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ABSTRACT
Hierarchical multi-label classification assigns a document to mul-
tiple hierarchical classes. In this paper we focus on hierarchical
multi-label classification of social text streams. Concept drift, com-
plicated relations among classes, and the limited length of docu-
ments in social text streams make this a challenging problem. Our
approach includes three core ingredients: short document expan-
sion, time-aware topic tracking, and chunk-based structural learn-
ing. We extend each short document in social text streams to a
more comprehensive representation via state-of-the-art entity link-
ing and sentence ranking strategies. From documents extended in
this manner, we infer dynamic probabilistic distributions over top-
ics by dividing topics into dynamic “global” topics and “local” top-
ics. For the third and final phase we propose a chunk-based struc-
tural optimization strategy to classify each document into multi-
ple classes. Extensive experiments conducted on a large real-world
dataset show the effectiveness of our proposed method for hierar-
chical multi-label classification of social text streams.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering
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Twitter; tweet classification; topic modeling; structural SVM

1. INTRODUCTION
The growth in volume of social text streams, such as microblogs

and web forum threads, has made it critical to develop methods
that facilitate understanding of such streams. Recent work has con-
firmed that short text classification is an effective way of assisting
users in understanding documents in social text streams [25, 26, 29,
46]. Straightforward text classification methods, however, are not
adequate for mining documents in social streams.
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For many social media applications, a document in a social text
stream usually belongs to multiple labels that are organized in a
hierarchy. This phenomenon is widespread in web forums, ques-
tion answering platforms, and microblogs [11]. In Fig. 1 we show
an example of several classes organized in a tree-structured hier-
archy, of which several subtrees have been assigned to individual
tweets. The tweet “I think the train will soon stop again because
of snow . . . ” is annotated with multiple hierarchical labels: “Com-
munication,” “Personal experience” and “Complaint.” Faced with
many millions of documents every day, it is impossible to manually
classify social streams into multiple hierarchical classes. This mo-
tivates the hierarchical multi-label classification (HMC) task for
social text streams: classify a document from a social text stream
using multiple labels that are organized in a hierarchy.

Recently, significant progress has been made on the HMC task,
see, e.g., [4, 7, 10]. However, the task has not yet been examined
in the setting of social text streams. Compared to HMC on station-
ary documents, HMC on documents in social text streams faces
specific challenges: (1) Because of concept drift a document’s sta-
tistical properties change over time, which makes the classification
output different at different times. (2) The shortness of documents
in social text streams hinders the classification process.

In this paper, we address the HMC problem for documents in
social text streams. We utilize structural support vector machines
(SVMs) [41]. Unlike with standard SVMs, the output of struc-
tural SVMs can be a complicated structure, e.g., a document sum-
mary, images, a parse tree, or movements in video [22, 45]. In
our case, the output is a 0/1 labeled string representing the hi-
erarchical classes, where a class is included in the result if it is
labeled as 1. For example, the annotation of the top left tweet
in Fig. 1 is 1100010000100. Based on this structural learn-
ing framework, we use multiple structural classifiers to transform
our HMC problem into a chunk-based classification problem. In
chunk-based classification, the hierarchy of classes is divided into
multiple chunks.

To address the shortness and concept drift challenges mentioned
above, we proceed as follows. Previous solutions for working with
short documents rely on extending short documents using a large
external corpus [32]. In this paper, we employ an alternative strat-
egy involving both entity linking [30] and sentence ranking to col-
lect and filter relevant information from Wikipedia. To address con-
cept drift [1, 39], we track dynamic statistical distributions of topics
over time. Time-aware topic models, such as dynamic topic mod-
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Figure 1: An example of predefined labels in hierarchical
multi-label classification of documents in a social text stream.
Documents are shown as colored rectangles, labels as rounded
rectangles. Circles in the rounded rectangles indicate that the
corresponding document has been assigned the label. Arrows
indicate hierarchical structure between labels.

els (DTM) [5], are not new. Compared to latent Dirichlet allocation
(LDA) [6], dynamic topic models are more sensitive to bursty top-
ics. A global topic is a stationary latent topic extracted from the
whole document set and a local topic is a dynamic latent topic ex-
tracted from a document set within a specific time period. To track
dynamic topics, we propose an extension of DTM that extracts both
global and local topics from documents in social text streams.

Previous work has used Twitter data for streaming short text clas-
sification [29]. So do we. We use a large real-world dataset of
tweets related to a major public transportation system in a Euro-
pean country to evaluate the effectiveness of our proposed meth-
ods for hierarchical multi-label classification of documents in so-
cial text streams. The tweets were collected and annotated as part
of their online reputation management campaign. As we will see,
our proposed method offers statistically significant improvements
over state-of-the-art methods.

Our contributions can be summarized as follows:

• We present the task of hierarchical multi-label classification
for streaming short texts.

• We use document expansion to address the shortness issue
in the HMC task for short documents, which enriches short
texts using Wikipedia articles. We tackle the time-aware
challenge by developing a new dynamic topic model that dis-
tinguishes between local topics and global topics.

• Based on a structural learning framework, we transform our
hierarchical multi-label classification problem into a chunk-
based classification problem via multiple structural classi-
fiers, which is shown to be effective in our experiments using
a large-scale real-world dataset.

We introduce related work in §2; in §3 we formulate our research
problem. We describe our approach in §4; §5 details our experi-
mental setup and §6 presents the results; §7 concludes the paper.

2. RELATED WORK

2.1 Short text classification
In recent years, short text classification has received considerable

attention. Most previous work in the literature addresses the sparse-
ness challenge by extending short texts using external knowledge.

Those techniques can be classified into web search-based methods
and topic-based ones.

Web search-based methods handle each short text as a query to
a search engine, and then improve short text classification perfor-
mance using external knowledge extracted from web search engine
results [8, 44]. Such approaches face efficiency and scalability
challenges, which makes them ill-suited for use in our data-rich
setting [13]. As to topic-based techniques, Phan et al. [32] extract
topic distributions from a Wikipedia dump based on the LDA [6]
model. Similarly, Chen et al. [13] propose an optimized algorithm
for extracting multiple granularities of latent topics from a large-
scale external training set; see [37] for a similar method.

Besides those two strategies, other methods have also been em-
ployed. E.g., Nishida et al. [28], Sun [38] improve classification
performance by compressing shorts text into entities. Zhang et al.
[46] learn a short text classifier by connecting what they call the
“information path,” which exploits the fact that some instances of
test documents are likely to share common discriminative terms
with the training set. Few previous publications on short text classi-
fication consider a streaming setting; none focuses on a hierarchical
multiple-label version of the short text classification problem.

2.2 Hierarchical multi-label classification
In the machine learning field, multi-label classification problems

have received lots of attention. Discriminative ranking methods
have been proposed in [36], while label-dependencies are applied
to optimize the classification results by [18, 20, 31]. However, none
of them can work when labels are organized hierarchically.

The hierarchical multi-label classification problem is to classify
a given document into multiple labels that are organized as a hier-
archy. Koller and Sahami [19] propose a method using Bayesian
classifiers to distinguish labels; a similar approach uses a Bayesian
network to infer the posterior distributions over labels after train-
ing multiple classifiers [3]. As a more direct approach to the HMC
task, Rousu et al. [34] propose a large margin method, where a dy-
namic programming algorithm is applied to calculate the maximum
structural margin for output classes. Decision-tree based optimiza-
tion has also been applied to the HMC task [7, 42]. Cesa-Bianchi
et al. [10] develop a classification method using hierarchical SVM,
where SVM learning is applied to a node if and only if this node’s
parent has been labeled as positive. Bi and Kwok [4] reformulate
the “tree-” and “DAG-” hierarchical multi-label classification tasks
as problems of finding the best subgraph in a tree and DAG struc-
ture, by developing an approach based on kernel density estimation
and the condensing sort and select algorithm.

To the best of our knowledge there is no previous work on HMC for
(short) documents in social text streams. Additionally, we present a
chunk-based structural learning method for the HMC task, which is
different from existing HMC approaches, and which we show to be
effective for the traditional stationary case and the streaming case.

3. PRELIMINARIES
We detail the task that we address and introduce important con-

cepts, including preliminaries about structural SVMs.

3.1 Problem formulation
We begin by defining the hierarchical multi-label classification

(HMC) task. We are given a class hierarchy (C,≺), where C is a
set of class labels and ≺ is a partial order representing the parent
relationship, i.e., ∀ci, cj ∈ C, ci ≺ cj if and only if ci is the
parent class of cj . We write x(i) to denote a feature vector, i.e.,
an element of the feature space X , and we write y(i) ∈ {0, 1}|C|



for the target labeling. Let D be the set of input documents, and
|D| the size ofD. The target of a hierarchical multi-label classifier,
whether for stationary documents or for a stream of documents, is
to learn a hypothesis function f : X → {0, 1}C from training data
{(x(i), y(i))}|D|i=1 to predict a y when given x. Suppose the hierarchy
is a tree structure. Then, classes labeled positive by y must satisfy
the T -property [4]: if a labeled c ∈ C is labeled positive in output
y, its parent label must also be labeled positive in y. Given the T -
property, we define a root class r in the beginning of eachC, which
refers to the root vertex in HMC tree structure. Thus for each y in
HMC, we have y(r) = 1.

Hierarchical multi-label classification for short documents in so-
cial streams (HMC-SST) learns from previous time periods and
predicts an output when a new document arrives. More precisely,
given a class hierarchy (C,≺) and a collection of documents seen
so far, X = {X1, . . . , Xt−1}, HMC-SST learns a hypothesis func-
tion f : X → {0, 1}C that evolves over time. Thus, at time period
t, t > 1, we are given a function f that has been trained during the
past t − 1 periods and a set of newly arriving documents Xt. For
each x(i)

t ∈ Xt, f(x) predicts ŷ(i)t that labels each class c ∈ C as
0 or 1. Classes in C that are labeled positive must follow the T -
property. Afterwards, f updates its parameters using Xt and their
true labels {y(i)

t }
|Xt|
i=1 .

Concept drift indicates the phenomenon that topic distributions
change between adjacent time periods [17]. In streaming classifi-
cation of documents [29] this problem needs to be addressed. We
assume that each document in a stream of documents is concerned
with multiple topics. By dividing the timeline into time periods, we
dynamically track latent topics to cater the phenomenon of concept
drift over time. For streaming documents, global statistics such as
tf-idf or topic distributions cannot reflect drift phenomena. How-
ever, local statistics derived from a specific period are usually help-
ful for solving this problem [5, 21, 29]. Ideally, one would find a
trade-off between tracking the extreme local statistics and extreme
global statistics [21]. Thus, in this paper we address the issue of
concept drift by tracking both global topics (capturing the complete
corpus) and local, latent and temporally bounded, topics over time.
Given a document set Xt published at time t, we split the topic set
Zt into Zgt ∪ Zlt , with global topics Zgt that depend on all time pe-
riods and documents seen so far, and local topics Zlt derived from
the previous period t−1 only. We then train our temporal classifier
incrementally based on those global and local topic distributions.

3.2 Structural SVMs
Structural SVMs have been proposed for complex classification

problems in machine learning [22, 23, 35]. We follow the nota-
tion from [41]. Given an input instance x, the target is to predict
the structured label y from the output space Y by maximizing a
discriminant F : X × Y → <:

y = f(x; w) = arg maxy∈Y F (x, y; w) , (1)

where the discriminant F measures the correlation between (x, y),
and w indicates the weights of x in F . The discriminant F will
get its maximal value when y = f(x; w), which is set as hypoth-
esis function in HMC-SST. We assume the discriminant F to be
linear in a joint feature space Ψ : X × Y → RK , thus F can be
rewritten as F(x, y;w) = 〈w,Ψ(x, y)〉. The feature mapping Ψ
maps the pair (x, y) into a suitable feature space endowed with the
dot product. Then the function F can be learned in a large-margin
framework through the training set {(x(i), y(i))}Ti=1 by minimizing
the objective function:

minζ≥0
1
2
‖w‖2 + C

∑n
i=1 ζi (2)

such that for all i and all y ∈ Y \y(i):

wTΨ(x(i), y(i))− wTΨ(x(i), y) ≥ ∆(y, y(i))− ζi, (3)

where wTΨ(x(i), y) indicates the hypothesis function value given
x(i) and a random y from Y \y(i). For each (x(i), y(i)), a set of con-
straints (see Eq. 3) is added to optimize the parametersw. Note that
y(i) is the prediction that minimizes the loss function ∆(y, y(i)).
The loss function equals 0 if and only if y = y(i), and it decreases
when y and y(i) become more similar. Given the exponential size
of Y , the number of constraints in Eq. 3 makes the optimization
challenging.

4. METHOD
We start by providing an overview of our approach to HMC for

documents in social text streams. We then detail each of our three
main steps: document expansion, topic modeling and incremental
structural SVM learning.

4.1 Overview
We provide a general overview of our scenario for performing

HMC on (short) documents in social text streams in Fig. 2. There
are three main phases: (A) document expansion; (B) time-aware
topic modeling; (C) chunk-based structural classification. To sum-
marize, at time period ti, we are given a temporally ordered short
documents set Xti = {x(1)

ti
, x(2)
ti
, . . . , x(|Xt|)

ti
}. For each short text

xti ∈ Xti , in phase (A) (see §4.2) we expand xti through entity
linking and query-based sentence ranking; we obtain x′ti from xti
by extracting relevant sentences from related Wikipedia articles.

Next, in phase (B) (see §4.3), we extract dynamic topics Φti ;
building on an extended DTM model, we extract both global and
local topical distributions for x′ti ; then, a feature vector for x′ti is
generated as Ψ(x′(i), y).

Based on the extracted features, we train an incremental chunk-
based structural learning framework in (C) in §4.4. We introduce
multiple structural classifiers to the optimization problem by trans-
ferring the set of classes C to another representation using multiple
chunks S. Traversing from the most abstract chunk rS ∈ S, we
define each chunk s ∈ S to be a set of chunks or classes. Leaves
in S only include classes. For each chunk sc ∈ S, we employ a
discriminant to address the optimization problem over parameters
Fsc, where sc’s child chunk/class will not be addressed unless it is
labeled positive during our prediction. Accordingly, multiple dis-
criminants are applied to predict labels given xti and update their
parameters based on true labels yti .

4.2 (A) Document expansion
To address the challenge offered by short documents, we propose

a document expansion method that consists of two parts: entity
linking and query-based sentence ranking and extraction.

4.2.1 Entity linking
Given a short document xt at time t, the target of entity linking

is to identify the entity e from a knowledge base E that is the most
likely referent of xt. For each xt, a link candidate ei ∈ E links
an anchor a in xt to a target w, where an anchor is a word n-gram
tokens in a document and each w is a Wikipedia article. A target is
identified by its unique title in Wikipedia.

As the first step of our entity linking, we aim to identify as many
link candidates as possible. We perform lexical matching of each
n-gram anchor a of document dt with the target texts found in
Wikipedia, resulting in a set of link candidates E for each docu-
ment dt. As the second step, we employ the commonness (CMNS)



(B) Time-aware topic modelling

document 

x0
ti
2 X 0

ti

Short text xti 2 Xti

... ... ...
(A) Document expansion         

(C) Chunk-based structural classification

---- Entity linking with Wikipedia

---- Query-based sentence ranking

---- Dynamic topic modelling at ti
      ---- Global topics z 2 Zg

ti

      ---- Local topics z 2 Zl
ti

---- Before classification:
      ---- Agglomerate classes into multiple chunks                                  
      ---- A chunks structure S = {sci}SC

i=1 with L levels 

---- Traverse S from most abstract chunk rS 
      ---- Current chunk sc 2 S
      ---- Label inner chunks in sc using S-SVM
      ---- Update classifier's parameters in Fsc

      ---- Move to next chunk labeled positive

---- Integrate output from all leaves chunks in S
      ---- Output yti

 

Output yti
2 {0, 1}|C|

Discriminants set {Fi}SC
i=1

Short text xtj 2 Xtj

... ...

Global topic distributions �g
ti,z

Local topic distributions �l
ti,z

Feature vector for xti :  (x(i),y)

ti

tj

Figure 2: Overview of our approach to hierarchical multi-label classification of documents in social text streams. (A) indicates
document expansion; (B) indicates the topic modeling process; (C) refers to chunk-based structural learning and classification.

method from [27] and rank link candidates E by considering the
prior probability that anchor text a links to Wikipedia article w:

CMNS(a,w) =
|Ea,w|∑

w′∈W |Ea,w′ | ,

where Ea,w is the set of all links with anchor text a and target w.
The intuition is that link candidates with anchors that always link
to the same target are more likely to be a correct representation. In
the third step, we utilize a learning to rerank strategy to enhance the
precision of correct link candidates. We extract a set of 29 features
proposed in [27, 30], and use a decision tree-based approach to
rerank the link candidates.

4.2.2 Query-based sentence ranking
Given the link candidates list, we extract the most central sen-

tences from the top three most likely Wikipedia articles. As in
LexRank [15], Markov random walks are employed to optimize
the ranking list iteratively, where each sentence’s score is voted
from other sentences. First, we build the similarity matrix M ,
where each item in M indicates the similarity between two sen-
tences given xt as a query. Given two sentences si and sj , we
have:

Mi,j = sim(si, sj |xt)/
∑
j′∈|S|

sim(si, sj′ |xt) (4)

At the beginning of the iterative process, an initial score for each
sentence is set as 1/|S|, and at the t-th iteration, the score of si is
calculated as follows:

score(si)
(t) = (1− λ)

∑
i6=j

Mi,j · score(sj)(t−1) + λ
1

|S| , (5)

where |S| equals the number of sentences in Wikipedia documents
that have been linked to the anchor text a in §4.2.1 and the damping
factor λ = 0.15. Then the transition matrix M̃ equals to:

M̃ = (1− λ)M + ēēTλ/|S|, (6)

where e is a column vector with all items equal to 1. The iter-
ative process will stop when it convergences. Since M̃ is a col-
umn stochastic matrix, it can be proven that the value of score con-
verges [43], and a value of score can be derived from the principle
eigenvector of M̃ . We extract the top Ext sentences from the ranked
list, and extend xt to x′t by including those Ext sentences in xt.

4.3 (B) Time-aware topic modeling
Concept drift makes tracking the change of topic distributions

crucial for HMC of social text streams. We assume that each doc-
ument in a social text stream can be represented as a probabilistic
distribution over topics, where each topic is represented as a prob-

abilistic distribution over words. The topics are not necessarily as-
sumed to be stationary. We employ a dynamic extension of the
LDA model to track latent dynamic topics. Comparing to previous
work on dynamic topic models [5], our method is based on the con-
jugate prior between Dirichlet distribution and Multinomial distri-
bution. To keep both stationary statistics and temporary statistics,
we present a trade-off strategy between stationary topic tracking
and dynamic topic tracking, where topic distributions evolve over
time.

Fig. 3 shows our graphical model representation, where shaded
and unshaded nodes indicate observed and latent variables, respec-
tively. Among the variables related to document set Xt in the
graph, z, θ, r are random variables and w is the observed vari-
able; |Xt−1|, |Xt| and |Xt+1| indicate the number of variables in
the model. As usual, directed arrows in a graphical model indicate
the dependency between two variables; the variables φlt depend on
variables φlt−1.
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Figure 3: Graphical representation of topical modelling, where
t− 1, t and t+ 1 indicate three time periods.

The topic distributions θxt for a document xt ∈ Xt are derived
from a Dirichlet distribution over hyper parameter α. Given a word
wi ∈ xt, a topic zwi for word wi is derived from a multinomial
distribution θxt over document xt. We derive a probabilistic distri-
bution φt over topics Zt = Zgt ∪ Zlt from a Dirichlet distribution
over hyper parameters bt: if topic z ∈ Zl, then bt = βlt · φwi,t−1,
otherwise bt = βg . The generative process for our topic model at
time t > 1, is described in Fig. 3.

Due to the unknown relation between φt and θt, the posterior dis-
tribution for each short text xt is intractable. We apply Gibbs col-
lapsed sampling [24] to infer the posterior distributions over both,



1. For each topic z, z ∈ Zlt ∪ Zgt :

• Draw φg ∼ Dirichlet(βg) ;

• Draw φlt ∼ Dirichlet(βlt · φlt−1) ;

2. For each candidate short text xt ∈ Xt:

• Draw θt ∼ Dirichlet(αt);

• For each word w in dt

– Draw r ∼ Bernoulli(λ);

– Draw zw ∼Multinomial(θt);

∗ if r = 0: Draw w ∼Multinomial(φgz);
∗ if r = 1: Draw w ∼Multinomial(φlz,t);

Figure 4: Generative process for the topic model.

global and local topics. For each iteration during our sampling pro-
cess, we derive the topic z via the following probability:

p(ri = m, zi = z|W, Z−i, α, bt) ∝
ntd,m,−i + λ

ntd,−i + 2λ
·

ntd,z,−i + α∑
z′∈Zm

(ntd,z,′−i + α)
·

ntw,z,−i + bmw,z,t∑
w′∈Nu,t

ntw′,z,−i +Ntbmw,z,t
,

(7)

wherem indicates the possible values of variable r for the ith word
in document dt, and the value m indicates the corresponding kind
of topics when ri = m. We set bw,z,t = βlt ·φw,z,t−1 when ri = 1,
and bw,z,t = βg when ri = 0. After sampling the probability
for each topic z, we infer the posterior distributions for random
variable φw,z,t, which are shown as follows:

φr=0
w,z,t =

nw,z,t + βg∑
z∈Zm

nw,z,t + βg

φr=1
w,z,t =

nw,z,t + βlt · φw,z,t−1∑
z∈Zm

nw,z,t + βlt · φw,z,t−1
(8)

4.4 (C) Chunk-based structural classification
Some class labels, specifically for some leaves of the hierarchy,

only have very few positive instances. This skewedness is a com-
mon problem in hierarchical multi-label classification. To handle
skewedness, we introduce a multi-layer chunk structure to replace
the original class tree. We generate this chunk structure by em-
ploying a continuous agglomerative clustering approach to merge
multiple classes/chunks to a more abstract chunk that contains a
predefined number of items. Merging from classes, considered as
leave nodes in the final chunk structure, our clustering strategy con-
tinues until what we call the root chunk, the most abstract chunk,
has been generated. Following this process, we agglomerate the set
of classesC into another set of chunks S, each of which, denoted as
sc, includes s items. During this continuous agglomerative cluster-
ing process from classes C to the root chunk, we define successive
relations among chunks in S. Each chunk sc’s successive chunks/-
classes in S are chunks/classes that exist as items in sc, i.e., chunk
sc is a successive chunk of chunk scpa iff there exist a vertex in
scpa corresponding to chunk sc.

Thus we can think of S as a tree structure. From the most ab-
stract chunk rS ∈ S that is not included in any other chunk, each
layer l of S is the set of child nodes in those chunks that exist in

l’s last layer. The leaves of S indicate classes. Then, a structural
SVM classifier Fsc for chunk sc includes Lsc chunks, and its out-
put space Ysc refers to a set of binary labels {0, 1}Lsc over chunks.

At each time period t, we divide the HMC for documents in so-
cial text streams into a learning process and a inference process,
which we detail below.

4.4.1 Learning with structural SVMs
For the learning process, we train multiple structural SVM clas-

sifiers from S’s root chunk rS to the bottom, where the T -property
must be followed by each chunk sc ∈ S. After generating the
chunk structure S, we suppose S has SC chunks with L levels. At
time t, we are given a set of training instances Tt = {(x(1)

t , y(1)
t ),

(x(2)
t , y(2)

t ), . . . , (x(|Xt|)
t , y(|Xt|)

t )}, and our target is to update pa-
rameters of multiple structural SVM classifiers during the learn-
ing process. Thus y(i)

t in (x(i)
t , y(i)

t ) is divided and extended into
SC parts

⋃
sc∈S{y

(i)
t,sc}, where y(i)

t,sc indicates the output vector in
chunk sc. The structural classifier Fsc for chunk sc ∈ S, sc 6= rc,
learns and updates its parameters after its parent chunk p(sc) has
received a positive label on the item corresponding to sc. For each
chunk sc ∈ S, we utilize the following structural SVM formulation
to learn a weight vector w, shown in Equation 9:

min
ζ≥0

1

2
‖wt,sc‖2 + C

n∑
i=1

ζi (9)

subject to:

1. ∀yt,sc ∈ Ysc\y
(i)
t,sc;

2. ∀c ∈ cyt,sc , p(c) ∈ cyt,sc ;

3. wTΨ(x(i)
t , y(i)

t,sc)− wTΨ(x(i), yt,sc) ≥ ∆(y, y(i)
t,sc)− ζi;

where cyt,sc are positive chunks labeled by y(i)
t,sc, and Ψ(x(i)

t , yt,sc)
indicates the feature representation for x(i)

t , y(i)
t,sc.

Traditional SVMs only consider zero-one loss as a constraint
during learning. This is inappropriate for complicated classifica-
tion problems such as hierarchical multi-label classification. We
define a loss function between two structured labels y and yi based
on their similarity as ∆(ysc, yi,sc) = 1 − sim(ysc, yi,sc). Here,
sim(ysc, yi,sc) indicates the structural similarity between two dif-
ferent subsets of sc’s child sets cy and cy(i) . We compute the simi-

larity between yt,sc and y(i)
t,sc by comparing the overlap of nodes in

these two tree structures, as follows:

sim(y(i)
t,sc, yt,sc) =

∑
n∈c

y(i)
,n′∈cy

wn,n′ · |(n ∩ n′)|∑
n∈c

y(i)
,n′∈cy

wn,n′ · |(n ∪ n′)| , (10)

where we set wn,n′ to be the weight between two chunks n and n′,
each of which is included in cy(i) and cy respectively. Since it is
intractable to compare two chunks that are not at the same level in
S, here we set wn,n′ to be:

wn,n′ =

{
1/hn hn = hn′

0 else
(11)

To optimize Eq. 9, we adjust the cutting plane algorithm [16, 45]
to maintain the T -property. In general, the cutting plane algorithm
iteratively adds constraints until the problem is solved by a desired
tolerance ε. It starts with an empty set yi, for i = 1, 2, . . . , n, and
iteratively looks for the most violated constraint for (x(i)

t , y(i)
t,sc).



Algorithm 1: Cutting Plane Optimization for Equation 9

Input: (x(1), y(1)), (x(2), y(2)), ..., (x(t), y(t)), C, ζ
yi = ∅;
repeat

for i = 1, 2, ... , n do
ω ≡ wTΨ(x(i), y(i))− wTΨ(x(i), y);
H(y;w) ≡ ∆(y(i), y) + ω;
compute ŷ = arg maxy∈YH(y; w);
repeat

for leaves node n ∈ sc do
if p(n) /∈ cŷ then

ŷ+ = ŷ ∪ p(n);
ŷ− = ŷ − n;
ŷ = arg maxy(H(ŷ+;w), H(ŷ−;w))

end
end

until ŷ ∈ Y hold T -property;
if H(ŷ;w) > ζi + ε then

w← optimize Equation 9 over
⋃
i{yi}

end
end

until no working set has changed during iteration;

Algorithm 1 shows that to maintain the T -property, we adjust the
set of positive chunks in ŷ iteratively. The parameter wt,sc is up-
dated with respect to the combined working set

⋃
i{yi}.

4.4.2 Making predictions
The feature representation for Ψ(x(i)

t , yt,sc) must enable mean-
ingful discrimination between high quality and low quality predic-
tions [45]. Our topic model generates a set of topical distributions,
Φt, where each item φ(w|z, t) ∈ Φt is a conditional distribution
P (w|z, t) over words w given topic z. Assuming that each docu-
ment’s saliency is summed up by votes from all words in the docu-
ment, we then define Ψ(x, y) as follows:

Ψ(x,y) =



1
Nx

∑
w∈x

φ(w|z1, t) · 1
Ny
nw,y

1
Nx

∑
w∈x

φ(w|z2, t) · 1
Ny
nw,y

...
1
Nx

∑
w∈x

φ(w|zK , t) · 1
Ny
nw,y

 , (12)

where nw,y indicates the number of times word w exist in y for the
past t− 1 periods; Nx refers to the number of words in documents
x whereas Ny is the number of words in y.

Given multiple structural SVMs Ft,sc that have been updated at
time t− 1, the target of our prediction is to select yt,sc for instance
xt from the root chunk rS ∈ S to S’s bottom level. Our selection
procedure is shown in Algorithm 2. After prediction and learning
at time t, our classifiers are given document set Xt+1 at time t+ 1.
Given a document xt+1 ∈ Xt+1, we traverse the whole chunk
structure S from root chunk rS to leaves, and output the predicted
classes that xt+1 belongs to. Parameters in discriminants Ft+1,sc

are updated afterwards.

5. EXPERIMENTAL SETUP
In §5.1, we propose 5 research questions to guide our experi-

ments; we describe our dataset in §5.2 and set up our experiments

Algorithm 2: Greedy Selection via Chunk Structure S
Input: S, xt wt−1 = {wt−1,sc}sc∈S
y = ∅;
for sc = 1, 2, ..., SC do

if sc ∈ cyt,p(sc) then
ysc = arg maxy∈Ysc,y 6=ysc(wTΨ(xt, ysc ∪ y));

end
if sc is leaves chunk in S then

y = y ∪ ysc;
end

end
return y

in §5.3; §5.4 gives details about our evaluation metrics; the base-
lines are described in §5.5.

5.1 Research questions
We list the research questions, RQ1 to RQ5, to guide the re-

mainder of the paper.

RQ1 As a preliminary question, how does our chunk-based method
perform in stationary HMC? (See §6.1)

RQ2 Is our document expansion strategy helpful for classifying
documents in a HMC setting? (See §6.2)

RQ3 Does concept drift occur in our streaming short text collec-
tion? Does online topic extraction help to avoid concept drift
on HMC-SST? (See §6.3)

RQ4 How does our proposed method perform on HMC-SST? Does
it outperform baselines in terms of our evaluation metrics?
(See §6.4)

RQ5 What is the effect of we change the size of chunks? Can we
find an optimized value of the size of chunks in HMC-SST?
(See §6.5)

5.2 Dataset
General statistics. We use a dataset of tweets related to a major
public transportation system in a European country. The tweets
were posted between January 18, 2010 and June 5, 2012, covering
a period of nearly 30 months. The dataset includes 145, 692 tweets
posted by 77,161 Twitter users. Using a state-of-the-art language
identification tool [9], we found that over 95% tweets in our dataset
is written in Dutch, whereas most other tweets are written in En-
glish. The dataset has human annotations for each tweet. A diverse
set of social media experts produced the annotations after receiving
proper training. In total, 81 annotators participated in the process.

The annotation tree for the dataset has 493 nodes. The annota-
tions describe such aspects as reputation dimensions and product
attributes and service. All annotators use Dutch during the anno-
tating process. Unlike many other Twitter datasets with human an-
notations, e.g., Amigó et al. [2], in our dataset those labels are not
independent from each other. Instead, each tweet is labeled by mul-
tiple hierarchical classes. From the root class, we divide the dataset
into 13 individual subsets following the root node’s child classes,
which are shown in Table 1. In our experiment, not all subsets are
included in our experiments: we ignore the subset with the fewest
tweets: Citizenship. As all instances in Online Source
are annotated by the same labels, we also omit it.

Author and temporal statistics. Fig. 5 shows the number of au-
thors for different numbers of posted tweets in our dataset. Most



Table 1: The 13 subsets that make up our dataset, all anno-
tations are in Dutch. The second column shows the English
translation, the third column gives the number of tweets per
subset, the fourth indicates whether a subset was included in
our experiments.

Tag (in Dutch) Translation Number Included

Berichtgeving Communications 208, 503 Yes
Aanbeveling Recommendation 150, 768 Yes
Bron online Online source 2, 505 No
Bron offline Offline source 179, 073 Yes
Reiziger Type of traveler 123, 281 Yes
Performance Performance 28, 545 Yes
Product Product 82, 284 Yes
Innovation Innovation 114, 647 Yes
Workplace Workplace 16, 910 Yes
Governance Governance 11, 340 Yes
Bedrijfsgerelateerd Company related 15, 715 Yes
Citizenship Citizenship 628 No
Leadership Leadership 10, 410 Yes
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Figure 5: Number of tweets per user in our dataset, where
the y-axis denotes the number of tweets and the x-axis denotes
the corresponding number of tweets the author posted in our
dataset. One user with more than 9000 tweets is omitted to im-
prove readability.

users post fewer than 200 tweets. In our dataset, 73, 245 users posts
fewer than 10 tweets within the whole time period, and the maxi-
mum number of tweets posted by one user is 9, 293: this is a news
aggregator that accumulates and retweets information about public
transportation systems.

One of the most interesting parts of the corpus is the possibility
to analyze and test longitudinal temporal statistics. We can display
the trends of tweets with various ways of binning. We can look at
general developments over long periods of time and bin documents
per day and per week. Fig. 6 shows the total number of tweets
posted at each hour over 24 hours. Clearly, people commute in the
train: the rush hours between 6am and 8am and between 4pm and
5pm correspond to a larger output of tweets. Fig. 6 also gives us
statistics on the number of tweets posted per day; many more tweets
are posted within the period from November 2011 to March 2012,
and a peak of the number of tweets happening around February 18,
2012, a day with a lot of delays (according to the uttered tweets).

5.3 Experimental setup
Following [33], we set the hyper parametersα = 50/

(
Kg +Kl

)
and βl = βg = 0.5 in our experiments. We set λ = 0.2 and
the number of samples to 5000 in our experiment for both docu-
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Figure 6: Number of tweets in our dataset. (Left): number
of published tweets published per hour. (Right): number of
published tweets published per day.

ment expansion and topic modeling. The number of topics in our
topic modeling process is set to 50, for both Zu0 and Zcom0 . For
our chunk-based structural SVM classification, we set parameter
C = 0.0001. For simplicity, we assume that each chunk in our
experiments has at most 4 child nodes.

Statistical significance of observed differences between two com-
parisons is tested using a two-tailed paired t-test. In our exper-
iments, statistical significance is denoted using N (M) for strong
(weak) significant differences for α = 0.01 (α = 0.05). For the
stationary HMC evaluation, all experiments are executed using 10-
fold cross validation combining training, validation and test sets.

5.4 Evaluation metrics
We adapt precision and recall to hierarchical multi-label learn-

ing following [4]. Given a class i ∈ C, let TPi, FPi and FNi be
the number of true positives, false positives and false negatives, re-
spectively. Precision and recall for the whole output tree-structure
are:

P =

∑
i∈C

TPi∑
i∈C

TPi +
∑
i∈C

FPi
; R =

∑
i∈C

TPi∑
i∈C

TPi +
∑
i∈C

FNi
(13)

We evaluate the performance using macro F1-measure (combin-
ing precision and recall) and average accuracy. The macro F1-
measure measures the classification effectiveness for each individ-
ual class and averages them, whereas average accuracy measures
the proportion correctly identified. For simplicity’s sake, we abbre-
viate average accuracy as accuracy and acc. in §6.

5.5 Baselines and comparisons
We list the methods and baselines that we consider in Table 2.

We write C-SSVM for the overall process as described in §4, which
includes both document expansion and topic tracking. To be able to
answer RQ1, we consider NDC-SSVM, which is C-SSVM without
document expansion. Similarly, in the context of RQ2 we consider
GTC-SSVM and LTC-SSVM for variations of C-SSVM that only
have global topics and local topics, respectively.

There are no previous methods that have been evaluated on the
hierarchical multi-label classification of streaming short text. Be-
cause of this, we consider two types of baseline: stationary and
streaming. For stationary hierarchical multi-label classification, we
use CSSA, CLUS-HMC and H-SVM as baselines. We implement
CSSA [4] by using kernel dependency estimation to reduce the pos-
sibly large number of labels to a manageable number of single-label
learning problems. CLUS-HMC [42] is a method based on deci-
sion trees. H-SVM [14] extends normal SVMs to a hierarchical
structure, where the SVM is trained in each node if, and only if, its
parent node has been labeled positive. As CSSA and CLUS-HMC
need to predefine the number of classes that each document be-
longs to, we employ MetaLabeler [40] to integrate with those two
baselines.



Table 2: Baselines and methods used for comparison.
Acronym Gloss Reference

C-SSVM Chunk-based structural learning method This paper
NDC-SSVM C-SSVM without document expansion This paper
GTC-SSVM C-SSVM only with global topics This paper
LTC-SSVM C-SSVM only with local topics This paper

Stationary
CSSA Kernel density estimation based HMC method [4]
CLUS-HMC Decision tree-based HMC method [42]
H-SVM Hierarchical SVM for multi-label classification [14]
Streaming
H-SVM Hierarchical SVM for multi-label classification [14]
CSHC Structural multi-class learning method [12]
NBC Naive Bayesian method [21]

For the streaming short text classification task, besides H-SVM,
we implement NBC and CSHC, a naive bayesian classifier frame-
work, which has proved effective in streaming classification [21],
and a structural multi-class learning method. Since NBC and CSHC
are designed for single-label classification, we introduce a widely-
used “one vs. all” strategy on multi-label situation [40]. We evalu-
ate their performance after document expansion (§4.2)

6. RESULTS AND DISCUSSION
In §6.1, we compare C-SSVM to other baselines for stationary

hierarchical multi-label classification; in §6.2 we examine the per-
formance of document expansion. §6.3 details the effect of topic
modeling on overcoming concept drift; §6.4 provides overall per-
formance comparisons; §6.5 evaluates the influence of the number
of items per chunk.

6.1 Performance on stationary HMC
We start by addressing RQ1 and test if our C-SSVM is effective

for the stationary HMC task, even though this is not the main pur-
pose for which it was designed. Table 3 compares the macro F1

of C-SSVM to the three HMC baselines. C-SSVM and CSSA tend
to outperform the other baselines: for 6 out of 11 tags C-SSVM
provides the best performance, while for the remaining 5 CSSA
performs best. The performance differences between C-SSVM and
CSSA are not statistically significant. This shows that, when com-
pared against state of the art baselines in terms of the macro F1

metric, C-SSVM is competitive.

6.2 Document expansion
Next, we turn to RQ2 and evaluate the effectiveness of document

expansion for HMC-SST. As described in §4, we extend a short

Table 3: RQ1: macro F1 values for stationary comparisons.
C-SSVM CSSA CLUS-HMC H-SVM

Communications 0.5073 0.5066 0.4812 0.4822
Recommendation 0.4543 0.4612 0.4421 0.4452
Offline source 0.4245 0.4176 0.4164 0.4161
Type of traveler 0.4623 0.4677 0.4652 0.4615
Performance 0.5221 0.5109 0.5054 0.5097
Product 0.4762 0.4722 0.4686 0.4609
Innovation 0.4991 0.4921 0.4822 0.4812
Workplace 0.4645 0.4725 0.4687 0.4623
Governance 0.4932 0.5025 0.4987 0.4923
Company related 0.4922 0.4972 0.4901 0.4852
Leadership 0.4672 0.4654 0.4624 0.4602

Table 4: An example of document expansion.
Short text
I’m tempted to get that LG Chocolate Touch. Or at least get a touchscreen
phone

Extension
The original LG Chocolate KV5900 was released in Korea long before the
UK or U.S. version.
The LG VX8500 or “Chocolate” is a slider cellphone-MP3 player hybrid
that is sold as a feature phone.
The sensory information touch, pain, temperature etc., is then conveyed to
the central nervous system by afferent neurones ...

Table 5: RQ2: Effect of document expansion in HMC.
C-SSVM NDC-SSVM

Subset macro-F1 Acc. macro-F1 Acc.

Communication 0.5073N 0.5164N 0.4887 0.4972
Recommendation 0.4543 0.4663 0.4542 0.4655
Offline source 0.4245N 0.4523N 0.4112 0.4421
Type of traveler 0.4623 0.4731 0.4647 0.4791
Performance 0.5221N 0.5321N 0.5013 0.5111
Product 0.4762M 0.4823M 0.4612 0.4721
Innovation 0.4991N 0.5121N 0.4522 0.4612
Workplace 0.4645M 0.4724M 0.4601 0.4695
Governance 0.4932N 0.5072N 0.4787 0.4944
Company related 0.4922N 0.5072N 0.4772 0.4921
Leadership 0.4672M 0.4754 0.4601 0.4707

text into a longer document by extracting sentences from linked
Wikipedia articles. Table 4 shows an example of the document
expansion where the new sentences are relevant to the original text.

Table 5 contrasts the evaluation results for C-SSVM with that
of NDC-SSVM, which excludes documents expansion, in terms
of macro-F1 and average accuracy. We find that C-SSVM out-
performs NDC-SSVM for most subsets of stationary HMC com-
parisons. In terms of macro F1, C-SSVM offers an increase over
NDC-SSVM of up to 9.4%, whereas average accuracy increases
by up to 9.9% significantly. We conclude that document expansion
is effective for the stationary HMC task, especially for short text
classification.

6.3 Time-aware topic extraction
Our third research question RQ3 aims at determining whether

concept drift occurs and whether topic extraction helps to avoid
this. Fig. 7 shows the propagation process of an example local topic
for the subset “Communication.” The upper part of Fig. 7 shows the
5 most representative terms for the topic during 5 time periods. The
bottom half of the figure plots fluctuating topical distributions over
time, which indicates concept drift between two adjacent periods.

Fig. 8 shows the macro F1 score over time for C-SSVM, C-
SSVM with only local topics (LTC-SSVM), and C-SSVM with
only globale topics (GTC-SSVM). This helps us understand whether
C-SSVM is able to deal with concept drift during classification. We
see that the performance in terms of macro F1 increases over time,
rapidly in the early stages, more slowly in the later periods covered
by our data set, while not actually plateauing. We also see that the
performance curves of LTC-SSVM and GTC-SSVM behave simi-
larly, albeit at a lower performance level. Between LTC-SSVM and
GTC-SSVM, LTC-SSVM outperforms GTC-SSVM slightly: local
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Figure 7: RQ3: An example local topic propagation in the subset “Communication.” The text blocks at the top indicate the top 5
representative terms for the topic being propagated at a specific time period; the bottom side shows the topic distribution over the
whole timeline.

topic distributions are more sensitive, and hence adaptive, when
drift occurs.
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Figure 8: RQ3: macro F1 performance of C-SSVM, LTC-
SSVM and GTC-SSVM over the entire data set.

6.4 Overall comparison
To help us answer RQ4, Table 6 lists the macro F1 and average

accuracy for all methods listed in Table 2 for all subsets over all
time periods. We see that our proposed methods C-SSVM, NDC-
SSVM, GTC-SSVM and LTC-SSVM significantly outperform the
baselines on most of subsets.

As predicted, NBC performs worse. Using local topics (LTC-
SSVM) performs second best (after using both local and global
topics), which indicates the importance of dynamic local topics
tracking in our streaming classification. C-SSVM achieves a 3.2%
(4.5%) increase over GTC-SSVM in terms of macro F1 (accuracy),
whereas the macro F1 (accuracy) increases 1.9% (2.2%) over LTC-
SSVM. Compared to CSHC, C-SSVM offers a statistically signif-
icant improvement of up to 7.6% and 8.1% in terms of macro F1

and accuracy, respectively.
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Figure 9: RQ5: Performance with different numbers of items
of each chunk, in terms of macro F1 (a) and Accuracy (b).

6.5 Chunks
We now move on to RQ5, and analyse the influence of the num-

ber of items per chunk. Fig. 9 plots the performance curves for
C-SSVM, LTC-SSVM and GTC-SSVM with varying numbers of
items per chunk. While not statistically significant, for both metrics
and all three methods, the performance peaks when the number of
items equals 6, i.e., higher than our default value of 4.

7. CONCLUSION AND FUTURE WORK
We considered the task of hierarchical multi-label classification

of social text streams. We identified three main challenges: the
shortness of text, concept drift, and hierarchical labels as classifi-
cation targets. The first of these was tackled using an entity-based
document expansion strategy. To alleviate the phenomenon of con-
cept drift we presented a dynamic extension to topic models. This
extension tracks topics with concept drift over time, based on both
local and global topic distributions. We combine this with an in-
novative chunk-based structural learning framework to tackle the
hierarchical multi-label classification problem. We verified the ef-
fectiveness of our proposed method in hierarchical multi-label clas-
sification of social text streams, showing significant improvements
over various baselines tested with a manually annotated dataset of
tweets.

As to future work, parallel processing may enhance the effi-
ciency of our method on hierarchical multi-label classification of
social text streams. Meanwhile, both the transfer of our approach to
a larger social documents dataset and new baselines for document
expansion and topic modeling should give new insights. Adaptive
learning or semi-supervised learning can be used to optimize the
chunk size in our task. Finally, we have evaluated our approaches
on fixed time intervals. This might not accurately reflect exact
concept drift on social streams. A novel incremental classification
method focussing on dynamic time bins opens another direction of
future research.
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Table 6: RQ4: Performance of all methods on all subsets for all time periods; macro F1 is abbreviated to m-F1, average accuracy is
written as Acc. We use N and M to denote significant improvements over CSHC. Best performance per subset is indicated in boldface.

C-SSVM NDC-SSVM GTC-SSVM LTC-SSVM CSHC H-SVM NBC

Subset m-F1 Acc. m-F1 Acc. m-F1 Acc. m-F1 Acc. m-F1 Acc. m-F1 Acc. m-F1 Acc.

Communication 47.21N 48.16N 44.24 45.42 046.44N 047.68N 046.25N 047.82N 44.12 45.31 45.22 46.62 44.02 45.18
Recommendation 41.28N 42.52N 040.44N 041.52N 039.88M 040.24M 040.52N 041.47N 38.53 39.42 38.22 39.71 34.31 35.26
Offline source 40.69N 41.61N 039.52N 040.42N 039.62N 041.15N 040.33N 041.72N 36.98 37.43 37.41 38.42 33.21 34.51
Type of traveler 43.73N 44.61N 044.02N 044.96N 043.12N 044.25N 043.45N 044.49N 38.83 40.01 41.07 41.92 38.62 39.38
Performance 49.52M 50.81M 47.62 48.45 48.86 49.63 48.93 50.02 48.74 49.26 48.84 49.52 46.42 47.32
Product 44.88N 45.24N 043.16N 044.09N 044.26N 045.02N 044.01N 045.22N 41.92 42.85 41.55 42.34 39.21 40.42
Innovation 46.89M 47.68M 45.58 46.64 45.97 46.81 046.52M 047.51M 45.44 46.56 44.52 45.63 43.41 44.21
Workplace 43.81N 44.42N 043.11N 044.32N 042.21N 043.15N 042.63N 043.41N 36.94 37.22 36.24 37.01 36.59 37.41
Governance 47.71N 48.44N 047.19N 048.46N 046.42M 047.35M 047.22M 048.19M 45.61 46.21 46.25 47.36 43.48 44.51
Company related 47.20N 48.52N 046.52N 047.38N 046.12N 047.51N 046.54N 047.43N 43.31 44.99 43.06 44.12 40.91 41.75
Leadership 44.15M 45.88N 43.67 44.59 41.75 42.82 42.34 43.21 42.51 43.44 42.15 43.51 40.35 41.27
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