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1
Introduction

Information Retrieval (IR) systems such as search engines or recommender systems
face a complex challenge: their goal is to select a handful of useful items out of po-
tentially billions of candidate items in order to satisfy the information need, shopping
need or entertainment need of a user. To tackle this challenge, highly complex systems
have been built that can rank items by relevance, placing relevant items at the top of the
ranked list. For example, in web search a user may issue a query and the search engine
responds with a search engine result page, usually containing a list of ten documents
sorted by their relevance with respect to the query.

Modern IR systems employ a ranking function to determine the order in which
items are shown to a user. Ranking functions assign a real-valued score to each item
by combining many features, and then sort the items by their respective scores to pro-
duce a ranking. For example, a web search engine may consider features such as link
analysis (Pagerank [126]), query-document lexical overlap (BM25 [141]), and many
more. Supervised Learning to Rank (LTR) approaches can learn a ranking function
from annotated datasets: datasets where it is known which items are relevant or not
with respect to a query, user profile, or context. Traditionally, research in this area has
focussed largely on improving the ability to optimize specific ranking metrics [21, 175]
or to improve generalization by utilizing more powerful and expressive underlying
models such as decision trees [20] and deep neural networks [34].

Supervised LTR has been successfully used in many different IR settings and tasks.
However, the limitations of relying on annotated datasets have become more apparent
in recent years: First, annotated datasets are not necessarily aligned with user prefer-
ences and may not capture the true preferences of the user [80]. Second, in some set-
tings, for example in personal search, they are unethical or impossible to create [16].
Third, creating annotated datasets can be expensive [28, 132]. Fourth, since annotated
datasets are expensive they are typically not updated frequently and cannot capture
changes in user’s preferences over time. Because of this, practicioners and researchers
have started looking at user interaction data as an alternative source of data with which
ranking models can be trained. In contrast to professional annotations, user interac-
tions (a) capture the true user preferences more accurately, (b) can be used in settings
where professional annotations are unethical or impossible, (c) are cheap to collect,
and (d) can be collected in real-time and track non-stationary user preferences over
time.
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1. Introduction

One of the major challenges in using user interaction data is bias. Some of the
more prominent types of bias that make user interactions difficult to use are position
bias [32] and selection bias [122]. Position bias is a phenomenon where users pay
more attention to top-ranked items and consequently those items will receive more
clicks than equally relevant items placed at lower ranks. Selection bias deals with the
phenomenon where users only interact with a subset of the ranked list, for example just
the top-10. In both cases the ranker that was used to log the interaction data has a great
influence on the collected interaction data.

Recent work has focused on either online learning [121, 185] or counterfactual
learning [81, 173] to perform unbiased LTR from user interactions [72, 124]. These
methods can remove specific kinds of bias from the user interaction data, but do so at
a cost: Online learning methods deal with bias by performing interventions: changing
what rankings are shown to the user, often by randomizing some of the results shown.
Hence they consequently risk exposing the user to poor rankings. On the other hand,
counterfactual learning methods do not perform interventions but instead deal with bias
by re-weighing historical interaction data. Doing so introduces significant amounts of
variance, which can lead to inefficient learning. Furthermore, the lack of interventions
means that counterfactual learning methods may lack interaction data on potentially
high-quality items because they may never have been shown to the user during data
collection.

Both online and counterfactual learning methods aim to solve the same problem:
unbiased learning with biased feedback. As we will see in Chapter 2, counterfac-
tual learning methods can underperform empirically in several unbiased LTR scenar-
ios when compared to online learning approaches. This is despite the strong theoretical
guarantees that counterfactual learning methods have for unbiased LTR. Therefore, our
findings suggest that counterfactual learning methods can be improved. We identify
three areas in which improvements could be made: efficiency, safety and adaptiveness.
In the research chapters that follow we explore each of these areas in more depth.

First, we contrast counterfactual and online learning approaches to understand the
strengths and the weaknesses of either approach (Chapter 2). Second, we propose
a way to improve the convergence rate for counterfactual Stochastic Gradient De-
scent (SGD) approaches (Chapter 3). Third, we study how counterfactual learning
methods can perform interventions, similar to online learning approaches, without the
risk of exposing poor rankings to the user (Chapter 4). Fourth, we look at the proper-
ties of counterfactual estimators in situations where user-preferences are non-stationary
and may change over time and propose new counterfactual estimators that have the-
oretically and empirically better performance in non-stationary settings (Chapter 5).
Finally, we look beyond clicks to more comprehensive user interaction signals as the
main source of user interaction data in the context of cloud-based file storage systems
(Chapter 6).

1.1 Research Outline and Questions

There are two families of algorithms for dealing with bias when learning from user
interactions: online learning and counterfactual learning. Online learning algorithms

2



1.1. Research Outline and Questions

learn to rank by interactively optimizing a ranking model. They deal with biases by
performing interventions, effectively changing the rankings that are displayed to the
user. In contrast, counterfactual LTR approaches deal with bias by treating clicks as
relevance indicators and employing a form of re-weighing. To better understand the
relative strengths and weaknesses of either approach, a comparison that contrasts these
methods across a number of biased LTR scenarios is necessary. This brings us to the
first research question:

RQ1 How should LTR practicioners choose which method to apply from either coun-
terfactual or online LTR methodologies?

To answer this research question we contrast state-of-the-art online and counterfactual
methods under different biased conditions in Chapter 2. We find that counterfactual
learning has many theoretical advantages over online learning but underperform em-
pirically in many experimental settings, especially when there is a large amount of bias
or a large amount of noise.

The findings from RQ1 suggest that high levels of noise and bias can make coun-
terfactual learning inefficient due to the large variance that is introduced with the in-
verse propensity scores. Counterfactual learning with SGD in these settings is slow
and takes long to converge to a solution. The second research questions addresses this
inefficiency problem:

RQ2 Can counterfactual learning from user interactions be made more efficient?

In Chapter 3 we introduce a sample-based SGD approach for counterfactual learning
that has provably better convergence rate than standard Inverse Propensity Scoring
(IPS)-weighted SGD that is commonly used for counterfactual learning. Furthermore
we empirically show that this learning approach outperforms IPS-weighted SGD in
many scenarios.

Going back to RQ1, another important finding is that counterfactual learning meth-
ods may suffer from selection bias, where only the top-10 results are displayed, whereas
online methods do not suffer. We hypothesize that interventions performed by online
methods enable them to change the top-10 results and are able to collect user inter-
actions on documents that counterfactual methods could not. Based on this, we ask
ourselves the third research question:

RQ3 Can counterfactual approaches perform interventions without harming the user
experience?

Chapter 4 answers this question by introducing a new counterfactual learning algorithm
that periodically deploys its learned model online, but only does so when it is safe to
do so, i.e. when there is no risk of harming the user experience. To accomplish this
we build on existing high-confidence off-policy estimators that can tell us when the
learned policy outperforms the deployed policy.

In contrast to annotated datasets, user interactions can be collected in real-time and
track user preferences over time. As such, it is important to understand the behavior

3



1. Introduction

of counterfactual estimators when user preferences change. This leads us to the fourth
research question:

RQ4 How can counterfactual approaches be adapted to deal with non-stationary envi-
ronments?

To answer this question we look at the bias and variance of counterfactual estimators
in non-stationary environments in Chapter 5. We find that counterfactual estimators
can be biased when user preferences change over time and propose two estimators that
have reduced bias in non-stationary settings.

In this thesis we largely focus on clicks on search results as the main source of user
interaction data. However, there are settings where other types of interaction data are
more abundant and where search logs are a limited resource. Other interaction data is
not necessarily tied to relevance or ranking quality, which brings us to the final research
question:

RQ5 Can activity-based user interaction signals improve ranking quality?

We answer this question in Chapter 6 where we study activity-based user interaction
signals, such as opening or editing documents, in the context of cloud-based file storage
search. We find that it is possible to leverage these signals to train semantic matching
models that can further improve the ranking quality of the search component.

1.2 Main Contributions
This section describes a list of the main contributions in this thesis.

1.2.1 Algorithmic contributions
1. A sample-based SGD learning algorithm called COUNTERSAMPLE with an im-

proved convergence rate for counterfactual LTR; see Chapter 3.

2. A Safe Exploration Algorithm (SEA) that uses counterfactual learning and off-
policy evaluation to explore new actions while maintaining the user experience;
see Chapter 4.

3. Sliding-window and exponential-decay counterfactual estimators for off-policy
evaluation in non-stationary settings; see Chapter 5.

4. A Semantic Matching Model that learns from activity data instead of clicks; see
Chapter 6.

1.2.2 Theoretical contributions
1. A proof that the time until convergence of IPS-weighted SGD scales with the

maximum IPS score; see Theorem 3.4.1.
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2. A proof that the time until convergence of COUNTERSAMPLE scales with the
average IPS score; see Theorem 3.5.2.

3. A proof that the performance of SEA is always at least as good as a baseline
ranker; see Theorem 4.4.1.

4. A proof that IPS estimators are biased in non-stationary settings; see Lemma 5.3.3.

5. Proofs for the bias of sliding-window and exponential-decay IPS estimators in
non-stationary settings; see Theorems 5.3.4 and 5.3.5.

1.2.3 Empirical contributions

1. A large-scale comparison of online and counterfactual approaches to unbiased
LTR; see Chapter 2.

2. Testing the convergence rate of counterfactual LTR across optimizers, batch
sizes and different severities of position bias; see Chapter 3.

3. Experiments to test the safety of several bandit algorithms on text classification
and document ranking; see Chapter 4.

4. A comparison of IPS estimators for off-policy evaluation in stationary, abrupt
non-stationary and smooth non-stationary settings; see Chapter 5.

5. An empirical validation of the use of activity data and click data based on user
interaction logs for cloud storage search; see Chapter 6.

1.2.4 Open source software contributions

1. PyTorchLTR (https://github.com/rjagerman/pytorchltr)
A PyTorch library for running LTR experiments. Used to run experiments in
Chapter 3.

2. ChainerCB (https://github.com/rjagerman/chainercb)
A Chainer library for running contextual bandit experiments. Used to run exper-
iments in Chapter 5.

3. Shoelace (https://github.com/rjagerman/shoelace)
A Chainer library for running LTR experiments.

4. Glint (https://github.com/rjagerman/glint)
An asynchronous parameter server for running large-scale machine learning ex-
periments in Spark.
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1. Introduction

1.3 Thesis Overview
The dissertation starts with Chapter 1, which you are currently reading. In this chapter
we introduce the main subject of the dissertation, which is about learning from user
interactions. Next, in Chapter 2 we empirically compare two families of methods for
unbiased LTR from user interactions: online and counterfactual approaches. This is
followed by Chapter 3 which introduces a counterfactual SGD learning algorithm that
enjoys provably faster convergence than existing counterfactual SGD learning algo-
rithms. Furthermore, the proposed method is empirically validated across a range of
biased LTR scenarios. Next, Chapter 4 addresses the lack of exploration that counter-
factual LTR methods suffer from. We introduce a safe (meaning to not harm the user
experience) mechanism for exploration in counterfactual learning.

Until this point, the dissertation has assumed stationary user preferences that do not
change over time and we have only looked at clicks as a user interaction signal. In the
following two chapters we tackle non-stationary user preferences and use non-search
interaction signals. Chapter 5 relaxes the stationarity assumption by introducing coun-
terfactual estimators that work well in non-stationary environments. Then, in Chapter 6
we go beyond clicks as the main source of interaction data, instead looking at activity
data, such as opening or editing documents, in the context of cloud file storage plat-
forms. Finally, we conclude the thesis in Chapter 7 and provide directions for future
work.

Readers familiar with counterfactual LTR and online LTR can skip the majority
of Chapter 2 but should read at least section 2.6 to understand how counterfactual
approaches compares to online approaches. All chapters are based on separate articles.
We aim to keep the articles in their original state as much as possible. Because of this,
it is unavoidable to have some overlap in the description of some baseline methods or
core notation.

1.4 Origins
In this section we list the publications that form the basis for each chapter:

Chapter 2 is based on the conference paper:
R. Jagerman, H. Oosterhuis, and M. de Rijke. To model or to intervene: A
comparison of counterfactual and online learning to rank from user interactions.
In SIGIR, pages 15–24. ACM, 2019.
The counterfactual LTR experiments were performed by Jagerman, the online
LTR experiments were performed by Oosterhuis. All authors contributed equally
to the text.

Chapter 3 is based on the conference paper:
R. Jagerman and M. de Rijke. Accelerated convergence for counterfactual learn-
ing to rank. In SIGIR, page 469–478. ACM, 2020.
The method and proofs were developed by Jagerman. The experiments were de-
signed and run by Jagerman. Both authors contributed to the text. Jagerman did
most of the writing.

6



1.4. Origins

Chapter 4 is based on the journal paper:
R. Jagerman, I. Markov, and M. de Rijke. Safe exploration for optimizing con-
textual bandits. TOIS, 38(3):Article 24, April 2020.
The method was developed by Jagerman. The proofs were written by Jagerman
with help of Markov. The experiments were designed and run by Jagerman. All
authors contributed to the text. Jagerman did most of the writing.

Chapter 5 is based on the conference paper:
R. Jagerman, I. Markov, and M. de Rijke. When people change their mind: Off-
policy evaluation in non-stationary recommendation environments. In WSDM,
pages 447–455. ACM, 2019.
The estimators and methods were developed by Jagerman. The proofs were
written by Jagerman with help of Markov. The experiments were designed and
run by Jagerman. All authors contributed to the text. Jagerman did most of the
writing.

Chapter 6 is based on the paper:
R. Jagerman, W. Kong, R. K. Pasumarthi, Z. Qin, M. Bendersky, and M. Najork.
Improving cloud storage search with activity data. In Under Review, 2020.
This work was done as part of an internship at Google Research in Mountain
View, California. Kong was the supervisor for this work. The method and
models were developed by Jagerman and Kong, with helpful discussions and
feedback from Pasumarthi, Qin and Bendersky. The experiments were run by
Jagerman and Kong. All authors contributed to the text. Jagerman did most of
the writing.

Furthermore, the thesis builds indirectly on the following work:

• R. Jagerman, C. Eickhoff, and M. de Rijke. Computing web-scale topic models
using an asynchronous parameter server. In SIGIR, pages 1337–1340. ACM,
2017

• R. Jagerman, J. Kiseleva, and M. de Rijke. Modeling label ambiguity for neural
list-wise learning to rank. In SIGIR-NeuIR Workshop. ACM, 2017.

• R. Jagerman, K. Balog, P. Schaer, J. Schaible, N. Tavakolpoursaleh, and M. de Ri-
jke. Overview of TREC OpenSearch 2017. In TREC, 2017.

• R. Jagerman, K. Balog, and M. de Rijke. OpenSearch: Lessons learned from an
online evaluation campaign. JDIQ, 10(3):Article 13, 2018.

• C. Lucchese, F. M. Nardini, R. K. Pasumarthi, S. Bruch, M. Bendersky, X. Wang,
H. Oosterhuis, R. Jagerman, and M. de Rijke. Learning to rank in theory and
practice: From gradient boosting to neural networks and unbiased learning. In
SIGIR, pages 1419–1420. ACM, 2019.

• H. Oosterhuis, R. Jagerman, and M. de Rijke. Unbiased learning to rank: Coun-
terfactual and online approaches. In WWW, pages 299–300. ACM, 2020.
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2
A Comparison of Counterfactual and

Online Learning to Rank

2.1 Introduction
Interest in Learning to Rank (LTR) approaches that learn from user interactions has in-
creased recently [16, 59, 82, 185]. Compared to learning from annotated datasets [106],
implicit feedback obtained through user interactions matches user preferences more
closely [80]. Furthermore, gathering interactions is much less costly than expert an-
notations [28, 132]. Additionally, unlike LTR from annotated datasets, LTR from user
interactions can respect privacy-sensitive settings [16]. However, a big disadvantage
of user interactions is that they often contain different types of bias and noise. Hence,
LTR methods that learn from user interactions mainly focus on removing bias from the
learning process [16, 82, 120].

There are two main families of algorithms for unbiased LTR from user interactions:

1. Counterfactual Learning to Rank (CLTR) [82]: These algorithms learn a ranking
model from a historical interaction log, often collected using a production system.
They usually treat clicks as absolute relevance indicators and employ a form of re-
weighing in order to debias interaction data. Counterfactual methods have no ex-
perimental control; they avoid the risks associated with online interventions where
untested rankings may be displayed. A disadvantage is that they cannot explore and
are limited to rankings displayed by the production system.

2. Online Learning to Rank (OLTR) [185]: This class of algorithms interactively opti-
mize and update a ranking model after every interaction. They combat bias by inter-
ventions, i.e., by displaying slightly modified rankings. This type of experimental
control allows the learner to assess and learn novel rankings. Clearly, experimental
control comes with a risk: untested rankings may hurt the user experience.

For practitioners the decision whether to use counterfactual or online LTR is important
for practical deployment and user satisfaction with their ranking system. E.g., if there
are situations where CLTR and OLTR methods provide the same performance, the risks
of interventions can be avoided. However, if under some conditions CLTR methods

This chapter was published as [72].
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are unable to reach the same performance as online interventions promise to bring,
an OLTR method may be preferred. Currently, there has not been a study comparing
methods across the two methodologies. As a result, it is currently unclear when which
methods may be preferred, what benefits either methodology provides, and the scope
of these benefits. Direct comparisons between CLTR and OLTR are required to help
advance the field of LTR and inform its uptake.

A direct and fair comparison of counterfactual and online LTR algorithms is non-
trivial for several reasons. First, CLTR methods do not affect the user experience
as they learn from historical data; in contrast, the user experience is a vital part of
the evaluation of OLTR methods. Second, unlike OLTR methods, CLTR methods
assume there is no selection bias, and proofs of their unbiasedness depend on this
assumption. Finally, the optimization problems for OLTR and CLTR methods are
formulated differently – therefore they may not be optimizing the same metrics and
observed differences could be a consequence of this difference.

To the best of our knowledge, this is the first study to provide a direct comparison
of CLTR and OLTR methods. Our main goal in this chapter is to answer the following
research question:

RQ1 How should LTR practicioners choose which method to apply from
either counterfactual or online LTR methodologies?

In order to enable informed answers to this question, we address multiple aspects that
are important to practitioners of both large-scale and small-scale LTR systems. First,
we evaluate whether both approaches converge at the same level of performance, in
other words, whether both approaches capture the true user preferences equally well.
Furthermore, we investigate how the learning outcomes are affected by different levels
of selection bias, position bias and interaction noise. Second, we evaluate how well the
user experience is maintained during learning, since OLTR methods could potentially
deter users with inappropriate interventions. Thirdly, we investigate the effect of in-
terventions by allowing counterfactual methods to execute periodic deployments; this
simulates multiple steps of optimization and deployment as one would see in practice.

The research questions we address are:

RQ1.1 Do state-of-the-art counterfactual and online LTR methods converge to the
same level of performance?

RQ1.2 Is the user experience the same for counterfactual methods as for online meth-
ods?

RQ1.3 When do online interventions help the learning to rank algorithm?

In this chapter we present the first direct comparison between CLTR and OLTR meth-
ods. Our comparison leads to valuable insights as it reveals that, depending on the
experimental conditions, a different methodology should be preferred. In particular,
our results show that OLTR methods are more robust to selection bias, position bias
and interaction noise. However, under low levels of bias and noise CLTR methods can
obtain a significantly higher performance. Furthermore, to our surprise we find that
some properties asserted to pertain to CLTR or OLTR methods in previously published
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Table 2.1: Notation used throughout the chapter.
Notation Description

d document
D set of documents
R ranked list
Ri document placed at rank i in ranked list R

f✓(·) ranking model with parameters ✓

ci 1 if document at rank i was clicked, 0 otherwise
pi The propensity score at rank i

relevance(d) 1 if document d is relevant, 0 otherwise

work appear to be lacking when tested. For instance, in contrast with previously pub-
lished expectations [120] OLTR is not substantially faster at learning than CLTR, and
while always assumed to be safe [174], CLTR may be detrimental to the user experi-
ence when deployed under high-levels of noise.

Our findings reveal areas where future LTR work could make important advances,
and moreover, allow practitioners to make an informed decision on which LTR method-
ology to apply.

2.2 Counterfactual Learning to Rank
Counterfactual Learning to Rank (CLTR) [4, 9, 82] aims to learn a ranking model from
historical interaction data. Employing an offline approach has many benefits compared
to an online one. First, it is possible to try and iterate many different learning algo-
rithms without needing to deploy them online. Furthermore, it avoids the pitfalls and
engineering overhead of having to deploy an online learning system. Finally, models
that are learned offline can be tested before actually being deployed online, alleviating
some of the safety concerns surrounding OLTR, such as the aggressive exploration of
online methods that may place irrelevant items at high ranked positions [99, 174].

A straightforward approach to LTR from historical user interactions is to collect
clicks and treat them as signals of relevance [79]. This is referred to as partial in-
formation feedback because it only conveys information about the documents that the
user has seen and clicked on, but not other documents that the user could have seen
and clicked on. Traditional supervised learning algorithms expect data to be in a “full
information” form, where it is exactly known which documents are relevant and which
ones are not. This is never the case in user interactions due to biases and noise. As a
solution, CLTR provides a way to deal with partial information feedback.

2.2.1 Unbiased LTR with biased feedback
Joachims et al. [82] introduce a method to utilize interaction data in LTR, by casting
the problem as a counterfactual learning problem [157]. In [82], it is assumed that the
user does not examine all documents in a ranked list, and is more likely to observe
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documents at the top of the list than at the bottom; this is referred to as position bias.
After a document is observed, a user will either judge it as relevant resulting in a click,
or judge it as non-relevant. More formally, the user observes document di at rank i

with some probability pi, called the propensity. 1

If the propensity is known, it is possible to modify an existing learning algorithm
and simply re-weigh interaction data according to the propensity scores using Inverse
Propensity Scoring (IPS). Joachims et al. [82] take the SVMRank algorithm and mod-
ify it to optimize a re-weighted objective, where each click is re-weighted according
to whether the click appeared at the top of the ranked list (thus with high propensity)
or lower in the ranked list (thus with lower propensity). Samples with high propensity
are weighted less than samples with low propensity and vice versa. We will assume
the propensities are known a priori and discuss related work dealing with propensity
estimation in Section 2.2.3.

To formalize CLTR, we consider a ranking function fproduction that produces a
ranked list R to be shown to the user in response to a query q. When a user clicks
on a document in this ranking, they are revealing to us that this document is relevant.
We denote a user’s clicks by a 0/1 vector c:

ci =

⇢
1 if document di was observed and judged relevant,
0 otherwise.

Note that it is possible for a user to click on more than one document during a session
or click on no documents. Since a user is more likely to observe top-ranked documents
than lower-ranked ones, we are more likely to observe relevance signals of the top-
ranked documents. We denote the probability that a user observes the document at
rank i with pi; this is usually called the propensity of the observation.

We record a click log D = {(R(j)
, c

(j))}nj=1, containing rankings of documents
R and clicks c according to the procedure in Algorithm 1. For brevity we drop the
superscript notation ·

(j) for the session identifier. We now derive the learning objective
of [82], a modified version of the SVMRank training objective that minimizes the
average rank of relevant results, weighted by the inverse propensity scores:

✓̂ = argmin
✓

1

|D|

X

(R,c)2D

X

{i:ci=1}

rank(Ri | f✓)

pi
. (2.1)

It can be shown that the above training objective is unbiased and can be solved via a
hinge loss formulation [82]. We will refer to this method as Counterfactual SVMRank
(CF-RANK).

2.2.2 Unbiased LTR with additive metrics
The counterfactual learning framework described in the previous section can be adapted
to optimize additive metrics [4]. For example, we can modify the training objective so
it optimizes DCG [75], a common metric in the evaluation of rankings:

✓̂ = argmin
✓

1

|D|

X

(R,c)2D

X

{i:ci=1}

�(rank(Ri | f✓))

pi
, (2.2)

1The notation we use in the chapter is listed in Table 2.1.
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Algorithm 1 Data collection for Counterfactual Learning to Rank.
1: Input: production ranker: fproduction; log size n;
2: Output: a session log D

3: D = ;
4: for t 1 . . . n do

5: q
(t)
 receive_query(t)

6: D
(t)
 preselect_documents(q(t))

7: R
(t)
 rank_documents(fproduction, D

(t))
8: c

(t)
 receive_clicks(R(t))

9: D  D [ {(R(t)
, c

(t))}
10: end for

where �(r) = �1
log(1+r) . This objective is both continuous and sub-differentiable, mak-

ing it possible to solve using existing gradient descent techniques. We will refer to the
DCG-optimizing counterfactual method as Counterfactual DCGRank (CF-DCG).

The counterfactual LTR algorithm is described in Algorithm 2. As input, the algo-
rithm takes a set of weights (typically initialized to 0), a scoring function f , a learning
rate µ and a click log D. The algorithm runs for a fixed number of epochs which trades
off computation time for convergence. The gradient is calculated on line 8 where a
clicked document is compared against every other document. The gradient is com-
puted as a �-modified hinge loss: with �(r) = r this is the CF-RANK method, which
attempts to minimize the rank of relevant results; and with �(r) = �1

log(1+r) we obtain
the CF-DCG method, which attempts to maximize DCG. Finally, the ranking model is
updated via stochastic gradient descent on line 11.

2.2.3 Propensity estimation methods
Recent work in CLTR has focused on estimating propensities from data [9, 173, 174].
As the aim of our work is to compare counterfactual and online LTR approaches, we
consider propensity estimation beyond the scope of this chapter and assume the propen-
sity scores are known a priori. This is a reasonable assumption, as practitioners typi-
cally first perform a randomization experiment to measure the observation probabilities
before applying a counterfactual learning algorithm [16].

Our experimental setup allows us to measure the difference of counterfactual meth-
ods and online methods without confounding our results by the accuracy of the propen-
sity estimator.

2.3 Online Learning to Rank

Online Learning to Rank (OLTR) [59, 120, 145, 185] aims to learn by directly in-
teracting with users. OLTR algorithms affect the data gathered during the learning
process because they have control over what is displayed to users. These interven-
tions potentially allow for more efficient learning by requiring less user interactions to
reach a certain level of performance. Yet, an OLTR algorithm has to simultaneously
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Algorithm 2 Counterfactual Learning to Rank (CLTR).
1: Input: initial weights: ✓; scoring function: f ; learning rate µ; click log D; number

of epochs: E.
2: for e 1 . . . E do

3: for (R, c) 2 D do

4: for Ri : ci = 1 do

5: rf✓  0 // initialize gradient
6: for Rj : Rj 6= Ri do

7: rf✓  rf✓ +r [�(hinge(f✓(Ri)� f✓(Rj))))]
8: // (modified) hinge-loss gradient
9: end for

10: rf✓  
rf✓
pi

11: ✓  ✓ + µrf✓t // update the ranking model
12: end for

13: end for

14: end for

provide good results to the user and learn from their interactions with the displayed
results [118]. Thus, besides unbiasedly learning from user interactions, the user ex-
perience during learning should also be maintained. A great advantage of the online
approach is that learned behavior is immediately applied. However, this high level of
responsiveness also means that an unreliable OLTR method can decrease the user ex-
perience immediately, making it a potential risk. Therefore, it is important for OLTR
methods to be reliable, i.e. unbiased and robust to noise.

In contrast to CLTR, OLTR methods do not explicitly model user behavior, i.e.,
they do not estimate observance probabilities. Instead, they use stochasticity in the
displayed results to handle selection and position biases. In addition, their properties
are only based on simple assumptions about user behavior [120, 185], e.g., a relevant
document is more likely to be clicked than a non-relevant document. Thus, in cases
where users are hard to model, OLTR may have an advantage over CLTR. In other
areas of machine learning [148], online (or active) approaches tend to be more efficient
than algorithms without control over data gathering w.r.t. data requirements. However,
CLTR and OLTR methods have never been compared directly, thus currently we do
not know if this advantage also generalizes to LTR problems.

2.3.1 Dueling bandit gradient descent
Dueling Bandit Gradient Descent (DBGD) [185] is the earliest OLTR method and is
based on interleaving: an unbiased online evaluation method. Interleaving methods un-
biasedly compare two ranking systems in the online setting [58, 77, 135]. Therefore,
interleaving can be used to recognize an improvement to a ranking system. At each iter-
ation DBGD compares its current model with a sampled variation using interleaving. If
a preference towards the variation is inferred, the current model is updated in its direc-
tion. Over time this process estimates a gradient descent and the model should oscillate
towards an optimum w.r.t. user preference. Most OLTR methods published to date are
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extensions of DBGD. This includes, for instance, Multileave Gradient Descent [146],
which compares multiple variations per iteration using multileaving [119, 145]; other
methods reuse historical interactions to guide exploration [59, 188]. All of these exten-
sions improve on the initial learning speed of DBGD. However, no extension has been
shown to improve long-term performance [120, 123, 146]. Moreover, even under ideal
circumstances and with a very large number of iterations, DBGD is unable to reach
levels of performance comparable to LTR from labeled datasets [118, 120]. Despite
these shortcomings, DBGD is a key method in the field of OLTR.

2.3.2 Pairwise differentiable gradient descent
In reaction to the shortcomings of DBGD, recent work has introduced the Pairwise Dif-
ferentiable Gradient Descent (PDGD) algorithm [120]. In contrast to DBGD, PDGD
does not depend on sampling model variations or online evaluation methods. Instead,
PDGD constructs a pairwise gradient at each interaction, from inferred user prefer-
ences between documents. Algorithm 3 describes the PDGD method in formal detail.
At each iteration, the algorithm waits until a query is issued by the user (line 3). Then
PDGD creates a probability distribution over documents by applying a Plackett-Luce
model with parameter ⌧ 2 R>0 to the scoring function:

P (d|D, ✓) =
e
⌧f✓(d)

P
d02D e⌧f✓(d

0)
. (2.3)

We introduce the ⌧ parameter to control the sharpness of the initial distribution, which
indicates the confidence we have in the initial model. Previous work only consid-
ered cold-start situations thus did not require this parameter [120, 121]. From this
distribution a result list is sampled (Line 5) and displayed to the user. Then PDGD
infers preferences between the clicked documents and the first unclicked document
and every unclicked document preceding a clicked document, a longstanding pairwise
assumption [76]. With di >c dj denoting an inferred preference of di over dj , PDGD
estimates the model gradient as:

rf✓ ⇡

X

di>cdj

⇢(di, dj , R, ✓)rP (di � dj |✓), (2.4)

where ⇢ is a weighing function used to deal with biases (line 8) and P (di � dj | ✓)
is the probability of sampling di before dj . 2 Finally, the scoring function is updated
according to the estimated gradient (line 11), and the process repeats with the updated
model.

The ⇢ function makes use of a reverse pair ranking function R
⇤(di, dj , R), which

returns the same ranking as R with the position of document di and dj swapped. Then,
the value of ⇢ is determined by the ratio between the probabilities of the two rankings:

⇢(di, dj , R, ✓) =
P (R⇤(di, dj , R)|✓)

P (R|✓) + P (R⇤(di, dj , R)|✓)
. (2.5)

2P (di � dj | ✓) = e⌧f✓(di)

e⌧f✓(di)+e
⌧f✓(dj)
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PDGD assumes that if a user considers both di and dj equally relevant, then inferring
the preference in di >c dj in R is equally probable as inferring the reverse preference
dj >c di in R

⇤(di, dj , R). Furthermore, if a user prefers one of the documents, infer-
ring the corresponding preference is more likely than the reverse. These assumptions
can formulated as:

sign(relevance(di)� relevance(dj)) =
sign (P (di �c dj |R)� P (dj �c di|R

⇤(di, dj , R))) .
(2.6)

Intuitively, this means that relative relevance differences can be inferred by swapping
document pairs without changing the rest of the ranking. A similar approach is used
by counterfactual methods to estimate propensities [82], conversely, PDGD uses it to
directly optimize its ranking model. In the original paper, Oosterhuis and de Rijke
prove that the gradient estimation of PDGD is unbiased w.r.t. document pair prefer-
ences. This means that the expected gradient of PDGD can be written as a sum over
all document pairs:

E[rf(·, ✓)] =
X

(di,dj)2D

↵ij (f
0(di, ✓)� f

0(dj , ✓)) , (2.7)

where ↵ij is a unique weight for every document pair in the collection. PDGD is
unbiased in the sense that the sign of ↵ij matches the user preferences between di and
dj :

sign(↵ij) = sign (relevance(di)� relevance(dj)) . (2.8)

Thus, in expectation PDGD will perform an unbiased update towards the pairwise
preferences of the user.

Recent work has extensively compared DBGD with PDGD [120, 121]; PDGD per-
forms considerably better in terms of final convergence, user experience during op-
timization, and learning speed. These findings generalize from settings with no to
moderate levels of position bias and noise [120] to circumstances with extreme lev-
els of bias and noise [121]. PDGD is the new state-of-the-art for OLTR, and we will
therefore not consider DBGD in our comparison.

2.4 Expectations from Previous Work
This section will discuss several expectations about the qualitative differences between
CLTR and OLTR based on previous work. Subsequently, Section 2.5 describes the ex-
periments that have been run to test these expectations and Section 2.6 their outcomes.
By discussing existing expectations here, we can later contrast them with our observa-
tions. Whether and how our results match our expectations can reveal how well our
understanding of LTR from user interactions is.

Expectation 1 – The performance at convergence. As described in Section 2.2, it
has been proven that CLTR can unbiasedly optimize additive metrics [4], for instance
using CF-DCG, when the observation probabilities of the user are correctly known.
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Algorithm 3 Pairwise Differentiable Gradient Descent (PDGD).
1: Input: initial weights: ✓1; scoring function: f ; learning rate µ.
2: for t 1 . . .1 do

3: q
(t)
 receive_query(t) // obtain a query from a user

4: D
(t)
 preselect_documents(q(t)) // preselect doc. for query

5: R(t)
 sample_list(f✓, D(t)) // sample list according to Eq. 2.3

6: c(t)  receive_clicks(R(t)) // show result list to the user
7: rf✓  0 // initialize gradient
8: for di >c dj 2 c(t) do

9: rf✓  rf✓ + ⇢(di, dj , R)rP (di � dj |✓)
10: end for

11: ✓  ✓ + µrf✓ // update the ranking model
12: end for

Conversely, for PDGD there is no known proof that it optimizes any metric unbiasedly.
Therefore, we expect CLTR methods like CF-DCG to reach a higher level of perfor-
mance than PDGD if the propensities are known, since CLTR can guarantee that the
performance metric is optimized, while for PDGD it is unclear whether its pairwise
gradient will optimize the metric precisely.

Expectation 2 – The user experience during learning. The field of OLTR has long
claimed that their methods provide the most responsive experience [59, 120, 146] be-
cause OLTR methods apply their learned model instantly. However, noise may cause
a method to decrease model quality (temporarily) and exploration adds stochasticity to
the results, thus risking a worsened user experience. As a result, we expect an OLTR
method to provide an experience worse than the initial ranker at the start, but as learn-
ing continues the user experience should eventually exceed that of the initial model. In
contrast, CLTR methods do not affect the user experience during learning as they work
with historical data, and therefore, also cannot improve it. Nevertheless, this approach
completely avoids the risks of degrading the user experience. Therefore, we expect
OLTR to provide a worse experience than under click gathering for CLTR initially, yet
eventually the experience under OLTR should exceed that of CLTR. The question is
whether the long-term improvements of OLTR outweigh the initial decrease.

Expectation 3 – The effect of interventions. Interventions are expected to greatly
reduce the data requirements for learning [148], as they allow algorithms to gather
data that is more useful for their current state. Correspondingly, OLTR methods are
expected to learn faster [59, 146], in other words, they should require less user inter-
actions to reach a decent level of performance than CLTR methods [120]. Similarly,
allowing CLTR methods to intervene, e.g., by deploying a current model should make
them more efficient as well.

This concludes the key expectations regarding the performance differences between
CLTR and OLTR methods. While these expectations are based on previously published
literature on CLTR and OLTR [4, 120, 148], they have never directly been tested. To
the best of our knowledge, our study is the first to confirm or challenge them with hard
experimental facts.
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Table 2.2: Click probabilities after observing a document in the result list for different
user models.

P (click = 1 | observed = 1, rel(d))

rel(d) 0 1 2 3 4

Perfect 0.00 0.20 0.40 0.80 1.00
Binarized 0.10 0.10 0.10 1.00 1.00
Near-Random 0.40 0.45 0.50 0.55 0.60

2.5 Experiments

Our experiments evaluate the user experience of several methods at different time-steps
and a multitude of conditions with varying levels of interaction noise, position bias,
and selection bias. Due to the scope of this comparison and the varying requirements,
we rely on a synthetic setting based on an existing LTR dataset and simulated user
behavior. Our setup is an extension of the synthetic experiments common in both
OLTR [59, 120, 146] and CLTR [9, 82].

2.5.1 Optimization setup

We use the Yahoo! Webscope dataset [28]; it contains a set of queries with a unique set
of preselected documents for each query. The dataset provides a train, validation and
test split. We use the train partition during optimization of the methods, the validation
set for tuning hyperparameters and the test partition to report our results. Each query-
document pair is represented by a feature vector and a relevance label, the relevance
labels are in a five-degree scale ranging from not relevant (0) to perfectly relevant (4).

A baseline ranker is trained to serve as a logging ranker for the CLTR methods,
and an initial ranker to warm-start the OLTR method. To create the baseline ranker,
we follow the setup of Joachims et al. [82] and train an SVMRank ranker on 1% of
the queries in the training data. This setup is chosen as it reflects a common real-
world scenario: it is possible to manually annotate a small amount of data to learn an
initial ranker, and then use a large amount of logged interaction data, either online or
counterfactually, to further improve this ranker.

Finally, the gathering of click-data is simulated using the following steps: First, a
user-issued query is simulated by uniformly sampling a query from the training par-
tition of the dataset. Then, the corresponding documents are ranked according to the
applied LTR method, i.e., by the logging policy for CLTR methods or by the algorithm
itself in OLTR. Subsequently, the ranked results are displayed to a simulated user who
then clicks on any number of documents (including none); Section 2.5.2 details the be-
havior models we applied. Lastly, the resulting clicks are presented to the LTR method,
which may now use the interaction for optimization.
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2.5.2 Simulating user behavior

We simulate user behavior by modelling three aspects of user behavior in search: in-
teraction noise, position bias and selection bias.

First, interaction noise affects the probability of a user clicking on a document
after observing it. The probability of clicking is conditioned on the relevance label of
a document, as users are more likely to click on more relevant documents. Table 2.2
provides the click probabilities for three different click behavior models: Perfect click
behavior has probabilities proportional to the relevance and never clicks on a non-
relevant document, simulating an ideal user. Binarized click behavior acts on only
two levels of relevance and is affected by position-bias; this simulated behavior has
been used in previous work on CLTR [4, 9, 82]. And Near-Random behavior clicks
very often, and only slightly more frequently on more relevant documents than on less
relevant documents; this behavior simulates very high levels of click noise.

Second, position bias is modelled by observation probabilities; for a document at
rank i the probability of being observed is determined by the parameter � and formula:

P (observed = 1 | i) =

✓
1

i

◆�

. (2.9)

Again this follows previous work on CLTR [4, 9, 82]. We apply this position bias to
the Binarized and Near-Random user models; the Perfect user observes all documents
every time and thus has no position bias. In our experiments we use � = 1 and � = 2
to model different levels of position bias.

Thirdly, we simulate selection bias, which occurs when not all documents can be
displayed and thus also not observed. In practice it also occurs because users never
look past certain positions, for instance, users rarely look beyond the initial page of
many multi-page result displays. We model selection bias by giving a zero obser-
vance probability to documents beyond rank 10. This is common practice in OLTR
experiments [59, 120, 146]; in contrast, CLTR methods assume that no selection bias
is present. To investigate the effect of selection bias, our experiments both contain
simulations with and without it.

In conclusion, we can apply selection bias, have two levels of position bias, and
three levels of interaction noise. In total, we apply ten different types of user behavior:
Perfect click behavior with and without selection bias, the Binarized and Near-Random
click behaviors with two levels of position bias, with and without selection bias. To
the best of our knowledge this is the most extensive set of types of behavior used for
evaluating CLTR and OLTR methods, in addition to being the first comparison between
the two methodologies.

2.5.3 Evaluation

To measure the performance of a ranker at any time step, we evaluate it on held-out
annotated test data using the nDCG@10 metric [75]. We use the learned models
without any exploration when evaluating performance at convergence. To evaluate the
user experience during learning for OLTR we apply the algorithm with exploration to
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the held-out dataset; this measures the performance for a previously unseen query that
appears during optimization.

To test for statistical significance we average the results over multiple runs and
apply a two-tailed t-test. In Section 2.6, we indicate for each comparison, whether the
observed difference is statistically significant with p < 0.01.

2.5.4 Methods and interventions

Our comparisons concern one OLTR method and several CLTR methods, in addition
to CLTR methods with periodic deployments during the optimization process.

The OLTR method in the comparison is PDGD (Section 2.3); the parameters (µ =
0.01, ⌧ = 10) were tuned on the validation set.

The CLTR methods we apply are CF-RANK (Section 2.2.1) and CF-DCG (Sec-
tion 2.2.2); the former is the original CLTR method while the latter optimizes DCG
corresponding to our evaluation metric. For each run, the CLTR methods are given
the propensity scores of the actual user models applied; this guarantees that the CLTR
methods optimize unbiasedly. Furthermore, to investigate the effect of interventions
we also run these methods with periodic deployment. For these runs we replaced the
logging policy with the (then) current ranking model after every 200,000 iterations,
thus simulating a situation where the learned model is deployed periodically. The pa-
rameters for the CLTR were optimized for every instance of user behavior and number
of interactions on the validation set, thus results at different time-steps may use differ-
ent parameter settings. The complete set of hyper parameter settings that were used is
released alongside our source code; see Section 2.8 for details.

2.6 Results and Analysis

This section will answer the research questions posed in Section 2.1, using our experi-
mental results displayed in Figure 2.1, 2.2, 2.3, and 2.4.

2.6.1 Ranking performance

We investigate the ranking performance of the OLTR and CLTR methods under differ-
ent experimental conditions to answer RQ1.1:

Do state-of-the-art counterfactual and online LTR methods converge to the
same level of performance?

As discussed in Section 2.4 we expect CF-DCG to have better performance when the
assumptions for unbiased CLTR are met, as unlike PDGD, CF-DCG is then proven to
optimize the DCG metric. Figure 2.1 displays the performance of the counterfactual
and online LTR methods over 1,000,000 sessions, where a session consists of a query,
a ranking of documents and all corresponding clicks generated by the click simulation.
These results are grouped by the user behavior under which they were optimized, which
varies in the amount of selection bias, position bias, and interaction noise.
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Figure 2.1: Performance of online and counterfactual methods under perfect, binarized,
and near-random user models. In the left column no selection bias is present; in the
right column, a selection of 10 is used.

First, we consider the results without selection bias displayed in the left column
of Figure 2.1. Under Perfect and Binarized click behavior the performance of the
CLTR methods and PDGD are quite comparable, with CF-DCG performing better than
PDGD in the Binarized case (p < 0.01). In contrast, performance of the CLTR meth-
ods drops below the production ranker under Near-Random click behavior, and does
not exceed it within 1,000,000 iterations (p < 0.01). This goes against our expecta-
tions, as CLTR methods in the Near-Random case should, in expectation, find the best
ranking function because the relative ordering of ranking functions is preserved [82].
PDGD, on the other hand, is much less affected and reaches much higher levels of per-
formance. Because the Binarized and Near-Random behaviors have the same position
bias, the difference in performance must be due to the increased interaction noise in
the latter. Thus, it appears that the CLTR methods are much less robust to noise than
PDGD, yet with low levels of noise CLTR methods outperform the OLTR method.

Second, we look at the results with selection bias displayed in the right column in
Figure 2.1. For each user model the performance of the CLTR methods is worse than
without selection bias. Except under Near-Random click behavior where CF-DCG
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Figure 2.2: Performance of online and counterfactual methods under very strong po-
sition bias (� = 2). The scale of the y-axis of the plots in the left column has been
modified to be able to show the large variance. In the left column no selection bias is
present; in the right column, a selection of 10 is used.

now performs slightly better than the production ranker. Unbiased CLTR does not
consider selection bias [82] which could explain this unexpected result. In contrast,
the performance of PDGD is affected very little in comparison and is now better than
both CLTR methods under all click behaviors (p < 0.01). Thus, it appears that PDGD
is preferable when selection bias is present.

Third, to understand the effect of position bias we look at the results in Figure 2.2,
where strong position bias is simulated with � = 2. It is clear that all methods are
negatively affected by strong position bias. Unexpectedly, PDGD now outperforms the
CLTR methods in all cases (p < 0.01), even though the Binarized click behavior with-
out selection bias provides the exact circumstances for which CLTR was designed [82].
Therefore, we attribute the negative effect on CLTR to high variance since the methods
are still proven to be unbiased in this case. This may further explain why selection
bias has a positive effect on the CLTR methods under the Binarized click behavior: it
removes documents with low propensities that lead to high variance. Clearly, we see
that OLTR is better at handling high levels of position bias than CLTR.

In conclusion, we answer RQ1.1 negatively: online and counterfactual methods do
not converge to the same level of performance. However, which method reaches the
best performance depends heavily on the conditions under which they are deployed. In
the presence of selection bias or under high levels of position bias or interaction noise
OLTR reaches the highest performance. However, when there is no selection bias, little
position bias and little interaction noise, then CLTR reaches a level of performance that
OLTR is unable to obtain. Counter to our expectations, even when the assumptions of
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Figure 2.3: Display performance during training, indicating user experience. In the left
column no selection bias is present; in the right column, a selection of 10 is used.

CLTR are true, the CLTR methods are still not robust to noise. Thus, to be able to make
the best decision between the CLTR and OLTR methodologies, a practitioner should
first measure the severity of different types of bias and noise in their search scenario.

2.6.2 User experience
In this section, we examine the quality of displayed rankings in order to answer RQ1.2:

Is the user experience the same for counterfactual methods as for online
methods?

Figure 2.3 shows the quality of rankings displayed by the PDGD method during opti-
mization and of the Production ranker used to gather click-logs for the CLTR methods.
For clarity: we are not discussing the CF-DCG-Deploy and CF-RANK-Deploy results
for this research question, they will be discussed in Section 2.6.3.

In Section 2.4 we stated the expectation that OLTR methods start with a user experi-
ence worse than the production ranker due to exploration. However, OLTR is expected
to overtake the production ranker as it continues to learn from interactions. The results
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Figure 2.4: Performance of counterfactual methods with a deployment every 200,000
sessions. In the left column no selection bias is present; in the right column, a selection
of 10 is used.

in Figure 2.3 confirm this expectation. Across all types of user behavior, we see that
the initially displayed performance is substantially worse than the production ranker
(p < 0.01). PDGD provides considerably better rankings than the production ranker
within 1,000, 2,000 and 21,000 sessions for Perfect, Binarized and Near-Random click
behavior, respectively (p < 0.01). Thus, we conclude that PDGD provides a better
user experience than CLTR methods overall, with a decrease in quality for a limited
initial period.

Therefore, we answer RQ1.2 negatively: OLTR does not provide the same user ex-
perience as CLTR. Besides a limited initial period, OLTR provides a more responsive
user experience during optimization than CLTR. However, it is up to practitioners to
decide whether the initial worse period is worth it, or whether they prefer the constant
user experience in the click gathering for CLTR.
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2.6.3 The power of interventions
In this section we investigate whether performing interventions helps the learning per-
formance, so as to answer RQ1.3:

When do online interventions help the learning to rank algorithm?

To answer this question we consider the performance of the optimized models in Fig-
ure 2.4, and the user experience during click gathering in Figure 2.3.

In Section 2.4 we stated the expectation that interventions significantly speed up
the learning process. In Figure 2.4 the performance of CLTR methods diverge at the
first moment of deployment: after 200,000 sessions. We see that only in cases with
high interaction noise, i.e., Near-Random click behavior, periodic deployment leads to
worse performance than without (p < 0.01). For Perfect and Binarized click behavior,
periodic deployment has no negative effects, moreover, when selection bias is present
it substantially increases performance (p < 0.01). Thus it appears that interventions
cause CLTR methods to reach higher levels of performance and especially help in
dealing with selection bias.

Then we examine Figure 2.3, which displays the user experience during click gath-
ering. Here we see that interventions allow users to benefit from improvements earlier,
or suffer from deteriorations sooner. The same trend appears: a worse experience un-
der high interaction noise, a better experience with little noise. Furthermore, CF-DCG
with periodic deployment is capable of providing a better user experience than PDGD
when little noise is present (p < 0.01). Unlike PDGD, CF-DCG does not perform
exploration, which seems to be a crucial advantage in these cases.

Lastly, we discuss the expectation that interventions speed up learning, in particu-
lar that OLTR methods require significantly less data. None of our results indicate that
OLTR learns faster than CLTR methods. While in many cases OLTR reaches higher
performance levels than CLTR, when they reach comparable levels they do so after
similar numbers of interactions. We suspect the reason to be that PDGD does not reit-
erate over previous interactions, where the CLTR methods perform numerous epochs.
Nonetheless, despite expectations in previous work, our results do not indicate that the
interventions of OLTR reduce data requirements.

To answer RQ1.3: interventions help CLTR methods in circumstances where they
already improve over the production ranker. Moreover, their effect is substantial when
dealing with selection bias. Unfortunately, deployment in difficult circumstances, i.e.,
with high levels of noise, can decrease performance even further and negatively affect
the user experience considerably. Thus, practitioners should realize that a repeated
cycle of optimization and deployment with CLTR can be quite harmful to the user
experience. Counterfactual evaluation [102, 159, 164] could estimate whether the de-
ployment of a model improves the experience, before deployment. The question is
whether this evaluation is reliable and sensitive enough to prevent harmful changes.

2.7 Related Work
In this section we discuss previous work that concerns large-scale comparisons of LTR
methods.
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Liu [106] provides a comprehensive overview of the (then) state-of-the-art in LTR
from labeled data but does not include a large-scale empirical comparison of methods.
Tax et al. [162] do compare LTR algorithms that use manually annotated training data
in a large-scale cross-benchmark comparison. They show that there is no single optimal
LTR algorithm and provide a selection of supervised LTR methods that are pareto-
optimal. In this chapter we compare two different families of LTR algorithms: online
and counterfactual LTR methods, neither of which learn from manually annotated data;
both types of method utilize user interactions. As such, the algorithms we compare are
not supervised in the traditional sense [82].

A systematic comparison of CLTR methods appears to be lacking at this moment in
time. Joachims and Swaminathan [78] seem to have provided the first comprehensive
overview of counterfactual methods for LTR aimed at the information retrieval com-
munity, but the authors do not include a large-scale experimental comparison. More
recently, Ai et al. [10] provide an overview of existing approaches to CLTR and de-
scribe both the theory and detailed instructions on how to deploy CLTR in practice.
Furthermore, their work also contrasts CLTR with click models [30] but it does not
contrast CLTR and OLTR methods.

Similarly, a systematic comparison of OLTR methods appears to be lacking too.
The comprehensive survey due to Grotov and de Rijke [50] is several years old; it
does not provide a large-scale experimental comparison nor does it contrast CLTR
and OLTR methods; modern OLTR algorithms such as PDGD are also not included.
In a more recent tutorial on OLTR, Oosterhuis [117] does provide a theoretical and
experimental comparison of OLTR methods based on Dueling Bandit Gradient Descent
and PDGD.

Our aim in this study is to gain an understanding in what situations counterfactual
and online LTR approaches are appropriate to be used. To the best of our knowledge,
there is no prior work that systematically compares counterfactual and online LTR
approaches, or answers this question.

2.8 Conclusion

The goal of our study in this chapter was to answer RQ1:

How should LTR practicioners choose which method to apply from either
counterfactual or online LTR methodologies?

The choice between OLTR and CLTR is important as there are large differences be-
tween the results obtained by the two methodologies. We recognize three factors that
determine which approach should be preferred: selection bias, position bias, and inter-
action noise. CLTR reaches a higher level of performance than OLTR in the absence
of selection bias, and when there is little position bias or interaction noise. In con-
trast, OLTR outperforms CLTR in the presence of selection bias, high position bias,
high interaction noise, or any combination of these three. Surprisingly, CLTR methods
can decrease performance w.r.t., the production ranker when high levels of noise are
present, even in situations where they are proven to be unbiased. We conclude that
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OLTR is more robust to different types of bias and noise than CLTR. Therefore, prac-
titioners should be well aware of the levels of bias and noise present in their search
setting to choose between the two methodologies.

Unlike OLTR, CLTR does not need to intervene and can use data collected by the
production ranker, which prevents a negative impact on the user experience. OLTR
initially provides an experience worse than the production ranker but very quickly sub-
stantially improves over it. We have not observed OLTR having large negative effects
on the user experience, even under high levels of interaction noise. However, prac-
titioners should consider whether they are willing to risk the initial worsened user
experience in order to get long term gains.

We observed that cycles of optimization and deployment with CLTR methods can
have harmful effects on performance and user experience. High levels of interaction
noise can severely worsen model quality for CLTR; if, subsequently, such a model is
deployed, it can worsen the next model even further. Thus, practitioners should realize
that CLTR brings risks to the user experience and evaluate models before deploying
them, for instance using offline or counterfactual evaluation [102, 159, 164] .

Our comparison is not without limitations. In our experiments, the CLTR methods
were provided with the exact propensities; in realistic settings these values are not
known and have to be estimated [9]. Thus we do not consider how errors in propensity
estimation affect the comparison. Additionally, our comparative study considers only
a single metric on a single dataset. Although the dataset and metric we use are widely
accepted as a benchmark in both OLTR and CLTR, we would like to extend our study to
multiple datasets, measuring across various dimensions and utilizing real user behavior
from deployed systems in future work. Furthermore, we have seen that CLTR methods
suffer in situations with high position bias. In Chapter 3 we will consider a more
efficient CLTR learning algorithm that can deal with more extreme IPS weights and as
a result can more reliably handle situations with high position bias. Future work should
also consider heuristic methods such as propensity clipping; these methods reduce
variance but make CLTR biased. Finally, our findings also reveal the importance of
safety in LTR: naively deploying counterfactually learned models can have detrimental
effects on model performance. We consider this topic in more depth in Chapter 4 where
we propose a method that can automatically deploy a counterfactually learned model
when it is safe to do so. This approach can provide a better user experience with little
effort from practicioners.
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3
Accelerated Convergence for

Counterfactual Learning to Rank

3.1 Introduction

Learning to Rank (LTR) from user interactions [50], as opposed to learning from anno-
tated datasets [106], has seen increased research interest due to its immense practical
value. As we have argued in Chapter 1, learning from implicit feedback enjoys several
advantages over learning from professional annotations:

1. User interaction signals are available at large scale and cost much less than pro-
fessional annotations.

2. Implicit feedback captures the user’s true interest more accurately.

3. Interaction data can be utilized in domains where professional annotations are
impractical, unethical, or impossible, for example in personal search.

However, learning from user interactions is not without difficulty and one of the major
challenges is the biased nature of user interactions [32, 79]. For example, in LTR, one
of the most important types of bias that affects user interaction data is position bias, a
phenomenon where users observe, and as a result click on, top-ranked items more than
lower ranked ones.

Recent work has focused on removing bias by applying methods from counterfac-
tual learning [82]. Most notably, Inverse Propensity Scoring (IPS) is commonly used
to perform unbiased learning. A widely used approach for unbiased learning is to treat
inverse propensity scores as weights and solve a weighted optimization problem via
Stochastic Gradient Descent (SGD) [6, 10, 83].

A major challenge of learning with IPS-weighted SGD is that the inverse propen-
sity scores introduce a large amount of variance in the gradients. This effect is es-
pecially severe in scenarios where the propensity scores can take on extreme values.
For example, in product search, the set of candidate results tends to be large [13] and
the query distribution can be heavily skewed [53] (e.g., due to periodic or seasonal

This chapter was published as [66].
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influences), which means that some items get very little exposure and as a result have
extreme IPS weights.

In this chapter we investigate the relationship between IPS weights and the con-
vergence rate of IPS-weighted SGD. We prove that IPS-weighted SGD suffers from
a slow convergence rate when the propensity weights are large. We also argue that
as long as stochastic gradients are scaled with IPS-weights, this slowdown cannot be
improved. This means that for many practical LTR scenarios, learning a ranking model
is inefficient and convergence is slow.

We overcome the above limitation with a novel sample-based learning algorithm,
called COUNTERSAMPLE, that samples learning instances proportional to their IPS
weight instead of weighting learning instances by their IPS weight. Because of this
strategy, we are able to control the variance, which, in turn, leads to accelerated con-
vergence. We show that this new approach provably enjoys faster convergence while
remaining unbiased and computationally cheap. We complement these theoretical find-
ings with extensive experiments. COUNTERSAMPLE consistently converges faster, and
in some cases learns a better ranker than IPS-weighted SGD, in a number of biased LTR
scenarios – across optimizers, across batch sizes and for different severities of position
bias.

Our main contributions in this chapter are:

• We analyze the convergence rate of IPS-weighted SGD algorithms and formalize
the relationship between IPS weights and the convergence rate.

• We introduce a novel learning algorithm for Counterfactual Learning to Rank
called COUNTERSAMPLE that enjoys provably faster convergence than IPS-
weighted SGD approaches.

• We empirically show that COUNTERSAMPLE converges faster than competing
methods in a number of biased LTR scenarios.

3.2 Related work

3.2.1 Counterfactual learning to rank
Recent work on unbiased Learning to Rank (LTR) uses counterfactual learning [156,
157] to remove different types of bias such as position bias from click data to improve
ranking performance [82, 173]. These methods typically use Inverse Propensity Scor-
ing (IPS) to enable unbiased learning. A popular approach for solving IPS-weighted
learning problems is to use Stochastic Gradient Descent (SGD) algorithms [6, 10, 83].
Existing approaches accomplish this by scaling the loss (and as a result, the gradients)
with IPS weights. Although the empirical success of such approaches has been well
documented in the literature [6, 10, 83], the impact of IPS weights on the convergence
rate of SGD is not well understood.

In this chapter we address this problem by investigating the relationship between
IPS weights and the convergence rate of SGD. Furthermore, we introduce a novel
learning method that, unlike previous approaches, does not scale the loss or gradients,
but instead guarantees unbiasedness by employing a sampling procedure.
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3.2.2 Position bias

An important aspect of unbiased LTR is estimating the observation probabilities (often
called propensities), which are necessary to apply IPS-weighting. For example, Wang
et al. [174] propose result randomization strategies for obtaining observation proba-
bilities under a position bias user model. Recent work has focused on intervention
harvesting, a less invasive method for propensity estimation [6, 43].

In our work, we do not focus on the propensity estimation aspect of unbiased LTR,
instead assuming the propensity scores are known a priori, because our goal is to study
the convergence rate of IPS-weighted SGD algorithms.

3.2.3 Convergence rates for stochastic gradient descent

There is a significant amount of work studying upper bounds for the convergence rate
of SGD [140] under varying assumptions of convexity and smoothness of the optimiza-
tion objective [54, 55, 138, 150]. The convergence rate proofs presented in this chapter
build on proofs provided by Shalev-Shwartz and Ben-David [149]. However, unlike
previous work, our work investigates the role of IPS weights in optimization problems.
We note that there is work investigating the use of importance sampling for SGD al-
gorithms [11, 88, 116, 187]. These approaches all start from an unbiased dataset and
then improve the convergence rate of SGD by manually perturbing the sampling dis-
tribution during learning, which introduces bias, and then applying IPS-weighting to
remove the introduced bias.

Our work is different from these approaches because we learn from an already
biased click log dataset, where the source of bias is outside of our control (e.g., position
bias coming from users). This means we do not assume control over how the dataset is
generated nor do we assume control over the propensity scores.

Finally, the idea of breaking large importance weights into smaller ones was previ-
ously considered by Karampatziakis and Langford [87]. Our work is different from [87]
because: (a) we focus on the LTR scenario, and, (b) we propose a sampling procedure
whereas [87] propose modifications to the update rule based on importance weights.

3.3 Background

We consider the problem of Counterfactual LTR as described in [82]. First, we intro-
duce our notation for LTR with additive metrics. After that, we describe Counterfactual
LTR from biased click feedback and present the IPS-weighted SGD algorithm that is
commonly used for Counterfactual LTR.

3.3.1 Learning to rank with additive metrics

Let fw(q, d) be a scoring function, parameterized by w, that, for a given query q and
item d 2 Dq , produces a real-valued ranking score, where Dq is a set of candidate
items for query q. Let rel(q, d) 2 {0, 1} be the relevance of item d to query q, where
we assume binary relevance for simplicity. We write rank(d | q, Dq, fw) for the rank
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3. Accelerated Convergence for Counterfactual Learning to Rank

of item d 2 Dq after sorting all items Dq by their respective scores using the scoring
function fw. We consider the class of additive ranking metrics, as described in [5]:

�(fw | q) =
X

d2Dq

�(rank(d | q, Dq, fw)) · rel(q, d), (3.1)

where � is a weighting function of the rank of an item that can capture different rank-
ing metrics such as Average Relevant Rank, DCG, Precision@k and more [5]. For
simplicity we will assume �(x) = x, but note that our findings hold for any con-
vex, (sub)differentiable and monotonically increasing weighting function �. It is com-
mon practice to make Equation 3.1 differentiable by upper bounding the rank(d |

q, Dq, fw) term with a pairwise hinge loss [5, 76, 82]:

rank(d | q, Dq, fw) 

1 +
X

d02Dq

max(0, 1� (fw(q, d)� fw(q, d0))). (3.2)

Now, suppose we are given a sample Q of i.i.d. queries q ⇠ P (q). The goal in Learning
to Rank (LTR) is to learn a scoring function fw that minimizes risk:

argmin
w

R(w) = argmin
w

Z

q
�(fw | q)dP (q)

= argmin
w

EQ

2

4 1

|Q|

X

q2Q

X

d2Dq

�(rank(d | q, Dq, fw)) · rel(q, d)

3

5. (3.3)

In most practical settings we cannot directly observe the relevance rel(q, d), but only
partial feedback in the form of clicks collected on rankings produced by a deployed
production ranker. As a result, we cannot directly minimize the empirical risk as-
sociated with Equation 3.3. Furthermore, unlike online LTR approaches and bandit
algorithms, we assume that we do not have any control over the deployed production
ranker (i.e., we cannot perform interventions). In Counterfactual LTR we instead focus
on minimizing an unbiased estimate of the empirical risk using a historical click log.

3.3.2 Counterfactual learning to rank with biased feedback
Suppose a deployed production ranker is collecting user interactions, i.e., clicks, as
follows:
• a user issues a query q ⇠ P (q);
• the user is presented with a ranking of the candidate items Dq for the issued query;

and
• the user observes and clicks on an item d 2 Dq with some probability P (c(d) = 1),

where c(d) 2 {0, 1} indicates a click on item d.
In line with existing work [32, 82] we assume that the examination hypothesis holds,
i.e., that clicks can only occur on observed items. In other words, a click on an item
depends on the probability that the user observes the item and decides to click on it:

P (c(d) = 1)
def
= P (o(d) = 1) · P (c(d) = 1 | o(d) = 1), (3.4)
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3.3. Background

where o(d) 2 {0, 1} indicates that item d was observed by the user. Finally, for any
two observed items d and d

0 it is more likely that a user clicks on a relevant item than
a non-relevant item. More formally:

rel(q, d) > rel(q, d0)

=) P (c(d) = 1 | o(d) = 1) > P (c(d0) = 1 | o(d0) = 1).
(3.5)

Under these assumptions, a click does not necessarily indicate relevance, nor does a
non-click necessarily indicate non-relevance. In general c(d) 6= rel(q, d), and naively
optimizing the empirical risk using clicks would be a suboptimal strategy [82]. Instead,
it is necessary to correct for the observation probabilities P (o(d) = 1), often called the
propensity. This motivates the use of Inverse Propensity Scoring (IPS), where inversely
weighing the propensities of clicked items can debias the click data.

For our work we assume that the propensities P (o(d) = 1) are known a priori. In
practice, the propensities are commonly estimated via A/B testing [173] or through
intervention harvesting [6, 43], usually under some assumption of a user behavior
model such as the position-bias model [32]. Modeling and estimating these propen-
sity scores falls outside the scope of this chapter as our aim is to understand and im-
prove the convergence rate of IPS-weighted optimization for LTR. We refer to existing
work [6, 10, 24, 27, 43] for more detailed information about how the propensity scores
can be modelled and/or estimated.

We now reach the main approach for Counterfactual LTR, which is to apply Inverse
Propensity Scoring (IPS) to debias our optimization objective. Suppose we are given a
click log dataset containing n clicks:

D = {(qi, Dqi , di, pi)}
n
i=1, (3.6)

where:
• qi ⇠ P (qi) is the issued query;
• Dqi is the set of candidate items;
• di 2 Dqi is the clicked item (i.e., c(di) = 1); and
• pi = P (o(di) = 1) is the propensity of item di.
Our goal now is to solve the following optimization problem:

argmin
w

RIPS(w) = argmin
w

1

n

nX

i=1

1

pi
�(rank(di | qi, Dqi , fw))

= argmin
w

1

n

nX

i=1

1

pi
Li(w). (3.7)

It is easy to show that RIPS(w) is an unbiased estimate of R(w), i.e., that E[RIPS(w)] =
E[R(w)], as long as P (o(d) = 1) > 0 for all d, using the proof of Section 4 in [82]. We
note that the minimization problem in Equation 3.7 permits stochastic optimization and
can be efficiently solved with a variety of SGD approaches. A common approach for
counterfactual learning is to treat the inverse propensity scores as weights and multiply
the gradient rLi(w) with 1

pi
to obtain an unbiased gradient estimate [5, 10, 72, 83].

We display this IPS-weighted SGD approach in Algorithm 4.
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3. Accelerated Convergence for Counterfactual Learning to Rank

Algorithm 4 IPS-weighted Stochastic Gradient Descent (SGD)
1: w1 = 0
2: for t 1, . . . , T do

3: it ⇠ Uniform(0, n) . sample it from uniform distribution
4: gt =

1
pit
rLit(wt) . compute IPS-weighted gradient

5: wt+1 = wt � ⌘tgt . SGD update step
6: end for

7: w̄ = 1
T

PT
t=1 wt

8: return w̄

Scaling the gradients with IPS weights, as is done in Algorithm 4, is a common
technique for unbiased LTR [5, 9, 16, 72, 174]. It is known that high-variance gradients
can cause poor convergence for general SGD-style algorithms [149]. However, to
the best of our knowledge, the exact impact of IPS weights on the convergence rate
of SGD algorithms for LTR has not been studied. In other words, the nature of the
relationship between the IPS weights and the convergence rate of SGD algorithms is
an open problem. To address this problem, we will analyze Algorithm 4 and provide
results describing the relationship between IPS weights and the convergence rate in the
next section.

3.4 Convergence of IPS-weighted SGD

In this section our aim is to better understand the convergence rate of Algorithm 4 and
analyze the impact of IPS weights on the convergence rate.

3.4.1 Convergence rate analysis

Let RIPS(w) = 1
n

Pn
i=1

1
pi

Li(w) be the function that we wish to minimize using Al-
gorithm 4. We assume that each Li(w) is convex and, consequently, that RIPS is convex
since each 1

pi
> 0. In LTR this is a reasonable assumption because the loss can often

be convex, for example the pairwise hinge loss formulation presented in Equation 3.2
is convex. Furthermore, the rank weighting functions �(·) presented in Section 3.3.1
are convex for, e.g., the average relevant rank or DCG weighting schemes. Addition-
ally, we assume RIPS is minimized at some point w⇤

2 argminw:kwkB RIPS(w). We
denote with M the maximum IPS weight in the dataset: M = maxi

1
pi

. As in previous
analyses of regular SGD [149], the goal of our analysis is to bound the suboptimality
of the solution produced by Algorithm 4:

E[RIPS(w̄)�RIPS(w
⇤)]. (3.8)

Theorem 3.4.1. Let Li(w) be a convex function for each i and let w⇤ be a minimizer
of RIPS(w) = 1

n

Pn
i=1

1
pi

Li(w) such that kw⇤
k  B. Assume that krLit(wt)k  G

for all t and let w̄ be the solution produced by running Algorithm 4 for T iterations
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3.4. Convergence of IPS-weighted SGD

with ⌘ =
q

B2

(MG)2T . Then:

E[RIPS(w̄)�RIPS(w
⇤)] 

B(MG)
p

T
. (3.9)

Proof. This convergence rate proof is a variant of the proof of Theorem 14.8 from [149],
where we use IPS-weighted gradients gt and construct a bound on the gradient vari-
ance in Equation 3.15. Since our notation deviates slightly from the notation in [149],
we include the full proof here for clarity. Denote with i1:T the sequence of random
indices i1, . . . , iT , then:

Ei1:T [RIPS(w̄)�RIPS(w
⇤)]

= Ei1:T

"
RIPS

 
1

T

TX

t=1

wt

!
�RIPS(w

⇤)

#
(3.10a)

 Ei1:T

"
1

T

TX

t=1

RIPS(wt)�RIPS(w
⇤)

#
(3.10b)

=
1

T

TX

t=1

Ei1:T [RIPS(wt)�RIPS(w
⇤)]. (3.10c)

Here, (3.10a) follows from the definition of w̄, (3.10b) is due to Jensen’s inequal-
ity [143], and, finally, (3.10c) is obtained by applying linearity of expectation. Since
wt depends only on the indices i1:t�1 we get:

1

T

TX

t=1

Ei1:T [RIPS(wt)�RIPS(w
⇤)]

=
1

T

TX

t=1

Ei1:t�1 [RIPS(wt)�RIPS(w
⇤)]. (3.11)

Once the indices i1:t�1 are known, the value of wt is no longer random. Furthermore,
since each it is uniformly sampled from the dataset, it follows that gt is an unbiased
estimate of rRIPS(wt):

Eit [gt | i1:t�1] = Eit [gt | wt] = rRIPS(wt). (3.12)
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Continuing from Equation 3.11, we have:

1

T

TX

t=1

Ei1:t�1 [RIPS(wt)�RIPS(w
⇤)]


1

T

TX

t=1

Ei1:t�1 [hwt �w⇤
,rRIPS(wt)i] (3.13a)

=
1

T

TX

t=1

Ei1:t�1 [hwt �w⇤
,Eit [gt | i1:t�1]i] (3.13b)

=
1

T

TX

t=1

Ei1:t�1Eit [hwt �w⇤
, gti | i1:t�1] (3.13c)

=
1

T

TX

t=1

Ei1:t [hwt �w⇤
, gti], (3.13d)

where (3.13a) follows from the convexity of RIPS, (3.13b) can be obtained by using
Equation 3.12 (rRIPS(wt) = E[gt | i1:t�1]), (3.13c) is due to the linearity of expec-
tation, and, finally, (3.13d) is obtained by applying the law of total expectation. We
can now use Lemma 14.1 from [149] since Equation 3.13d is of the required form and
obtain:

1

T

TX

t=1

Ei1:t [hwt �w⇤
, gti] 

1

T

 
kw⇤
k
2

2⌘
+

⌘

2

TX

t=1

kgtk
2

!
. (3.14)

Here is where we deviate from the standard proof of convergence for SGD and upper
bound the IPS-weighted gradients gt as follows:

kgtk =

����
1

pit

rLit(wt)

���� =
1

pit

krLit(wt)k MG. (3.15)

Next, we can plug this upper bound on kgtk into Equation 3.14, and use the assumption
that kw⇤

k  B to obtain:

1

T

 
kw⇤
k
2

2⌘
+

⌘

2

TX

t=1

kgtk
2

!


1

T

✓
B

2

2⌘
+

⌘

2
T (MG)2

◆
. (3.16)

Finally, by plugging in ⌘ =
q

B2

(MG)2T and applying algebraic manipulations we ob-
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tain:

1

T

✓
B

2

2⌘
+

⌘

2
T (MG)2

◆

=
1

T

0

@ B
2

2
q

B2

(MG)2T

+

q
B2

(MG)2T

2
T (MG)2

1

A (3.17a)

=
1

T

 
B(MG)

p
T

2
+

B(MG)
p

T

2

!
(3.17b)

=
B(MG)

p
T

T
(3.17c)

=
B(MG)
p

T
. (3.17d)

Theorem 3.4.1 combines several important quantities that determine how fast Algo-
rithm 4 will converge. First, we have 1/

p
T , which indicates that, as the number of

iterations T grows, the solution w̄ gets closer to the optimal solution w⇤. Second, we
have B, which tells us how far away w⇤ is from the starting point 0. Clearly, for large
B, the optimum w⇤ is far away and we require more iterations to converge. Finally,
we have the gradient variance term (MG). When the gradients have potentially large
variance, we need to correspondingly set a small learning rate to prevent divergent be-
havior and, as a result, it takes longer to converge. As a consequence of Theorem 3.4.1,
it is clear that in order to achieve an error of at most ✏, it suffices to run Algorithm 4
for T iterations where:

T �
B

2(MG)2

✏2
. (3.18)

3.4.2 Discussion
The key insight that our analysis provides is that, for IPS-weighted SGD algorithms,
the number of iterations required to achieve an ✏-optimal solution grows with a factor
(MG)2. We note that there are known variations of SGD that can improve the con-
vergence rate presented in Theorem 3.4.1 from O

⇣
1/
p

T

⌘
to O(1/T ), for example

see [54, 55, 138, 150]. However, their analyses are considerably more complex and do
not remove the dependency on kgtk

2, which for the IPS-weighted SGD case remains
upper bounded by (MG)2. This means that despite having faster convergence in terms
of T , these methods do not improve the slowdown introduced by the IPS-weights.

Moreover, Agarwal et al. [3] show that, for strongly convex and Lipschitz smooth
functions, the term kgtk

2, and consequently the term (MG)2 in Equation 3.18, cannot
be improved for any SGD algorithm (for sufficiently large T ). In practice, the value of
M can be very large, for example in cases with small propensities pi (e.g., in situations
with a significant amount of position bias such as when the candidate set Dq is very
large). The above facts lead us to hypothesize that, as long as the gradients are scaled
with IPS weights, the convergence rate is severely slowed by the magnitude of the IPS
weights. Our experiments in Section 3.7 support this hypothesis.
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3. Accelerated Convergence for Counterfactual Learning to Rank

3.5 Improved Convergence with Weighted Sampling

3.5.1 COUNTERSAMPLE: SGD with IPS-proportional sampling

Theorem 3.4.1 shows that the convergence of IPS-weighted SGD is slowed by a factor
M

2. Moreover, as described in Section 3.4.2, as long as gradients gt are scaled by IPS
weights, this dependency on M cannot be improved [3]. Clearly, for situations where
M is large, this can lead to slow convergence and make learning inefficient.

To overcome this problem, we propose a sampling-based SGD strategy. The key
idea is to debias our optimization objective via sampling instead of weighting. As we
will prove below, this sampling-based approach similarly guarantees unbiasedness of
the optimization objective but has a better convergence rate. We call our approach
COUNTERSAMPLE and it is displayed in Algorithm 5.

Algorithm 5 COUNTERSAMPLE: SGD with IPS-proportional sampling
1: w1  0
2: M̄  

1
n

Pn
i=1

1
pi

3: for t 1, . . . , T do

4: it ⇠ P (it | D) . sample it according to Equation 3.19
5: gt = M̄ rLit(wt) . compute gradient
6: wt+1 = wt � ⌘gt . SGD update step
7: end for

8: w̄  1
T

PT
t=1 wt

9: return w̄

COUNTERSAMPLE functions as follows. First, we assign each data point i in our
dataset D the following probability of being sampled:

P (i | D) =
1
piPn

j=1
1
pj

. (3.19)

We then proceed exactly like regular SGD, where instead of sampling datapoints uni-
formly from the dataset, they are sampled using Equation 3.19. Furthermore, the algo-
rithm does not scale the gradients by the IPS-weights, but by a constant factor:

M̄ =
1

n

nX

i=1

1

pi
, (3.20)

which is necessary to guarantee unbiasedness (see Section 3.5.2).
In practice, one would tune the learning rate ⌘ in Algorithm 5, making the inclusion

of M̄ unnecessary as it merely scales the gradients by a constant, which can be offset
by the particular ⌘ chosen. Therefore, for practical implementations, it is not neces-
sary to include this constant. We include M̄ here for the purposes of guaranteeing
unbiasedness and analyzing the convergence rate.
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3.5.2 Unbiasedness
To show that Algorithm 5 minimizes the unbiased objective RIPS(w), it is sufficient
to show that, in expectation, the gradient gt is an unbiased estimate of rRIPS(wt) for
any t.

Theorem 3.5.1. Let RIPS(w) be the function to be optimized and let gt be the gradient
at time t as computed by Algorithm 5, then:

Eit [gt | wt] = rRIPS(wt). (3.21)

Proof. The proof uses the definition of gt (3.22a), linearity of expectation (3.22b)
and the definition of expectation (3.22c) where we use Equation (3.19) as the sampling
probability. Using the definition of M̄ and algebraic manipulations completes the proof
((3.22d) and (3.22e)):

Eit [gt | wt] = E
⇥
M̄ rLit(wt)

⇤
(3.22a)

= M̄ E[rLit(wt)] (3.22b)

= M̄

nX

i=1

P (i | D)rLi(wt) (3.22c)

=
1

n

 
nX

i=1

1

pi

!
nX

i=1

1
piPn

j=1
1
pj

rLi(wt) (3.22d)

=
1

n

nX

i=1

1

pi
rLi(wt) = rRIPS(wt). (3.22e)

3.5.3 Convergence rate
We wish to understand the convergence rate of the proposed method COUNTERSAM-
PLE (Algorithm 5). Similar to Section 3.4.1, the goal of our analysis is to bound the
suboptimality of the solution produced by Algorithm 5:

E[RIPS(w̄)�RIPS(w
⇤)]. (3.23)

Theorem 3.5.2. Let Li(w) be a convex function for each i and let w⇤ be a minimizer
of RIPS(w) = 1

n

Pn
i=1

1
pi

Li(w) such that kw⇤
k  B. Assume that krLit(wt)k  G

for all t and let w̄ be the solution produced by running Algorithm 5 for T iterations
with ⌘ =

q
B2

(M̄G)2T
. Then:

E[RIPS(w̄)�RIPS(w
⇤)] 

B(M̄G)
p

T
. (3.24)

Proof. First, we note that in Algorithm 5, the gradients are bounded as follows:

kgtk =
��M̄ rLit(wt)

��  M̄G. (3.25)

Next, we follow the proof of Theorem 3.4.1, replacing Equation 3.15 with Equation
3.25, using the result of Theorem 3.5.1 to ensure Eit [gt | wt] = rRIPS(wt) and plug-
ging in ⌘ =

q
B2

(M̄G)2T
to give us the desired result.
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As a result of Theorem 3.5.2, we can conclude that COUNTERSAMPLE provides sig-
nificant advantages in terms of convergence rate over standard IPS weighting. Specifi-
cally, to obtain an error of at most ✏, it is sufficient to run COUNTERSAMPLE for:

T �
B

2(M̄G)2

✏2
(3.26)

iterations. This is strictly better than the bound that was obtained for Algorithm 4 in
nearly all cases. The only case where the two methods have the same convergence
rate is when M̄ = M , which can only happen when all the propensity scores are
the same, i.e., when pi = pj for all i, j. However, this can only be the case when
the click log itself is already unbiased, thus negating the need to do counterfactual
learning in the first place. Therefore, for any practical Counterfactual LTR scenario,
COUNTERSAMPLE is strictly better in terms of convergence rate than naively scaling
the gradients with IPS weights.

3.5.4 Efficiency
Finally, despite the advantages of COUNTERSAMPLE in terms of convergence rate,
these benefits may not be useful if they come at the cost of worse computational com-
plexity. A straightforward but naive implementation for sampling from Equation 3.19
would result in a O(Tn) time complexity for Algorithm 5, which is significantly worse
than the O(T ) complexity obtained by standard SGD approaches such as Algorithm 4.

Fortunately, sampling from Equation 3.19 can be done with an amortized O(1)
cost using the alias method [171, 172]. To achieve this, there is a one time cost of
constructing the alias table, done in O(n). Furthermore, we also need to compute the
constant M̄ which is also a one time operation of O(n). We note that both of these steps
can take place during data pre-processing and are for most practical implementations
easily achieved (e.g., PyTorch [128] and Tensorflow [1] both support efficient sampling
from a weighed multinomial distribution using the alias method). Overall, this means
that the complexity of COUNTERSAMPLE is O(n + T ), which is acceptable when
n < T .

3.5.5 Illustrative example
To illustrate the difference in convergence rates between COUNTERSAMPLE and stan-
dard IPS-weighted SGD we have created a simple toy example learning problem in
Figure 3.1. We chose two optimal weights w⇤ = [w1, w2] and synthesize an IPS-
weighted regression dataset. 1 Notice that, for large learning rates, the IPS-weighted
SGD approach leads to unstable learning and diverges from the optimum. The learning
rate for IPS-weighted SGD needs to be small enough to ensure that training samples
with large IPS weights do not cause too large a step, possibly leading to divergent be-
havior. As a result, it is necessary to reduce the learning rate to ensure stable learning,

1The synthesized dataset comprises 50 training samples: {x1, . . . ,x50} where each xi = [xi,1, xi,2]
and each xi,j ⇠ N (0, 1). We choose w⇤ = [0.973, 1.144] and set targets yi = hxi,w⇤i. For each xi we
generate a propensity pi ⇠ Uniform(0.05, 1.0) and use the IPS-weighted squared loss as our optimization
objective: RIPS(w) = 1

50

P50
i=1

1
pi

(hxi,wi � y)2.

40



3.6. Experimental setup
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Figure 3.1: Illustration of the convergence of COUNTERSAMPLE versus IPS-weighted
SGD on a synthetic learning example with two weights w1 and w2. The algorithms are
run for T = 50 iterations. Best viewed in color.

however doing so naturally increases the time until convergence for IPS-weighted SGD
because samples that do not have extreme IPS weights can only make small progress to
the optimum. On the other hand, COUNTERSAMPLE can reliably handle large learning
rates because the gradients are not scaled with potentially large IPS weights. Instead,
COUNTERSAMPLE samples training instances with high IPS weights more frequently.
Overall, this leads to much faster convergence.

3.6 Experimental setup

Our experimental setup is aimed at assessing the convergence rate of COUNTERSAM-
PLE and to answer the following research question:

RQ2 Can counterfactual learning from user interactions be made more
efficient?

We use the standard experimental setup for Counterfactual LTR, first described in [82].
This means that we use a fully supervised LTR dataset and simulate a biased click log
according to a position-based user behavior model.

3.6.1 Datasets

We use two supervised LTR datasets in our experiments: Yahoo [28] and Istella-
s [107]. We choose these two datasets as they complement each other in the number
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Table 3.1: Datasets used for our experiments.
Dataset Queries Avg. docs per query rel(q, d) = 0

Yahoo [28] 36,251 23 26%
Istella-s [107] 33,118 103 89%

of items per query, which is large for Istella-s and small for Yahoo, and the sparsity of
relevance feedback, which is high for Istella-s and low for Yahoo (see Table 3.1).

Both LTR datasets are collected on a large set of queries Q = {q1, . . . , qm}. For
each query q the dataset provides a set of candidate items Dq , where each item d 2 Dq

is given in the form of a feature vector x(q,d) representing a query-item pair. Further-
more, for each query q the relevance grades rel(q, d) are known for all d 2 Dq . The
relevance grades are scaled from 0 to 4, where 0 indicates no relevance and 4 indi-
cates highly relevant. We note that this violates the binary relevance assumption made
in Section 3.3.1. However, as we will see in Section 3.6.2, during click simulation the
relevance grades are reduced to binary form which is in line with existing experimental
setups for Counterfactual LTR [82].

3.6.2 Simulation setup
We simulate clicks using the setup of [82]. In this setup, we repeatedly sample a query
q uniformly from the dataset. The candidate items Dq for the sampled query are then
sorted by a scoring function f0, called the logging policy (see Section 3.6.3 for how
f0 is chosen). The simulation introduces position bias: items that are highly ranked
by f0 have a higher probability of being observed and thus clicked. Furthermore,
the simulation has some noise: for every observed item, the probability of it being
clicked is 1 if the item is relevant (rel(q, d) 2 {3, 4}) and 0.1 if the item is not relevant
(rel(q, d) 2 {0, 1, 2}). More formally, for every item d 2 Dq , clicks are sampled from
a Bernoulli distribution with probability:

P (c(d) = 1) =

⇢
P (o(d) | q, Dq, f0) if rel(q, d) 2 {3, 4},

P (o(d) | q, Dq, f0) · 0.1 if rel(q, d) 2 {0, 1, 2},
(3.27)

where

P (o(d) | q, Dq, f0) =

✓
1

rank(d | q, Dq, f0)

◆�

, (3.28)

and � � 0 is a parameter controlling the severity of position bias. The above for-
mulation is identical to the setup used in [82]. For all our experiments we simulate
1,000,000 clicks. Unless otherwise specified, we use � = 1 as the position bias pa-
rameter. Table 3.2 shows the values of M and M̄ for the simulated clicks on each of
the datasets. We note that even under mild position bias (� = 0.5), there is a signifi-
cant difference between M and M̄ . The difference between these quantities becomes
substantially larger as � increases.

Simulating clicks from supervised datasets has several advantages over using ex-
isting click logs. First, by simulating clicks we can explicitly control the severity of
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Table 3.2: M̄ and M for varying levels of position bias (�).
Position bias (�): 0.5 0.75 1.0 1.25 1.5

Yahoo: M̄ 3.14 5.12 7.92 11.71 16.66
Yahoo: M 11.79 40.70 129.00 388.91 1265.55

Istella-s: M̄ 4.21 7.42 12.02 18.12 25.94
Istella-s: M 13.04 48.53 177.00 645.60 2081.04

position bias (by controlling the value of �) and therefore test its impact in a controlled
environment. Second, we can evaluate the learned rankers on the true relevance labels
as they are provided by the supervised datasets. This means that we do not have to
resort to performance estimation techniques that may be unreliable.

3.6.3 Choice of logging policy
We need to build a logging policy f0 that can be used to rank items for our click simu-
lation. A good candidate logging policy is one that can produce rankings of sufficient
quality to generate a useful number of relevant clicks, but not perfectly optimal so that
learning can still occur. To do so we train a linear ranker with full supervision (using
the pairwise hinge loss formulation of Equation 3.3) on 0.1% of the queries for each
of the datasets. Building a logging policy in this manner represents a realistic deploy-
ment scenario: practitioners of LTR systems would typically train a ranker on a small
amount of manually annotated data before deploying it to collect a large amount of
click data.

3.6.4 Evaluation
To measure the performance of the rankers learned by the various algorithms, we use
nDCG@10 [75] on held-out test data. We denote with nDCG@10(w), the average
nDCG@10 on held-out test data when items are ranked using the scoring function fw.

We are interested in measuring the convergence rate of the learning algorithms. To
do so, we measure average regret in terms of nDCG@10 (with respect to the optimal
model w⇤):

Regret(T ) =
1

T

TX

t=1

(nDCG@10(w⇤)� nDCG@10(w̄t)) , (3.29)

where w̄t = 1
t

Pt
t0=1 wt0 is the learned model after t iterations. To obtain the gold

standard w⇤ we train a linear ranker with full supervision (using the relevance labels
of the LTR dataset).2

Measuring regret should help us confirm our theoretical results about convergence
rates since lower values indicate faster convergence to the optimal solution w⇤. For
each of our results we consider statistical significance with a t-test (p < 0.01).

2We assume that nDCG@10(w⇤) � nDCG@10(w0) for any w0 that w̄t may converge to.
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Figure 3.2: The learning performance on held-out test data for different optimizers (left
column is Yahoo, right column is Istella-s). COUNTERSAMPLE is significantly faster
to converge in all scenarios. For the Adam optimizer, the IPS-weighted SGD approach
produces a suboptimal performance.

3.6.5 Methods to compare
In our experiments we compare the following methods:
• COUNTERSAMPLE: our sample-based method (Algorithm 5);
• IPS-SGD: IPS-weighted SGD (Algorithm 4) [5, 82]; and
• Biased-SGD: naive SGD without any propensity weighting.
We use a linear scoring function for our experiments, as this more closely matches the
convexity assumptions made in our analysis:

fw(q, d) = hw, xq,di. (3.30)

For each experiment and each method we tune the learning rate ⌘ to minimize regret
(see Section 3.6.4) on held-out validation data, where we try the following values of ⌘:

⌘ 2 {1⇥ 10�10
, 3⇥ 10�10

, 1⇥ 10�9
, . . . , 1⇥ 100, 3⇥ 100}. (3.31)

3.7 Experimental Results

3.7.1 Effect of optimizer
First, we investigate the impact of the optimizer on the convergence rate of the differ-
ent Counterfactual LTR approaches. We consider three commonly used optimization

44



3.7. Experimental Results

Table 3.3: Average regret (⇥100) for different optimizers. Smaller values indicate
faster convergence. Statistically significantly lower and higher regret compared to IPS-
SGD is denoted with O and M respectively.

Optimizer: SGD ADAM ADAGRAD

Yahoo
Biased-SGD 2.64M 2.72M 2.76M
IPS-SGD 0.41 0.97 0.64
COUNTERSAMPLE 0.33O 0.35O 0.44O

Istella-s
Biased-SGD 2.07M 2.04O 2.06M
IPS-SGD 1.33 2.16 1.24
COUNTERSAMPLE 1.19O 1.24O 1.15O

methods: Regular SGD, ADAM [92] and ADAGRAD [39]. We apply these methods by
replacing the update rule in Algorithms 4 and 5 with either the update rule from ADAM
or ADAGRAD.

In Figure 3.2 we plot the learning curves on held-out test data for both the Yahoo
and Istella-s dataset. Interestingly, IPS-SGD does not work well with ADAM, con-
verging to a suboptimal solution, whereas COUNTERSAMPLE is able to converge to a
much higher level of performance. This result is surprising as both COUNTERSAM-
PLE and IPS-SGD optimize the same unbiased objective. Recent work has shown that
ADAM is not guaranteed to converge to the optimal solution for some convex opti-
mization problems and this may in part explain the behavior we observe here [139].
Regardless, we observe that in all cases COUNTERSAMPLE converges significantly
faster than IPS-SGD. We note that the naive Biased-SGD approach converges to a
lower level of performance, which is as expected since it ignores the impact of position
bias. We confirm these findings by reporting the average regret in Table 3.3, observing
a significantly lower regret for COUNTERSAMPLE than IPS-SGD.

Our results indicate that COUNTERSAMPLE is superior to IPS-weighting across all
optimizers. We find that regular SGD outperforms other optimizers in the majority
of cases. A possible reason for this behavior is that our scoring function is linear.
Optimizers such as ADAM and ADAGRAD may not provide significant benefits over
SGD when applied to linear functions as opposed to non-linear functions (e.g., deep
neural networks). We leave studying other scoring functions such as neural networks
as future work.

3.7.2 Impact of batch size

In this section we investigate the effect of the batch size. We hypothesize that large
batch sizes reduce the variance of individual update steps, as many gradients are aver-
aged in a single update step, and as a result the convergence rate of COUNTERSAMPLE
and IPS-SGD should be comparable. We try batch sizes 10, 20 and 50.

We plot the learning curves for varying batch sizes in Figure 3.3. Once again we
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Figure 3.3: The learning performance on held-out test data for different batch sizes (left
column is Yahoo, right column is Istella-s). COUNTERSAMPLE is faster to converge in
all scenarios, however the differences are less pronounced for larger batch sizes.

Table 3.4: Average regret (⇥100) for different batch sizes. Statistical significance is
denoted the same as Table 3.3.

Batch size: 10 20 50

Yahoo
Biased-SGD 2.49M 2.36M 2.31M
IPS-SGD 0.41 0.42 0.44
COUNTERSAMPLE 0.33O 0.34O 0.37O

Istella-s
Biased-SGD 2.07M 2.08M 2.07M
IPS-SGD 1.34 1.31 1.32
COUNTERSAMPLE 1.20O 1.21O 1.21O
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Figure 3.4: The learning performance on held-out test data for varying levels of posi-
tion bias (left column is Yahoo, right column is Istella-s). COUNTERSAMPLE’s con-
vergence rate is robust to larger values of �, whereas IPS-SGD suffers when � is large.

find that, unsurprisingly, Biased-SGD converges to a suboptimal solution. For both
datasets we observe that COUNTERSAMPLE is able to converge faster than IPS-SGD,
regardless of the chosen batch size. For the Istella-s dataset, COUNTERSAMPLE is
able to converge to a slightly higher level of performance than IPS-SGD when using
a batch size of 50. The average regret in Table 3.4 suggests that the convergence rate
of COUNTERSAMPLE is not affected by batch size; it is able to converge faster than
IPS-SGD in all cases.

3.7.3 Severity of position bias
Finally, we look at the impact of position bias, controlled by the position bias parameter
�. Position bias has an effect on the nature of the clicks collected and changes the
distribution of propensity scores (see Table 3.2). For large �, the propensity scores
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Table 3.5: Average regret (⇥100) for different levels of position bias �. Statistical
significance is denoted the same as Table 3.3.

Position bias (�): 0.5 0.75 1.0 1.25 1.5

Yahoo
Biased-SGD 0.89M 1.78M 2.64M 3.32M 3.83M

IPS-SGD 0.34 0.35 0.41 0.56 0.75
COUNTERSAMPLE 0.30 0.27O 0.33O 0.38O 0.51O

Istella-s
Biased-SGD 1.37M 1.75M 2.07M 2.30M 2.53M

IPS-SGD 1.09 1.12 1.33 1.53 1.79
COUNTERSAMPLE 1.05 1.08 1.19O 1.26O 1.44O

will be heavily skewed: the majority of observations and propensities will be on the
top-ranked items while lower-ranked items are only very rarely observed and clicked,
resulting in more extreme IPS weights for those clicks. Conversely, a small � makes
the propensity scores more heavy tailed, generating more observations on lower ranked
items and consequently more clicks on those items with less extreme IPS weights. We
expect that, as we increase �, COUNTERSAMPLE should outperform IPS-SGD in terms
of convergence rate since in this case M � M̄ . Conversely, for smaller values of � we
expect that the methods perform comparably.

Figure 3.4 provides learning curves for various levels of �. We observe that the
performance of Biased-SGD goes up as � goes down, which is in line with our ex-
pectations since smaller values of � result in less position bias. In all cases IPS-SGD
and COUNTERSAMPLE perform strictly better than Biased-SGD. The convergence of
COUNTERSAMPLE is comparable to IPS-SGD for smaller �, but as � grows, COUN-
TERSAMPLE is significantly faster to converge than IPS-SGD. This confirms our ex-
pectation that COUNTERSAMPLE is able to reliably handle situations where M � M̄ ,
i.e. when there are more extreme IPS weights. Table 3.5 confirms these findings in
terms of average regret: for larger values of �, COUNTERSAMPLE is able to obtain
significantly lower regret than competing approaches.

3.7.4 Discussion
Finally, we reflect on RQ2:

Can counterfactual learning from user interactions be made more effi-
cient?

We answer our research question positively: COUNTERSAMPLE consistently con-
verges faster than IPS-SGD – across optimizers, batch sizes and different levels of
position bias (�). These findings support the theoretical results we obtained in Sec-
tions 3.4 and 3.5. In some scenarios, for example when using the ADAM optimizer,
COUNTERSAMPLE is not only able to converge faster but able to converge to a higher
level of performance than IPS-SGD.
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3.8 Conclusion
In this chapter, we have studied the convergence rate for Stochastic Gradient Descent
(SGD) approaches in Counterfactual Learning to Rank (LTR). A common approach
to Counterfactual LTR is IPS-weighted SGD, where the loss or gradients are scaled by
IPS weights. We prove that, for IPS-weighted SGD, the IPS weights play an important
role in the convergence rate: the time to converge is slowed by a factor O

�
M

2
�

where
M is the maximum IPS weight in the dataset.

To overcome the slow convergence of IPS-weighted SGD, we propose a sample-
based Counterfactual LTR learning algorithm called COUNTERSAMPLE. We prove
that COUNTERSAMPLE reduces the convergence rate slowdown from O

�
M

2
�

to O
�
M̄

2
�

where M̄ is the average IPS weight in the dataset. When M � M̄ , this improvement
leads to significantly faster convergence of the learning algorithm.

We support our theoretical findings with extensive experimentation across a num-
ber of biased LTR scenarios, comparing COUNTERSAMPLE to SGD with and without
IPS weighting. In all cases COUNTERSAMPLE is able to converge faster than standard
IPS-weighted SGD. In some scenarios COUNTERSAMPLE is even able to converge to
a better level of performance than IPS-weighted SGD.

There are several directions for future work: First, the convexity assumptions made
in the analysis may not hold in practice, particularly when implementing deep neu-
ral networks. Showing the convergence rate of IPS-weighted SGD for non-convex
problems remains an open problem. Second, optimizing an IPS-weighted objective is
arguably the simplest approach to Counterfactual LTR and in future work we would
like to consider more sophisticated objectives such as self-normalized IPS [158] and
variance regularization [157]. Third, our experiments are conducted on click sim-
ulations, giving us experimental control to test our hypotheses. We leave applying
COUNTERSAMPLE to large-scale industrial click logs as future work. Fourth, our
work assumes that propensity scores are known a priori which is not always realistic.
Robustness against misspecified propensity scores remains an open problem. Finally,
in this Chapter we only consider position bias and do not consider the impact of se-
lection bias: the phenomenon where users only interact with a subset of the ranked
items, for example only the top 10. Recall that in Chapter 2 we found that online LTR
algorithms can more effectively deal with selection bias. Furthermore, we found that
interventions play a big role in overcoming selection bias. In Chapter 4 we will intro-
duce a counterfactual learning algorithm that also performs interventions but does so
safely: without harming the user experience.
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4
Safe Exploration for Optimizing

Contextual Bandits

4.1 Introduction

In this chapter we consider the problem of safe exploration. Recall from Chapter 2 that
counterfactual LTR may not perform well in cases where selection bias is present. Se-
lection bias is a phenomenon where users only interact with a fixed subset of the ranked
list (for example the top 10). We found that performing interventions by frequently de-
ploying the learned ranker, effectively exploring new rankings of documents, allowed
counterfactual LTR approaches to overcome selection bias. However, we also saw that
blindly deploying a learned ranker may lead to suboptimal performance in situations
with a significant amount of click noise. In this chapter we study how interventions
can safely be performed by counterfactual learning algorithms in the context of the
contextual bandit framework.

A multi-armed bandit problem is a problem in which a limited number of resources
must be allocated between alternative choices so as to maximize their expected gain.
In contextual bandit problems, when making a choice, a representation of the context is
available to inform the decision. Contextual bandit problems are a natural framework
to capture a range of IR tasks [2, 49, 57]. Example tasks to which contextual bandits
have been applied include news recommendation [101], text classification [157], ad
placement [95], and online learning to rank [56]. For example, in online LTR (see
Figure 4.1): (1) a user issues a query; (2) a search engine presents a ranked document
list; and (3) clicks on the documents are recorded as feedback. The interactive nature
of this problem makes it an ideal application for the contextual bandit framework. The
LTR model is a decision-making policy ⇡, the ranked document lists it produces are
actions, the user is the context or environment, and clicks are the reward signal.

There are two major classes of algorithms to maximize the reward of a contextual
bandit policy ⇡. The first are online algorithms, which optimize a policy while it
is being executed [7, 84, 101, 177]. The second are counterfactual algorithms [81,
156, 157], which optimize a policy based on data that was collected using an existing
logging policy, often called ⇡0 [152, 157].

This chapter was published as [74].
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Figure 4.1: Online learning to rank viewed as a contextual bandit problem. A user
issues a query, the search engine responds with a ranked list of documents, and the
user provides implicit feedback in the form of clicks on documents.

Online learning methods for contextual bandits are widely studied and there are
many known algorithms to solve this problem. E.g., popular algorithms include ✏-
greedy, LinUCB [101] and Thompson Sampling [7]. Despite their attractive properties,
the adoption of online learning methods for contextual bandits in production systems
has been limited. Especially in the early stages of learning, online algorithms may
perform actions that are suboptimal and, thus, hurt the user experience. E.g., in online
LTR it is risky to present suboptimal rankings of documents [118, 174].

Counterfactual learning from logged feedback [51, 59, 152, 157] has been pro-
posed as a solution to this problem. Using an existing and already deployed logging
policy, one only takes actions from that logging policy to collect bandit feedback. Us-
ing this collected data, a new policy is then learned offline in an unbiased manner. This
learning process is safe in the sense that the new policy is not executed and, thus, the
user experience is not affected. The drawback of counterfactual learning, however, is
that it relies on the deployed logging policy, which never changes by design. Due to
this, there may be areas in the action space left unexplored, i.e., bandit feedback may
be missing for those areas. In IR terms, potentially high quality document rankings
might never be presented to users and the corresponding user interactions will never be
observed.

In this chapter, we propose a method that performs exploration of the action space
in contextual bandit problems, but does this exploration safely, that is, without hurt-
ing the user experience. In our proposed solution, called Safe Exploration Algo-
rithm (SEA), we use an already deployed logging policy which is safe, static but sub-
optimal, as a warm-start for learning a new policy. As soon as SEA is confident that
the performance of the new policy does not fall below that of the logging policy, it
starts executing actions from the new policy, thus, exploring the action space. In the
context of LTR, this means that SEA is capable of exploring and presenting new rank-
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ings to users, gathering feedback for rankings that might otherwise have never been
presented. This enables SEA to trade off various strengths and weaknesses of both
online and counterfactual learning.

We note that periodic deployment of a policy, after a successfull evaluation on
held-out data, is a common practice in industry. In our experiments we include a
boundless version of SEA, called BSEA, which represents such a deployment pipeline.
What SEA adds over and above a standard deployment procedure is: (1) it comes
with a formal proof of safety, i.e., with high probability the performance of SEA will
be at least as good as that of a baseline policy (Section 4.4.4); and (2) we introduce
a computationally efficient manner for computing high-confidence off-policy bounds
(Section 4.4.3).

The main research question we address in this chapter is:

RQ3 Can counterfactual approaches perform interventions without harm-
ing the user experience?

This chapter addresses the above research question by dividing it into three subques-
tions:

RQ3.1 Is SEA safe? I.e., does it always perform at least as good as a baseline policy?

RQ3.2 Does SEA provide a better user experience during training than counterfactual
or online learning methods? I.e., does it accumulate a higher reward during
training?

RQ3.3 Does SEA, which explores the action space, learn a more effective policy com-
pared to purely counterfactual learning methods, which do not perform explo-
ration?

Our key technical contributions in this chapter are: (1) we introduce SEA and show
it to be safe: its performance never falls below that of a baseline policy; (2) we show
that SEA improves the user experience: it provides higher cumulative reward during
training than both counterfactual and online methods; and (3) we show that a policy
learned with SEA, which is capable of exploring new actions, outperforms that of
purely counterfactual methods, which are incapable of exploration.

4.2 Related work

The idea of deploying automated decision making systems in IR is not new. The
contextual bandit framework has been used in news recommendation [101], ad place-
ment [95], and online learning to rank [56]. Contextual bandit formulations of IR prob-
lems allow insights and methods from the bandit literature to be applied and extended
to address these problems [57]. For research on contextual bandits this connection has
opened up an application area where new approaches can be evaluated on large-scale
datasets [102].
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4.2.1 Learning in contextual bandits

Contextual bandit algorithms have been widely studied in the online and counterfac-
tual learning settings [7, 101, 157]. A key challenge in contextual bandit problems
is the exploration-vs-exploitation tradeoff. On the one hand we want to explore new
actions so as to find favorable rewards. On the other hand, we want to exploit existing
knowledge about actions so as to maximize the total reward. The online learning meth-
ods we consider in this chapter deal with this tradeoff in various ways. The methods we
consider are policy gradient with ✏-greedy exploration, policy gradient with Boltzmann
exploration, LinUCB and Thompson Sampling. Policy gradient methods optimize the
weights of a policy via stochastic gradient descent, by solving the following optimiza-
tion problem:

min
⇡w

�

TX

t=1

log (⇡w(at | xt)) · rt. (4.1)

The ✏-greedy heuristic selects actions by choosing with probability ✏ an action uni-
formly at random and with probability (1 � ✏) the best possible action. Boltzmann
exploration [26] chooses actions by drawing them with a probability proportional to
the policy: at ⇠ ⇡w( · | xt). LinUCB [101] and Thompson Sampling [7] are
different from policy gradient methods because they make a linearity assumption.
These methods construct a set of weights wa 2 Rm for every possible action, such
that ⇡w(at | xt) = w

T
at
xt. LinUCB selects actions by choosing the one with the

highest confidence bound. Thompson Sampling samples new weights ŵa from a
posterior distribution and then chooses the best action given the sampled weights:
at = argmaxa ⇡ŵa(a | xt).

In IR there has been considerable attention for exploiting log data [59]. It is one of
the most ubiquitous forms of data available, as it can be recorded from a variety of sys-
tems at little cost [156]. The interaction logs of such systems typically contain a record
of the input to the system, the prediction made by the system, and the feedback. The
feedback provides only partial information limited to the particular prediction shown
by the system. Counterfactual learning algorithms tell us how data collected from
interaction logs of one system can be used to optimize a new system [57, 156]. Inter-
action logs used in counterfactual learning are usually biased towards the policy that
collected the data. To remove this bias, counterfactual learning methods resort to in-
verse propensity scoring. To use inverse propensity scoring, the logging policy must be
stochastic and the corresponding propensity scores (probability of choosing the logged
action) are recorded. Using these propensity scores, it is possible to reweigh data sam-
ples to remove the bias. An advantage of counterfactual learning methods is that they
do not require interactive experimental control. Thus, there is no risk of hurting the
user experience with these methods. In other words, counterfactual learning methods
are safe by definition [72].

Unlike online methods, SEA’s performance during the early stages of learning does
not suffer and always stays at least as good as a baseline, making the method safe to use.
Compared to counterfactual methods, SEA is capable of exploration, which makes it
effective at finding areas of the action space that may have high reward.
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4.2.2 Safety in contextual bandits

There has been a growing interest in concepts related to safety for contextual bandit
problems. This is due to the fact that contextual bandit formulations are applied to
automated decision making systems, where actions taken by the system can have a
significant impact on the real world. There are two main groups of work: risk-aware
methods and conservative methods.

Risk-aware methods [46, 65, 154] are online learning algorithms that model the
risk associated with executing certain actions as a cost which is to be constrained and
minimized. Galichet et al. [46] introduce the concept of risk-awareness for the multi-
armed bandit framework. Sun et al. [154] extend the idea of risk-awareness to the
adversial contextual bandit setting. Garcia and Fernández [47] explore risk-awareness
for the reinforcement learning paradigm. Risk-aware methods use a separate type of
feedback signal, in addition to the standard reward feedback, which is called risk. Risk-
aware methods aim to keep the cumulative risk below a specific threshold. These
types of methods are typically applied in fields like robotics where certain actions
can be dangerous or cause damage. A drawback is that the risk has to be explicitly
quantified by the environment. Designing a good risk feedback signal for IR systems
is subject to modeling biases and in some cases impossible, limiting the application of
such methods.

Conservative methods [181] measure safety as a policy’s performance relative to
a baseline policy. A method is safe if its performance is always within some mar-
gin of the baseline policy. The idea was first introduced for the multi-armed bandit
case [181] and later extended to linear contextual bandits in the form of the CLUCB
algorithm [89]. CLUCB is a safe conservative online learning method, which works
by constructing confidence sets around the parameters of the policy. Unfortunately, the
method has to solve a constrained optimization problem every time an action has to be
selected, which has a significant computational overhead. In contrast, SEA addresses
this problem because it only needs to do two computationally efficient operations: up-
date a lower confidence bound estimate and perform a gradient update step. This makes
SEA applicable to larger and more complex datasets.

Finally, Li et al. [100] introduce a complementary approach to SEA, called Bub-
bleRank, an algorithm that gradually improves upon an initial ranked list by exchang-
ing higher-ranked less attractive items for lower- ranked more attractive items. Li et al.
define a safety constraint that is based on incorrectly-ordered item pairs in the ranked
list, and prove that BubbleRank never violates this constraint with a high probabil-
ity. We do not compare to BubbleRank in our experiments because it assumes a user
model [30], an assumption that is orthogonal to our experimental setup [72]. Like-
wise, Thomas et al. [165] propose a method for policy improvement similar to SEA.
However, their work focuses on the reinforcement learning domain whereas our work
is tailored to the contextual bandit and LTR settings. Furthermore, we propose an
efficient method for computing the high-confidence bounds (Section 4.4.3).
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4.3 Background

4.3.1 Contextual bandits
In online LTR we try to optimize the parameters of a ranking model such that it places
relevant items at the top of the ranked list. We can view the ranking model as a
decision-making policy. When a new query arrives, the policy takes an action: it dis-
plays one possible ranked list to the user. The user then decides to click on documents
shown in the ranked list, thus providing a reward signal. More formally, we consider
the following contextual bandit framework. At each round t:

1. The environment announces an m-dimensional context vector xt 2 X . In IR
terms, this would be a user (environment) issuing a query (context vector).

2. A policy ⇡ samples an action at 2 A, one of n possible actions, conditioned
on xt: at ⇠ ⇡(· | xt). In IR terms, this would be a ranking model (policy)
producing a ranked list (action).

3. The environment announces only the reward rt,at for the chosen action at, and
not for other possible actions that the policy could have taken. We assume that
r 2 [0, 1]. In IR terms, this reward signal could be clicks on documents.

This learning setup is inherently different from supervised learning, where rewards for
all possible actions are known. We only observe rewards for actions that the policy
has taken. The setting is referred to as partial-label problem [86], associative bandit
problem [153] or associative reinforcement learning [84]. In the context of LTR, this
means that we do not know the optimal ranked list but can only observe a reward signal
for rankings that our policy chooses to display.

There are two major classes of algorithms for learning a contextual bandit policy.
The first are online algorithms that optimize the policy while it is being executed [7, 84,
101, 177]. Algorithms of this class explore the space of possible actions but may harm
the user experience, because suboptimal actions could be executed. The second are
counterfactual algorithms, which optimize a policy based on data that was collected
using an existing logging policy [152, 157]. Algorithms of this class are safe as the
newly learned policy is not executed and, thus, there is no risk of hurting the user
experience. However, counterfactual algorithms are incapable of exploring the action
space, which may harm the performance of the learned model. In this work we build
on the second class of algorithms; see below.

4.3.2 Counterfactual learning from logged bandit feedback
Counterfactual learning algorithms collect bandit feedback using an existing logging
policy, which we call a baseline policy ⇡b (also referred to as ⇡0 in the literature [83,
157, 159]). This feedback is collected in the following form, where at time t we have:

Dt = {(xi, ai, ri,ai , pi)}
t
i=1 , (4.2)

where xi is the observed context vector, ai is the action taken by the baseline policy,
ri,ai 2 [0, 1] is the reward given by the environment, and pi is the propensity score
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for action ai. The propensity score is the probability of the baseline policy taking the
logged action, that is, pi = ⇡b(ai | xi) [157].

To learn a new policy ⇡w from the collected bandit feedback, the following maxi-
mization problem has to be solved [83]:

b⇡w = max
⇡w

1

t

tX

i=1

ri,ai

pi
⇡w(ai | xi). (4.3)

This optimization problem is solved via SGD: if a new tuple (xi, ai, ri,ai , pi) is
observed, we weigh the derivative of ⇡w(ai | xi) by ri,ai

pi
and update the weights of

⇡w using SGD. We refer to this counterfactual learning method as IPS [83].

4.3.3 High-confidence off-policy evaluation
In a counterfactual learning setting, a newly learned policy ⇡w is never executed, so its
performance cannot be measured directly. Instead, we estimate its performance using
the collected bandit feedback Dt at time t. To do so, we assume that ⇡b(ai | xi) 6= 0
whenever ⇡w(ai | xi) 6= 0. The estimated reward of a policy ⇡ can then be written
as [102]: 1

R̂(⇡, Dt) =
1

t

tX

i=1

R̂i =
1

t

tX

i=1

ri,ai

pi
⇡(ai | xi). (4.4)

This estimate suffers from high variance, especially when the propensity scores are
small. To resolve this issue, Thomas et al. [164] propose several high-confidence off-
policy estimators. These estimators first calculate a confidence interval around the
policy’s performance and then use the lower bound on this performance for off-policy
evaluation. The high-confidence off-policy estimator that we use is based on the Mau-
rer & Pontill empirical Bernstein inequality. The confidence bound can be written
as [164]:

CB(⇡, Dt) =
7b ln

�
2
�

�

3(t� 1)
+

1

t

vuut ln
�
2
�

�

t� 1

tX

i,j=1

(R̂i � R̂j)2, (4.5)

where (1��) 2 [0, 1] is the confidence level and b is an upper bound on R̂. When both
r and p are bounded, b can be calculated exactly: b = max r

min p . The lower confidence
bound on the performance of a policy at time t, LCB(⇡, Dt), can be computed as:

LCB(⇡, Dt) =
1

t

tX

i=1

R̂i � CB(⇡, Dt). (4.6)

Similarly, we compute the upper confidence bound on the performance of a policy as
follows:

UCB(⇡, Dt) =
1

t

tX

i=1

R̂i + CB(⇡, Dt). (4.7)

1We use R̂i here to denote the estimated reward of a policy on the ith data sample. This is different from
the Ri used in Chapter 2 which represents a document at rank i in the ranked list.
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The estimator described in this section provides an effective way to compute a lower
and upper bound on the performance of a policy without executing it.

In this chapter we build on the estimators designed by Thomas et al. [164], but
provide the following contributions: First, we develop SEA, an algorithm for auto-
matic safe exploration by deploying new models (Section 4.4.2); second, we provide
an efficient way to compute the high-confidence bounds (Section 4.4.3); and, third, we
formally prove that SEA is indeed safe (Section 4.4.4).

4.4 Safe Exploration Algorithm (SEA)
We define the notion of safety as part of the learning process (Section 4.4.1), walk
through the Safe Exploration Algorithm (SEA) (Section 4.4.2), address the problem
of efficient off-policy evaluation (Section 4.4.3), formally prove the safety of SEA
(Section 4.4.4), and then analyse SEA (Section 4.4.5).

4.4.1 Safety
We use the definition of safety from so-called conservative methods [89, 181]. These
methods make a key assumption: there exists a baseline policy ⇡b whose actions can
always be executed without risk. This assumption is very reasonable in practice. In
most industrial settings there exists a production system that we can consider to be
the baseline policy. A learning algorithm is considered safe if its performance at any
round t is at least as good as the baseline policy. Thus, safety is a concept that is always
measured relative to a baseline.

More formally, let us first consider the notion of regret at round t during training.
We define the regret at time t as the cumulative difference in reward obtained by ex-
ecuting actions from our policy ⇡ compared to a perfect policy ⇡

⇤, one that always
chooses the action with maximum reward. For notational simplicity, we denote the
action that a policy chooses in response to a context vector x as ⇡(x):

Regrett(⇡) =
tX

i=1

(ri,⇡⇤(xi) � ri,⇡(xi)). (4.8)

A policy ⇡ is considered safe if its regret is always at most as large as that of the safe
baseline policy ⇡b, i.e., for every t = 1, . . . , T :

Regrett(⇡)  Regrett(⇡b) (4.9)

or
tX

i=1

(ri,⇡⇤(xi) � ri,⇡(xi)) 
tX

i=1

(ri,⇡⇤(xi) � ri,⇡b(xi)) (4.10)

so

1

t

tX

i=1

ri,⇡(xi) �
1

t

tX

i=1

ri,⇡b(xi). (4.11)
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In other words, at every time t, we want the average reward of our policy ⇡ to be at
least as large as the average reward of the baseline policy ⇡b. In practice, we cannot
observe the average reward of a policy without executing it. This is problematic be-
cause we cannot know if a policy is safe until we execute it. Fortunately, the off-policy
estimators described in Section 4.3.3 provide a way to estimate the performance of a
policy without executing it.

4.4.2 A walkthrough of SEA
The Safe Exploration Algorithm (SEA) learns a new policy ⇡w offline from the out-
put of a baseline policy ⇡b using counterfactual learning techniques described in Sec-
tion 4.3.2. At each iteration t, SEA estimates the performance of the newly learned
policy ⇡wt and the currently deployed policy ⇡d using the high-confidence off-policy
evaluators described in Section 4.3.3. The new policy is only deployed online when its
estimated performance is above that of the existing deployed policy. This allows the
newly learned policy to take over and start exploring. This only happens once SEA
is confident enough that the new policy’s performance will be satisfactory and safe to
execute.

Algorithm 6 Safe Exploration Algorithm (SEA)
1: ⇡b // Baseline policy (current production system)
2: ⇡w0  ⇡b // Policy to be learned (initialized with baseline weights)
3: ⇡d  ⇡b // The deployed policy that is executing actions
4: D0  {}

5: for t = 1, . . . , T do

6: xt  contextual feature vector at time t

7: at ⇠ ⇡d(· | xt)
8: pt  ⇡d(at | xt)
9: Play at and observe reward rt,at

10: Dt  Dt�1 [ {(xt, at, rt,at , pt)}
11: wt  wt�1 + ⌘

rt,at
pt
rw⇡wt�1(at | xt) // Update weights via gradient ascent

12: Compute LCB(⇡wt , Dt) using Equation 4.6
13: Compute UCB(⇡d, Dt) using Equation 4.7
14: if LCB(⇡wt , Dt) � UCB(⇡d, Dt) then

15: ⇡d  ⇡wt // Deploy new policy only when it is safe to do so
16: end if

17: end for

The pseudocode for the Safe Exploration Algorithm (SEA) is provided in Algo-
rithm 6. SEA starts from a baseline policy ⇡b (Line 1) and a new policy that we wish
to optimize, ⇡w0 (Line 2). At the start, SEA deploys the policy ⇡d, which is initialized
to the baseline policy (Line 3). At every iteration t, a context vector xt is observed
(Line 6). SEA draws an action from the deployed policy and computes its propen-
sity score (Lines 7–8). SEA executes the chosen action at and observes the reward rt

(Line 9). The policy ⇡w is then updated via SGD (Line 11). We then update the confi-
dence bounds on the estimated performance for the new policy ⇡wt and the deployed
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policy ⇡d (Lines 12–13). When the estimated lower bound performance of ⇡wt is bet-
ter than the estimated upper bound performance of ⇡d (Line 14), we deploy ⇡wt , such
that future actions are executed by the newly learned policy instead of the previous
deployed policy ⇡d.

4.4.3 Efficient policy evaluation
To implement SEA we use the off-policy estimator described in Section 4.3.3. Such an
implementation will be computationally expensive, because at each round T we have
to compute a sum over all t data points collected so far. E.g., in Equation 4.6, we need
to compute the mean

1

t

tX

i=1

R̂i

and the variance
1

t

tX

i,j=1

⇣
R̂i � R̂j

⌘2
,

at every round t. Therefore, the complexity of applying Equation 4.6 or 4.7 would be
O (T ) and the complexity of Algorithm 6 would be O

�
T

2
�
.

Recall that Dt = {(xi, ai, ri,ai , pi)}
t
i=1 is the collected log data and that there

are |A| possible actions and |X | possible contexts. We can then compute the mean
1
t

Pt
i=1 R̂i as follows (similar results hold for computing the variance term):

1

t

tX

i=1

ri,ai

pi
⇡(ai | xi) =

1

t

X

a2A

X

x2X

tX

i=1

1 [ai = a ^ xi = x]
ri,ai

pi
⇡(a | x) (4.12)

=
1

t

X

a2A

X

x2X
⇡(a | x)

tX

i=1

1 [ai = a ^ xi = x]
ri,ai

pi
, (4.13)

where 1[·] is the indicator function.
The key insight here is that the inner sum,

PT
t=1 1 [at = a ^ xt = x]

rt,at
pt

can be
efficiently computed online during data collection and is independent of the policy
⇡w that is being evaluated. Specifically, we can create a zero-initialized matrix W 2

R|A|⇥|X | where, each time a new data point (xi, ai, ri,ai , pi) is logged, we update an
entry as follows:

Wai,xi  Wai,xi +
ri,ai

pi
.

This results in the following method for computing the mean:
1

t

X

a2A

X

x2X
⇡(a | x)Wa,x =

1

t

X

(a,x):Wa,x 6=0

⇡(a | x)Wa,x, (4.14)

which can be orders of magnitude faster to compute when T � |A| · |X |. This is not
unreasonable in practice, as the size of interaction logs is usually much larger than the
number of users and items. In addition, we only need to compute the above sum for
a and x for which Wa,x 6= 0. This enables the use of sparse data structures that can
speed up computation even further.
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4.4.4 Proof of safety
SEA is an online learning method that we claim to be safe. To show that SEA is actually
safe, we bound the probability that a suboptimal policy, one whose expected reward is
lower than the expected reward of the deployed policy, will be deployed during the
duration of the algorithm.

Theorem 4.4.1. At any time t, with probability at least 1� 2�, SEA will not deploy a
suboptimal policy.

Proof. For notational simplicity we write the expected reward of a policy ⇡ as:

Rt(⇡) = Ea⇠⇡

"
1

t

tX

i=1

ri,a

#
. (4.15)

First, from Algorithm 6 we know that we only deploy ⇡wt if LCB(⇡wt) > UCB(⇡d).
Suppose that our confidence bounds do not fail. In this case, it is impossible to deploy
a suboptimal policy, since

Rt(⇡wt) � LCB(⇡wt) > UCB(⇡d) � Rt(⇡d). (4.16)

Consequently, a suboptimal policy can only be deployed when either the confidence
bound estimate on our newly learned policy ⇡wt or our deployed policy ⇡d fails.

The high-confidence off-policy estimators (see Equations 4.6 and 4.7) provide a
lower and upper bound on the estimated performance. According to Theorem 1 in
[164], these confidence bounds hold with probability at least 1 � �. Conversely, this
means that the confidence bounds may fail with probability at most �:

P (Rt(⇡) /2 [LCB(⇡),UCB(⇡)])  �, (4.17)

and, as a result, the probability that either the confidence bound on ⇡wt or ⇡d will fail
is at most 2�:

P (Rt(⇡wt) /2 [LCB(⇡wt),UCB(⇡wt)] _Rt(⇡d) /2 [LCB(⇡d),UCB(⇡d)])  2�.
(4.18)

Therefore, with probability at least 1�2�, we will not deploy a suboptimal policy.

In our experiments (see Section 4.5) we set � = 0.05, which means that the algorithm
is safe with probability at least 1� 2� = 0.90 at any time t. We observe that this lower
bound is fairly loose because we do not observe a single suboptimal deployment across
many repetitions and possible deployment moments.

4.4.5 Analysis
Conservative Linear Contextual Bandits (CLUCB) [89] is, to our knowledge, the only
other online learning method for contextual bandits that is also safe. Unfortunately,
CLUCB comes with two limitations:
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1. CLUCB does not scale beyond toy problems because it constructs confidence
sets around parameters, which requires solving a constraint optimization prob-
lem every time an action has to be chosen which makes it infeasible for realistic
IR problems; and

2. CLUCB can only be applied to linear models.

Our method addresses both limitations. First, SEA scales to large and complex datasets,
because it merely needs to compute the lower confidence bound and perform a gradi-
ent update step, both of which can be done highly efficiently. Second, SEA can easily
be adapted to non-linear models such as gradient-boosted decision trees and neural
networks as it is based on gradient descent.

SEA, being an online learning method, is capable of exploration. In contrast, coun-
terfactual methods do not explore, they merely observe what a baseline policy is doing.
If this baseline policy does not explore well, counterfactual learning techniques, whilst
still able to learn, are less effective [157]. And even if the baseline policy is highly
explorative, what truly matters is how well this policy explores the regions with fa-
vorable losses [125]. SEA solves this problem as it starts exploring actions using the
newly learned policy as soon as it is safe to do so. Since the policy learned by SEA has
a higher estimated performance than the baseline policy, the actions that it eventually
takes are likely to be actions with high reward.

We note that the safety that SEA guarantees does come at a cost: SEA cannot guar-
antee that it will explore new actions beyond the initial deployed policy. In contrast,
purely online methods can explore without any restrictions and as a result they may
end up learning a better policy than SEA. Put differently, SEA provides a trade-off be-
tween safety and exploration: with a lower �, SEA will be more safe, but gives up some
amount of exploration. Vice versa, a higher � allows SEA to explore more aggressively
while giving up some level of safety.

4.5 Experimental Setup
To answer our research questions, we consider two tasks: text classification and docu-
ment ranking. We consider these two complementary tasks as they differ in the size of
the action space, which is small in the case of text classification (the number of classes)
but large in the case of document ranking (the number of possible ranked lists). In both
cases we turn a supervised learning problem into a bandit problem.

4.5.1 Text classification task

For text classification we use a dataset D = {(xt, yt)}Tt=1, where xt 2 Rm is a feature
representation of the object we wish to classify and yt 2 {0, . . . , n} is the correct
label for that object. E.g., in text classification xt is a bag-of-words representation of
a document we wish to classify and yt the correct label for that document. We are
interested in the contextual bandit formulation for multi-class classification, i.e., where
the correct label yt is not known, but we can observe a reward signal for a chosen label
at.
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Table 4.1: Datasets used for the text classification task.
Dataset Classes Features Train size Test size

USPS [64] 10 256 7,291 2,007
20 Newsgroups [94] 20 62,060 15,935 3,993
RCV1 [98] 53 47,236 15,564 518,571

We follow the methodology of Beygelzimer and Langford [18] to transform a su-
pervised learning problem into a contextual bandit problem:

1. The environment presents the policy with the feature vector xt (e.g., the bag-of-
words representation of a text document).

2. The policy chooses at, one of n possible labels, as its prediction.

3. The environment returns a reward of 1 if the chosen label was correct and a
reward of 0 if it was incorrect.

Methods that use counterfactual learning (IPS and SEA), require a stochastic baseline
policy and the corresponding propensity scores, i.e., the probability that the baseline
policy chose the selected label at. To this end we define our data-collection policy
using the ✏-greedy approach. An ✏-greedy approach offers several benefits over alter-
native exploration strategies:

1. The amount of exploration can be manually tuned with the ✏ parameter, allowing
either very conservative or very aggressive exploration.

2. It is a priori known, via the ✏ parameter, how much performance we are giving
up to perform exploration.

3. The ✏-greedy strategy generates stable and bounded propensity scores; this coun-
teracts the high variance problem that is common in counterfactual learning and
evaluation.

We consider two types of reward signal. First, the perfect scenario where a reward of
1 is given if the chosen label at is correct and 0 otherwise. Second, a near-random
scenario where rewards are sampled from a Bernoulli distribution. More specifically,
when a policy chooses the correct label at, the policy is given a reward of 1 with
probability 0.6. Conversely, if the chosen label at is incorrect, the learner is given
a reward of 1 with probability 0.4. We choose these contrasting scenarios as they
highlight the need for safety. It is much easier for a learner to make mistakes in the
near-random scenario due to the high levels of noise and we hypothesize that safety
plays a more important role in that case. The text classification datasets that we use are
specified in Table 4.1.

4.5.2 Document ranking task
For the document ranking task we use the counterfactual LTR framework as described
in [82]. Table 4.2 details the datasets used for the document ranking task. In this
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Table 4.2: Datasets used for the document ranking task.
Dataset Queries Features Avg. docs per query

MSLR-WEB10K [131] 10,000 136 124
Yahoo Webscope [28] 36,251 700 23
Istella-s [107] 33,118 220 103

setup, a production ranker displays a ranked list to the user. It is assumed that the user
does not examine all documents in the presented ranking, but is instead more likely to
observe top-ranked documents than lower ranked ones, a phenomenon called “position
bias” [79]. After a user observes a document they can either judge it as relevant, by
clicking on it, or judge it as non-relevant, by not clicking on it.

We simulate user behavior as follows:

1. The policy being learned presents a ranked list to the simulated user.

2. The simulated user samples a set of observed documents from the ranked list,
where the probability of observing the document at rank i is

pi =

✓
1

i

◆�

, (4.19)

where � is a parameter that controls the severity of click bias. This setup is
identical to the one described in [82].

3. For each observed document, we generate clicks depending on the relevance of
the document. We use varying levels of click noise (“perfect”, “position-biased”
and “near-random”), the specific click probabilities are listed in Table 4.3. This
setup is in line with the methodologies described in [56, 60, 118, 123].

In our setup, clicks are simulated only on the top 10 documents. This more realisti-
cally simulates the behavior of web search users who are unlikely to visit the second
(or later) result page [29]. For the counterfactual models we assume the correct propen-
sity scores are known during learning. In other words, the propensity model used to
simulate position bias is also used to compute the propensity scores during learning.

We update our model via stochastic gradient descent at the document level by up-
dating the weights using a weighted gradient and stochastic gradient descent, as de-
scribed in Section 4.3.2.

4.5.3 Methods used for comparison
Our experiments are aimed at assessing the performance of SEA for solving contextual
bandit problems. We compare SEA against counterfactual and online methods. The
former comparison is motivated by the fact that counterfactual methods are safe by
definition so a comparison of SEA against such methods will inform us about the po-
tential performance gains by using SEA. The latter is motivated by the fact that SEA is
an online method so a comparison of SEA against such methods will inform us about
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Table 4.3: Click noise settings for the document ranking task. Each entry is the proba-
bility of clicking a document given its relevance label.

P (click | relevance)

0 1 2 3 4

Perfect 0.00 0.20 0.40 0.80 1.00
Position-biased 0.10 0.10 0.10 1.00 1.00
Near random 0.40 0.45 0.50 0.55 0.60

the safety of using SEA. In all experiments, the models to be trained are warm-started
with the weights of the deployed policy.

Counterfactual methods for contextual bandit problems optimize a policy by ob-
serving actions that are taken by a separate logging policy ⇡b. This makes them safe,
because learning happens only on data that has been collected in the past by a logging
policy. However, safety also makes them incapable of exploration. We use the state-
of-the-art counterfactual method �-translated Inverse Propensity Scoring (�-IPS) [83].
We hypothesize that the average reward of a model trained by SEA is higher than of a
model trained by �-IPS because SEA is capable of exploring actions from the newly
learned policy.

Online methods optimize a policy ⇡w by having it interact with the environment.
Such methods are effective at exploring the action space but have no notion of safety.
The online methods we use for the classification task are:

1. policy gradient with an ✏-greedy strategy,

2. policy gradient with a Boltzmann exploration strategy,

3. LinUCB [101], and

4. Thompson Sampling [7].

For the ranking task, we use the following online methods:

1. SVMRank Online [76], and

2. Dueling Bandit Gradient Descent [185] with Team-Draft Interleaving [137].

We hypothesize that the user experience of online methods suffers in the early stages
of learning (i.e., performance will be below the baseline policy ⇡b) because these ap-
proaches do not provide formal guarantees of safety while exploring new actions.

Safe online methods are meant to be safe in the sense that during training, the
algorithms never perform worse than a baseline policy ⇡b. Our contribution, SEA, falls
in this class of methods. We also consider CLUCB (Conservative Linear UCB) [89].
Its design makes it impractical for problems with high dimensionality or large action
spaces as it requires performing an m⇥m matrix inversion and solving a constrained
optimization problem whenever an action has to be selected; its high computational
complexity prevents us from using it with our datasets.
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Finally, we also include an empirically safe version of SEA, which does not use the
high-confidence bounds, which we denote as Boundless Safe Exploration Algorithm
(BSEA). This method compares the mean estimate of the reward of the learned policy
⇡w and the deployed policy ⇡d, instead of the lower and upper confidence bounds.
Specifically, we use Algorithm 6 where we set

UCB(⇡, Dt) = LCB(⇡, Dt) =
1

t

tX

i=1

ri,ai

pi
⇡(ai | xi). (4.20)

We expect this method to deploy its learned model earlier and more frequently than
SEA because it does not have to overcome potentially large confidence bounds. Hence,
we expect this policy to do better than SEA, but it may exhibit unsafe behavior as it no
longer provides the same formal safety guarantees as SEA.

4.5.4 Choice of baseline policy
Both �-IPS and SEA depend on a baseline policy ⇡b. We require that this baseline
policy is sub-optimal, so that learning can occur. This requirement is reasonable since
we cannot hope to improve an already optimal policy. We introduce suboptimality in
⇡b by subsampling the training set on which we train the policy (1% sample for the
classification task and 0.1% sample for the ranking task). This is motivated by a sce-
nario that commonly occurs in real search engines or classification systems: Manual
labels are expensive to obtain and are usually available on a scale of several orders of
magnitude smaller than logged bandit feedback. This strategy for introducing subopti-
mality results in a baseline policy whose performance is much better than random, but
still not optimal.

4.5.5 Metrics and statistical significance
We evaluate SEA and the competing approaches in two ways. One is in terms of cu-
mulative reward during training, which is the sum of all rewards received as a function
of the number of rounds; this type of metric allows us to quantify the degree to which
the user experience is affected. A higher cumulative reward during training indicates a
better user experience. The second is in terms of average reward, which is the reward
averaged per action on held-out test data; this type of metric allows us to quantify how
well a trained policy generalizes to unseen test data. The document ranking task uses
simulated clicks as a reward signal (see Section 4.5.2) during training, which is not a
very insightful metric for evaluating the true performance of a policy. Instead, to eval-
uate the learned policies, we use nDCG@10 [75]. We measure statistical significance
of observed differences using a t-test (p < 0.01).

4.6 Results

4.6.1 Safety
We first address RQ3.1:
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Figure 4.2: The performance of SEA (blue line) compared to online algorithms for
the text classification task. The top row indicates the USPS dataset, the middle row
the 20 Newsgroups dataset and the bottom row the RCV1 dataset. The performance
is measured on a held-out test set after each round t. Shaded areas indicate standard
deviation. Best viewed in color.

Is SEA safe? I.e., does it always perform at least as good as a baseline
policy?

To answer RQ3.1, we plot the performance of SEA against that of online algorithms
while they are training, using average reward on a held-out test dataset as our metric.

Let us first consider the text classification task; see Figure 4.2. The baseline policies
have an average accuracy of around 0.6, except in the 20 Newsgroups dataset where
this is 0.4. The tested online algorithms include ✏-greedy, Boltzmann exploration,
Thompson sampling and LinUCB. For the 20 Newsgroups and RCV1 datasets we do
not run LinUCB and Thompson sampling because they require inverting a 47,236 ⇥
47,236 matrix (for 20 Newsgroups) and 62,060⇥ 62,060 matrix (for RCV1) on every
update which is too computationally expensive. The performance of SEA is at least as
good as the baseline policy. Similarly, it seems that warm-started online algorithms are
also safe in this scenario, as they too perform always at least as good as the baseline
policy. The best algorithm in terms of final performance is different for each of the
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Figure 4.3: The performance of SEA (blue line) compared to an online approach (or-
ange line) for the document ranking task on MSLR-10k (top row), Yahoo Webscope
(middle row) and Istella-s (bottom row) with varying levels of click noise. The per-
formance of the trained ranker is measured on a held-out test set after each round t.
Shaded areas indicate standard deviation. Best viewed in color.

datasets. Overall we find that when it is computationally feasible to apply UCB or
Thompson sampling, they outperform all other methods. Furthermore we find that
Boltzmann exploration works very well with a perfect reward signal. However, in the
case of near random rewards, both Boltzmann exploration and ✏-greedy are not always
capable of learning a good policy. Finally, we observe that BSEA is on par with SEA,
and in some cases significantly outperforms it, while being empirically safe. BSEA
is capable of deploying its learned model faster and more frequently than SEA as it
does not have to overcome potentially large confidence bounds. Although this means
that BSEA is not guaranteed to be safe, we find that it is empirically safe across all
experimental conditions.

Next, we consider the document ranking setting; see Figure 4.3. We use nDCG@10
on held-out test data as the evaluation metric. We observe that SEA is always at least as
good as the baseline policy whereas online learning methods may suffer from unsafe
performance in the early stages of learning. We see that in the case of near-random
clicks on the Istella-s dataset, SEA accurately identifies that it is not safe to deploy
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whereas the online method suffers from unsafe performance and actually go below the
baseline level. However, on the other datasets with near-random clicks, SEA never
deploys a new model and consequently does not explore different actions. As a result,
it is unable to improve upon the production policy. Online approaches outperform
SEA here because they explore more aggressively and are able to learn even in the face
of large amounts of noise. These results are in line with previous work [72], which
has shown that counterfactual methods have difficulty learning in scenarios with large
amounts of noise. In cases with position-biased or perfect clicks, the ranker trained by
SEA performs on par with the online method. This means that in realistic scenarios we
do not sacrifice any performance by using SEA. Finally, we note that BSEA performs
empirically safe on the document ranking task across all experimental settings, which
is in line with the results on the text classification task.

This answers RQ3.1. Our experiments indicate that SEA is indeed safe, its perfor-
mance does not fall below that of the baseline policy.

4.6.2 Improved user experience
Next, we answer RQ3.2:

Does SEA provide a better user experience during training than counter-
factual or online learning methods? I.e., does it accumulate a higher re-
ward during training?

To answer RQ3.2, we measure the cumulative reward obtained by the learning algo-
rithms. During training, the counterfactual method, �-IPS, only observes actions taken
by the baseline policy, hence its cumulative reward is always equal to the cumulative
reward of the baseline and is omitted from the result tables to save space.

Table 4.4 lists the results for the text classification task. The cumulative reward
achieved by SEA is at least as good as the baseline, and eventually better. We find that
only ✏-greedy on the RCV1 dataset under near random rewards performs significantly
worse than the baseline. In all other settings we find that all the warm-started online
methods similarly provide a user experience that is at least as good as the baseline, and
eventually better. This means that for the text classification task, all methods, with the
exception of ✏-greedy, perform safely and never harm the user experience. Finally, we
see that BSEA is able to improve the user experience faster and more quickly than SEA
in the perfect rewards setting, and performs on par in the near random rewards setting.
Similar to the results we have observed in Section 4.6.1, we hypothesize that BSEA
does not have to overcome potentially large confidence bounds and as a result is able
to more quickly and more frequently deploy its learned model. As a result, BSEA is
capable of improving the user experience over SEA.

Next we turn to the case of ranking. See Table 4.5 for the cumulative reward results
for document ranking. It is clear that SEA performs at least as good as the baseline pol-
icy and eventually outperforms it. For the online learning method, this is not the case.
Specifically for the Istella-s dataset with near random clicks, we observe significant
performance degradations in the early stages of learning which harms the user experi-
ence. However, on the other datasets with near random clicks we find that the online
methods are capable of safely exploring the action space, even with high noise, and as a
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Table 4.4: Cumulative reward, relative to the baseline policy, while training for text
classification. LinUCB and Thompson Sampling cannot be run on the 20 Newsgroups
and RCV1 datasets due to their high computational complexity. Statistically significant
differences with SEA are indicated using N (p < 0.01) for gains and H (p < 0.01) for
losses.
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Table 4.5: Cumulative nDCG@10, relative to the baseline policy, while training for
document ranking under varying levels of click noise. Statistical significance is de-
noted in the same way as in Table 4.4.
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Table 4.6: Distribution of relevance grades on documents for the ranking datasets. Note
that Istella-s is very sparse, nearly 90% of the documents are judged as non-relevant.

Relevance grade 0 1 2 3 4

Webscope 0.26 0.36 0.28 0.08 0.02
MSLR10k 0.52 0.32 0.13 0.02 0.01
Istella-s 0.89 0.02 0.04 0.03 0.02

result improve the overall user experience more than SEA. From Table 4.6 we see that
Istella-s contains very sparse relevance feedback compared to the MSLR10k and Web-
scope datasets. In the near-random click scenario this means that there are significantly
more clicks on non-relevant documents, making Istella-s with near-random clicks the
most challenging learning scenario. We once again see that BSEA is a very strong
baseline across all datasets, improving the user experience over SEA in the perfect and
position-biased clicks settings while performing on par with SEA in the near-random
click setting.

This answers RQ3.2. SEA provides a better user experience than online methods,
particularly in the document ranking setting with high levels of click noise where the
user experience may be negatively affected by online algorithms. In the later stages of
learning SEA provides a user experience that is significantly better than the baseline
and comparable to online approaches. We find that BSEA is able to improve the user
experience even further by being able to deploy its learned model earlier and more
frequently.

4.6.3 The benefit of exploring
Finally, we turn to RQ3.3:

Does SEA, which explores the action space, learn a more effective policy
compared to purely counterfactual learning methods, which do not per-
form exploration?

To answer RQ3.3, we compare SEA to the state-of-the-art counterfactual learning al-
gorithm �-IPS on unseen test data. The results for the classification task are displayed
in Table 4.7. Because SEA is capable of exploring, it finds highly favorable regions
of the action space. �-IPS is, by design, incapable of exploration and cannot deviate
far from the baseline policy in terms of performance. As a result, in the case of text
classification, the final model learned by SEA outperforms the final model learned by
�-IPS on the 20 Newsgroups datasets. On the USPS and RCV1 dataset, there is no
noticeable performance difference between �-IPS and SEA. Note that the baseline
policy for USPS and RCV1 has a performance of around 0.6, whereas the baseline
policy for the 20 Newsgroups dataset only has a performance of around 0.4. We pos-
tulate that this difference in baseline performance may cause �-IPS to learn better and
therefore perform equally to SEA on the USPS and RCV1 datasets. Lastly, we find
that BSEA performs on par with SEA in all settings, while producing a significantly
better model on the RCV1 dataset with perfect rewards. Similar to our observations in
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Table 4.7: Average reward on held-out test data for the learned model for the document
classification task after 1,000,000 rounds. Statistical significance is denoted the same
way as in Table 4.4.

Type of rewards: Perfect Near random (0.6 / 0.4)
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✏-greedy 0.90H 0.82H

Boltzmann 0.90 0.72H

UCB 0.91H 0.91
Thompson 0.91H 0.91
IPS 0.92 0.89
BSEA 0.92 0.86
SEA 0.92 0.90
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✏-greedy 0.83 0.69
Boltzmann 0.88N 0.53H

IPS 0.83H 0.53H

BSEA 0.86 0.74
SEA 0.85 0.70
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✏-greedy 0.85 0.68
Boltzmann 0.83 0.63H

IPS 0.81 0.68
BSEA 0.87N 0.74
SEA 0.84 0.73

Sections 4.6.1 and 4.6.2, we find that BSEA likely performs so well because it does
not have to overcome confidence bounds and can deploy its learned model faster and
more frequently than SEA, allowing it to learn a more effective model.

Finally, we consider the document ranking setting; see Table 4.8. SEA is able
to learn a more effective ranker than �-IPS on all datasets with perfect clicks and on
Istella-s with position-biased clicks. We hypothesize that this is because SEA, be-
ing capable of exploration, eventually shows documents to the user that the baseline
policy would rarely, if ever, show. As a result, SEA is able to obtain clicks on these
documents, allowing it to learn more effectively. This is in line with our expectations
because previous work has shown that even a tiny amount of exploration can result in
substantial improvements in LTR [57]. Finally, we find that BSEA does not produce a
better ranker than SEA for the document ranking task. Across all settings, the models
produced by BSEA and SEA are comparable.

This answers RQ3.3. Exploration does indeed help the performance of the policy
learned by SEA and it outperforms �-IPS both for scenarios with a small action space
(e.g., text classification) and for scenarios with a large action space (e.g., document
ranking).
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Table 4.8: Average reward on held-out test data for the learned model for the document
ranking task after 10,000,000 rounds. Statistical significance is denoted the same way
as in Table 4.4.

Type of clicks: Perfect Position-biased Near random
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IPS 0.67H 0.66H 0.64
BSEA 0.68 0.67 0.64
SEA 0.68 0.67 0.64

4.7 Conclusion

We have proposed SEA, a safe online learning algorithm for contextual bandit prob-
lems. SEA learns a new policy from the behavior of an existing baseline policy and
then starts to execute actions from the new policy once its estimated performance is at
least as good as that of the baseline. This brings us the best of both worlds, achieving
the performance of online learning with the safety of counterfactual learning.

We perform extensive experimentation on two IR tasks, text classification and doc-
ument ranking. In both tasks SEA is safe. It never performs worse than a baseline
policy, whereas online methods are unsafe and suffer from suboptimal performance in
the early stages of learning. We observe that the user experience with SEA is improved
in the early stages of training, but may be suboptimal in later stages when compared to
methods that converge much faster, such as LinUCB (although such methods are not
generalizable to all datasets). The final performance of a model learned with SEA is
comparable to other online algorithms and beats that of counterfactual methods, which
are incapable of exploration. Finally, we find that BSEA, a boundless version of SEA,
is empirically just as safe as SEA while being able to explore faster and, as a result, out-
perform SEA in many experimental conditions. These results confirm that SEA does
indeed trade off advantages and disadvantages of counterfactual and online learning,
in some scenarios outperforming online methods in the early stages of learning and
having higher final performance than counterfactual methods. However, compared to
purely online approaches, SEA may not be as effective in learning a good policy due to
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the fact that it is more conservative when exploring. The conservative nature of SEA
implies that safety is not free, there is a possible performance cost involved for cases
where SEA is unable to effectively explore.

An interesting direction for future work is an extension of SEA to non-linear mod-
els. SEA builds on gradient descent and it is trivial to extend the method to use
gradient-boosted decision trees or neural networks. This line of work is especially
applicable for the document ranking task where it is known that non-linear models can
outperform linear models by a wide margin [179]. Furthermore, another possibility for
future work is to perform a study on safety for a broad range of online and counterfac-
tual methods, similar to the comparison performed in Chapter 2. Specifically, it would
be interesting to compare against recent work on safe online learning to re-rank [100].

All chapters so far have assumed stationary user preferences that do not change
over time and we have only looked at clicks as a user interaction signal. In the fol-
lowing two chapters we look more closely at these topics. In Chapter 5 we introduce
counterfactual estimators that work well in non-stationary environments. Then, in
Chapter 6 we look at activity data in the context of cloud file storage platforms.
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5
Off-Policy Evaluation for Non-Stationary

Recommendation Environments

5.1 Introduction

Modern Information Retrieval (IR) systems leverage user interactions such as clicks to
optimize which items such as articles, music or movies to show to users [59, 76, 105].
A challenge in utilizing interaction feedback is that it is a “partial label” problem: We
only observe feedback for items that were shown to a user, but not for other items that
could have been shown. The contextual bandit framework [101] provides a natural way
to solve problems with this interactive nature. In the contextual bandit setup, an inter-
active system (e.g., a recommender system), often called a policy, observes a context
(e.g., a user visiting a website), performs an action (e.g., by showing a recommenda-
tion to the user) and finally observes a reward for the performed action (e.g., a click or
no click) [101].

To evaluate a policy, it is best to deploy it online, e.g., in the form of an A/B test.
However, this is expensive in terms of engineering and logistic overhead [70, 183] and
may harm the user experience [144]. Off-policy evaluation is an alternative strategy that
avoids the problems of deploying and measuring a policy’s performance online [102].
In off-policy evaluation, we use historical interaction data, often referred to as bandit
feedback, collected by an existing logging policy to estimate the performance of a new
policy. In existing work, off-policy evaluation has been well studied in the context of a
stationary world, one where interactions happen independent of time [15, 40, 102, 130,
159, 164, 176].

However, IR environments are usually non-stationary with user preferences chang-
ing over time [93, 112, 115, 134, 180]. Existing off-policy evaluation techniques fail
to work in such environments. In this chapter, we address the problem of off-policy
evaluation in non-stationary environments. We propose several off-policy estimators
that operate well when the environment is non-stationary. Our estimators are based
on applying two types of moving averages to the collected bandit feedback: (1) a
sliding window average, and, (2) an exponential decay average. These proposed esti-
mators rely more on recent bandit feedback and, thus, accurately capture changes in

This chapter was published as [71].
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non-stationary environments.
We provide a rigorous analysis of the proposed estimators’ bias in the non-stationary

setting and show that the bias does not grow over time. In contrast, we show that the
standard Inverse Propensity Scoring (IPS) estimator suffers from a large bias that grows
over time when applied to non-stationary environments. Finally, we use the results
from our analysis to create adaptive variants of the sliding window and exponential
decay estimators that change their parameters in real-time to improve estimation per-
formance.

We perform extensive empirical evaluation of the proposed off-policy estimators
on two recommendation datasets to showcase how they behave under varying levels
of non-stationarity. Our main finding is that the proposed estimators significantly out-
perform the regular IPS estimator and provide a much more accurate estimation of a
policy’s true performance, while the regular IPS fails to capture the changes in non-
stationary environments. Moreover, we demonstrate that these results hold for both
smooth and abrupt changes in the environment. Our findings open up the way for off-
policy evaluation to be applied to real-world settings where non-stationarity is preva-
lent.

The remainder of this chapter is structured as follows: In Section 5.2 we provide
background information about off-policy evaluation and non-stationarity. Next, Sec-
tion 5.3 describes our estimators for solving the non-stationary off-policy evaluation
problem. The experimental setup and results are described in Section 5.4 and Sec-
tion 5.5, respectively. Finally, we conclude in Section 5.6.

5.2 Background

5.2.1 Off-policy evaluation

Off-policy evaluation is an important technique for assessing the behavior of a decision
making policy, e.g., a new recommendation strategy, ad-placement technique or some
other new feature, without deploying the policy in a classical A/B test [130]. In settings
where the deployment of a new policy is costly, either in terms of logistic and engineer-
ing overhead or in terms of potential harm to the user experience, off-policy evaluation
is a safe and efficient alternative to A/B testing [163]. The main idea in off-policy
evaluation is to collect data by having an already deployed policy taking actions and
logging the corresponding user interactions. The typical approach in off-policy evalu-
ation is to then re-weigh the logged data according to what the new policy would have
done to obtain an unbiased estimate of the expected return of this new policy. Although
a randomized logging policy is typically required for unbiased off-policy evaluation,
the amount of randomness can usually be controlled through some parameter, trading
off exploration and exploitation [40].

Existing work in off-policy evaluation has focused on creating unbiased estima-
tors [62, 102, 159] and reducing their variance [15, 40, 176]. However, these off-policy
estimators usually do not take into account the temporal component and assume that
the world and rewards are stationary. In contrast to existing work, we postulate that
the world is non-stationary and create off-policy estimators that take this into account.
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We should note that Dudík et al. [41] have studied policy evaluation in a different
non-stationary setting, namely one where a policy’s behavior depends on a history of
contexts and actions. However, unlike our work, Dudík et al. still assumes a stationary
world and rewards.

In the reinforcement learning domain, the application of time series prediction
methods to predict future off-policy performance in non-stationary environments has
been studied by Thomas et al. [166]. Our work is different in important ways: (1) Our
work focuses on the contextual bandit scenario, whereas theirs is in the reinforcement
learning domain. (2) We are the first to develop a theory for non-stationary off-policy
evaluation. (3) Their work is designed for small-scale problems, with up to a few
thousand iterations as the complexity of their method is quadratic in the number of
iterations, whereas our method scales linearly with the number of iterations, enabling
experimentation that is two orders of magnitude larger. (4) We target the recommenda-
tion setting, whereas Thomas et al. [166] focus on proprietary datasets from digital ad
marketing, limiting reproducibility. The only publicly available dataset used in their
work is a synthetic scenario called mountain car [155]. Our results are produced on
more realistic publicly available recommendation datasets from LastFM [96] and De-
licious [22, 35].

Finally, Garivier and Moulines [48] studied the use of sliding-window and expo-
nential decay techniques for optimizing contextual bandits in abruptly changing en-
vironments. Our work differs in two ways: (1) we study off-policy evaluation and
not contextual bandit learning, and (2) we focus on the smooth non-stationary setting
instead of the abrupt non-stationary setting, as we will explain in the next section.

5.2.2 Non-stationary environments
Non-stationarity environments have been studied in the context of learning multi-
armed bandits [17, 48, 104, 178] and contextual bandits [180]. Two settings naturally
arise when dealing with a non-stationary world:

1. Abrupt non-stationarity [48, 180], sometimes called piecewise-stationary [104].

2. Smooth non-stationarity [178].

The first setting, abrupt non-stationarity, assumes a stationary world where changes
happen abruptly at certain points in time. This is a natural setting in, for example,
news recommendation, where a sudden event causes a shift in users’ interests [97].

The second setting, smooth non-stationarity, assumes that the world changes con-
stantly but that it changes only a little bit at a time. This is the natural condition of
human attitudes (including likes and dislikes). Social psychologists have found that
preferences are neither enduring nor stable [147, 167]. In cognitive psychology, nu-
merous experiments have provided evidence of gradual taste changes, for instance in
response to changing constraints and abilities [14] or in relation to perceived risk lev-
els [85].

Specifically, in settings such as e-commerce [109], music recommendation [112,
133] and news recommendation [37], the behavior of users is often non-stationary in a
smooth manner. Pereira et al. [129] have studied non-stationarity in user preferences
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on social media and have found strong correlations between the temporal dynamics
of users’ preferences and changes in their social network graph. Taking smooth non-
stationarity into account may benefit overall search and recommendation performance,
e.g., in music recommendation; Quadrana et al. [133] have found that encoding the
evolution of users’ listening preferences via recurrent neural networks, can lead to
substantial improvements in recommendation quality.

In our work, we specifically design off-policy estimators that deal with the non-
abrupt case, that is, estimators that work well when the environment exhibits smooth
non-stationarity.

5.3 Non-stationary Off-policy Evaluation
In this section we first formulate the problem of off-policy evaluation in non-stationary
environments. In this setting, we prove that the upper bound on the bias of the regular
IPS estimator grows with time. Then we propose two alternative estimators, a sliding
window approach and an exponential decay approach, and show that their bias can
be bounded. Finally, we use our theoretical findings to propose a method that can
adaptively set the window-size or the decay rate of our proposed estimators, based on
the principle of minimizing the Mean Squared Error (MSE).

5.3.1 Problem definition
We consider the following two policies: (i) ⇡0 is a stochastic logging policy that col-
lects data, and (ii) ⇡w is a new policy that we want to evaluate. We observe an infinite
stream of log data, generated by the logging policy ⇡0. At each time t = 1, . . . ,1, the
following occurs:

1. The environment generates a context vector xt and rewards rt for all possible ac-
tions at time t:

(xt, rt)
i.i.d.
⇠ Dt. (5.1)

The context could, for example, be a user who interacts with a recommender system,
while actions could be possible recommendations for that user. The true interest of
the user, e.g., what recommendation they are actually interested in, is captured by
rewards. We build on previous work [102], which assumes that contexts and rewards
are sampled i.i.d. from an unknown distribution Dt. However, unlike previous work,
we generalize to a non-stationary world that may change over time. More formally,
we allow the distribution Dt to change with t:

D1 6= D2 6= . . . 6= Dt. (5.2)

2. After observing the context vector xt, the logging policy ⇡0 samples an action (e.g.,
given a user, ⇡0 chooses a recommendation for that user):

at ⇠ ⇡0(· | xt) (5.3)

and records the corresponding propensity score:

pt  ⇡0(at | xt). (5.4)
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3. The reward rt(at) for the chosen action is revealed, but not the rewards for other
possible actions that could have been chosen. Without loss of generality we as-
sume rt(at) 2 [0, 1]. In practice, the reward would be a click or no-click on the
recommendation that was shown.

Our goal is to estimate the value of the new policy ⇡w at time t, denoted as V⇤
t (⇡w),

based on the data collected by the logging policy ⇡0. We write this value as the ex-
pected reward of the policy ⇡w:

V⇤
t (⇡w) = E(xt,rt)⇠Dt,at⇠⇡w(·|xt) [rt(at)] = E⇡w [rt(at)] . (5.5)

Finding an estimator for the above quantity would be near impossible if no further
assumptions are made about the reward function rt. For example, if a user’s prefer-
ences completely changed every time they enter a recommendation website, it would
be impossible to perform any type of estimation or evaluation. To make this problem
approachable, we assume that the change of a policy’s value between any two consec-
utive points in time is bounded. More formally:

Assumption 5.3.1. The value of a policy is a Lipschitz function of time:

|V⇤
t1(⇡w)� V⇤

t2(⇡w)|  |t1 � t2|k, (5.6)

where k is the Lipschitz-constant.

This assumption ensures that the expected reward of a policy cannot abruptly jump
between time t1 and time t2. This is supported by practical observations that for real-
world recommendation systems user behavior changes slowly over time [112, 115].

5.3.2 Regular IPS

A widely used policy evaluation technique is Inverse Propensity Scoring (IPS) [62],
defined as:

VIPS
t (⇡w) =

1

t

tX

i=1

ri(ai)
⇡w(ai | xi)

pi
. (5.7)

Under the assumption of a stationary world, this is an unbiased estimate of V⇤
t (⇡w) [62]:

Lemma 5.3.2. VIPS(⇡w) is an unbiased estimate of V⇤
t (⇡w), under the assumption of

a stationary world (D1 = D2 = . . . = Dt).1

Proof. First, we show that for any point in time i 2 {1, . . . , t}, the IPS estimate of a
single observation is unbiased. To do this, we take the expectation of the IPS estimate
under the logging policy, and show that it is equal to the reward of the policy under

1We assume ⇡0(a | x) 6= 0 when ⇡w(a | x) 6= 0 throughout this chapter, a necessary assumption to
guarantee unbiasedness of IPS estimators.
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evaluation:

E⇡0


ri(ai)

⇡w(ai | xi)

pi

�
=
X

a0

ri(a
0
i)

⇡w(a0
i | xi)

⇡0(a0
i | xi)

⇡0(a
0
i | xi)

=
X

a0

ri(a
0
i)⇡w(a

0
i | xi)

= E⇡w [ri(ai)] .

Using this fact, it is easy to show that VIPS
t (⇡w) is indeed an unbiased estimate of

V⇤
t (⇡w):

E⇡0

⇥
VIPS

t (⇡w)
⇤
= E⇡0

"
1

t

tX

i=1

ri(ai)
⇡w(ai | xi)

pi

#

=
1

t

tX

i=1

E⇡w [ri(ai)]

=
1

t

tX

i=1

E⇡w [rt(at)]

= E⇡w [rt(at)]

= V⇤
t (⇡w).

When generalizing to a non-stationary world (under Assumption 5.3.1), it can be
shown that the standard IPS estimate is biased.

Lemma 5.3.3. Under Assumption 5.3.1, VIPS
t (⇡w) is a biased estimate of V⇤

t (⇡w) and
the upper bound on the bias grows with t.

Proof. We have:

E⇡0

⇥
VIPS

t (⇡w)
⇤
= E⇡0

"
1

t

tX

i=1

ri(ai)
⇡w(ai | xi)

pi

#

=
1

t

tX

i=1

E⇡w [ri(ai)]

=
1

t

tX

i=1

E⇡w [ri(ai)� rt(at) + rt(at)]

=
1

t

tX

i=1

(E⇡w [rt(at)] + E⇡w [ri(ai)� rt(at)])

= E⇡w [rt(at)] +
1

t

tX

i=1

(E⇡w [ri(ai)]� E⇡w [rt(at)])

= V⇤
t (⇡w) +

1

t

tX

i=1

(V⇤
i (⇡w)� V⇤

t (⇡w))
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 V⇤
t (⇡w) +

1

t

tX

i=1

|t� i|k

= V⇤
t (⇡w) +

k(t� 1)

2| {z }
bias

The upper bound on the bias term, i.e., k(t�1)
2 , grows with t, which is unfortunate

because it means that the more data we observe, the larger our bias potentially be-
comes. We propose two estimators that deal with this problem by avoiding a bias term
that grows with t: the sliding window IPS and the exponential decay IPS, which we
describe next.

5.3.3 Sliding window IPS

The first IPS estimator we propose is the sliding window IPS estimator, V⌧ IPS
t (⇡w).

This estimator only takes into account the ⌧ most recent observations and ignores older
ones:

V⌧ IPS
t (⇡w) =

1

⌧

tX

i=t�⌧

ri(ai)
⇡w(ai | xi)

pi
. (5.8)

This estimator has a bias that does not grow with t, but is instead controlled by the
window size ⌧ :

Theorem 5.3.4. Under Assumption 5.3.1, V⌧ IPS
t (⇡w) is a biased estimate of V⇤

t (⇡w)

and its bias is at most k(⌧�1)
2 .

Proof. This proof largely follows the proof of Lemma 5.3.3, so we will be concise:

E⇡0

⇥
V⌧ IPS

t (⇡w)
⇤
= E⇡0

"
1

⌧

tX

i=t�⌧

ri(ai)
⇡w(ai | xi)

pi

#

 V⇤
t (⇡w) +

1

⌧

tX

i=t�⌧

|t� i|k

= V⇤
t (⇡w) +

1

⌧

⌧X

i=1

|⌧ � i|k

 V⇤
t (⇡w) +

k(⌧ � 1)

2| {z }
bias

.

The advantage of the sliding window estimator V⌧ IPS
t (⇡w) is that its bias term can be

controlled by the window size ⌧ . One may consider setting the window size ⌧ to 1,
which would effectively produce an unbiased estimate:

k(⌧ � 1)

2
=

k(1� 1)

2
= 0. (5.9)
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This is a particularly powerful statement because we would obtain an unbiased esti-
mator even in the face of non-stationarity. Unfortunately, a drawback would be that
having such a small window size will cause a large variance.

To formally derive the variance of the V⌧ IPS
t (⇡w) estimator, we assume that the

following variance does not change over time:

V

ri(ai)

⇡w(ai | xi)

pi

�
= V


ri+1(ai+1)

⇡w(ai+1 | xi+1)

pi+1

�
. (5.10)

We make this assumption to simplify writing down the variance of our estimator. To
further motivate this assumption, we note that the variance of IPS estimators scales
quadratically with the inverse propensity scores [40]. As a result, the variance term of
the IPS estimator is dominated by the usually large inverse propensity weights and not
by the variance in the rewards. Since we do not change our logging policy over time,
the distribution of propensity scores will also not change, and hence we expect the
variance to remain constant over time. We can write down the variance of V⌧ IPS

t (⇡w)
as follows:

V
⇥
V⌧ IPS

t (⇡w)
⇤
= V

"
1

⌧

tX

i=t�⌧

ri(ai)
⇡w(ai | xi)

pi

#

=
1

⌧2

tX

i=t�⌧

V

ri(ai)

⇡w(ai | xi)

pi

�
=

1

⌧
V

rt(at)

⇡w(at | xt)

pt

�
.

As we can see, the variance scales by 1
⌧ , which means larger values of ⌧ reduce variance

and conversely smaller values of ⌧ increase variance.
Hence, setting the window size is a trade-off between how much bias and variance

we are willing to tolerate. We will see a similar bias-variance trade-off in the next
estimator, the exponential decay IPS.

5.3.4 Exponential decay IPS

The exponential decay IPS estimator, V↵IPS
t (⇡w), uses an exponential moving average

to weigh recent observations more heavily than old observations:

V↵IPS
t (⇡w) =

1� ↵

1� ↵t

tX

i=1

↵
t�i

ri(ai)
⇡w(ai | xi)

pi
, (5.11)

where ↵ 2 (0, 1) is a hyper parameter controlling the rate of decay. A large value of ↵

indicates a slow decay, meaning that old observations weigh more heavily. Conversely,
a small value of ↵ indicates a rapid decay, which means recent observations weigh
more heavily.

The bias of this estimator does not grow with t and is controlled by the decay rate
↵:

Theorem 5.3.5. Under Assumption 5.3.1, V↵IPS
t (⇡w) is a biased estimate of V⇤

t (⇡w)
and its bias is at most k↵

(1�↵)(1�↵t) .
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Proof. For notational simplicity, we define V⇤
i = V⇤

i (⇡w). Then:

E⇡0

⇥
V↵IPS

t (⇡w)
⇤
= E⇡0

"
1� ↵

1� ↵t

tX

i=1

↵
t�i

ri(ai)
⇡w(ai | xi)

pi

#

=
1� ↵

1� ↵t

tX

i=1

↵
t�iE⇡w [ri(ai)]

=
1� ↵

1� ↵t

tX

i=1

↵
t�i(V⇤

i � V⇤
t + V⇤

t )

=
1� ↵

1� ↵t

tX

i=1

↵
t�iV⇤

t +
1� ↵

1� ↵t

tX

i=1

↵
t�i(V⇤

i � V⇤
t )

= V⇤
t +

1� ↵

1� ↵t

tX

i=1

↵
t�i(V⇤

i � V⇤
t ).

| {z }
bias

We can further simplify the bias term as follows:

1� ↵

1� ↵t

tX

i=1

↵
t�i(V⇤

i � V⇤
t ) 

1� ↵

1� ↵t

tX

i=1

↵
t�i

|t� i|k

= k
1� ↵

1� ↵t

tX

i=1

↵
t�i

|t� i|.

Note that
Pt

i=1 ↵
t�i

|t� i| is a convergent series for |↵| < 1:

tX

i=1

↵
t�i

|t� i| 
↵

(1� ↵)2
.

Plugging this expression into the above equation completes the proof:

k
1� ↵

1� ↵t

tX

i=1

↵
t�i

|t� i|  k
1� ↵

1� ↵t

↵

(1� ↵)2
=

k↵

(1� ↵)(1� ↵t)
.

The bias term k↵
(1�↵)(1�↵t) exhibits behavior that we expect: If k is large, and thus the

environment is highly non-stationary, the estimate will be more biased. Conversely,
when k = 0, we recover the stationary case and have an unbiased estimator. Further-
more, when ↵ approaches 1, the bias term grows because we weigh old observations
more heavily. Finally, we note that limt!1(1� ↵

t) = 1 and thus t vanishes from the
bias term as t approaches infinity.

Let us now consider the variance of the exponential decay IPS estimator. Similarly
to the sliding window IPS estimator, we assume that the variance does not change over
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time. This gives us:

V
⇥
V↵IPS

t (⇡w)
⇤
= V

"
1� ↵

1� ↵t

tX

i=1

↵
t�i

ri(ai)
⇡w(ai | xi)

pi

#

=

✓
1� ↵

1� ↵t

◆2 tX

i=1

↵
2(t�i)V


ri(ai)

⇡w(ai | xi)

pi

�

=

✓
1� ↵

1� ↵t

◆2✓1� ↵
2t

1� ↵2

◆
V

rt(at)

⇡w(at | xt)

pt

�
.

As expected, the variance scaling factor
⇣

1�↵
1�↵t

⌘2 ⇣
1�↵2t

1�↵2

⌘
decreases as ↵ goes to 1.

Conversely, the variance increases as ↵ goes to 0. Similarly to the bias term, we see
that t vanishes from the variance as t approaches infinity:

lim
t!1

✓
1� ↵

1� ↵t

◆2✓1� ↵
2t

1� ↵2

◆
=

1� ↵

1 + ↵
.

5.3.5 How to choose ⌧ and ↵

Compared to regular IPS estimators, V⌧ IPS
t and V↵IPS

t have additional parameters ⌧ and
↵, respectively, that need to be set.

Let us first consider the scenario where an unbiased estimator is the goal. We can
set ⌧ = 1 or ↵ = 0 to obtain an unbiased estimator. This is equivalent to computing
an IPS estimate on only the current observation. It is obvious that such a strategy will
suffer from high variance and is not very useful in practice.

Conversely, if we were to consider the scenario where an estimator with minimal
variance is the goal, we could set ⌧ = 1 or ↵ arbitrarily close to 1, resulting in an
estimator that would heavily weigh as many old observations as possible. This is also
a poor strategy as it would result in potentially unbounded bias.

Setting ⌧ or ↵ comes down to finding a balance between bias and variance. A
principled way to trade off these quantities is by minimizing the mean squared error of
the estimator [170]:

MSE = bias2 + variance.
If the Lipschitz constant k is known, we can compute a value of ⌧ or ↵ that minimizes
the mean squared error at every time t as follows:

⌧
⇤
t = argmin

⌧2N
�

✓
k(⌧ � 1)

2

◆2

+ V
⇥
V⌧ IPS

t (⇡w)
⇤
,

↵
⇤
t = argmin

↵2[0,1)
�

✓
k↵

(1� ↵)(1� ↵t)

◆2

+ V
⇥
V↵IPS

t (⇡w)
⇤
,

where � is a hyperparameter that trades off bias for variance. In practice we would
tune � to achieve a good trade-off.

Finding the optimal values ⌧
⇤
t and ↵

⇤
t requires knowledge about the Lipschitz con-

stant k which is usually not known in practice. In the next section, we describe a
heuristic that estimates k.
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5.3.6 Estimating the Lipschitz constant k

The Lipschitz constant k tells us how fast the true value of a policy is moving (see
Eq. (5.6)). Since the true value V⇤

t (⇡w) cannot be observed without deploying the
policy ⇡w, we rely on the IPS estimated rewards. To estimate k, we track the difference
between two moving averages: one at time t, denoted as Vt and one at time t � s,
denoted as Vt�s, where s > 0 is a parameter representing a window size for estimating
k.

Now, we can estimate k at every time t as follows:

k̂t =
1

s
(Vt � Vt�s) , (5.12)

where Vt is a moving average estimator at time t. For example, Vt could be the expo-
nential decay estimator V↵IPS

t (⇡w).
Tracking the difference between two averages at different points in time has pre-

viously been used as a change-point detection mechanism for contextual bandits. For
example, the windowed mean-shift algorithm uses a very similar method to detect
when an abrupt change occurs [184]. Our heuristic is different in the fact that it does
not detect an abrupt change, but instead is measuring how fast the true value of the
policy is moving up and down.

5.4 Experimental Setup

In this section we describe our experimental setup. The goal of our experiments is to
answer the following research question:

RQ4 How can counterfactual approaches be adapted to deal with non-
stationary environments?

To answer the above research question we propose the following sub-questions:

RQ4.1 How well do the proposed estimators perform in a non-stationary environ-
ment?

RQ4.2 How well do the estimators function when Assumption 5.3.1 is violated? E.g.,
when the environment changes abruptly?

RQ4.3 Can the proposed estimators be applied to stationary environments?

RQ4.4 How do the estimators behave under different parameters?

To answer these questions we consider a simulated non-stationary contextual bandit
setup as described in [180]. Note that although our setup is the same as in [180], we are
solving a different problem: particularly, we perform off-policy evaluation whereas Wu
et al. [180] perform online learning.
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5.4.1 Experimental methodology
We evaluate our proposed off-policy estimators in the context of recommendation,
where a policy recommends an item to a user. We use the non-stationary contex-
tual bandit setup of Wu et al. [180], which, in turn, builds on the experimental setup
of Cesa-Bianchi et al. [25]. In this experimental setup, we use two datasets made
available as part of the HetRec2011 workshop [22, 35, 96] and convert them into a
contextual bandit problem: LastFM and Delicious. For the LastFM dataset [96], we
consider a random artist that the user has listened to as positive feedback and an artist
that the user has not listened to as negative feedback. For the Delicious dataset [35],
we consider a website that the user has bookmarked as positive feedback and websites
that the user has not bookmarked as negative feedback. For each user we consider a
random positive item and 24 random negative items as the set of candidate actions.
Correspondingly, a reward of 1 is given if a policy chooses the positive item and 0
otherwise. Each item is described by a TF-IDF feature vector comprised of the item’s
tags, e.g., “metal”, “electronic”, “rock”, etc. in the case of music recommendation
(LastFM), and “social”, “games”, “tech”, etc. in the case of bookmark recommenda-
tion (Delicious). This feature vector is reduced to 25 dimensions via PCA, as described
in [25].

To introduce non-stationarity we follow the setup of Wu et al. [180]: We cluster
users into 10 user groups (or super-users) via spectral clustering based on the social
network graph structure. Users who are close in the social network graph are hypothe-
sized to have similar preferences.

Then, a single hybrid user is created from the 10 super-users by stacking the prefer-
ences of the 10 user groups chronologically. This hybrid user is non-stationary because
its preferences change when it moves from one super-user to the next. In [180], the
hybrid user switches abruptly between the 10 super-users at certain points in time. We
experiment with the existing abrupt case of [180] and introduce a setup where a mixture
of the 10 super-users slowly changes over time as observed in real-world recommender
systems [112, 115]. Below we describe both setups in detail.

The hybrid user can be represented by a mixture with 10 components which add
up to 1. For example:

[0, 1, 0, 0, . . . , 0].

To simulate a smooth non-stationary setup, we introduce a transition period from time
t1 to t2. In this transition period we change two components, linearly reducing one
component while linearly increasing the other. For example, changing from the second
to the third super-user would happen as follows:

t1 : [0, 1, 0, 0, . . . , 0]
t1 + 1 : [0, 0.9, 0.1, 0, . . . , 0]
t1 + 2 : [0, 0.8, 0.2, 0, . . . , 0]
...
t2 : [0, 0, 1, 0, . . . , 0].

This setup is in line with Assumption 5.3.1, which states that the environment changes
only a little bit at a time and not abruptly.
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In the abrupt setup, one component is set to 1 and the other components are set
to 0. An abrupt change happens by changing which component is set to 1. This is
equivalent to the setup in [180] where the hybrid user switches abruptly between the
10 super-users.

Using the non-stationary setups described in this section, we can now deploy a
logging policy that collects bandit feedback and evaluate a set of candidate policies
using the proposed off-policy estimators. The choice of a logging policy and candidate
policies are described next.

5.4.2 Logging policy

As described in Section 5.3.1, the deployed logging policy ⇡0 logs the data on which
we evaluate our candidate policies. The logging policy was trained via LinUCB [101],
which is a state-of-the-art contextual bandit method, across all super-users and is ex-
pected to function well on average. We freeze the policy obtained with LinUCB and
use it as our logging policy.

To ensure a logging policy that explores, we make the logging policy stochastic
and give it full support (that is, every action has a non-zero probability). This is ac-
complished by using ✏-greedy exploration (with ✏ > 0) [155]; ✏-greedy exploration
selects an action uniformly at random with probability ✏ and the best action (according
to the logging policy) with probability (1 � ✏). The ✏ parameter allows us to trade off
the exploration aggressiveness and the performance of the logging policy.

On the one hand, we want a logging policy that explores aggressively, so as to
obtain as much information as possible in the logged feedback. On the other hand, we
want a logging policy that performs well, as it is the only component that is exposed
to users of the system and we would not want to hurt the user experience. We use
✏ = 0.2 in our experiments, resulting in a policy that exploits 80% of the time and
explores 20% of the time. Exploration is necessary for off-policy evaluation and ✏ =
0.2 strikes a decent balance where the logging policy is expected to still function well.
We definitely want to avoid ✏ = 0 because it would result in a deterministic policy
which is problematic for off-policy evaluation and we want to avoid ✏ = 1 because it
is unrealistic to expect a purely random policy to be deployed. In practice one would
want to deploy a policy that mostly performs the best actions but performs a little bit
of exploration, thus ✏ tends to be closer to 0 than 1.

5.4.3 Candidate policies

To perform off-policy evaluation we need a set of candidate policies. These are poli-
cies whose performance we wish to estimate. In our experiments, candidate policies
are trained via LinUCB on each of the 10 super-users, thus, resulting in 10 candidate
policies. Each of the 10 candidate policies is expected to work well when the hybrid
user switches to the super-user the candidate policy was trained on, but is expected to
underperform at any other point in time.
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Table 5.1: The best parameters (in terms of minimizing MSE) for each estimator after
a grid search.

Estimator LastFM Delicious

V⌧ IPS
⌧ = 10, 000 ⌧ = 50, 000

V⌧ IPS (adaptive) ⌧ = 10, 000
� = 0.00005
s = 50, 000

⌧ = 50, 000
� = 0.00001
s = 30, 000

V↵IPS
↵ = 0.9999 ↵ = 0.99995

V↵IPS (adaptive) ↵ = 0.99995
� = 0.00005
s = 50, 000

↵ = 0.99995
� = 0.00005
s = 100, 000

5.4.4 Ground-truth and metrics

To evaluate how well an estimator predicts a policy’s performance we require a ground-
truth, i.e., the true performance of a policy. The ground-truth can obtained by deploy-
ing the policy and measuring how well it actually performs [41]. According to our task
definition, this cannot be done in practice as we have only one deployed logging policy,
which does not change. However, in our experimental setup we have full control over
the environment and so can simulate the deployment of any candidate policy and mea-
sure its true performance. This is done by, at any point in time t, running the candidate
policy for 20,000 contextual bandit interactions (observing a context, playing an action
and obtaining a reward) and then averaging the rewards.

To evaluate estimators, we measure the Mean Squared Error (MSE) between the
estimated policy performance, given by the estimators, and the ground-truth, obtained
as described above. The reported MSE values are averaged across the 10 candidate
policies described in the previous section. Lower values of MSE correspond to better
performance. To measure statistical significance, we run each experiment 20 times and
compare the outcomes of the considered off-policy estimators using a paired two-tailed
t-test.

5.4.5 Hyperparameters

Some of the estimators require setting a parameter. For example, V⌧ IPS and V↵IPS re-
quire a window size ⌧ and a decay rate ↵, respectively. The adaptive variants require
us to set �, which trades off variance and bias, and s, which is the Lipschitz estima-
tion window. We found parameters that minimize MSE via a grid search. The final
parameters are displayed in Table 5.1.2

2We are able to tune these parameters because we have access to the ground truth due to full experimental
control. In practical deployment settings, A/B testing may be required to find good parameters.
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Table 5.2: Mean Squared Error (⇥10�3) on the LastFM dataset. Lower is better. We
use O and M to denote statistically significantly (p < 0.01) lower and higher MSE
respectively compared to VIPS. For the adaptive estimators we use H and N to denote
statistically significantly (p < 0.01) lower and higher MSE compared to their non-
adaptive counterparts.

Estimator Smooth Abrupt Stationary

VIPS 6.029 7.787 1.183
V⌧ IPS 1.709 O 3.041 O 1.657 M

V⌧ IPS (adaptive) 1.565 OH 2.881 OH 1.407 MH

V↵IPS 1.541 O 2.981 O 1.408 M

V↵IPS (adaptive) 1.546 O 3.067 ON 1.278 MH

Table 5.3: Mean Squared Error (⇥10�3) on the Delicious dataset. Lower is better.
Statistical significance is denoted in the same way as in Table 5.2.

Estimator Smooth Abrupt Stationary

VIPS 0.312 0.469 0.022
V⌧ IPS 0.111 O 0.268 O 0.058 M

V⌧ IPS (adaptive) 0.116 ON 0.260 OH 0.045 MH

V↵IPS 0.099 O 0.218 O 0.070 M

V↵IPS (adaptive) 0.104 ON 0.230 ON 0.047 MH

5.5 Results
In this section, we present the results of our empirical evaluation. We separate our
results in four sections, each answering one of our research questions. The overall
results of the proposed methods are presented in Tables 5.2 and 5.3. The figures for the
sliding window estimator V⌧ IPS and exponential decay estimator V↵IPS are very similar
to each other, so we omit the figures for V⌧ IPS and only include those for V↵IPS.

5.5.1 Smooth non-stationarity
First, we look at RQ4.1:

How well do the proposed estimators perform in a non-stationary environ-
ment?

The first column of Tables 5.2 and 5.3 shows that the proposed V⌧ IPS and V↵IPS off-
policy estimators have significantly lower MSE than the standard VIPS estimator, being
three times more effective in estimating the actual performance of a recommendation
policy on both the LastFM and Delicious datasets. Note that the rewards on the LastFM
dataset are higher than those on the Delicious dataset, which is in line with the results
of [180] and can be attributed to the fact that it is easier to recommend correct artists
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Figure 5.1: Exponential decay estimators in a smooth (top row), abrupt (middle row)
and stationary (bottom row) setting on the LastFM dataset. The shaded areas indicate
the standard deviation across 20 runs.

(and, thus, accumulate higher reward) than to recommend correct websites, because
the number of artists is smaller than the number of websites.

To better understand the behavior of the proposed off-policy estimators over time,
we plot the actual and estimated rewards of one of the 10 candidate policies in Fig-
ures 5.1 and 5.2 (the choice of a policy is not important, we use policy 6 in all figures).
We only present figures for the exponential decay estimator V↵IPS here; the figures for
the sliding window estimator V⌧ IPS are similar.

The top plots in Figures 5.1 and 5.2 show that the V↵IPS estimator closely follows
the actual performance of a recommendation policy on both the LastFM and Delicious
datasets. The standard VIPS estimator, instead, fails to approximate the policy’s actual
performance and accumulates a large amount of bias.

The adaptive variants of our proposed off-policy estimators perform similarly to
their non-adaptive counterparts, outperforming or underperforming the latter in a few
cases (see Tables 5.2 and 5.3). This means that in the smooth non-stationary setup
we can use either type of estimator. Below we will show that in other setups adaptive
estimators should be preferred over non-adaptive ones.
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Figure 5.2: Exponential decay estimators in a smooth (top row), abrupt (middle row)
and stationary (bottom row) setting on the Delicious dataset. The shaded areas indicate
the standard deviation across 20 runs.

5.5.2 Abrupt non-stationarity
Our work builds on the assumption of a smooth non-stationary environment, one where
the world changes slowly over time. We wish to investigate how well our estimators
work when this assumption is violated, i.e., when the world behaves in an abrupt non-
stationary way. This leads to RQ4.2:

How well do the estimators function when Assumption 5.3.1 is violated?
E.g., when the environment changes abruptly?

The second column of Tables 5.2 and 5.3 indicates that in the abrupt non-stationary
setup the MSE of V⌧ IPS and V↵IPS is about two times lower than the MSE of VIPS

(all differences are statistically significant). This shows that our proposed estimators
approximate the actual performance of a policy well even when the theoretical upper
bounds on the estimators’ bias are no longer valid.

The second row of Figures 5.1 and 5.2 further confirms this by showing that the
V↵IPS estimator closely follows the true reward of a policy even if the changes in the
environment are abrupt. The standard VIPS estimator still cannot follow the true reward
in this setup.
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5.5.3 Stationary environment
In this section we answer RQ4.3:

Can the proposed estimators be applied to stationary environments?

In the stationary environment, the regular VIPS estimator is guaranteed to perform the
best: in this setup it is unbiased and has variance that goes to zero when t grows [40].
Our proposed estimators are also unbiased in the stationary environment, but their
variance does not decrease over time. Thus, we expect the VIPS estimator to outperform
V⌧ IPS and V↵IPS in the stationary setup.

The above intuitions are confirmed by the results in the last column of Tables 5.2
and 5.3. The VIPS estimator indeed has the lowest MSE compared to all other estima-
tors. Interestingly, V⌧ IPS and V↵IPS are also able to approximate the true reward of a
policy relatively well. Particularly, the MSE of V⌧ IPS and V↵IPS on the LastFM dataset
is at most 0.4 times higher than the MSE of VIPS (recall, that VIPS has 2–3 times higher
MSE in the non-stationary setups). On the Delicious dataset the differences in MSE
are larger, but the absolute MSE values are an order of magnitude smaller than in the
non-stationary setups. The adaptive variants of our estimators are significantly better
than the non-adaptive ones in the stationary environment, having much lower MSE:
the adaptive variants are able to detect the stationary situation, adapt their parameters
appropriately and reduce their overall variance.

Thus, we can conclude that although designed for non-stationary environments,
the V⌧ IPS and V↵IPS estimators, and especially their adaptive variants, can be applied
in stationary environments. This is further confirmed by the bottom plots in Figures 5.1
and 5.2, where all estimators closely follow the true (stationary) reward.

5.5.4 Impact of parameters
Finally, we look at RQ4.4:

How do the estimators behave under different parameters?

To answer this question, we have investigated different parameter settings for ⌧ , ↵ and
�. In Figure 5.3, we plot the true and estimated rewards for different values of ↵ for the
V↵IPS estimator on the LastFM dataset. The observations for ⌧ and � are very similar,
so we omit these results to save space. From Figure 5.3, we see that setting ↵ is a trade-
off in bias and variance. This is in line with our theoretical results (Section 5.3), which
state that as ↵ approaches 1, we expect lower variance but higher bias, and vice versa
for ↵ ! 0. The same results hold for the window size ⌧ (a higher value causes lower
variance and higher bias) and the � parameter, which, by design, trades off variance
and bias.

5.6 Conclusion
In this chapter we studied non-stationary off-policy evaluation. We showed that in non-
stationary environments the traditional IPS off-policy estimator fails to approximate the
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Figure 5.3: Impact of the ↵ parameter on the exponential decay estimator V↵IPS in a
smooth non-stationary setting on the LastFM dataset.

true performance of a recommendation policy and suffers from a large bias that grows
over time. To address the problem of non-stationary off-policy evaluation, we proposed
two estimators that closely follow the changes in the true performance of a policy: one
using a sliding window average and one using an exponential decay average. Our
analysis of the proposed estimators shows that their bias does not grow over time and
can be bounded. The bias of our estimators can be controlled by the window size ⌧

and the decay rate ↵. Using the results of our analysis, we proposed a principled way
to adapt ⌧ and ↵ automatically according to the changing environment.

We evaluated the proposed estimators in non-stationary recommendation environ-
ments using the LastFM and Delicious data sets. The experimental results show that
our estimators approximate the policy’s actual performance well, having MSE that is
2–3 times lower than that of the standard IPS estimator. We showed that these re-
sults hold not only in smooth non-stationary environments, where we can derive upper
bounds on the bias of our estimators, but also in the abrupt non-stationary setup, where
the theory does not hold. Finally, our results suggest that the proposed off-policy es-
timators, although designed for non-stationary environments, can be applied in the
stationary setup with adaptive variants of the proposed estimators being particularly
effective. These findings open up the way for off-policy evaluation to be applied to
practical non-stationary real-world scenarios.

An interesting direction for future work is to investigate the use of more advanced
off-policy estimators such as Doubly Robust [40] or Switch [176] in non-stationary
environments. We hypothesize that such estimators will also suffer from a large bias,
while the moving average estimators will be able to solve this issue.

All chapters so far have considered clicks on recommended items or ranked lists.
In Chapter 6 we will go beyond traditional search logs and investigate how activity logs
can be used for learning semantic matching models for ranking.
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6
Using Activity Logs for Learning to

Rank

6.1 Introduction

Cloud storage platforms, such as Dropbox or Google Drive, are widely used as a means
for storing, editing and sharing personal and organizational documents. They are char-
acterized by storing documents in the cloud and facilitating easy assess across different
devices. Unlike traditional web-based search, cloud storage search is challenging be-
cause it involves searching through private collections of documents. Due to the private
nature of the documents, it is impossible to gather relevance judgments from profes-
sional annotators, instead necessitating the use of click logs [173]. As such, existing
work has extensively explored the use of click logs [76, 136, 173, 174]. Most of this
existing work focuses on extracting features and labels from large-scale search logs
and using those to train a ranking model.

Semantic matching models are effective at matching queries to documents in situ-
ations where traditional lexical matching features fail due to the vocabulary gap [169].
Recent work on semantic matching models use neural networks to improve ranking
quality [52]. However, training these models requires large amounts of labeled data.
Consequently, semantic matching models may fail to generalize when sufficiently large
search logs are not available. In this chapter we investigate non-search user interaction
data with which we can train semantic matching models: user activity logs.

Our goal is to improve the search ranking quality for cloud storage platforms by
utilizing user activity logs, which record user’s interactions with the cloud storage plat-
form. Examples of such interactions include opening, editing or sharing a document. In
contrast to search logs, activity logs contain a richer set of interactions beyond clicks,
span more than just the search component, and are available in much more abundant
quantity. As demonstrated in several user studies on personal search [42, 45], activity-
based signals such as the recency and the context in which the documents are accessed
play an important role in determining the relevance of the document to the tasks that
the user may be working on.

Despite the fact that activity logs are more abundant than search logs, using them

This chapter is based on [73] which is currently under review.
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to train semantic matching models is not trivial. In contrast to search logs, activity
logs are not necessarily tailored towards ranking and activity-trained semantic match-
ing models may not work well for improving search quality. To overcome this, we
propose to use co-access, a signal that measures whether two documents are accessed
in sequence and within a short time span as a proxy for relevance; we then use this
information as a weakly supervised label for training text embeddings and semantic
similarity models.

The goal in this chapter is to answer the following research question:

RQ5 Can activity-based user interaction signals improve ranking quality?

Our experiments using large-scale Google Drive search and activity data show that
semantic matching models trained with co-access can improve ranking performance
significantly compared to lexical matching and semantic matching baselines that are
not trained on activity logs. Furthermore, we show that incorporating activity-trained
semantic matching models with strong hand-crafted features further improves ranking
performance, especially in cases where hand-crafted features alone do not provide suf-
ficient signals. Finally, our results show that, by leveraging activity logs, practitioners
of cloud storage systems can train effective ranking models without requiring a large
amount of search logs. This shows that activity logs can significantly help when search
logs are not available in abundant quantity.

To the best of our knowledge, this is the first work to examine the benefits of
leveraging non-search related document usage activity for cloud storage search in a
large-scale production system. We demonstrate that such activity can be used to not
only provide features to ranking models, but also to derive semantic similarity models
that improve lexical text matching. As such, this work can shed light on employing
user activity in scenarios where direct collection of search-specific interactions (e.g.,
query and click logs) may be expensive or infeasible, or in cloud storage services that
have no existing search functionality.

6.2 Related Work
Cloud storage is widely used by individuals and organizations as a means of storing,
organizing and sharing documents. Cloud storage faces several research challenges, for
example: scaling to large traffic volume [38], anonymizing data [160], and optimizing
search [16]. Cloud storage search is related to email search [16, 23], enterprise domain
search [168], desktop search [91], and other personal search problems [42, 45] in that
they typically involve searching through private corpora; however, it is also unique in
that rich non-search user activities, such as opening, editing and sharing documents,
can be logged at large scale in cloud storage systems, which inspires our work.

Learning to Rank (LTR) is a widely used approach to optimize search engine qual-
ity. Recent research on LTR focuses on learning from user interactions [76, 106,
173]. State-of-the-art approaches for optimizing search rely on combining large sets
of high-quality hand-crafted features into a well performing model. Tree-based meth-
ods, specifically LambdaMart [21, 179], excel at combining high-quality features into
a single strong performing model. LambdaMart has enjoyed considerable success in
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the past and is still considered state-of-the-art [175]. In particular, LambdaMart has
repeatedly outperformed all other models on public benchmarks, where the number
of training examples is limited [28, 90], even with the advancement of neural ranking
methods [19]. Therefore, we use it as the ranking model of choice in this chapter.

More recently, advances in neural networks enabled significant progress on seman-
tic matching models for information retrieval (see [111] for a recent comprehensive
survey on this topic). Most generally, these semantic matching models use either search
logs [52, 63, 151, 151, 186] or weak supervision [31, 34] to learn text embeddings that
best capture query-document similarities. Subsequent work introduced multiple ad-
vanced variations on these semantic matching models include (among many others)
convolutional networks [33] and kernel pooling [182]. However, note that these ad-
vanced method cannot be readily applied to our heavily reduced dataset, which, due to
privacy constraints, does not preserve word ordering (see Section 6.3.3).

In contrast to prior work on semantic matching models, text embeddings based
on user activity do not require learning query-document similarities. This is a highly
desirable property for cloud storage systems where either no existing search solutions
exist or search logs are sparse due to low search volume and / or private nature of
search intents. For instance, a study by Ai et al. [8] shows that email search queries
are much shorter than those in web search, and are often based on a particular email
metadata (e.g., sender or received / sent date). Such queries are less likely to generate
robust generalizable semantic matching models.

User activity has been extensively used for user modeling [12, 114], predicting
future user behavior [36, 161], or document retrieval [42, 45] to name just a few. How-
ever, to the best of our knowledge, there is no prior work on learning semantic matching
models from activity logs at large scale, especially in the context of cloud storage.

6.3 Problem Setting

6.3.1 Cloud storage search
Cloud storage search can be formulated as a Learning to Rank (LTR) problem. More
formally, we wish to learn a ranking function f(q, d), which, for given query q and
document d, produces a score such that relevant documents are assigned high scores
and less relevant documents are assigned low scores. The learned function can then be
applied to a query q and a collection of candidate documents D = {d1, d2, . . . , dn} to
rank the documents by relevance, placing highly relevant documents at the top.

6.3.2 Solution overview
In this chapter we focus on improving the top-5 ranking of the search component of
Google Drive (see Figure 6.1). We provide an overview of our solution in Figure 6.2.
More specifically, we train a LambdaMart [179] model on a click log spanning several
weeks. We chose to use a Gradient Boosted Decision Tree (GBDT) approach as these
methods have demonstrated very strong ranking performance [179], are computation-
ally easy to scale, are robust against outliers and can naturally handle input of varying
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Figure 6.1: An example of Google Drive’s top-5 ranking list.

Query q Document d
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sim(q, d)

Hand-crafted
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Figure 6.2: An overview of the proposed solution for cloud storage search. On the left
we compute hand-crafted features for given query q and document d. On the right we
apply a deep semantic matching model to produce both an encoding (the last hidden
layer) and a similarity score sim(q, d). Both the hand-crafted and learned features are
combined in an LTR model.
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distributions [44]. We incorporate the output of activity-trained semantic similarity
models as features for training the GBDT.

6.3.3 Privacy
Google Drive contains private document corpora and requires special treatment to
protect user privacy. For this reason, the data we use for the experiments are k-
anonymized [160] and are inaccessible to individual engineers. Moreover, for our
proposed methods, we limit the use of text content to the document titles, not the full
content. The titles are also k-anonymized, i.e., only frequent words used by sufficiently
many users in the corpus are retained with no word sequence information preserved.
Note that this limits our choices of text embedding models to word-level embeddings.
Some of our baseline models / features are based on document full content, but these
models / features are computed on the fly – document content is never materialized for
model training.

6.4 Using Activity Logs for Semantic Matching
Directly applying existing semantic matching models on query logs for cloud storage
search is not trivial because click logs for cloud storage search may not be available
in sufficient quantity to learn effective semantic matching models, and training them
with too few data points may lead to poor generalization. To overcome this limitation
we propose to use a different, more abundant, source of data for training semantic
matching models: activity logs. Our goal is to learn semantic matching models from
activity logs and apply them for ranking.

6.4.1 Semantic matching models
A Semantic Matching Model (SMM) learns to compute the semantic similarity of two
pieces of text (typically a query and document for search problems) [52, 63]. The
model takes a text pair (t, t0) as input and produces sim(t, t0), a score indicating the
similarity between the two texts, as output. This formulation is quite general as the text
pair (t, t0) could be any two pieces of short text. For example, in ranking we would use
a query q and document d to predict the similarity between the query and document:
sim(q, d). Similarly, if we were interested in modeling document similarity we could
use two documents (d, d

0) as input and predict their similarity: sim(d, d
0). As we will

see later, this general formulation is beneficial as we will train our semantic matching
models on document pairs but apply them on queries and documents when ranking.

To train semantic matching models we would need to obtain a dataset containing
textual pairs and their respective relevance labels. It is not possible to collect labeled
examples from professional annotators due to the privacy considerations when dealing
with cloud storage data. Even for cases where collecting labels from human annotators
is possible, conducting such an annotation process at large scale could be too expensive
and infeasible. Our proposed solution to this is to extract relevance labels automatically
from users’ activity logs.
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Figure 6.3: On the left is the Concatenation Semantic Matching Model (CONCAT) and
on the right is the Siamese Semantic Matching Model (SIAM). Dotted lines indicate
shared weights between components.

We emphasize that the specific architecture of the SMM is not the focus of this
chapter, nor do we claim that any specific architectures we use are novel. Instead we
are interested in understanding how one can learn semantic matching models from
activity data. We use two popular architectures, a concatenation semantic matching
model and a Siamese semantic matching model, described briefly below.

First, we describe the Concatenation Semantic Matching Model (CONCAT): This
model first computes an embedding for the texts t and t

0. Each character n-gram in the
text is mapped to an embedding, where only the most frequent n-grams are retained
to limit the vocabulary and make the problem computationally feasible. The character
n-grams for t and t

0 are then averaged to obtain emb(t) and emb(t0) respectively. The
representations are concatenated to obtain:

h0 = [emb(t), emb(t0)] .

Note that more advanced text encoders such as recurrent neural networks and trans-
formers are not applicable to our problem. This is because, as mentioned in Sec-
tion 6.3.3, to protect user privacy, we are only allowed to use k-anonymized words
with no sequence information for model training.

This joint representation is then passed through a series of dense feed-forward lay-
ers, where each layer hi is defined as:

hi = �(Wihi�1 + bi),

where � is an activation function such as ReLU [113] or tanh. Finally, the last layer
of this feed-forward neural network, hk, is reduced to a scalar value and mapped to a
probability via a sigmoid function:

sim(t, t0) = sigmoid(Wfinalhk + bfinal).
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Next, we describe the Siamese Semantic Matching Model (SIAM): This model
embeds the texts t and t

0 to their respective representations emb(t) and emb(t0). The
process of producing these embeddings is exactly the same as in the CONCAT. Next,
these representations are passed through a shared feed-forward neural network. More
formally:

h
t
0 = emb(t), h

t0
0 = emb(t0),

h
t
i = �(Wih

t
i�1 + bi), h

t0
i = �(Wih

t0
i�1 + bi).

Note that the weights Wi and bi at each layer are shared for both t and t
0. The output

vectors of the last layer, h
t
k and h

t0

k , are joined via dot product and then passed through
a sigmoid to obtain:

sim(t, t0) = sigmoid
⇣
h
t
k · h

t0

k

⌘
.

To apply the two SMMs for ranking, we feed the given query q and document d into
the models, and extract the following output and hidden states as features for a LTR
model: (a) the predicted semantic similarity, sim(q, d); (b) the last hidden layer of
CONCAT, hk, which provides a richer representation for the query-document pair; and
(c) the last hidden layers in the towers of SIAM, h

q
k and h

d
k, which encode q and d

respectively. This is also illustrated in Figure 6.2.

6.4.2 Weak supervision using co-access labels
In order to train semantic matching models we would like to obtain relevance labels
yt,t0 2 {0, 1} that indicate whether text t is semantically related to text t

0. We take a
weakly-supervised learning approach, and propose a co-access label, with the assump-
tion that it can serve as a proxy for relevance.

We say that two documents are co-accessed iff a user opens the two documents in
sequence and within a k-minute time window. We illustrate this concept in Figure 6.4
with k = 2 minutes. 1 While there are multiple alternative ways to design the co-access
label, we found that the method proposed here is conceptually simple, yet empirically
effective. The co-access label is motivated by the fact that users often open multiple re-
lated documents in a single session, yet it strives to reduce the number of false positive
labels by keeping a narrow time window and discarding non-consecutive co-accesses.

The following procedure is employed to collect training examples with co-access
labels: (1) We first sample segments of a user’s activity logs, which we call activity
segments. Each activity segment contains events from the same user in a consecutive
time window; (2) For each activity segment, we collect a set of documents the user
accessed, D = {di}

|D|
i=1. From the document set, we then collect all the unordered

pairs of documents in the document set, PD = {{d, d
0
} | d, d

0
2 D ^ d 6= d

0
}; and

(3) we extract co-access labels for all the document pairs, and the co-access label yd,d0

is defined as,

yd,d0 =

(
1, co_accesses(d, d

0) > 0

0, otherwise,
(6.1)

1During our initial investigations we found that co-accesses have a long tail distribution, with 70% of
co-accesses occurring within the two minute window. Therefore, we fix the co-access time window to two
minutes in the remainder of this chapter.
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d1 d1 d2 d1 d3 d4

time
30 sec 1 min 1 min 1 min 3 min

co-
access

{d1, d2}

co-
access

{d1, d2}

co-
access

{d1, d3}

no

co-
access

{d3, d4}

Figure 6.4: Co-access as a label for document similarity. Document pair {d1, d2} is
co-accessed twice, document pair {d1, d3} is co-accessed once, and document pair
{d3, d4} is not co-accessed since their co-access time is > 2 minutes.

where co_accesses(d, d
0) is the number of co-access events between d and d

0 in the
activity segment. To give an example, for the activity segment shown in Figure 6.4,
the collected document set is D = {d1, d2, d3, d4} and the extracted co-access labels
for all the document pairs are: yd1,d2 = yd1,d3 = 1, and, yd1,d4 = yd2,d3 = yd2,d4 =
yd3,d4 = 0. This procedure yields a training dataset

D =

(
(d, d

0
, yd,d0) | {d, d

0
} 2

N[

i=1

P
(i)
D

)

from a large number of activity segments, where N is the number of the segments. We
then train a semantic matching model by minimizing the weighted cross-entropy loss
defined as follows,

�

X

(d,d0,yd,d0 )2D

yd,d0 log(sim(d, d
0)) + �(1� yd,d0) log(1� sim(d, d

0)), (6.2)

in which we use document titles as the text representations for each document when
scoring sim(d, d

0), and use � 2 (0, 1] as a hyper parameter to down-weight the loss for
negative document pairs. We use this weighting to address data imbalance problems
in the dataset – in practice only a small percentage of document pairs are co-accessed
and the majority of the document pairs are not co-accessed.

6.5 Experimental Setup

6.5.1 Data collection
We collect two datasets from the search and activity logs of Google Drive: (1) Co-
access dataset Dc used for building our Semantic Matching Models, and (2) Search
dataset Ds used mainly for building learning to rank models. We describe them in
more detail below.

We collect the co-access dataset Dc from activity logs as follows: First, we ran-
domly sample different sets of users for training, validation and testing; Then, for each

104



6.5. Experimental Setup

Table 6.1: Statistics for co-access dataset Dc. The train , vali , test superscript indi-
cates the dataset is for training, validation or testing respectively.

Data split #segments #pairs % co-accessed

D
train
c 44.3M 448M 10.5%

D
vali
c 20.6K 205K 10.3%

D
test
c 20.6K 205K 10.2%

user, we sample 10 segments of the user’s event stream from the activity logs. Each
segment contains activity events of 3 consecutive weeks. We sample the start times-
tamps of the activity segments uniformly within a 2-week time window. We filter out
segments that do not contain sufficient activity events, i.e., less than 75 events. Finally,
from each activity segment, we collect up to n most recently accessed documents from
the first two weeks of the segment. For each collected document pair, we extract docu-
ment titles and co-access labels from the last week of the segment (i.e., whether the two
documents are co-accessed in that week). The size of the document pair set could be
very large – up to n · (n� 1)/2 pairs. To improve efficiency as well as to reduce noise,
we filter the document pairs by requiring them to be co-accessed in the first two weeks
of the segment. This reduces the size of document pair set dramatically to around 10
per segment on average.

Table 6.1 shows some statistics for the collected co-access dataset for training, val-
idation and testing. The table reports the number of activity segments and document
pairs. Note that the training set D

train
c is fairly large. This is because we can easily

extract the co-access data from a large set of eligible Google Drive users and sample
multiple activity segments from their activity logs. The table also reports the percent-
ages of co-accessed document pairs (postive rate), which are quite consistent across
the training, validation and testing sets. Note that the positive rates are only around
10%. To address this data imbalance issue, we down-weight the negative document
pairs when training our models as described in Section 6.4.2. Moreover, the dataset is
k-anonymized to protect user privacy as described in Section 6.3.3.

The search dataset Ds comprises a set of queries and clicks collected from the
Google Drive search logs over a period of several weeks. Here we select dates that
are after the dates of the co-access dataset Dc to prevent any potential data peeking
issues when training our LTR models on Ds. We then extract all the features (see Sec-
tion 6.5.4) and search clicks for the sampled queries from the search logs and activity
logs. Each query is associated with about 5 documents on average, which is a direct
result of the search user interface. We discard all the queries without clicks. We then
split the data into training, validation and testing set by dates, using the earlier dates
for training, later dates for validation and the latest dates for testing. This data split
prevents accidental leaking of future test queries and documents into the training set.
In total, we collected 31,421 queries for training, 25,412 queries for validation and
24,595 queries for testing.
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6.5.2 Evaluation

We evaluate the performance of each ranking model using Mean Reciprocal Rank
(MRR) and Negative Average Click Position (NACP), which are defined as,

MRR =
1

|Q|

X

q2Q

1

rankq
, NACP = �

1

|Q|

X

q2Q
rankq,

where Q = {q} is the evaluation query set, rankq is the rank of the first clicked
document for query q. To address click position bias, we use propensity-weighted
MRR and NACP which tend to be more consistent with online experiment results [103,
173].

We tune each ranking model on the search validation dataset, and report evaluation
results on the test dataset. We performed statistical significance tests using paired t-
test with 0.01 as the p-value threshold. In all tables we denote a statistically significant
increase and decrease compared to the baseline with M and O respectively.

6.5.3 Baselines

We compare the following semantic matching baseline models with ours. Note that
more advanced models like recurrent neural networks and transformers are not ap-
plicable to our problem. As mentioned in Section 6.3.3, to protect user privacy, our
dataset only contains k-anonymized words and character n-grams extracted from these
words retain no sequence information for model training.

W2V We compare our work to Word2Vec (W2V) [110] since both methods train text
embeddings without needing access to search logs. We use a straightforward
approach to apply Word2Vec to ranking: we compute the Word2Vec embeddings
for query q and document d, producing emb(q) and emb(d). We can then take
the dot product of these embeddings to produce a similarity score:

sim(q, d) = emb(q) · emb(d).

We train the embeddings using the Word2Vec skip-gram approach on the 107
million document titles extracted from the search dataset Ds. We retain the
500,000 most frequent n-grams as the vocabulary and choose 90 as the dimen-
sionality of these embeddings. We use the full document title as the context,
since the text does not retain word sequence information.

DSSM The Deep Structured Semantic Model (DSSM) [63] is a commonly used se-
mantic matching model for ranking and we include it in our comparison. The
DSSM architecture is implemented using TF-Ranking [127], and is trained on
the search dataset Ds. We choose the softmax ranking loss function as our train-
ing objective [127]. We use a dimension size of 159 for the character n-gram
embeddings and ReLU as the activation function. The hidden layer dimensions,
learning rate, dropout rate and vocabulary size are tuned via grid search.
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6.5.4 Features

We compare different sets of features combined in LambdaMART. We list all the stud-
ied features in Table 6.2 and describe them in groups below.

Table 6.2: The full set of features used to train LTR models.
Feature Description

Lexical text matching features (TM)

Overlap # of query terms in the document title.
Normalized Same as Overlap, but after lexical normalization.
BM25V A variant of BM25 [142]

Activity-based features (ACT)

Last Access Time since last access.
Last Edit Time since last edit.
Doc Age Time since the document was created.

Activity-based semantic matching models (Section 6.4)
CONCATsim Output of CONCAT: sim(q, d).
CONCATrep State of last hidden layer of CONCAT: hk.
SIAMsim Output of SIAM: sim(q, d).
SIAMrep State of last hidden layers of SIAM: h

q
k, h

d
k.

Other semantic matching models (Section 6.5.3)
W2Vsim Output of W2V: sim(q, d).
W2Vrep Embeddings of q and d: emb(q), emb(d).
DSSMsim Output of DSSM: sim(q, d).
DSSMrep State of last hidden layer of DSSM: hk.

Lexical text matching features (TM) These features perform various forms of lexi-
cal matching of the query and document.

Activity-based features (ACT) We use three simple but effective activity-based fea-
tures, that characterize document recency, namely Last Access, Last Edit, and,
Doc Age.

Semantic matching features We extract the similarity scores as well as the internal
representations from our proposed and baseline Semantic Matching Models. The
similarity scores and internal representations are denoted with subscript sim and
rep respectively in Table 6.2. Using both sim and rep is denoted using subscript
both in our experiment result tables, e.g., CONCATboth includes both CONCATsim
and CONCATrep. We use a dimension size of 159 for char n-gram embeddings.
We cap the vocabulary size at 500k by mapping less frequent char n-gram to
out-of-vocabulary embeddings. We tune the hidden layer size, learning rate and
activation functions.
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Table 6.3: Ranking performance of Semantic Matching Models and activity-based fea-
tures. The table reports relative performance with respect to W2Vsim baseline.

Model MRR NACP

W2Vsim +0.00% +0.00%

DSSMsim +1.64%M +2.92%M

SIAMsim +6.40%M +6.34%M

CONCATsim -5.56%O -3.28%O

Last Access -1.10% +1.84%
Doc Age +2.01%M +2.32%M

Last Edit +2.08%M +2.45%M

BM25V +12.74%M +11.76%M

TM +15.90%M +14.77%M

6.6 Results

6.6.1 Comparing individual models

In this section, we study the ranking performance of the Semantic Matching Models
when used independently. Our results are displayed in Table 6.3. TM is a fine-tuned
combination of all the lexical text matching features in Table 6.2 used by the production
system. All of these models, with the exception of DSSMsim and TM, do not require
any search training data.

First, we observe that the activity-based features perform reasonably well, reaching
levels similar to Semantic Matching Models such as W2V and in the cases of Doc Age
and Last Edit, performing even better. These results seem surprising as features like
Doc Age and Last Edit are comparatively simple features. However, this can be ex-
plained by the fact that our task is to re-rank the top 5 results in Google Drive. Never-
theless, these findings reinforce our belief that activity-based signals can be useful for
search tasks.

Second, we see that supervised embeddings DSSM and weakly supervised embed-
dings SIAM are more effective than the self-supervised W2V approach. The CONCAT
model underperforms significantly, especially when compared to the very similar SIAM
model. We hypothesize that the SIAM architecture has an inductive bias by forcing the
representations of both query and document to be directly comparable via dot product.
Conversely, for the CONCAT model, the concatenation of the embeddings allows the
model to learn complex feature interactions between the texts t and t

0, which may learn
useful patterns for co-access, but likely does not generalize well to generic semantic
similarity tasks and also not well to ranking.

To further analyze this behavior we investigate to what extent the different seman-
tic matching models are correlated with the lexical text matching and activity-based
features. In Table 6.4 we present the Pearson correlation between each model’s sim-
ilarity score output and those features. The findings here suggest that W2V has the
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Table 6.4: Pearson Correlation between semantic matching scores and both lexical
matching and activity-based features.

Model BM25V Normalized DocAge LastEdit

W2Vsim 0.3014 0.3798 0.0168 0.0104
SIAMsim 0.2347 0.3044 -0.1256 -0.1183
CONCATsim 0.0799 0.1126 -0.1478 -0.1305
DSSMsim 0.1784 0.2401 -0.0792 -0.0774

Table 6.5: Ranking performance (relative to the TM baseline) of Semantic Matching
Models when combined with lexical text matching features.

Model MRR NACP

TM +0.00% +0.00%

TM + W2Vboth +1.46%M +1.52%M

TM + DSSMboth +1.59%M +2.08%M

TM + CONCATboth +2.67%M +3.53%M

TM + SIAMboth +2.88%M +3.37%M

strongest correlation with lexical matching features but does not correlate at all with
activity-based features, which is expected as the W2V model is trained on unlabeled
text corpora not on any user logs. Furthermore, we see that CONCAT correlates weakly
with lexical matching but much more strongly with activity-based features, compared
with other semantic matching models. This indicates that the CONCAT architecture
could capture activity-based patterns more than the other Semantic Matching Models.
Finally, it seems that SIAM correlates strongly with both lexical matching features and
activity-based features (when compared to other models), which explains its strong
performance in Table 6.3.

Finally, it is clear that none of the semantic similarity models beat the simple ad-
hoc retrieval baselines BM25V and TM. Because of the strong performance of the lex-
ical matching features, we next investigate whether Semantic Matching Models could
improve ranking performance on top of TM in the next section.

6.6.2 Combined with lexical matching features
We incorporate the semantic matching models with the text matching features in a
LambdaMart ranker. The results are displayed in Table 6.5. For all Semantic Matching
Models, we find that adding both the similarity score (sim) and the representation (rep)
as features performs the best. Therefore we only report results when using both sim
and rep features (denoted by subscript both) in the rest of this chapter.

In all cases, incorporating Semantic Matching Models together with lexical text
matching features improves the ranking performance. Moreover, we observe that our
weakly supervised activity-trained semantic models (CONCAT and SIAM) significantly
outperform (p-value < 0.01, t-test) both the unsupervised (W2V) and the supervised
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Table 6.6: Ranking performance of Semantic Matching Models (relative to the TM +
ACT baseline) when combined with lexical text matching features and activity-based
features.

Model MRR NACP

TM + ACT +0.00% +0.00%

TM + ACT + W2Vboth +0.15% +0.35%M

TM + ACT + DSSMboth -1.39%O -2.18%O

TM + ACT + CONCATboth +0.46%M +0.93%M

TM + ACT + SIAMboth +0.13% +0.29%

(DSSM) methods. We believe this could be explained by the fact that our Semantic
Matching Models could capture some activity-based patterns in addition to semantic
similarity, as we discussed in the correlation analysis (Table 6.4) of Section 6.6.2. Next,
we find there does not seem to be a discernible difference between the CONCAT and
SIAM architectures. This indicates that the difference in ranking performance between
CONCAT and SIAM that we observed in the previous section (see Table 6.3) is largely
overcome by incorporating text matching features in the model.

6.6.3 Combined with all hand-crafted features
In this section we explore what benefit the Semantic Matching Models have on top of
hand-crafted text matching and activity-based features. The main results are provided
in Table 6.6.

First, we find the improvement from Semantic Matching Models over TM + ACT
becomes marginal, except for our CONCAT model. CONCAT outperforms (p-value <
0.01) all the other baseline semantic matching models (W2V, DSSM), and is the only
model that provides a statistically significant improvement over TM + ACT on both
MRR and NACP, achieving nearly +1% improvement on NACP.

Our further analysis in Table 6.7 shows CONCAT is especially helpful for the hard
queries on which the activity-based features have less discriminative power. Specifi-
cally, we measure their discriminative power using the range of the Last Access feature
defined as follows,

range(Last Access) = max {Last Access}�min {Last Access} .

A lower range indicates the documents have similar activity-based features and thus
the features are less discriminative for ranking the documents. Table 6.7 reports the
improvement of CONCAT over TM + ACT for queries within different Last Access
range. We find CONCAT improves over the strong TM + ACT baseline by +1.16% and
+2.22% on MRR and NACP respectively, impacting more than 20% of the test queries.

Lastly, we find DSSM is not helpful when combined with TM and ACT in Ta-
ble 6.6. We suspect this could be caused by the limited amount of search training data,
thus we collect more search data (up to 23 million queries) to train DSSM, and com-
pare CONCAT, which is trained with activity data, against DSSM trained with varying
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Table 6.7: Relative performance improvements of CONCAT over TM+ACT for queries
of different range(Last Access). % of queries indicates what percentage of the queries
have a range within the specified threshold.

range (in days) % of queries MRR NACP

2 10.7% +1.55%M +2.93%M

8 20.7% +1.16%M +2.22%M

18 30.1% +0.97%M +1.89%M

53 50.1% +0.67%M +1.33%M

198 90.1% +0.48%M +1.94%M

+1 100.0% +0.46%M +0.93%M

Table 6.8: Relative performance of DSSM trained with different size of search training
data with respect to CONCAT. #Queries reports the number of queries used for training
the semantic matching models.

Model #Queries MRR NACP

TM + ACT + CONCATboth 0 +0.00% +0.00%
TM + ACT + DSSMboth 31K -1.84%O -3.15%O

TM + ACT + DSSMboth 63K -1.35%O -2.13%O

TM + ACT + DSSMboth 1M -0.03% -0.13%
TM + ACT + DSSMboth 23M +0.28% +0.54%

amounts of search training data in Table 6.8. Before analyzing the results, we em-
phasize that our work aims to leverage co-access labels extracted from activity logs to
improve ranking when the search training data is limited. This is often the case for
cloud storage systems, in which users access documents much more frequently than
they search for documents. That said, it plausible that with abundant search clicks, the
supervised model DSSM could be more effective. Thus, we further collect more search
data in order to investigate whether our weakly supervised semantic matching models
trained only on co-access labels can provide similar performance as DSSM trained on
abundant search clicks.

In Table 6.8, we find that CONCAT still significantly outperforms DSSM, when the
search training data contains less than 1 million queries. When training with 1 million
to 23 million queries, DSSM becomes comparable or slightly better than CONCAT,
however, the differences are quite small and not statistically significant (p-value >
0.01). These results are exciting, as they indicate that even in cases with sparse and lim-
ited search logs, activity-based semantic matching models could provide an adequate
substitute.

6.6.4 Discussion
It is clear from Table 6.5 and Table 6.6, that our semantic matching models trained
on document co-access labels can effectively improve ranking performance, and they
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significantly outperform W2V (text representations learned from unlabeled text cor-
pora) and DSSM (text representations learned from clickthrough data). Moreover, Ta-
ble 6.8 suggests that CONCAT can provide comparable performance to DSSM even
when DSSM is trained with orders of magnitude more search queries.

The concatenation structure of CONCAT allows complex feature interaction be-
tween the two text inputs. Because of this, CONCAT significantly outperforms the
Siamese network model SIAM in co-access prediction. CONCAT is also better than
SIAM at capturing effective signals from the co-access labels that are not fully covered
by the lexical and activity-based features (Table 6.6). However, we find CONCAT is less
effective than SIAM at capturing textual similarity according to the correlation analysis
(Table 6.4). We believe this is because the Siamese structure forces SIAM to learn rep-
resentations for text matching, and therefore it’s more effective when transferred from
the co-access prediction task to the search ranking task. Thus, when the lexical text
matching features are absent, SIAM significantly outperforms CONCAT (Table 6.3).

At the time of writing, the models described in this chapter have not yet been fully
deployed. Nevertheless, our offline experiments using large scale Google Drive search
and activity logs already provide strong evidence that activity logs are an adequate sub-
stitute for search logs when training semantic matching models. This is especially im-
portant for cloud storage systems or other domain-specific applications, where search
logs may not be available in large quantity or even at all.

For example, when search is first introduced as a feature to a cloud storage system,
search logs will be nonexistent, but activity logs are abundant. As another example,
a small enterprise may not have enough search traffic to build a specialized semantic
matching model, however it may have enough activity data to do so.

6.7 Conclusion

In this chapter, we demonstrate that leveraging user activity, e.g., document access,
editing and sharing, can significantly improve the quality of cloud storage search. In
cloud storage search, users often eschew using search altogether, opting out for naviga-
tion instead. This makes it challenging to leverage click data as it may not be available
in the quantity necessary to train ranking models.

Compared to search logs in cloud storage system, user activity logs are always
available in abundant quantities, as they capture any user interaction with the stored
documents, however they are not directly tied to search intents and information needs
To this end, we introduce a novel method for automatically learning text embeddings
from activity logs, by employing document co-access as a label for document similar-
ity. Our experiments demonstrate that such embeddings can significantly outperform
standard semantic matching approaches, and can be combined with other features to
further improve performance when search data is limited. Thus, we answer RQ5 posi-
tively: activity-based user interactions can improve ranking quality.

To the best of our knowledge, we are the first to examine the use of activity logs in
a large scale cloud storage search engine. As more document collections are moving
to the cloud, the benefits of activity logs for improving cloud storage search is an
important finding that opens up multiple directions for future work.
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First, in this work we do not use more complex text embedding models such as
recurrent neural networks or transformers, due to privacy constraints that are in place
to protect the users. In future work, we would like to explore ways of using such
models while retaining user privacy. Second, in future work we would also like to
consider more expressive models of user activity, such as recurrent neural networks to
model the historical activity of a user in order to predict future document usage.

In this chapter we considered activity logs as opposed to traditional search logs for
improving a LTR system. In the next chapter, we will reflect on the main findings of
each research question posed throughout this dissertation and propose directions for
future work.
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7
Conclusions

This dissertation is about efficient, safe and adaptive learning from user interactions. In
the five research chapters that preceed this conclusion, we have seen: (1) a comparison
between online and counterfactual learning from user interactions, (2) accelerating the
counterfactual learning process, (3) performing safe interventions with counterfactual
learning, (4) dealing with non-stationarity, and (5) going beyond clicks to other user
interaction signals. In this chapter we reflect on the main findings on each of these
topics.

7.1 Main Findings
In this section we revisit the research questions that were posed in Chapter 1 and sum-
marize the most important findings.

RQ1 How should LTR practicioners choose which method to apply from either coun-
terfactual or online LTR methodologies?

The answer to this question depends on the particular circumstances of the LTR sce-
nario that a practicioner is confronted with. We identify three factors that are critical
in the performance of online and counterfactual LTR: (1) the severity of position bias,
(2) whether selection bias is present (i.e. top-10 rankings), and (3) the amount of inter-
action noise. Counterfactual learning does not perform on the level of online learning
when either position bias is severe or when selection bias is present. We address these
two problems in RQ2 and RQ3 respectively.

RQ2 Can counterfactual learning from user interactions be made more efficient?

We find that when inverse propensity scores are more extreme, the convergence of IPS-
weighted SGD as a learning mechanism for counterfactual problems is slow. Specifi-
cally we find that IPS-weighted SGD has a convergence rate that scales with the maxi-
mum IPS weight in the dataset. When position bias is severe, this can be problematic.
By leveraging a sample-based learning algorithm called COUNTERSAMPLE the con-
vergence rate can be massively improved. Our results show that the convergence rate
of COUNTERSAMPLE no longer scales with the maximum IPS weight, but instead with
the average IPS weight. This, in turn, leads to significantly faster learning for a number
of biased LTR scenarios.
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RQ3 Can counterfactual approaches perform interventions without harming the user
experience?

We find that counterfactual learning algorithms are able to perform interventions with-
out harming the user experience by employing high-confidence off-policy estimators
and we introduce the Safe Exploration Algorithm (SEA). SEA provides formal guar-
antees of safety, and our empirical results confirm this behavior: SEA is always at least
as good as a baseline system. However, our empirical findings suggests that safety is
not free and that the conservative nature of SEA makes it unable to explore in situations
that could benefit from more aggresive exploration strategies.

RQ4 How can counterfactual approaches be adapted to deal with non-stationary envi-
ronments?

Our findings are that counterfactual methods can deal with non-stationary environ-
ments by employing sliding-window and exponential-decay estimators. We show that
standard IPS estimators introduce bias when subjected to a non-stationary environ-
ments and this bias can be reduced by either using sliding-window or exponential-
decay style estimators. Reducing bias in this manner is, however, not free and comes
at the cost of increased variance, leading to the traditional bias-variance tradeoff.

RQ5 Can activity-based user interaction signals improve ranking quality?

Finally, we look beyond clicks and consider other user interaction signals to improve
ranking. Our findings here show that in situations where clicks are not abundantly
available, leveraging other user interaction signals can provide an adequate substitution
when it comes to training semantic matching models. We validate these findings on
real-world user interaction data for the task of cloud storage search.

7.2 Future Work
This thesis provides several solutions to make learning from user interactions more
efficient, safe and adaptive. Nevertheless, our research is not without limitations and
we find ourselves asking new questions based on the findings presented in this thesis.

First, the empirical comparison performed in Chapter 2 is performed on a single
dataset and uses a single metric. Although the dataset and metric are widely used in
both Counterfactual and Online LTR, it remains to be seen whether our findings gen-
eralize to other datasets and metrics. As we have seen in Chapter 4, different LTR
datasets have different characteristics, for example in terms of document sparsity. Fur-
thermore our results in Chapter 4 indicate that, depending on the characteristics of the
LTR dataset, the behavior of the learning algorithm can differ. Future work should
compare online and counterfactual LTR approaches on a broader spectrum of datasets
and metrics.

Second, in Chapter 3 we address the inefficiency of IPS-weighted SGD by intro-
ducing a sample-based learning algorithm. Our convergence rate analysis assumes
that the propensities are known a priori. In practice these propensities are usually not
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known and are instead estimated using randomization experiments. Understanding
the robustness against misspecified and noisy propensities remains an open challenge.
Furthermore, this chapter does not consider propensity clipping, a common heuristic to
deal with large variance in IPS weights. Propensity clipping directly affects the max-
imum IPS weight in our dataset. A comparison against propensity clipping should be
considered as future work.

Next, Chapter 4 trades off exploration and safety by having the learning algorithm
perform interventions. The empirical results suggest that the confidence bounds used
for SEA are quite loose and we find that the learned models could have been deployed
much sooner. As such, designing estimators with tighter confidence bounds are an
important line of future work. Specifically, when we compare SEA to its boundless
variant BSEA, we find that BSEA is empirically just as safe but consistently performs
better. Furthermore, it may be possible to extend SEA to choose when to deploy on a
per-query basis. This would allow SEA to remain conservative on queries that are
difficult while more freely exploring on queries that are easier. This line of work
requires new estimators that can estimate ranking performance per query.

Then, in Chapter 5 we expand to a non-stationary environment for recommenda-
tion in off-policy evaluation. Our work is focused on evaluation however extending our
work to non-stationary counterfactual learning is challenging. Recent work has pro-
posed an off-policy optimization method for piecewise-stationary environments [61],
however their approach is not directly applicable to the smooth non-stationary envi-
ronments that we consider in Chapter 5. Finally, the field of time-series analysis can
provide useful insights for counterfactual evaluation and learning in non-stationary
settings. Recent work has performed some initial work for counterfactual evaluation
with time-series approaches [166]. Applying time-series approaches to counterfactual
learning should be considered as future work.

Finally, in Chapter 6 we find that activity data can be an adequate substitute for
click data in situations where click data is not abundantly available. This work in-
troduces a conceptually simple heuristic co-access which acts as a weak supervision
signal for document similarity. This signal still heavily depends on clicks and is tightly
coupled to the user interface of cloud storage search. In future work we should con-
sider more diverse interaction signals beyond clicks. The recent introduction of voice
assistants on mobile phones or as dedicated devices is changing how users interact with
information retrieval systems. In dialog systems it is impossible to collect clicks and
we need to consider different interaction signals to learn from and to evaluate with.
How to apply counterfactual learning or evaluation to other types of interaction data
such as dialogues remains an open problem.
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Summary

Information Retrieval (IR) systems such as search engines or recommender systems
face a complex challenge of ranking a set of candidate items by their relevance with
respect to a query, user profile, or context. Learning to Rank (LTR) is commonly
used as a way of learning a model that can rank candidate items by their relevance.
Historically LTR models have been trained with annotated datasets: data where it is
known which items are relevant and which ones are not. However, in recent years the
limitations of annotated datasets have become more apparant and interest in using user
interactions to train LTR models has increased.

User interactions occur naturally in modern IR systems and can provide implicit
feedback for a retrieval system. A big challenge in using user interactions is that they
are both noisy and biased. Counterfactual learning and online learning are the two main
directions that enable unbiased learning from implicit feedback. In this dissertation we
identify and propose solutions for three major challenges in unbiased learning from
user interactions: efficiency, safety, and adaptiveness.

First, counterfactual learning can be inefficient due to the high variance introduced
by the inverse propensity scores. To address this problem, this dissertation studies the
convergence rate of IPS-weighted Stochastic Gradient Descent and proposes a novel
learning algorithm with provably better convergence rate.

Second, we find that historical interaction data may be limited and interactions on
potentially high quality items may be missing. This is especially problematic when se-
lection bias is present: a phenomenon where users only interact with a limited subset of
the ranked result list. To address this problem we need learning algorithms that perform
interventions: changing what is shown to the user during data collection. However, in-
terventions may be unsafe: we risk exposing the user to poor rankings. To tackle this
challenge we introduce a safe counterfactual learning algorithm that can periodically
deploy its learned model to change what user interactions are gathered.

Third, we look at the adaptiveness of counterfactual learning in situations where
user preferences change over time. In non-stationary settings we study the bias and
variance of counterfactual estimators and find that standard IPS-based estimators are
biased. We propose two new estimators, based on weighting historical interactions,
that enjoy reduced bias in the non-stationary setting.

Finally, the thesis looks beyond search-specific interactions to other types of inter-
actions, looking specifically at activity logs in a cloud file storage system. This line
of work explores how interaction logs beyond traditional search logs can be used to
improve the ranking quality of modern IR systems.
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Samenvatting

Information Retrieval (IR) systemen, zoals zoekmachines en aanbevelingssystemen,
staan voor een complexe uitdaging: ze proberen een set kandidaatitems te rangschikken
op basis van hun relevantie met betrekking tot een zoekopdracht, gebruikersprofiel of
context. Learning to Rank (LTR) is een veelgebruikte manier om een model te leren dat
kandidaatitems kan rangschikken op basis van hun relevantie. Historisch gezien zijn
LTR-modellen getraind met geannoteerde datasets: datasets waarvan bekend is welke
kandidaatitems relevant zijn en welke niet. In de afgelopen jaren zijn de beperkingen
van geannoteerde datasets aan het licht gekomen en is de belangstelling voor het trainen
van LTR-modellen op basis van gebruikersinteracties toegenomen.

Gebruikersinteracties komen van nature veel voor in moderne IR-systemen en kun-
nen impliciete feedback geven voor een retrieval-systeem. Een grote uitdaging bij het
inzetten van gebruikersinteracties is dat ze zowel noisy als biased zijn. Counterfac-
tual en online leren zijn de twee belangrijkste richtingen die unbiased leren mogelijk
maken. In dit proefschrift identificeren we en geven we oplossingen voor drie grote
uitdagingen in unbiased leren van gebruikersinteracties: efficiëntie, veiligheid en aan-
passingsvermogen.

Ten eerste zien we dat counterfactual leren inefficiënt kan zijn vanwege de hoge
variantie die wordt geïntroduceerd door de inverse propensity scores. Om dit prob-
leem aan te pakken, bestuderen we de convergentiesnelheid van IPS-weighted SGD en
stellen we een nieuw leeralgoritme voor dat een betere convergentiesnelheid heeft.

Ten tweede vinden we dat historische interactiegegevens mogelijk beperkt zijn en
belangrijke interacties kunnen ontbreken. Dit probleem doet zich voornamelijk voor
wanneer selectiebias aanwezig is: een fenomeen waarbij gebruikers alleen op een
beperkte subset van de gerangschikte resultatenlijst klikken. Om dit probleem aan
te pakken hebben we leeralgoritmen nodig die interventies uitvoeren: algoritmen die
veranderen wat de gebruiker te zien krijgt. Interventies kunnen echter onveilig zijn:
we lopen het risico de gebruiker bloot te stellen aan slechte resultaatlijsten. Om deze
uitdaging aan te gaan, introduceren we een veilig counterfactual leeralgoritme dat pe-
riodiek het geleerde model kan inzetten om te veranderen welke resultaten er worden
getoond en welke gebruikersinteracties er worden verzameld.

Ten derde kijken we naar het aanpassingsvermogen van counterfactual leren in
situaties waarin gebruikersvoorkeuren in de loop van de tijd veranderen. In niet-
stationaire omgevingen bestuderen we zowel de bias als de variantie van counterfactual
estimators en vinden we dat standaard IPS-gebaseerde estimators niet langer unbiased
zijn. We stellen twee nieuwe estimators voor, gebaseerd op het wegen van historische
interacties, die minder biased zijn in de niet-stationaire setting.

Ten slotte kijkt dit proefschrift verder dan zoekspecifieke interacties naar andere
soorten interacties, met name naar activiteits-gebaseerde interacties in een cloud op-
slagsysteem. Specifiek, onderzoeken we hoe activiteits-gebaseerde interacties kunnen
worden ingezet om de zoekkwaliteit van moderne IR-systemen verder te verbeteren.
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