRank and the following baselines: original dataset, GAS and FSMSVM. It should be 
noted that the original dataset is independent of the values of k, but is repeated in the table 
to indicate statistical significance between it and datasets generated by LifeRank for differ-
ent values of k.

It can be observed from Table  1 that for MQ2007 in the case of RankSVM, there is 
strong to weak significance between LifeRank and the baselines in most cases across the 
metrics, while there is no significance shown against original for k = 15 . Moreover, for 
k = 5 , significance is shown against original and GAS in few cases. For Linear Regression, 
there is strong significance shown against FSMSVM for k = 5 and k = 15 , though there 
is not much significance shown for k = 10 and k = 20 . Also, weak significance is shown 
against GAS in few cases for k = 5 and against original for k = 15.

Table  2 for MQ2008 shows no statistically significant differences between LifeRank 
and FSMSVM for RankSVM. There is weak to strong statistical significance for LifeRank 
against original dataset for most cases and against GAS mainly for k = 5, 10 and 15. For 
Linear Regression, LifeRank shows weak to strong statistical significance against origi-
nal in most cases, GAS in no cases and FSMSVM in few cases. Moreover, Table  3 for 
OHSUMED shows statistical significance for RankSVM in many cases against the base-
lines, whereas there is statistical significance observed for Liner Regression for few cases. 
The comparative lack of statistical significance seen for MQ2008 and OHSUMED can 
most probably be attributed to the relatively small size of these datasets.

6.2 � Quality of the generated features

Table 4 lists the quality scores of the features from four datasets: the original datasets and 
the three datasets generated by GAS, FSMRank and LifeRank, respectively, for k = 10.
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From the table we see that: (1)  GAS can significantly reduce the redundancy of the 
features. The redundancy of the features selected by GAS is the lowest among the four 
datasets. However, the importance of the features selected by GAS is also lowest and even 
slightly lower than that of the original datasets. (2) FSMRank can improve the importance 
of the features while reducing their redundancy, but the differences in terms redundancy 
are subtle. (3) LifeRank can sharply improve the importance of the features. The impor-
tance of the features generated by LifeRank is highest among the four datasets. Besides, 
the redundancy of the features can also be slightly reduced by LifeRank for MQ2007 but 
deteriorated for MQ2008 and OHSUMED. Worse redundancy for LifeRank in compari-
son with GAS and FSMSVM could be because of the reason that, while these baselines 
are feature selection methods, for LifeRank each extracted feature is a linear combination 
of the original features. Moreover, it can be observed that for the larger dataset MQ2007, 
redundancy for LifeRank is comparable to the baselines, and even better than FSMSVM. 
However, for smaller dataset MQ2008, the redundancy is worse than the baselines. For the 
smallest dataset OHSUMED, it is worse than the baselines by a greater difference.

6.3 � Effect of the orthonormality constraints

To confirm that the orthonormality constraints used in LifeRank do indeed contribute to 
performance gains, we re-generated the datasets for the benchmarks MQ2007, MQ2008 
and OHSUMED using LifeRank for k = 10, but this time without the incorporation of the 
constraints in its algorithm in Phase I (see Algorithm 1, line 1–8). Table 5 shows the com-
parison of performances of ranking algorithms, for datasets generated by LifeRank and 
LifeRank without orthonormality constraints (represented by LifeRankNO). Moreover, 
markups are presented in the table to denote to the statistical significance between LifeR-
ank and LifeRankNO.

We can see from the results in Table 5 that the datasets generated by LifeRank show 
significant improvements in performance over the datasets generated by LifeRankNO for 
both learning to rank algorithms, RankSVM and Linear Regression. Performance gains can 
be observed on all three benchmarks and across all performance measures (NDCG@1–10 
and MAP). Hence, these results show that the usage of orthonormality constraints is ben-
eficial in the LifeRank algorithm. Also, strong statistical significance between LifeRank 
and LifeRankNO can be observed for all three benchmarks for RankSVM as well as Linear 
Regression, across all performance measures, except for a small number of cases where 
weak or no statistical significance is seen.

Table 4   Performance of the 
generated features

The metric values in bold correspond to the best performing algorithm

Datasets MQ2007 MQ2008 OHSUMED

Imp Rdd Imp Rdd Imp Rdd

Original 0.2671 0.4833 0.3297 0.5318 0.3763 0.5592
GAS 0.2643 0.3242 0.3235 0.3308 0.3603 0.3904
FSMRank 0.3005 0.4706 0.3723 0.5276 0.4170 0.5412
LifeRank 0.3214 0.4606 0.4095 0.5758 0.4422 0.8881
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7 � Conclusion

In this paper, we have addressed the feature extraction problem for learning to rank, and 
have proposed LifeRank, a linear feature extraction algorithm for ranking. LifeRank 
regards each dataset for ranking as a matrix, referred to as the original matrix. We then 
optimize a transformation matrix by minimizing a classic pairwise learning to rank loss 
function, so that we can discover the optimal one that matches the ranking task. Then a 
new matrix (dataset) can be generated by the product of original matrix and transformation 
matrix. Extensive experiments on benchmark datasets show the performance gains of Lif-
eRank in comparison with the state-of-the-art algorithms.

The performance of LifeRank has been evaluated for RankSVM and Linear Regression. 
In future work, its benefits for other learning to rank algorithms could be analysed. Moreo-
ver, nonlinear feature extraction techniques like some kernel tricks could be incorporated 
in LifeRank to further improve its performance. Besides, we plan to try more learning to 
rank loss functions like some state-of-the-art listwise loss functions for performance gains 
of our algorithm. In addition, we believe it would be interesting to establish theoretical 
results on dimension reduction for ranking, including feature extraction and feature selec-
tion-based algorithms, especially concerning retrieval performance.
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