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ABSTRACT

Conversational recommender systems (CRSs) provide recommen-
dations through interactive conversations. CRSs typically provide
recommendations through relatively straightforward interactions,
where the system continuously inquires about a user’s explicit
attribute-aware preferences and then decides which items to rec-
ommend. In addition, topic tracking is often used to provide natu-
rally sounding responses. However, merely tracking topics is not
enough to recognize a user’s real preferences in a dialogue.

In this paper, we address the problem of accurately recogniz-
ing and maintaining user preferences in CRSs. Three challenges
come with this problem: (1) An ongoing dialogue only provides
the user’s short-term feedback; (2) Annotations of user preferences
are not available; and (3) There may be complex semantic corre-
lations among items that feature in a dialogue. We tackle these
challenges by proposing an end-to-end variational reasoning ap-
proach to the task of conversational recommendation. We model
both long-term preferences and short-term preferences as latent
variables with topical priors for explicit long-term and short-term
preference exploration, respectively. We use an efficient stochastic
gradient variational Bayesian (SGVB) estimator for optimizing the
derived evidence lower bound. A policy network is then used to
predict topics for a clarification utterance or items for a recommen-
dation response. The use of explicit sequences of preferences with
multi-hop reasoning in a heterogeneous knowledge graph helps to
provide more accurate conversational recommendation results.

Extensive experiments conducted on two benchmark datasets
show that our proposed method outperforms state-of-the-art base-
lines in terms of both objective and subjective evaluation metrics.
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1 INTRODUCTION

The task of a conversational recommender system (CRS) is to pro-
vide recommendations to users through conversational interactions.
Interest in conversational recommendations (CRs) is rising. Algo-
rithmic approaches to CRs can be divided into attribute-aware and
topic-guided. The former kind accomplishes a specific recommenda-
tion goal in a multi-turn conversation scenario by inquiring about
the user’s preferred attributes [6, 19, 22, 34, 49]. In Figure 1(a) we
see an example of an attribute-aware CRS that continually asks
attribute-aware questions, while the user only needs to answer
“yes/no” to let the system understand the user’s explicit preferences.
Attribute-aware CRSs focus on when and what to ask before decid-
ing about the item(s) to be recommended.

Topic-guided approaches to CRs are usually integrated with task-
oriented dialogue systems (TDSs). Several recent studies on CRSs
focus on providing responses through naturally sounding conver-
sations, where the user’s preference is implicitly reflected by their
utterances. To help the system comprehend complicated dialogue
interactions, so-called dialogue topics, i.e., sets of keywords, are in-
troduced to guide the conversational recommender system (CRS)
model to output responses [28, 31, 35, 55, 56]. Early studies on topic-
guided approaches to CRSs extract topics from each utterance in-
dependently. Later work applies topic threads to guide the conver-
sation [see, e.g., 57]. In Figure 1(b) we show an example of a topic-
guided CRSs as well as the dialogue topics.

Preferences. Topics are not enough to fully capture user prefer-
ences in CRSs as they only reflect part of the information shared in
a conversation. In Figure 1(b) we put the topics and user preference
side-by-side and find inconsistencies between the two. How can we
capture user preferences more accurately so as to provide accurate
recommendation results? It is customary to distinguish between a
user’s long-term preferences and their short-term preferences [12,
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Conversation Conversation Topic Path
A Hi! I'm looking for a what are you doing? greeting
skirt.
@ A I'm looking at actors and stars on Weibo. ] |
actor
User Preference User Preference
skirt actor Weibo social help star
. Who are you following? | followed Wang
How about a skirt for Weizhong a few days ago. Wang Weizhong
autumn? [~ Tdon't follow him. T followed Kim Ki-
A o | duk.Could you recommend me some of
{} L his romance films? ) )
Kim Ki-duk
User Preference User Preference
autumn skit romance actorlove director KiM horror star Wang
& Ki-duk Weizhong
How about a skirt made | recommend "Crocodile” , a movie that
of wool? people who believe in love must not miss.
O [ ves! Kim Ki-duk's debut is just like Kim Ki-duk, it's
[ Yest | 2
- - am rare! Are there any other more famous works of famous
@ Kim Ki-duk, not necessarily romance films?
User Preference Q a
’ User Preference h
skirt autumn mde of
. wool .famours love popular sea romance kid Kim Ki-duk :
How about these skirts? "Real fiction" meets your requirements. uu:-,\}
& A [Greal. I will watch this movie, thanks a lot, bye!]

(a) Attribute-aware CRS
Figure 1: Examples from two kinds of CRSs: attribute-aware
CRSs (left) and topic-guided CRSs (right).

(b) Topic-guided CRS

17, 26, 41]. Long-term preferences refer to the user’s long-term
tastes and interests, e.g., items often clicked or purchased, whereas
short-term preferences are reflected by the user’s short-term behav-
ior, e.g., clicks or feedback in the current search or recommendation
session. In a topic-guided CRS, as topics are extracted to guide the
whole conversation, we assume that both long-term preferences
and short-term preferences can be captured by lists of topics.

Challenges. The development of preference-aware CRS solutions
faces a number of challenges: (1) It is hard to acquire accurate user
preferences just through a user’s utterances in an ongoing dialogue.
To the best of our knowledge, there is no CR approach that simul-
taneously models the user long-term preference and short-term
preference. (2) In a CRS, it is difficult to annotate long-term and
short-term preferences due to privacy concerns and substantial
costs. (3) Existing approaches to CRS have a limited semantic un-
derstanding of items and topics, which makes it hard to generate
knowledgeable responses in a recommendation context.

Our proposal. We propose a method for jointly modeling long-
term and short-term preferences in CR, user preference conversa-
tional recommender (UPCR). UPCR consists of a user preference ex-
plorer component and a policy network component to detect user
preferences and perform recommendations, respectively. By jointly
inferring long-term preferences from historical conversations and
short-term preferences from the current conversation, UPCR per-
forms variational reasoning to acquire accurate user preferences.

To tackle the challenge of limited annotation, UPCR considers the
user’s long-term and short-term preference as dual latent variables
inferred in a variational Bayesian manner. We employ a stochastic
gradient variational Bayesian (SGVB) estimator to efficiently ap-
proximate the exact posterior distribution of preferences via two
approximate inference processes simultaneously. The policy net-
work component decodes topics for clarification questions and rec-
ommendations as preferred items.

Ren et al.

We tackle the challenge of limited semantic understanding by
means of external knowledge. We infer explicit topics and recom-
mendations jointly through user preference exploration and knowl-
edge path reasoning.

We conduct experiments on two benchmark datasets for conver-
sational recommendation and find that UPCR significantly outper-
forms state-of-the-art CRS baselines.

Our contributions. To sum up, our contributions are as follows:

e To the best of our knowledge, we are the first to explore user
preferences in topic-guided CRSs.

e We propose a method, UPCR, to address challenges about long-
term and short-term preferences modeling.

o UPCR performs variational reasoning for user preference mod-
eling, where long-term preferences and short-term preferences
are inferred in a variational Bayesian manner.

o UPCR generates recommendations by integrating user prefer-
ences with external knowledge.

e Experiments show that UPCR outperforms state-of-the-art base-
lines on CRS.

2 RELATED WORK

In this section, we discuss related work on conversational recom-
mendation, attribute-aware CRSs, and topic-guided CRSs.

Conversational recommendation. Building on advances in in-
teractive recommendation [4, 25, 45, 61], conversational recommen-
dation has been proposed to address the task of recommendation
through a conversation between a system and a user [2, 40]. Early
studies on CRSs formulate the task as a specific application of task-
oriented multi-turn dialogue systems (TDS) [8, 16, 47, 53]. Two
main types of conversational recommender systems (CRSs) have
been studied: attribute-aware and topic-guided.

Attribute-aware CRSs. Attribute-aware CRSs focus on the rec-
ommendation strategy in CRSs, including “whether to ask or rec-
ommend”, “which attributes to ask” or “which items to recom-
mend.” Early work tends to obtain user preferences based on asking
about items directly [5, 44, 46, 54, 62], or asking attributes through
a heuristic method [4, 29, 39, 52]. Several strategies for attribute-
aware CRSs ask a fixed number of questions and make a recommen-
dation at the last turn [18, 19, 59], whereas others automatically de-
cide on an appropriate time to recommend instead of continuing to
ask questions. Reinforcement learning strategies are widely applied
to attribute-aware CRSs. Christakopoulou et al. [5], Li et al. [22]
and Zhang et al. [51] focus on cold-start users in conversational
recommendation and extend bandit-based algorithms to balance
the trade-off between exploration and exploitation.

Recent studies focus on enabling CRS agents to automatically
decide an appropriate time to recommend instead of continuing to
ask questions [6, 18, 19, 39, 55]. Deng et al. [6] and Lei et al. [19] use
a knowledge graph derived from external data sources to improve
the recommendation performance. Attribute-based CRS methods
tend to consider simple and clear replies, and neglect complicated
user-system interactions in conversations [30].

Topic-guided CRSs. Topic-guided CRSs focus on interacting with
users through natural language conversations, emphasizing fluent
response generation and precise recommendations [3, 21, 27, 31,
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Table 1: Glossary.

Description

u, U a user and collection of all users
i, a item and collection of all items
k, K a topic and collections of topics
topic path

a word

vocabulary

max conversation turn

the input of encoder

an utterance

a conversation

short-term user preference
long-term user preference

the action

parameters in the model
parameters in Policy Network
parameters in Response Generator
o, (D) the prior distribution of /

q4, () the posterior distribution of /

>3 0C <=2

QQDQQQ:

Pe,,(m)  the prior distribution of m

q4,,(m)  the posterior distribution of m

G knowledge graph

d dimension of embedding and hidden vector
H a hidden state generated in a transformer

42, 55-58, 60]. Unlike attribute-aware CRSs, topic-guided CRSs
focus on making recommendations using free text, which creates
considerable flexibility to influence how a dialogue continues. In
the context of topic-guided CRSs, external knowledge has been
used to enhance the dialogue semantics [31] or update the user
representation [3, 55, 56].

Chen et al. [3] integrate a recommendation system and a dia-
logue system via an end-to-end framework to bridge the gap be-
tween the two systems. Liao et al. [24] utilize a pointer network to
incorporate a graph convolution network-based recommendation
method and global task control in response generation. Li et al. [21]
utilize an autoencoder [37] for recommendation and a hierarchical
RNN for response generation. Liu et al. [27] propose a multi-goal
driven conversation generation framework. It utilizes a goal plan-
ning module and a goal-guided response module to proactively lead
a conversation from chit-chat to recommendation. Zhou et al. [57]
propose a topic-guided CRS method that incorporates topic threads
to enforce transitions actively towards a final recommendation us-
ing a combination of a sequential recommender and a response gen-
erator. Chen et al. [3] utilize knowledge graphs (KGs) to enhance
the semantics of contextual items for recommendation. Zhou et al.
[56] incorporate both word-oriented and entity-oriented KGs and
bridge the semantic gap between the two KGs to enhance the user
representations. Finally, Ma et al. [31] perform tree-structured rea-
soning on a knowledge graph, for recommendation and generation.

In contrast with existing topic-guided CRS approaches, our pro-
posed method targets exploring the user preferences in a CRS,
which has not yet been addressed by previous studies.
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3 METHOD
3.1 Overview

In this section, we detail the user preference conversational recom-
mender (UPCR). Before we detail each component of the method,
we first give an overview. We first introduce the main concepts and
formulate our research problem and UPCR in Section 3.2. Since al-
most each component in UPCR has an encoder-decoder architec-
ture, we describe our encoder and decoder structure in Section 3.3.

As illustrated in Fig. 3, training UPCR comprises four processes:
(1) In the input representation component, a user encoder, a topic
path encoder, and a context encoder encode the input information
into hidden representations (see Section 3.4). (2) The preference ex-
plorer component contains long-term and short-term preference
explorers to track user preferences (see Section 3.5). (3) Based on
the user preferences, a policy network component generates topics
for clarification questions or items for recommendation (see Sec-
tion 3.6). (4) Finally, a response generator generates a response in
natural language (see Section 3.7).

3.2 Problem formulation

Table 1 lists the notation used in this paper.

We assume that users u are taken from a set U and that items i
are taken from a set 7. Words w are taken from a vocabulary V.
Following [57], we define a topic k to be a tag that can be linked
to external knowledge (e.g., DBpedia [1] or ConceptNet [38]). We
refer to a conversation C with T turns as a list of utterances, i.e.,
C={sj }jT:l, where utterance s; at the j-th turn is composed of a

sequence of words, i.e., s = {w,} wy € V. Given C, we define a

n

r=r

topic path tp to be a sequence of topics, i.e., tp = {k; }]T.:l,
refers to the topics discussed at the j-th turn. The conversational

context at the t-th turn is written as Cy = {s;} j;ll with a topic path
tpr = {k;j j;ll .
Conversational recommendation. We assume that a conversa-
tional recommender system (CRS) consists of three main stages:
preference tracking, policy management, and response generation.
At the j-th turn, given conversatonal context C; and topic path
tpj, a CRS explores user preferences via the preference tracking
stage. Then, the CRS generates an action A; according to the ex-
plored user preference, where A; consists of a set of topics or rec-
ommended items. If the action refers to topics, the recommender
raises a clarification question or a chit-chat response, otherwise the
action results in a response with recommended results. Given A;,
the CRS generates a response s; to reply to the user.

We consider UPCR as a model with parameters 6. Given a user
u, conversational context Cj, and corresponding topic path tp;, we
aim to maximize the probability distribution Pg(Aj,sjlu,Cj, tp;)
in UPCR to infer the target function y* as follows:

where k;

T
y* =1_[P9(Aj,8j|u,Cj,tpj). (1)
Jj=1

We divide the user preferences into two parts: long-term preferences
and short-term preferences. Given n dialogues, we define a text span
I (i.e., a sequence of words) to be the user’s long-term preference
reflected in historical n — 1 dialogues {C¥1,C¥2, ..., C"»-1}. For the
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U
Figure 2: The graphical representation of UPCR. Shaded
nodes represent observed variables.

current n-th dialogue, we define a text span m; as the user’s short-
term preference at the j-th turn. The short-term user preference m;
is predicted given conversational context C; and its corresponding
topic path tp;. To infer user preferences I and m;, we formulate
UPCR as a variational Bayesian generative model.

Variational Bayesian generative model. The graphical represen-
tation of UPCR is shown in Figure 2. As annotations for long-term
and short-term user preferences are impractical, we regard [ and
m; as two latent variables within a Bayesian generative model, so
we formulate y* as follows:

T
y* = I_[ng(Sj|u,Cj, tpj,Aj)-
j=1
; @)
[12. Po.(Ajlu.Cjtpj Lm;) - Po, (1) - Po,, (m)),

j=1Lm,

where Py, (sjlu,Cj, tpj, Aj) is derived using a response generator,
Py, (Ajlu,Cj, tpj,1,m;) is derived using a policy network, Py, (1)
and Py, (m;) are estimated through a long-term preference ex-
plorer and a short-term preference explorer, respectively. At the
t-th turn, m; is derived depending on the previous short-term pref-
erence m;—_1, context Cy and topic path tp;. So we define Py, (I) and
Py, (m;) as:

po,(1) = pg, (),
peo,, (mt) = pg,, (me|me_1,Ce, tpy),

®)

where 0; and 0,, are parameters in the long-term preference ex-
plorer and the short-term preference explorer respectively. Then
we derive an action A; through Py, (A |u, Cy, tpy, I, m;) with param-
eters 04, and draw a response s; from ng (stlu, Cy, tps, Ar) with pa-
rameters 6.

At the t-th turn, to maximize Eq. 2, we need to estimate the
posterior distribution 26, (I, m¢|u, Cy, tps, Ar). However, the exact
posterior distribution is intractable due to its complicated posterior
expectation estimation. Thus we apply variational inference [15] to
approximate the posterior distribution with two inference networks,

ie., qg, (1) and (m;), respectively:
9¢ 44, P y

qg, (D) = qg,(Ilu,C*1,C*2, ..., C") = qg, (Llu,C*), @
9 (Me) = qg,, (me|me—1, Cr, tpe, At),

where {C¥1,C%2, ..., C%n-1} are the historical conversations that
user u was involved in, C¥” refers to the current conversation. After
substituting Eq. 4 into H§'=1 po(AjICj, tpj, u) at the t-th turn, we

Ren et al.
have the following approximation:
t-1
[12 po.(AjIC) tpj,0)g0, (Dag,, (m)) -
sk, (5)
> po,(AtlCr,tpr,u,lme)pe, (Dpe,, (me).
ILm;

As the previous t — 1 turns of utterances already exist, we assume
the marginal distribution pg, (A;|Cj,tpj,u) = 1 when 1 < j < ¢.
Following the homogeneous Markov hypothesis [33], short-term
preference m; at the t-th turn purely relies on m;—j. Then we
infer the evidence lower bound (ELBO) to optimize both prior and
posterior networks simultaneously as follows:

log po(A¢|Cy, tpj, u)
> EQ(pm (me—1) eqpm (mt)E‘Z(pl 0] logpga (At|Ct, tpr,u, I, my)

(6)
—KL(pe,,(mi)lqg,, (mt)) — KL(pg,(Dllge, (1))
= - Laa

where E is the expectation, and KL is the Kullback-Leibler diver-
gence. To estimate Eq. 6, we first sample m?_l from qg,, (mz-1),
which is for inferring pg,_ (m;) and gy, (m;); then we sample the
prior short-term preference mf from pg, (m;) and posterior short-
term preference m? from gg, (m;). We sample the prior long-term
preference [P from pg, (1) and posterior long-term preference 14
from q,(1). Finally, pg, (A¢|") generates A; depending on m? and /9.
After obtaining action A;, a response generator with parameters 6,
generates response s;. The above procedure is illustrated in Fig. 3.

3.3 Encoder and decoders

We begin by describing the encoder used in UPCR. We then describe
three types of decoder: a decoder with ground truth, one without
ground truth, and a decoder with a copy mechanism.

Encoder. We use a transformer encoder [43] as the backbone to
encode text sequence, which contains N identical layers. X=[x1, x2,
..+ X|x|] denotes a sequence of tokens, where x, indicates the r-
th token and |X]| is the length of X. The encoder encodes X into a
sequence of hidden vectors HX as follows:

HX = [K5 13, ..., h|] = encoder(X), )

where h¥ is the hidden vector of the r-th word x,, 1 < r < |X].

Decoder with ground-truth. We employ a transformer de-
coder [43] with N identical layers as the backbone to generate
a sequence. We learn the decoder under a teacher-forcing strat-
egy [10, 48] by feeding it with a shifted ground truth sequence.
Given a ground truth word sequence y1,ys, . . ., Yly|-1, we denote
the input as Y = [bos, y1, Y2, - - - , Y|y|-1], where bos is a special to-
ken to begin the sequence. At the {-th decoding step, 1 < { < |Y],
given HX and Yls:gv_1 = [bos, y1,y2, - -
a hidden vector hg of the {-th word. After projecting hg to the vo-

-»Yz—1], the decoder outputs

cabulary space by a multilayer perceptron [9] (mlp), we have:

p(yg) = deCOderg(HX’ Ylsg—l) = softmax (mlp (hg)) ’ (8)
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Input representation Preference explorer

Long-term preference explorer

VEL(pllq)

Short-term preference explorer

" Prior long-term | sampling,  prior long-term
preference explorer preference

) > [ Posterior long-term ‘samEIinga posterior long-term
[Conversatlons _preference explorer | preference

Policy network

Response generator,

H{f ) response

Decoder
with

Decoder
with
copy

mechanism

copy
mechanism

previous Prior short-term samgllng’ prior short-term
preference preference explorer preference
A
N v KLl
1 q Posterior short term  sampling  posterior short-term
action preference explorer preference
Tralnmg process
Long-term preference explorer Transformer I\
9 P ©Xp! encoder \Ht,ﬁ‘
Prior long-term ‘ﬂpj% prior long-term g
| preference explorer | preference T P
long-term H:p
Short-term preference explorer preference =
previous Prior short-term sampling’ prior short-term p
preference preference explorer preference i short-term HA
i preference St

Test process

Figure 3: An overview of UPCR. UPCR has four components: an input representation, a preference explorer, a policy network

and a response generator.

where p(y;) is the {-th word distribution over vocabulary, decoder?
is denoted to reflect the whole process.

Decoder without ground-truth. A ground-truth sequence Y is
not always provided in CRSs stages, e.g., user preference tracking.
Following [50], we address this problem by sampling input words
via a probabilistic distribution over the preceding output. At the
{-th decoding step, we denote the input of the decoder as HX and
sampled word sequence Y. 1§ . = |bos, yi’, yé’, . ..,yg‘i_l], in which
the r-th word y? is sampled from p®(y, ). After performing the same
operation as in Eq. 8, we obtain decoder” as follows:

p°(y¢) = decoder” (Hx Ylvg 1) = softmax (mlp (hgv)) .09

Decoder with copy mechanism. In UPCR, we apply a copy mech-
anism [11] to copy words from context. Formally, given the input
X, we get output HX = (A}, B3, ... |X|] using Eq. 7. At the {-th
decoding step, the decoder outputs a hidden vector hY. The proba-

bility of generating the target word y, is the sum of the two proba-
bilities as follows:

P (yy) = —eXP (mlp ( )) p°(yr)
= E Z exp ((hé") : h’r‘) (10)
xr:yg
PP (yp) = p(ye) +p°(yo),
where Z is a normalization term shared between the two probabili-

ties. For convenience, we write the above process as:

p%(y;) = decoder?® (X, HX, Y, o) (11)

3.4 Input representation

We detail various input representations of UPCR: user represen-
tation, context representation, and topic path representation. We
encode the inputs to representations using Eq. 7. We encode user
u into a hidden vector h%. At the t-th turn, we concatenate utter-
ances in context C; = {s; t 1 in a chronological order and encode

them into Hy. The topic path tp; corresponding to the context is
encoded into topic-level hidden representation Http . Note that the
parameters of encoders that encode different types of input are not
shared. The input representation processes are formulated as:

h* = encoder(u), Hy = encoder(C;), Http = encoder(tp;). (12)

3.5 Preference explorer

The preference explorer contains two parts, a long-term preference
explorer and a short-term preference explorer.
Long-term preference explorer. For the prior long-term prefer-
ence distribution, we use the user representation h* to infer the
long-term preference. As annotations of user preference are un-
available, we employ a decoder without ground-truth (i.e., Eq. 9)
to decode I sequentially. Then the prior distribution pg, (I) is esti-
mated as follows:

17l

po, (D) = ﬂ decoder® (", I 1) (13)

=1
Similarly, we estimate the posterior long-term preference distribu-
tion given the conversation C. We encode C into a hidden represen-
tation H®, then we incorporate H¢ with A" to infer the posterior
distribution g, (1), formulated as:

1
U ]_[ decoder”([H*; HLIT,_)). (14)
’=1
where [-;-] denotes a concatenation operation.
Short-term preference explorer. Unlike the user long-term pref-
erence, the short-term preference is constantly updated as the con-

versation progresses. At the ¢-th turn, we first sample the previous
user short-term preference m?_l from gy, , (m¢—1) to infer the prior

distribution. Here, m?_l reflects the user specific preference in the
previous turns. Then we encode m;_1 to a hidden representation
H md 1- We denote the context as [Htmq1 H; C.H ] and employ a de-

coder in Eq. 9 to decode mt . At each decodlng step, we project the
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hidden representation to the vocabulary space, thus we have:

HY = [H"; HE HP
|m| (15)
Po,, (M) = l_[ decoder® (H, mzl:g_l).
=1

To approximate the posterior preference distribution, we need to
encode H;“. For the whole decoding process, we calculate g4, (m¢)
as follows:
HX = [H"; HE H,P H
|m]| (16)
dpm (M) = 1_[ decoder® (H, m?,l:{—l)'
¢=1

3.6 Policy network

At the t-th turn, action A; denotes a set of topics from %K or items
in 7. The CRS will ask a clarification question if A; refers to a set
of topics, otherwise it recommends the selected items to the user.

External knowledge has been shown to be effective for improving
the performance of dialogue actions in TDSs [32]. Following [55, 56],
we present an external knowledge graph G = {&, R}, where & in-
dicates a set of entities and R indicates a set of relations. & con-
tains topics and items, i.e., & = K U 1. A triple in G is denoted as
(e1,1,e2), where e, e; € & are entities, and r € R is the relation.
Since the semantics of a relationship are crucial to examine, we use
R-GCN [36] to learn entity representations. Formally, the represen-
tation of entity at the (I + 1)-st layer is calculated as:
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where ngl) € R% is the representation of entity e at the [-th layer.
Given the relation r, &, denotes the collection of nearby entities

fore. Wﬁl) is a learnable relation-specific transformation matrix for
the embeddings from neighborhood nodes with relation r; wb s
a learnable matrix for transforming the representations of entities
at the [-th layer; and Z, , is a normalization factor.

At the final layer L, the representation hL is taken as the entity
representation. Starting from the topics in topic path tp;, we ex-
tract their 2-hop triples on the G as subgraph G*“?Then we con-
catenate the representations of entities on the G as knowledge
representation as:

=[hL;nl;. . ;hl ], (18)

e1’ ey e||

where |g| is the number of entities on the subgraph, d is the dimen-
sion of hidden vector, [-;-] denotes vector concatenation.

During the training stage, at the ¢-th turn, we first sample long-
term user preference 19 from g, (1) and short-term user preference
m? fromgy,, (my). Then we utilize a transformer encoder to encode
19 to H, m? to H[mq respectively. At the {-th decoding step, the
decoder regards [qu;Htmq;HtC,Http,Htg] as context, and sequen-
tially outputs bfg given previous token embedding efg_l. The de-
A

coder then projects by, ¢ into action space. Suppose A;’s length is
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|A¢|, the generative probability of A; is calculated using Eq. 11:
X = [1%m; Cps tpr; G
X = (" H Hf, H, H]| (19)
o, (At’§|X,At’1;§_1) = decodergc(X,HX,At,l;g_l).

We aim to maximize pg, (A¢|-) and minimize the divergence be-
tween prior and approximate posterior distributions. By using Eq. 6
we formulate the objective function as:
|A:]
Ly = log(pg (A r|1X. A )
a |A|Z 8(po, (Arg1X, Ap1z-1) (20)

+ KL(Pem(mt)lquam(mz)) +KL(pg,(Dllge, (D))-

During the test stage, we only execute prior preference explorers to
get preference distributions as substitutes for posterior preference
distributions.

3.7 Response generator

For user u, given context C, topic path tp; and action A;, UPCR aims
to generate a reply utterance s; in a CRS. Using Eq. 7, we encode
A; into HA, then we concatenate H;“, h*, HE and Http. At the {-th

decoding step, the decoder outputs bi ¢ given previous embedding
ei i1 In order to copy words from the input, the probability of
generating s, s is calculated using Eq. 11 as follows:

X = [A4, Ct, tpr, u]
HX = [H H, H,P, h*] (1)
P, (st)év) = decoder?“(X, HX,st,lzév_l).
Suppose the length of s; is |s;|, we set a cross-entropy loss to learn
the parameter in our response generator:
[s¢]

Lyen== 15 Zlog(Pe (52)- (22)

To train UPCR in an end-to-end way, we integrate our optimization
objectives with a weighted parameter A to get the final objective L:

L=Lo+2 Lyen (23)
4 EXPERIMENTAL SETUP

4.1 Research questions

In our experiments, we address the following research questions:
(RQ1) Does UPCR outperform state-of-the-art CR methods in terms
of action prediction and response generation? (RQ2) How much
does each component of UPCR contribute to its overall perfor-
mance? (RQ3) Does the length of the latent variables (i.e., |I| and
|m|) have an effect on the performance?

4.2 Datasets

We conduct our experiments on two widely-applied benchmark
datasets on conversational recommendation to evaluate the effec-
tiveness of UPCR. Statistics of the two datasets are shown in Table 2.

TG-ReDial dataset. The TG-ReDial dataset [57] is composed of
10,000 two-party dialogues between a user and a recommender
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Table 2: Statistics of the datasets we use in our experiments.

Dataset Conversation Utterance Movie Topic
TG-ReDial 10,000 129,392 33,834 2,571
REDIAL 10,006 182,150 51,699 12,669

in the movie domain. In total, it contains 129, 392 utterances from
1,482 users. The dataset is constructed in a topic-guided way, viz.,
each conversation in the TG-ReDial dataset includes a topic path
to enforce natural semantic transitions towards recommendation.
On average, a dialogue in the TG-ReDial dataset has 7.9 topics and
an utterance contains 19 words.

REDIAL dataset. The REDIAL dataset [21] is widely used in
CRSs [28, 31, 55, 56]. The REDIAL dataset is collected by crowd-
sourcing workers from the Amazon Mechanical Turk platform. The
workers create conversations for the task of movie recommenda-
tion in a user-recommender pair setting after following a set of
detailed instructions. The REDIAL dataset has 10, 006 discussions
with 182, 150 utterances relating to 51, 699 films. Following Zhou
et al. [56], we obtain topics mentioned in each utterance. For each
interaction, we generate dialogue actions and reply utterances.

4.3 Baselines and comparisons

Our baselines for assess the performance of action prediction and
response generation come in three groups: (1) Recommendations:
To evaluate the performance of UPCR in action prediction, we use
Popularity, TextCNN [13], and BERT [7] as baselines. Popularity
ranks items according to the number of interactions. TextCNN
adopts a CNN-based model to extract textual features from contex-
tual utterances. BERT is a pre-trained language model that directly
encodes the concatenated historical utterances for recommenda-
tion. (2) Knowledge grounded conversations: To evaluate the
performance of UPCR in action prediction and response genera-
tion, we use PostKS [23] as a baseline. PostKS uses dialogue con-
text and responses to infer the posterior knowledge distribution.
(3) Conversational recommendations: To evaluate the perfor-
mance of UPCR in action prediction and response generation, we
use KBRD [3], DCR [24], REDIAL [21], MGCG [27], TG-ReDial [57],
KGSF [56] and CR-Walker [31] as baselines. KBRD utilizes knowl-
edge graphs to enhance the semantics of contextual items for rec-
ommendation, then applies a transformer to generate responses.
DCR uses a pointer network to incorporate global topic control and
GCN-based recommendations in response generation. REDIAL is
a benchmark model of the REDIAL dataset. It utilizes an auto-en-
coder [37] for recommendation and a hierarchical RNN for response
generation. MGCG uses CNN-based multi-task classification to pre-
dict the current topic. TG-ReDial is a benchmark of the TG-ReDial
dataset, which predicts topics or items in the first state, and then
generates responses based on the predictions. KGSF incorporates
word-oriented and entity-oriented knowledge graphs to enhance
the user representations. CR-Walker uses reasoning on a knowl-
edge graph to obtain a so-called reasoning tree and generates re-
sponses conditioned on the reasoning tree and user utterances.

For topic prediction, we compare UPCR with MGCG and TG-
Redial as other CR baselines do not provide explicit topic predic-
tion results. We compare UPCR with all the CR baselines for rec-
ommendation and generation evaluations.
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To assess the performance of response generation with an
encoder-decoder framework, we consider the transformer [43] as
an additional baseline.

To answer RQ2, we consider three variations of UPCR:
(1) UPCR\ g removes the subgraph from the policy network in UPCR;
(2) UPCR\I removes the long-term preference explorer from UPCR;
(3) UPCR\ m removes the short-term preference explorer in the pref-
erence explorer from UPCR.

4.4 Evaluation metrics

Automatic evaluation. To evaluate the performance on the topic
prediction task, following TG-ReDial [57], we adopt Hit@k(k =
1,3, 5) as evaluation metrics for ranking all the possible topics. To
measure the effectiveness on the recommendation task, we evalu-
ate UPCR in different settings using metrics proposed in the origi-
nal datasets: For the TG-ReDial dataset, following Zhou et al. [57],
we adopt NDCG@k and MRR@k (k = 10,50) as evaluation met-
rics. For the REDIAL dataset, following [56], we adopt Recall@k
(k = 1,10, 50) for evaluation. To assess the quality of the gener-
ated responses, following [57], we adopt BLEU and Distinct-n [20]
(n = 1, 2), for word-level matches and diversity in the TG-ReDial
dataset. For the REDIAL dataset, following [56], we adopt Distinct-
n (n = 2,3, 4) as evaluation metrics.

Human evaluation. The system’s ability to provide informative
replies relating to items or topics is critical for CRS. Hence, we
adopt human evaluation. We take 100 dialogues from our model
and their respective generations, as well as the baselines, at random.
Following [31, 56], we enlist the help of three experienced annota-
tors from a third-party organization to assess the results of several
models in two aspects, namely fluency and informativeness. Flu-
ency measures if the generated response is smooth; informativeness
measures whether the system introduces rich movie knowledge or
related topics. The score ranges from 0 to 2. The average ratings of
the three annotators are used to calculate the final performance.

4.5 Implementation details

We implement UPCR in PyTorch. The default parameter settings
across all experiments are as follows: we set the batch size to 16,
gradient accumulation step to 8. The embedding size is set as 512. In
the path reasoning process, we set the maximum number of nodes
to 200, the graph hidden size to 512. The topic vocabulary size is
2,571 for the TG-ReDial dataset and 12,669 for the REDIAL dataset.
The word vocabulary size is 19,119 for the TG-ReDial dataset and
23,928 for the REDIAL dataset. For the REDIAL dataset, we used
negative sampling for the candidate items during the recommenda-
tion. The lengths of the long-term preference text span and short-
term preference text span are set to 10 and 5, respectively. We set
the temperature of Gumbel-Softmax to 7 = 3.0, and anneal to 0.1
in 30,000 training steps. We use the Adam optimizer [14], and the
learning rate is initialized to 1e~* and decreases to 1e™> gradually.

5 EXPERIMENTAL RESULTS

5.1 Performance on action prediction (RQ1)

We start to address RQ1 by evaluating the performance on the action
prediction task. Recall that on the TG-Redial dataset, actions consist
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Table 3: Automatic evaluation of topic prediction on TG-
Redial dataset. Bold face indicates best results. Significant
improvements over best baseline marked with * (t-test, p <
0.05).

Model Hit@1 Hit@3 Hit@5
Popularity 0.0412  0.0815  0.0962
TextCNN 03815 04621  0.5163
BERT 0.6114 08189  0.8341
PostKS 03308  0.4527 05083
MGCG 0.6098  0.8128  0.8294
TG-Redial ~ 0.6231  0.8370  0.8497
UPCR 0.8078"* 0.8827* 0.9066"

of topics or items. If the action refers to topics, the system will con-
tinue by asking a clarification question. If the action incorporates
items, the system will recommend items to the user. On the REDIAL
dataset, the action only consists of items to be recommended.

Table 3 and 4 show the experimental results of topic prediction
and recommendation, respectively. When the action refers to a set
of topics, Table 3 presents the performance of various methods on
the TG-Redial dataset. Popularity does not perform well, since it
cannot consider the context of conversations. We find TG-ReDial
outperforms other baselines, since it jointly models context, topics,
and user profiling. UPCR gives an increase of 29.6%, 5.5%, and 6.7%
over TG-ReDial in terms of Hit@1, Hit@3, and Hit@5 respectively
as UPCR captures user preferences rather than using topics directly.

In summary, we conclude that better understanding of user pref-
erences is helpful for improving the performance of CR.

Table 4 shows the recommendation performance on the TG-
ReDial and REDIAL datasets. Content-based recommendation mod-
els (i.e., TextCNN and BERT) outperform Popularity, which in-
dicates that historical utterances are useful for making recom-
mendations. Knowledge-based CRS methods (i.e., KGSF and CR-
Walker) outperform other baselines, indicating that a knowledge
graph is crucial for making recommendations in CR. UPCR outper-
forms all the baselines on both datasets. For the TG-ReDial dataset,
UPCR achieves a significant improvement over CR-Walker: 47.7%,
26.8%, 35.9%, 27.6% in terms of NDCG@10, NDCG@50, MRR@10,
MRR@50, respectively. For the REDIAL dataset, UPCR achieves an
increase of 11.1%, 21.4%, and 22.3% over (second best) CR-Walker
in terms of R@1, R@10, R@50, respectively.

In summary, by tracking user preferences, UPCR is able to pro-
vide more accurate recommendations to meet users’ needs than the
current state-of-the-art.

5.2 Performance of response generation (RQ1)

We continue to address RQ1 and examine response generation.
We evaluate the performance in terms of automatic and human
evaluation metrics.

Automatic evaluation. In Table 5, we examine the generation per-
formance in terms of automatic metrics on the TG-Redial and RE-
DIAL datasets. For the TG-ReDial dataset, we find that TG-ReDial
performs best among the baselines, which shows that pre-trained

Ren et al.

Table 4: Automatic evaluation of recommendation on TG-
Redial and REDIAL datasets. Bold face indicates best result.
Significant improvements over best baseline results marked
with * (t-test, p < 0.05).

TG-Redial REDIAL
NDCG MRR Recall
@10 @50 @10 @50 @1 @10 @50

Popularity 0.0015 0.0036 0.0011 0.0015 0.012 0.061 0.179
TextCNN 0.0144 0.0215 0.0119 0.0133 0.017 0.096 0.159
BERT 0.0246 0.0439 0.0182 0.0221 0.018 0.117 0.191

Model

PostKS 0.0031 0.0048 0.0029 0.0038 0.019 0.122 0.236

KBRD 0.0064 0.0111 0.0040 0.0049 0.030 0.163 0.338
DCR 0.0261 0.0498 0.0129 0.0179 0.027 0.148 0.306
REDIAL  0.0006 0.0025 0.0003 0.0007 0.023 0.129 0.287
MGCG 0.0184 0.0412 0.0130 0.0210 0.027 0.121 0.264
TG-Redial 0.0348 0.0527 0.0240 0.0277 0.041 0.164 0.310
KGSF 0.0154 0.0259 0.0114 0.0135 0.039 0.183 0.378
CR-Walker 0.0565 0.0771 0.0489 0.0565 0.0