Inf Retrieval J (2018) 21:481-506 ® CrossMark
https://doi.org/10.1007/s10791-018-9330-5

Linear feature extraction for ranking

Gaurav Pandey'® - Zhaochun Ren? - Shuaiqiang Wang? - Jari Veijalainen' -
Maarten de Rijke®

Received: 6 August 2016 / Accepted: 16 April 2018 / Published online: 2 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We address the feature extraction problem for document ranking in information
retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In
LifeRank, we regard each document collection for ranking as a matrix, referred to as the
original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset)
can be generated as the product of the original matrix and a transformation matrix. The
transformation matrix projects high-dimensional document vectors into lower dimensions.
Theoretically, there could be very large transformation matrices, each leading to a new
generated matrix. In LifeRank, we produce a transformation matrix so that the generated
new matrix can match the learning to rank problem. Extensive experiments on benchmark
datasets show the performance gains of LifeRank in comparison with state-of-the-art fea-
ture selection algorithms.

Keywords Feature extraction - Dimension reduction - Learning to rank - Information
retrieval

P4 Gaurav Pandey
gaurav.g.pandey @jyu.fi

Zhaochun Ren
renzhaochun @jd.com

Shuaigiang Wang
wangshuaiqiang1 @jd.com

Jari Veijalainen
jari.veijalainen @jyu.fi

Maarten de Rijke

derijke@uva.nl

University of Jyvaskyla, Jyviskyld, Finland
Data Science Lab, JD.com, Beijing, China

University of Amsterdam, Amsterdam, The Netherlands

@ Springer

http://orcid.org/0000-0003-4450-1766
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-018-9330-5&domain=pdf

482 Inf Retrieval J (2018) 21:481-506

1 Introduction

Document ranking is an essential component of information retrieval systems and web
search engines. Recently, machine learning-based ranking techniques, referred to as “learn-
ing to rank,” have given rise to an active and growing research area, both in the information
retrieval and machine learning communities (Cao et al. 2007; Freund et al. 2003; Joachims
et al. 2009; Niu et al. 2012; Xu and Li 2007). A large number of learning to rank algo-
rithms have been proposed, which incorporate more and more useful features, aiming to
improve the performance of the ranking algorithms (Liu 2011). In a supervised setting,
they first collect a set of training data, which includes a set of queries, each associated
with a list of documents labeled by relevance degrees; with the training dataset, they train
a ranking model that can order unseen documents according to their degree of relevance
(Joachims et al. 2007). In this situation, dimension reduction inevitably becomes an impor-
tant issue (Geng et al. 2007).

Firstly, dimension reduction can enhance the accuracy for many machine learning prob-
lems, including learning to rank. With dimension reduction techniques, a small set of more
discriminative and less redundant features can be selected or generated for learning. Thus,
better results could be achieved, as overfitting becomes less likely (Ng 2004). Also, the
generalization ability of machine learning models could depend on the radius of training
data points, which may decrease when the number of features decreases (Blum and Lang-
ley 1997; Geng et al. 2007; Weston et al. 2000; Wolf and Bileschi 2005).

Secondly, large number of features leads to high complexity in most learning to rank
algorithms. Therefore, dimension reduction often leads to significant improvements in
training and prediction efficiency, while maintaining, or having a limited negative impact
on, accuracy. With accuracy being the primary metric, efficiency has also emerged as a
crucial issue for evaluating learning to rank algorithms (Cao et al. 2007; Chapelle et al.
2011; Wang et al. 2015). Training datasets and ranking features continue to expand, so as
to obtain more accurate models. Furthermore, as a consequence of the dynamic character
of the Web, ranking models need to be re-learned repeatedly, and the interval between re-
learning procedures decreases sharply (Liu 2011). With dimension reduction techniques,
fewer features are used, resulting in more efficient training and prediction.

Generally, there are two types of dimension reduction algorithms: feature selection and
feature extraction. The former aims to select a subset of the original features for learn-
ing, while the latter attempts to generate a small set of new features from the original fea-
tures (Blum and Langley 1997; Motoda and Liu 2002; Wyse et al. 1980). Recently, feature
selection for ranking has been investigated intensively (Geng et al. 2007; Gupta and Rosso
2012; Lai et al. 2013; Laporte et al. 2014; Naini and Altingévde 2014; Pan et al. 2009; Yu
et al. 2009). To the best of our knowledge, the advantages of feature extraction have not yet
been explored in learning to rank.

In this study, we address the feature extraction problem for learning to rank. In com-
parison with feature selection, the feature extraction problem has a much larger search
space. For example, given n original features, feature selection selects a subset of fea-
tures of size k (where k < n) for learning. Here, for a particular value of k, the search
n
k

include any number of features (i.e., all values of k in range 1 to n), would lead to 2" — 1
solutions. In comparison, for linear feature extraction, each extracted feature is a linear
combination of original n features. Since the coefficient associated with each original

space of the problem contains possible solutions. The full search space that can

@ Springer

Inf Retrieval J (2018) 21:481-506 483

feature can be any real number, the search space becomes infinite. The search space of
non-linear feature extraction would be even larger, as it also includes solutions involv-
ing non-linear combinations of features (e.g. polynomial combinations). Hence, with a
larger search space, feature extraction has a greater possibility to achieve better perfor-
mance than feature selection.

To address the problem of linear feature extraction for learning to rank, we propose Lif-
eRank, a Linear feature extraction algorithm for Ranking. LifeRank regards each dataset
for training, validation or test as a matrix, referred to as an original matrix, where each
row vector represents a document with a set of features. With a given original matrix for
training X, LifeRank attempts to discover a transformation matrix T, so that a new matrix
(dataset) X’ can be generated as the product of the original matrix and a transformation
matrix, i.e., X’ = XT. Thus T projects high-dimensional document vectors in X into lower-
dimensional ones in X’. Theoretically, there could be a very large number of possible trans-
formation matrices, each leading to a new generated matrix. LifeRank attempts to discover
a transformation matrix to transform the original matrix (dataset) into a low-rank one for
dimension reduction, on which learning to rank algorithms can achieve optimum results in
comparison with other dimension-reduced matrices.

Our problem formulation is similar to principal component analysis (PCA) (Jolliffe
2002), and thus our algorithm LifeRank can be understood from the perspective of PCA.
PCA is one of the most popular dimension reduction techniques in machine learning. When
PCA is performed using singular valued decomposition (SVD) (Lange 2010), the given
matrix X can be approximately decomposed into three low-rank matrices X ~ PXQT. Here,
2 is composed of the singular values of X, P and Q are composed of the left and right sin-
gular vectors of X respectively, and PTP = QTQ = I is equal to the identity matrix. Thus a
new matrix X’ = PX ~ XQ. However, it should be noted that while PCA calculates X’ as
an approximation of X, in LifeRank X is transformed to X’ using a transformation matrix.

In LifeRank, we formulate the learning to rank task by using a classical pairwise loss
function. A pairwise loss function is used because such functions are fundamental, straight-
forward and intuitive for ranking. Besides, pairwise loss functions are consistent with the
assumption that the labels of documents to rank lie in a rank-differentiable probability
space (Lan et al. 2012), and they are upper bounds of measure-based ranking errors (Chen
et al. 2009). In the generated matrix, the column vectors represent the features. Since opti-
mization over orthogonal features is beneficial to many machine learning problems (Shalit
and Chechik 2014; Shivanna and Bhattacharyya 2014), we utilize the Lagrange multipliers
method (Arfken 2013; Bertsekas 1999) to impose orthonormality constraints on the col-
umn (feature) vectors of the transformed matrix, and then use gradient descent for optimi-
zation. With the transformation matrix T, the training, validation and test datasets can be
directly generated with matrix product.

Note that (1) LifeRank generalizes feature selection algorithms for the learning to rank
task. Feature selection can be regarded as optimizing a transformation matrix T so that
the column vectors of T meet the orthonormality constraints and each element in T can
only be either 0 or 1. (2) Although some deep learning-based ranking algorithms (Seve-
ryn and Moschitti 2015) also aim to generate a set of features for ranking, our problem is
completely different: we try to construct our features based on some predesigned ranking
features like term frequency (TF) and inverse document frequency (IDF), which have been
comprehensively used in conventional learning to rank algorithms like Ranking SVM (Cao
et al. 2006; Joachims et al. 2009) and RankBoost (Freund et al. 2003). Deep learning-based
algorithms, however, try to build features based on word-level features in a corpus that dif-
fer substantially from conventional ranking features.

@ Springer

484 Inf Retrieval J (2018) 21:481-506

Our main contributions are as follows: (1) We address the feature extraction problem
for learning to rank. Feature extraction is a category of comprehensively used dimension
reduction techniques in many machine learning problems for performance gains in accu-
racy and efficiency, but to the best of our knowledge, feature extraction and its advantages
have not been explored in learning to rank yet. (2) We propose LifeRank, a linear fea-
ture extraction algorithm that generates datasets to be utilized by the learning to rank task.
(3) We perform extensive experiments on benchmark datasets and present the performance
gains of LifeRank in comparison with the state-of-the-art feature selection algorithms.

The remainder of the paper is organized as follows. Section 2 reviews related work;
Sect. 3 defines the feature extraction problem for ranking; Sect. 4 proposes LifeRank, a
gradient descent-based algorithm. Section 5 introduces our experimental setup. Section 6
reports the experimental results, and Sect. 7 concludes the paper.

2 Related work

We discuss three types of related work: learning to rank, feature selection for ranking, and
feature extraction for ranking.

2.1 Learning to rank for information retrieval

Learning to rank has received increased attention from both the machine learning and
information retrieval community. While there is a growing interest in online learning to
rank (Schuth et al. 2016) and in counterfactual learning to rank from online data (Joachims
et al. 2018), the bulk of the work on learning to rank concerns offline learning to rank,
where explicit human annotations are used to label query, document pairs. Offline learning
to rank is the focus of this paper. Given its effectiveness, many algorithms have been pro-
posed, which mainly fall into three categories (Chapelle et al. 2011; Liu 2009): pointwise,
pairwise, and listwise.

Pointwise approaches, such as Pranking (Crammer and Singer 2001), McRank (Li et al.
2007) and Subset Ranking (Cossock and Zhang 2008), view each document in the training
dataset as a learning instance, and utilize a classification or regression technique to predict
the relevance categories or numerical/ordinal relevance scores for unlabeled data. Pairwise
approaches, such as Ranking SVM (Cao et al. 2006; Joachims et al. 2009), RankBoost
(Freund et al. 2003), RankNet (Burges et al. 2005), FRank (Tsai et al. 2007), LambdaRank
(Burges et al. 2007), and BoltzRank (Volkovs and Zemel 2009), regard a pair of documents
as a learning instance, and try to learn a binary classifier that can predict the more relevant
document to the given query from each pair of documents. Then the ranked lists of docu-
ments can be aggregated based on the pairwise preferences of the documents. Listwise
approaches, such as ListNet (Cao et al. 2007), SVM-MAP (Yue et al. 2007), NDCGBoost
(Valizadegan et al. 2009), take the entire ranked list of documents as a learning instance,
and attempt to construct a ranking model that can directly predict the full rankings of the
documents. Recently, some hybrid algorithms have been proposed, such as FocusedRank
(Niu et al. 2012), MixRank (Busa-Fekete et al. 2013), targeting improvements in learning
accuracy, efficiency, or both. More algorithms are surveyed in Chapelle et al. (2011), Liu
(2009, 2011).

With the incorporation of more and more useful features for performance gains, dimen-
sion reduction inevitably becomes an important issue in the ranking problem (Geng et al.
2007). With effective dimension reduction techniques, not only the efficiency of the

@ Springer

Inf Retrieval J (2018) 21:481-506 485

algorithms could be improved, but also accuracy could be enhanced as a result of using
more discriminative features with less redundancy and noise. Furthermore, the generaliza-
tion of the ranking model can also be increased as a result of using fewer features (Geng
et al. 2007).

2.2 Feature selection for ranking

Recently, considerable efforts have been made on feature selection for ranking. Geng et al.
(2007) present GAS, one of the first attempts to incorporate the importance and similar-
ity of features for ranking. In particular, it evaluates the importance of features with rank-
ing metrics like MAP (Baeza-Yates and Ribeiro-Neto 1999) and NDCG (Jarvelin and
Kekildinen 2002), and estimates the similarity between features using agreement between
rankings, e.g., with Kendall 7 correlation coefficient (Kendall 1948). Then it greedily
selects a subset of features with maximum total importance scores and minimum total
similarity scores. Metzler (2007) proposes a greedy feature selection algorithm to be used
within the Markov random field model for information retrieval. The model automatically
generates models that are more effective than, or as effective as, models created by care-
fully selecting the features manually. Pan et al. (2009) investigate a boosted regression
trees-based feature selection algorithm. It evaluates the importance of the features based
on boosted trees. Then it selects features by maximizing the discounted importance of the
features, where the importance of each feature is discounted by feature similarity. Yu et al.
(2009) propose RankWrapper and RankSelect, two feature weighting and selection algo-
rithms for learning to rank. They utilize ranking distances of nearest data points in order to
identify the key features for ranking, demonstrating significant efficiency gains in compari-
son with GAS.

Gupta and Rosso (2012) present a Kullback—Leibler (KL) divergence-based divergence
metric, and select a subset of features for ranking based on features’ expected divergence
over the relevance classes and the importance of features. Lai et al. (2013) propose a joint
convex optimization formulation for minimizing ranking errors while simultaneously con-
ducting feature selection. This optimization formulation provides a flexible framework in
which various importance measures and similarity measures of the features can easily be
incorporated. Naini and Altingovde (2014) adopt three greedy diversification strategies,
maximal marginal relevance, MaxSum dispersion and modern portfolio theory, to the
problem of feature selection for ranking. Laporte et al. (2014) propose a general frame-
work for feature selection in learning to rank based on support vector machine (SVM); they
investigate both classical convex regularizations (such as L1 and weighted L1) and non-
convex regularization terms (such as log penalty, Minimax Concave Penalty (MCP) and Lp
pseudo norm with p < 1). Furthermore, they provided an accelerated proximal approach
for solving the convex problems and a re-weighted L1 scheme to address the non-convex
regularizations.

All of these algorithms are meant to address feature selection for ranking. To the best of
our knowledge, there is no work targeting feature extraction for ranking.

2.3 Feature extraction techniques
Feature extraction has been used extensively used in various machine learning scenarios

for performance gains in terms of accuracy and efficiency. Given its effectiveness, many
approaches have been proposed, which are either linear or non-linear algorithms.

@ Springer

486 Inf Retrieval J (2018) 21:481-506

The main linear technique for feature extraction is principal component analy-
sis (PCA) (Jolliffe 2002), which performs a linear mapping of high-dimensional data
into a lower-dimensional space in such a way that the variance of the data in the low-
dimensional representation is maximized. Canonical-correlation analysis (CCA) (Har-
doon et al. 2004) is another popular linear feature extraction algorithm, which attempts
to discover linear combinations of the original features that have maximal correlation
with each other. In addition, several probabilistic algorithms, including probabilistic
PCA (Tipping and Bishop 1999), probabilistic CCA (Bach and Jordan 2005) and prob-
abilistic partial CCA (Mukuta and Harada 2014), have been proposed, where a set of
latent variables are introduced for probabilistically interpreting these models.

Non-linear feature extraction algorithms can combine the original features to gen-
erate a set of features in a non-linear way. For example, the locally linear embedding
(LLE) method (Roweis and Saul 2000) learns the global structure of non-linear mani-
folds to yield low-dimensional, neighborhood-preserving embeddings of high-dimen-
sional inputs. Isomap (Tenenbaum et al. 2000) is capable of discovering the non-linear
degrees of freedom that underly complex natural observations. It can efficiently com-
pute a globally optimal solution and can be guaranteed to converge asymptotically to
the true structure. Besides, some kernel techniques have been proposed to transform
linear feature extraction algorithms into nonlinear ones. For example, kernel PCA
(Scholkopf et al. 1998) is a non-linear form of principal component analysis (PCA),
which can efficiently compute principal components in high-dimensional feature
spaces through the use of integral operator kernel functions.

Although feature extraction techniques have been extensively investigated and
shown to demonstrate promising performance gains, to the best of our knowledge, they
have not been explored yet in the context of the ranking problem.

3 Problem statement
3.1 Learning to rank for information retrieval

Let X be a collection of documents, each represented by a vector of feature values. In
information retrieval systems, given a query ¢, a list of documents from &’ is returned
as search results, where the documents are ranked according to their estimated rel-
evance to ¢g. Given a query g, the ground truth, i.e., relevance judgments of documents
with respect to g (produced by human experts) is defined as a function rel : X — N,
where N is the set of natural numbers (including 0).

Let f : & — R be a ranking function assigning real valued relevance scores to doc-
uments. The goodness of ranking functions can be evaluated by a measure s, such as
precision at n (P@n), mean average precision (MAP) (Baeza-Yates and Ribeiro-Neto
1999), or normalized discount cumulative gain (NDCG@n) (Jarvelin and Kekildinen
2002).

Definition 1 (Learning to rank) Given a training dataset X and an evaluation measure
s, the problem of learning to rank is to learn a ranking function f from X such that s(f) is
maximized.

@ Springer

Inf Retrieval J (2018) 21:481-506 487

3.2 Dimension reduction for ranking

In learning to rank, each dataset X can be regarded as a document matrix X, with m
rows (documents) and n columns (features). In particular, x; is the i-th row of X, and
x;" is a n-dimensional (column) vector that represents a document with n features. Let
g : R" > R¥ (k < n) be a mapping that projects an n-dimensional vector space into a
k-dimensional space. Let L(-) be the loss function for the learning to rank task. Our prob-
lem is to discover a mapping function g such that the obtained dataset X’ = g(X) mini-

mizes the loss function.

Definition 2 (Dimension reduction for ranking) Let X, be a document matrix with m
columns and n rows, where each column xiT is a n-dimensional vector, representing a doc-
ument with n features. Let G be the set of all possible mapping functions, where each ele-
ment g : R” — R¥ (k < n) is used to project an n-dimensional vector space into a k-dimen-
sional space. The dimension reduction for the learning to rank task tries to discover an
optimum mapping function g* € G such that:

in L(g(X)),
arg min (8(X)))

where L(-) is the loss function for the learning to rank task. Then the new dataset can be
generated with g*(X).

In this paper, we consider linear feature extraction for learning to rank as it is the sim-
plest and most straightforward feature extraction technique in machine learning. Here, each
generated feature is a linear combination of the original features. It utilizes a transforma-
tion matrix T to achieve the effectiveness of the mapping function, aiming to discover an
optimal matrix T such that the obtained dataset X’ = XT results in a minimal value of the
loss function.

The problem can be understood from the perspective of PCA (Jolliffe 2002). Using
PCA, the given matrix X can be approximately decomposed into three lower-rank matrices:

X ~ PXQT,)
where X is composed of the singular values of X, P and Q are composed of the left and
right singular vectors of X respectively, and PTP = Q"Q = I (the identity matrix). Thus, a
new matrix X’ can be generated as follows:

X' =P ~ XQ. 3)
The role of the transformation matrix T in LifeRank is very similar to the right singular
matrix Q in PCA, where Q maps the document vectors to another space spanned by the
columns of Q before transforming them through X and going back through P. Hence, in

LifeRank we consider the orthonormality constraints of T in our optimization process, i.e.,
T'T=1

Definition 3 (Constrained linear feature extraction for ranking) Let X ., be a document

matrix, where the transpose of each row, i.e., ;T = d,; is a n-dimensional vector, represent-

ing a document with n features. Linear feature extraction for ranking aims to optimize a

transformation matrix T, by solving the following optimization problem, so that a new

document matrix X’ =X, . T, . can be generated, where each document vector d; can
mxk mxn - nX i

be projected into k-dimensional vector d] = T'd;

@ Springer

488 Inf Retrieval J (2018) 21:481-506

arg min L(XT) such that T'T=1
')
where L(-) is the loss function for the learning to rank task.
Based on the optimized mapping function g, the new dataset can be generated by taking
the product of the original matrix and the transformation matrix, i.e., X’ = XT.

We have used the example of PCA to help us explain the mechanism of LifeRank. How-
ever, it should be noted that in PCA X' is calculated as an approximation of X, whereas in
LifeRank we generate a transformed representation of the initial matrix, in order to achieve
a better ranking performance. Hence, unlike PCA, X’ as computed in Definition 3 is not an
approximation of X, but a transformation.

4 The LifeRank algorithm

Given a high-dimensional dataset X, LifeRank generates a new low-dimensional dataset X’
in two phases. In the first phase, LifeRank first preprocesses the training dataset X into an
original matrix X. Then LifeRank optimizes the transformation matrix T for X according to
the loss function in Eq. 4. In the second phase, LifeRank generates low-dimensional training,
validation and test matrices with the projection of T. Then LifeRank constructs new datasets
based on the low-dimensional data matrices.

4.1 Phase I: Generation of the transformation matrix

In this study, we utilize a classic pairwise learning to rank loss function to implement the
function L(-) in Definition 3. Pairwise loss functions are chosen because apart from being rela-
tively simple and straightforward, they are also intuitive choices for ranking. Besides, with the
assumption that the labels of documents to rank lie in a rank-differentiable probability space,
pairwise loss functions are consistent (Lan et al. 2012) and provide upper bounds for measure-
based ranking errors like NDCG (Chen et al. 2009). Thus, minimizing a pairwise loss function
will maximize the ranking measures (Lan et al. 2012).

First of all, the training dataset & is preprocessed into an original matrix X and other infor-
mation I consisting of identities of the documents and queries, relevance labels, etc. Let
D ={d,,d,,...,d,} be the set of columns (document vectors) in the matrix X;mr We regard
each pair of vectors (d;,d;) € D X D as an instance, and the label y; J € {+1, —1} indicates
whether the relevance of the i-th document is higher or lower than the j-th document, corre-
sponding to the given query. Let {t, t,, ..., t,} be the column vectors of T. We try to discover
a k-dimensional vector of weights w such that:

. _ _ A
arg mlnT,w,b Z log (1 +e yiJ(WTTT(di dj)+b)) + 5 | |W| |2
V(d,.d).i%j

&)

Li=j ..
T¢ — > —
such that t, tj_{O,i EJ.,Vl,]—l,Z,...,k,

where the first part calculates the log loss of the ranking accuracy, the second part is the /2
norm of the parameters for regularization, and A is the coefficient of the regularization term
for trade-off.

@ Springer

Inf Retrieval J (2018) 21:481-506 489

We optimize the constrained loss function based on the Lagrange multipliers method
(Arfken 2013; Bertsekas 1999) in Eq. 5. Let

L(T,w,b,A) = Z log 1+e‘>‘u(WTTT(d1—df>+b))+
v, d,).i%

A
SHwIl? + D ,Jlt+2a,, —t't,),

ij=1,... kAij

(6)

where A is a matrix with k columns and k rows, and elements @ Then, the optimum T, w
and b for minimizing £ are the exact results of Eq. 5.

In Phase I, we utilize gradient descent to generate the training dataset and the transforma-
tion matrix. Initially, we assign all 1s to the vector w,,; so that all of the generated features
in the ranking model have the same initial weight. We initialize the transformation matrix
T in a random manner, following work on matrix generalization problems like matrix fac-
torization-based collaborative filtering (Koren et al. 2009). After initialization, the weight
vector w and the factorized matrix can be updated iteratively with gradient descent until
reaching convergence or the maximum number of iterations with the given learning rate.
The gradients of the function £ with respect to the variables are calculated as follows:

.
v [;T7(d; - d;)
w - | _
vaiayiz 1+ T G70))
=y;wi(d; — d,
thﬁ = - l'r(T j)
v ayiz 1+ oY/ (WTTT(d;=d;)+b)
(e + @t = 2at, I=1,.. .k 7
i#l
% —Yij
ob (WTTT(d;—d;)+b)

Vd,d),iz 1 + €

.
aﬁ:{titf” PRI =1,k

da;; I—tlt, i=j

where t;, t,, ... t, are the column vectors of T. Since gradient descent generally does not work
with Lagrange multipliers, we use the basic differential multiplier method (BDMM) (Platt
and Barr 1988) for optimization, where the sign inversion for a in Eq. 8 makes the optimiza-
tion stable. Given a learning rate #, the update formulas of the gradient descent method are:

Wew—nV,L
t1<—t,—;1V L, forl=1,...,k

oL ..
@ < ai,j‘*”W’ fori,j=1,...,k

i

@ Springer

490 Inf Retrieval J (2018) 21:481-506

4.2 Phase II: Generation of low-rank datasets

In LifeRank, Phase II generates all of the datasets for learning to rank, including the
training, validation and test datasets. According to Definition 3, for each original matrix
X, the generated matrix X’ can be obtained as a product of the original dataset X and the
transformation matrix T, formally X’ = XT. Then, the new low-dimensional dataset X’
can be generated by integrating matrix X’ with other information I that was filtered in
the preprocessing step in Phase I.

4.3 Pseudocode

The pseudocode of LifeRank as a dimension reduction algorithm for ranking is sum-
marized in Algorithm 1. Given the number of generated features k and a set of standard
learning to rank datasets, including a training dataset X, a validation dataset V and a test
dataset &€, LifeRank tries to output new low-dimensional datasets X’, V' and &’ for train-
ing, validation and test, respectively, for the learning to rank procedure.

Algorithm 1 implements the two phases of LifeRank: (I) Lines 1-8 generate
the transformation matrix T based on the original training dataset &’; (II) Using T,
lines 9-10 generate the low-dimensional matrices for training X', validation V' and test
E'. Then, line 11 constructs the low-dimensional training, validation and test datasets by
directly integrating the low-rank matrices and their corresponding information filtered
in the preprocessing steps in lines 1 and 9.

Algorithm 1: LifeRank: A Linear Feature Extraction Algorithm for Ranking

Input: A training dataset X', a validation dataset V, a test dataset &, the learning rate 7, and the
number of features k in the set of generated document.
Output: A generated training dataset X, validation dataset V', and test dataset £’, each with k

features.
// Phase I
1 (X,Ix) < Preprocess(X) ;
2 T,w,{a;,j}i j=1,...,k < Initialize(X, k) ;
3 repeat
4 w < w—nVwl;
5 tl%tlfnvtlﬁ,fOI‘ZZI,...,k;
6 bebfn%—‘g ;
oL Co .
7 am'ea¢7j+n8a—w,forz,j_1,...,k,

®

until Reach convergence or the max iteration;

// Phase II

(V,1y), (E,Ig) < Preprocess(V, £);

0w X «XT, V' «VT, E «VT;

u X', V' E" + GenerateDatasets(X', V', E' | Ix,Iv,Ig);

e

4.4 Discussion

In this section, we reveal a connection between the feature selection for ranking problem
and the linear feature extraction for ranking problem. In particular, from the perspective
of linear transformations of matrices, the feature selection for ranking problem can be
defined as in Definition 4.

@ Springer

Inf Retrieval J (2018) 21:481-506 491

Definition 4 (Feature selection for ranking) Let X, , be a document matrix, where
the transpose of each row x;T = d, is an n-dimensional vector, representing a document
with n features. Feature selection for ranking aims to optimize a transformation matrix
T, by solving the following optimization problem, so that a new document matrix
X' =X, T can be generated, where each n-dimensional document vector d; can be

mxk mxn
projected into a k-dimensional vector d = T'd;:

Vi, €T :1,;={0,1}

arg min L(g(XT)) such that { T'T=1 ®

Based on the optimized mapping function g, the new low-rank matrix can be generated as a
product of the original matrix and the transformation matrix, i.e., X’ = XT.

The k columns of the transformation T mentioned in Defintion 4 present the k iterations
of the feature selection processes. The constraints in Eq. 9 guarantee that there is only one
“1” in each column of the transformation matrix T and the others are all “0,” indicating
that each feature selection process only selects one feature. The second constraint TTT = I
guarantees that the position of the unique “1” in each column is different from other col-
umns, which is the index of the selected feature in that step.

Since the elements in the transformation matrix T can be any real numbers in Defini-
tion 3 while they are only either O or 1 in Definition 4, Definition 3 generalizes Defini-
tion 4, i.e., the problem of linear feature extraction for ranking generalizes the problem of
feature selection for ranking. Because of this, linear feature extraction is expected to out-
perform or be at least as good as any feature selection technique. The linear feature extrac-
tion is expected to use more computational resources than feature selection, since former
deals with the search space in real numbers and the latter with binary case. However, this
computational overhead is the tradeoff for the higher performance expected to be achieved
by the extracted features, when utilized for learning to rank.

5 Experimental setup
5.1 Research questions
We list the research questions that guide the remainder of the paper.

RQ1 What is the performance of LifeRank in generating low-dimensional datasets?
Does LifeRank outperform state-of-the-art feature selection algorithms? (See
Sect. 6.1)

RQ2 Can the importance and redundancy of the features generated by LifeRank outper-
form those selected by feature selection algorithms? (See Sect. 6.2)

RQ3 What is the effect of the orthonormality constraints of the transformation matrix
in Eq. 4? Does it help enhance the performance of ranking predictions? (See
Sect. 6.3.)

5.2 Datasets

In this study, we use the MQ2007 and MQ2008 datasets from LETOR 4.0 (Qin and Liu
2013) and OHSUMED from LETOR 3.0 (Qin et al. 2010) to evaluate our algorithm. The

@ Springer

492 Inf Retrieval J (2018) 21:481-506

LETOR! datasets are commonly used benchmarks in learning to rank. LETOR 4.0 is the
latest version, which was released in July 2009. It uses the Gov2 web page collection (~
25M pages) and two query sets from the Million Query track of TREC 2007 and TREC
2008, which are referred to as MQ2007 and MQ2008. We use both MQ2007 and MQ2008
in our experiments. In MQ2007, there are about 1700 queries and about 70,000 query-doc-
ument pairs, while MQ2008 has 800 queries and about 15,000 query-document pairs for
training, validation and testing. In both datasets, each query-document pair has 46 features.
We also use the OHSUMED dataset from LETOR 3.0, which was released in December
2008. OHSUMED is extracted from the online medical information database MEDLINE.
It contains 106 queries and about 16,000 query-document pairs, where each query-docu-
ment pair has 45 features.

In all the datasets that we use, relevance of documents with respect to queries is judged
at three levels: 2 (definitely relevant), 1 (partially relevant), and 0 (not relevant). In our
experiments, we use five-fold cross validation. In each fold, 60% queries are used for train-
ing, 20% for validation and and the remaining 20% for testing. The performance numbers
reported are averaged over the five folds.

5.3 Baselines

LifeRank aims to generate low-dimensional datasets for ranking. In this paper, we utilize
three baselines to evaluate the datasets generated by our algorithm:

Original datasets: We firstly use the original LETOR datasets as our
first baseline, on which no selection or generation
has been performed.

Datasets generated by GAS: GAS (Geng et al. 2007) incorporates importance
and similarity information of the features into rank-
ing. It greedily selects a subset of features by maxi-
mizing the total importance scores meanwhile mini-
mizing the total similarity scores.

Datasets generated by FSMRank: FSMRank (Lai et al. 2013) trains a feature selection
model with machine learning, which can select a
subset of features meanwhile minimizing the rank-
ing errors.

We then run Linear Regression (Lawson and Hanson 1995)-based learning to rank and
RankSVM? (Joachims et al. 2009) to determine how well these datasets can address the
ranking problem. The former makes pointwise predictions on the relevance of the docu-
ments by linear regression, which is implemented in the RankLib learning to rank toolkit.>
The latter predicts pairwise ranking relation between each pair of documents directly by
support vector machine (SVM). These are classical pointwise and pairwise learning to rank
algorithms, respectively, with which we can clearly demonstrate the effects of dimension
reduction.

! http://research.microsoft.com/en-us/um/beijing/projects/letor/.
2 https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
3 https://sourceforge.net/p/lemur/wiki/RankLib/.

@ Springer

http://research.microsoft.com/en-us/um/beijing/projects/letor/
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/

Inf Retrieval J (2018) 21:481-506 493

Since LifeRank uses a linear approach for feature extraction, it is expected to show
effectiveness mainly for linear learning-to-rank methods. This is the reason why we have
chosen SVMRank and Linear Regression for experimentation.

5.4 Evaluation measures
5.4.1 Measures for ranking

We use two standard ranking accuracy metrics to evaluate the rankings generated by learn-
ing to rank algorithms: mean average precision (MAP) (Baeza-Yates and Ribeiro-Neto
1999) and normalized discount cumulative gain (NDCG@n) (Jarvelin and Kekildinen
2002).

Statistical significance of observed differences between the performance of two runs is
tested using a two-tailed paired #-test and is denoted using® (or V) for strong significance
for @ = 0.01; or 2 (or V) for weak significance for a = 0.05.

5.4.2 Measures for features

We consider two metrics to evaluate the quality of the features: importance and redundancy.

The importance of each feature can be evaluated by the ranking performance when the
feature is used as a ranking model to order the documents. In particular, we use NDCG@5
for evaluation. Since for calculating these measures, for some features larger values cor-
respond to higher ranks while for others smaller values lead to higher ranks, we utilize
the strategy in GAS (Geng et al. 2007) for evaluation: We order the documents twice in
ascending and descending manners respectively, and take the larger score as the impor-
tance score of the features. Then we calculate the average importance of the features as the
importance of the set of features F = {f,f5,....fi }:

k
Imp(F) = % 2 max {eva(é\’,ﬁ), eva(X, —fi)},
i=1

where the function eva(&X, f;) returns the evaluation results of the ranking model f; on the
dataset X.

The redundancy of features can be defined as the average similarity between each pair
of features. In practice, we regard each feature as a ranking model to order the documents,
and then calculate the similarity between each pair of features as the average similarity of
their document rankings associated to different queries. Let Q be the set of queries in the
given dataset, each associated with a set of documents for ranking. The redundancy of the
features F' = {f},f,,f; } is calculated as follows:

2 1 .
Rdd(F) = m Z @ Zszm(afq),aj(q)>,

fifieRizj 1% ge0

where o-fq) is the ranking of the document associated to the query g when the feature f; is
used as the ranking model to order the documents. In this paper, we take the absolute value

of Kendall’s 7 correlation coefficient (Kendall 1948) as the similarity metric for rankings:

@ Springer

494 Inf Retrieval J (2018) 21:481-506

N.—N
*(one) = F . (10)

where N, and N, are the numbers of the concordant pairs and discordant pairs respectively
between rankings o, and o;.

The range of T(O‘i, aj) is [—1, 1], where the sign indicates that the correlation between
o; and o; is either positive or negative, and the absolute value indicates the strength of the
correlation. Since positive and negative values should not neutralize and we only consider
the strength of the correlations, we take the absolute value of Kendall’s 7 as the similarity
metric in the definition of redundancy.

6 Experimental results
6.1 Performance on generated datasets

Tables 1, 2 and 3 list the results obtained in our experiments on the MQ2007, MQ2008 and
OHSUMED datasets, respectively. They show the NDCG@1-10 and MAP scores for the
RankSVM and Linear Regression learning to rank algorithms on 4 categories of datasets:
the original datasets and 3 datasets generated by dimension reduction algorithms including
GAS, FSMRank and our LifeRank. For each dimension reduction algorithm, we consider k
generated features, with k = 5, 10, 15, 20. The results for the original dataset in the tables
are independent of the value of k, but are repeated nevertheless for ease of comparison. The
values in bold represent the best performance among GAS, FSMSVM and LifeRank.

Overall, from the tables we can see that: (1) The performance of ranking algorithms
can be maintained or slightly improved on the datasets generated by dimension reduction
techniques. (2) The performance of the ranking algorithms on the datasets generated by
LifeRank is higher than those generated by GAS and FSMRank in most cases. Let us now
take a closer look.

6.1.1 Performance of RankSVM

For RankSVM, we can see that LifeRank clearly shows improvements over the original
datasets for all the three benchmarks (MQ2007, MQ2008 and OHSUMED) in terms of
NDCG@1-10 as well as MAP. The only exception is MQ2007 for k = 5, where the per-
formance of LifeRank as well as the other generated datasets does not beat the original
dataset. We can also see from the tables that LifeRank clearly outperforms other generated
datasets (GAS and FSMSVM) on NDCG @ 1-10 for all the benchmarks and all values of k.

In terms of MAP, LifeRank outperforms the other generated datasets in most cases.
The few exceptions include the case for MQ2007, when GAS has a higher MAP for k = 5.
For MQ2008, FSMSVM attains slightly higher MAP score than LifeRank for k = 10
and k = 20, but these differences are not significant. Also, for OHSUMED when k =5,
the MAP score attained by LifeRank is lower than FSMSVM and GAS, but it is still an
improvement over the original dataset.

@ Springer

495

Inf Retrieval J (2018) 21:481-506

w90 v9611°0 vIEIv'0 vIL0v'0 vI110¥°0 560 768¢°0 v1S8€°0 vL6LE0 ISLE0 CILEO SVD
L6YY°0 LLTY0 80¢Y°0 123840 880t°0 €0¥°0 6L6£°0 926£°0 788€°0 768¢°0 0SLE0 [euISLiQ
=7
UOISS2US 24 ADIUL] LOf DOUDULIOf1D]
0ror°o 8EVP0 vLEVO TIEY'0 S9Tr'0 €10 €S11°0 901+°0 8S01°0 LLOV'O L60V"0 Auededry
vS651°0 v89¢r°0 vOIetr'0 6STY'0 v€02r'0 v3€IY'0 960¥°0 090%°0 00¥°0 v626€°0 v {880 INASINSH
v 1091°0 v76etr’0 v9Cer’0 yLSTY0 v6811°0 vLEIYO v38801°0 vL20t°0 LO0Y'0 vL96€°0 710¥°0 SVO
SI9t°0 160 9eer0 SLTY0 v10Tr°0 v6CI1°0 vLLOV'0 v0€0t°0 600%°0 L00Y°0 6L0%°0 [ewISIIQ
0c=14
SEI0 9EPY"0 ILEY'0 80€Y°0 wro v61t°0 wiro 8010 T90+°0 00 °L6E0 AUy
v68St°0 v$9¢et0 v60€°0 v0STr0 1020 la484l 901¥°0 090%°0 G000 vL€6€°0 S06€°0 INASINSH
v 6510 vCLEY0 voler’0 vISTr0 S611°0 v9CIt0 v£€901°0 €C0r’0 866¢°0 766£°0 ee0 SVD
SI9t°0 (3340} 9eer0 SLTY0 10¢¥°0 6CIY°0 LLOY'O 0€0¥'0 6007°0 L00Y"0 6L0V°0 [eWISLIO
SIT=3
veIwr o €0 0LEVO rero Yoo SITY0 91¥°0 LTIV'0 6801°0 €010 LEOY'O HueydJrT
€6S¥°0 vO7Er’0 v062¥°0 v6ETY0 vL81Y°0 244804 v6L0¥°0 vL20¥'0 v<86€°0 L16€°0 616€°0 INASINSAH
v8SSt'0 vEVEYO vCLTY0 v602t°0 vESIYO v8601°0 v6201°0 v$96€°0 yP16€°0 v£68¢°0 L68E0 SVD
SI9t°0 16€v°0 9¢er0 SLTY0 v 1020 v6CI1°0 vLLOY'0 v0€0t°0 600%°0 L00Y'0 6L0Y°0 [ewISLO
or=14
6€SY°0 caero 9570 60210 9150 SII¥°0 2901°0 600%°0 SL6E0 ST6£°0 €76£°0 Jueya 'y
15540 vE611°0 v6C11°0 v 19010 vL166€°0 v [76€°0 vIL8€0 vI18€°0 vELLED v€0LED v865€°0 INASINSH
€9S1°0 06<¥°0 w0 LLIYO €r1yo 890%°0 086£°0 96¢£°0 v698¢°0 L08E°0 1SLE0 SVO
ASTOY0 AL6EVO AIEEY0 SLTY0 10¢¥°0 6CIt0 LLOY'O 0€0¥'0 60010 L0000 6L07°0 [euIStiQ
§=3
WASYUDY 40f 2oupuLiof12]
dVIN 0oro 6@ 8@ L® 9@ CoO 142 £ 42} 10 DOAN

SjoseIep pAIeIAUZ/Pa3odes pue /00ZOIN Uo douewnroyred Sunjuey [dqel,

pringer

As

Inf Retrieval J (2018) 21:481-506

496

unproS[e Surwrograd 1s9q o) 03 puodsarIod pjoq ur senfeA SINAW Y],

(3oserep [euISLIo 0) spuodsariod) 3 Jo anfea Jo juapuadopur st [UISLI) J0J 90UBWION] NASIASH PUe SYO ‘[eUISLIO ISUTESe Yuey oI J0J UMOYS 9dUBIYIUSIS [eONSIIRIS

148944 90¢€1°0 evero Y810 1710 89010 1010 8¥6¢£°0 16¢0 ¥68¢°0 878E°0 SUBYIT
£8¥¥°0 vrer o 7811°0 c¢elvo v<¢90¥°0 110%°0 0L6€°0 LE6E0 916¢°0 L98¢°0 wLe0 INASINSA
IS0 €IEr'0 SSTY'0 8LIY'0 0CIv'0 6L0Y°0 T°0r°0 066£°0 956¢£°0 L68E°0 €8LE0 SVD
L6Y10 LLTYO 80¢t'0 Y810 88010 €010 6L6€°0 926¢°0 88¢°0 $68¢€°0 0SLE0 [ewIStQ
0Cc =13
€Is0 9€EY'0 YLIV'O LOTY'0 191+°0 160t°0 610¥°0 186¢°0 €V6¢£°0 888¢€°0 w8e0 queyaJry
vy 777’0 vSITY 0 vLVIV'0 vy 1607°0 vSE0¥°0 v9L6E0 v 60 v88¢E°0 GG8¢0 §28¢0 008¢°0 INASINSH
80 SIero 0ser'o 161v°0 €eIro 0L0V°0 00010 S6€°0 €16¢0 6¥78¢'0 L9LE0 SVD
L6¥10 vLLTV O v30¢y'0 Y170 v880¥°0 7e0r'0 6L6¢€0 926¢0 788¢0 ¥68¢0 0SLE0 [eutSLQ
SI=3
LOSY0 [45% 4] 0LTY0 9020 Wwir'o €LOV'0 9201°0 9L6€°0 926¢°0 026¢°0 S8¢€°0 quedJry
o0 S8CY'0 €Cey'o 99110 11170 6v0¥°0 166€°0 056¢£°0 9€6¢°0 1S6€°0 €06€°0 INASINSH
16v¥°0 19210 86110 10 06010 1€0¥°0 086€°0 626¢°0 188¢€°0 6L8¢°0 988¢°0 SVD
L6Y10 LLTYO 80¢t'0 Ye1v'0 88010 €010 6L6€°0 926¢°0 788¢0 ¥68¢°0 0SLE0 [eur3LQ
or=3
LOSY0 6LTY"0 €10 (4841} 6801°0 920t°0 796€°0 SS6£°0 806€°0 PL8E0 °s8E°0 queyay
68110 vSYIY0 v9L0Y'0 vy C007°0 v626£°0 vCLBE0 v08LE°0 vIVLEO vEL9E0 v7€9€°0 vVSSE0 INASINSH
dVIN o1o® 6@ 8@ L® 9@ SO 14C) €O [4c) 1@ DOAN

(ponunuoo) | dqey,

pringer

A s

497

Inf Retrieval J (2018) 21:481-506

0€9%°0 °68Y°0 8¢8Y°0 9LLYO 6970 78SY°0 06£1°0 Y81¥°0 LY6€°0 v169¢°0 LESE0 SVO
v0SSY'0 ¢ IL8VO v9081°0 vOPLY 0 v7891°0 v8SSt°0 LOYY0 STy 0 196¢°0 vL19€°0 Sore0 [euISIIQ
=1
UOISS2US 24 ADIUL] LOf 2OUDULLOf 1]
1SLY'0 8€€T0 £€6CT°0 LI9Y°0 1L6V°0 €061°0 €ILY0 6191°0 €9EP°0 940140 CILEO queyasy
PSLY'0 20€T0 6¥CC0 06S¥°0 96¥°0 2067°0 LSLYO 88S1°0 €rero vrivo LELEO INASINSH
61LY°0 86CC°0 SCT0 99¢¥°0 1261°0 088¥°0 0cLY 0 vLCSY'0 erer’o L2T0Y'0 969¢°0 SVD
VILY0 ¥8TC0 vP€CT0 v 1ESY0 vSL8Y0 v7181°0 vCLl9t'0 vS8Y17°0 v3ECr0 £€6€°0 CILEO [ewISQ
0c=13
w6LY0 6v€T0 01€T0 €€91°0 Leyo 026v°0 v08t°0 (44 4} 6LEV0 oviyo ILLEO ueyr
88LY°0 11€C0 §9CT0 €19v°0 L9610 S06t°0 19LY°0 LSSY0 1S€¥°0 SOIV°0 88LE0 INASINSAH
wLY'0 §6LTTO v€CTT0 vEVSY0 w0610 168%°0 vIILY0 vEeESY0 0cero v1786€£°0 0CLE0 SVD
vVILY'0 ¢ ¥8CCT0 vP€CT0 vIEST0 vSL8Y0 y7I817°0 vCL9Y0 vS8717°0 v3ETH0 vEE6E0 CILEO [euIStIQ
S =3
COLY0 SYET0 18270 S0 Let0 006t°0 96LY°0 190 P8EY0 181+°0 €9LE0 Aueyary
€6LY°0 °ceTo 9LTTO L19%°0 296¥°0 S€T6¥°0 18LY°0 68SY°0 1LEY0 LSIV0 6SLE0 INASINSH
ILLY' 0 y99TT0 vL1TT0 vISSY0 626170 98Y°0 ey’ o S9SY°0 (Y44} vSI10v°0 869¢°0 SVD
VILY0 ¥8TC0 y€Ccc0 v IEST0 vSL8Y'0 718¥°0 vCLOY0 vS817°0 v3€ECr0 v£E6€°0 CILEOD [euISIIQ
or=9
88LY0 62€T0 082C0 LT9Y'0 9L6YV"0 126¥°0 9081°0 909¥°0 68€Y°0 891¥°0 L9LEO AueyaIy
9LLY O 9TETO Y8CT0 919%°0 896%°0 606%7°0 19L¥°0 66570 78EY°0 9C1¥'0 08L£°0 INASINSH
VILY0 y9¥YCT0 vL02T0 v CCSY0 v 29810 v008%°0 v$991°0 w60 vEITro vE£86€°0 8L9¢€°0 SVD
YILYO ¥8CC0 €T vI€SY0 vSL8Y'0 v71817°0 v L0 vS87°0 v3€Cr'0 vEE6€°0 CILEO [euIsLIO
S=3
WASYUDY L0f 2oupuLiofiad
dVIN 01® 6@ 8@ LD 9@ S) 142} £ [40) 1® DDAN

S19sBIRP PAJRISUAT/PA)I9[as pue §0OZOIA U0 douewriojrad Jurjuey 7 d[qel,

pringer

N's

Inf Retrieval J (2018) 21:481-506

498

unproS[e Surwrograd 1s9q o) 03 puodsarIod pjoq ur senfeA SINAW Y],

(3oserep [euISLIo 0) spuodsariod) 3 Jo anfea Jo juapuadopur st [UISLI) J0J 90UBWION] NASIASH PUe SYO ‘[eUISLIO ISUTESe Yuey oI J0J UMOYS 9dUBIYIUSIS [eONSIIRIS

9950 9560 L68¥°0 €870 8¥LY0 82970 S6hH°0 8¥6£°0 81070 078€°0 TILED Uy
19990 Sh6¥0 68850 €680 L0 8991°0 STSY0 99TH°0 SLOY'0 €08€°0 <109€°0 INASINSH
099%0 19610 9061°0 €810 YLE0 0S9+°0 98%+°0 00€+°0 001+°0 108€°0 885€°0 SVD
vOSS0 yIL8+0 v9085°0 SOPLY 0 #8910 85550 LOVF 0 STTY0 196€°0 vLT9E0 vSOPED eSO
0z="1
9950 SS6v0 Y0610 7S8H°0 99LK"0 LS9¥0 8510 96250 €050 WsE0 819€°0 Nueya]
LYO¥0 9S6+°0 10670 05850 PLLE'O 6991°0 LTSHO $8TH0 €507°0 TT8E0 1€9€°0 INASINSH
98910 PI6t°0 PI6H0 K80 LSLY'0 1790 L6WH0 20€H°0 PITHO $6LE0 7S9€°0 SVD
0SS0 G1L8H0 <9080 yOPLY0 Y8950 <8550 LOWH0 STV 0 196£°0 vL19€0 SOPE0 [euisuQ
SI=4
98910 0L6V0 80650 65810 T6LY°0 6591°0 10540 9L6€0 S807°0 LSSE'0 869€°0 Uy
r0 016v0 L850 68LF0 T0LY0 109+°0 T 0 €ITr0 LIO¥0 6LLEO TISE0 INASINSS
69950 TH6Y0 568770 0850 L0 82970 06v1°0 8TH0 066€°0 Y08€°0 $09€°0 SVD
vOSSV0 ¢ 14850 v9085°0 YOVLY0 v/897°0 <8550 LOVF0 ST 0 <196€°0 vLI9E0 <SOPE0 reuiS1o
01 =Y
S89K0 6L6V0 vT6t0 198H°0 TLLV'O 79910 I6+4°0 $56€°0 6801°0 LOGE'0 169€°0 PULNOS |
€65K0 9€06+°0 <TH8F 0 16150 18950 vEISH0 96EF°0 16140 20010 VSSLEO I7$€°0 INASINSH
dVIN 01® 6® 8® L® 9® $® v® o) 7® 1® DOAN

(ponunuoo) g dqey,

pringer

A s

499

Inf Retrieval J (2018) 21:481-506

675y 0 (V440 10¢¥°0 60¢Y0 SLTY0 98¢Y'0 8LEV0 999¥°0 68177°0 16¥¥°0 9LV 0 SVD
€eer’o 0er0 11ey0 €vero 68¢Y°0 89¢t°0 £8¥1°0 8YSY'0 6vLY'0 008¥°0 0€8¥°0 [euISIIQ
=13
UOISS2L 24 ADIUL] LOf 2OUDULIOf 1]
61St°0 959t°0 699t°0 STLY0 SILY0 eS80 9L6V°0 6205°0 Y0cs0 91IHS"0 S08s°0 Hueya Iy
8424 vL8EY0 v38¢t'0 285240 v S0 v S0 v o0 99LY"0 V91810 v8¥81°0 vELISO INASINSH
vL8EYV0 v SO¥1°0 v 10¥1°0 v E9PY°0 vELYYO v0CSt°0 vOILY'0 vI19LY'0 v8¢£81°0 1S0S°0 61650 SVD
ySPEY0 v00€t°0 v3EEr0 v SO¥1°0 vEeEVY0 v S0 v6EVY°0 vS951°0 vSLLY'O 9L0S°0 91¥S0 [euISQ
0c=14
9€SY°0 8791°0 (43 4l 0€91°0 Lo €ILYO0 SE8Y'0 wero S905°0 Yreso 69LS°0 Hue P
yCSYY0 v00S1°0 STSY0 LSSY0 909¥°0 099¥°0 €CLY0 968Y°0 12050 L1ES0 PE8S0 INASINSH
v 0¥¥°0 y6Iv7°0 voery’0 Y610 yesyo 4594\ 96910 €ILY'0 088%°0 8905°0 TLLSO SVD
vSPEY0 v00€t°0 v3EET0 vSOry0 €eryo vCSTP0 v6EVY0 vS95t°0 SLLY'O 9L0S°0 91¥S0 [euIStIQ
S =3
S0ST°0 £€991°0 26910 66910 VLLY'O 118+°0 0T6t°0 €S0<°0 S8I1S°0 €LES0 81660 JueyaT
6SYY 0 v E9VY°0 y8¥17°0 vI€SY'0 v8SS1°0 v 20910 v9£91°0 vSYLY'0 vV6LY0 v9981°0 96¢S°0 INASINSH
99%¥°0 vL0ST°0 (92540 S09%°0 (45540} €L9Y°0 €L8Y°0 Yoy 0 8805°0 06€S°0 LLIS0 SVO
ySPEY0 v00€t°0 v3ECt’0 v SO¥Y°0 veEVPo 24544\ y6EVY°0 vS9SY°0 SLLY'O 9L0S°0 91¥S0 [euIStIQ
or=3
€S0 899+°0 ¥89t°0 8°9t°0 T0LY°0 6vLY0 S06¥°0 0S6¥°0 ST0S°0 000570 0LIS0 quePasy
8TLY'0 81SY°0 6CSY°0 6SSY°0 970 609%°0 v7691°0 6vLY 0 CLLYO 68870 ALLLS0 INASINSAH
APOT0 vOPer0 yVLEVO v86¢€Y°0 yEVY0 ve0st'0 v8LSY0 v0€9t°0 6ELY0 106%°0 eeso SVD
vSPEY0 v00€t°0 v3EEr0 Sovy0 €eryo 49440 v6EVY°0 vS95t°0 SLLY'O 9L0S°0 91¥S0 [euIsLO
¢=3
WASYUDY L0f 2oupuLiofiag
dVIN 0I® 6@ 8@ LD 9@ CO 142 €@ 42} 1® DDAN

SjosEIRp PAJRIAUAT/PoI09[ds pue qHINNSHO U0 2ouewrtoyrod Sunjuey ¢ Iqel,

pringer

N's

Inf Retrieval J (2018) 21:481-506

500

unproS[e Surwrograd 1s9q o) 03 puodsarIod pjoq ur senfeA SINAW Y],

(3oserep [euISLIo 0) spuodsariod) 3 Jo anfea Jo juapuadopur st [UISLI) J0J 90UBWION] NASIASH PUe SYO ‘[eUISLIO ISUTESe Yuey oI J0J UMOYS 9dUBIYIUSIS [eONSIIRIS

69€H°0 IPEP0 6SEH°0 90tH0 6EHH0 L9VF0 1LSH'0 989%°0 78810 12050 19750 eIy
69€H°0 STEY0 170 S9EF0 0LEF0 9THH0 68570 0TS0 YLSH0 90LF'0 #8670 INASINSH
v80EF0 y66TFO yFTEFO yLOSPO y68EY0 ALGPP0 yOFSH0 A%LY0 yEISP0 EH6P0 05050 SVD
€EET0 20670 11§70 EPEP0 68570 89£4°0 8PP0 855K 0 6VLY0 008+°0 05850 LEIRTS)
0c=4
66£7°0 €5EH°0 0LEF'0 o LEFFO 6250 8L9'0 18L°0 10050 6£87°0 TS0 Nueyay
SOFH'0 8CH0 20650 12§70 STEY0 0010 S8H0 L9ST'0 65950 1190 #8650 INASINSH
86270 10€4°0 €0EP0 €570 1S€7°0 I 0 015+0 5910 16L7°0 H6°0 0TS0 SVD
€EET0 20650 11€70 EHEY0 68550 89€4°0 €840 85570 6150 008%°0 0£8+°0 [euistQ
ST="
8SEH'0 99€1°0 0LEV'0 €THH0 9EPH0 p6rH0 T09%°0 1890 08910 99840 0€€S°0 Nueyayry
PrEr 0 081+°0 91TH 0 €T 0 65TH°0 SHTr0 €EEr0 S6E7°0 20870 955H°0 28050 INASIASH
65EH°0 SLTHO ZIEPO PSEPO SIHP0 09tF0 EPSH0 L6SY0 08910 £881°0 20250 SVD
€EET0 20650 1150 EPEP0 68EF°0 89£4°0 €850 855H°0 67LY0 008+°0 0£81°0 [PuISLO
or="
66550 IHEP0 LYEP'0 010 STHH0 6SHH0 S8H0 9850 $SSH0 9¢Lt°0 176t°0 Sueyayry
SS9H'0 620 90£%°0 SEEP0 e €0PP0 €ISH0 685H°0 9891°0 7S8H°0 ILTS0 INASINSH
dVIN 01® 6® 8® L® 9® $® +® €® ® 19 DOAN

(ponunuoo) ¢ dqey,

pringer

A s

Inf Retrieval J (2018) 21:481-506 501

6.1.2 Performance of linear regression

Also in the case of Linear Regression, for all three benchmarks (MQ2007, MQ2008 and
OHSUMED) LifeRank clearly shows improvements over the original datasets in terms of
NDCG@1-10 as well as MAP. The only exception is MQ2007 for k = 5, where the origi-
nal dataset performs better than LifeRank as well as the other generated datasets.

On NDCG@1-10, for MQ2007 LifeRank gives the best performance for all values of
k, except for k = 20, where GAS gives the best performance. For MQ2008, LifeRank gives
the best performances for k =5 and k = 10 on NDCG@1-10. However, for k = 15 and
k =20, there is mixed performance where all GAS, FSMSVM and LifeRank give best
performances in certain cases. For, OHSUMED, LifeRank gives the best performance on
NDCG@1-10 in most cases.

In terms of MAP, LifeRank gives the best performance for MQ2007 for k=5
and k = 10, whereas for k = 15 and k = 20 the best performance is given by GAS. For
MQ2008, LifeRank outperforms others for all values of k, except for k = 15 where the best
performance is given by GAS. Moreover, for OHSUMED, FSMSVM outperforms the oth-
ers for k = 5 and k = 15, while LifeRank gives the best performance for k = 10. In case of
k = 20, there is a tie between LifeRank and FSMSVM.

6.1.3 Statistical significance overview

In Tables 1, 2 and 3, markups are provided to denote the statistical significance between
LifeRank and the following baselines: original dataset, GAS and FSMSVM. It should be
noted that the original dataset is independent of the values of k, but is repeated in the table
to indicate statistical significance between it and datasets generated by LifeRank for differ-
ent values of k.

It can be observed from Table 1 that for MQ2007 in the case of RankSVM, there is
strong to weak significance between LifeRank and the baselines in most cases across the
metrics, while there is no significance shown against original for k = 15. Moreover, for
k =5, significance is shown against original and GAS in few cases. For Linear Regression,
there is strong significance shown against FSMSVM for k =5 and k = 15, though there
is not much significance shown for k = 10 and k = 20. Also, weak significance is shown
against GAS in few cases for k = 5 and against original for k = 15.

Table 2 for MQ2008 shows no statistically significant differences between LifeRank
and FSMSVM for RankSVM. There is weak to strong statistical significance for LifeRank
against original dataset for most cases and against GAS mainly for k = 5,10 and 15. For
Linear Regression, LifeRank shows weak to strong statistical significance against origi-
nal in most cases, GAS in no cases and FSMSVM in few cases. Moreover, Table 3 for
OHSUMED shows statistical significance for RankSVM in many cases against the base-
lines, whereas there is statistical significance observed for Liner Regression for few cases.
The comparative lack of statistical significance seen for MQ2008 and OHSUMED can
most probably be attributed to the relatively small size of these datasets.

6.2 Quality of the generated features

Table 4 lists the quality scores of the features from four datasets: the original datasets and
the three datasets generated by GAS, FSMRank and LifeRank, respectively, for k = 10.

@ Springer

502 Inf Retrieval J (2018) 21:481-506

Table 4 Performance of the

Datasets MQ2007 MQ2008 OHSUMED
generated features

Imp Rdd Imp Rdd Imp Rdd

Original 0.2671 0.4833 03297 0.5318 0.3763 0.5592
GAS 0.2643 0.3242 03235 0.3308 0.3603 0.3904
FSMRank 0.3005 0.4706 0.3723 0.5276 0.4170 0.5412
LifeRank 0.3214 0.4606 0.4095 0.5758 0.4422 0.8881

The metric values in bold correspond to the best performing algorithm

From the table we see that: (1) GAS can significantly reduce the redundancy of the
features. The redundancy of the features selected by GAS is the lowest among the four
datasets. However, the importance of the features selected by GAS is also lowest and even
slightly lower than that of the original datasets. (2) FSMRank can improve the importance
of the features while reducing their redundancy, but the differences in terms redundancy
are subtle. (3) LifeRank can sharply improve the importance of the features. The impor-
tance of the features generated by LifeRank is highest among the four datasets. Besides,
the redundancy of the features can also be slightly reduced by LifeRank for MQ2007 but
deteriorated for MQ2008 and OHSUMED. Worse redundancy for LifeRank in compari-
son with GAS and FSMSVM could be because of the reason that, while these baselines
are feature selection methods, for LifeRank each extracted feature is a linear combination
of the original features. Moreover, it can be observed that for the larger dataset MQ2007,
redundancy for LifeRank is comparable to the baselines, and even better than FSMSVM.
However, for smaller dataset MQ2008, the redundancy is worse than the baselines. For the
smallest dataset OHSUMED), it is worse than the baselines by a greater difference.

6.3 Effect of the orthonormality constraints

To confirm that the orthonormality constraints used in LifeRank do indeed contribute to
performance gains, we re-generated the datasets for the benchmarks MQ2007, MQ2008
and OHSUMED using LifeRank for £ = 10, but this time without the incorporation of the
constraints in its algorithm in Phase I (see Algorithm 1, line 1-8). Table 5 shows the com-
parison of performances of ranking algorithms, for datasets generated by LifeRank and
LifeRank without orthonormality constraints (represented by LifeRank™C). Moreover,
markups are presented in the table to denote to the statistical significance between LifeR-
ank and LifeRank™C,

We can see from the results in Table 5 that the datasets generated by LifeRank show
significant improvements in performance over the datasets generated by LifeRank™° for
both learning to rank algorithms, RankSVM and Linear Regression. Performance gains can
be observed on all three benchmarks and across all performance measures (NDCG@1-10
and MAP). Hence, these results show that the usage of orthonormality constraints is ben-
eficial in the LifeRank algorithm. Also, strong statistical significance between LifeRank
and LifeRank™ can be observed for all three benchmarks for RankSVM as well as Linear
Regression, across all performance measures, except for a small number of cases where
weak or no statistical significance is seen.

@ Springer

503

Inf Retrieval J (2018) 21:481-506

wnprioS[e Surwroyred 1s9q oY) 03 puodsariod pjoq ur senfea OLNAW Y,

£96¢°0 7€9¢°0 689¢°0 01L€0 ¥8LE0 78¢€°0 SI6€°0 ¥10t°0 I117°0 €8¢Y°0 ILSY'0 oNTUBJI T
v8SEV'0 v99¢€r°0 vO0LEY'0 vEro vIEPY0 vP6rv'0 v 10970 v I89%°0 v0891°0 9981°0 0€€S0 HueHdJry
dINNSHO
IrEY0 89%°0 SI9t°0 0SS0 Clagdl} LEEY'O 124840 €6£°0 689¢°0 615€°0 620 on U T
v989°0 v0L6¥°0 v806¥°0 v6S81°0 vI6LV°0 v6591°0 v 10S¥°0 vIL6E°0 vS80¥°0 vLS8E0 v869¢°0 Aueyary
800CON
8¢EY0 ¥80¥°0 7e0¥°0 086¢0 816¢€°0 798¢0 918¢°0 Y9LE0 6CLEO 169¢°0 ¥85€°0 oNTUBYJIT
vL0SY'0 vCIEP0 v0L2V0 v902r°0 vPIro vELOY'0 v9201°0 v9L6€°0 v976€°0 v026€°0 vCS8E0 Hueydry
LOOZON
UOISS2US 24 ADIUL] LOf 2OUDULLOf D]
b (Viadl} (45540} 09¢¥°0 66£Y°0 oSty 0 (44540 S6S1°0 €L9Y°0 LOLY'0 006¥°0 €0LS°0 on U T
vS0SH°0 v€991°0 v<269¥°0 v6691°0 vPLLY'0 vI187°0 v0I6¥°0 v€S0S°0 vS8IS0 vELES'O 816S°0 HueydJry
ddNNSHO
YOLY 0 9¢€TT0 661C°0 45540 L8810 LO8Y'0 LS9Y°0 6Cy0 Y9ty 0 L86¢°0 819¢°0 oNTUBYJI T
va6LY'0 vSPET0 v I8CT0 vST9°0 velor0 v006%°0 v96LY°0 v <190 vV8er°0 v I8I¥0 €9LE°0 Hueyd Iy
800ZON
8CSY0 69¢t'0 86110 8YIv°0 180¥°0 v0¥°0 966¢0 6£6€°0 £€2C6€°0 188¢°0 808¢°0 oNTUBYJIT
vPE94°0 vE€CHP'0 v0LEV'O Y455 4] vP92H°0 vSITH0 v I91+°0 vLITP°0 v680%°0 v€20¥°0 vLE0V'0 queYaIy
LOOZOW
WASHUDY 40f 2oupuLiofiad
dVIA 01® 6@ 8@ L® 9@ SO® 14C) €@ @ 1@ DOAN

ox TUBNSJIT JSUIRSE YUBYAJIT JOF UMOYS S0UBOYIUSIS [BONSHEIS "()] = ¥ JOJ SIOSEIRP UO SJUIBLSUOD AJ[EWIOUOYLIO JO JOIHH S AqBL

pringer

N's

504 Inf Retrieval J (2018) 21:481-506

7 Conclusion

In this paper, we have addressed the feature extraction problem for learning to rank, and
have proposed LifeRank, a linear feature extraction algorithm for ranking. LifeRank
regards each dataset for ranking as a matrix, referred to as the original matrix. We then
optimize a transformation matrix by minimizing a classic pairwise learning to rank loss
function, so that we can discover the optimal one that matches the ranking task. Then a
new matrix (dataset) can be generated by the product of original matrix and transformation
matrix. Extensive experiments on benchmark datasets show the performance gains of Lif-
eRank in comparison with the state-of-the-art algorithms.

The performance of LifeRank has been evaluated for RankSVM and Linear Regression.
In future work, its benefits for other learning to rank algorithms could be analysed. Moreo-
ver, nonlinear feature extraction techniques like some kernel tricks could be incorporated
in LifeRank to further improve its performance. Besides, we plan to try more learning to
rank loss functions like some state-of-the-art listwise loss functions for performance gains
of our algorithm. In addition, we believe it would be interesting to establish theoretical
results on dimension reduction for ranking, including feature extraction and feature selec-
tion-based algorithms, especially concerning retrieval performance.

Acknowledgements We would like to thank our anonymous reviewers for valuable comments and sug-
gestions. This research was supported by Ahold Delhaize, Amsterdam Data Science, the Bloomberg
Research Grant program, the Dutch national program COMMIT, Elsevier, the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the Google
Faculty Research Award program, the Microsoft Research Ph.D. program, the Netherlands Institute for
Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs CI-14-
25, 652.002.001, 612.001.551, 652.001.003, and Yandex. All content represents the opinion of the authors,
which is not necessarily shared or endorsed by their respective employers and/or sponsors.

References

Arfken, G. B. (2013). Mathematical methods for physicists. Cambridge: Academic Press.

Bach, F. R., & Jordan, M.I. (2005). A probabilistic interpretation of canonical correlation analysis. Tech-
nical report 688, Department of Statistics, University of California, Berkeley.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Boston: Addison Wesley.

Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1), 245-271.

Burges, C. J., Ragno, R., & Le, Q. V. (2007) Learning to rank with nonsmooth cost functions. In NIPS,
pp- 193-200.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005).
Learning to rank using gradient descent. In ICML, pp. 89-96.

Busa-Fekete, R., Kégl, B., Eltetti, T., & Szarvas, G. (2013). Tune and mix: Learning to rank using
ensembles of calibrated multi-class classifiers. Machine Learning, 93(2-3), 261-292.

Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., & Hon, H. W. (2006). Adapting ranking SVM to document
retrieval. In SIGIR, pp. 186-193.

Cao, Z., Qin, T., Liu, T. Y., Tsai, M.F., & Li, H. (2007). Learning to rank: From pairwise approach to
listwise approach. In ICML, pp. 129-136.

Chapelle, O., Chang, Y., & Liu, T. Y. (2011). Future directions in learning to rank. Journal of Machine
Learning Research, 14, 91-100.

Chen, W., Liu, T. Y., Lan, Y., Ma, Z. M., & Li, H. (2009). Ranking measures and loss functions in learn-
ing to rank. In NIPS, pp. 315-323.

Cossock, D., & Zhang, T. (2008). Statistical analysis of Bayes optimal subset ranking. IEEE Transac-
tions on Information Theory, 54(11), 5140-5154.

@ Springer

Inf Retrieval J (2018) 21:481-506 505

Crammer, K., & Singer, Y. (2001). Pranking with ranking. In NIPS, pp. 641-647.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4(1), 933-969.

Geng, X., Liu, T., Qin, T., & Li, H. (2007). Feature selection for ranking. In SIGIR, pp. 407-414.

Gupta, P., & Rosso, P. (2012). Expected divergence based feature selection for learning to rank. In COL-
ING, pp. 431-440.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview
with application to learning methods. Neural Computation, 16(12), 2639-2664.

Jarvelin, K., & Kekildinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transac-
tions on Information Systems, 20(4), 422-446.

Joachims, T., Finley, T., & Yu, C. N. J. (2009). Cutting-plane training of structural SVMs. Machine
Learning, 77(1), 27-59.

Joachims, T., Li, H., Liu, T. Y., & Zhai, C. (2007). Learning to rank for information retrieval (LR4IR
2007). SIGIR Forum, 41(2), 58-62.

Jolliffe, I. (2002). Principal component analysis. Berlin: Springer.

Joachims, T., Swaminathan, A., & de Rijke, M. (2018). Deep learning with logged bandit feedback. In /ICLR
2018.

Kendall, M. G. (1948). Rank correlation methods. London: C. Griffin.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, 42(8), 30-37.

Lai, H., Pan, Y., Tang, Y., & Yu, R. (2013). FSMRank: Feature selection algorithm for learning to rank.
IEEE Transactions on Neural Networks and Learning Systems, 24(6), 940-952.

Lan, Y., Guo, J., Cheng, X., & Liu, T. Y. (2012). Statistical consistency of ranking methods in a rank-
differentiable probability space. In NIPS, pp. 1232-1240.

Lange, K. (2010). Singular value decomposition. In Numerical analysis for statisticians (pp. 129-142).
Springer.

Laporte, L., Flamary, R., Canu, S., Déjean, S., & Mothe, J. (2014). Nonconvex regularizations for fea-
ture selection in ranking with sparse SVM. IEEE Transactions on Neural Networks and Learning
Systems, 25(6), 1118-1130.

Lawson, C., & Hanson, R. (1995). Solving least square problems, classics in applied mathematics (Vol.
15). Philadelphia: STAM.

Li, P., Wu, Q., & Burges, C.J. (2007). McRank: Learning to rank using multiple classification and gradi-
ent boosting. In NIPS, pp. 897-904.

Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information
Retrieval, 3(3), 225-331.

Liu, T. Y. (2011). Learning to rank for information retrieval. Berlin: Springer.

Metzler, D.A. (2007). Automatic feature selection in the markov random field model for information
retrieval. In CIKM, ACM, pp. 253-262.

Motoda, H., & Liu, H. (2002). Feature selection, extraction and construction. Communication of IICM
(Institute of Information and Computing Machinery, Taiwan), 5, 67-72.

Mukuta, Y., & Harada, T. (2014). Probabilistic partial canonical correlation analysis. In ICML, pp.
1449-1457.

Naini, K. D., & Altingovde, 1. S. (2014). Exploiting result diversification methods for feature selection in
learning to rank. In ECIR, Springer, pp. 455-461.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. In /CML, pp. 78-82.

Niu, S., Guo, J., Lan, Y., & Cheng, X. (2012). Top-K learning to rank: Labeling, ranking and evaluation. In
SIGIR, pp. 751-760.

Pan, F., Converse, T., Ahn, D., Salvetti, F., & Donato, G. (2009). Feature selection for ranking using boosted
trees. In CIKM (pp. 2025-2028). ACM.

Platt, J. C., & Barr, A. H. (1988). Constrained differential optimization for neural networks. Technical report
TR-88-17, Department of Computer Science, California Institute of Technology.

Qin, T., & Liu, T. Y. (2013). Introducing LETOR 4.0 datasets. arXiv:1306.2597.

Qin, T, Liu, T. Y., Xu, J., & Li, H. (2010). LETOR: A benchmark collection for research on learning to rank
for information retrieval. Information Retrieval, 13(4), 346-374.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Sci-
ence, 290, 2323-2326.

Scholkopf, B., Smola, A., & Miiller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5), 1299-1319.

@ Springer

http://arxiv.org/abs/1306.2597

506 Inf Retrieval J (2018) 21:481-506

Schuth, A., Oosterhuis, H., Whiteson, S., & de Rijke, M. (2016). Multileave gradient descent for fast online
learning to rank. In WSDM 2016: The 9th international conference on web search and data mining
(pp- 457-466). ACM.

Severyn, A., & Moschitti, A. (2015). Learning to rank short text pairs with convolutional deep neural net-
works. In SIGIR (pp 373-382). ACM.

Shalit, U., & Chechik, G. (2014). Coordinate-descent for learning orthogonal matrices through Givens rota-
tions. In ICML, pp. 548-556.

Shivanna, R., & Bhattacharyya, C. (2014). Learning on graphs using orthonormal representation is statisti-
cally consistent. In NIPS, pp. 3635-3643.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2319-2323.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal
Statistical Society, Series B, 61(3), 611-622.

Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). FRank: A ranking method with fidelity
loss. In SIGIR (pp. 383-390). ACM.

Valizadegan, H., Jin, R., Zhang, R., & Mao, J. (2009). Learning to rank by optimizing NDCG measure. In
NIPS, pp. 1883-1891.

Volkovs, M., & Zemel, R. S. (2009). Boltzrank: Learning to maximize expected ranking gain. In /CML, pp.
1089-1096.

Wang, S., Wu, Y., Gao, B. J., Wang, K., Lauw, H. W., & Ma, J. (2015). A cooperative coevolution frame-
work for parallel learning to rank. IEEE Transactions on Knowledge and Data Engineering, 27(12),
3152-3165.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000). Feature selection for
SVMs. In NIPS, pp. 668-674.

Wolf, L., & Bileschi, S. (2005). Combining variable selection with dimensionality reduction. In CVPR, pp.
801-806.

Wyse, N., Dubes, R., & Jain, A. (1980). A critical evaluation of intrinsic dimensionality algorithms. In
Gelsema, E., & Kanal, L. (Eds.) Pattern recognition in practice. Proceedings of workshop Amsterdam,
May 1980, North-Holland, pp. 415-425.

Xu, J., & Li, H. (2007). AdaRank: A boosting algorithm for information retrieval. In SIGIR (pp. 391-398).
ACM.

Yu, H., Oh, J., & Han, W. (2009). Efficient feature weighting methods for ranking. In CIKM (pp 1157-
1166). ACM.

Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average
precision. In SIGIR (pp. 271-278). ACM.

@ Springer

	Linear feature extraction for ranking
	Abstract
	1 Introduction
	2 Related work
	2.1 Learning to rank for information retrieval
	2.2 Feature selection for ranking
	2.3 Feature extraction techniques

	3 Problem statement
	3.1 Learning to rank for information retrieval
	3.2 Dimension reduction for ranking

	4 The LifeRank algorithm
	4.1 Phase I: Generation of the transformation matrix
	4.2 Phase II: Generation of low-rank datasets
	4.3 Pseudocode
	4.4 Discussion

	5 Experimental setup
	5.1 Research questions
	5.2 Datasets
	5.3 Baselines
	5.4 Evaluation measures
	5.4.1 Measures for ranking
	5.4.2 Measures for features

	6 Experimental results
	6.1 Performance on generated datasets
	6.1.1 Performance of RankSVM
	6.1.2 Performance of linear regression
	6.1.3 Statistical significance overview

	6.2 Quality of the generated features
	6.3 Effect of the orthonormality constraints

	7 Conclusion
	Acknowledgements
	References

