

RecSys 2021 Tutorial on

Conversational Recommendation: Formulation, Methods, and Evaluation

Wenqiang Lei National University of Singapore (NUS) wenqianglei@gmail.com Chongming Gao University of Science and Technology of China (USTC) chongminggao@mail.ustc.edu.cn Maarten de Rijke University of Amsterdam

m.derijke@uva.nl

A literature survey related to this tutorial has been published at https://arxiv.org/abs/2101.09459

Who Are We?

Wenqiang LeiChongming GaoPostdoc at NationalPhD student at University of ScienceUniversity of Singapore (NUS)and Technology of China (USTC)

Maarten de Rijke University Professor at University of Amsterdam

I. IntroductionII. Five important challengesIII. Promising future directions

Outline

- I. Introduction
 - Background and definition of CRSs
 - Difference with related topics
 - The importance of CRS
 - Introduction of our survey
 - A glance of the five important challenges

II. Five important challenges

III. Promising future directions

1.1 Background: Begin with Information Seeking

m

How to

handle?

Tube

Information

overload

Information explosion problem

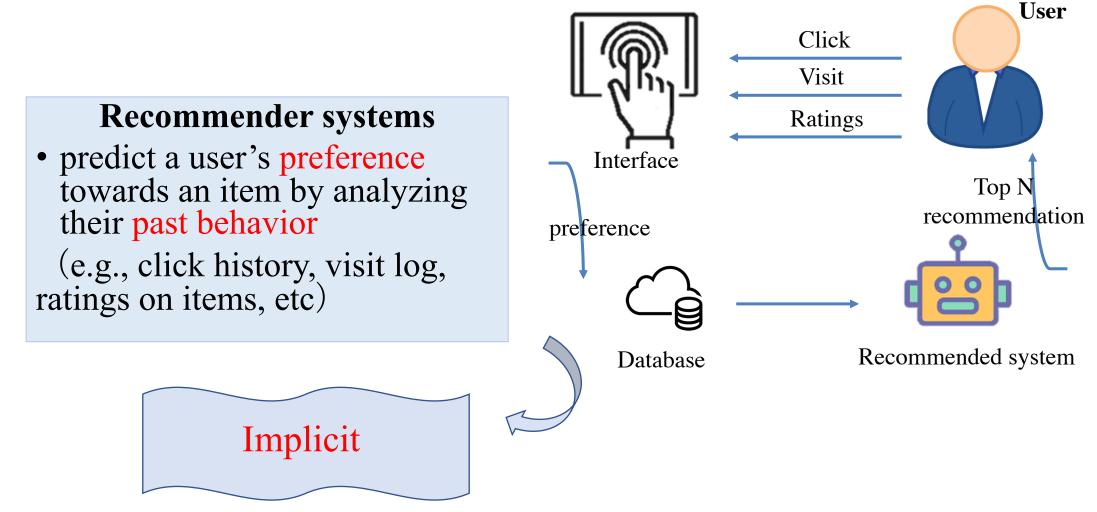
- E-commerce (Amazon and Alibaba)
- Social networking (Facebook and Wechat)
- Content sharing platforms (Instagram and Pinterest)

Recommendation

Two major types of information seeking techniques

Search

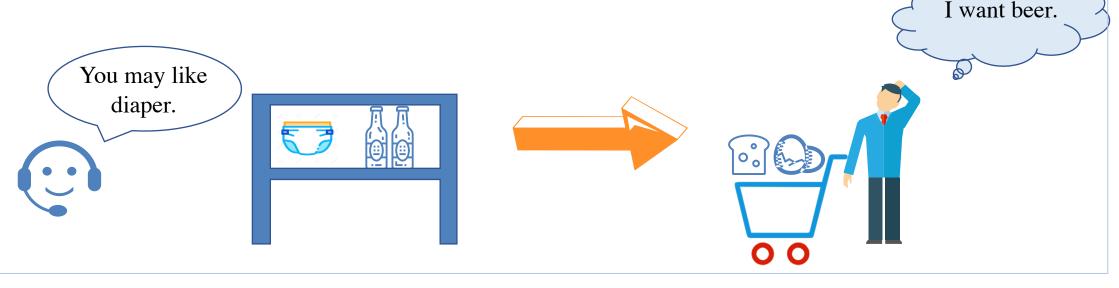
1.1 Background: Begin with Information Seeking



1.1 Background: Begin with Information Seeking

Key Problems for Recommendation: Information Asymmetry

- Information asymmetry
 - A system can only estimate users' preferences based on their historical data
- Intrinsic limitation
 - Users' preferences often **drift** over times.
 - It is hard to find accurate reasons to recommendation



1.2 Definition of CRS

"A recommendation system that can elicit the dynamic preferences of users and take actions based on their current needs through real-time multiturn interactions."

Including: written or spoken natural language,

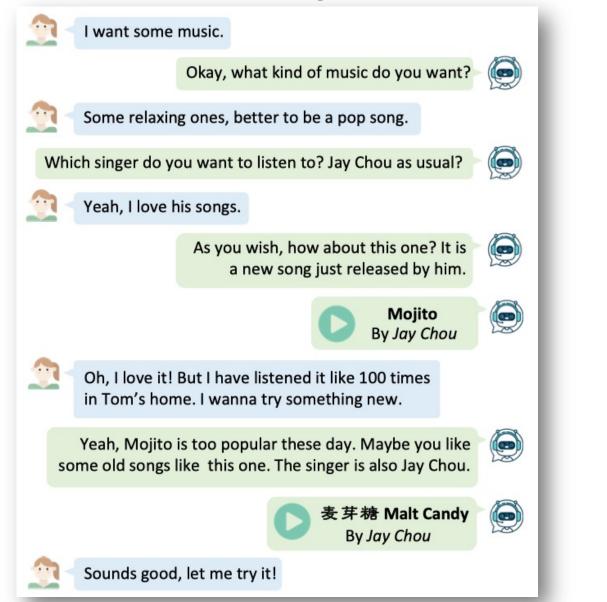
form fields, buttons, and even gestures.

 We don't constrain the form of interaction as long as it can break the information asymmetry

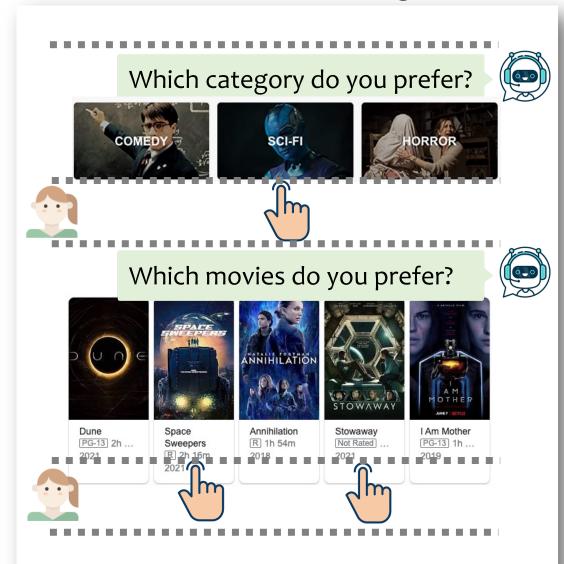
Chongming Gao et al. Advances and Challenges in Conversational Recommender Systems: A Survey (AI Open' 21)

1.2 Definition of CRS: toy examples

CRS based on dialogue interaction



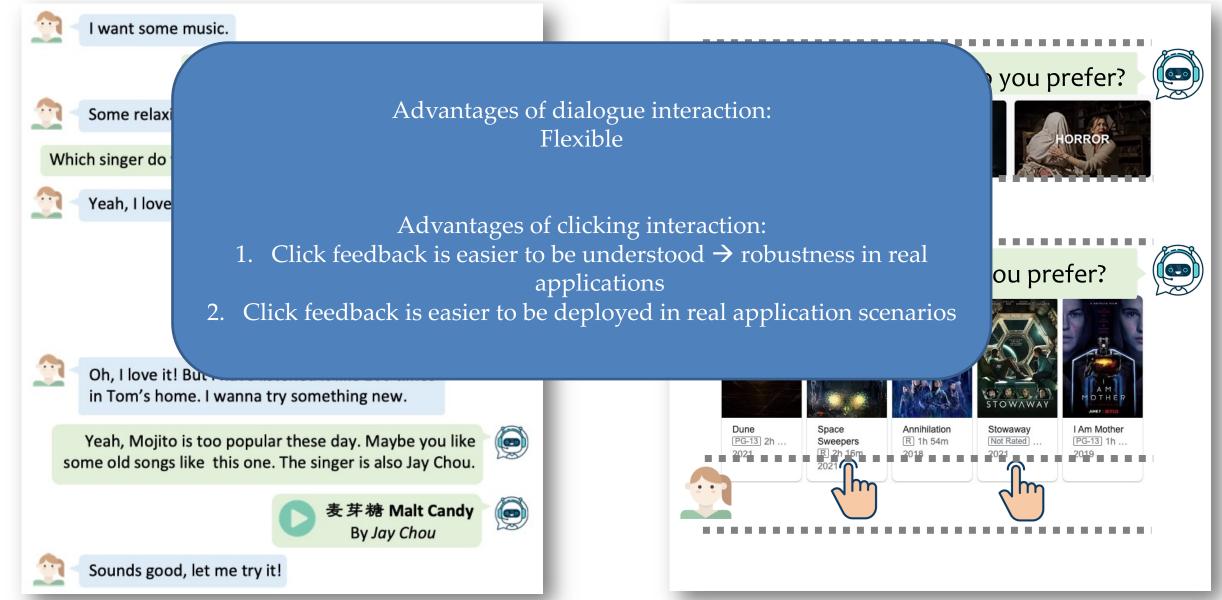
CRS based on button-clicking interaction



1.2 Definition of CRS: toy examples

• CRS based on dialogue interaction

CRS based on button-clicking interaction



1.2 Differences with related topics

Interactive recommender systems (IRSs) and CRSs

- □ IRSs can be seen as an early form of CRSs
- IRSs work by repeating the following two procedure, which is rigid, inflexible, and inefficient:
 - 1. Making a list of recommendations.
 - 2. Collecting user feedback, and adjust strategies. Jump to 1.

CRSs introduce miscellaneous types of interaction

- They elicit user preferences by asking questions about attributes, which is more efficient
- They only make recommendations when the confidence is high, which improves user experience

1.2 Differences with related topics Task-oriented Dialogue Systems and CRSs

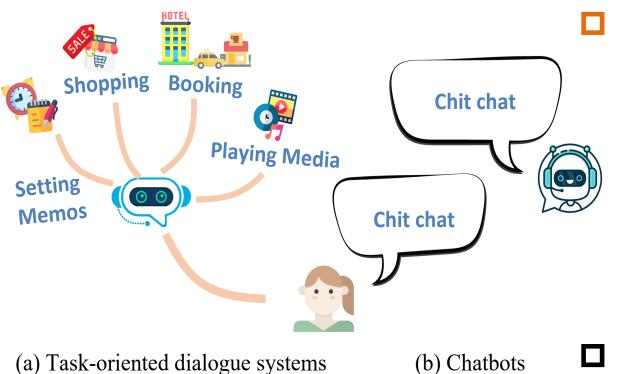


Figure: Two types of dialogue systems

Problems in traditional dialogue systems:

- Focusing only on natural language processing
 - dation
- Failure to optimize recommendation strategy

Does not consider click feedback (Jannach et al.)

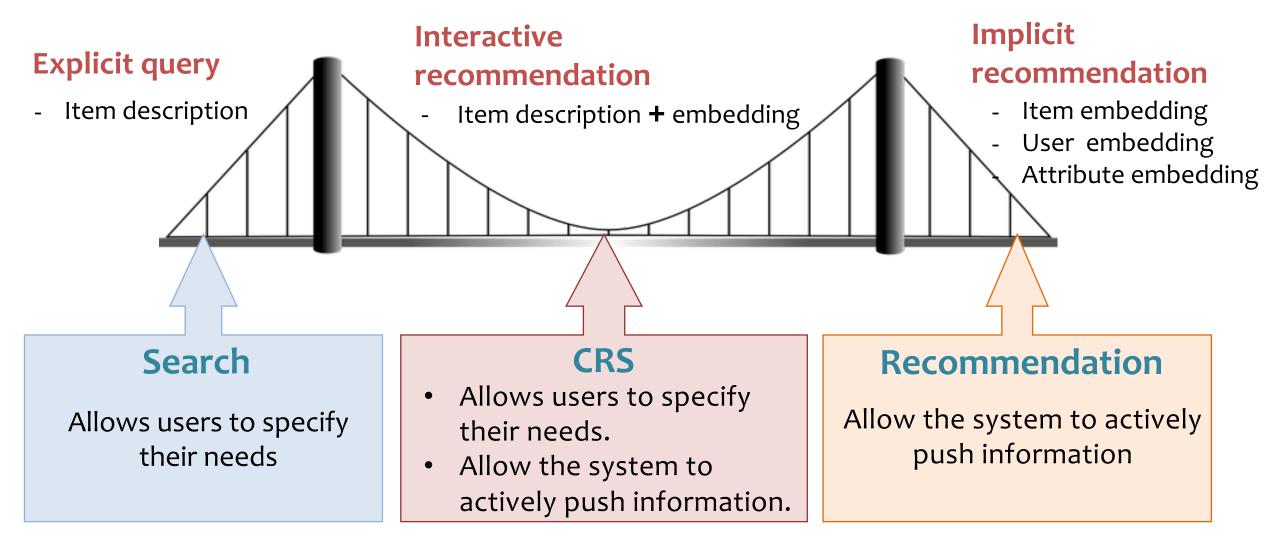
■ Main focus of CRSs:

- \checkmark
- Aim to elicit accurate user preferences, and generate high-quality recommendations
- Language understanding not the first priority

Dietmar Jannach and Ahtsham Manzoor. 2020. End-to-End Learning for Conversational Recommendation: A Long Way to Go? (RecSys Workshop 2020)

1.3 Importance of CRSs

 Conversational Recommender Systems (CRSs) can bridge the gap between search engines and recommender systems



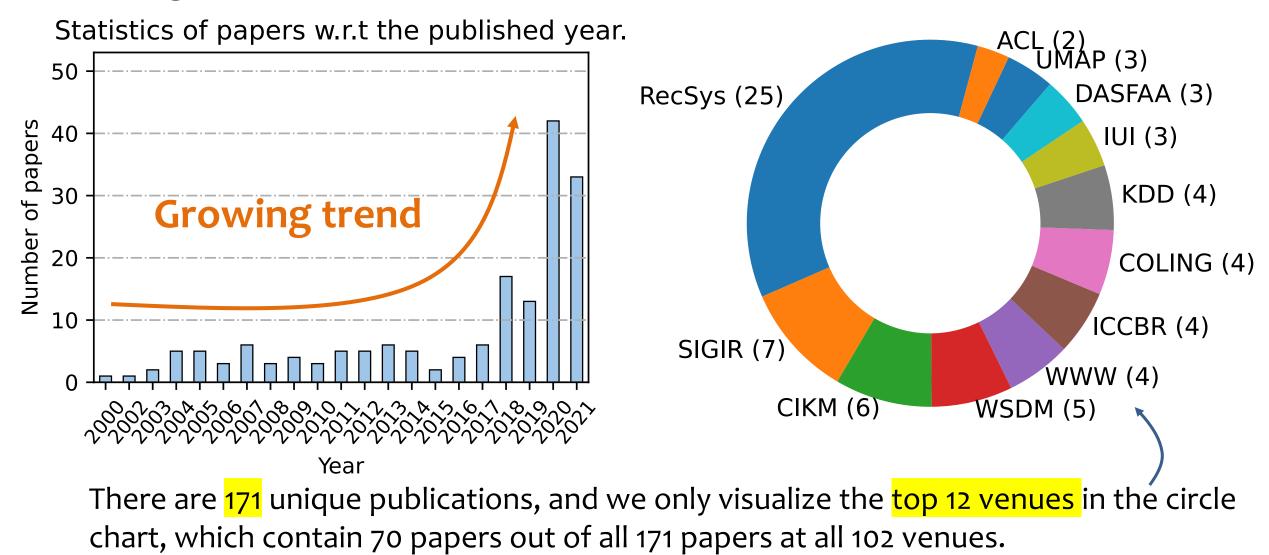
1.3 Importance of CRSs

Conversational Recommender Systems are

- A promising direction for recommendation systems: solving information asymmetry and dynamic preference problem
- An opportunity to converge cutting-edge techniques to push the development of recommendation: reinforcement learning, natural language processing, explainable AI, conversational AI etc.
- An exemplary step towards the big goal of human-machine collaboration

1.3 Importance of CRSs

Searching results of "Conversation* Recommend*" on DBLP.



1.4 Introduction of Our Survey

Accepted by AI Open in June 2021. Link: <u>https://arxiv.org/abs/2101.09459</u>

Advances and Challenges in Conversational Recommender Systems: A Survey

Chongming Gao^a, Wenqiang Lei^{b,*}, Xiangnan He^a, Maarten de Rijke^{c,d} and Tat-Seng Chua^b

^aUniversity of Science and Technology of China ^bNational University of Singapore ^cUniversity of Amsterdam, Amsterdam, The Netherlands ^dAhold Delhaize, Zaandam, The Netherlands

ARTICLE INFO

Keywords:

conversational recommendation system interactive recommendation preference elicitation multi-turn conversation strategy exploration-exploitation

ABSTRACT

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users.

Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In

1.4 Introduction of Our Survey

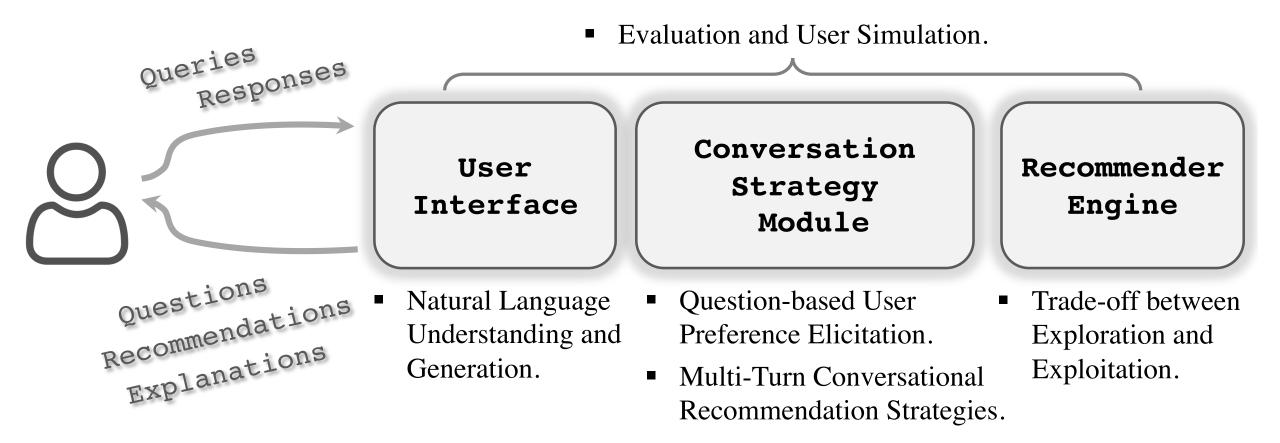
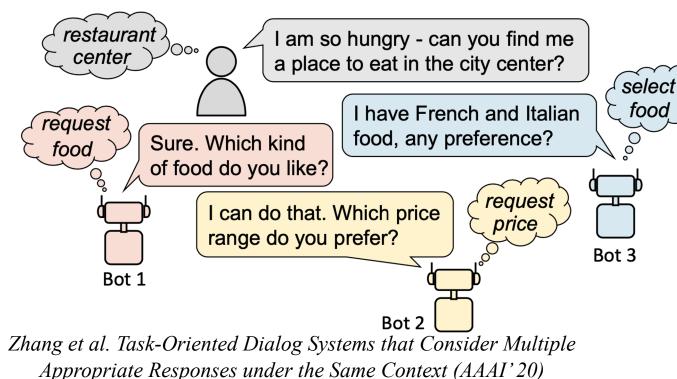


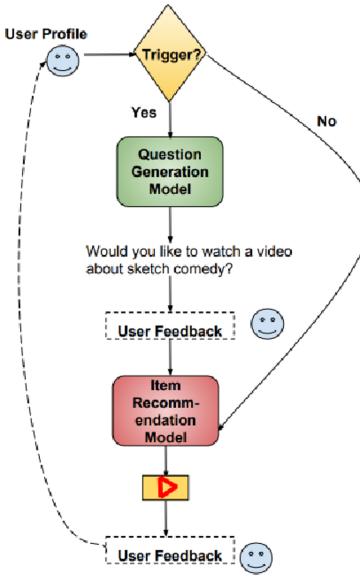
Figure: Illustration of the general framework of CRSs and our identified primary challenges on the three main components.

1.5. Five Important Challenges: A Glance
 Question-based user preference elicitation
 User Profile
 The key advantage of conversational recommendation:
 being able to ask questions

• Ask about attributes/topics/categories of items to narrow down

the recommended candidates



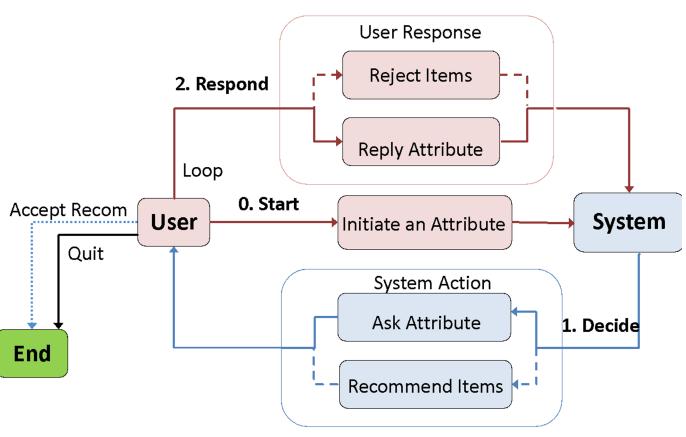


Christakopoulou et al. "Q&R: A Two-Stage Approach toward Interactive Recommendation"(KDD' 18) 20 1.5. Five Important Challenges: A Glance
 Multi-turn conversational recommendation strategies
 A system can choose to ask questions and make recommendations in a

- Purpose: making successful recommendations with less turns of interactions
- **Core challenges to address:**

multi-turn conversation

- 1. Which items or attributes to recommend?
- 2. When to ask questions and when to make recommendations?
- 3. How to adapt user feedback



Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)

1.5. Five Important Challenges: A Glance Natural language understanding and generation

Inflexible, constrained

Fail to understand user intent.

Rule/Template-based

I want some music. What category of music do you like?

Pop.

Which Pop singer do you like?

Jay Chou.

Hope you enjoy this song:

By Stevie Ray Vaughan

Change it

Neural methods

1.1

1.1

11

11

I want some music.

Feel tired in work? What do you want?

Yeah, wanna some relaxed music

As you wish, how about this one? It is a new song just released by Jay Chou.

Oh, I love it! But I have listened it like 100 times. I wanna try something new.

> Yeah, Mojito is too popular these day. Maybe you like some niche songs like this one. The singer is also Jay Chou.

Casual, more natural.

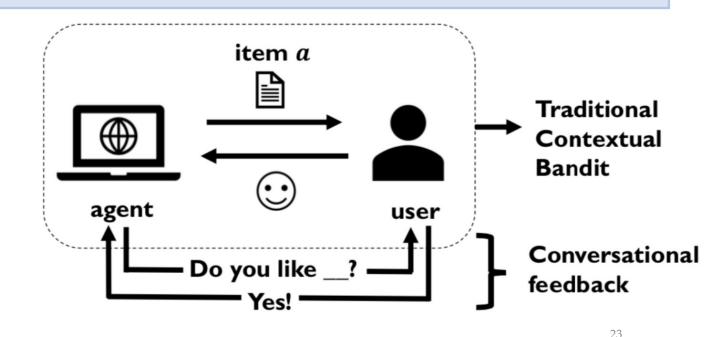
Extract intent from user utterances.

Express actions in generated responses

Fluent and **Consistent.**

麦芽糖 Malt Candy By Jay Chou

Leverage the dynamics of CRS to benefit the E&E trade-off for cold users/items.

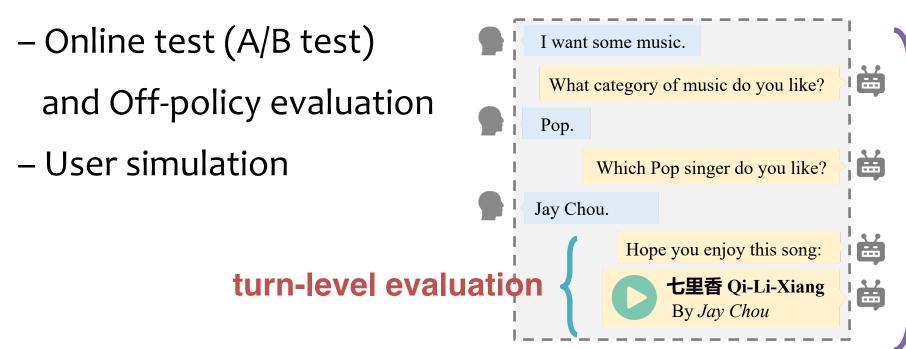


Zhang et al. Conversational Contextual Bandit: Algorithm and Application. WWW' 20

1.5. Five Important Challenges: A Glance

D Simulation and evaluation

- How to evaluate CRSs in terms of turn-level performance?
 - Evaluation of recommendation
 - Evaluation of response generation
- □ How to evaluate CRSs in terms of **conversation-level** (global) performance?



Conversationlevel evaluation

Outline

- I. Introduction
 - Background and definition of CRSs
 - Difference with related topics
 - The importance of CRSs
 - Introduction of our survey
 - A glance of the five important challenges

II. Five important challenges

III. Promising future directions

I. Introduction

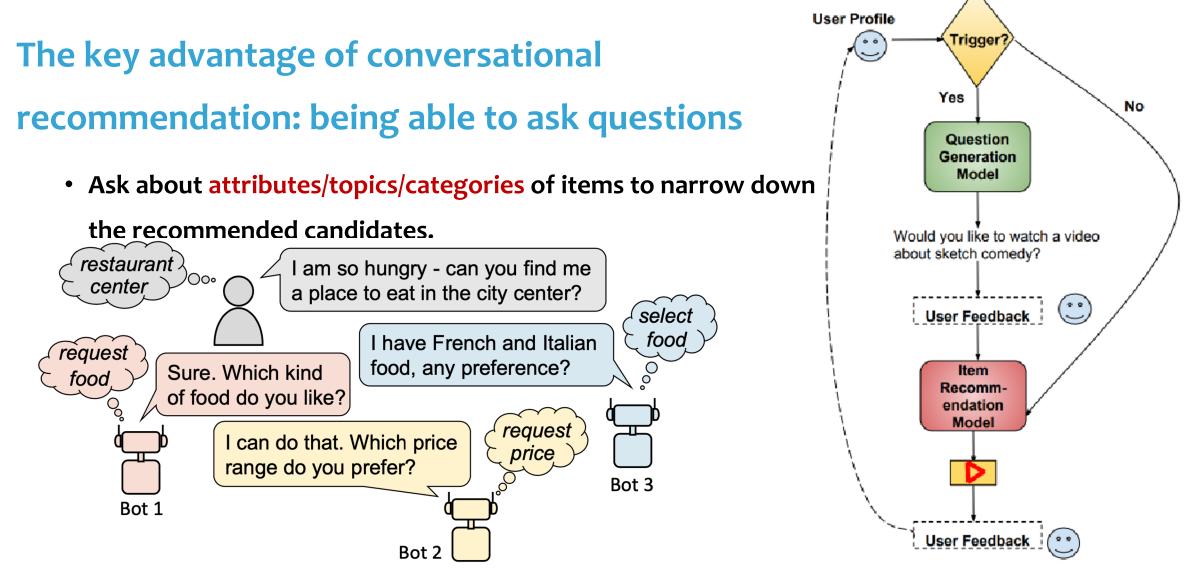
II. Five important challenges

2.1 Question-based user preference elicitation

- 2.2 Multi-turn conversational recommendation strategies
- 2.3 Natural language understanding and generation
- 2.4 Trade-offs between exploration and exploitation (E&E)

2.5 Evaluation and user simulation

III. Promising future directions



Zhang et al. Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context (AAAI'20)

Christakopoulou et al. "Q&R: A Two-Stage Approach toward Interactive Recommendation"(KDD' 18) 27

Asking about Items

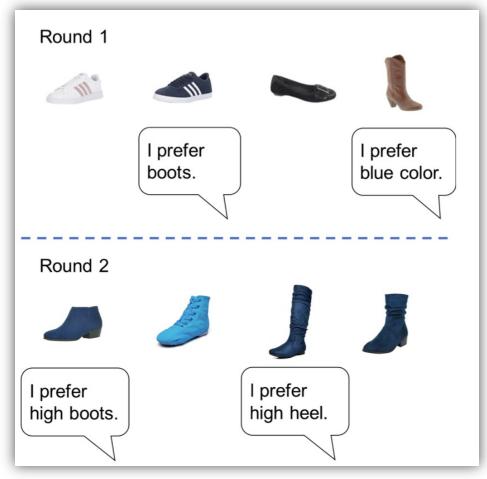


Figure Credit: Tong Yu, Yilin Shen, and Hongxia Jin. A Visual Dialog Augmented Interactive Recommender System. KDD' 19

Asking about Attributes

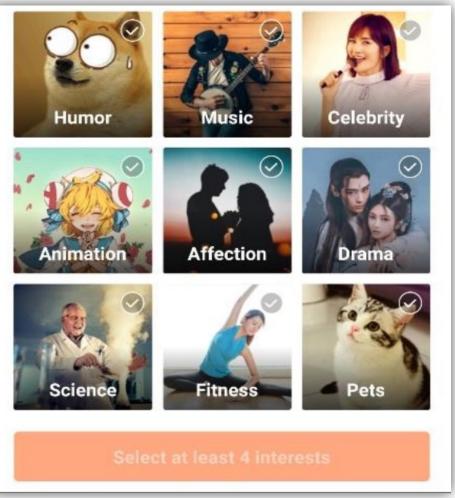
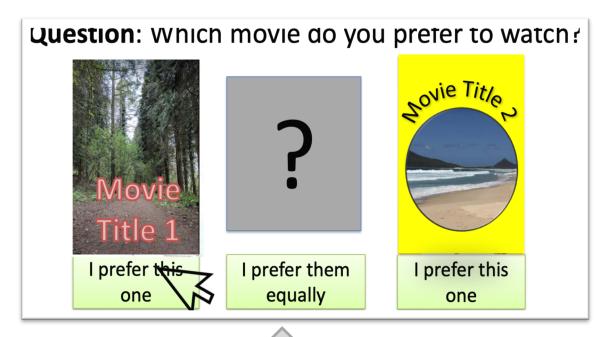


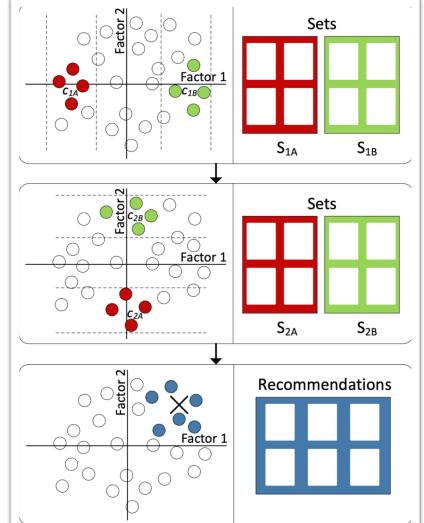
Figure Credit: Shijun Li et al. Seamlessly Unifying Attributes and Items Conversational Recommendation for Cold-Start Users. TOIS' 2021.

Asking about Items: (1) Latent factor methods



- Choosing an item from two or more items
- Choosing a set of items from two given lists

Anna Sepliarskaia et al. Preference Elicitation as an Optimization Problem, RecSys' 18



Benedikt Loepp et al. Choice-Based Preference Elicitation for Collaborative Filtering Recommender Systems, SIGCHI' 14

2.1 Question-based User Preference Elicitation Asking about Items: (2) Bayesian preference elicitation

• Preference is represented as a utility function: $u(x_i, u_i)$

$$u\left(\mathbf{x}_{j},\mathbf{u}_{i}\right)=\mathbf{x}_{j}^{T}\mathbf{u}_{i}.$$

• The utility of an item *i* for a user *i* is computed as the expectation:

$$\mathbb{E}\left[u\left(\mathbf{x}_{j},\mathbf{u}_{i}\right)\right] = \int_{\mathbf{u}_{i}\sim\mathcal{U}^{(i)}} P(\mathbf{u}_{i})u\left(\mathbf{x}_{j},\mathbf{u}_{i}\right)d\mathbf{u}_{i}.$$

• The item with the maximum expected utility for user *i* is considered as the recommendation items:

$$\arg\max_{j} \mathbb{E}\left[u\left(\mathbf{x}_{j},\mathbf{u}_{i}\right)\right].$$

Ivan Vendrov et al. Gradient-based Optimization for Bayesian Preference Elicitation, AAAI' 20

2.1 Question-based User Preference Elicitation Asking about Items: (2) Bayesian preference elicitation

- Based on the utility function, the system can select some items to query.
- The user belief distribution can be updated based on users' feedback. Specifically,

$$P(\mathbf{u}_i | q, r_j) = \frac{P\left(r_j \mid q, \mathbf{u}_i\right) P(\mathbf{u}_i)}{\int_{\mathcal{U}^{(i)}} P\left(r_j \mid q, \mathbf{u}_i\right) P(\mathbf{u}_i) d\mathbf{u}_i}.$$

- There are variations for query strategy, i.e., selecting which items to ask.
 - ✓ Single item query.
 - ✓ pairwise comparison query.
 - ✓ Slate query.

(Details can be found in our survey)

2.1 Question-based User Preference Elicitation Asking about Items: (3) Reinforcement learning

- Use Q-learning to generate items
- Use GCN to represent states
- current state State Q-network Representation item pool item candidates Candidate entity representation Selection recommended eedback tem Graph interaction Convolutional history Knowledge Graph network User inference back-propagation

- **Problem**: The Log data is sparse.
- Solution: the first attempt to leverage KG for reinforcement learning in interactive recommender systems.

Figure Credit: Sijin Zhou et al. Interactive Recommender System via Knowledge Graph-enhanced Reinforcement Learning. SIGIR' 20

2.1 Question-based User Preference Elicitation Asking about Attributes: (1) Using sequential model to predict

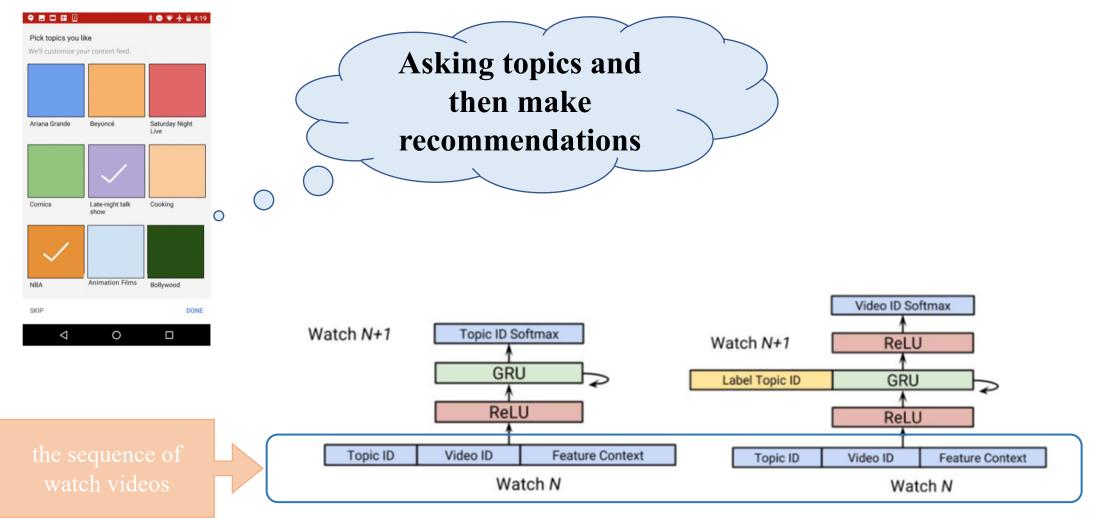
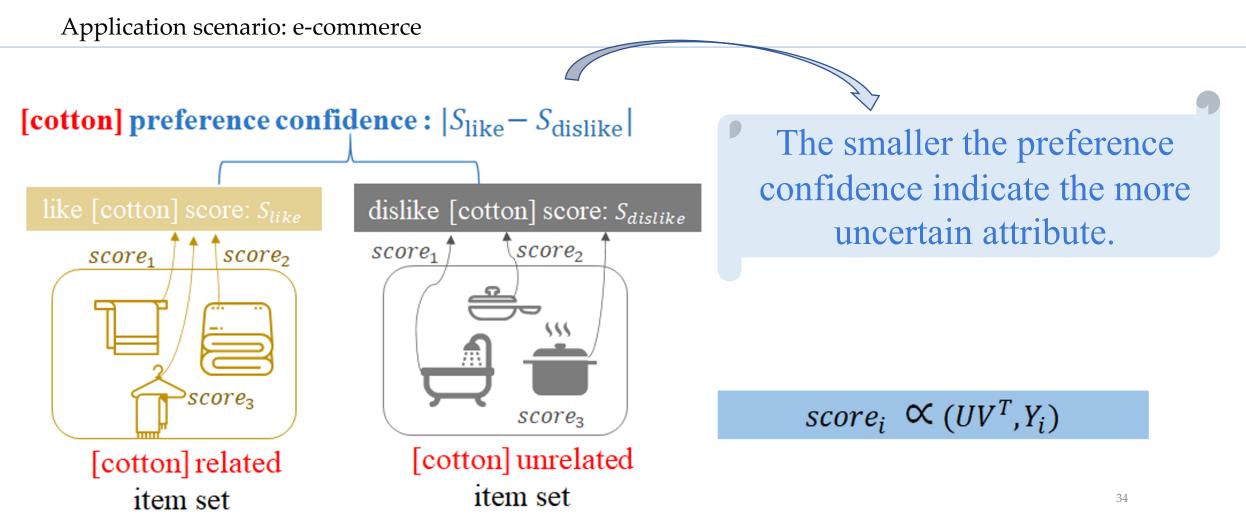


Figure 3: Left: Topic Prediction (Question Ranking) Model. Right: Post-Fusion Approach for Response Model.

Christakopoulou et al. "Q&R: A Two-Stage Approach toward Interactive Recommendation" (KDD' 18)

2.1 Question-based User Preference Elicitation Asking about Attributes: (2) Uncertainty driven



Zou et al. "Towards Question-based Recommender Systems" (SIGIR' 20)

2.1 Question-based User Preference Elicitation Asking about Attributes: (3) Explainable recommendation

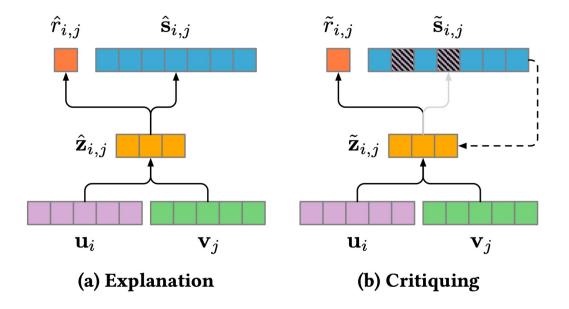


Figure 1: Proposed CE-(V)NCF architecture. (a) Given user u_i and item v_j embeddings as input, the network produces a joint embedding $\hat{z}_{i,j}$ and an initial rating $\hat{r}_{i,j}$ and explanation $\hat{s}_{i,j}$ via forward propagation. (b) Shaded squares indicate critiqued keyphrase explanations that modulate the latent space into $\tilde{z}_{i,j}$ for subsequent recommendations.

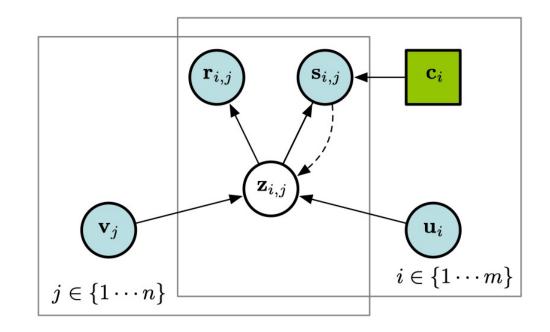


Figure 2: Probabilistic Graphical Model view of the proposed CE-(V)NCF model. Action node c_i represents a critiquing action of user *i* that modifies the predicted explanation $s_{i,j}$ into critiqued explanation $\tilde{s}_{i,j}$. The dashed arrow denotes posterior inference after critiquing.

Ga Wu et al. Deep Language-based Critiquing for Recommender Systems RecSys' 19

Classification w.r.t.

- a) What to ask (item or attribute)
- b) Asking mechanism
- c) Basic model
- d) Type of user feedback
- e) Multi-turn strategy

Asking	Asking Mechanism	Basic Model	Type of User Feedback	Strategy	Publications
Items	Exploitation & Exploration	Multi-Armed bandit	Rating on the given item(s)	No	[217, 32, 220, 184, 205]
	Exploitation & Exploration	Meta learning	Rating on the given item(s)	No	[235, 87]
	Maximal posterior user belief	Bayesian methods	Rating on the given item(s)	No	[171]
	Reducing uncertainty	Choice-based methods	Choosing an item or a set of items	No	[105, 75, 53, 144, 140]
Attributes	Exploitation & Exploration	Multi-Armed bandit	Rating on the given attribute(s)	Yes	[209, 95]
	Reducing uncertainty	Bayesian approach	Providing preferred attribute values	No	[113]
		Critiquing-based methods	Critiquing one/multiple attributes	No	[117, 155, 172, 12, 154]
				NO	[135, 23, 189, 108, 107]
		Matrix factorization	Answering Yes/No for an attributes	No	[232]
	Fitting historical patterns	Sequential neural network	Providing preferred attribute values	Yes	[31, 210]
			Providing an utterance	No	[94, 25]
	Maximal reward	Reinforcement learning	Answering Yes/No for an attributes	Yes	[88, 89]
			Providing an utterance	Yes	[161, 167, 76]
				No	[141]
	Exploring graph-constrained candidates	Graph reasoning	Answering Yes/No for an attributes	Yes	[89]
			Providing an utterance	Yes	[25, 104]
				No	[225, 98]
			Providing preferred attribute values	Yes	[193]
				No	[123]

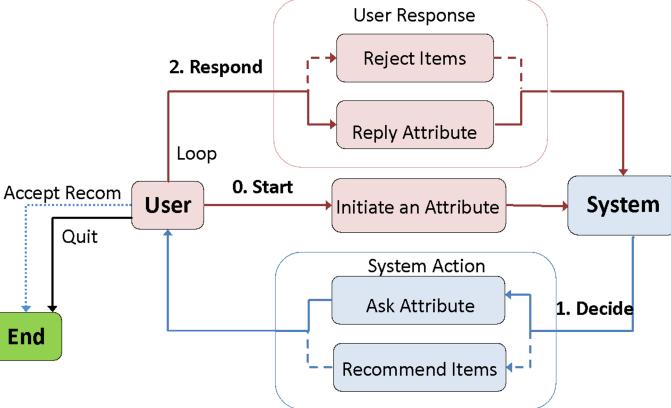
Gao et al. Advances and Challenges in Conversational Recommender Systems: A Survey (Al Open' 21)

- I. Introduction
- **II. Five important challenges**
 - 2.1 Question-based user preference elicitation
 - 2.2 Multi-turn conversational recommendation strategies
 - 2.3 Natural language understanding and generation
 - 2.4 Trade-offs between exploration and exploitation (E&E)
 - 2.5 Evaluation and user simulation
- **III. Promising future directions**

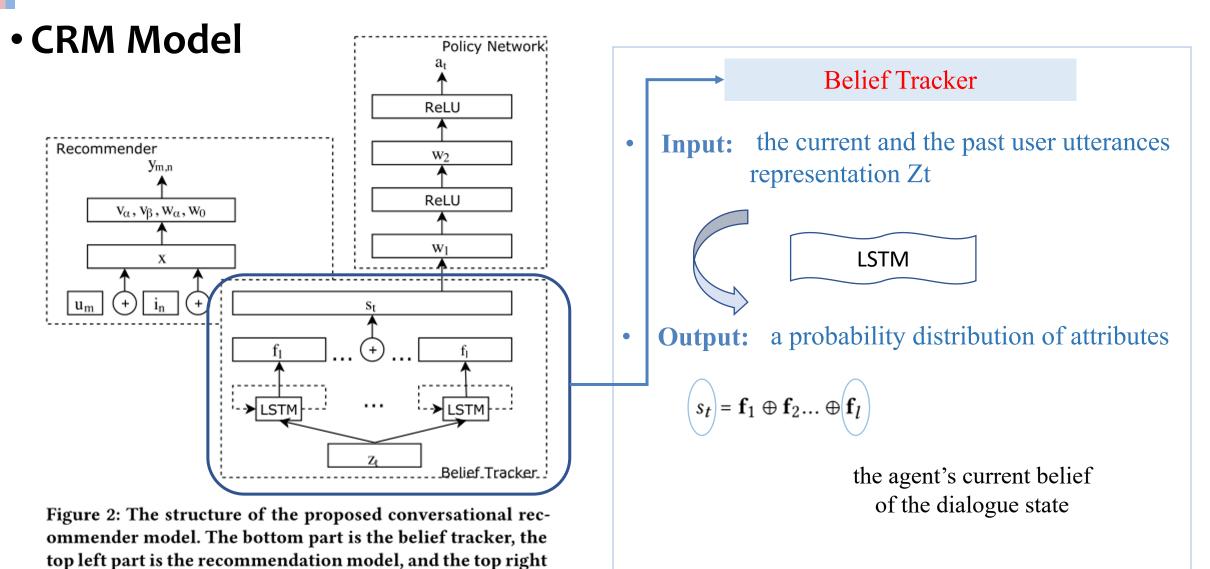
2.2 Multi-turn Conversational Recommendation Strategies Multi-turn Conversational Recommendation Strategies.

A system can choose to ask attributes and make recommendations (i.e., ask items) in a multi-turn conversation

- Purpose: making successful recommendations with less turns of interactions
- **Core challenges to address:**
 - 1. Which items to recommend and which attributes to recommend?
 - 2. When to ask questions and when to make recommendations?
 - 3. How to adapt user feedback

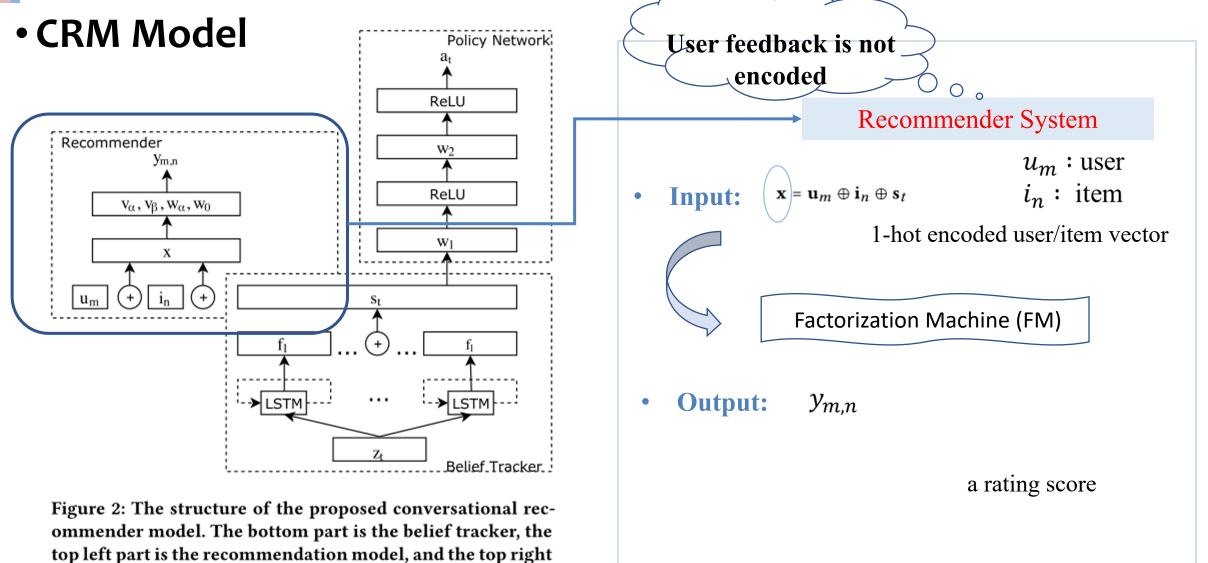


Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)



Sun et al. "Conversational Recommender System" (SIGIR' 18)

part is the deep policy network.



Sun et al. Conversational Recommender System, SIGIR' 18

part is the deep policy network.

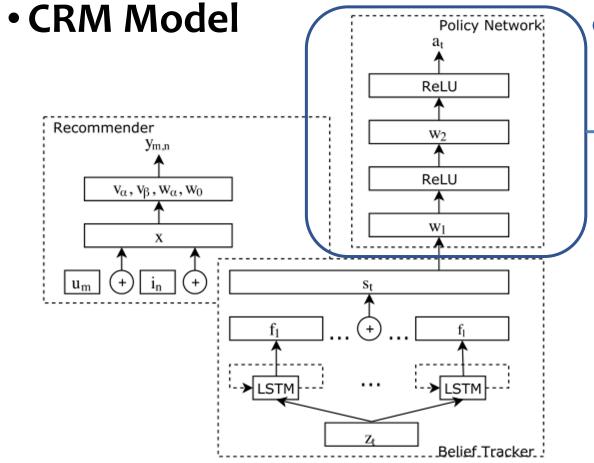
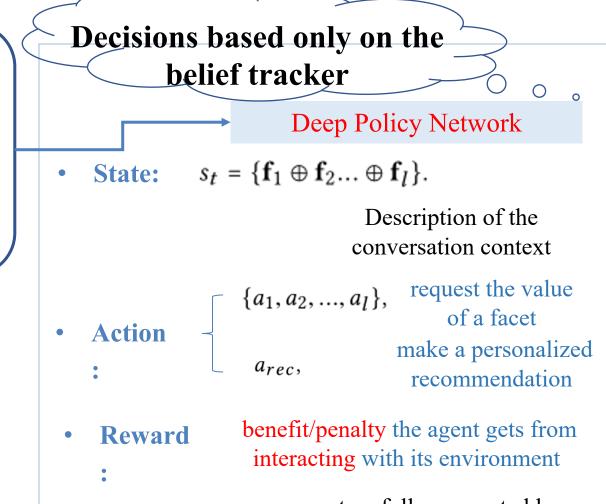


Figure 2: The structure of the proposed conversational recommender model. The bottom part is the belief tracker, the top left part is the recommendation model, and the top right part is the deep policy network.

Sun et al. "Conversational Recommender System" (SIGIR' 18)

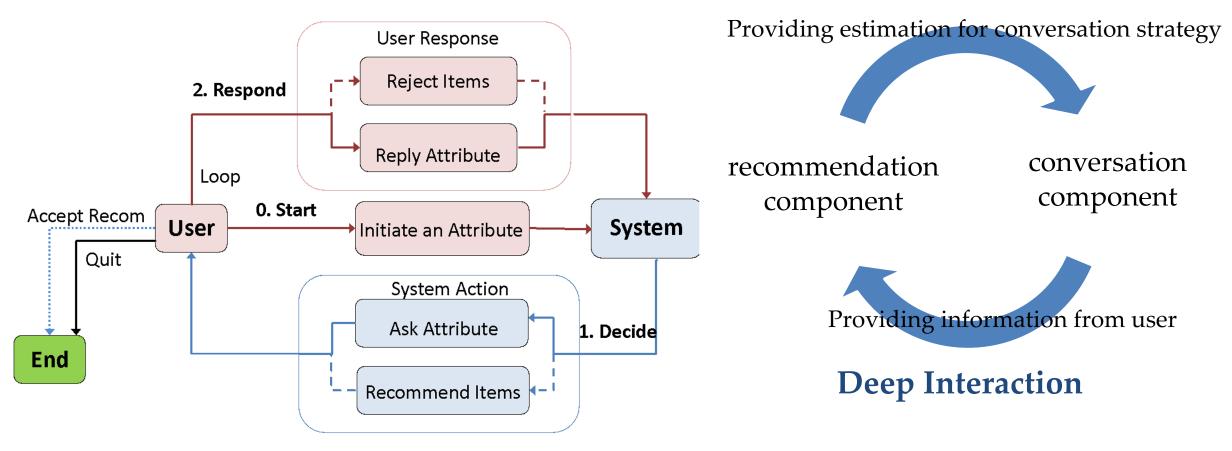


• **Policy:** $\pi(a_t|s_t)$, two fully connected layers as the policy network

Adopt the policy gradient method of reinforcement learning

2.2 Multi-turn Conversational Recommendation Strategies • Estimation–Action–Reflection (EAR Model)

A multi-step decision problem under asymmetric information



Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)

EAR Model: conversation component supports recommendation component

Notation	Meaning
p	A given attribute
u	User embedding
\mathcal{P}_{u}	User's known preferred attributes

Notation	Meaning
(Neg. 1) $\mathcal{V}_u^- := \mathcal{V} \setminus \mathcal{V}_u^+$	The ordinary negative sample as in standard BPR.
(Neg. 2) $\widehat{\mathcal{V}_u^-} \coloneqq \mathcal{V}_{cand} \setminus \mathcal{V}_u^+$	\mathcal{V}_{cand} is the set of candidate items satisfying user's preferred attributes.
$\mathcal{D}_1 \coloneqq \{(u, v, v') v' \in \mathcal{V}_u^-\}$	Paired sample for first kind of negative sample
$\mathcal{D}_2 \coloneqq \{(u, v, v') v' \in \widehat{\mathcal{V}_u}\}$	Paired sample for second kind of negative sample

Using attribute to predict item

$$\hat{y}(u, v, \mathcal{P}_{u}) = \mathbf{u}^{T}\mathbf{v} + \sum_{p_{i} \in \mathcal{P}_{u}} \mathbf{v}^{T}\mathbf{p}_{i} \quad \begin{array}{l} \text{Score function for} \\ \text{item prediction} \end{array}$$

$$= \sum_{(u,v,v') \in \mathcal{D}_{1}} -\ln \sigma \left(\hat{y}(u, v, \mathcal{P}_{u}) - \hat{y}(u, v', \mathcal{P}_{u}) \right) \quad \begin{array}{l} \text{ordinary} \\ \text{negative} \\ \text{example} \end{array}$$

$$+ \sum_{(u,v,v') \in \mathcal{D}_{2}} -\ln \sigma \left(\hat{y}(u, v, \mathcal{P}_{u}) - \hat{y}(u, v', \mathcal{P}_{u}) \right) \quad \begin{array}{l} \text{ordinary} \\ \text{negative} \\ \text{example} \end{array}$$

$$+ \lambda_{\theta} \| \Theta \|^{2} \quad \begin{array}{l} \text{The items satisfying the specified} \\ \text{attribute but still are not clicked} \\ \text{by the user} \end{array}$$

Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)

• EAR Model: recommendation component supports conversation component

Notation	Meaning
p	A given attribute
u	User embedding
\mathcal{P}_{u}	User's known preferred attributes

• •
Meaning
The ordinary negative sample as in standard BPR.
\mathcal{V}_{cand} is the set of candidate items satisfying user's preferred attributes.
Paired sample for first kind of negative sample
Paired sample for second kind of negative sample

Using items to predict attributes

$$\widehat{g}(p|u, \mathcal{P}_{u}) = \mathbf{u}^{T}p + \sum_{p_{i} \in \mathcal{P}_{u}} \mathbf{P}^{T}\mathbf{P}_{i} \quad \begin{array}{l} \text{Score function for} \\ \text{attribute preference} \\ \text{prediction} \end{array}$$
$$L_{attr} = \sum_{(u, p, p') \in \mathcal{D}_{3}} -\ln\sigma\left(\widehat{g}(p|u, \mathcal{P}_{u}) - \widehat{g}(p'|u, \mathcal{P}_{u})\right) + \lambda_{\Theta} \|\Theta\|^{2}$$

$$L = L_{item} + L_{attr}$$

Multi-task Learning: Optimize for item ranking and attribute ranking simultaneously.

Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)

• EAR Model: recommendation component supports conversation component

We use reinforcement learning to find the best strategy.

- policy gradient method
- simple policy network (2-layer feedforward network)

- State Vector
- *s_{entropy}*: The entropy of attribute is important.
- *s*_{prefrence}: User's preference on each attribute.
- *s*_{history}: Conversation history is important.
- *s*_{length}: Candidate item list length.

Note: 3 of the 4 information come from Recommender Part

Action Space:

 $|\mathcal{P}|+1$

Reward

*r*_{success}: Give the agent a big reward when it successfully recommend!

 r_{ask} : Give the agent a small reward when it ask a correct attribute.

 r_{quit} : Give the agent a big negative reward when the user quit (the conversation is too long)

 $r_{prevent}$: Give each turn a relatively small reward to prevent the conversation goes too long.

Lei et al. "Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems" (WSDM'20)

• Conversational Path Reasoning (CPR) model

Core idea: the CRS asks the questions and generates questions based on the generated paths on the graph.

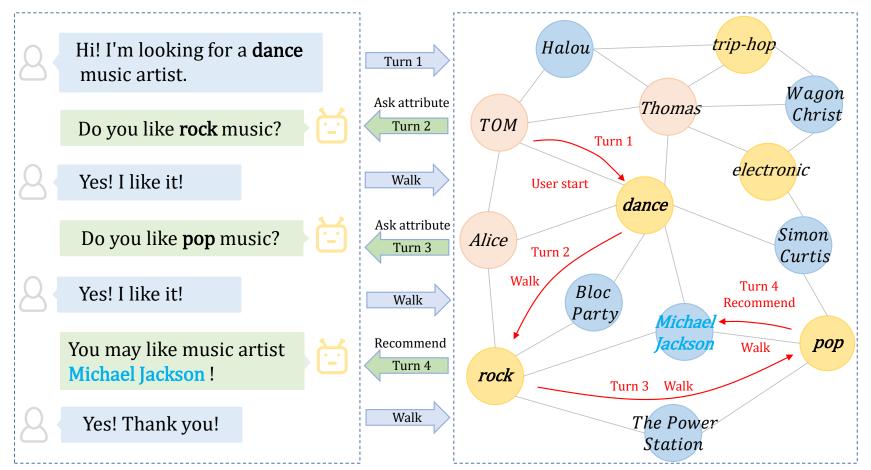


Figure Credit: Wenqiang Lei et al. Interactive Path Reasoning on Graph for Conversational Recommendation. KDD' 20

2.2 Multi-turn Conversational Recommendation Strategies • CPR - Method

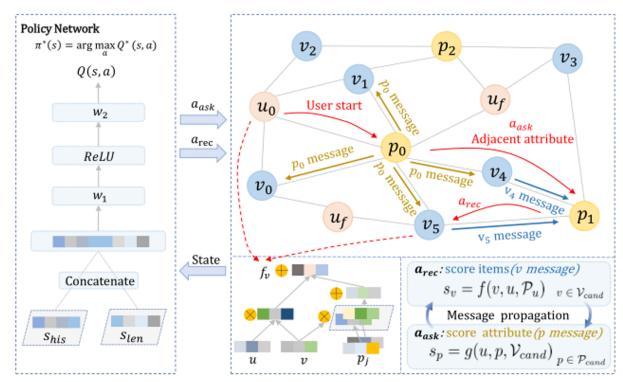


Figure 2: CPR framework overview. It starts from the user u_0 and walks over adjacent attributes, forming a path (the red arrows) and eventually leading to the desired item. The policy network (left side) determines whether to ask an attribute or recommend items in a turn. Two reasoning functions f and g score attributes and items, respectively.

CPR Framework

Assuming

- Current path $P = p_0, p_1, p_2, \dots, p_t$
- u: user v: item p: attribute
- \mathcal{P}_u : user's preferred attributes
- \mathcal{V}_{cand} : candidate items
- Reasoning
 - Score items to recommend (v message):

 $s_v\!=\!f(v,u,\,{\mathcal P}_{\,u})$

• Score attribute to ask (p message):

$$s_{\scriptscriptstyle p}\,{=}\,g(u,\!p,\,{\mathcal V}_{\scriptscriptstyle \, cand})$$

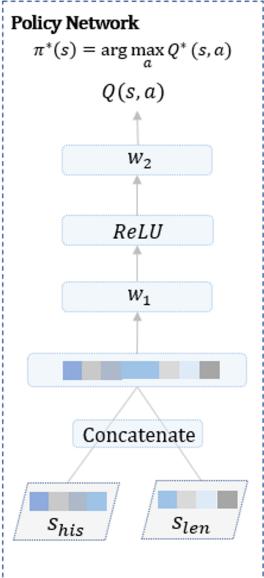
- Consultation
 - Policy network (choose to ask or rec)
- Transition
 - Extended path

 $P = p_0, p_1, p_2 \dots p_t p_{t+1}$

• Update candidate item /attribute set ($\mathcal{V}_{cand}/\mathcal{P}_{cand}$)

Lei et al. "Interactive Path Reasoning on Graph for Conversational Recommendation" (KDD'20)

CPR - Method



Input

 S_{his} : encodes the conversation history S_{len} : encodes the size of candidate items

Output

Q(s,a)

Q(s, a): the value of action a in state s a_{rec} : the action of recommendation a_{ask} : the action of asking attribute

DQN method

Policy: $\pi^*(s) = rg \max_a Q^*(s, a)$ TD loss: $\delta = Q(s, a) - \left(R + \gamma \max_a Q(s', a)\right)$

Lei et al. "Interactive Path Reasoning on Graph for Conversational Recommendation" (KDD'20) 48

How to handle rejected items/attributes?

Negative samples in CRM, EAR, CPR models

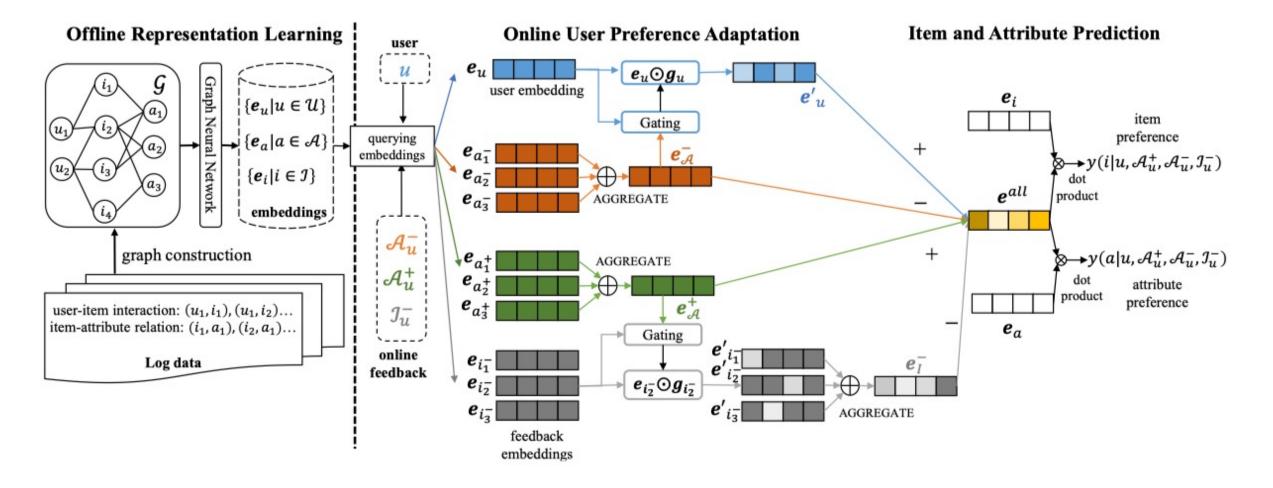
The item: red iPhone

How about attribute-level preference?

User like explicitly

User might not like

• FPAN: disentangle item-level and attribute level feedback



Kerui Xu et al. Adapting User Preference to Online Feedback in Multi-round Conversational Recommendation. WSDM' 21

2.2 Multi-turn Conversational Recommendation Strategies• Other efforts

Problem: too many items making decision making hard
 Solution: using actor-critic framework

Ali Montazeralghaem et al. Large-scale Interactive Conversational Recommendation System using Actor-Critic Framework. RecSys' 21

Problem: too sparse reward making policy function hard to converge

Solution: using more fine-grained reward

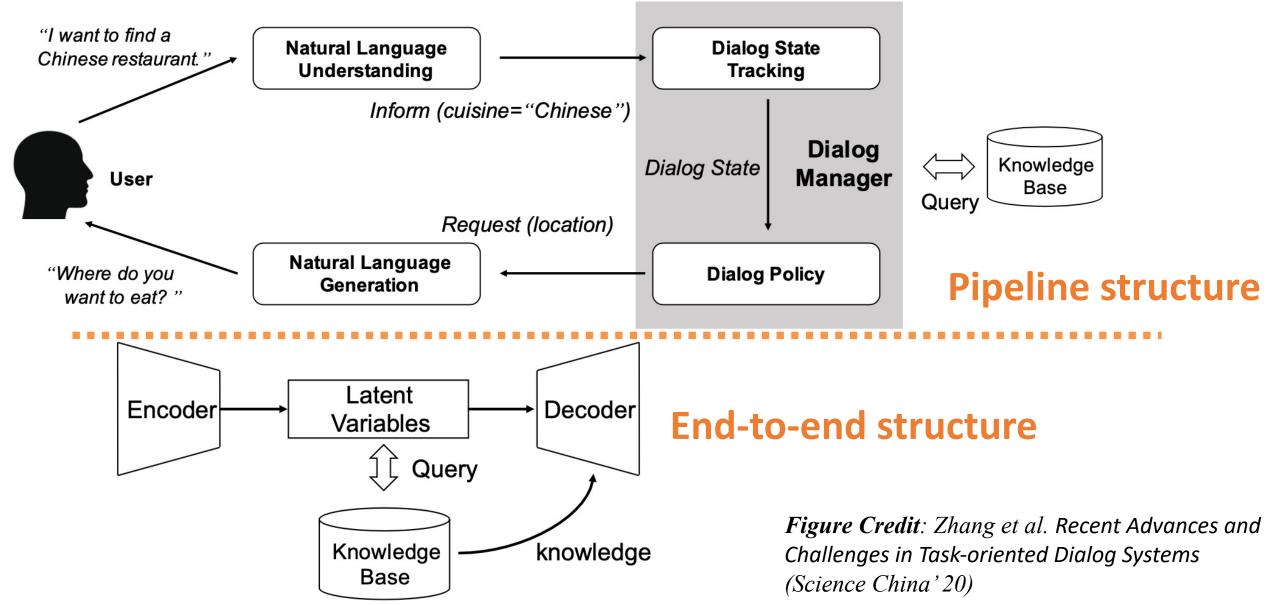
Ruiyi Zhang et al. Reward Constrained Interactive Recommendation with Natural Language Feedback. NeurIPS' 19 Yaxiong Wu et al. Partially Observable Reinforcement Learning for Dialog-based Interactive Recommendation. RecSys' 21

I. Introduction

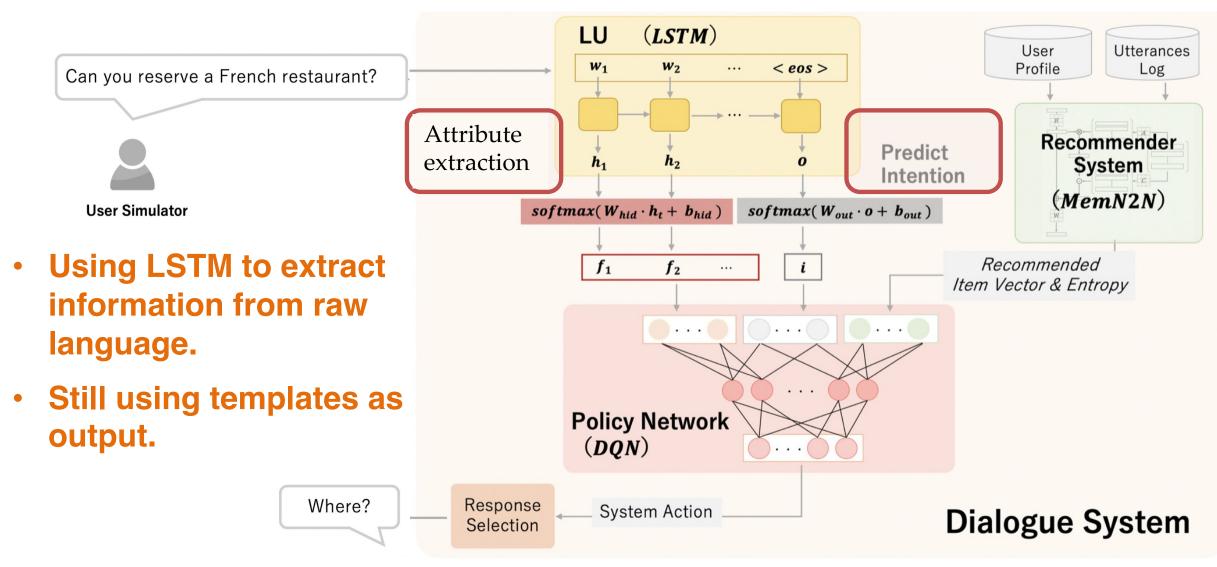
II. Five important challenges

- 2.1 Question-based user preference elicitation
- 2.2 Multi-turn conversational recommendation strategies
- 2.3 Natural language understanding and generation
- 2.4 Trade-offs between exploration and exploitation (E&E)
- 2.5 Evaluation and user simulation
- **III. Promising future directions**

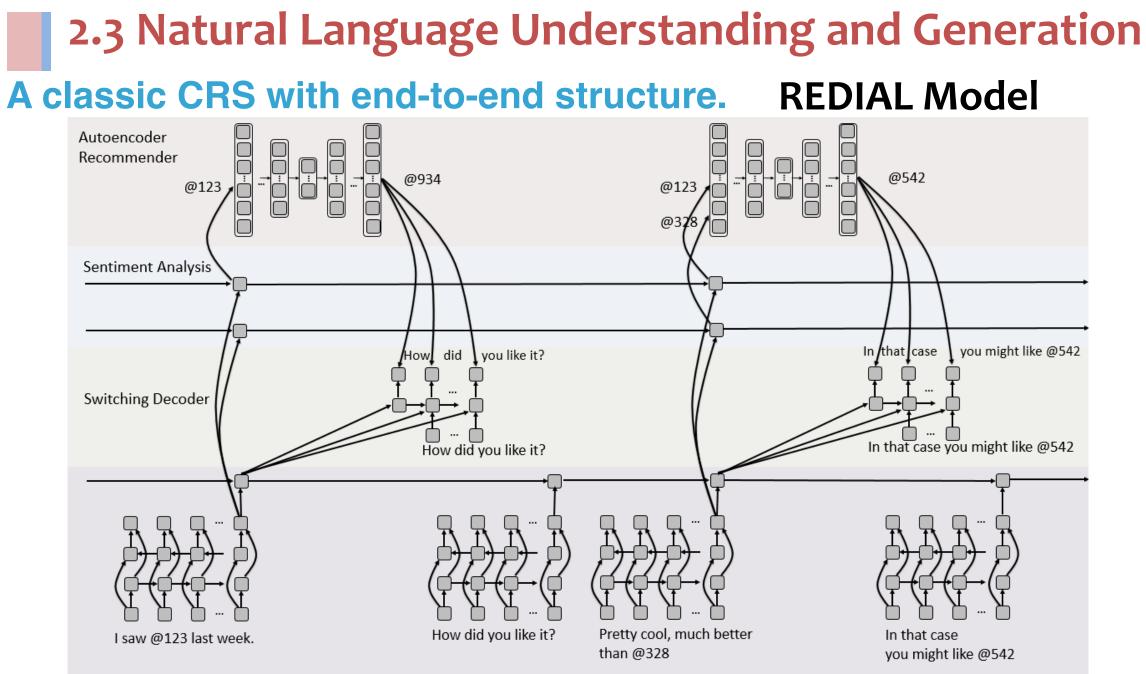
Two philosophies of handling language input in dialogue systems



An illustration of dialogue system-based CRS



Tsumita and Takagi, Dialogue based recommender system that flexibly mixes utterances and recommendations. WI.19



Hierarchical Encoder

Figure Credit: Raymond Li, et al. Towards Deep Conversational Recommendations. NeurIPS' 18

Introducing Knowledge Graph

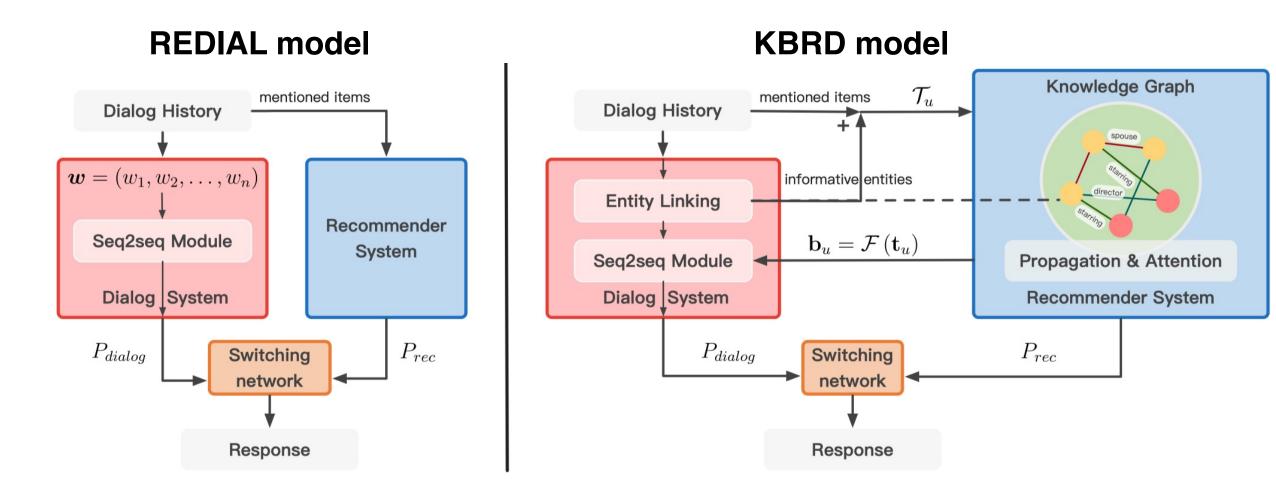


Figure Credit: Qibin Chen, et al. Towards Knowledge-Based Recommender Dialog System.

dialogue system

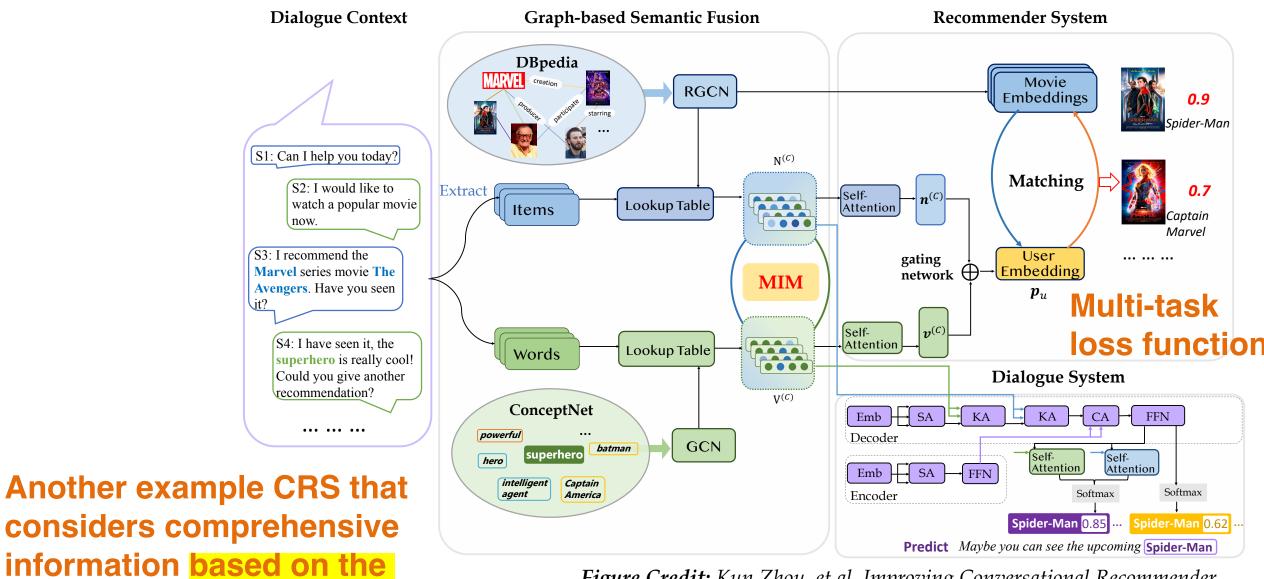
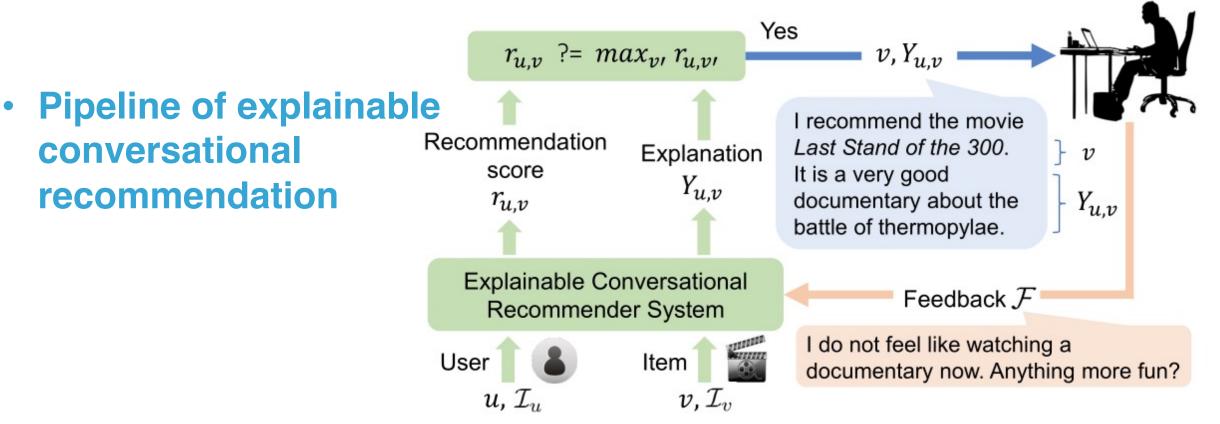


Figure Credit: Kun Zhou, et al. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion. KDD' 20



Model: I recommend Pulp Fiction. This is a dark comedy with a great cast.

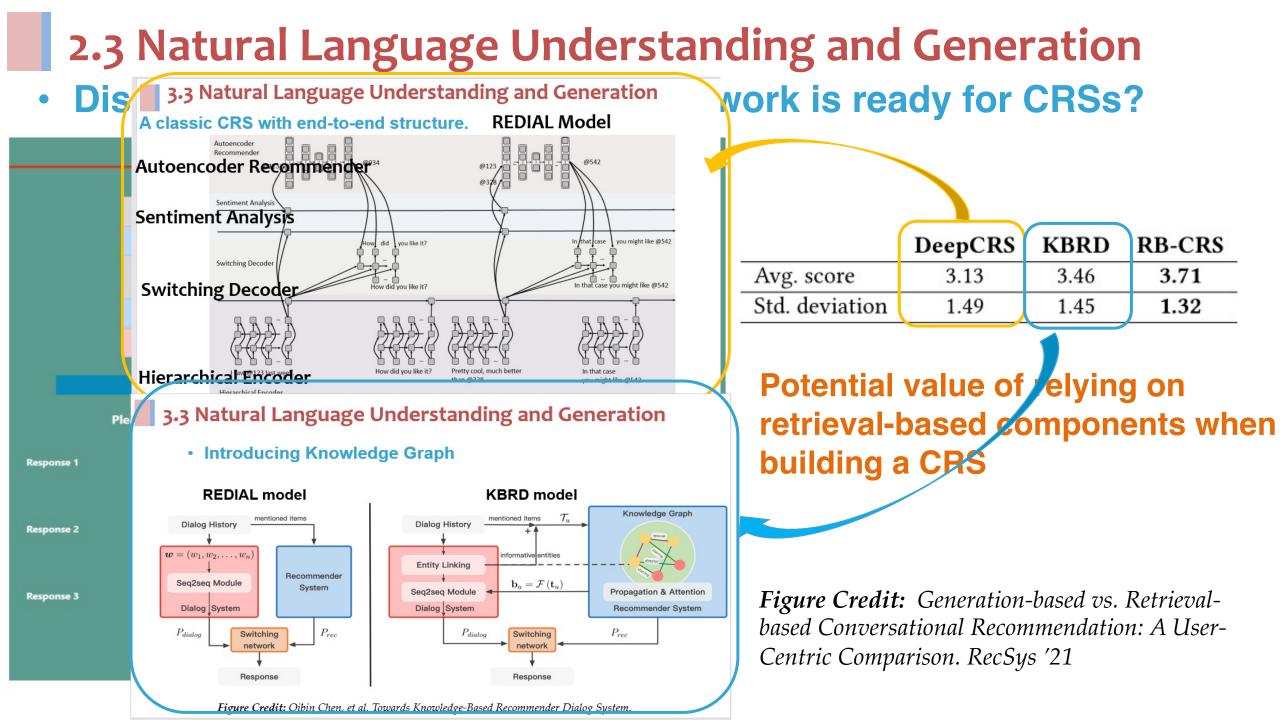
User: I don't want to watch a comedy right now.

Model: <u>How about</u> Ice Age? It is a very good anime with a lot of action adventure. **User:** I don't like anime, but action movie sounds good.

Model: <u>I recommend</u> Mission Impossible. This is by far the best of the action series. **User:** Sounds great. Thanks for the recommendation! *Figure Credit:* Zhongxia Chen, et al. Towards Explainable Conversational Recommendation. IJCAI'20

Predefined Template

Generated Explanation



- 2.3 Natural Language Understanding and Generation
- Discussion: Whether generation network is ready for CRSs?
 - Another view: end-to-end learning may have a long way to go?

As a study conducted on the state-of-the-art baselines shows:

- For each system, about one-third of the system utterances are not meaningful in the given context and would probably lead to a breakdown of the conversation in a human evaluation.
- 2. Less than two-thirds of the recommendations were considered to be meaningful in a human evaluation.
- 3. Neither of the two systems ``generated'' utterances, as almost all system responses were already present in the training data.

Jannach and Manzoor. End-to-End Learning for Conversational Recommendation: A Long Way to Go? Recsys '20 Workshop

- Summarized problems in existing CRSs based on dialogue systems:
 - Focusing on deep end-to-end NLP models to fit the patterns from human conversations.
 - Failure to generate new conversation;
 - Failure to produce satisfying recommendation

(Jannach et al.).

Source: Dietmar Jannach and Ahtsham Manzoor. 2020. End-to-End Learning for Conversational Recommendation: A Long Way to Go? (RecSys Workshop 2020)

However, it is worthy of trying, since natural language have the advantages:

- Flexible.
- Natural for users.

I. Introduction

II. Five important challenges

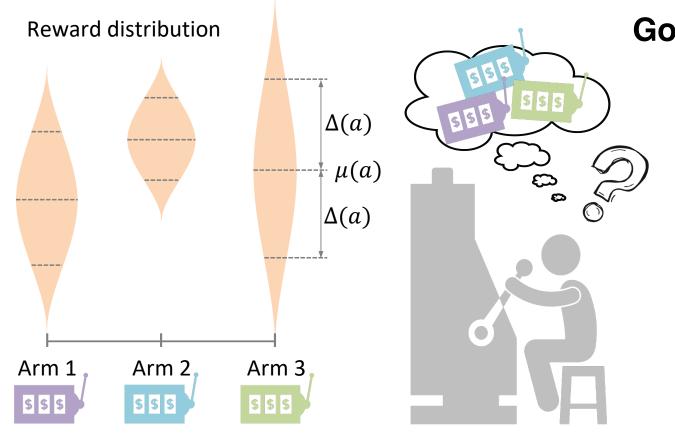
- 2.1 Question-based user preference elicitation
- 2.2 Multi-turn conversational recommendation strategies
- 2.3 Natural language understanding and generation
- 2.4 Trade-offs between exploration and exploitation (E&E)

2.5 Evaluation and user simulation

III. Promising future directions

Multi-armed Bandit problem: A gambler needs to decide which arm to pull to get the maximal reward.

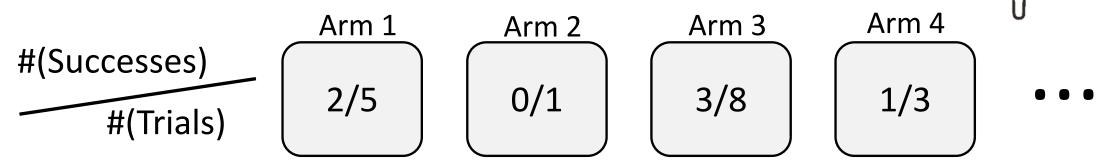
He can only estimate the statistics, e.g., the mean $\mu(a)$ and uncertainty $\Delta(a)$ of each arm by doing experiments.



Goal: To maximize the cumulative reward, which can be formulated as minimizing the regret function (the difference between the theoretically optimal expected cumulative reward and the estimated expected cumulative reward):

$$\mathbf{E}\left[\sum_{t=1}^{T} r_{t,a^*}\right] - \mathbf{E}\left[\sum_{t=1}^{T} r_{t,a}\right]$$

Multi-armed bandit example: which arm to select next?



Common intuitive ideas:

- **Greedy:** trivial exploit-only strategy
- **Random:** trivial explore-only strategy
- **Epsilon-Greedy:** combining Greedy and Random.
- Max-Variance: only exploring w.r.t. uncertainty.

Upper Confidence Bounds (UCB)

Arm selection strategy:

According to Hoeffding's Inequality

Exploitation Exploration

$$\hat{a} = \arg \max_{a} \hat{Q}(a) + \Delta(a)$$

 $Q(a) : \text{ The true mean of reward of arm } a.$
 $\hat{Q}(a) = \frac{1}{N} \sum_{t=1}^{N_{a}} r_{t,a} : \text{ The mean of estimated reward of arm } a.$
 $\Delta(a) : \text{ The uncertainty of } \hat{Q}(a).$
 $P[Q(a) > \hat{Q}(a) + \Delta(a)] \le e^{-2N_{a}\Delta(a)}$
By setting: $p = e^{-2N_{a}\Delta(a)}$, we have: $\Delta(a) = \sqrt{\frac{-\log p}{2N_{a}}}$

2.4 Trade-offs between Exploration and Exploitation (E&E) **A Contextual-Bandit Approach with Linear Reward (LinUCB) Solution to personalized recommendation:** $\mathbf{X}_{t,a}$ User feature 1 Item feature 1 • Modelling **contextual information** into the bandit **User-item** reward function by assuming expected payoff of a User feature 2 contextual Item feature 2 features arm a is **linear** in its d-dimensional feature $\mathbf{X}_{t,a}$ User feature 3 Item feature 3 $\mathbf{E}[r_{t,a}|\mathbf{X}_{t,a}] = \mathbf{X}_{t,a}^{\mathrm{T}}\boldsymbol{\theta}_{a}$

• Let \mathbf{D}_a be a matrix of dimension $m \times d$ at trial t (i.e., m contexts $\mathbf{X}_{t,a}^{\mathrm{T}}$ that are observed previously for arm a), the close-form solution of $\boldsymbol{\theta}_a$ is

$$\boldsymbol{\theta}_a = (\mathbf{D}_a^{\mathrm{T}} \mathbf{D}_a + \mathbf{I}_a)^{-1} \mathbf{D}_a^{\mathrm{T}} \boldsymbol{c}_a$$

• The arm selection strategy is: **Exploitation Exploration**

$$a_t \stackrel{\text{\tiny def}}{=} \arg\max_a \left(\mathbf{X}_{t,a}^{\mathrm{T}} \boldsymbol{\theta}_a + \alpha \sqrt{\mathbf{X}_{t,a}^{\mathrm{T}} \mathbf{A}_a^{-1} \mathbf{X}_a} \right)$$

where
$$\mathbf{A}_{a} \stackrel{\text{\tiny def}}{=} \mathbf{D}_{a}^{\mathrm{T}} \mathbf{D}_{a} + \mathbf{I}_{a}$$

 $\alpha = 1 + \sqrt{\ln(2/\delta)/2}$

Li et al. "A Contextual-Bandit Approach to Personalized News Article Recommendation" (WWW' 10)

E&E-based methods adopted in IRSs (interactive RSs) and CRSs

	Mechanism	Publications
	Linear UCB considering item features	[92]
	Considering diversity of recommendation	[137, 103, 40]
	Cascading bandits providing reliable negative samples	[84, 231]
MAB in IRSs	Leveraging social information	[205]
	Combining offline data and online bandit signals	[145]
	Considering pseudo-rewards for arms without feedback	[30]
	Considering dependency among arms	[180]
	Considering exploration overheads	[198]
	Traditional bandit methods in CRSs	[32]
MAB in CRSs	Conversational upper confidence bound	[209]
	Conversational thompson sampling	[95]
	Cascading bandits augmented by visual dialogues	[205]
Meta learning for CRSs	Learning to learn the recommendation model	[87, 235, 188]

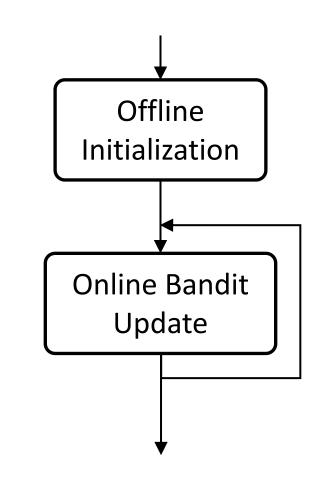
Chongming Gao et al. Advances and Challenges in Conversational Recommender Systems: A Survey (AI Open' 21)

Setting:

- Applying multi-armed bandit algorithms in interactive recommendation applications.
- The model is initialized from offline data, and updated in the dynamic interactions.

Advantages:

- The model can modify its parameters on the fly.
- Diversity of the model is explored, and users have chances to see new item they never interacted before.



2.4 Trade-offs between Exploration and Exploitation (E&E) Bandit algorithm in Conversational Recommendation System

Т

Traditional recommendation model

Absolute Model. First, let us assume that we have observed tuples of the form (user i, item j, 1/0).⁴ The model estimates the *affinity* of user i to item j based on the biases and traits. The generative procedure is:

- 1. User *i* has traits $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \sigma_1^2 \mathbf{I})$, bias $\alpha_i \sim \mathcal{N}(\mathbf{0}, \sigma_2^2)$.
- 2. Item j has traits $\mathbf{v}_j \sim \mathcal{N}(\mathbf{0}, \sigma_1^2 \mathbf{I})$, bias $\beta_j \sim \mathcal{N}(0, \sigma_2^2)$.
- 3. (a) The (unobserved) affinity is

 $y_{ij} = lpha_i + eta_j + \mathbf{u}_i^T \mathbf{v}_j.$

Observations are modeled as the noisy estimate $\hat{y}_{ij} \sim \mathcal{N}(y_{ij}, \epsilon_{ij})$, where ϵ_{ij} models the affinity variance, accounting for noise in user preferences. This yields an observation of whether the user likes an item (\hat{r}_{ij}) :

 $\hat{r}_{ij} = \mathbf{1}[\hat{y}_{ij} > 0].$

`Traditional MF-based recommendation model

bandit model

Greedy: $j^* = \arg \max_j y_{ij}$ A trivial *exploit*-only strategy: Select the item with highest estimated affinity mean. **Random:** $j^* = random(1,N)$ A trivial *explore*-only strategy. Maximum Variance (MV): $j^* = \arg \max_i \epsilon_{ii}$ A *explore*-only strategy, variance reduction strategy: Select the item with the highest noisy affinity variance. Maximum Item Trait (MaxT): $j^* = \arg \max_i ||\mathbf{v}_i||_2$ Select the item whose trait vector \mathbf{v}_i contains the most information, namely has highest L2 norm $\|\mathbf{v}_i\|_2 =$ $\sqrt{v_{j1}^2 + v_{j2}^2 + \ldots + v_{jd}^2}$. Minimum Item Trait (MinT): $j^* = \arg \min_i ||\mathbf{v}_i||_2$ Select the item with trait vector with least information. **Upper Confidence (UCB):** $j^* = \arg \max_i y_{ij} + \epsilon_{ij}$ Based on UCB1 [3]: Pick the item with the highest upper confidence bound, namely mean plus variance (95% CI) Thompson Sampling (TS) [5]: $j^* = \arg \max_j \hat{y}_{ij}$ For each item, sample the noisy affinity from the posterior. Select item with the maximum sampled value. **Common bandit strategies**

Christakopoulou et al. "Towards Conversational Recommender Systems" (KDD' 16)

(1)

(2)

Setting: Offline initialization + Online updating

- Offline stage: M users interact with N items. For each user, we sample 10 dislikes
- Online stage: Ask 15 questions. Each question is followed by a recommendation.
- Metric: Average precision AP@10, which is a widely used recommendation metric.

Synthetic data:

- Offline learning on generated N=200 restaurant and M=200 users. The types of restaurants and users are list in the table.
- For each offline user, we sample 10 items from their liked category as likes and 10 items from the rest of the categories as dislikes
- Online learning for 60 cold-start users for each type.

Restaurant types	%
expensive	15%
cheap & spicy	5%
cheap & not-spicy	10%
only cheap	35%
only not-spicy	15%
only spicy	20%
User types	%
User typesLike expensive	% 20%
Like expensive	20%
Like expensive Like spicy	20% 15%
Like expensive Like spicy Like not-spicy	20% 15% 25%

Setting: Offline initialization + Online updating

- Offline stage: M users interact with N items. For each user, we sample 10 dislikes $_{\circ}$
- Online stage: Ask 15 questions. Each question is followed by a recommendation.
- Metric: Average precision AP@10, which is a widely used recommendation metric.

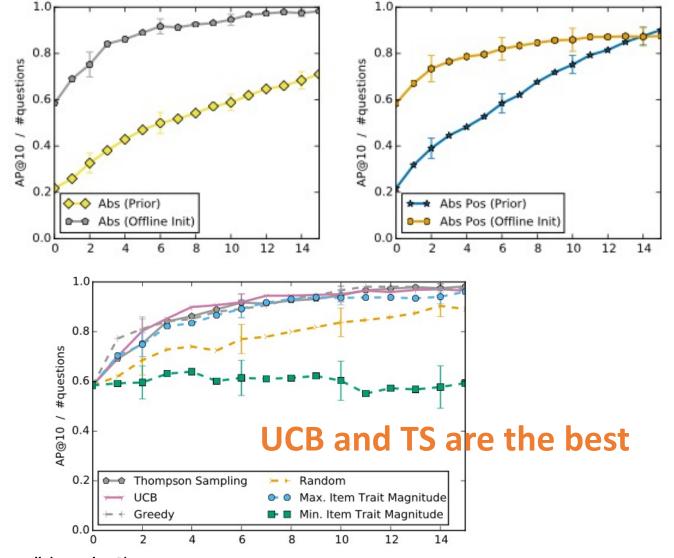
Real data: collected from restaurant searching logs

- Offline learning on collected M = 3549 users, N = 289 restaurants, and 9330 positive observations.
- Recruit 28 users to rate on the selected 10 restaurants.
- Online cold-start user preference learning: Sample 50 user based on the 28 ground truth:
 - 1. Randomly sample one of the 28 participants.
 - 2. Observe the sampled user's labels on the pool of 10 restaurants asked in the user study.
 - 3. Infer user's preference vector u_i
 - 4. Sample $\hat{u}_i \sim u_i$. Set \hat{u}_i to be the new prior of u_i .
 - 5. With this prior, infer the ratings r_i distribution.
 - 6. Sample ratings from their distribution $\hat{r}_i \sim r_i$

2.4 Trade-offs between Exploration and Exploitation (E&E) The offline initialization improve perforance

Conclusion:

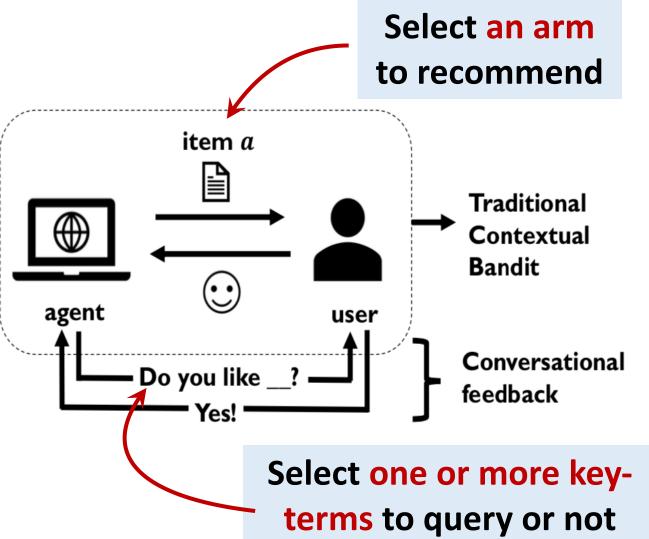
- The bandit can help improve model performance.
- Offline initialization brings significant improvement.
- E&E (UCB and Thompson Sampling) methods outperform the trivial Exploit-only and Explore-only methods.



2.4 Trade-offs between Exploration and Exploitation (E&E) ConUCB Model: Select an arm

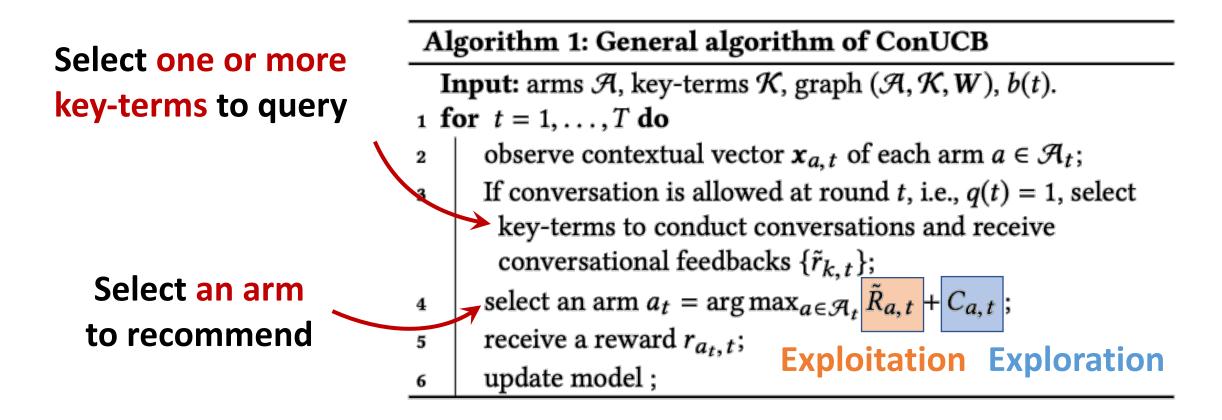
Setting:

- Asking questions about not only the bandit arms (items), but also the key-terms (categories, topics).
- One key-term is related to a subset of arms. Users' preference on keyterms can propagate to arms.
- Each arm has its own features.



Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)

ConUCB Model:



Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)

When to query the key-terms:

- Define a function b(t), which determines:
 - (1) whether to converse at round t.
 - (2) the number of conversations until round t.
- Consider the function q(t):

$$q(t) = \begin{cases} 1, & b(t) - b(t-1) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- If q(t) = 1, query about key-term for b(t) b(t 1) times;
- If q(t) = 0, does not query about a key-term;
- For users' experience, key-term-level conversations should be less frequent than arm-level interactions, i.e., b(t) ≤ t, ∀t.

Examples:

1) The agent makes k conversations in every m rounds. |t| = |t|

$$(t) = k \left\lfloor \frac{\iota}{m} \right\rfloor, m \ge 1, k \ge 1,$$

2) The agent makes a conversation with a frequency represented by the logarithmic function of *t*.

$$p(t) = \lfloor \log(t) \rfloor$$

3) There is no conversation between the agent and the user. $b(t) \equiv 0$

Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)

The core strategy to select arms and key-terms:

• Selecting the arm with the largest upper confidence bound derived from both arm-

level and key-term-level feedbacks, and receives a reward.

User preference computed on key-term-level rewards

$$\begin{split} \tilde{\theta}_{t} &= \arg\min_{\tilde{\theta}} \sum_{\tau=1}^{t} \sum_{k \in \mathcal{K}_{\tau}} \left(\frac{\sum_{a \in \mathcal{A}} w_{a,k} \tilde{\theta}^{T} \mathbf{x}_{a,\tau}}{\sum_{a \in \mathcal{A}} w_{a,k}} - \tilde{r}_{k,\tau} \right)^{2} + \tilde{\lambda} \|\tilde{\theta}\|_{2}^{2}, \\ \text{User preference computed on arm-level rewards}} \\ \theta_{t} &= \arg\min_{\theta} \lambda \sum_{\tau=1}^{t-1} (\theta^{T} \mathbf{x}_{a_{\tau},\tau} - r_{a_{\tau},\tau})^{2} + (1-\lambda) \|\theta - \tilde{\theta}_{t}\|_{2}^{2}. \end{split}$$
The strategy of arm selection is
$$a_{t} &= \arg\max_{a \in \mathcal{A}_{t}} \underbrace{\mathbf{x}_{a,t}^{T} \theta_{t}}_{\tilde{R}_{a,t}} + \underbrace{\lambda \alpha_{t} \|\mathbf{x}_{a,t}\|_{M_{t}^{-1}} + (1-\lambda) \tilde{\alpha}_{t} \|\mathbf{x}_{a,t}^{T} M_{t}^{-1}\|_{\tilde{M}_{t}^{-1}}}_{C_{a,t}} \\ \\ \mathbf{Exploitation} \end{aligned}$$
where M_{t} is the function of θ and

The core strategy to select arms and key-terms:

• Selecting the key-terms that reduce the learning error most, and enquires

the user's preference over the key-terms. The natural idea is to select the key-term *k* that minimizes the expectation error $E[||X_t\theta_t - X_t\theta_*||_2^2]$, where θ_* is the unknown ground-truth user preference vector.

$$k = \arg \max_{k'} \left\| \boldsymbol{X}_{t} \boldsymbol{M}_{t}^{-1} \tilde{\boldsymbol{M}}_{t-1}^{-1} \tilde{\boldsymbol{x}}_{k',t} \right\|_{2}^{2} / \left(1 + \tilde{\boldsymbol{x}}_{k',t}^{T} \tilde{\boldsymbol{M}}_{t-1}^{-1} \tilde{\boldsymbol{x}}_{k',t} \right)$$

where $\tilde{\boldsymbol{x}}_{k,t} = \sum_{a \in \mathcal{A}} \frac{\boldsymbol{w}_{a,k}}{\sum_{a' \in \mathcal{A}} \boldsymbol{w}_{a',k}} \boldsymbol{x}_{a,t}.$

Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)

Evaluation setting:

- Metric: regret function: $E\left[\sum_{t=1}^{T} r_{t,a^*}\right] E\left[\sum_{t=1}^{T} r_{t,a}\right]$, where: a is the selected arm. a^* is the true optimal arm.
- Synthetic data generation:
 - We generate a pseudo feature vector \dot{x}_k for each key-term k, where each dimension is drawn independently from a uniform distribution U(-1, 1)
 - 2) For each arm a, we sample n_a key-terms uniformly at random from K without replacement as its related key-terms set y_a .
 - Each dimension *i* of the feature x_a is independently drawn from $N(\sum_{k \in y_a} \frac{\dot{x}_k(i)}{n_a}, \sigma_g^2)$ 3)
 - We generate N_u users, each of whom is associated with a *d*-dimensional vector θ_u , i.e., the ground-truth of user u's preference. Each dimension of θ_u is drawn from a uniform distribution U(-1, 1).

Synthesizing true reward $\begin{cases} 5 \end{cases}$ The true arm-level reward $r_{a,t}$ is $r_{a,t} = x_{a,t}^T \theta + \epsilon_t$; ϵ_t is the noise sampled from $N(0, \sigma_g^2)$. (b) The true key-term-reward $\tilde{r}_{k,t}$ is: $\mathbb{E}[\tilde{r}_{k,t}] = \sum_{a \in \mathcal{A}} \frac{w_{a,k}}{\sum_{a' \in \mathcal{A}} w_{a',k}} \mathbb{E}[r_{a,t}], \quad k \in \mathcal{K}.$

Synthesizing features of arms and key-terms

- Synthesizing ⁽⁴⁾ user preferences

2.4 Trade-offs between Exploration and Exploitation (E&E) Evaluation setting for real data:

- How to simulate users' ground-truth rewards on unobserved arms?
 - 1. Use interactions of test set as known rewards $r_{a,t}$
 - 2. Given users' feature $x_{a,t}$ on an arm a.
 - 3. Estimate users preferences θ using ridge regression:

$$\theta = \arg\min_{\theta} \sum_{t=1}^{|T_a|} (x_{a,t}^T \theta - r_{a,t})^2 + ||\theta||^2$$

4. Simulate the ground-true arm-level reward $r_{a,t}$ on unobserved arms by:

$$r_{a,t} = x_{a,t}^T \theta + \epsilon_t$$

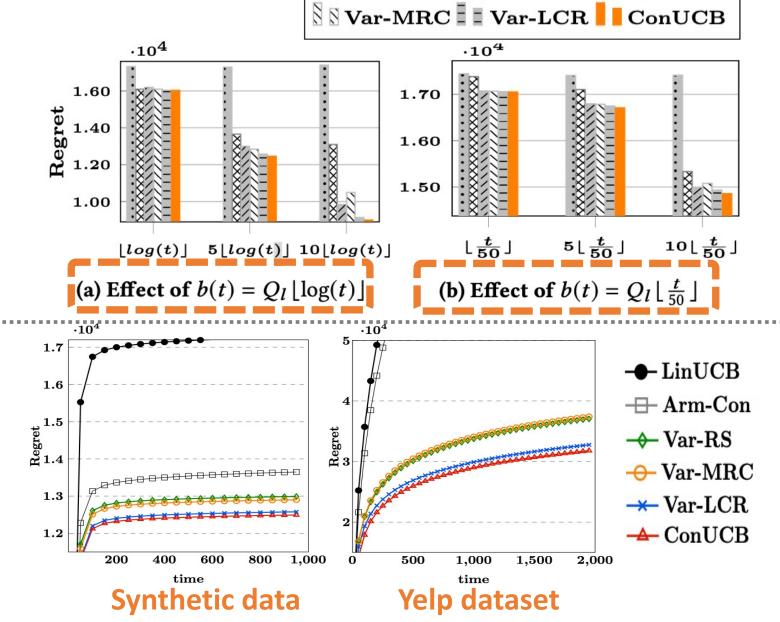
5. Simulate the ground-true key-term-level reward $\tilde{r}_{k,t}$ by:

$$\mathbb{E}[\tilde{r}_{k,t}] = \sum_{a \in \mathcal{A}} \frac{w_{a,k}}{\sum_{a' \in \mathcal{A}} w_{a',k}} \mathbb{E}[r_{a,t}], \quad k \in \mathcal{K}.$$

Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)

Evaluation result:

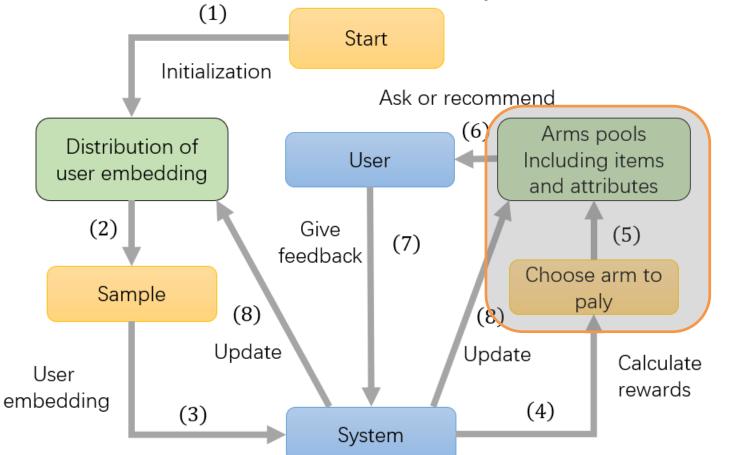
- How b(t) (times of query keyterms) affect the bandit regret:
 The more times of queries,
 the better the performance
- The performance of different algorithms: The proposed
 ConUCB outperforms others in terms of Regret.
- Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)



LinUCB Arm-Con Z Var-RS

ConTS model:

- 1. Automatically alternate asking questions and making recommendations.
- 2. Addressed the cold-start user problem.



The core idea:

- There are N+M arms (actions).
- Each arm corresponds to either:
 - (1) asking a question out of **N** questions, or
 - (2) making a recommendation out of <mark>M</mark>.
- Let the model decide.

Shijun Li et al. Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users. TOIS' 2021.

ConTS model: Core idea

• The expected reward of arm *a* (either an item or an attribute) for user *u* as:

$$\mathbb{E}[r(a, u, \mathcal{P}_{u})] = \mathbf{u}^{\mathsf{T}} \mathbf{x}_{a} + \sum_{p_{i} \in \mathcal{P}_{u}} \mathbf{x}_{a}^{\mathsf{T}} \mathbf{p}_{i},$$

Preference for the item Preference for the attributes of the item

Arm Choosing: selecting the arm with highest reward.

Indiscriminate arms for items and attributes:

- If the arm with highest reward is attribute: system asks.
- If the arm with highest reward is item: system recommends top K items.

Li et al. Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users (TOIS' 21)

Outline

I. Background

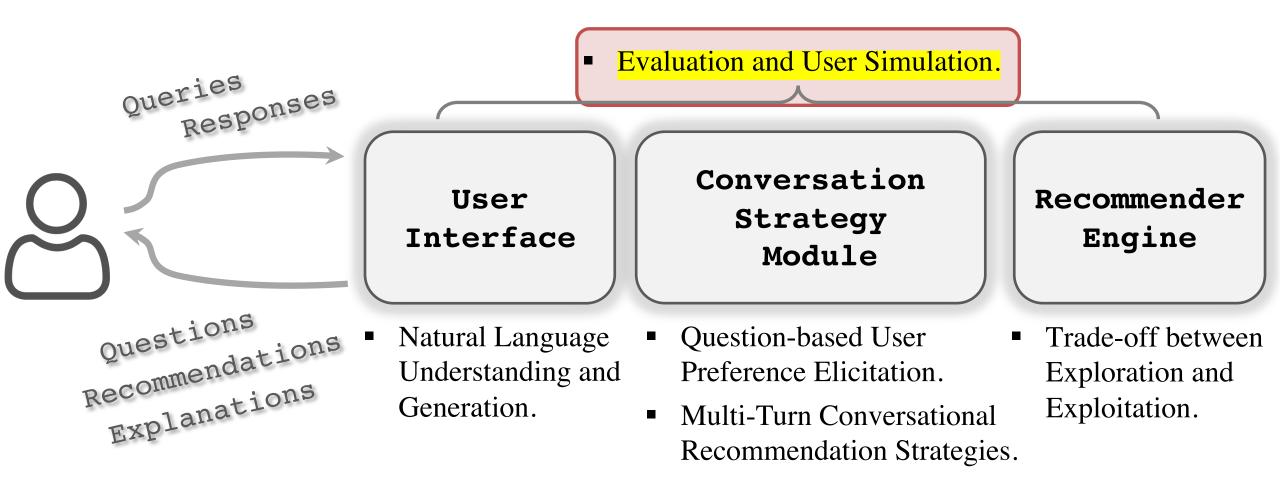
II. Five important challenges

- 2.1 Question-based user preference elicitation
- 2.2 Multi-turn conversational recommendation strategies
- 2.3 Natural language understanding and generation
- 2.4 Trade-offs between exploration and exploitation (E&E)

2.5 Evaluation and user simulation

III. Promising future directions

Outline



■ How to evaluate CRSs in terms of turn-level performance?

- How good is the recommendation?
- How good is the response generation?
- How to evaluate CRSs in terms of conversation-level (global) performance?
 - Online test (A/B test) and off-policy evaluation
 - User simulation

Two kinds of metrics:

Turn-level Evaluation

- Evaluation of Recommendation:
 RMSE, MSE, recall, precision,
 F1-score, Hit, NDCG, MAP, MRR
- Evaluation of DialogueGeneration: BLEU, Rouge

Conversation-level Evaluation:

- **AT** (average turn), the lower the
 - better as the system should achieve the goal as soon as possible.
- SR@k (success rate at k-th turn), the higher the better.

Turn-level evaluation: assume we know the ground-truth answer

- Metric for evaluate recommendation performance
 - Rating-based metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

$$MSE = rac{1}{n} \sum_{i=1}^{n} \left(\hat{y}_i - y_i
ight)^2 \qquad RMSE = \sqrt{\sum_{i=1}^{n} rac{(\hat{y}_i - y_i)^2}{n}}$$

Measuring the difference between the actual and predicted answer

Ranking-based metrics: Hits, Precision, Recall, F1-score, Mean Reciprocal Rank (MRR), Mean Average Precision (MAP), and Normalized Discounted Cumulative Gain (NDCG)

$$Precision = \frac{|\{True\} \cap \{Predicted\}|}{|\{Predicted\}|} \qquad Recall = \frac{|\{True\} \cap \{Predicted\}|}{|\{True\}|}$$

Measuring whether the algorithm ranks items proportional to their relevance

Turn-level evaluation: assume we know the ground-truth answer

D Potential problem:

- Some studies only sample a small set of irrelevant items and calculate the ranking metrics on this small set.
- (Krichene and Rendle, KDD' 20) show that measuring the results on the sampling set could be inconsistent with the true ranking results.

Suggestion: avoiding sampling when measuring.

Krichene and Rendle. On Sampled Metrics for Item Recommendation. KDD '20

Turn-level evaluation: assume we know the ground-truth answer

- Metric for evaluate the performance of response generation
 - □ Traditional metrics: BLEU, ROUGE, etc.

$$BLEU = \frac{|\{Reference words\} \cap \{Generated words\}|}{|\{Reference words\}|}$$

(Similar to Precision in recommendation)

 $ROUGE = \frac{|\{Reference words\} \cap \{Generated words\}|}{|\{Generated words\}|}$

(Similar to Recall in recommendation)

Turn-level evaluation: assume we know the ground-truth answer

Problem: sensitive to lexical variation, e.g., "good" and "great"

Our goal: not to predict the response with the highest probability, but rather the long-term success of the dialogue.

Specialized Metrics: fluency, consistency, readability, informativeness, diversity, and empathy.

Chia-Wei Liu et al. How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. EMNLP' 16

Conversation-level evaluation: for long-term gain

Problems in turn-level evaluation:

- CRS is not a supervised learning task. The answer is not known in advanced.
- The interaction process is not i.i.d., but rely on historical actions and user feedback.

Solution: Using conversation-level evaluation to measure the long-term gain.

Conversation-level evaluation: for long-term gain

Metrics:

- Average turn (AT) : The smaller the better.
- Success rate at the *t*-th turn (SR@*t*): The larger the better.
 - Definition of success: click, watching time.
- Cumulative rewards:

$$J(\pi) = \mathbb{E}_{ au \sim \pi(au)} \left[\sum_{t=0}^T \gamma^t r(\mathbf{s}_t, \mathbf{a}_t)
ight]$$

 τ : A sequence of historical interactions $((s_1, a_1) \dots (s_t, a_t))$ $\pi(\tau)$: The probability distribution of trajectory τ under policy π γ : Discount factor.

 $r(s_t, a_t)$: The mean of estimated reward of arm a.

Conversation-level evaluation: for long-term gain

Online User Test (A/B test)

Interact with true users and compute the cumulative reward:

$$J(\pi) = \mathbb{E}_{ au \sim \pi(au)} \left[\sum_{t=0}^T \gamma^t r(\mathbf{s}_t, \mathbf{a}_t)
ight]$$

- Problems: Not practical in reality!
 - 1. Too slow and inefficient.
 - 2. Hurt user experience.

Conversation-level evaluation: for long-term gain

Off-policy Evaluation (Counterfactual Evaluation)

what would have happened if instead of π_{β} we would have used π_{θ} ?

- π_{θ} is our current target policy, π_{β} is the behavior policy (logging policy) under which we collect historical data.
- Key idea: Using importance sampling or inverse propensity score:

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\beta}(\tau)} \left[\frac{\pi_{\theta}(\tau)}{\pi_{\beta}(\tau)} \sum_{t=0}^{T} \gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$w(\tau) = \frac{\pi_{\theta}(\tau)}{\pi_{\beta}(\tau)} \text{ is the weight to address the distribution}$$
$$mismatch \text{ between } \pi_{\beta} \text{ and } \pi_{\theta}$$

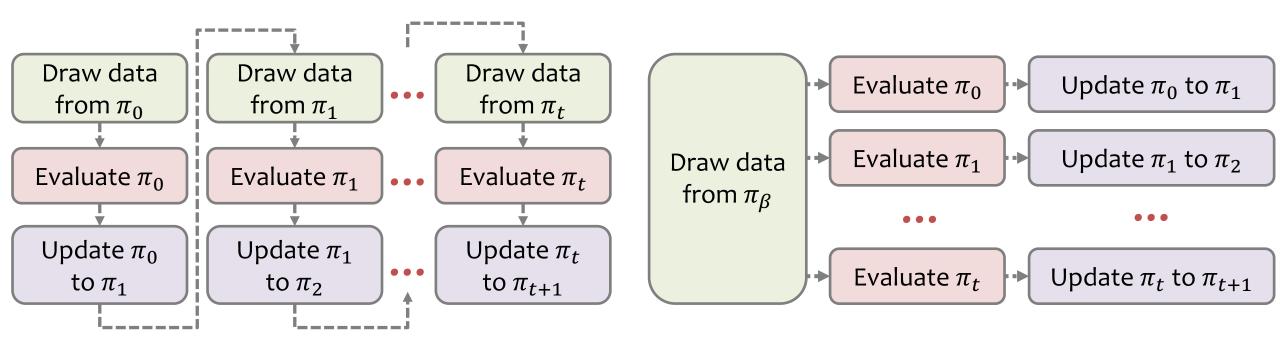
Conversation-level evaluation: for long-term gain

Online User Test

Off-policy Evaluation

$$J(\pi) = \mathbb{E}_{ au \sim \pi(au)} iggl[\sum_{t=0}^T \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) iggr]$$

$$J(\pi_{ heta}) = \mathbb{E}_{ au \sim \pi_{eta}(au)} igg[rac{\pi_{ heta}(au)}{\pi_{eta}(au)} \sum_{t=0}^T \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) igg]$$



Conversation-level evaluation: for long-term gain

Off-policy Evaluation:

• Advantages:

- Efficient: using historical data to evaluate current policy
- Unbiased: using importance sampling
- Problems:

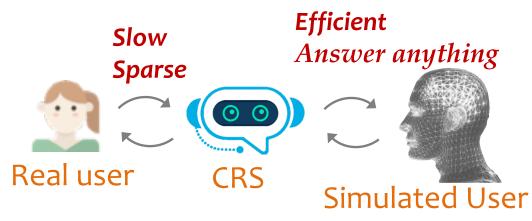
• High variance of the estimator
$$w(\tau) = \frac{\pi_{ heta}(\tau)}{\pi_{eta}(\tau)}$$

- Remedy:
 - 1. Weight clipping to limit $w(\tau)$ by an upper bound.
 - 2. Trusted region policy optimization (TRPO) to bound policy update.

1 1

User Simulation: an intuitive way to evaluate CRS

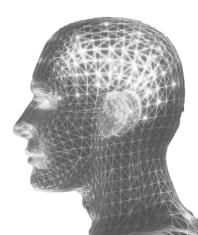
- Motivation: problems in online evaluation and off-policy evaluation
 - Online evaluation: very slow and expensive.
 - Off-policy evaluation: action space is too large, and historical data is too sparse!
- □ A natural solution: using simulate users.
 - Efficient.
 - **D** Can answer any question or query.



1. Using direct interaction history of users

- □ Similar to traditional recommendation.
- Disadvantage: Very sparse.
- 2. Estimating user preferences on all items in advance
 - **D** Solved the missing data problem
 - **Disadvantage:** May introduce estimating error
- 3. Extracting from user reviews
 - Explicitly mentions attributes, which can reflect the personalized opinions of the user on this item.
 - Disadvantage: Hard to distinguish user sentiment
- 4. Imitating human conversational corpora
 - □ Used in the dialogue system-driven CRSs
 - Disadvantage: non-transparent and hard to interpret

Chongming Gao et al. Advances and Challenges in Conversational Recommender Systems: A Survey (AI Open' 21)



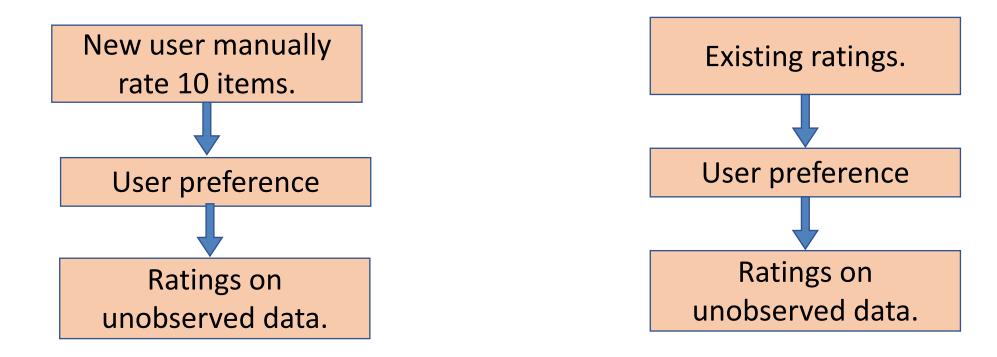
4 kinds of user simulation:

Using direct User Click History:

- Observed (user item) pairs are used as positive samples, unobserved once as negative samples.
- During one conversation session, we sample one (user item) pair.
 - During this session, the user will only like this item.
 - During this session, the user will only like the attributes of this item.

Generalize to the Whole Candidate Testing Set

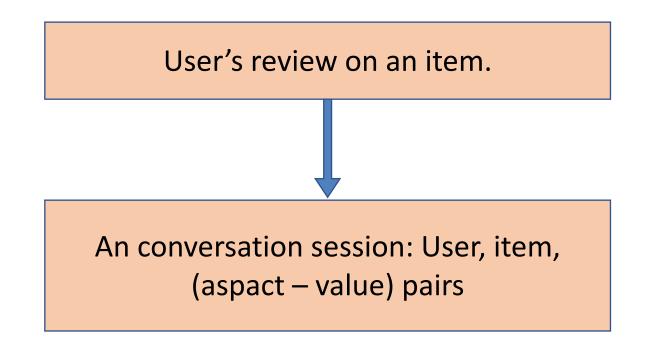
- Get user's ground-truth preference score on a small amount of data.
- Infer user's preference for the full dataset.



Christakopoulou et al. "Towards Conversational Recommender Systems" (KDD' 16) *Zhang et al. "Conversational Contextual Bandit: Algorithm and Application" (WWW' 20)*

Extract from user review:

- Each review will be used to generate a conversation session.
- "Aspect Value" pairs would be extracted from the review (e.g.
 "price" = "high", 'OS" = "Android").



Zou et al. "Towards Question-based Recommender Systems" (SIGIR' 20) Zhang et al. "Towards Conversational Search and Recommendation: System Ask, User Respond" (CIKM' 18)

Imitating human conversational corpora

HUMAN: HRED: OURS: SEEKER:	hello, can i help you find a movie ? hi what kind of movies do you like hi, how can i help you ? hello ! i would like to find a suspenseful, but clean family friendly movie .
 SEEKER:	 2001 : a space odyssey might be a great option. anything else that you would suggest ?
HUMAN:	you can try planet of the apes the older one is quite suspenseful and family friendly.
i.e. corpus	
	User actually likes "Star Wars" and
	dislikes "the planet of the apes".

 User's preference is recorded "as is" in the corpus. The evaluation is actually biased on responses in the corpus (which is often generated on AMTurker).

Disclose

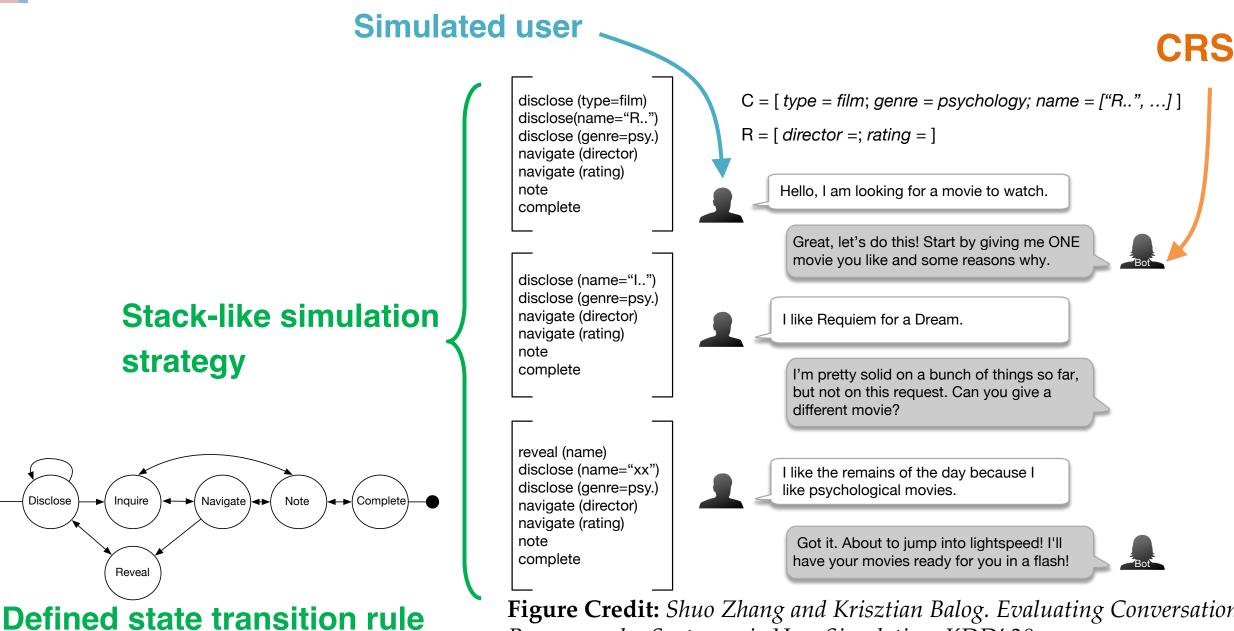


Figure Credit: Shuo Zhang and Krisztian Balog. Evaluating Conversational Recommender Systems via User Simulation. KDD' 20

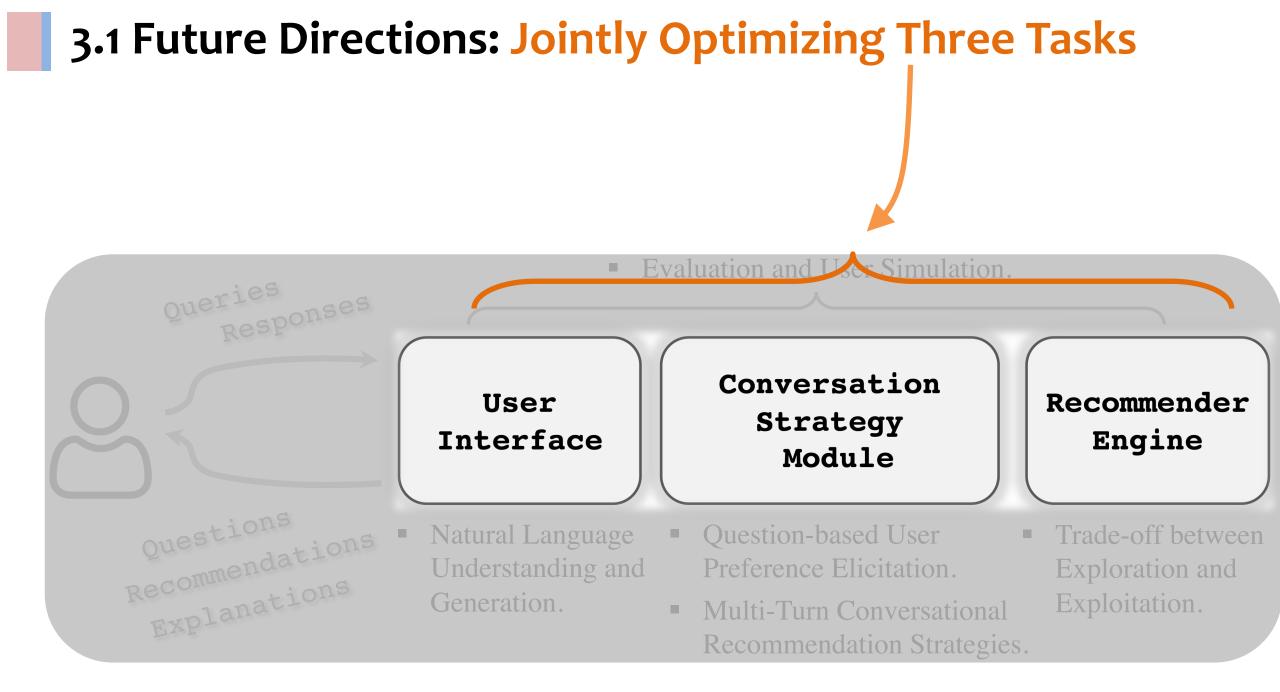
Datasets:		Dataset	#Dialogs	#Turns	Dialogue Type	Domains	Dialogue Resource	Related
	(MovieLens [7]	-			Movie	From item ratings	[217, 10 [87, 69,
Simulated from traditional RS data (without dialogues)		LastFM [7]	Depended on the dialogue			Music	From item ratings	[88, 89,
		Yelp	simulation process		Restaurant	From item ratings	[161, 88	
		Amazon [116]				E-commerce	From item ratings	[210, 47 [189, 10
	(TG-ReDial [227]	10,000	129,392	Rec., chichat	Movie, Multi topics	From item rating, and enhanced by multi topics	[227]
		DuRecDial [104]	10,190	155,477	Rec., QA, etc.	Movie, restaurant, etc.	Generated by workers	[104]
		Facebook_Rec [41]	1M	6M	Rec.	Movie	From item ratings	[41]
Collected with		OpenDialKG [123]	15,673	91,209	Rec. chitchat	Movie, Book, Sport, etc.	Generated by workers	[123]
		ReDial [94]	10,006	182,150	Rec., chitchat	Movie	Generated by workers	[94, 25,
dialogue data		COOKIE [47]	No given	11,638,418	Rec.	E-commerce	From user activities and item meta data	[47]
		MGConvRex [193]	7.6K+	73K	Rec.	Restaurant	Generated by workers	[193]
		GoRecDial [76, 111]	9,125	170,904	Rec.	Movie	Generated by workers	[76]
		INSPIRED [56]	1,001	35,811	Rec.	Movie	Generated by workers	[56]

Chongming Gao et al. Advances and Challenges in Conversational Recommender Systems: A Survey (AI Open' 21)

I. Introduction

II. Five important challenges

III. Promising future directions



3.2 Future direction: Bias and Debiasing in CRSs

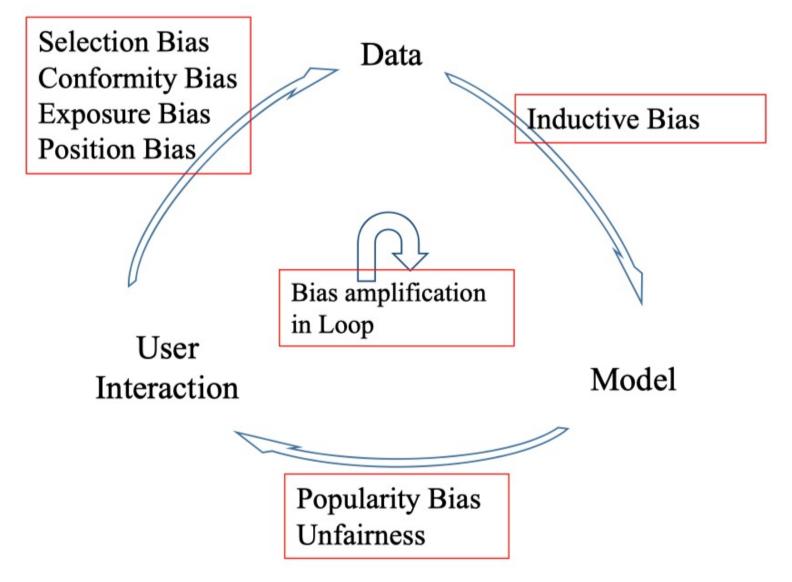
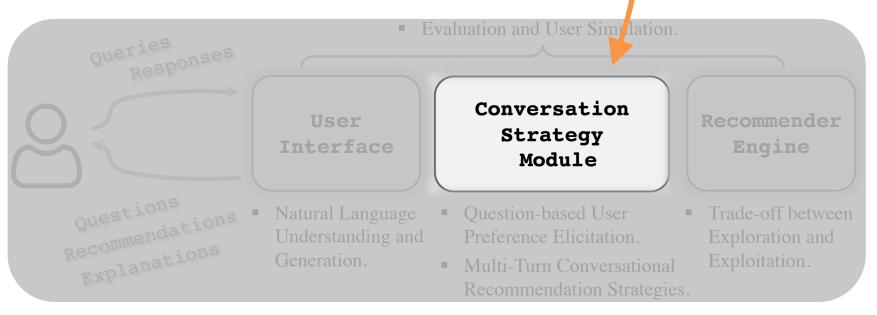


Figure Credit: *Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He.* 2020. *Bias and Debias in Recommender System: A Survey and Future Directions. arXiv preprint*

3.3 Future direction: Sophisticated Strategies

- □ How to handle negative feedback?
- □ How to handle delayed feedback?
- How to design the reward function based on the feedback?
- □ How to handle sparse rewards?



3.4 Future direction: Knowledge Enrichment

- □ To import common sense knowledge?
- □ To import visual, sound modality?

3.5 Future direction: Better Evaluation and User Simulation

□ How to simulate reliable users?

CRS itself has a promising future!

Conversational Recommender Systems are

- A promising direction for recommendation systems: solving information asymmetry and dynamic preference problem
- An opportunity to converge cutting-edge techniques to push the development of recommendation: reinforcement learning, natural language processing, explainable AI, conversational AI etc.
- An exemplary step towards the big goal of human-machine collaboration

Thanks!

Wenqiang Lei National University of Singapore (NUS) wengianglei@gmail.com Chongming Gao University of Science and Technology of China (USTC) chongminggao@mail.ustc.edu.cn Maarten de Rijke University of Amsterdam

m.derijke@uva.nl

A literature survey related to this tutorial has been published at https://arxiv.org/abs/2101.09459