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ABSTRACT
User interaction data is an important source of supervision in
counterfactual learning to rank (CLTR). Such data suffers from
presentation bias. Much work in unbiased learning to rank (ULTR)
focuses on position bias, i.e., items at higher ranks are more likely
to be examined and clicked. Inter-item dependencies also influence
examination probabilities, with outlier items in a ranking as an
important example. Outliers are defined as items that observably
deviate from the rest and therefore stand out in the ranking. In
this paper, we identify and introduce the bias brought about by
outlier items: users tend to click more on outlier items and their
close neighbors.

To this end, we first conduct a controlled experiment to study
the effect of outliers on user clicks. Next, to examine whether the
findings from our controlled experiment generalize to naturalistic
situations, we explore real-world click logs from an e-commerce
platform. We show that, in both scenarios, users tend to click signif-
icantly more on outlier items than on non-outlier items in the same
rankings. We show that this tendency holds for all positions, i.e., for
any specific position, an item receives more interactions when pre-
sented as an outlier as opposed to a non-outlier item. We conclude
from our analysis that the effect of outliers on clicks is a type of bias
that should be addressed in ULTR. We therefore propose an outlier-
aware click model that accounts for both outlier and position bias,
called outlier-aware position-based model (OPBM). We estimate
click propensities based on OPBM; through extensive experiments
performed on both real-world e-commerce data and semi-synthetic
data, we verify the effectiveness of our outlier-aware click model.
Our results show the superiority of OPBM against baselines in
terms of ranking performance and true relevance estimation.

CCS CONCEPTS
• Information systems→ Learning to rank.
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1 INTRODUCTION
Ranking systems optimize ranking decisions to increase user satis-
faction. Implicit user feedback is an important source of supervision
that reflects the preferences of actual users. However, user inter-
action data (e.g., clicks) suffers from presentation bias, which can
make its naïve use as training data highly misleading [18].

Much work in unbiased learning to rank (ULTR) focuses on
position bias [3, 17, 19, 43], i.e., the phenomenon that higher-ranked
results are more likely to be examined and thus clicked by users [17]
than lower-ranked results. Besides position there are several other
factors that affect users’ examination model and clicks [1, 11, 27,
34, 44]. Previous work has shown that inter-item dependencies can
influence user judgments of relevance and the examination order
of items [12, 34, 44]. The existence of outlier items is a specific
case of inter-item dependencies [34]. Sarvi et al. [34] define outliers
in a ranking as items that observably deviate from the rest of the
list w.r.t. item features, such that they stand out and catch users’
attention. For instance, in an e-commerce search scenario, if only
one item on the page features a “Best Seller” tag, it can be considered
as an outlier, because the tag differentiates it from the rest of the
items in the ranking, thereby attracting users’ attention.
Outlier bias. An outlier in a list of items can alter the examination
probabilities, such that the probability of examination is higher
for the outlier item (if it exists) and its neighboring items than the
probability assigned by the position bias assumption [34].

Although it has been shown that outliers affect examination
probabilities [34], their impact on user click behavior is unknown.
In this work, we hypothesize that clicks are biased by the exis-
tence of outliers. We refer to this phenomenon as outlier bias and
aim to understand and address this effect. To begin, we conduct
a user study where we compare the click-through rate (CTR) for
specific items in two conditions: once shown as outliers and once as
non-outlier items in the list. We find that users behave differently
in relation to an item given its outlierness condition. The CTR of
a specific item is consistently higher when it is presented as an
outlier item than when it is a non-outlier item in a ranking. Next,
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to examine whether these findings can be generalized to natural-
istic situations we perform an analysis on real-world search logs
from Bol.com, a popular Europe-based e-commerce platform.
The results confirm the findings of our user study. In addition, we
observe that, on average, outlier items receive significantly more
clicks than non-outlier items in the same lists. Moreover, users tend
to interact more with lists that contain at least one outlier.
Outlier bias vs. context bias. We find that outlier bias affects
user clicks such that users are more likely to interact with items
that are presented as outliers, as well as their neighboring items.
The closest concept to outlier bias is context bias in news-feed
recommendation [44]. In the presence of context bias CTR is lower
for items when surrounded by at least one very similar item than
when they are surrounded by non-similar items. This is different
from outlier bias, which emphasizes the difference between the
outlier and the rest of the list. Moreover, observability is a key
factor in detecting outliers in ranking as defined by [34]; this is not
the case in context bias.
Accounting for outliers. Based on the findings of our user study
and log analysis, we conclude that one should account for the ef-
fect of outliers when unbiasing user clicks for ULTR. To this end,
we propose a click model, based on the examination hypothesis,
called outlier-aware position-based model (OPBM), which accounts
for both outlier and position bias. OPBM assumes the probability
of a click depends on (i) examination, (ii) relevance, and (iii) the
outlier’s position (if it exists). We use regression-based expecta-
tion maximization to estimate the click propensities based on our
proposed click model, OPBM. We verify the effectiveness of our
outlier-aware model for estimating propensities in the presence of
both position bias and outlier bias. Following [6, 19, 26] we use a
semi-synthetic setup for the experiments; the true relevance labels
provided in this setup allows for evaluating the relevance estima-
tion. Furthermore, using simulated clicks we are able to control the
severity of position bias and outlier bias. The results of our experi-
ments show the superiority of OPBM against baselines in terms of
ranking performance (NDCG@10) and true relevance estimation.
Main contributions. The main contributions of this work are:
(i) we identify and study a new type of click bias, originating from
inter-item dependencies, called outlier bias; (ii) through extensive
analyses of both user study results and real-world search logs, we
confirm our hypothesis about the existence of outlier bias; (iii) to
address this effect we propose an outlier-aware click model that ac-
counts for outlier items (if they exist), as well as position bias; (iv) us-
ing an empirical analysis based on real-world data and semi-syn-
thetic experiments we show the effectiveness of our outlier-aware
model in estimating click propensities; and (v) we make the data
from our user study plus the code that implements our baselines
and OPBM publicly available.

2 OUTLIERS IN RANKING
Outliers in ranking are items that observably stand out among the
window of items that are presented to a user at once. We use the
following definitions from [34] to introduce so-called outliers:

Definition 2.1 (Observable feature). An observable item feature,

F , is a characteristic of an item in a list that can be purely pre-
sentational in nature (e.g., image, title font size, and discount tag).

Definition 2.2 (Degree of outlierness). LetM be any outlier detec-
tion method, and F𝑖 an observable feature corresponding to item 𝑖 ,
in the context of all items in the list, C. The degree of outlierness
for item 𝑖 is the value calculated by M for F𝑖 w.r.t. C shown as
M(F𝑖 |C). This value indicates how much the corresponding item
differs from the other elements of the set w.r.t. F .

Definition 2.3 (Outliers in ranking). LetM be any outlier detec-
tion method; we call item 𝑖 in a ranked list an outlier, ifM identifies
it as an outlier w.r.t. an observable feature, F , based on the degree
of outlierness, and in the context of the list.

In Section 3.2 we describe our choices of observable features and
outlier detection method used in this paper.

3 IMPACT OF ITEM OUTLIERNESS ON CLICKS
Sarvi et al. [34] show that outlier items receive more attention
from users. However, it is not known whether an item’s outlierness
affects users’ clicks as well. In this section we answer our first
research question: (RQ1) does outlier bias exist in rankings of
items? To this end we first conduct a user study to examine the
outlierness effect as the only variable factor influencing the clicks.
Next, we need to examine whether the findings of our study can be
generalized to naturalistic situations. In other words, we seek to
establish ecological validity [8, 21]. To this end, in Section 3.2 we
explore real-world click logs to confirm our findings.

3.1 User study
In this section, we present the results of our user study. Our main
goal is to learn whether the outlierness of an item affects user clicks,
independent of the item’s relevance and position.
Setup.Wemimic Bol.com, a popular European online mar-
ketplace. We ask participants to interact with search engine result
pages as they normally would, and find items they prefer and think
are relevant. We focus on a list view, with 20 items on each page,
and participants are able to scroll the list to see all items. We have
two queries; for each query, we show one specific item once as an
outlier and once as a regular item. We call this specific item the
target, and these two variant presentations condition I and condition
II, respectively. In condition I the target is an outlier w.r.t. a set of
observable features, such as item category,1 price, discount tag, and
star rating. We aim to compare users’ behavior between these two
conditions for each query. We keep other factors such as relevance
and position bias unchanged between the conditions. To eliminate
the effect of position bias we always show the item at rank 4, and to
maintain the same degree of relevance to the query we only change
the surrounding items to change the outlierness of the target item.2

We also have a Qualtrics [31] survey. It contains the task instruc-
tion, multiple choice questions about the instructions, queries, and
links to the examples, and a few demographic questions at the end.
In the instructions, we describe the overall goal of the research and
ask participants to read the instructions carefully. We describe what
1Note that this feature can affect the outlierness w.r.t. the item’s image as well.
2To examine our hypothesis about an inter-item dependency, here we assume that the
relevance of a document is only dependent on the query.

http://www.bol.com
http://www.bol.com
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Figure 1: Revisit count (a) and mouse hovering time (b) for
the two conditions of one of our user study examples. The
position of the target item ismarked by an asterisk. The plots
show that the user engagement with the target item is higher
when presented as an outlier (condition I)

it means to interact with a result page in terms of exploring the
results, scrolling the list, and clicking on items that seem interesting.
Participants can click on an item to open the item’s detail page. In
our instructions we encourage participants to click on items they
find interesting, however, clicking is not mandatory. We instruct
participants to first read and understand the query, and then scan
the result page as if they submitted the query themselves.
Participants. We recruit 40 workers, based in countries where
our marketplace is active, from the Prolific platform [29]. From the
participants, 14 are female, 23 are male, and 3 listed other genders.
The majority of participants (27) are between 25 and 44 years old,
with 10 participants younger and 3 older; 33 participants reported
that they shop online at least once a month.
Metrics. For reporting we consider three measures based on partic-
ipants’ interactions with rankings: (i) revisit count, which indicates
how many times on average participants viewed an item (due to
scrolling), (ii) mouse hover time that shows the amount of time on
average participants spent on an item, and (iii) CTR for the target
item in each condition, which is our main metric in this study.
Findings. We expect to see more interactions with the target in
condition I. Since we keep other factors unchanged between the
two conditions, we can attribute any difference in user behavior to
the inter-item dependencies.

Figure 1 depicts the revisit counts (Figure 1a) andmouse hovering
time (Figure 1b) for different positions and conditions of one
example. Both plots show that the user engagement with the target
item is higher when it is presented as an outlier. We see the same
pattern in the second example. On average, participants revisited
the outlier itemmore often and spent more time examining it. These
findings are in line with the results of the eye-tracking experiments
conducted by Sarvi et al. [34], which suggest that, on average,
outlier items receive more attention from users. However, our main
goal is to study if this increased attention leads to more clicks.

Table 1 reports the CTR for the target item in both examples and
for the two conditions. In both examples we see a large difference
between the CTR reported for the different conditions, suggesting
that when the target item is shown as an outlier it receives more
clicks as well as more exposure.

Table 1: CTR of the target item’s position in both examples
of our user study. The target item recieves more clicks when
shown as an outlier (condition I).

condition I condition II

Query 1 0.944 0.166
Query 2 0.880 0.091

3.2 Real-world click logs
The findings of Section 3.1 confirm, in a controlled experimental
setup, that an item’s outlierness can influence users’ click behav-
ior. However, we still need to examine the ecological validity of
this hypothesis. To this end, we present our observations of click
exploration of real-world search logs from our e-commerce
platform. We are specifically interested in exploring the data to
study the existence of outlier items in rankings and their impact
on click data. Notice that we use this data only for click analysis
and parameter estimation (Section 5).
Data collection. We collect search query logs from 20 consecutive
days. Each row of the dataset consists of seven observable item
features that are explained in Table 2, along with users’ interaction
signals: impressions and clicks.

Definition 3.1 (Impression). An impression indicates how many
times an item that is rendered by the search engine is viewed by a
user. If an item is rendered in low positions, it may not end up in a
window that is visible to the user, leading to zero impressions. On
the other hand, the number of impressions can be greater than one
due to scrolling.

We selected item features that are used across different categories,
are observable by users, and have been shown by previous work
to be important in influencing users’ purchase decisions [4, 20].
We leave out item images from our click exploration due to the
excessive complexity they would have added to this study.

Most search engines consider diversity as a quality of search
result pages [5]. This can have a side effect, where the returned
rankingsmay contain outlier items. Hence, query logs are a valuable
source for studying the outliers’ effect on users’ clicking behavior.
To begin, we define two types of rankings based on the existence
of outliers as follow:

Definition 3.2 (Normal rankings). We call rankings that contain
no outlier normal rankings. Normal rankings can either consist of
a homogeneous set of items or a diverse set.

Definition 3.3 (Abnormal rankings). Wedefine abnormal rankings
to be lists that contain at least one outlier.

Outlier detection. We examine each item for outlierness based
on the features described in Table 2 and in the context of all items
in the list as described in Section 2. An item is an outlier if it is
detected as an outlier w.r.t. at least one of these features.

We use the Interquartile rule to detect the outliers, and con-
sider the absolute difference between the feature value and the
upper/lower bound as the degree of outlierness of the correspond-
ing item (see Section 2). Feature values are normalized so that we
have an outlierness degree of unit range for all observable features.
We set the threshold for the degree of outlierness to 0.5, which
means we only label an item as an outlier if the absolute difference
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Table 2: Description of the observable features used to represent the items.

Feature Name Abbreviation Description

price - Selling price of an item.
promotion tag promotion Universal red tag indicating various promotions, such as ‘competitive price’ and ‘select deal’.
high discount tag discount Two-piece red tag indicating high discount for an item (different from promotion).
in/out-of-stock tag stock quantity Green tag indicating the in-stock or out-of-stock condition of an item.
users star rating rating Average user star rating of the item presented by the standard 5 stars template.
‘select’ tag select Green tag indicating that the item is a select item (similar to Amazon prime).
title length - Number of tokens in the item title.

Table 3: Users’ interactions with the outlier and non-outlier
items, averaged over all abnormal rankings. We used Stu-
dent’s t-test with 𝑝 < 0.001 for statistical significance test.

Avg. clicks Avg. impressions Avg. CTR

Outliers 0.202∗ 1.381∗ 0.142∗
Non-outliers 0.137 1.346 0.098
Total 0.149 1.352 0.106

between its score and upper/lower bound is greater than 0.5.
Post-processing. We filter out the parts of the rankings that are
not viewed by the user based on the impression signal in our data.
This leaves us with the minimum ranking size of 3. However, since
by definition outlierness is meaningless in lists shorter than 4, we
removed these rankings from our dataset. We also removed pages
with sponsored items to avoid any potential effect from such items
on our results. The remaining 10,903 abnormal rankings have an
average length of 10.24 and a median of 8.0.
Effect of outliers on CTR. In the first step of our analysis, we aim
to see if users interact differently with outlier items in abnormal
rankings. To this end, we look at such rankings and compare the
number of interactions outliers received on average to non-outlier
items in the same ranking. We focus on clicks as interactions.

Since normal rankings carry no information for our current anal-
ysis we only keep abnormal rankings. Table 3 shows the average
clicks, impressions, and CTR of outlier and non-outlier items for
abnormal rankings.3 We calculate the CTR values (i.e., the number
of clicks divided by the number of impressions of each item) per
page and report the average over all rankings. Our findings suggest
that both CTR and average clicks are significantly higher for outlier
items when compared to non-outlier items on the same page. More-
over, we see that the number of impressions is also significantly
higher for outlier items, which is in line with the finding of an
eye-tracking experiment reported in [34].
Effect of outliers per position. To make sure that the higher CTR
reported in Table 3 is not caused by position bias, we look at CTR
values per position. Figure 2 depicts the results. Overall, CTR for
all positions is higher for outlier items, showing that these items
receive more interactions than non-outlier items.

Next, to further study how outliers change users’ click behavior,
we compare the CTR of the outlier position with the positions of
non-outlier items throughout the ranking. To better depict the effect
of outliers on different positions, we consider rankings that contain

3Note that the reported values in this section are calculated based on filtered subsets
of search logs, therefore, they are not representative of the true statistics of the data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position

CT
R

outliers
non-outliers

Figure 2: Comparison of CTR for outlier and non-outlier
items per rank. CTR is consistently higher for outlier items.

1 3 5 7 9 11 13 15
Position

CT
R

out. pos. 1
out. pos. 2
out. pos. 3
out. pos. 7

out. pos. 9
out. pos. 11
out. pos. 12
no out.

Figure 3: CTR per rank for abnormal rankings grouped by
the outliers’ position. The position of the outlier is marked
with an asterisk. The values are smoothed using a Savitzky-
Golay filter. Best viewed in color.

exactly one outlier; we focus on the top 15 positions. It is worth
mentioning that less than 35% of the abnormal rankings in our
data have more than one outlier. We group the abnormal rankings
based on the position of the outlier. Figure 3 illustrates the results.
The black line shows CTR for normal rankings. As expected this
line follows position bias, where the probability of clicking an item
decreases with its rank.

The other lines in Figure 3 show the CTR for groups of rankings
with one outlier at position 𝑟 ∈ {1, . . . , 15}. We only show the
results for some of the positions for better visibility. We see similar
patterns for other ranks. We only show the results for groups that
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form at least 1% of the whole collection in terms of size. In Figure 3
each asterisk indicates the position of the outlier. We observe that
CTR distribution is different than the position-based assumption
when there is an outlier in the ranking. Also, for positions after 3,
we observe an increase of CTR on and around the outlier position.

Another interesting observation is that items farther away from
the outlier receive less attention proportional to their ranks com-
pared to normal pages. Moreover, we see that for positions after 3
CTR for outliers is higher than the CTR for the same position in
normal pages, which is in line with our findings in Figure 2.
Effect of different outlier types. One can argue that different
types of outliers might have different types of influence on users’
perceptions. E.g., considering price as the observable feature, a
very expensive outlier item might have a lower chance of being
purchased compared to a cheap one. We hypothesize that these
two types may neutralize each other overall in terms of statistical
metrics. Hence, to examine this hypothesis, as a first attempt, we
divide the outlier items into two groups of positive and negative
outliers using common sense, informal definitions based on the
observable features. E.g., in the previous example, the expensive
item is a negative outlier while the cheap one is positive. Based
on this definition, for the price feature we see that the average
number of clicks for positive and negative outliers are 0.193 and
0.147, respectively; both are significantly higher than non-outlier
items (0.125). We see the same trend among all observable features,
both for impression and click counts. Based on these results we
reject the aforementioned hypothesis and stay with our original
outlier/non-outlier division.
Further remarks. We also looked at abnormal rankings in which
a specific item is repeatedly shown in a fixed rank at least once as
an outlier and once as a normal item. We aggregate all such rank-
ings and observe that on average items receive 0.169 clicks in case
of being an outlier, and 0.130 clicks when they are regular items
in the list. Comparing the abnormal rankings to a subset of nor-
mal rankings with a similar length distribution (mean=10.09/10.30,
median=8.0/8.0, std=4.95/5.82 for normal/abnormal rankings), we
realize that on average the number of clicks per session is higher in
the presence of outliers. More specifically, the average number of
clicks is 0.139 for normal rankings, and 0.149 for abnormal rankings,
with a 𝑝 < 0.001 significance.
Upshot. To sum up, from Section 3.1 we learn that users behave
differently w.r.t. an item given its outlierness condition (i.e., whether
the item is presented as an outlier in the ranking). The CTR of
a specific item is consistently higher when it is presented as an
outlier item than that of a non-outlier item. Section 3.2 confirms
the findings of our user study. In addition, we observe that, on
average, outlier items receive significantly more clicks than non-
outlier items on the same lists. Moreover, users tend to interact more
with lists that contain at least one outlier. This section confirms
the impact from outlier items on clicks. We refer to this effect as
outlier bias. In the following section we propose a click model that
accounts for outlier bias as well as position bias.

4 OUTLIER-AWARE POSITION-BASED MODEL
Naïve use of implicit feedback for learning to rank can be mislead-
ing, since it suffers from presentation bias. Therefore, modeling the

examination bias is crucial [13, 18].
Position-based model. Normally, items in higher ranks are more
likely to be examined on a page. Position bias is formally modeled
through the examination hypothesis which states that an item
must be examined and perceived relevant by the user to be clicked.
A widely used click model for dealing with position bias is the
position-based model (PBM) [19, 43]. While being considered a
simple solution, PBM is as effective as more sophisticated click
models [12]. PBM assumes that the rank of an item is the only
parameter that affects users’ examination of that item. Examining
an item means viewing and evaluating it before any subsequent
interaction like a click.

Given an item𝑑 at rank 𝑘 in response to a query𝑞, the probability
of clicking on 𝑑 , assuming PBM, equals:

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘) = 𝑃 (𝐸 = 1 | 𝑘) × 𝑃 (𝑅 = 1 | 𝑑, 𝑞), (1)

where 𝑃 (𝐸 = 1 | 𝑘) is the probability of user examining rank 𝑘 , also
called propensity, and 𝑃 (𝑅 = 1 | 𝑑, 𝑞) is the probability of relevance
for the pair (𝑑, 𝑞). We refer to these probabilities as 𝜃𝑘 and 𝛾𝑞,𝑑 ,
respectively.
Outlier-aware position-based model. PBM simply assumes that
the only factor influencing the propensity is the rank. In Section 3
we show that users are more likely to click on outlier items, hence,
we assume that propensity depends also on the existence of outlier
item(s).

It is noteworthy that, even among the outlier items we observe
an inter-outlier position bias – the higher-ranked outlier items
receive more clicks.

Hence, to model these dependencies, we propose an outlier-
aware position-based model, called OPBM, that accounts for the
impact of outlier items in addition to the position as follows:

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘, 𝑜) = 𝑃 (𝐸 = 1 | 𝑘, 𝑜) × 𝑃 (𝑅 = 1 | 𝑑, 𝑞), (2)

where 𝑜 indicates the position(s) of the outlier(s) in the ranking.
Note that PBM is a special case of OPBM: for normal rankings
OPBM is simplified to PBM.

We propose this model following Eq. (2) based on the assump-
tion that the probability of examination at rank 𝑘 depends on the
position of outlier item(s), 𝑜 , in addition to 𝑘 . This model has 𝐾 ×𝑂
parameters, where 𝐾 and 𝑂 are the set of all ranks and outlier
positions, respectively, which can be estimated from click data.
Propensity estimation. Here, we describe how to estimate outlier-
aware position bias from regular clicks. Based on the idea of the
regression-based expectation maximization (REM) algorithm [43],
we propose to estimate the parameters 𝜃𝑘,𝑜 and 𝛾𝑞,𝑑 simultaneously
by estimating with a regression function.

Using a standard expectation maximization (EM) algorithm we
aim to find the parameters that maximize the log-likelihood of the
whole click logs. The log likelihood of generating click logs of the
form L = (𝑐, 𝑞, 𝑑, 𝑘, 𝑜) is:

log 𝑃 (L) =
∑︁

(𝑐,𝑞,𝑑,𝑘,𝑜 ) ∈L
𝑐 log𝜃𝑘,𝑜𝛾𝑞,𝑑 + (1−𝑐) log(1−𝜃𝑘,𝑜𝛾𝑞,𝑑 ). (3)

Here, we aim to estimate the parameters 𝜃𝑘,𝑜 and 𝛾𝑞,𝑑 based on
data points in L. In each iteration, EM alternates between the ex-
pectation and maximization steps to compute new estimates of the
parameters. In the expectation step of iteration 𝑡 +1we calculate the
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hidden variables corresponding to examination propensity (𝐸) and
true relevance (𝑅) based on the estimated parameters at iteration 𝑡 :

𝑃 (𝐸 = 1, 𝑅 = 1 | 𝐶 = 1, 𝑞, 𝑑, 𝑘, 𝑜) = 1,

𝑃 (𝐸 = 1, 𝑅 = 0 | 𝐶 = 0, 𝑞, 𝑑, 𝑘, 𝑜) =
𝜃𝑡
𝑘,𝑜

(1 − 𝛾𝑡
𝑞,𝑑

)

1 − 𝜃𝑡
𝑘,𝑜
𝛾𝑡
𝑞,𝑑

,

𝑃 (𝐸 = 0, 𝑅 = 1 | 𝐶 = 0, 𝑞, 𝑑, 𝑘, 𝑜) =
(1 − 𝜃𝑡

𝑘,𝑜
)𝛾𝑡
𝑞,𝑑

1 − 𝜃𝑡
𝑘,𝑜
𝛾𝑡
𝑞,𝑑

, (4)

𝑃 (𝐸 = 0, 𝑅 = 0 | 𝐶 = 0, 𝑞, 𝑑, 𝑘, 𝑜) =
(1 − 𝜃𝑡

𝑘,𝑜
) (1 − 𝛾𝑡

𝑞,𝑑
)

1 − 𝜃𝑡
𝑘,𝑜
𝛾𝑡
𝑞,𝑑

.

We then calculate the marginal probabilities 𝑃 (𝐸 = 1 | 𝑐, 𝑞, 𝑑, 𝑘, 𝑜)
and 𝑃 (𝑅 = 1 | 𝑐, 𝑞, 𝑑, 𝑘) for each data point in L. We keep the
estimation of 𝛾𝑞,𝑑 untouched, meaning that the learning to rank
(LTR) model is trained without knowledge of the outlier position
and only the propensity estimation is affected by that. This leads
to the maximization step at iteration 𝑡 + 1, where we update the
parameters to maximize the likelihood from Eq. 3 as follows:

𝜃𝑡+1
𝑘,𝑜

=

∑
𝑐,𝑞,𝑑,𝑘 ′,𝑜 ′ I𝑘 ′=𝑘,𝑜 ′=𝑜 .(𝑐 + (1 − 𝑐)𝑃 (𝐸 = 1 | 𝑐, 𝑞, 𝑑, 𝑘, 𝑜))∑

𝑐,𝑞,𝑑,𝑘 ′,𝑜 ′ I𝑘 ′=𝑘,𝑜 ′=𝑜
,

𝛾𝑡+1
𝑞,𝑑

=

∑
𝑐,𝑞′,𝑑 ′,𝑘 I𝑞′=𝑞,𝑑 ′=𝑑 .(𝑐 + (1 − 𝑐)𝑃 (𝑅 = 1 | 𝑐, 𝑞, 𝑑, 𝑘))∑

𝑐,𝑞′,𝑑 ′,𝑘 I𝑞′=𝑞,𝑑 ′=𝑑
. (5)

The maximization step of the EM algorithm requires multiple oc-
currences of pair (𝑞, 𝑑) where 𝑑 is shown in different positions. To
overcome the click sparsity problem and possible privacy issues,
we alter the maximization step at iteration 𝑡 + 1, where we estimate
the 𝛾𝑞,𝑑 parameter via regression [43]. Thus, given a feature vec-
tor 𝑥𝑞,𝑑 representing the pair (𝑞, 𝑑) we fit a function 𝑓 (𝑥𝑞,𝑑 ) (e.g.,
gradient boosted decision tree (GBDT)) to calculate an estimate
for 𝛾𝑞,𝑑 . So, our maximization step is to find a regression function
𝑓 (𝑥) that maximizes Eq. 3 given the estimated parameters from
the expectation step. In REM algorithm [43], this regression prob-
lem is converted to a classification problem by sampling a binary
variable indicating the relevance label for 𝑥𝑞,𝑑 from the distribu-
tion 𝑃 (𝑅 = 1 | 𝑐, 𝑞, 𝑑, 𝑘). This results in a training set of the form
(𝑥𝑞,𝑑 , 𝑟𝑞,𝑑 ) with the following cross entropy objective:∑︁

𝑥,𝑟

𝑟 log(𝑓 (𝑥)) + (1 − 𝑟 ) log(1 − 𝑓 (𝑥)) . (6)

Remark. An alternative choice instead of a single unbiased model
would be to train multiple LTR models as unbiased experts for
different outlier positions. This alternative has two main drawbacks.
First, having experts means that each expert is trained only on a
part of the data containing outliers at a specific position. Not only
can this lead to sub-optimal training, but it also makes it difficult to
compare this model to the PBM-based REM as a baseline. Second,
having a collection of 𝐾 expert models as a ranker is not ideal in
real-world scenarios. Ideally, there is a single unbiased model that
can be used without information about outliers’ positions.

5 EXPERIMENTAL SETUP
Following much previous work in counterfactual learning to rank
(CLTR) [6, 15, 19, 26, 38], we use a semi-synthetic setup for our

experiments, i.e., we sample queries, documents, and relevance
labels from existing LTR datasets, but simulate user clicks based on
the probabilistic click models estimated on the proprietary data.

LTR datasets that contain the true relevance labels allow us to
evaluate the relevance estimation of OPBM and other baselines,
as well as their effect on ranking performance. Furthermore, the
semi-synthetic setup enables us to control the position bias and
outlier bias of the simulated clicks.

5.1 Data
Public LTR data. Following prior work on CLTR [19, 37, 38], we
use the Yahoo! Webscope [10] and MSLR-WEB30k [30] datasets. In
both datasets, there are a total of around 30k queries, each associ-
ated with a list of documents. The query-document feature vectors
of the Yahoo! and MSLR datasets have dimensions 501 and 131, re-
spectively. Both datasets have graded relevance labels with 5 levels.
We follow prior work and take grades {3, 4} as relevant and grades
{0, 1, 2} as non-relevant. The training sets of the Yahoo! and MSLR
datasets have 20k and 19k queries with 473k and 2.2M documents,
respectively. The test sets of the Yahoo! and MSLR datasets, have
6.7k and 6k queries with 163k and 749k documents, respectively.
Proprietary data. We use the real-world click log data as described
in Section 3.2 for the experiments and refer to it as proprietary data.
We use a feature vector of size 24 containing both the relevance
features and products’ observable features to present each query-
document pair.We use these features for the LTRmodel.We also use
the setup described in Section 3.2 to detect the outlier items, using
the Interquartile rule, w.r.t. the observable features (see Table 2).
Since the rankings in this dataset have an average length of 10.24
and a median of 8.0, we use the top-10 items in the experiments.

5.2 Click simulation
We follow prior work [6, 19, 26, 37, 38] and sample 1% of the queries
from each public dataset, uniformly at random, to train an artificial
production ranker. We apply probabilistic click models on rankings
produced by this production ranker to simulate clicks for the semi-
synthetic experiments. We apply our outlier-aware position-based
model with different approximations for examination probabilities.
The relevances 𝛾𝑞,𝑑 are based on the relevance label recorded in the
datasets. Following previous work [19, 38] we use binary relevance:

𝑃 (𝑅 = 1 | 𝑞, 𝑑) = 𝛾𝑞,𝑑 =

{
1 if relevance_label(𝑞, 𝑑) > 2
0 otherwise

. (7)

To simulate the outlier bias we follow two strategies as follows:
OPBM𝑅𝑒𝑎𝑙 . We use the propensities estimated by OPBM (see Sec-
tion 4) on our proprietary dataset. From all the abnormal rankings in
our dataset, 64% contain only one outlier. Since improving ranking
for more than half of queries can lead to significant improvement in
real-world scenarios, we first address this majority case. Therefore,
with this model, we focus on rankings with one outlier. Thus, the
output of OPBM is at most a 𝐾 × 𝐾 matrix, corresponding to all
combinations of rank and outlier position, where 𝐾 = 10 in our
experiments. We use this matrix to approximate 𝑃 (𝐸 = 1 | 𝑘, 𝑜).
OPBMG . Here, we assume that an outlier’s effect on the user clicks
follows a Gaussian distribution, centered at the outlier’s position.
Therefore, for each 𝑘 , we compute the linear interpolation of outlier
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bias, and position bias distributions, as follows:

𝑂𝑃𝐵𝑀G (𝑞, 𝑑, 𝑘, 𝑜) = 𝛾𝑞,𝑑 ((1 − 𝛼)𝜃𝑘 + 𝛼G(𝜇 = 𝑜, 𝜎2)), (8)

whereG is a Gaussian distributionwith 𝜇 = 𝑜 , simulating the outlier
effect. We set 𝜎 = 1 and experiment with varying values of 𝛼 . To
simulate clicks for rankings with multiple outliers, we compute the
average of OPBMG for all outlier positions (𝑂 ′) as follows:

𝑂𝑃𝐵𝑀MG (𝑞, 𝑑, 𝑘,𝑂 ′) = 1
|𝑂 ′ |

∑︁
𝑖∈𝑂 ′

𝑂𝑃𝐵𝑀G (𝑞, 𝑑, 𝑘, 𝑖) . (9)

According to our proprietary data, 91% of abnormal rankings con-
tain at most two outliers. Therefore, in the experiments, we focus
on rankings with a maximum of two outliers.

We follow previous work [15, 19, 26, 38] to define the position
bias inversely proportional to the item’s rank as:

𝜃𝑘 =
1
𝑘
. (10)

We train the LTR model4 on 1M simulated clicks.

5.3 Methods used for comparison
Ourmain goal is to introduce a new type of bias and study its impact
on click propensities. Hence, it suffices to compare our outlier-
aware click model to baselines that only corrects for position bias.
To this end, we compare OPBM with the following estimators:
• Naïve is a model with no correction where each click is treated
as an unbiased relevance signal.

• PBM is the original inverse propensity scoring (IPS) estima-
tor [19, 43] that only corrects for position bias.

5.4 Evaluation metrics
To measure the ranking performance achieved by different meth-
ods we use normalized discounted cumulative gain (NDCG). We
also consider cross entropy (CE), which measures the difference be-
tween the true relevance and unbiased relevance calculated by the
estimator; it is an indication of how accurately a model estimates
the relevance, independent of the LTR model. Since we work with
binary relevance, we compute binary CE between the corrected
clicks, i.e., 𝑐/𝜃𝑘 and 𝑐/𝜃𝑘,𝑜 for PBM and OPBM, respectively, as
predictions and the true relevance values as labels. We report the
mean value of CE instead of its summation, for better readability.

6 RESULTS
In Section 3 we have already answered (RQ1) about the existence
of outlier bias in ranked lists. In this section we answer the follow-
ing research questions: (RQ2) how does our outlier-aware model,
OPBM, perform compared to the baselines? (RQ3) how does OPBM
perform under different outlier bias severity conditions? (RQ4) how
does OPBM generalize to cases with multiple outliers in rankings?

6.1 Propensity estimation with OPBM
We answer (RQ2) by comparing the overall performance of OPBM
in propensity estimation. Figure 4 depicts the propensities estimated
by OPBM𝑅𝑒𝑎𝑙 (see Section 5.2) on the top-8 ranks where a sufficient
number of outliers exist in our proprietary dataset. We see that
4We use allRank implementation for our LTR [28].
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Figure 4: Click propensities computed by OPBM for the top
8 ranks, per outlier position on the proprietary data. Click
propensities are higher on and around the outliers, contra-
dicting the position bias assumption.
Table 4: Comparison of OPBM and PBM on the Yahoo! and
MSLR datasets, in terms of NDCG@10 and CE. A superscript
∗ indicates a significant difference compared to the second-
best performing method with 𝑝 < 0.001.

MSLR Yahoo!

CE↓ NDCG@10↑ CE↓ NDCG@10↑
Oracle - 0.3451 - 0.6713
Naïve 0.8205 0.3065 0.9786 0.6489
PBM 0.5474 0.3165 0.6807 0.6406
OPBM 0.1732∗ 0.3233∗ 0.1916∗ 0.6470∗

the propensities are highest on and around the outlier positions
which is in line with our findings in Section 3. However, this effect
is less evident in the top-3 ranks. This is expected since we observe
that position bias dominates in the top-3 ranks (see Section 3.2),
diminishing the effect of outliers. Nevertheless, the effect of position
bias decreases as the outlier appears higher in the ranking. For
example, when an outlier occurs at position 1, the propensities of
the first two ranks are 0.99 and 0.62, respectively. However, when
the outlier occurs at position 7, these values reduce to 0.52 and 0.35.

Next, we report the results of the semi-synthetic experiments.
We use the MSLR and Yahoo! public LTR datasets with simulated
clicks. We use the propensities calculated by OPBM𝑅𝑒𝑎𝑙 trained
on our proprietary data. We compare OPBM and PBM in terms of
relevance estimation (CE) and ranking performance (NDCG@10).
Table 4 summarizes the results; on both datasets OPBM performs
significantly better than PBM in terms of CE (𝑝 < 0.001), indicating
that OPBM approximates click propensities more effectively – it
estimates true relevance of a (𝑞, 𝑑) pair more accurately. Providing
an accurate estimate of true relevance is crucial in domains such
as exposure-based fair ranking [9, 24, 36], where relevance is used
as an indication of an item’s merit [9, 14, 24, 34, 36, 39], and can
have a big impact on fairness estimation. Table 4 also shows that
OPBM significantly improves the ranking scores (NDCG@10) over
the PBM baseline, again on both datasets.

In conclusion, using OPBM leads to more accurate propensity es-
timations and a more accurate approximation of the true relevance
in rankings affected by outlier items. We also observe significant
improvements in ranking performance by OPBM over PBM on the
Yahoo! and MSLR datasets.
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Figure 5: Comparison of different estimators in term of NDCG@10 ((a) MSLR and (b) Yahoo!) and CE ((c) MSLR and (d) Yahoo!)
under varying levels of outlier bias. Results are averaged over 8 runs; shaded area indicates the standard deviation.

Table 5: Comparison of OPBM, OPBM𝑙𝑎𝑧𝑦 and OPM on the Ya-
hoo! and MSLR datasets, with outlier bias severity of 𝛼 = 0.75,
and in terms of NDCG@10 and CE. A superscript ∗ indicates
a significant difference with PBM with 𝑝 < 0.001.

MSLR Yahoo!

CE↓ NDCG@10↑ CE↓ NDCG@10↑
Naïve 0.5704 0.3159 0.6776 0.6564
PBM 0.3126 0.3219 0.3958 0.6497
OPBM𝑙𝑎𝑧𝑦 0.1374∗ 0.3223 0.1548∗ 0.6566∗
OPBM 0.1283∗ 0.3229 0.1407∗ 0.6572∗

6.2 Effect of outlier bias severity
Next, we address (RQ3) by considering the impact of outlier bias
severity on the performance of OPBM. For the sake of simplicity, we
assume that outliers have the same effect on propensity distribution
independent of their position; we use OPBMG (see Section 5.2) for
click simulation. The parameter 𝛼 in OPBMG allows us to control
outlier bias severity. Figure 5 depicts the results. OPBM consistently
outperforms PBM in terms of ranking performance. The results
on Yahoo! dataset (Figure 5b) clearly show that the difference in
ranking performance of the two models increases with the severity
of outlier bias. In the case of MSLR (Figure 5a) we observe more
fluctuations in OPBM’s performance. This is also visible in the high
variance of Naïve’s performance in different runs; OPBM performs
more robust compared than Naïve and PBM. Moreover, the results
show that OPBM performs similarly to PBM at its worst, making it
a more reliable choice as a user examination model for all severity
levels of outlier bias. This is in line with our theory, which indicates
that PBM is a specific case of OPBM (see Section 4).

In terms of cross entropy (Figure 5c and 5d), OPBM consistently
outperforms PBM with a high margin. Also, the high variance in
performance of PBM emphasizes the much more robust perfor-
mance of OPBM compared to PBM in relevance estimation.

In conclusion, using the OPBM estimator leads to improved
ranking models compared to PBM, especially when severe outlier
bias exists. This finding also holds for accurately estimating the
true relevance scores (i.e., CE). In the presence of slight outlier bias,
OPBM exhibits a similar performance compared to PBM, making it
a natural choice as it proves to be reliable.

6.3 Generalization to multiple outliers
We address (RQ4) by considering how OPBM generalizes to multi-
ple outliers in the ranking. For click simulation, we use Equation 9
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Figure 6: Comparison of OPBM and OPBM 𝑙𝑎𝑧𝑦 on varying
sizes of queries with multiple outliers.

with severe outlier bias (𝛼 = 0.75). As pointed out before, our pro-
prietary data shows that 91% of abnormal rankings contain at most
two outliers. Therefore, we report results for |𝑂 ′ | = 2. Here, in
addition to the single outlier rankings from the previous experi-
ments, our semi-synthetic data contains rankings with two outliers
at positions 4 and 9. As mentioned earlier, position bias is severe in
the top-3 ranks, thus we place the first outlier in the fourth position
of the list. Then, in order to see the effect of the outliers separately,
we choose the second positions with some distance (rank 9).

To model the effect of multiple outliers, we propose two strate-
gies: (i) According to the original description of OPBM (see Sec-
tion 4), we consider the condition of having multiple outliers as a
separate value for 𝑜 , i.e., we separately compute the click propensi-
ties for 𝑘 ranks, when two outliers exist in the ranking at positions
4 and 9. (ii) We simplify the problem and only consider the first
outlier position, and call it OPBM 𝑙𝑎𝑧𝑦 . We compare the perfor-
mance of OPBM between these two strategies and also with PBM.
Table 5 summarizes the results. Overall, we see that both varia-
tions of OPBM outperform PBM in terms of NDCG@10 and CE.
As expected, OPBM outperform its simpler version, OPBM 𝑙𝑎𝑧𝑦

w.r.t. both metrics; we see significant improvements in CE, while
the improvements over ranking performance are marginal. We can
conclude that the original version of OPBM as the exact solution
performs better for cases with multiple outliers. However, in case
of data sparsity we can reduce the problem to the single outlier
setup and still achieve higher results than PBM.

Lastly, we provide insights into how the size of the training data
influences the performance of OPBM compared to OPBM 𝑙𝑎𝑧𝑦 . We
gradually increase the number of training queries for the rankings
with two outliers (positions 4 and 9), while keeping the rest of the
training set unchanged. We compare the performance in term of
CE on all rankings (overall), and only on the two outlier rankings
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(partial). See Figure 6. We see that even with 24 rankings with two
outliers, OPBM manages to learn the propensities better than the
OPBM 𝑙𝑎𝑧𝑦 . However, the difference between the total performance
(Figure 6a) of the two models grows by the size of training samples
for the two outliers rankings, suggesting OPBM as a natural choice
when a reasonable amount of training data is available.

In conclusion, when enough samples corresponding to multiple
outlier positions are available in the training data, it is best to use
OPBM with a specific 𝑜 that represents the case at hand. Other-
wise, reducing these samples to the single outlier setting, by only
considering the first outlier position, still outperforms PBM.

7 RELATEDWORK
Outliers. An outlier is an exceptional object that deviates from
the general data distribution [40]. Outliers can affect the statistical
analysis, whether they are interesting observations or suspicious
anomalies. Identifying these outlaying samples is crucial in many
fields of study [22, 40]. Numerous approaches have been proposed
to detect outliers [16, 22, 32, 33, 35, 47]. Defining and dealing with
outliers is dependent on the application domain [40]. We follow
the definition of outliers in ranking from [34]: outliers are items
that stand out in the ranking w.r.t. observable item features. They
study the effect of such items on the exposure distribution through
eye-tracking experiments and further address the effect of outliers
on exposure-based fairness. In contrast, in this work we focus on
click bias caused by this phenomenon.We are the first to investigate
the existence of outlier bias in real-world search click logs and to
propose an ULTR model to correct for outlier and position bias.
Bias in implicit feedback. Users’ implicit feedback, such as clicks,
can be a valuable source of supervision for CLTR [2]. However, the
bias in click data can cause the probability of a click to differ from
the probability of relevance, which is misleading. In recent years,
different types of bias have been studied, such as position [17, 19],
presentation [46], selection [27], trust [2, 38], popularity [1], and re-
cency bias [11]. Another factor influencing the perceived relevance
of items is inter-item dependency [12, 34]. We introduce outlier bias,
which is a type of inter-item dependency. As outlier bias considers
inter-item relationships it differs from the previously mentioned
types of bias. Our work suggests that users tend to interact more
with outlier items such that the examination probabilities assumed
by position bias change when outlier items exist in the ranking.

Presentation bias [46] considers a related phenomenon; items
with bold keywords in their titles appear more attractive. This
differs from outlier bias by defining attractiveness of an item inde-
pendent of its surrounding items. Moreover, adding more images
to the top positions in a search result page can influence CTR [23].
However, the effect of such manipulations on click bias has not
been studied. The closest concept to our work is context bias in
news-feed recommendation [44]; CTR is lower for products when
surrounded by at least one very similar product than when sur-
rounded by non-similar products. This differs from outlier bias,
which emphasizes the difference between the outlier and the other
items. Also, observability is a key factor in detecting outliers [34],
but context bias does not consider this factor. Unlike previous work,
we focus on the effect of outliers on clicks, which is observable by
users and comes from inter-item dependencies.

Unbiased learning to rank. Unbiased learning to rank approaches
train an unbiased ranking model directly with biased user feed-
back [7]. These approaches can be classified into counterfactual
learning to rank algorithms [6, 19, 42] and the bandit learning al-
gorithm [25, 41, 45]. In this paper we are concerned with CLTR.
The key factor in CLTR algorithms is first estimating examination
probabilities [6, 43] and then using IPS [19, 42] to debias clicks. The
estimations can be derived from online result randomization [42],
online interleaving [19], or intervention data harvested from multi-
ple rankers [3]. However,interventions can hurt user experience; Ai
et al. [6] propose a dual learning algorithm to automatically learn
both ranking models and propensities from offline data. Similarly,
Wang et al. [43] use regression-based expectation maximization
to compute the likelihood of observed clicks for each query. We
build on [43] and propose an unbiased ranking model that corrects
for both position bias and outlier bias by adding a parameter that
accounts for the position of outlier(s).

8 CONCLUSION
We have introduced and studied a new type of click bias, that is, out-
lier bias. We conduct a user study to compare the CTR for specific
items in two conditions: once shown as outliers and once as non-
outlier items in the list. We find that the CTR is consistently higher
when the item is presented as an outlier thanwhen it is a non-outlier
item. Moreover, our analysis on real-world search logs confirms
the findings of our user study. On average, outlier items receive
significantly more clicks than non-outlier items in the same lists.

To account for this effect, we propose OPBM, a click model based
on the examination hypothesis, which accounts for both outlier and
position bias. We use regression-based expectation maximization to
estimate the click propensities based on our proposed click model,
OPBM. Our experiments show (i) the superiority of OPBM against
compared models in terms of ranking performance, and (ii) that
true relevance estimation outlier bias exists. We show that OPBM
performs more robustly on all levels of outlier bias severity com-
pared to PBM. Moreover, our results show that OPBM performs
similarly to PBM in the worst case, making it a more reliable choice.

One limitation of our work is that for rankings with multiple
outliers, we assume that the effect of each outlier is independent of
its position and other outliers. We plan to investigate how multiple
outliers on the same ranking affect each other and their surrounding
items. Finally, a natural extension of ourwork is to study how outlier
bias can compensate for position bias in the top-𝑘 ranks, and explore
its use in different domains such as fairness of exposure.
Data and code. To facilitate reproducibility of our work, all code
and parameters are shared at https://github.com/arezooSarvi/outlierbias/.

ACKNOWLEDGMENTS
This research was supported by Ahold Delhaize and the Hybrid In-
telligence Center, a 10-year program funded by the Dutch Ministry
of Education, Culture and Science through the Netherlands Organi-
sation for Scientific Research, https://hybrid-intelligence-centre.nl.
All content represents the opinion of the authors, which is not nec-
essarily shared or endorsed by their respective employers and/or
sponsors.

https://github.com/arezooSarvi/outlierbias/
https://hybrid-intelligence-centre.nl


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Sarvi et al.

REFERENCES
[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling

Popularity Bias in Learning-to-rank Recommendation. In RecSys. 42–46.
[2] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.

2019. Addressing Trust Bias for Unbiased Learning-to-rank. In WWW. 4–14.
[3] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-
tions. In WSDM. 474–482.

[4] Praveen Aggarwal and Rajiv Vaidyanathan. 2016. Is Font Size a Big Deal? A
Transaction–Acquisition Utility Perspective on Comparative Price Promotions.
Journal of Consumer Marketing (2016).

[5] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying Search Results. In WSDM. 5–14.

[6] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbi-
ased Learning to Rank with Unbiased Propensity Estimation. In SIGIR. 385–394.

[7] Qingyao Ai, Tao Yang, HuazhengWang, and Jiaxin Mao. 2021. Unbiased Learning
to Rank: Online or Offline? ACM Transactions on Information Systems (TOIS) 39,
2 (2021), 1–29.

[8] Chittaranjan Andrade. 2018. Internal, External, and Ecological Validity in Re-
search Design, Conduct, and Evaluation. Indian journal of psychological medicine
40, 5 (2018), 498–499.

[9] Asia J Biega, Krishna PGummadi, andGerhardWeikum. 2018. Equity of Attention:
Amortizing Individual Fairness in Rankings. In SIGIR. 405–414.

[10] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview. Journal of Machine Learning Research 14 (2011), 1–24.

[11] Ruey-Cheng Chen, Qingyao Ai, Gaya Jayasinghe, and W Bruce Croft. 2019.
Correcting for Recency Bias in Job Recommendation. In CIKM. 2185–2188.

[12] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Morgan & Claypool Publishers.

[13] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention
Harvesting for Context-dependent Examination-bias Estimation. In SIGIR. 825–
834.

[14] Maria Heuss, Fatemeh Sarvi, and Maarten de Rijke. 2022. Fairness of Exposure
in Light of Incomplete Exposure Estimation. In SIGIR. 759–769.

[15] Rolf Jagerman, Harrie Oosterhuis, and Maarten de Rijke. 2019. To Model or to
Intervene: A Comparison of Counterfactual and Online Learning to Rank from
User Interactions. In SIGIR. 15–24.

[16] Wen Jin, Anthony K. H. Tung, Jiawei Han, and Wei Wang. 2006. Ranking Outliers
Using Symmetric Neighborhood Relationship. In PAKDD. 577–593.

[17] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately Interpreting Clickthrough Data as Implicit Feedback. In SIGIR.
154–161.

[18] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the Accuracy of Implicit Feedback from Clicks
and Query Reformulations in Web Search. ACM Transactions on Information
Systems (TOIS) 25, 2 (2007), 7–es.

[19] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-rank with Biased Feedback. In WSDM. 781–789.

[20] Karen C Kao, Sally Rao Hill, and Indrit Troshani. 2020. Effects of Cue Congruence
and Perceived Cue Authenticity in Online Group Buying. Internet Research
(2020).

[21] David J Lewkowicz. 2001. The Concept of Ecological Validity: What Are Its
Limitations and Is It Bad to Be Invalid? Infancy 2, 4 (2001), 437–450.

[22] Zheng Li, Yue Zhao, N Botta, C Ionescu, and X COPOD Hu. 2020. COPOD:
Copula-based Outlier Detection. In ICDM. 17–20.

[23] Pavel Metrikov, Fernando Diaz, Sebastien Lahaie, and Justin Rao. 2014. Whole
Page Optimization: How Page Elements Interact with the Position Auction. In
EC. 583–600.

[24] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020. Con-
trolling Fairness and Bias in Dynamic Learning-to-rank. In SIGIR. 429–438.

[25] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable Unbiased Online
Learning to Rank. In CIKM. 1293–1302.

[26] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-aware Unbiased Learning
to Rank for Top-k Rankings. In SIGIR. 489–498.

[27] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.
2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW.
1863–1873.

[28] Przemyslaw Pobrotyn, Tomasz Bartczak, Mikolaj Synowiec, Radoslaw Bialo-
brzeski, and Jaroslaw Bojar. 2020. Context-Aware Learning to Rank with Self-
Attention. ArXiv abs/2005.10084 (2020).

[29] Prolific. 2023. Data Annotation. https://www.prolific.co/.
[30] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint

arXiv:1306.2597 (2013).
[31] Qualtrics. 2023. XM. https://www.qualtrics.com/.
[32] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient Algo-

rithms for Mining Outliers from Large Data Sets. In SIGMOD. 427–438.
[33] Peter J Rousseeuw and Katrien Van Driessen. 1999. A Fast Algorithm for the

Minimum Covariance Determinant Estimator. Technometrics 41, 3 (1999), 212–
223.

[34] Fatemeh Sarvi, Maria Heuss, Mohammad Aliannejadi, Sebastian Schelter, and
Maarten de Rijke. 2022. Understanding and Mitigating the Effect of Outliers in
Fair Ranking. In WSDM. 861–869.

[35] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. 2001. Estimating the Support of a High-dimensional Distribution.
Neural Computation 13, 7 (2001), 1443–1471.

[36] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of Exposure in Rankings.
In KDD. 2219–2228.

[37] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2021. Mixture-Based Correction
for Position and Trust Bias in Counterfactual Learning to Rank. In CIKM. 1869–
1878.

[38] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse
Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to
Rank. In CIKM. 1475–1484.

[39] Ali Vardasbi, Fatemeh Sarvi, and Maarten de Rijke. 2022. Probabilistic Permuta-
tion Graph Search: Black-BoxOptimization for Fairness in Ranking. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Madrid, Spain) (SIGIR ’22). 715–725.

[40] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. 2019. Progress
in Outlier Detection Techniques: A Survey. IEEE Access 7 (2019), 107964–108000.

[41] HuazhengWang, Ramsey Langley, Sonwoo Kim, Eric McCord-Snook, and Hongn-
ing Wang. 2018. Efficient Exploration of Gradient Space for Online Learning to
Rank. In SIGIR. 145–154.

[42] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to Rank with Selection Bias in Personal Search. In SIGIR. 115–124.

[43] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal
Search. In WSDM. 610–618.

[44] Xinwei Wu, Hechang Chen, Jiashu Zhao, Li He, Dawei Yin, and Yi Chang. 2021.
Unbiased learning to rank in feeds recommendation. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. 490–498.

[45] Yisong Yue and Thorsten Joachims. 2009. Interactively Optimizing Information
Retrieval Systems as A Dueling Bandits Problem. In ICML. 1201–1208.

[46] Yisong Yue, Rajan Patel, andHein Roehrig. 2010. Beyond Position Bias: Examining
Result Attractiveness as a Source of Presentation Bias in Clickthrough Data. In
WWW. 1011–1018.

[47] Yue Zhao, Zain Nasrullah, Maciej K Hryniewicki, and Zheng Li. 2019. LSCP:
Locally Selective Combination in Parallel Outlier Ensembles. In ICDM. 585–593.


	Abstract
	1 Introduction
	2 Outliers in ranking
	3 Impact of Item Outlierness on Clicks
	3.1 User study
	3.2 Real-world click logs

	4 Outlier-aware Position-Based Model
	5 Experimental Setup
	5.1 Data
	5.2 Click simulation
	5.3 Methods used for comparison
	5.4 Evaluation metrics

	6 Results
	6.1 Propensity estimation with OPBM
	6.2 Effect of outlier bias severity
	6.3 Generalization to multiple outliers

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

