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Abstract. Dense retrieval methods have surpassed traditional sparse
retrieval methods for open-domain retrieval. While these methods, such
as the Dense Passage Retriever (DPR), work well on datasets or domains
they have been trained on, there is a noticeable loss in accuracy when
tested on out-of-distribution and out-of-domain datasets. We hypothesize
that this may be, in large part, due to the mismatch in the information
available to the context encoder and the query encoder during training.
Most training datasets commonly used for training dense retrieval models
contain an overwhelming majority of passages where there is only one
query from a passage. We hypothesize that this imbalance encourages
dense retrieval models to overfit to a single potential query from a given
passage leading to worse performance on out-of-distribution and out-of-
domain queries. To test this hypothesis, we focus on a prominent dense
retrieval method, the dense passage retriever, build generated datasets
that have multiple queries for most passages, and compare dense passage
retriever models trained on these datasets against models trained on
single query per passage datasets. Using the generated datasets, we show
that training on passages with multiple queries leads to models that
generalize better to out-of-distribution and out-of-domain test datasets.

1 Introduction

Recently, a number of transformer-based dense retrieval models have achieved
state-of-the-art results on various benchmark datasets [13,14,28]. The Dense
Passage Retriever (DPR) architecture consists of two encoder models, typically
BERT models [8], which encode the query and the passages separately. A simple
similarity metric, such as the inner product or cosine distance, is then used to
compute the relevance of a passage for a query.

An advantage of the DPR architecture is that passage representations can
be pre-computed offline and built into an index with relatively small compu-
tational cost, making it a preferred model over recent proposals such as, e.g.,
ColBERT [14] and ANCE [28] with higher computational cost for training and/or
retrieval. At runtime, the query encoder is used to compute a dense representa-
tion for the query and approximate nearest neighbor methods are used to find
the most relevant passage.
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A disadvantage of this approach is that a mismatch may exist between the
information available to the passage encoder and the information available to the
query encoder. As the training objective forces the passage and query encoders
to generate representations that are similar, we hypothesize that the passage
encoder (which has access to more information) learns to discard information
that is not relevant to the query in a given training query-passage pair. The issue
is exacerbated by the fact that most retrieval datasets and benchmarks contain
far more passages with only one query from a given passage than passages with
multiple queries per passage (see Table 1). In such situations, the model is not
sufficiently penalized against learning to discard information that is not relevant
to the (single) query that is asked from a given passage.

We hypothesize that a DPR model trained on datasets where a given passage
typically has one associated query generalizes poorly to other datasets, new types
of queries or topics, or both. We investigate this hypothesis by testing the zero-
shot performance of the pretrained DPR model (from [13], which is trained on
NQ [16]) in both out-of-distribution and out-of-domain settings. Here, we define
out-of-distribution to be datasets that share the same passage corpus but with
queries collected at different times and/or using different methods, and out-of-
domain to be datasets with their own unique passage collection typically focused
on a particular domain (see Sect. 4.1).

Having established that a DPR model trained on datasets where a given
passage typically has one associated query, generalizes poorly, we propose a
treatment to help improve out-of-distribution and out-of-domain performance.
We synthetically generate training datasets where the passages typically have
multiple queries from any given passage. The generation pipeline consists of a
NER model to tag entities, a sequence-to-sequence model to generate queries,
and a question answering model to filter out bad queries (see Sect. 3.1).

Our results show that training on data with multiple queries per passage
leads to a DPR model with better generalizability to both out-of-distribution
and out-of-domain data. In both settings, our DPR model trained on multiple
queries per passage data easily outperforms the baseline DPR model trained on
mostly single query per passage data (NQ).

In summary, then, we answer the following research question:

RQ Does training a DPR model on data containing multiple queries per passage
improve the generalizability of the model?

In the out-of-distribution setting, the pre-trained DPR model [13], serving as the
baseline, and our DPR model trained on generated queries with multiple queries
per passage are tested, zero-shot, on six datasets. Our model achieves higher
retrieval accuracy on five out of the six datasets demonstrating that training
data containing multiple queries per passage does improve the generalizability
of dense retrievers to out-of-distribution queries.

The picture becomes even clearer in the out-of-domain setting where our
model outperforms the pretrained DPR model on 12 out of 13 datasets. Training
DPR models on passages with multiple associated queries prevents the context
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encoder from (exclusively) focusing on a specific detail or piece of information
in the passage, leading to a better generalized retrieval model.

Our analysis of increasing the size of the set of generated queries with multi-
ple queries per passage as a way to improve the generalizability of dense retriev-
ers indicates a subtle balance. While the model trained on the largest training
dataset does achieve higher scores compared to the others, the improvements
are relatively minor. But, these relatively minor improvements come at a signif-
icantly higher costs in terms of compute and training time. Even the smallest
generated dataset with multiple queries per passage performs competitively with
larger generated datasets and handily outperforms the pre-trained model trained
on mostly single query per passage data.

2 Related Work

Passage Retrieval. Passage retrieval has classically been performed using
sparse retrieval methods such as BM25 [25]. Recently, transformer-based dense
retrieval methods have garnered interest as the performance of dense retrieval
methods surpasses that of traditional sparse methods [13,14,28]. A dense passage
retriever indexes a collection of passages in a low-dimensional and continuous
space, such that the top-k passages are relevant to a given query [13]. Here, the
size of the passage collection is typically very large (21M passages in this work
and in [13]) and k is very small (e.g., 20–100). Going beyond in-distribution
and in-domain testing, we focus on generalizability to new data which can be
out-of-distribution and out-of-domain.

Test Collections. The Benchmarking-IR (BEIR) [22] test collection was intro-
duced to facilitate the effectiveness of retrieval models in out-of-domain settings.
It provides a collection of 18 datasets (13 of which are readily available) from
diverse retrieval tasks and domains. Thakur et al. [22] also highlight considerable
room for improvement in the generalization capabilities of dense retrieval mod-
els. Our work aims to improve the generalizability of dense retrievers by using
synthetic datasets with specially chosen composition of data (multiple queries
per passage).

Automatically Generated Collections. Automatically generating training,
development and test collections for retrieval has a long history in information
retrieval. Examples include test collections for bibliographic systems [21], known-
item test collections [2], desktop search [15], web search [1], test collections for
academic search [3]. Berendsen et al. [4] focus on test collection generation to
improve robustness for tuning and learning. A comprehensive approach to simu-
lated test collection building with considerable attention to privacy preservation
is offered in [11]. What we add on top of this is test collection building with a
specific focus on generalizability by preventing overfitting.
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3 Methodology

We train DPR models on generated query datasets and compare their retrieval
performance against the pre-trained model on the test datasets.

3.1 Dataset Generation Process

For our dataset generation process, we follow the steps below:

(1) Identify potential answers to questions to be generated;
(2) Generate queries that are answered by one of the potential answers; and
(3) Filter out bad queries, that is, queries that are unanswerable or do not end

with a question mark.

Identifying Potential Answers. We train a token classification model to
identify words or phrases from a passage that could serve as potential answers
to queries. The trained model is then used to tag potential answers for each
passage in a dataset. This process enables us to find all potential answers in
a passage, which is critical to ensure that there are sufficient queries from any
given passage.

Generating Queries. The passages, along with the tagged answers, are fed
to a sequence-to-sequence model that generates a query for each passage-answer
pair. Each passage can have multiple associated answers, resulting in multiple
queries from the same passage. This ensures that there are queries related to
most, if not all, entities found in a given passage.

Filtering Queries. The generated queries are filtered to remove potentially
unanswerable queries (from the originating passage). To find such queries, we
feed the passages and queries to a question answering (QA) model and discard
queries where the QA model answer does not match the original tagged answer.
We also discard queries that contain more than one sentence or do not end with
a question mark (?). This is to ensure that all the generated queries used for
training are reasonable queries (see Sect. 4.2) and provide a good training signal
for the model being trained on them.

3.2 Training the Retriever

We build training datasets by generating queries following the procedure given
in Sect. 3.1. The generation process ensures that most passages in the train-
ing datasets have multiple queries associated with them. We train bi-encoder
retrieval models on these training datasets.
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4 Experimental Setup

4.1 Datasets

Most popular open-domain retrieval datasets contain a much larger number of
passages with only a single query originating from it than passages with multiple
queries. Table 1 shows the frequency of passages with a given number of queries
originating from the passage for the five datasets used in [13] as well as the five
datasets that were generated. The Wikipedia collection and five of the datasets
used (NQ, Trivia QA, Curated TREC, Web Questions, and SQuAD) are the
same versions provided by [13] available on GitHub.1

Table 1. Frequency of passages with a given number of queries originating from the
passage.

Dataset Number of queries/passage

1 2 ≥2

Natural questions 32,155 4,973 3,542

Trivia QA 43,401 5,308 1,793

Curated TREC 990 41 16

Web Questions 2,019 148 46

SQuAD 8,468 6,056 11,790

Generated from NQ train 2,784 3,418 30,120

Wikipedia passages (˜58k) single 58,880 0 0

Wikipedia passages (˜58k) multi 16,634 19,641 985

Wikipedia passages (˜236k) 19,487 18,061 41,308

Wikipedia passages (˜786k) 62,264 60,472 137,266

Out-of-Distribution Test Datasets. To test the models on out-of-
distribution data, we use the four datasets available from [13] that were not
used in training the baseline model, namely Trivia QA, Curated TREC, Web
Questions, and SQuAD. In addition to these four, we include two generated test
datasets. The first of these is generated from the NQ dev passages and the second
is generated from randomly selected Wikipedia passages. This results in a total
of six out-of-distribution test datasets. As these datasets use the same passage
collection but contain queries collected or generated using different approaches,
we consider the datasets to be out-of-distribution but in-domain.

1 https://github.com/facebookresearch/DPR.

https://github.com/facebookresearch/DPR
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Out-of-Domain Test Datasets. We use the 13 readily available datasets from
[22], each with their own distinct passage collection, to test the models on out-
of-domain data. The datasets are as follows: TREC-COVID [24], NFCorpus [6],
HotpotQA [29], FiQA-2018 [18], ArguAna [26], Touché-2020 [5], CQADupStack
[12], Quora, DBPedia [10], SCIDOCS [7], FEVER [23], Climate-FEVER [9],
and SciFact [27]. These datasets cover multiple domains, including bio-medical,
Wikipedia/general, finance, news, and scientific domains.

4.2 Generation Pipeline

Named Entity Recognition Model for Tagging Answers. The named
entity recognition model is a RoBERTa [17] model trained on the large NER
dataset (1 million sentences) from Naman Jaswani on Kaggle,2 with the tags:
Organization, Person, Location, Date, Time, Money, Percent, Facility, and Geo-
Political Entity (GPE). The RoBERTa model, trained on a large NER dataset,
ensures that we find all the entities in a passage.

MACAW Model for Query Generation. The pretrained MACAW [20]
model (3 billion parameters) is used to generate the queries. It is a strong
sequence-to-sequence question generation model (among other tasks) based on
the T5 model [19]. This model is capable of generating queries for each entity
found in the passage such that they are relevant to the context of the passage.

Table 2. Examples of generated queries and answers for a randomly sampled passage.

Passage Generated query Generated answer Related Answerable

Sirocco (play) Sirocco is a play,
in four acts, by Noël Coward. It
originally opened at Daly’s
Theatre, on November 24, 1927.
The production was directed by
Basil Dean. Ivor Novello was
part of the original cast. The
plot told a tale of free love
among the wealthy. The London
opening of “Sirocco” met with
violently unfavorable audience
reaction and a very harsh critical
reception. Coward was later
asked whether he had ever
despaired when faced with a
failure like “Sirocco”. He replied,
“Well, if I’m going to have a flop,
I like it to be a rouser. I didn’t

Sirocco was first performed at
which theater in London?

Dalys Theatre Yes Yes

When did the first performance
of Sirocco take place?

November 24 1927 Yes Yes

Which actor played the role of
Sirocco in the original
production?

Ivor Novello Yes No

Who wrote the play Sirocco? Noël Coward Yes Yes
Who directed the first
production of Sirocco?

Basil Dean Yes Yes

2 https://www.kaggle.com/namanj27/ner-dataset.

https://www.kaggle.com/namanj27/ner-dataset
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Question Answering Model for Query Filtering. A RoBERTa [17] model
trained on the SQuAD dataset is used to filter out potential bad queries in the
generated datasets. The RoBERTa model is a question answering model that
is good at extractive question answering. We can reasonably assume that the
questions the model is incapable of answering are most likely flawed.

This generation pipeline results in queries that are typically relevant and
answerable from their passages of origin. We found 92% of queries to be relevant,
and 86% to be answerable from their passages of origin, based on a randomly
sampled set of 50 queries (example shown in Table 2).

4.3 Retrieval Pipeline

The architecture of the retrieval model is identical to [13], i.e., a bi-encoder
architecture consisting of two BERT [8] encoders, one for encoding the pas-
sages/contexts and the other for encoding the queries. We also use the same
hyperparameters as [13] except for the batch size, where we use a batch size of
80 vs. a batch size of 120 due to resource limitations.

We choose the DPR [13] model as our architecture of choice to avoid intro-
ducing any confounding factors in our analysis. Other architectures, notably the
late interaction based ColBERT [14] architecture, has demonstrated superior
retrieval accuracy over the original DPR [13] architecture. However, ColBERT
has higher latency and much larger space footprints for indices. As our work is
focused on the composition of data, the simpler and more straightforward archi-
tecture of DPR is better suited to our analysis. Furthermore, the higher resource
demands and complexity of ColBERT makes it a less viable option compared to
DPR in any setting with even moderate computational resource constraints.

We build five training datasets by generating queries following the proce-
dure given in Sect. 3.1. One dataset is built by generating queries from the
same passages used in the NQ train set, while the other four are from ran-
domly selected Wikipedia passages. A bi-encoder DPR model, starting from the
pretrained BERT [8] weights, is trained on each of these five datasets.

While positive training examples (matching query and document pairs) are
available directly in retrieval datasets, negative training examples must be
selected from the set of all documents. The original DPR model is trained using
a combination of in-batch negatives (the positive documents of all other queries
in the batch used as negatives for a given query) and BM25 selected negatives
(highest ranked document retrieved by BM25, which does not contain the answer
to the query). In our work, we simply use the in-batch negatives as the negative
examples leaving improvements from more complex negative selection strate-
gies for future work as our results demonstrate improved generalizability even
without using hard negatives.

4.4 Experiment

We use two models trained on two different datasets to compare the gener-
alizability of DPR models trained on data with multiple queries per passage
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versus DPR models trained on data with mostly a single query per passage. The
pre-trained DPR model from [13], trained on NQ with mostly single query per
passage data, is used as the baseline model to be compared against our model
trained 58,880 generated queries containing mostly multiple queries per passage
data (58k generated).

The two models are tested in both the out-of-distribution (6 datasets) and
the out-of-domain settings (13 datasets). Top-100 accuracy is used as the eval-
uation metric for the out-of-distribution setting while recall@100 is used as the
evaluation metric for the out-of-domain setting. The decision to use two different
metrics is motivated by the fact that the set of all relevant passages is only avail-
able for the out-of-domain datasets, which is necessary to calculate recall. Only
the true answers are available for the out-of-distribution datasets, so we calcu-
late top-100 accuracy by checking whether the true answer is present in any of
the top-100 retrieved documents. In addition to this, we also report MRR@100
(Mean Reciprocal Rank) for all experiments.

5 Results

We report results from the baseline pretrained model trained on NQ (58,880
queries) against our model trained on 58,880 generated queries for the two gen-
eralizability settings; out-of-distribution and out-of-domain. Here, the generated
query dataset contains mostly passages with multiple queries per passage.

5.1 Out-of-Distribution Generalizability

Table 3 shows the top 100 accuracy scores obtained by the baseline DPR model
(trained on NQ) and our DPR model, trained on the 58k generated query dataset
with multiple queries per passage (58k generated), on the out-of-distribution
datasets. We also include the scores on the NQ dataset itself for completeness,
but it should be noted that this dataset is an in-distribution dataset for the
baseline model.

Table 3. Top 100 accuracy scores for the model trained on 58k generated and the
baseline DPR model trained on NQ for out-of-distribution datasets. The highest score
is in bold and ‡ indicates in-domain performance. Statistical significance with paired
t-test: * indicates p < 0.05 and ** indicates p < 0.01.

Model Standard datasets Generated datasets

NQ TriviaQA TREC WebQ SQuAD NQ dev. Wikipedia

Baseline DPR 84.9‡** 78.7 90.7 77.6 63.5 81.5 56.7

58k generated (ours) 75.0 80.0** 89.6 78.3 69.4** 85.3** 79.2**

The model trained on 58k generated (our model) outperforms the baseline
DPR model on 5 out of 6 out-of-distribution datasets, with the Curated TREC
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Table 4. MRR@100 scores for the model trained on 58k generated and the baseline
DPR model trained on NQ for out-of-distribution datasets. Same notational conven-
tions as in Table 3.

Model Standard datasets Generated datasets

NQ TriviaQA TREC WebQ SQuAD NQ dev. Wikipedia

Baseline DPR 0.512‡** 0.437** 0.583** 0.389** 0.234 0.449** 0.240

58k generated (ours) 0.313 0.426 0.507 0.358 0.258** 0.426 0.415**

dataset being the sole exception. However, the difference in accuracy between
the two models on Curated TREC and WebQ are not statistically significant.
Our model generalizes better in all four datasets (out of six) where the difference
is statistically significant. The baseline DPR model does better on the NQ test
dataset (in-distribution) compared to the our model trained on generated queries
(out-of-distribution).

Interestingly, the baseline DPR model trails our model trained on 58k gener-
ated even on the queries generated from the NQ passages despite being trained on
fairly similar data. This indicates that the performance of DPR models trained
on data with mostly a single query from each passage deteriorates rapidly when
tested on new queries. This observation may be explained by our initial hypoth-
esis. If a model trained on data with a single query per passage learns to discard
information, it is logical that the model would struggle when dealing with mul-
tiple queries from a passage as this requires the context encoder to encode all
information available in the passage in order to correctly match all the queries
from that passage. These results indicate that training a model on data with
multiple queries per passage results in improved generalizability in the out-of-
distribution setting.

The baseline model outperforms the model trained on 58k generated on 4 out
of 6 out-of-distribution datasets when considering MRR@100 scores (Table 4).
However, the 58k generated model performs slightly better on average.

5.2 Out-of-Domain Generalizability

Table 5 shows the recall@100 scores obtained by the baseline DPR model (trained
on NQ) and our DPR model trained on 58k generated. The model trained on
58k generated outperforms the baseline DPR model achieving higher recall@100
scores in 12 out of 13 out-of-domain datasets. Considering only the statistically
significant results (p < 0.05), our model trained on multiple query per passage
data outperforms the baseline DPR model on all 10 out of 10 datasets.

The MRR@100 scores (Table 5) follow a similar pattern, with the model
trained on 58k generated outperforming the baseline in 9 out of 10 out-of-domain
datasets where the results are statistically significant.

The model trained with data containing multiple queries per passage (our
model trained on 58k generated) dominates the baseline DPR model, trained on
mostly single query per passage data, in both the out-of-distribution and out-of-
domain setting. This clearly superior zero-shot generalization performance when
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Table 5. Recall@100 and MRR@100 scores for the baseline DPR model trained on
NQ and the model trained on 58k generated queries for out-of-domain datasets. Same
notational conventions as in Table 3.

Dataset Recall@100 MRR@100

Baseline DPR 58k generated Baseline DPR 58k generated

ArguAna 0.480 0.919** 0.051 0.213**

Climate FEVER 0.410 0.405 0.258** 0.220

CQA dup stack 0.109 0.139** 0.041 0.068**

DBPedia 0.310 0.335* 0.559 0.564

FEVER 0.748 0.805** 0.497 0.492

FiQa 0.313 0.369** 0.131 0.195**

HotpotQA 0.493 0.502 0.419 0.559**

NFCorpus 0.170 0.238 0.306 0.377**

Quora 0.566 0.880** 0.279 0.590**

SciDocs 0.196 0.253** 0.136 0.207**

SciFact 0.581 0.704** 0.247 0.372**

Touche 0.276 0.344** 0.234 0.386**

TREC-COVID 0.096 0.177** 0.287 0.354

a DPR model is trained on data with multiple queries per passage answers our
research question (RQ) demonstrating that training a DPR model on data with
multiple queries per passage does result in a better generalized model.

6 Analysis

6.1 Generation Versus Data Composition

We conduct a further analysis to confirm that the improvements in generaliz-
ability shown in Sect. 5 is due to the composition of the dataset, specifically the
number of queries per passage, rather than any artifact of the query genera-
tion process. Here, we compare the generalizability to out-of-distribution and
out-of-domain data of two models trained on generated queries. The first model
is trained on generated queries with multiple queries per passage (same as in
Sect. 5) and the second model is trained on generated queries with only a single
query from each passage.

Table 6 shows the top-100 accuracy scores obtained by the two models on
the out-of-distribution datasets. The model trained on 58k generated (multi)
outperforms the model trained 58k generated (single) on 5 out of 7 datasets
(one loss and one tie). Four of these results are statistically significant with
the model trained on 58k generated (multi) generalizing better in all four cases.
Similarly, the model trained on 58k generated (multi) outperforms the model
trained on 58k generated (single), in terms of MRR@100 scores (Table 7), on
all six out-of-distribution datasets with four of the results being statistically
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Table 6. Top 100 accuracy scores for the models trained on 58k generated (single) and
58k generated (multi) for out-of-distribution datasets. Same notational conventions as
in Table 3.

Model Standard datasets Generated datasets

NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia

58k generated (single) 75.0 78.4 90.2 77.5 67.9 81.9 74.5

58k generated (multi) 75.0 80.0** 89.6 78.3 69.4** 85.3** 79.2**

Table 7. MRR@100 scores for the models trained on 58k generated (single) and 58k
generated (multi) for out-of-distribution datasets. Same notational conventions as in
Table 3.

Model Standard datasets Generated datasets

NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia

58k generated (single) 0.309 0.397 0.489 0.350 0.247 0.394 0.366

58k generated (multi) 0.313 0.426** 0.507 0.358 0.258** 0.426** 0.415**

significant. These results clearly show that having multiple queries per passage
in the training data helps the model generalize better to out-of-distribution
queries, as the only difference between the two models is the composition of the
training data.

Table 8 shows the recall@100 scores obtained by the two models on the out-
of-domain datasets. Again, the model trained with multiple queries per passage
outperforms the model trained on single query per passage data and generalizes

Table 8. Recall@100 and MRR@100 scores for the models trained on 58k generated
(single) and 58k generated (multi) for out-of-domain datasets. Same notational con-
ventions as in Table 3.

Dataset Recall@100 MRR@100

58k generated

(single)

58k generated

(multi)

58k generated

(single)

58k generated

(multi)

ArguAna 0.885 0.919** 0.208 0.213

Climate FEVER 0.378 0.405** 0.188 0.220**

CQA Dup Stack 0.134 0.139** 0.068 0.068

DBPedia 0.312 0.335** 0.545 0.564

FEVER 0.722 0.805** 0.415 0.492**

FiQa 0.358 0.369 0.189 0.195

HotpotQA 0.430 0.502** 0.460 0.559**

NFCorpus 0.185 0.238 0.376 0.377

Quora 0.909** 0.880 0.658** 0.590

SciDocs 0.246 0.253 0.202 0.207

SciFact 0.685 0.704 0.346 0.372

Touche 0.371 0.344 0.343 0.386

TREC-COVID 0.181 0.177 0.300 0.354
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better to 10 out of 13 out-of-domain datasets. Looking at the statistically signif-
icant results, the model trained on 58k generated (multi) does better on 6 out of
7 datasets. The results on the remaining six datasets are likely not statistically
significant as they contain a very small number of queries.

Overall, the model trained on 58k generated (multi) generalizes better, in
both out-of-distribution and out-of-domain settings, compared to the model
trained on 58k generated (single) when all other factors are kept constant. This
confirms that the composition of training data, specifically the number of queries
per passage, is an important factor to consider when training dense retrieval
models and that training on data with multiple queries per passage leads to a
model that is capable of generalizing better to out-of-distribution and out-of-
domain queries.

6.2 Effect of Dataset Size

We also investigate the effect of the total number of generated queries in a train-
ing dataset on the generalizability of DPR models. For this analysis we com-
pare three DPR models trained on three generated query datasets, where each
dataset contains 58,880 (58k generated), 236,444 (236k generated), and 786,312
(786k generated) queries respectively. Note that all three of these datasets con-
tain data with multiple queries per passage. Again, we report zero-shot scores
in both the out-of-distribution and out-of-domain settings.

Table 9 shows the top-100 accuracy scores obtained by each model on the
out-of-distribution datasets. The model trained on 786k generated generalizes
better to all seven datasets, with five of the results being statistically significant.
In terms of MRR@100 (Table 10), the model trained on 786k generated obtains
higher scores on 5 out of 6 datasets, with four being statistically significant. These
results indicate that training on larger datasets, containing data with multiple
queries per passage, does yield better results on out-of-distribution datasets in
a zero-shot setting.

Table 9. Top 100 accuracy scores for the models trained on the three generated query
datasets 58k, 236k, and 786k for out-of-distribution datasets. Same notational conven-
tions as in Table 3.

Model Standard datasets Generated datasets

NQ TriviaQA TREC WQ SQuAD NQ dev Wikipedia

58k Generated 75.0 80.0 89.6 78.3 69.4 85.3 79.2

236k Generated 79.5 82.5 91.7 80.6 71.6 90.1 85.4

786k Generated 80.5* 83.2** 92.2 80.7 72.9** 92.4** 89.4**

Table 11 shows the recall@100 scores obtained by each model on the out-of-
domain datasets. Overall, the model trained on the largest dataset, 786k gener-
ated, does marginally better than the other two models, obtaining the highest
recall@100 score for seven out of thirteen out-of-domain datasets. The other
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Table 10. MRR@100 scores for the models trained on the three generated query
datasets 58k, 236k, and 786k for out-of-distribution datasets. Same notational conven-
tions as in Table 3.

Model Standard Datasets Generated Datasets

NQ TriviaQA TREC WQ SQuAD NQ dev Wikipedia

58k Generated 0.313 0.426 0.507 0.358 0.258 0.426 0.415

236k Generated 0.339 0.467 0.515 0.381 0.274 0.493 0.488

786k Generated 0.360** 0.492** 0.526 0.379 0.283** 0.522** 0.542**

two models, trained on 236k generated and 58k generated, achieve the highest
scores in four out of thirteen and two out of thirteen, respectively. Only three
of these results are statistically significant with the model trained on 786k gen-
erated doing better on two and the model trained on 58k generated performing
better on the other. The MRR@100 scores (Table 11) are even more mixed, with
the model trained on 236k genrated performing better in 2 out of 4 statistically
significant results while the other two models perform better on one each.

Table 11. Recall@100 and MRR@100 scores for the model trained on the three gen-
erated query datasets 58k generated, 236k generated, and 786k generated for the out-
of-domain datasets. Same notational conventions as in Table 3.

Dataset Recall@100 MRR@100

58k
generated

236k
generated

786k
generated

58k
generated

236k
generated

786k
generated

ArguAna 0.919 0.939 0.940 0.213 0.209 0.202

Climate FEVER 0.405 0.406 0.371 0.220 0.224 0.198

CQA Dup Stack 0.139 0.154 0.153 0.068 0.072** 0.069

DBPedia 0.335 0.362 0.364 0.564 0.564 0.564

FEVER 0.805 0.853 0.856 0.492 0.508** 0.476

FiQa 0.369 0.385 0.377 0.195 0.190 0.171

HotpotQA 0.502 0.557 0.572** 0.559 0.598 0.603

NFCorpus 0.238 0.216 0.216 0.377 0.387 0.382

Quora 0.880 0.897 0.929** 0.590 0.613 0.636**

SciDocs 0.253 0.253 0.261 0.207 0.212 0.198

SciFact 0.704 0.737 0.790 0.372 0.373 0.374

Touche 0.344 0.366 0.325 0.386 0.325 0.314

TREC-COVID 0.177** 0.124 0.119 0.354* 0.219 0.166

While larger training datasets help with zero-shot performance on out-of-
distribution datasets, the benefit of more generated data is less clear with regard
to zero-shot performance on out-of-domain datasets. Although the model trained
on 786k generated generalizes better than the other two models, the increase in
recall scores are marginal, especially compared to the increased cost of training
which increases linearly with dataset size. Overall, training DPR models on more



Improving the Generalizability of the Dense Passage Retriever 107

generated queries with multiple queries per passage can improve the generaliz-
ability of the model, but with sharply diminishing gains. This is likely due to the
fact that increasing the size of the training dataset does not necessarily increase
the diversity of the training data.

7 Conclusion and Future Work

We have shown that the generalizability of dense passage retrievers may suffer
from learning to discard information from passages during training. This prob-
lem can be mitigated by using training data containing a sufficient number of
passages with multiple associated queries. By exposing the dense retriever to
multiple facets of information contained in the same passage, we ensure that
the model does not learn to discard potentially useful information, leading to
improved retrieval accuracy for out-of-domain topics and queries and a better-
generalized model overall.

As a general lesson, when training a dense retrieval model, it is important
to consider the number of queries per passage, or more generally, how much of
the information contained in a given passage is covered by the queries. Train-
ing datasets with a large number of queries per passage can be automatically
generated for training dense retrievers resulting in a better generalized model.

As to limitations, we did not use hard negative mining [28] or late interac-
tion [14], which are known to improve the generalizability of dense retrievers.
We leave their integration to future work but note that our method is trivially
compatible with such techniques and is also independent of the actual dense
retriever architecture that is used.

Finally, it would be interesting to use our proposed dataset generation
method on a full collection of Wikipedia passages to train a DPR model. While
our analysis of the effect of dataset size (Sect. 6.2) did not demonstrate mean-
ingful gains in generalizability, a sufficiently large query collection (a generated
query dataset of the full Wikipedia collection would be several orders of magni-
tude larger) containing diverse topics may generalize very well to most domains.
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