
Inf Retrieval J (2018) 21:481–506
https://doi.org/10.1007/s10791-018-9330-5

1 3

Linear feature extraction for ranking

Gaurav Pandey1  · Zhaochun Ren2 · Shuaiqiang Wang2 · Jari Veijalainen1 ·
Maarten de Rijke3

Received: 6 August 2016 / Accepted: 16 April 2018 / Published online: 2 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract  We address the feature extraction problem for document ranking in information
retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In
LifeRank, we regard each document collection for ranking as a matrix, referred to as the
original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset)
can be generated as the product of the original matrix and a transformation matrix. The
transformation matrix projects high-dimensional document vectors into lower dimensions.
Theoretically, there could be very large transformation matrices, each leading to a new
generated matrix. In LifeRank, we produce a transformation matrix so that the generated
new matrix can match the learning to rank problem. Extensive experiments on benchmark
datasets show the performance gains of LifeRank in comparison with state-of-the-art fea-
ture selection algorithms.

Keywords  Feature extraction · Dimension reduction · Learning to rank · Information
retrieval

 *	 Gaurav Pandey
	 gaurav.g.pandey@jyu.fi

	 Zhaochun Ren
	 renzhaochun@jd.com

	 Shuaiqiang Wang
	 wangshuaiqiang1@jd.com

	 Jari Veijalainen
	 jari.veijalainen@jyu.fi

	 Maarten de Rijke
	 derijke@uva.nl

1	 University of Jyvaskyla, Jyväskylä, Finland
2	 Data Science Lab, JD.com, Beijing, China
3	 University of Amsterdam, Amsterdam, The Netherlands

http://orcid.org/0000-0003-4450-1766
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-018-9330-5&domain=pdf

482	 Inf Retrieval J (2018) 21:481–506

1 3

1  Introduction

Document ranking is an essential component of information retrieval systems and web
search engines. Recently, machine learning-based ranking techniques, referred to as “learn-
ing to rank,” have given rise to an active and growing research area, both in the information
retrieval and machine learning communities (Cao et al. 2007; Freund et al. 2003; Joachims
et al. 2009; Niu et al. 2012; Xu and Li 2007). A large number of learning to rank algo-
rithms have been proposed, which incorporate more and more useful features, aiming to
improve the performance of the ranking algorithms (Liu 2011). In a supervised setting,
they first collect a set of training data, which includes a set of queries, each associated
with a list of documents labeled by relevance degrees; with the training dataset, they train
a ranking model that can order unseen documents according to their degree of relevance
(Joachims et al. 2007). In this situation, dimension reduction inevitably becomes an impor-
tant issue (Geng et al. 2007).

Firstly, dimension reduction can enhance the accuracy for many machine learning prob-
lems, including learning to rank. With dimension reduction techniques, a small set of more
discriminative and less redundant features can be selected or generated for learning. Thus,
better results could be achieved, as overfitting becomes less likely (Ng 2004). Also, the
generalization ability of machine learning models could depend on the radius of training
data points, which may decrease when the number of features decreases (Blum and Lang-
ley 1997; Geng et al. 2007; Weston et al. 2000; Wolf and Bileschi 2005).

Secondly, large number of features leads to high complexity in most learning to rank
algorithms. Therefore, dimension reduction often leads to significant improvements in
training and prediction efficiency, while maintaining, or having a limited negative impact
on, accuracy. With accuracy being the primary metric, efficiency has also emerged as a
crucial issue for evaluating learning to rank algorithms (Cao et al. 2007; Chapelle et al.
2011; Wang et al. 2015). Training datasets and ranking features continue to expand, so as
to obtain more accurate models. Furthermore, as a consequence of the dynamic character
of the Web, ranking models need to be re-learned repeatedly, and the interval between re-
learning procedures decreases sharply (Liu 2011). With dimension reduction techniques,
fewer features are used, resulting in more efficient training and prediction.

Generally, there are two types of dimension reduction algorithms: feature selection and
feature extraction. The former aims to select a subset of the original features for learn-
ing, while the latter attempts to generate a small set of new features from the original fea-
tures (Blum and Langley 1997; Motoda and Liu 2002; Wyse et al. 1980). Recently, feature
selection for ranking has been investigated intensively (Geng et al. 2007; Gupta and Rosso
2012; Lai et al. 2013; Laporte et al. 2014; Naini and Altingövde 2014; Pan et al. 2009; Yu
et al. 2009). To the best of our knowledge, the advantages of feature extraction have not yet
been explored in learning to rank.

In this study, we address the feature extraction problem for learning to rank. In com-
parison with feature selection, the feature extraction problem has a much larger search
space. For example, given n original features, feature selection selects a subset of fea-
tures of size k (where k < n ) for learning. Here, for a particular value of k, the search

space of the problem contains
(
n

k

)
 possible solutions. The full search space that can

include any number of features (i.e., all values of k in range 1 to n), would lead to 2n − 1
solutions. In comparison, for linear feature extraction, each extracted feature is a linear
combination of original n features. Since the coefficient associated with each original

483Inf Retrieval J (2018) 21:481–506	

1 3

feature can be any real number, the search space becomes infinite. The search space of
non-linear feature extraction would be even larger, as it also includes solutions involv-
ing non-linear combinations of features (e.g. polynomial combinations). Hence, with a
larger search space, feature extraction has a greater possibility to achieve better perfor-
mance than feature selection.

To address the problem of linear feature extraction for learning to rank, we propose Lif-
eRank, a Linear feature extraction algorithm for Ranking. LifeRank regards each dataset
for training, validation or test as a matrix, referred to as an original matrix, where each
row vector represents a document with a set of features. With a given original matrix for
training � , LifeRank attempts to discover a transformation matrix � , so that a new matrix
(dataset) �′ can be generated as the product of the original matrix and a transformation
matrix, i.e., �� = �� . Thus � projects high-dimensional document vectors in � into lower-
dimensional ones in �′ . Theoretically, there could be a very large number of possible trans-
formation matrices, each leading to a new generated matrix. LifeRank attempts to discover
a transformation matrix to transform the original matrix (dataset) into a low-rank one for
dimension reduction, on which learning to rank algorithms can achieve optimum results in
comparison with other dimension-reduced matrices.

Our problem formulation is similar to principal component analysis (PCA) (Jolliffe
2002), and thus our algorithm LifeRank can be understood from the perspective of PCA.
PCA is one of the most popular dimension reduction techniques in machine learning. When
PCA is performed using singular valued decomposition (SVD) (Lange 2010), the given
matrix � can be approximately decomposed into three low-rank matrices � ≈ ���⊤ . Here,
� is composed of the singular values of � , � and � are composed of the left and right sin-
gular vectors of � respectively, and �⊤� = �⊤� = � is equal to the identity matrix. Thus a
new matrix �� = �� ≈ �� . However, it should be noted that while PCA calculates �′ as
an approximation of � , in LifeRank � is transformed to �′ using a transformation matrix.

In LifeRank, we formulate the learning to rank task by using a classical pairwise loss
function. A pairwise loss function is used because such functions are fundamental, straight-
forward and intuitive for ranking. Besides, pairwise loss functions are consistent with the
assumption that the labels of documents to rank lie in a rank-differentiable probability
space (Lan et al. 2012), and they are upper bounds of measure-based ranking errors (Chen
et al. 2009). In the generated matrix, the column vectors represent the features. Since opti-
mization over orthogonal features is beneficial to many machine learning problems (Shalit
and Chechik 2014; Shivanna and Bhattacharyya 2014), we utilize the Lagrange multipliers
method (Arfken 2013; Bertsekas 1999) to impose orthonormality constraints on the col-
umn (feature) vectors of the transformed matrix, and then use gradient descent for optimi-
zation. With the transformation matrix � , the training, validation and test datasets can be
directly generated with matrix product.

Note that (1) LifeRank generalizes feature selection algorithms for the learning to rank
task. Feature selection can be regarded as optimizing a transformation matrix � so that
the column vectors of � meet the orthonormality constraints and each element in � can
only be either 0 or 1. (2) Although some deep learning-based ranking algorithms (Seve-
ryn and Moschitti 2015) also aim to generate a set of features for ranking, our problem is
completely different: we try to construct our features based on some predesigned ranking
features like term frequency (TF) and inverse document frequency (IDF), which have been
comprehensively used in conventional learning to rank algorithms like Ranking SVM (Cao
et al. 2006; Joachims et al. 2009) and RankBoost (Freund et al. 2003). Deep learning-based
algorithms, however, try to build features based on word-level features in a corpus that dif-
fer substantially from conventional ranking features.

484	 Inf Retrieval J (2018) 21:481–506

1 3

Our main contributions are as follows: (1) We address the feature extraction problem
for learning to rank. Feature extraction is a category of comprehensively used dimension
reduction techniques in many machine learning problems for performance gains in accu-
racy and efficiency, but to the best of our knowledge, feature extraction and its advantages
have not been explored in learning to rank yet. (2) We propose LifeRank, a linear fea-
ture extraction algorithm that generates datasets to be utilized by the learning to rank task.
(3) We perform extensive experiments on benchmark datasets and present the performance
gains of LifeRank in comparison with the state-of-the-art feature selection algorithms.

The remainder of the paper is organized as follows. Section 2 reviews related work;
Sect. 3 defines the feature extraction problem for ranking; Sect. 4 proposes LifeRank, a
gradient descent-based algorithm. Section 5 introduces our experimental setup. Section 6
reports the experimental results, and Sect. 7 concludes the paper.

2 � Related work

We discuss three types of related work: learning to rank, feature selection for ranking, and
feature extraction for ranking.

2.1 � Learning to rank for information retrieval

Learning to rank has received increased attention from both the machine learning and
information retrieval community. While there is a growing interest in online learning to
rank (Schuth et al. 2016) and in counterfactual learning to rank from online data (Joachims
et al. 2018), the bulk of the work on learning to rank concerns offline learning to rank,
where explicit human annotations are used to label query, document pairs. Offline learning
to rank is the focus of this paper. Given its effectiveness, many algorithms have been pro-
posed, which mainly fall into three categories (Chapelle et al. 2011; Liu 2009): pointwise,
pairwise, and listwise.

Pointwise approaches, such as Pranking (Crammer and Singer 2001), McRank (Li et al.
2007) and Subset Ranking (Cossock and Zhang 2008), view each document in the training
dataset as a learning instance, and utilize a classification or regression technique to predict
the relevance categories or numerical/ordinal relevance scores for unlabeled data. Pairwise
approaches, such as Ranking SVM (Cao et al. 2006; Joachims et al. 2009), RankBoost
(Freund et al. 2003), RankNet (Burges et al. 2005), FRank (Tsai et al. 2007), LambdaRank
(Burges et al. 2007), and BoltzRank (Volkovs and Zemel 2009), regard a pair of documents
as a learning instance, and try to learn a binary classifier that can predict the more relevant
document to the given query from each pair of documents. Then the ranked lists of docu-
ments can be aggregated based on the pairwise preferences of the documents. Listwise
approaches, such as ListNet (Cao et al. 2007), SVM-MAP (Yue et al. 2007), NDCGBoost
(Valizadegan et al. 2009), take the entire ranked list of documents as a learning instance,
and attempt to construct a ranking model that can directly predict the full rankings of the
documents. Recently, some hybrid algorithms have been proposed, such as FocusedRank
(Niu et al. 2012), MixRank (Busa-Fekete et al. 2013), targeting improvements in learning
accuracy, efficiency, or both. More algorithms are surveyed in Chapelle et al. (2011), Liu
(2009, 2011).

With the incorporation of more and more useful features for performance gains, dimen-
sion reduction inevitably becomes an important issue in the ranking problem (Geng et al.
2007). With effective dimension reduction techniques, not only the efficiency of the

485Inf Retrieval J (2018) 21:481–506	

1 3

algorithms could be improved, but also accuracy could be enhanced as a result of using
more discriminative features with less redundancy and noise. Furthermore, the generaliza-
tion of the ranking model can also be increased as a result of using fewer features (Geng
et al. 2007).

2.2 � Feature selection for ranking

Recently, considerable efforts have been made on feature selection for ranking. Geng et al.
(2007) present GAS, one of the first attempts to incorporate the importance and similar-
ity of features for ranking. In particular, it evaluates the importance of features with rank-
ing metrics like MAP (Baeza-Yates and Ribeiro-Neto 1999) and NDCG (Järvelin and
Kekäläinen 2002), and estimates the similarity between features using agreement between
rankings, e.g., with Kendall � correlation coefficient (Kendall 1948). Then it greedily
selects a subset of features with maximum total importance scores and minimum total
similarity scores. Metzler (2007) proposes a greedy feature selection algorithm to be used
within the Markov random field model for information retrieval. The model automatically
generates models that are more effective than, or as effective as, models created by care-
fully selecting the features manually. Pan et al. (2009) investigate a boosted regression
trees-based feature selection algorithm. It evaluates the importance of the features based
on boosted trees. Then it selects features by maximizing the discounted importance of the
features, where the importance of each feature is discounted by feature similarity. Yu et al.
(2009) propose RankWrapper and RankSelect, two feature weighting and selection algo-
rithms for learning to rank. They utilize ranking distances of nearest data points in order to
identify the key features for ranking, demonstrating significant efficiency gains in compari-
son with GAS.

Gupta and Rosso (2012) present a Kullback–Leibler (KL) divergence-based divergence
metric, and select a subset of features for ranking based on features’ expected divergence
over the relevance classes and the importance of features. Lai et al. (2013) propose a joint
convex optimization formulation for minimizing ranking errors while simultaneously con-
ducting feature selection. This optimization formulation provides a flexible framework in
which various importance measures and similarity measures of the features can easily be
incorporated. Naini and Altingövde (2014) adopt three greedy diversification strategies,
maximal marginal relevance, MaxSum dispersion and modern portfolio theory, to the
problem of feature selection for ranking. Laporte et al. (2014) propose a general frame-
work for feature selection in learning to rank based on support vector machine (SVM); they
investigate both classical convex regularizations (such as L1 and weighted L1) and non-
convex regularization terms (such as log penalty, Minimax Concave Penalty (MCP) and Lp
pseudo norm with p < 1 ). Furthermore, they provided an accelerated proximal approach
for solving the convex problems and a re-weighted L1 scheme to address the non-convex
regularizations.

All of these algorithms are meant to address feature selection for ranking. To the best of
our knowledge, there is no work targeting feature extraction for ranking.

2.3 � Feature extraction techniques

Feature extraction has been used extensively used in various machine learning scenarios
for performance gains in terms of accuracy and efficiency. Given its effectiveness, many
approaches have been proposed, which are either linear or non-linear algorithms.

486	 Inf Retrieval J (2018) 21:481–506

1 3

The main linear technique for feature extraction is principal component analy-
sis (PCA) (Jolliffe 2002), which performs a linear mapping of high-dimensional data
into a lower-dimensional space in such a way that the variance of the data in the low-
dimensional representation is maximized. Canonical-correlation analysis (CCA) (Har-
doon et al. 2004) is another popular linear feature extraction algorithm, which attempts
to discover linear combinations of the original features that have maximal correlation
with each other. In addition, several probabilistic algorithms, including probabilistic
PCA (Tipping and Bishop 1999), probabilistic CCA (Bach and Jordan 2005) and prob-
abilistic partial CCA (Mukuta and Harada 2014), have been proposed, where a set of
latent variables are introduced for probabilistically interpreting these models.

Non-linear feature extraction algorithms can combine the original features to gen-
erate a set of features in a non-linear way. For example, the locally linear embedding
(LLE) method (Roweis and Saul 2000) learns the global structure of non-linear mani-
folds to yield low-dimensional, neighborhood-preserving embeddings of high-dimen-
sional inputs. Isomap (Tenenbaum et al. 2000) is capable of discovering the non-linear
degrees of freedom that underly complex natural observations. It can efficiently com-
pute a globally optimal solution and can be guaranteed to converge asymptotically to
the true structure. Besides, some kernel techniques have been proposed to transform
linear feature extraction algorithms into nonlinear ones. For example, kernel PCA
(Schölkopf et al. 1998) is a non-linear form of principal component analysis (PCA),
which can efficiently compute principal components in high-dimensional feature
spaces through the use of integral operator kernel functions.

Although feature extraction techniques have been extensively investigated and
shown to demonstrate promising performance gains, to the best of our knowledge, they
have not been explored yet in the context of the ranking problem.

3 � Problem statement

3.1 � Learning to rank for information retrieval

Let  be a collection of documents, each represented by a vector of feature values. In
information retrieval systems, given a query q, a list of documents from  is returned
as search results, where the documents are ranked according to their estimated rel-
evance to q. Given a query q, the ground truth, i.e., relevance judgments of documents
with respect to q (produced by human experts) is defined as a function rel ∶  → ℕ0 ,
where ℕ0 is the set of natural numbers (including 0).

Let f ∶  → ℝ be a ranking function assigning real valued relevance scores to doc-
uments. The goodness of ranking functions can be evaluated by a measure s, such as
precision at n (P@n), mean average precision ( MAP ) (Baeza-Yates and Ribeiro-Neto
1999), or normalized discount cumulative gain ( NDCG@n ) (Järvelin and Kekäläinen
2002).

Definition 1  (Learning to rank) Given a training dataset  and an evaluation measure
s, the problem of learning to rank is to learn a ranking function f from  such that s(f) is
maximized.

487Inf Retrieval J (2018) 21:481–506	

1 3

3.2 � Dimension reduction for ranking

In learning to rank, each dataset  can be regarded as a document matrix �m×n with m
rows (documents) and n columns (features). In particular, �i is the i-th row of � , and
�i

⊤ is a n-dimensional (column) vector that represents a document with n features. Let
g ∶ ℝ

n
→ ℝ

k ( k ≤ n ) be a mapping that projects an n-dimensional vector space into a
k-dimensional space. Let L(⋅) be the loss function for the learning to rank task. Our prob-
lem is to discover a mapping function g such that the obtained dataset �� = g(�) mini-
mizes the loss function.

Definition 2  (Dimension reduction for ranking) Let �m×n be a document matrix with m
columns and n rows, where each column �i⊤ is a n-dimensional vector, representing a doc-
ument with n features. Let  be the set of all possible mapping functions, where each ele-
ment g ∶ ℝ

n
→ ℝ

k ( k ≤ n ) is used to project an n-dimensional vector space into a k-dimen-
sional space. The dimension reduction for the learning to rank task tries to discover an
optimum mapping function g∗ ∈  such that:

where L(⋅) is the loss function for the learning to rank task. Then the new dataset can be
generated with g∗(�).

In this paper, we consider linear feature extraction for learning to rank as it is the sim-
plest and most straightforward feature extraction technique in machine learning. Here, each
generated feature is a linear combination of the original features. It utilizes a transforma-
tion matrix � to achieve the effectiveness of the mapping function, aiming to discover an
optimal matrix � such that the obtained dataset �� = �� results in a minimal value of the
loss function.

The problem can be understood from the perspective of PCA (Jolliffe 2002). Using
PCA, the given matrix � can be approximately decomposed into three lower-rank matrices:

where � is composed of the singular values of � , � and � are composed of the left and
right singular vectors of � respectively, and �⊤� = �⊤� = � (the identity matrix). Thus, a
new matrix �′ can be generated as follows:

The role of the transformation matrix � in LifeRank is very similar to the right singular
matrix � in PCA, where � maps the document vectors to another space spanned by the
columns of � before transforming them through � and going back through � . Hence, in
LifeRank we consider the orthonormality constraints of � in our optimization process, i.e.,
�⊤� = �.

Definition 3  (Constrained linear feature extraction for ranking) Let �m×n be a document
matrix, where the transpose of each row, i.e., �i⊤ = �i is a n-dimensional vector, represent-
ing a document with n features. Linear feature extraction for ranking aims to optimize a
transformation matrix �n×k by solving the following optimization problem, so that a new
document matrix ��

m×k
= �m×n�n×k can be generated, where each document vector �i can

be projected into k-dimensional vector ��
i
= �⊤�i:

(1)arg min
g∈

L(g(�)),

(2)� ≈ ���⊤,

(3)�� = �� ≈ ��.

488	 Inf Retrieval J (2018) 21:481–506

1 3

where L(⋅) is the loss function for the learning to rank task.
Based on the optimized mapping function g, the new dataset can be generated by taking

the product of the original matrix and the transformation matrix, i.e., �� = ��.

We have used the example of PCA to help us explain the mechanism of LifeRank. How-
ever, it should be noted that in PCA �′ is calculated as an approximation of � , whereas in
LifeRank we generate a transformed representation of the initial matrix, in order to achieve
a better ranking performance. Hence, unlike PCA, �′ as computed in Definition 3 is not an
approximation of � , but a transformation.

4 � The LifeRank algorithm

Given a high-dimensional dataset  , LifeRank generates a new low-dimensional dataset  ′
in two phases. In the first phase, LifeRank first preprocesses the training dataset  into an
original matrix � . Then LifeRank optimizes the transformation matrix � for � according to
the loss function in Eq. 4. In the second phase, LifeRank generates low-dimensional training,
validation and test matrices with the projection of � . Then LifeRank constructs new datasets
based on the low-dimensional data matrices.

4.1 � Phase I: Generation of the transformation matrix

In this study, we utilize a classic pairwise learning to rank loss function to implement the
function L(⋅) in Definition 3. Pairwise loss functions are chosen because apart from being rela-
tively simple and straightforward, they are also intuitive choices for ranking. Besides, with the
assumption that the labels of documents to rank lie in a rank-differentiable probability space,
pairwise loss functions are consistent (Lan et al. 2012) and provide upper bounds for measure-
based ranking errors like NDCG (Chen et al. 2009). Thus, minimizing a pairwise loss function
will maximize the ranking measures (Lan et al. 2012).

First of all, the training dataset  is preprocessed into an original matrix � and other infor-
mation �X consisting of identities of the documents and queries, relevance labels, etc. Let
D = {�1, �2,… , �m} be the set of columns (document vectors) in the matrix �⊤

m×n
 . We regard

each pair of vectors (�i, �j) ∈ D × D as an instance, and the label yi,j ∈ {+1,−1} indicates
whether the relevance of the i-th document is higher or lower than the j-th document, corre-
sponding to the given query. Let {�1, �2,… , �k} be the column vectors of � . We try to discover
a k-dimensional vector of weights � such that:

where the first part calculates the log loss of the ranking accuracy, the second part is the l2
norm of the parameters for regularization, and � is the coefficient of the regularization term
for trade-off.

(4)
arg min

�

L(��) such that �⊤� = �,

(5)

arg min�,�,b

∑

∀(�i,�j),i≠j

log
(
1 + e−yi,j(�

⊤�⊤(�i−�j)+b)
)
+

𝜆

2
||�||2

such that �⊤
i
�j =

{
1, i = j

0, i ≠ j
,∀i, j = 1, 2,… , k,

489Inf Retrieval J (2018) 21:481–506	

1 3

We optimize the constrained loss function based on the Lagrange multipliers method
(Arfken 2013; Bertsekas 1999) in Eq. 5. Let

where � is a matrix with k columns and k rows, and elements �i,j . Then, the optimum � , �
and b for minimizing  are the exact results of Eq. 5.

In Phase I, we utilize gradient descent to generate the training dataset and the transforma-
tion matrix. Initially, we assign all 1s to the vector �k×1 so that all of the generated features
in the ranking model have the same initial weight. We initialize the transformation matrix
� in a random manner, following work on matrix generalization problems like matrix fac-
torization-based collaborative filtering (Koren et al. 2009). After initialization, the weight
vector � and the factorized matrix can be updated iteratively with gradient descent until
reaching convergence or the maximum number of iterations with the given learning rate.
The gradients of the function  with respect to the variables are calculated as follows:

where �1, �2,… �n are the column vectors of � . Since gradient descent generally does not work
with Lagrange multipliers, we use the basic differential multiplier method (BDMM) (Platt
and Barr 1988) for optimization, where the sign inversion for � in Eq. 8 makes the optimiza-
tion stable. Given a learning rate � , the update formulas of the gradient descent method are:

(6)

(�,�, b,�) =
∑

∀(�i,�j),i≠j

log
(
1 + e−yi,j(�

⊤�⊤(�i−�j)+b)
)
+

𝜆

2
||�||2 +

∑

i,j=1,…,k∧i≠j

𝛼i,j�
⊤

i
�j +

k∑

i=1

𝛼i,i
(
1 − �⊤

i
�i
)
,

(7)

∇� =
∑

∀(�i ,�j),i≠j

−yi,j�
⊤
(
�i − �j

)

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

+ 𝜆�

∇�l
 =

∑

∀(�i ,�j),i≠j

−yi,jwl

(
�i − �j

)

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

+

∑

i≠l

(𝛼l,i + 𝛼i,l)�i − 2𝛼l,l�l, l = 1,… , k

𝜕

𝜕b
=

∑

∀(�i ,�j),i≠j

−yi,j

1 + eyi,j(�
⊤�⊤(�i−�j)+b)

𝜕

𝜕𝛼i,j
=

{
�⊤
i
�j, i ≠ j

1 − �⊤
i
�j, i = j

∀i, j = 1,… , k,

(8)

� ← � − �∇�

�l ← �l − �∇�l
, for l = 1,… , k

b ← b − �
�

�b

�i,j ← �i,j + �
�

��i,j
, for i, j = 1,… , k.

490	 Inf Retrieval J (2018) 21:481–506

1 3

4.2 � Phase II: Generation of low‑rank datasets

In LifeRank, Phase II generates all of the datasets for learning to rank, including the
training, validation and test datasets. According to Definition 3, for each original matrix
� , the generated matrix �′ can be obtained as a product of the original dataset � and the
transformation matrix � , formally �� = �� . Then, the new low-dimensional dataset  ′
can be generated by integrating matrix �′ with other information �X that was filtered in
the preprocessing step in Phase I.

4.3 � Pseudocode

The pseudocode of LifeRank as a dimension reduction algorithm for ranking is sum-
marized in Algorithm 1. Given the number of generated features k and a set of standard
learning to rank datasets, including a training dataset  , a validation dataset  and a test
dataset  , LifeRank tries to output new low-dimensional datasets  ′ ,  ′ and  ′ for train-
ing, validation and test, respectively, for the learning to rank procedure.

Algorithm 1 implements the two phases of LifeRank: (I) Lines 1–8 generate
the transformation matrix � based on the original training dataset  ; (II) Using � ,
lines 9–10 generate the low-dimensional matrices for training �′ , validation �′ and test
�′ . Then, line 11 constructs the low-dimensional training, validation and test datasets by
directly integrating the low-rank matrices and their corresponding information filtered
in the preprocessing steps in lines 1 and 9.

4.4 � Discussion

In this section, we reveal a connection between the feature selection for ranking problem
and the linear feature extraction for ranking problem. In particular, from the perspective
of linear transformations of matrices, the feature selection for ranking problem can be
defined as in Definition 4.

491Inf Retrieval J (2018) 21:481–506	

1 3

Definition 4  (Feature selection for ranking) Let �m×n be a document matrix, where
the transpose of each row �i⊤ = �i is an n-dimensional vector, representing a document
with n features. Feature selection for ranking aims to optimize a transformation matrix
�n×k by solving the following optimization problem, so that a new document matrix
��

m×k
= �m×n�n×k can be generated, where each n-dimensional document vector �i can be

projected into a k-dimensional vector ��
i
= �⊤�i:

Based on the optimized mapping function g, the new low-rank matrix can be generated as a
product of the original matrix and the transformation matrix, i.e., �� = ��.

The k columns of the transformation � mentioned in Defintion 4 present the k iterations
of the feature selection processes. The constraints in Eq. 9 guarantee that there is only one
“1” in each column of the transformation matrix � and the others are all “0,” indicating
that each feature selection process only selects one feature. The second constraint �⊤� = �
guarantees that the position of the unique “1” in each column is different from other col-
umns, which is the index of the selected feature in that step.

Since the elements in the transformation matrix � can be any real numbers in Defini-
tion 3 while they are only either 0 or 1 in Definition 4, Definition 3 generalizes Defini-
tion 4, i.e., the problem of linear feature extraction for ranking generalizes the problem of
feature selection for ranking. Because of this, linear feature extraction is expected to out-
perform or be at least as good as any feature selection technique. The linear feature extrac-
tion is expected to use more computational resources than feature selection, since former
deals with the search space in real numbers and the latter with binary case. However, this
computational overhead is the tradeoff for the higher performance expected to be achieved
by the extracted features, when utilized for learning to rank.

5 � Experimental setup

5.1 � Research questions

We list the research questions that guide the remainder of the paper.

RQ1	� What is the performance of LifeRank in generating low-dimensional datasets?
Does LifeRank outperform state-of-the-art feature selection algorithms? (See
Sect. 6.1)

RQ2	� Can the importance and redundancy of the features generated by LifeRank outper-
form those selected by feature selection algorithms? (See Sect. 6.2)

RQ3	� What is the effect of the orthonormality constraints of the transformation matrix
in Eq. 4? Does it help enhance the performance of ranking predictions? (See
Sect. 6.3.)

5.2 � Datasets

In this study, we use the MQ2007 and MQ2008 datasets from LETOR 4.0 (Qin and Liu
2013) and OHSUMED from LETOR 3.0 (Qin et al. 2010) to evaluate our algorithm. The

(9)arg min
�

L(g(��)) such that

{
∀ti,j ∈ � ∶ ti,j = {0, 1}

�⊤� = �.

492	 Inf Retrieval J (2018) 21:481–506

1 3

LETOR1 datasets are commonly used benchmarks in learning to rank. LETOR 4.0 is the
latest version, which was released in July 2009. It uses the Gov2 web page collection ( ∼
25M pages) and two query sets from the Million Query track of TREC 2007 and TREC
2008, which are referred to as MQ2007 and MQ2008. We use both MQ2007 and MQ2008
in our experiments. In MQ2007, there are about 1700 queries and about 70,000 query-doc-
ument pairs, while MQ2008 has 800 queries and about 15,000 query-document pairs for
training, validation and testing. In both datasets, each query-document pair has 46 features.
We also use the OHSUMED dataset from LETOR 3.0, which was released in December
2008. OHSUMED is extracted from the online medical information database MEDLINE.
It contains 106 queries and about 16,000 query-document pairs, where each query-docu-
ment pair has 45 features.

In all the datasets that we use, relevance of documents with respect to queries is judged
at three levels: 2 (definitely relevant), 1 (partially relevant), and 0 (not relevant). In our
experiments, we use five-fold cross validation. In each fold, 60% queries are used for train-
ing, 20% for validation and and the remaining 20% for testing. The performance numbers
reported are averaged over the five folds.

5.3 � Baselines

LifeRank aims to generate low-dimensional datasets for ranking. In this paper, we utilize
three baselines to evaluate the datasets generated by our algorithm:

Original datasets:	� We firstly use the original LETOR datasets as our
first baseline, on which no selection or generation
has been performed.

Datasets generated by GAS:	� GAS (Geng et al. 2007) incorporates importance
and similarity information of the features into rank-
ing. It greedily selects a subset of features by maxi-
mizing the total importance scores meanwhile mini-
mizing the total similarity scores.

Datasets generated by FSMRank:	� FSMRank (Lai et al. 2013) trains a feature selection
model with machine learning, which can select a
subset of features meanwhile minimizing the rank-
ing errors.

We then run Linear Regression (Lawson and Hanson 1995)-based learning to rank and
RankSVM2 (Joachims et al. 2009) to determine how well these datasets can address the
ranking problem. The former makes pointwise predictions on the relevance of the docu-
ments by linear regression, which is implemented in the RankLib learning to rank toolkit.3
The latter predicts pairwise ranking relation between each pair of documents directly by
support vector machine (SVM). These are classical pointwise and pairwise learning to rank
algorithms, respectively, with which we can clearly demonstrate the effects of dimension
reduction.

1  http://resea​rch.micro​soft.com/en-us/um/beiji​ng/proje​cts/letor​/.
2  https​://www.cs.corne​ll.edu/peopl​e/tj/svm_light​/svm_rank.html.
3  https​://sourc​eforg​e.net/p/lemur​/wiki/RankL​ib/.

http://research.microsoft.com/en-us/um/beijing/projects/letor/
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/

493Inf Retrieval J (2018) 21:481–506	

1 3

Since LifeRank uses a linear approach for feature extraction, it is expected to show
effectiveness mainly for linear learning-to-rank methods. This is the reason why we have
chosen SVMRank and Linear Regression for experimentation.

5.4 � Evaluation measures

5.4.1 � Measures for ranking

We use two standard ranking accuracy metrics to evaluate the rankings generated by learn-
ing to rank algorithms: mean average precision (MAP) (Baeza-Yates and Ribeiro-Neto
1999) and normalized discount cumulative gain (NDCG@n) (Järvelin and Kekäläinen
2002).

Statistical significance of observed differences between the performance of two runs is
tested using a two-tailed paired t-test and is denoted using▲ (or ▼) for strong significance
for � = 0.01 ; or △ (or ▽) for weak significance for � = 0.05.

5.4.2 � Measures for features

We consider two metrics to evaluate the quality of the features: importance and redundancy.
The importance of each feature can be evaluated by the ranking performance when the

feature is used as a ranking model to order the documents. In particular, we use NDCG@5
for evaluation. Since for calculating these measures, for some features larger values cor-
respond to higher ranks while for others smaller values lead to higher ranks, we utilize
the strategy in GAS (Geng et al. 2007) for evaluation: We order the documents twice in
ascending and descending manners respectively, and take the larger score as the impor-
tance score of the features. Then we calculate the average importance of the features as the
importance of the set of features F = {f1, f2,… , fk}:

where the function eva( , fi) returns the evaluation results of the ranking model fi on the
dataset .

The redundancy of features can be defined as the average similarity between each pair
of features. In practice, we regard each feature as a ranking model to order the documents,
and then calculate the similarity between each pair of features as the average similarity of
their document rankings associated to different queries. Let Q be the set of queries in the
given dataset, each associated with a set of documents for ranking. The redundancy of the
features F = {f1, f2,… , fk} is calculated as follows:

where �(q)

i
 is the ranking of the document associated to the query q when the feature fi is

used as the ranking model to order the documents. In this paper, we take the absolute value
of Kendall’s � correlation coefficient (Kendall 1948) as the similarity metric for rankings:

Imp(F) =
1

k

k∑

i=1

max
{
eva( , fi), eva( ,−fi)

}
,

Rdd(F) =
2

k(k − 1)

∑

fi,fj∈F,i>j

1

|Q|
∑

q∈Q

sim
(
𝜎
(q)

i
, 𝜎

(q)

j

)
,

494	 Inf Retrieval J (2018) 21:481–506

1 3

where Nc and Nd are the numbers of the concordant pairs and discordant pairs respectively
between rankings �i and �j.

The range of �
(
�i, �j

)
 is [−1, 1] , where the sign indicates that the correlation between

�i and �j is either positive or negative, and the absolute value indicates the strength of the
correlation. Since positive and negative values should not neutralize and we only consider
the strength of the correlations, we take the absolute value of Kendall’s � as the similarity
metric in the definition of redundancy.

6 � Experimental results

6.1 � Performance on generated datasets

Tables 1, 2 and 3 list the results obtained in our experiments on the MQ2007, MQ2008 and
OHSUMED datasets, respectively. They show the NDCG@1–10 and MAP scores for the
RankSVM and Linear Regression learning to rank algorithms on 4 categories of datasets:
the original datasets and 3 datasets generated by dimension reduction algorithms including
GAS, FSMRank and our LifeRank. For each dimension reduction algorithm, we consider k
generated features, with k = 5 , 10, 15, 20. The results for the original dataset in the tables
are independent of the value of k, but are repeated nevertheless for ease of comparison. The
values in bold represent the best performance among GAS, FSMSVM and LifeRank.

Overall, from the tables we can see that: (1) The performance of ranking algorithms
can be maintained or slightly improved on the datasets generated by dimension reduction
techniques. (2) The performance of the ranking algorithms on the datasets generated by
LifeRank is higher than those generated by GAS and FSMRank in most cases. Let us now
take a closer look.

6.1.1 � Performance of RankSVM

For RankSVM, we can see that LifeRank clearly shows improvements over the original
datasets for all the three benchmarks (MQ2007, MQ2008 and OHSUMED) in terms of
NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5 , where the per-
formance of LifeRank as well as the other generated datasets does not beat the original
dataset. We can also see from the tables that LifeRank clearly outperforms other generated
datasets (GAS and FSMSVM) on NDCG@1–10 for all the benchmarks and all values of k.

In terms of MAP, LifeRank outperforms the other generated datasets in most cases.
The few exceptions include the case for MQ2007, when GAS has a higher MAP for k = 5 .
For MQ2008, FSMSVM attains slightly higher MAP score than LifeRank for k = 10
and k = 20 , but these differences are not significant. Also, for OHSUMED when k = 5 ,
the MAP score attained by LifeRank is lower than FSMSVM and GAS, but it is still an
improvement over the original dataset.

(10)�
(
�i, �j

)
=

Nc − Nd

Nc + Nd

,

495Inf Retrieval J (2018) 21:481–506	

1 3

Ta
bl

e 
1  

R
an

ki
ng

 p
er

fo
rm

an
ce

 o
n

M
Q

20
07

 a
nd

 se
le

ct
ed

/g
en

er
at

ed
 d

at
as

et
s

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

Pe
rf

or
m

an
ce

 fo
r R

an
kS

VM
k

=
 5
O

rig
in

al
0.

40
79

0.
40

07
0.

40
09

0.
40

30
0.

40
77

0.
41

29
0.

42
01

0.
42

75
0.

43
36

▽
0.

43
91

▽
0.

46
15

▼

 G
A

S
0.

37
51

0.
38

07
0.

38
69

△
0.

39
46

0.
39

80
0.

40
68

0.
41

13
0.

41
77

0.
42

42
0.

42
90

0.
45

63
FS

M
SV

M
0.

35
98

▲
0.

37
03

▲
0.

37
73

▲
0.

38
11

▲
0.

38
71

▲
0.

39
41

▲
0.

39
97

▲
0.

40
61

▲
0.

41
29

▲
0.

41
93

▲
0.

45
12

 L
ife

R
an

k
0.

39
25

0.
39

25
0.

39
75

0.
40

09
0.

40
62

0.
41

18
0.

41
62

0.
42

09
0.

42
56

0.
43

12
0.

45
39

k
=

 1
0

 O
rig

in
al

0.
40

79
0.

40
07

0.
40

09
0.

40
30

△
0.

40
77

△
0.

41
29

▲
0.

42
01

△
0.

42
75

0.
43

36
0.

43
91

0.
46

15
 G

A
S

0.
38

97
0.

38
93

▲
0.

39
14

▲
0.

39
65

▲
0.

40
29

▲
0.

40
98

▲
0.

41
53

▲
0.

42
09

▲
0.

42
72

▲
0.

43
43

▲
0.

45
58

△

 F
SM

SV
M

0.
39

19
0.

39
17

0.
39

82
△

0.
40

27
△

0.
40

79
△

0.
41

34
▲

0.
41

87
▲

0.
42

39
▲

0.
42

90
▲

0.
43

49
▲

0.
45

93
 L

ife
R

an
k

0.
40

37
0.

40
23

0.
40

89
0.

41
17

0.
41

61
0.

42
15

0.
42

64
0.

43
12

0.
43

70
0.

44
23

0.
46

34
k

=
 1

5
 O

rig
in

al
0.

40
79

0.
40

07
0.

40
09

0.
40

30
0.

40
77

0.
41

29
0.

42
01

0.
42

75
0.

43
36

0.
43

91
0.

46
15

 G
A

S
0.

39
42

0.
39

54
0.

39
98

0.
40

23
0.

40
63

▲
0.

41
26

△
0.

41
95

0.
42

56
△

0.
43

16
▲

0.
43

72
▲

0.
45

93
▲

 F
SM

SV
M

0.
39

05
0.

39
37

△
0.

40
05

0.
40

60
0.

41
06

0.
41

44
0.

42
01

0.
42

50
△

0.
43

09
▲

0.
43

65
▲

0.
45

89
△

 L
ife

R
an

k
0.

39
72

0.
40

32
0.

40
61

0.
40

82
0.

41
41

0.
41

94
0.

42
42

0.
43

08
0.

43
76

0.
44

36
0.

46
35

k
=

 2
0

 O
rig

in
al

0.
40

79
0.

40
07

0.
40

09
0.

40
30

△
0.

40
77

△
0.

41
29

▲
0.

42
01

△
0.

42
75

0.
43

36
0.

43
91

0.
46

15
 G

A
S

0.
40

14
0.

39
67

▲
0.

40
07

0.
40

27
▲

0.
40

88
▲

0.
41

37
▲

0.
41

89
▲

0.
42

57
▲

0.
43

26
△

0.
43

94
△

0.
46

01
▲

 F
SM

SV
M

0.
38

82
▲

0.
39

29
▲

0.
40

04
0.

40
60

0.
40

96
0.

41
38

△
0.

42
03

△
0.

42
59

0.
43

10
△

0.
43

68
▲

0.
45

95
△

 L
ife

R
an

k
0.

40
97

0.
40

77
0.

40
58

0.
41

06
0.

41
53

0.
42

13
0.

42
65

0.
43

11
0.

43
74

0.
44

38
0.

46
40

Pe
rf

or
m

an
ce

 fo
r l

in
ea

r r
eg

re
ss

io
n

k
=

 5
 O

rig
in

al
0.

37
50

0.
38

54
0.

38
82

0.
39

26
0.

39
79

0.
40

34
0.

40
88

0.
41

54
0.

42
08

0.
42

77
0.

44
97

 G
A

S
0.

37
12

0.
37

51
0.

37
97

△
0.

38
51

△
0.

38
94

0.
39

52
0.

40
11

△
0.

40
71

△
0.

41
36

△
0.

41
96

△
0.

44
62

496	 Inf Retrieval J (2018) 21:481–506

1 3

St
at

ist
ic

al
 si

gn
ifi

ca
nc

e
sh

ow
n

fo
r L

ife
R

an
k

ag
ai

ns
t O

rig
in

al
, G

A
S

an
d

FS
M

SV
M

 P
er

fo
rm

an
ce

 fo
r O

rig
in

al
 is

 in
de

pe
nd

en
t o

f v
al

ue
 o

f k
 (c

or
re

sp
on

ds
 to

 o
rig

in
al

 d
at

as
et

)
Th

e
m

et
ric

 v
al

ue
s i

n
bo

ld
 c

or
re

sp
on

d
to

 th
e

be
st

pe
rfo

rm
in

g
al

go
rit

hm

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

 F
SM

SV
M

0.
35

54
▲

0.
36

34
▲

0.
36

73
▲

0.
37

41
▲

0.
37

80
▲

0.
38

72
▲

0.
39

29
▲

0.
40

02
▲

0.
40

76
▲

0.
41

45
▲

0.
44

89
 L

ife
R

an
k

0.
38

52
0.

38
74

0.
39

08
0.

39
55

0.
39

62
0.

40
26

0.
40

89
0.

41
49

0.
42

13
0.

42
79

0.
45

07
k

=
 1

0
 O

rig
in

al
0.

37
50

0.
38

54
0.

38
82

0.
39

26
0.

39
79

0.
40

34
0.

40
88

0.
41

54
0.

42
08

0.
42

77
0.

44
97

 G
A

S
0.

38
86

0.
38

79
0.

38
81

0.
39

29
0.

39
80

0.
40

31
0.

40
90

0.
41

46
0.

41
98

0.
42

61
0.

44
91

 F
SM

SV
M

0.
39

03
0.

39
51

0.
39

36
0.

39
50

0.
39

91
0.

40
49

0.
41

11
0.

41
66

0.
42

23
0.

42
85

0.
44

94
 L

ife
R

an
k

0.
38

52
0.

39
20

0.
39

26
0.

39
76

0.
40

26
0.

40
73

0.
41

46
0.

42
06

0.
42

70
0.

43
12

0.
45

07
k

=
 1

5
 O

rig
in

al
0.

37
50

0.
38

54
0.

38
82

0.
39

26
0.

39
79

0.
40

34
0.

40
88

△
0.

41
54

0.
42

08
△

0.
42

77
△

0.
44

97
 G

A
S

0.
37

67
0.

38
49

0.
39

13
0.

39
54

0.
40

00
0.

40
70

0.
41

33
0.

41
91

0.
42

50
0.

43
15

0.
45

28
 F

SM
SV

M
0.

38
00

0.
38

25
0.

38
55

0.
38

82
▲

0.
39

22
▲

0.
39

76
▲

0.
40

35
▲

0.
40

91
▲

0.
41

47
▲

0.
42

15
▲

0.
44

41
▲

 L
ife

R
an

k
0.

38
42

0.
38

88
0.

39
43

0.
39

84
0.

40
19

0.
40

91
0.

41
61

0.
42

07
0.

42
74

0.
43

36
0.

45
13

k
=

 2
0

 O
rig

in
al

0.
37

50
0.

38
54

0.
38

82
0.

39
26

0.
39

79
0.

40
34

0.
40

88
0.

41
54

0.
42

08
0.

42
77

0.
44

97
 G

A
S

0.
37

83
0.

38
97

0.
39

56
0.

39
90

0.
40

21
0.

40
79

0.
41

20
0.

41
78

0.
42

55
0.

43
13

0.
45

21
 F

SM
SV

M
0.

37
42

0.
38

67
0.

39
16

0.
39

37
0.

39
70

0.
40

11
0.

40
62

△
0.

41
32

0.
41

84
0.

42
44

△
0.

44
83

 L
ife

R
an

k
0.

38
28

0.
38

94
0.

39
12

0.
39

48
0.

40
14

0.
40

68
0.

41
21

0.
41

84
0.

42
43

0.
43

06
0.

45
14

497Inf Retrieval J (2018) 21:481–506	

1 3

Ta
bl

e 
2  

R
an

ki
ng

 p
er

fo
rm

an
ce

 o
n

M
Q

20
08

 a
nd

 se
le

ct
ed

/g
en

er
at

ed
 d

at
as

et
s

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

Pe
rf

or
m

an
ce

 fo
r R

an
kS

VM
k

=
 5

 O
rig

in
al

0.
37

12
0.

39
33

▲
0.

42
38

△
0.

44
85

△
0.

46
72

▲
0.

48
14

△
0.

48
75

△
0.

45
31

△
0.

22
34

0.
22

84
0.

47
14

 G
A

S
0.

36
78

0.
39

83
△

0.
42

13
▲

0.
44

92
△

0.
46

65
▲

0.
48

00
▲

0.
48

62
▲

0.
45

22
▲

0.
22

07
▲

0.
22

46
▲

0.
47

14
 F

SM
SV

M
0.

37
80

0.
41

26
0.

43
84

0.
45

99
0.

47
61

0.
49

09
0.

49
68

0.
46

16
0.

22
84

0.
23

26
0.

47
76

 L
ife

R
an

k
0.

37
67

0.
41

68
0.

43
89

0.
46

06
0.

48
06

0.
49

21
0.

49
76

0.
46

27
0.

22
80

0.
23

29
0.

47
88

k
=

 1
0

 O
rig

in
al

0.
37

12
0.

39
33

▲
0.

42
38

△
0.

44
85

△
0.

46
72

▲
0.

48
14

0.
48

75
△

0.
45

31
▲

0.
22

34
0.

22
84

△
0.

47
14

 G
A

S
0.

36
98

0.
40

15
△

0.
42

92
0.

45
65

0.
47

32
0.

48
62

0.
49

29
0.

45
51

△
0.

22
17

△
0.

22
66

▲
0.

47
76

 F
SM

SV
M

0.
37

59
0.

41
57

0.
43

71
0.

45
89

0.
47

81
0.

49
25

0.
49

62
0.

46
17

0.
22

76
0.

23
22

0.
47

93
 L

ife
R

an
k

0.
37

63
0.

41
81

0.
43

84
0.

46
12

0.
47

96
0.

49
00

0.
49

72
0.

46
25

0.
22

81
0.

23
45

0.
47

92
k

=
 1

5
 O

rig
in

al
0.

37
12

0.
39

33
▲

0.
42

38
▲

0.
44

85
▲

0.
46

72
▲

0.
48

14
▲

0.
48

75
▲

0.
45

31
▲

0.
22

34
▲

0.
22

84
▲

0.
47

14
△

 G
A

S
0.

37
20

0.
39

84
△

0.
43

20
0.

45
33

△
0.

47
11

△
0.

48
51

0.
49

02
△

0.
45

43
▲

0.
22

23
▲

0.
22

79
▲

0.
47

42
 F

SM
SV

M
0.

37
88

0.
41

65
0.

43
51

0.
45

57
0.

47
61

0.
49

05
0.

49
67

0.
46

13
0.

22
65

0.
23

11
0.

47
88

 L
ife

R
an

k
0.

37
71

0.
41

40
0.

43
79

0.
46

22
0.

48
04

0.
49

20
0.

49
72

0.
46

33
0.

23
10

0.
23

49
0.

47
92

k
=

 2
0

 O
rig

in
al

0.
37

12
0.

39
33

0.
42

38
△

0.
44

85
▲

0.
46

72
△

0.
48

14
△

0.
48

75
▲

0.
45

31
▲

0.
22

34
△

0.
22

84
△

0.
47

14
 G

A
S

0.
36

56
0.

40
27

0.
43

13
0.

45
27

△
0.

47
20

0.
48

50
0.

49
21

0.
45

66
0.

22
54

0.
22

98
0.

47
19

 F
SM

SV
M

0.
37

37
0.

41
44

0.
43

43
0.

45
88

0.
47

57
0.

49
02

0.
49

46
0.

45
90

0.
22

49
0.

23
02

0.
47

54
 L

ife
R

an
k

0.
37

12
0.

40
45

0.
43

63
0.

46
19

0.
47

63
0.

49
03

0.
49

71
0.

46
17

0.
22

93
0.

23
38

0.
47

51
Pe

rf
or

m
an

ce
 fo

r l
in

ea
r r

eg
re

ss
io

n
k

=
 5

 O
rig

in
al

0.
34

65
0.

36
17

▲
0.

39
61

0.
42

25
0.

44
07

0.
45

58
△

0.
46

84
△

0.
47

46
▲

0.
48

06
▲

0.
48

71
▲

0.
45

50
▲

 G
A

S
0.

35
37

0.
36

91
△

0.
39

47
0.

41
84

0.
43

90
0.

45
84

0.
46

92
0.

47
76

0.
48

38
0.

48
92

0.
46

30

498	 Inf Retrieval J (2018) 21:481–506

1 3

St
at

ist
ic

al
 si

gn
ifi

ca
nc

e
sh

ow
n

fo
r L

ife
R

an
k

ag
ai

ns
t O

rig
in

al
, G

A
S

an
d

FS
M

SV
M

 P
er

fo
rm

an
ce

 fo
r O

rig
in

al
 is

 in
de

pe
nd

en
t o

f v
al

ue
 o

f k
 (c

or
re

sp
on

ds
 to

 o
rig

in
al

 d
at

as
et

)
Th

e
m

et
ric

 v
al

ue
s i

n
bo

ld
 c

or
re

sp
on

d
to

 th
e

be
st

pe
rfo

rm
in

g
al

go
rit

hm

Ta
bl

e 
2  

(c
on

tin
ue

d)

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

 F
SM

SV
M

0.
35

41
0.

37
55

△
0.

40
02

0.
41

91
0.

43
96

△
0.

45
63

▲
0.

46
81

△
0.

47
91

△
0.

48
42

△
0.

49
03

△
0.

45
93

△

 L
ife

R
an

k
0.

36
91

0.
39

07
0.

40
89

0.
39

55
0.

44
91

0.
46

64
0.

47
72

0.
48

64
0.

49
24

0.
49

79
0.

46
85

k
=

 1
0

 O
rig

in
al

0.
34

65
△

0.
36

17
▲

0.
39

61
△

0.
42

25
0.

44
07

△
0.

45
58

△
0.

46
84

▲
0.

47
46

▲
0.

48
06

▲
0.

48
71

▲
0.

45
50

▲

 G
A

S
0.

36
05

0.
38

04
0.

39
90

0.
42

82
0.

44
90

0.
46

28
0.

47
42

0.
48

40
0.

48
95

0.
49

42
0.

46
69

 F
SM

SV
M

0.
35

12
0.

37
79

0.
40

17
0.

42
13

0.
44

42
0.

46
01

0.
47

02
△

0.
47

89
△

0.
48

47
0.

49
10

0.
46

22
 L

ife
R

an
k

0.
36

98
0.

38
57

0.
40

85
0.

39
76

0.
45

01
0.

46
59

0.
47

91
0.

48
59

0.
49

08
0.

49
70

0.
46

86
k

=
 1

5
 O

rig
in

al
0.

34
65

0.
36

17
▲

0.
39

61
0.

42
25

0.
44

07
0.

45
58

△
0.

46
84

0.
47

46
▲

0.
48

06
△

0.
48

71
△

0.
45

50
△

 G
A

S
0.

36
52

0.
37

95
0.

41
14

0.
43

02
0.

44
97

0.
46

41
0.

47
57

0.
48

45
0.

49
14

0.
49

64
0.

46
86

 F
SM

SV
M

0.
36

31
0.

38
22

0.
40

53
0.

42
85

0.
45

27
0.

46
69

0.
47

74
0.

48
50

0.
49

01
0.

49
56

0.
46

47
 L

ife
R

an
k

0.
36

18
0.

38
42

0.
40

32
0.

42
96

0.
44

82
0.

46
57

0.
47

66
0.

48
52

0.
49

04
0.

49
55

0.
46

62
k

=
 2

0
 O

rig
in

al
0.

34
65

▲
0.

36
17

▲
0.

39
61

0.
42

25
0.

44
07

△
0.

45
58

0.
46

84
0.

47
46

△
0.

48
06

▲
0.

48
71

▲
0.

45
50

▲

 G
A

S
0.

35
88

0.
38

01
0.

41
00

0.
43

00
0.

44
86

0.
46

50
0.

47
44

0.
48

43
0.

49
06

0.
49

61
0.

46
60

 F
SM

SV
M

0.
36

01
△

0.
38

03
0.

40
75

0.
42

66
0.

45
25

0.
46

68
0.

47
72

0.
48

33
0.

48
89

0.
49

45
0.

46
61

 L
ife

R
an

k
0.

37
12

0.
38

20
0.

40
18

0.
39

48
0.

44
95

0.
46

28
0.

47
48

0.
48

33
0.

48
97

0.
49

56
0.

46
62

499Inf Retrieval J (2018) 21:481–506	

1 3

Ta
bl

e 
3  

R
an

ki
ng

 p
er

fo
rm

an
ce

 o
n

O
H

SU
M

ED
 a

nd
 se

le
ct

ed
/g

en
er

at
ed

 d
at

as
et

s

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

Pe
rf

or
m

an
ce

 fo
r R

an
kS

VM
k

=
 5

 O
rig

in
al

0.
54

16
0.

50
76

0.
47

75
0.

45
65

△
0.

44
39

▲
0.

44
52

0.
44

33
0.

44
05

0.
43

38
▲

0.
43

00
▲

0.
43

45
▲

 G
A

S
0.

53
32

0.
49

01
0.

47
39

0.
46

30
△

0.
45

78
▲

0.
45

03
△

0.
44

32
▲

0.
43

98
△

0.
43

74
▲

0.
43

40
▲

0.
46

42
▼

 F
SM

SV
M

0.
57

71
▽

0.
48

89
0.

47
72

0.
47

49
0.

46
94

△
0.

46
09

0.
46

22
0.

45
59

0.
45

29
0.

45
18

0.
47

28
Li

fe
R

an
k

0.
51

70
0.

50
00

0.
50

15
0.

49
50

0.
49

05
0.

47
49

0.
47

01
0.

46
28

0.
46

84
0.

46
68

0.
45

23
k

=
 1

0
 O

rig
in

al
0.

54
16

0.
50

76
0.

47
75

0.
45

65
▲

0.
44

39
▲

0.
44

52
▲

0.
44

33
▲

0.
44

05
▲

0.
43

38
▲

0.
43

00
▲

0.
43

45
▲

 G
A

S
0.

56
77

0.
53

90
0.

50
88

0.
49

44
0.

48
73

0.
46

73
0.

46
52

0.
46

05
0.

45
49

0.
45

07
△

0.
44

66
 F

SM
SV

M
0.

52
96

0.
48

66
▲

0.
47

94
▲

0.
47

45
▲

0.
46

36
▲

0.
46

02
△

0.
45

58
▲

0.
45

31
△

0.
44

84
▲

0.
44

63
▲

0.
44

59
 L

ife
R

an
k

0.
55

18
0.

53
73

0.
51

85
0.

50
53

0.
49

10
0.

48
11

0.
47

74
0.

46
99

0.
46

92
0.

46
63

0.
45

05
k

=
 1

5
 O

rig
in

al
0.

54
16

0.
50

76
0.

47
75

0.
45

65
△

0.
44

39
▲

0.
44

52
△

0.
44

33
0.

44
05

△
0.

43
38

▲
0.

43
00

▲
0.

43
45

▲

 G
A

S
0.

57
71

0.
50

68
0.

48
50

0.
47

13
0.

46
56

0.
45

52
0.

45
24

0.
44

94
0.

44
39

△
0.

44
19

▲
0.

44
02

▲

 F
SM

SV
M

0.
58

34
0.

53
17

0.
50

21
0.

48
56

0.
47

23
0.

46
60

0.
46

06
0.

45
57

0.
45

25
0.

45
00

△
0.

44
52

▲

 L
ife

R
an

k
0.

57
69

0.
53

44
0.

50
65

0.
49

42
0.

48
35

0.
47

13
0.

46
72

0.
46

30
0.

46
32

0.
46

28
0.

45
36

k
=

 2
0

 O
rig

in
al

0.
54

16
0.

50
76

0.
47

75
△

0.
45

65
▲

0.
44

39
▲

0.
44

52
▲

0.
44

33
▲

0.
44

05
▲

0.
43

38
▲

0.
43

00
▲

0.
43

45
▲

 G
A

S
0.

55
19

0.
50

51
0.

48
38

△
0.

47
61

△
0.

47
10

▲
0.

45
20

▲
0.

44
73

▲
0.

44
63

▲
0.

44
01

▲
0.

44
05

▲
0.

43
87

▲

 F
SM

SV
M

0.
51

73
△

0.
48

48
△

0.
48

16
△

0.
47

66
0.

46
42

▲
0.

45
22

▲
0.

44
52

▲
0.

44
11

▲
0.

43
88

▲
0.

43
87

▲
0.

44
41

▲

 L
ife

R
an

k
0.

58
05

0.
54

16
0.

52
04

0.
50

29
0.

49
76

0.
48

34
0.

47
65

0.
47

25
0.

46
69

0.
46

56
0.

45
19

Pe
rf

or
m

an
ce

 fo
r l

in
ea

r r
eg

re
ss

io
n

k
=

 5
 O

rig
in

al
0.

48
30

0.
48

00
0.

47
49

0.
45

48
0.

44
83

0.
43

68
0.

43
89

0.
43

43
0.

43
11

0.
43

02
0.

43
33

 G
A

S
0.

47
62

0.
44

91
0.

44
89

0.
44

66
0.

43
78

0.
42

86
0.

42
75

0.
42

09
0.

42
01

0.
42

02
0.

45
49

500	 Inf Retrieval J (2018) 21:481–506

1 3

St
at

ist
ic

al
 si

gn
ifi

ca
nc

e
sh

ow
n

fo
r L

ife
R

an
k

ag
ai

ns
t O

rig
in

al
, G

A
S

an
d

FS
M

SV
M

 P
er

fo
rm

an
ce

 fo
r O

rig
in

al
 is

 in
de

pe
nd

en
t o

f v
al

ue
 o

f k
 (c

or
re

sp
on

ds
 to

 o
rig

in
al

 d
at

as
et

)
Th

e
m

et
ric

 v
al

ue
s i

n
bo

ld
 c

or
re

sp
on

d
to

 th
e

be
st

pe
rfo

rm
in

g
al

go
rit

hm

Ta
bl

e 
3  

(c
on

tin
ue

d)

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

 F
SM

SV
M

0.
52

71
0.

48
52

0.
46

86
0.

45
89

0.
45

13
0.

44
03

0.
43

42
0.

43
35

0.
43

06
0.

42
92

0.
46

55
 L

ife
R

an
k

0.
49

41
0.

47
36

0.
45

54
0.

45
86

0.
44

85
0.

44
59

0.
44

25
0.

44
02

0.
43

47
0.

43
41

0.
45

99
k

=
 1

0
 O

rig
in

al
0.

48
30

0.
48

00
0.

47
49

0.
45

48
0.

44
83

0.
43

68
0.

43
89

0.
43

43
0.

43
11

0.
43

02
0.

43
33

 G
A

S
0.

52
02

0.
48

83
0.

46
80

0.
45

97
0.

45
43

0.
44

60
0.

44
15

0.
43

54
0.

43
12

0.
42

75
0.

43
39

 F
SM

SV
M

0.
50

82
0.

45
56

0.
45

02
0.

43
95

0.
43

33
0.

42
45

0.
42

59
0.

42
23

0.
42

16
0.

41
80

0.
43

44
 L

ife
R

an
k

0.
53

30
0.

48
66

0.
46

80
0.

46
81

0.
46

01
0.

44
94

0.
44

36
0.

44
23

0.
43

70
0.

43
66

0.
43

58
k

=
 1

5
 O

rig
in

al
0.

48
30

0.
48

00
0.

47
49

0.
45

48
0.

44
83

0.
43

68
0.

43
89

0.
43

43
0.

43
11

0.
43

02
0.

43
33

 G
A

S
0.

51
05

0.
49

41
0.

47
91

0.
46

54
0.

45
10

0.
44

12
0.

43
51

0.
43

31
0.

43
03

0.
43

01
0.

42
98

△

 F
SM

SV
M

0.
49

84
0.

46
11

0.
46

39
0.

45
67

0.
44

85
0.

44
00

0.
43

25
0.

43
21

0.
43

02
0.

42
82

0.
44

05
 L

ife
R

an
k

0.
53

42
0.

48
39

0.
50

01
0.

47
81

0.
46

78
0.

45
29

0.
44

37
0.

44
12

0.
43

70
0.

43
53

0.
43

99
k

=
 2

0
 O

rig
in

al
0.

48
30

0.
48

00
0.

47
49

0.
45

48
0.

44
83

0.
43

68
0.

43
89

0.
43

43
0.

43
11

0.
43

02
0.

43
33

 G
A

S
0.

50
50

0.
49

43
△

0.
48

13
▲

0.
47

06
▼

0.
45

46
▲

0.
44

97
▽

0.
43

89
▲

0.
43

67
▲

0.
43

24
▲

0.
42

99
▲

0.
43

08
▲

 F
SM

SV
M

0.
49

84
0.

47
06

0.
45

74
0.

45
10

0.
44

89
0.

44
16

0.
43

70
0.

43
65

0.
43

41
0.

43
15

0.
43

69
 L

ife
R

an
k

0.
52

64
0.

50
21

0.
48

82
0.

46
86

0.
45

71
0.

44
67

0.
44

39
0.

44
06

0.
43

59
0.

43
41

0.
43

69

501Inf Retrieval J (2018) 21:481–506	

1 3

6.1.2 � Performance of linear regression

Also in the case of Linear Regression, for all three benchmarks (MQ2007, MQ2008 and
OHSUMED) LifeRank clearly shows improvements over the original datasets in terms of
NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5 , where the origi-
nal dataset performs better than LifeRank as well as the other generated datasets.

On NDCG@1–10, for MQ2007 LifeRank gives the best performance for all values of
k, except for k = 20 , where GAS gives the best performance. For MQ2008, LifeRank gives
the best performances for k = 5 and k = 10 on NDCG@1–10. However, for k = 15 and
k = 20 , there is mixed performance where all GAS, FSMSVM and LifeRank give best
performances in certain cases. For, OHSUMED, LifeRank gives the best performance on
NDCG@1–10 in most cases.

In terms of MAP, LifeRank gives the best performance for MQ2007 for k = 5
and k = 10 , whereas for k = 15 and k = 20 the best performance is given by GAS. For
MQ2008, LifeRank outperforms others for all values of k, except for k = 15 where the best
performance is given by GAS. Moreover, for OHSUMED, FSMSVM outperforms the oth-
ers for k = 5 and k = 15 , while LifeRank gives the best performance for k = 10 . In case of
k = 20 , there is a tie between LifeRank and FSMSVM.

6.1.3 � Statistical significance overview

In Tables 1, 2 and 3, markups are provided to denote the statistical significance between
LifeRank and the following baselines: original dataset, GAS and FSMSVM. It should be
noted that the original dataset is independent of the values of k, but is repeated in the table
to indicate statistical significance between it and datasets generated by LifeRank for differ-
ent values of k.

It can be observed from Table 1 that for MQ2007 in the case of RankSVM, there is
strong to weak significance between LifeRank and the baselines in most cases across the
metrics, while there is no significance shown against original for k = 15 . Moreover, for
k = 5 , significance is shown against original and GAS in few cases. For Linear Regression,
there is strong significance shown against FSMSVM for k = 5 and k = 15 , though there
is not much significance shown for k = 10 and k = 20 . Also, weak significance is shown
against GAS in few cases for k = 5 and against original for k = 15.

Table 2 for MQ2008 shows no statistically significant differences between LifeRank
and FSMSVM for RankSVM. There is weak to strong statistical significance for LifeRank
against original dataset for most cases and against GAS mainly for k = 5, 10 and 15. For
Linear Regression, LifeRank shows weak to strong statistical significance against origi-
nal in most cases, GAS in no cases and FSMSVM in few cases. Moreover, Table 3 for
OHSUMED shows statistical significance for RankSVM in many cases against the base-
lines, whereas there is statistical significance observed for Liner Regression for few cases.
The comparative lack of statistical significance seen for MQ2008 and OHSUMED can
most probably be attributed to the relatively small size of these datasets.

6.2 � Quality of the generated features

Table 4 lists the quality scores of the features from four datasets: the original datasets and
the three datasets generated by GAS, FSMRank and LifeRank, respectively, for k = 10.

502	 Inf Retrieval J (2018) 21:481–506

1 3

From the table we see that: (1) GAS can significantly reduce the redundancy of the
features. The redundancy of the features selected by GAS is the lowest among the four
datasets. However, the importance of the features selected by GAS is also lowest and even
slightly lower than that of the original datasets. (2) FSMRank can improve the importance
of the features while reducing their redundancy, but the differences in terms redundancy
are subtle. (3) LifeRank can sharply improve the importance of the features. The impor-
tance of the features generated by LifeRank is highest among the four datasets. Besides,
the redundancy of the features can also be slightly reduced by LifeRank for MQ2007 but
deteriorated for MQ2008 and OHSUMED. Worse redundancy for LifeRank in compari-
son with GAS and FSMSVM could be because of the reason that, while these baselines
are feature selection methods, for LifeRank each extracted feature is a linear combination
of the original features. Moreover, it can be observed that for the larger dataset MQ2007,
redundancy for LifeRank is comparable to the baselines, and even better than FSMSVM.
However, for smaller dataset MQ2008, the redundancy is worse than the baselines. For the
smallest dataset OHSUMED, it is worse than the baselines by a greater difference.

6.3 � Effect of the orthonormality constraints

To confirm that the orthonormality constraints used in LifeRank do indeed contribute to
performance gains, we re-generated the datasets for the benchmarks MQ2007, MQ2008
and OHSUMED using LifeRank for k = 10, but this time without the incorporation of the
constraints in its algorithm in Phase I (see Algorithm 1, line 1–8). Table 5 shows the com-
parison of performances of ranking algorithms, for datasets generated by LifeRank and
LifeRank without orthonormality constraints (represented by LifeRankNO). Moreover,
markups are presented in the table to denote to the statistical significance between LifeR-
ank and LifeRankNO.

We can see from the results in Table 5 that the datasets generated by LifeRank show
significant improvements in performance over the datasets generated by LifeRankNO for
both learning to rank algorithms, RankSVM and Linear Regression. Performance gains can
be observed on all three benchmarks and across all performance measures (NDCG@1–10
and MAP). Hence, these results show that the usage of orthonormality constraints is ben-
eficial in the LifeRank algorithm. Also, strong statistical significance between LifeRank
and LifeRankNO can be observed for all three benchmarks for RankSVM as well as Linear
Regression, across all performance measures, except for a small number of cases where
weak or no statistical significance is seen.

Table 4   Performance of the
generated features

The metric values in bold correspond to the best performing algorithm

Datasets MQ2007 MQ2008 OHSUMED

Imp Rdd Imp Rdd Imp Rdd

Original 0.2671 0.4833 0.3297 0.5318 0.3763 0.5592
GAS 0.2643 0.3242 0.3235 0.3308 0.3603 0.3904
FSMRank 0.3005 0.4706 0.3723 0.5276 0.4170 0.5412
LifeRank 0.3214 0.4606 0.4095 0.5758 0.4422 0.8881

503Inf Retrieval J (2018) 21:481–506	

1 3

Ta
bl

e 
5  

E
ffe

ct
 o

f o
rth

on
or

m
al

ity
 c

on
str

ai
nt

s o
n

da
ta

se
ts

 fo
r k

=
1
0
 . S

ta
tis

tic
al

 si
gn

ifi
ca

nc
e

sh
ow

n
fo

r L
ife

R
an

k
ag

ai
ns

t L
ife

R
an

kN
O

Th
e

m
et

ric
 v

al
ue

s i
n

bo
ld

 c
or

re
sp

on
d

to
 th

e
be

st
pe

rfo
rm

in
g

al
go

rit
hm

N
D

C
G

@
1

@
2

@
3

@
4

@
5

@
6

@
7

@
8

@
9

@
10

M
A

P

Pe
rf

or
m

an
ce

 fo
r R

an
kS

VM
M

Q
20

07
 L

ife
R

an
k

0.
40

37
▲

0.
40

23
▲

0.
40

89
▲

0.
41

17
▲

0.
41

61
▲

0.
42

15
▲

0.
42

64
▲

0.
43

12
▲

0.
43

70
▲

0.
44

23
▲

0.
46

34
▲

 L
ife

R
an

kN
O

0.
38

08
0.

38
81

0.
39

23
0.

39
39

0.
39

96
0.

40
44

0.
40

81
0.

41
48

0.
41

98
0.

42
69

0.
45

28
M

Q
20

08
 L

ife
R

an
k

0.
37

63
0.

41
81

▲
0.

43
84

△
0.

46
12

▲
0.

47
96

▲
0.

49
00

△
0.

49
72

△
0.

46
25

△
0.

22
81

▲
0.

23
45

▲
0.

47
92

△

Li
fe

R
an

kN
O

0.
36

18
0.

39
87

0.
42

64
0.

44
29

0.
46

57
0.

48
07

0.
48

87
0.

45
52

0.
21

99
0.

22
36

0.
47

04
O

H
SU

M
ED

 L
ife

R
an

k
0.

55
18

0.
53

73
△

0.
51

85
▲

0.
50

53
▲

0.
49

10
▲

0.
48

11
△

0.
47

74
▲

0.
46

99
▲

0.
46

92
▲

0.
46

63
▲

0.
45

05
▲

 L
ife

R
an

kN
O

0.
57

03
0.

49
00

0.
47

07
0.

46
73

0.
45

95
0.

45
22

0.
44

50
0.

43
99

0.
43

60
0.

43
12

0.
44

04
Pe

rf
or

m
an

ce
 fo

r l
in

ea
r r

eg
re

ss
io

n
M

Q
20

07
 L

ife
R

an
k

0.
38

52
▲

0.
39

20
▲

0.
39

26
▲

0.
39

76
▲

0.
40

26
▲

0.
40

73
▲

0.
41

46
▲

0.
42

06
▲

0.
42

70
▲

0.
43

12
▲

0.
45

07
▲

 L
ife

R
an

kN
O

0.
35

84
0.

36
91

0.
37

29
0.

37
64

0.
38

16
0.

38
62

0.
39

18
0.

39
80

0.
40

34
0.

40
84

0.
43

38
M

Q
20

08
 L

ife
R

an
k

0.
36

98
▲

0.
38

57
▲

0.
40

85
▲

0.
39

76
▲

0.
45

01
▲

0.
46

59
▲

0.
47

91
▲

0.
48

59
▲

0.
49

08
▲

0.
49

70
▲

0.
46

86
▲

 L
ife

R
an

kN
O

0.
32

95
0.

35
19

0.
36

89
0.

39
34

0.
41

44
0.

43
37

0.
44

46
0.

45
50

0.
46

15
0.

46
82

0.
43

46
O

H
SU

M
ED

 L
ife

R
an

k
0.

53
30

0.
48

66
0.

46
80

△
0.

46
81

▲
0.

46
01

▲
0.

44
94

▲
0.

44
36

▲
0.

44
23

▲
0.

43
70

▲
0.

43
66

▲
0.

43
58

▲

 L
ife

R
an

kN
O

0.
45

71
0.

43
83

0.
41

11
0.

40
14

0.
39

15
0.

38
44

0.
37

84
0.

37
10

0.
36

89
0.

36
32

0.
39

63

504	 Inf Retrieval J (2018) 21:481–506

1 3

7 � Conclusion

In this paper, we have addressed the feature extraction problem for learning to rank, and
have proposed LifeRank, a linear feature extraction algorithm for ranking. LifeRank
regards each dataset for ranking as a matrix, referred to as the original matrix. We then
optimize a transformation matrix by minimizing a classic pairwise learning to rank loss
function, so that we can discover the optimal one that matches the ranking task. Then a
new matrix (dataset) can be generated by the product of original matrix and transformation
matrix. Extensive experiments on benchmark datasets show the performance gains of Lif-
eRank in comparison with the state-of-the-art algorithms.

The performance of LifeRank has been evaluated for RankSVM and Linear Regression.
In future work, its benefits for other learning to rank algorithms could be analysed. Moreo-
ver, nonlinear feature extraction techniques like some kernel tricks could be incorporated
in LifeRank to further improve its performance. Besides, we plan to try more learning to
rank loss functions like some state-of-the-art listwise loss functions for performance gains
of our algorithm. In addition, we believe it would be interesting to establish theoretical
results on dimension reduction for ranking, including feature extraction and feature selec-
tion-based algorithms, especially concerning retrieval performance.

Acknowledgements  We would like to thank our anonymous reviewers for valuable comments and sug-
gestions. This research was supported by Ahold Delhaize, Amsterdam Data Science, the Bloomberg
Research Grant program, the Dutch national program COMMIT, Elsevier, the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the Google
Faculty Research Award program, the Microsoft Research Ph.D. program, the Netherlands Institute for
Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs CI-14-
25, 652.002.001, 612.001.551, 652.001.003, and Yandex. All content represents the opinion of the authors,
which is not necessarily shared or endorsed by their respective employers and/or sponsors.

References

Arfken, G. B. (2013). Mathematical methods for physicists. Cambridge: Academic Press.
Bach, F. R., & Jordan, M.I. (2005). A probabilistic interpretation of canonical correlation analysis. Tech-

nical report 688, Department of Statistics, University of California, Berkeley.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Boston: Addison Wesley.
Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific.
Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning.

Artificial Intelligence, 97(1), 245–271.
Burges, C. J., Ragno, R., & Le, Q. V. (2007) Learning to rank with nonsmooth cost functions. In NIPS,

pp. 193–200.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005).

Learning to rank using gradient descent. In ICML, pp. 89–96.
Busa-Fekete, R., Kégl, B., Éltetö, T., & Szarvas, G. (2013). Tune and mix: Learning to rank using

ensembles of calibrated multi-class classifiers. Machine Learning, 93(2–3), 261–292.
Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., & Hon, H. W. (2006). Adapting ranking SVM to document

retrieval. In SIGIR, pp. 186–193.
Cao, Z., Qin, T., Liu, T. Y., Tsai, M.F., & Li, H. (2007). Learning to rank: From pairwise approach to

listwise approach. In ICML, pp. 129–136.
Chapelle, O., Chang, Y., & Liu, T. Y. (2011). Future directions in learning to rank. Journal of Machine

Learning Research, 14, 91–100.
Chen, W., Liu, T. Y., Lan, Y., Ma, Z. M., & Li, H. (2009). Ranking measures and loss functions in learn-

ing to rank. In NIPS, pp. 315–323.
Cossock, D., & Zhang, T. (2008). Statistical analysis of Bayes optimal subset ranking. IEEE Transac-

tions on Information Theory, 54(11), 5140–5154.

505Inf Retrieval J (2018) 21:481–506	

1 3

Crammer, K., & Singer, Y. (2001). Pranking with ranking. In NIPS, pp. 641–647.
Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining

preferences. Journal of Machine Learning Research, 4(1), 933–969.
Geng, X., Liu, T., Qin, T., & Li, H. (2007). Feature selection for ranking. In SIGIR, pp. 407–414.
Gupta, P., & Rosso, P. (2012). Expected divergence based feature selection for learning to rank. In COL-

ING, pp. 431–440.
Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview

with application to learning methods. Neural Computation, 16(12), 2639–2664.
Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transac-

tions on Information Systems, 20(4), 422–446.
Joachims, T., Finley, T., & Yu, C. N. J. (2009). Cutting-plane training of structural SVMs. Machine

Learning, 77(1), 27–59.
Joachims, T., Li, H., Liu, T. Y., & Zhai, C. (2007). Learning to rank for information retrieval (LR4IR

2007). SIGIR Forum, 41(2), 58–62.
Jolliffe, I. (2002). Principal component analysis. Berlin: Springer.
Joachims, T., Swaminathan, A., & de Rijke, M. (2018). Deep learning with logged bandit feedback. In ICLR

2018.
Kendall, M. G. (1948). Rank correlation methods. London: C. Griffin.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.

Computer, 42(8), 30–37.
Lai, H., Pan, Y., Tang, Y., & Yu, R. (2013). FSMRank: Feature selection algorithm for learning to rank.

IEEE Transactions on Neural Networks and Learning Systems, 24(6), 940–952.
Lan, Y., Guo, J., Cheng, X., & Liu, T. Y. (2012). Statistical consistency of ranking methods in a rank-

differentiable probability space. In NIPS, pp. 1232–1240.
Lange, K. (2010). Singular value decomposition. In Numerical analysis for statisticians (pp. 129–142).

Springer.
Laporte, L., Flamary, R., Canu, S., Déjean, S., & Mothe, J. (2014). Nonconvex regularizations for fea-

ture selection in ranking with sparse SVM. IEEE Transactions on Neural Networks and Learning
Systems, 25(6), 1118–1130.

Lawson, C., & Hanson, R. (1995). Solving least square problems, classics in applied mathematics (Vol.
15). Philadelphia: SIAM.

Li, P., Wu, Q., & Burges, C.J. (2007). McRank: Learning to rank using multiple classification and gradi-
ent boosting. In NIPS, pp. 897–904.

Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information
Retrieval, 3(3), 225–331.

Liu, T. Y. (2011). Learning to rank for information retrieval. Berlin: Springer.
Metzler, D.A. (2007). Automatic feature selection in the markov random field model for information

retrieval. In CIKM, ACM, pp. 253–262.
Motoda, H., & Liu, H. (2002). Feature selection, extraction and construction. Communication of IICM

(Institute of Information and Computing Machinery, Taiwan), 5, 67–72.
Mukuta, Y., & Harada, T. (2014). Probabilistic partial canonical correlation analysis. In ICML, pp.

1449–1457.
Naini, K. D., & Altingövde, I. S. (2014). Exploiting result diversification methods for feature selection in

learning to rank. In ECIR, Springer, pp. 455–461.
Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. In ICML, pp. 78–82.
Niu, S., Guo, J., Lan, Y., & Cheng, X. (2012). Top-K learning to rank: Labeling, ranking and evaluation. In

SIGIR, pp. 751–760.
Pan, F., Converse, T., Ahn, D., Salvetti, F., & Donato, G. (2009). Feature selection for ranking using boosted

trees. In CIKM (pp. 2025–2028). ACM.
Platt, J. C., & Barr, A. H. (1988). Constrained differential optimization for neural networks. Technical report

TR-88-17, Department of Computer Science, California Institute of Technology.
Qin, T., & Liu, T. Y. (2013). Introducing LETOR 4.0 datasets. arXiv​:1306.2597.
Qin, T., Liu, T. Y., Xu, J., & Li, H. (2010). LETOR: A benchmark collection for research on learning to rank

for information retrieval. Information Retrieval, 13(4), 346–374.
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Sci-

ence, 290, 2323–2326.
Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue

problem. Neural Computation, 10(5), 1299–1319.

http://arxiv.org/abs/1306.2597

506	 Inf Retrieval J (2018) 21:481–506

1 3

Schuth, A., Oosterhuis, H., Whiteson, S., & de Rijke, M. (2016). Multileave gradient descent for fast online
learning to rank. In WSDM 2016: The 9th international conference on web search and data mining
(pp. 457–466). ACM.

Severyn, A., & Moschitti, A. (2015). Learning to rank short text pairs with convolutional deep neural net-
works. In SIGIR (pp 373–382). ACM.

Shalit, U., & Chechik, G. (2014). Coordinate-descent for learning orthogonal matrices through Givens rota-
tions. In ICML, pp. 548–556.

Shivanna, R., & Bhattacharyya, C. (2014). Learning on graphs using orthonormal representation is statisti-
cally consistent. In NIPS, pp. 3635–3643.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2319–2323.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal
Statistical Society, Series B, 61(3), 611–622.

Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). FRank: A ranking method with fidelity
loss. In SIGIR (pp. 383–390). ACM.

Valizadegan, H., Jin, R., Zhang, R., & Mao, J. (2009). Learning to rank by optimizing NDCG measure. In
NIPS, pp. 1883–1891.

Volkovs, M., & Zemel, R. S. (2009). Boltzrank: Learning to maximize expected ranking gain. In ICML, pp.
1089–1096.

Wang, S., Wu, Y., Gao, B. J., Wang, K., Lauw, H. W., & Ma, J. (2015). A cooperative coevolution frame-
work for parallel learning to rank. IEEE Transactions on Knowledge and Data Engineering, 27(12),
3152–3165.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000). Feature selection for
SVMs. In NIPS, pp. 668–674.

Wolf, L., & Bileschi, S. (2005). Combining variable selection with dimensionality reduction. In CVPR, pp.
801–806.

Wyse, N., Dubes, R., & Jain, A. (1980). A critical evaluation of intrinsic dimensionality algorithms. In
Gelsema, E., & Kanal, L. (Eds.) Pattern recognition in practice. Proceedings of workshop Amsterdam,
May 1980, North-Holland, pp. 415–425.

Xu, J., & Li, H. (2007). AdaRank: A boosting algorithm for information retrieval. In SIGIR (pp. 391–398).
ACM.

Yu, H., Oh, J., & Han, W. (2009). Efficient feature weighting methods for ranking. In CIKM (pp 1157–
1166). ACM.

Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average
precision. In SIGIR (pp. 271–278). ACM.

	Linear feature extraction for ranking
	Abstract
	1 Introduction
	2 Related work
	2.1 Learning to rank for information retrieval
	2.2 Feature selection for ranking
	2.3 Feature extraction techniques

	3 Problem statement
	3.1 Learning to rank for information retrieval
	3.2 Dimension reduction for ranking

	4 The LifeRank algorithm
	4.1 Phase I: Generation of the transformation matrix
	4.2 Phase II: Generation of low-rank datasets
	4.3 Pseudocode
	4.4 Discussion

	5 Experimental setup
	5.1 Research questions
	5.2 Datasets
	5.3 Baselines
	5.4 Evaluation measures
	5.4.1 Measures for ranking
	5.4.2 Measures for features

	6 Experimental results
	6.1 Performance on generated datasets
	6.1.1 Performance of RankSVM
	6.1.2 Performance of linear regression
	6.1.3 Statistical significance overview

	6.2 Quality of the generated features
	6.3 Effect of the orthonormality constraints

	7 Conclusion
	Acknowledgements
	References

