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ABSTRACT
Modern search and recommendation systems are optimized using
logged interaction data. There is increasing societal pressure to
enable users of such systems to have some of their data deleted
from those systems. This paper focuses on “unlearning” such user
data from neighborhood-based recommendation models on sparse,
high-dimensional datasets. We present caboose, a custom top-𝑘
index for such models, which enables fast and exact deletion of
user interactions. We experimentally find that caboose provides
competitive index building times, makes sub-second unlearning
possible (even for a large index built from one million users and
256 million interactions), and, when integrated into three state-
of-the-art next-basket recommendation models, allows users to
effectively adjust their predictions to remove sensitive items.

CCS CONCEPTS
• Information systems→ Data management systems; Recom-
mender systems.
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1 INTRODUCTION
Ranking methods optimize search and recommendation systems
so that the resulting rankings perform well for a given metric.
Traditionally, most ranking methods applied a supervised learning
procedure based on manually-created judgments. As an alternative,
ranking methods have been developed that rely on logged user
interactions [17].
The “right to be forgotten”. Recent law such as the “right to be
forgotten” in Europe [General Data Protection Regulation (GDPR),
Article 17, 9] requires organizations to delete personal user data,
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including interaction data, upon request: “The data subject shall
have the right to [. . . ] the erasure of personal data [. . . ] where the
data subject withdraws consent.” Research on “machine unlearn-
ing” [4, 11, 16, 30, 35, 37, 38] argues that it is insufficient to delete
personal data from primary data stores; machine learning models
that have been trained on the stored data also fall under the regula-
tion. Outside Europe, similar regulations are being adopted [1, 34].
The need for timely machine unlearning. GDPR does not spec-
ify how soon data must be erased after a deletion request [31], yet
it states the “obligation to erase personal data without undue de-
lay” [9] using “appropriate and effective measures” [10]. Currently,
data erasure seems to be a rather tedious and lengthy process in
practice; e.g., data erasure from active systems in the cloud can take
up to two months [31]. Not being able to enforce this right in a
timely manner can have dramatic consequences in practice [36].

Therefore, we need to design search and recommendation ap-
proaches with timely “unlearning” capabilities, to empower users
to quickly delete their interaction data and adjust their predictions
on demand. For such unlearning methods to be effective in practice,
they have to be (i ) fast, to allow users to interactively delete their
data from existing models, and (ii ) exact, (e.g., no approximate up-
dates, no hyperparameters to tune, no restriction on the maximum
number of updates), to be easy to integrate into existing models.
Unfortunately, machine unlearning is a hard problem, and existing
general solutions either require partial iterative retraining of the
underlying model [13, 16, 38] (and are therefore not fast), and/or
can only conduct approximate updates for a small number of data
points [13, 16, 20] (and are therefore not exact). Recent approaches
to unlearning in recommendation such as RecEraser [5] inherit
these limitations and conduct partial retraining, which can take
several hours even for small datasets with 10 million interactions.
Fast and exact unlearning for neighborhood-based recom-
mendation. Fast and exact unlearning is still possible under certain
algorithmic and data-specific conditions. One such condition are
𝑘-nearest neighbor (kNN) models trained on sparse data. Such mod-
els are highly relevant for recommender systems, which work with
extremely sparse interaction data. User-centric kNN models have a
long tradition in this area, ranging from classical user-based collab-
orative filtering [28] to recent state-of-the-art algorithms in session-
based [23, 24], session-aware [22], next-basket (NBR) [7, 14], and
within-basket recommendation [3]. Moreover, compared to neural
approaches to recommendation, kNN models are more transparent
and explainable [24], cheap to scale to industry workloads [19] and
often require an order of magnitude less training time [18].
Our contributions. We formalize the unlearning problem for kNN
models in Section 2. Next, we detail caboose, an in-memory index
of the top-𝑘 most similar users in a sparse interaction dataset, which
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enables unlearning of interactions in a fast and exact manner (Sec-
tion 3). We achieve this by exploiting sparsity, choosing efficient
data structures and parallelizing updates, while building upon ex-
isting work on fast indexing [32]. Our experimental evaluation in
Section 4 shows that caboose provides competitive index building
times, makes sub-second unlearning possible (even for a large in-
dex built from 1 million users and 256 million interactions), and,
when integrated into state-of-the-art NBR models, allows users to
effectively adjust their predictions to remove sensitive items. Fur-
thermore, we share an implementation of caboose in Rust under
an open license at https://github.com/amsterdata/caboose.

2 PROBLEM STATEMENT
We focus on user-centric kNN models for recommendation [3, 7,
14, 28]. These approaches typically model the interactions of 𝑛
users with𝑚 items via a sparse matrix 𝑼 ∈ R𝑛×𝑚 and compute
the top-𝑘 similar users per user from this matrix, based on a sim-
ilarity function between rows, which we denote Φ. At training
time, such user-centric kNN models build an index of the top-
𝑘 similar users per user. We denote this index with T𝑼 and as-
sume that it is built via a procedure build_index(𝑼 ,Φ, 𝑘). An en-
try T𝑼 (𝑖) = [(𝒖𝑠1 , 𝜙𝑖𝑠1 ), . . . , (𝒖𝑠𝑘 , 𝜙𝑖𝑠𝑘 )] of this index for a user 𝒖𝑖
contains the 𝑘 most similar users 𝒖𝑠1 , . . . , 𝒖𝑠𝑘 with their correspond-
ing similarities 𝜙𝑖𝑠1 , . . . , 𝜙𝑖𝑠𝑘 . At inference time, such a top-𝑘 index
provides 𝑂 (1) access to the neighbors of a particular user.

In order to enable unlearning for user-centric kNN models, we
have to answer the following research question: Given an existing
index T𝑼 and an interaction 𝑢𝑖𝑔 of a user 𝑖 with an item 𝑔 to unlearn,
how can we efficiently compute T(𝑼−𝑢𝑖𝑔 )?

This deletion affects more than just the entry T𝑼 (𝑖), as the user
𝒖𝑖 could be contained in the top-𝑘 entries of many other users! We
could obviously simply re-compute the top-𝑘 index from scratch as
T(𝑼−𝑢𝑖𝑔 ) = build_index(𝑼 −𝑢𝑖𝑔,Φ, 𝑘). However, this is expensive,
as recomputing the index from scratch can take many hours for
large datasets, and wastes a lot of computation, as T𝑼 and T(𝑼−𝑢𝑖𝑔 )
are likely to only differ in a relatively small number of entries.
Furthermore, this problem is not solved by existing vector indexes
such as FAISS [27], Pinecone [26] or Hnswlib [8], which support
deletions, but are designed for approximate search on dense vectors
with a comparatively small number of dimensions only.

3 PROPOSED APPROACH
To tackle our research question, we design caboose, an in-memory
index of the top-𝑘 most similar users in a sparse interaction dataset,
which enables unlearning interactions in a fast and exact manner.

Caboose provides an algorithm forget to unlearn an inter-
action 𝑢𝑖𝑔 from an existing index T𝑼 , which produces the same
result T(𝑼−𝑢𝑖𝑔 ) as re-computing the index from scratch without
the interaction to unlearn:
T(𝑼−𝑢𝑖𝑔 ) = forget(T𝑼 , 𝑢𝑖𝑔,Φ, 𝑘) = build_index(𝑼 − 𝑢𝑖𝑔,Φ, 𝑘).

At an abstract level, our forget algorithm proceeds in four stages
to derive the updated index T(𝑼−𝑢𝑖𝑔 ) from an existing index T(𝑼 ) :
• Stage 1: Update 𝑼 to 𝑼 − 𝑢𝑖𝑔 , update 𝑼⊤ to (𝑼 − 𝑢𝑖𝑔)⊤ and the
precomputed norm of 𝒖𝑖 to reflect the deletion of 𝑢𝑖𝑔 .
• Stage 2: Recompute the dot products (𝒖𝑖−𝑢𝑖𝑔) (𝑼−𝑢𝑖𝑔)⊤ involving
𝒖𝑖 to obtain its updated similarities and identify the set of affected
top-𝑘 entries 𝑅.

indptr (n+1)
indices (nnz(U))
data (nnz(U))

indptr_t (m+1)
indices_t (nnz(U))
data_t (nnz(U))

norms (n)

sorted_keys (n · k)

heaps (n · 2k)

topk (n)

 matrix UT in CSR format

 matrix U in CSR format

 row norms and top-k entries

Figure 1: Index layout in memory.

• Stage 3: Inspect and (where possible) directly update the top-𝑘
entry T𝑼 (𝑟 ) for each row 𝑟 ∈ 𝑅 affected by the deletion of 𝑢𝑖𝑔 .
• Stage 4: Recompute the top-𝑘 entries from scratch for rows in 𝑅,
which cannot be directly updated.

For this algorithm to be efficient in practice, we design it with the
following characteristics in mind: (𝑖) We exploit sparsity wherever
possible to only work with the top-𝑘 entries directly affected by
the unlearning operation. Hence, we restrict our approach to sim-
ilarity functions which are zero if the dot product between two
rows is zero, and which can be computed from the dot product
and norms of vectors. As a result, we can ignore pairs of users
without a shared item interaction. This class involves many com-
monly used similarity measures, e.g., cosine similarity, computed
as 𝜙𝑖 𝑗 = 𝒖⊤

𝑖
𝒖 𝑗/(∥𝒖𝑖 ∥ ∥𝒖 𝑗 ∥) or Jaccard similarity. (𝑖𝑖)We parallelize

the individual stages of our algorithm, and (𝑖𝑖𝑖) choose appropriate
data structures that enable efficient low-level operations (e.g., com-
pressed representations for sparse matrices and binary heaps for
top-𝑘 lists).
Index layout. The memory layout of caboose is shown in Fig-
ure 1. It enables efficient row-wise and column-wise access to 𝑼 ,
by holding 𝑼 and 𝑼⊤ in compressed sparse row form (CSR). CSR
represents a matrix with three arrays: the array data contains its
non-zero values, and the array indices holds the corresponding
column indices, and both are accessed through the array indptr
which denotes the range of columns belonging to each row. Also,
caboose contains an array norms for the norm of each row (e.g.,
the 𝐿2-norm for cosine similarity). The top-𝑘 entries T𝑼 are repre-
sented by the 𝑛-dimensional array topk, where each entry topk[𝑖]
represents T𝑼 (𝑖), and contains a binary heap of length 𝑘 , which
stores tuples of row identifiers and the corresponding similarity
scores. The tuple with the 𝑘-largest similarity score is at the heap
root, which enables us to check in 𝑂 (1) time if a new similarity
tuple is among the 𝑘-largest tuples, and insert such a tuple with
complexity 𝑂 (log𝑘). Each entry additionally contains a sorted ar-
ray sorted_keys of length 𝑘 with the row identifiers from the heap
to enable 𝑂 (log𝑘) membership tests for keys via binary search.

This design is inspired by [32] and we build our index accord-
ingly: We precompute the norms for all rows, execute a sparse
vector matrix multiplication 𝒖𝑖 𝑼⊤ for each row 𝒖𝑖 in parallel to
obtain its dot products with other rows, calculate the final similarity
based on the precomputed norms and extract the top-𝑘 similar rows
afterwards.
Unlearning algorithm. Next, we detail in Algorithm 1 how to
efficiently conduct the four stages for unlearning an interaction 𝑢𝑖𝑔
of user 𝑖 with item 𝑔 from an existing index T𝑼 .

https://github.com/amsterdata/caboose
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Algorithm 1 Unlearning an interaction 𝑢𝑖𝑔 from the index T𝑼 .
1: function forget(row 𝑖 , column 𝑔)

// Stage 1 – Updating 𝑼 , 𝑼⊤ and the precomputed norms
2: norms[i]← update_norm(norms[i],𝑢𝑖𝑔 )
3: set entry corresponding to (𝑖, 𝑔) in data to 0
4: set entry corresponding to (𝑔, 𝑖 ) in data_t to 0

5: 𝐴← ∅ // Stage 2 – Parallel computation of (𝒖𝑖 − 𝑢𝑖𝑔 ) (𝑼 − 𝑢𝑖𝑔 )⊤
6: parfor 𝒄 ∈ [indptr[𝑖 ], . . . , indptr[𝑖 + 1] ] in partitions of size𝑚/#cores do
7: 𝑎 ← accumulator of capacity 𝑛
8: for 𝑗 ∈ 𝒄 do sparse_mult(𝑎, 𝑗 )
9: 𝐴← 𝐴 ∪ 𝑎
10: end parfor
11: (R, tnew)← merge_and_collect(𝑖 , 𝑘 , norms,𝐴)
12: topk[i]← tnew

13: 𝐹 ← ∅ // Stage 3 – Parallel update of affected top-𝑘 entries
14: parfor (𝑟, 𝜙𝑖𝑟 ) ∈ 𝑅 do
15: if ¬find_with_binary_search(𝑖, topk[𝑟 ] .sorted_keys) then
16: if 𝜙𝑖𝑟 > root of topk[𝑟 ] .heap then update_root(topk[𝑟 ], (𝑖, 𝜙𝑖𝑟 ) )
17: else
18: if 𝜙𝑖𝑟 ≠ 0 then
19: if 𝜙𝑖𝑟 < root of topk[𝑟 ] .heap then 𝐹 ← 𝐹 ∪ 𝑟
20: else update_topk(topk[𝑟 ], (𝑖, 𝜙𝑖𝑟 ) )
21: else
22: if |topk[𝑟 ] | < 𝑘 then remove_from_topk(topk[𝑟 ], 𝑖 )
23: else 𝐹 ← 𝐹 ∪ 𝑟
24: end parfor

// Stage 4 – Parallel recomputation of non-updatable top-𝑘 entries
25: parfor 𝒄 ∈ 𝐹 in partitions of size 1024 do
26: 𝑎 ← accumulator of capacity 𝑛
27: for 𝑟 ∈ 𝒄 do
28: for 𝑗 ∈ [indptr[𝑟 ], . . . , indptr[𝑟 + 1] ] do sparse_mult(𝑎, 𝑗 )
29: topk[r]← topk_and_clear(𝑎, 𝑟, 𝑘, norms)
30: end parfor

31: function sparse_mult(accumulator 𝑎, pointer 𝑗 )
32: for 𝑙 ∈ [indptr_t[indices[ 𝑗 ] ], . . . , indptr_t[indices[ 𝑗 + 1] ] ] do
33: accumulate(𝑎, indices_t[𝑙 ], data_t[𝑙 ] · data[ 𝑗 ])

Stage 1 – Updating 𝑼 , 𝑼⊤ and the precomputed norms. Lines 2–
4 in Algorithm 1 update the stored norm of 𝒖𝑖 according to the
norm required for the similarity (e.g., to sqrt(norms[𝑖]2 −𝑢2

𝑖𝑔
) for

cosine similarity) and set the entries corresponding to 𝑢𝑖𝑔 in the
CSR representations of 𝑼 and 𝑼⊤ to 0.
Stage 2 – Parallel dot product updates (𝒖𝑖 −𝑢𝑖𝑔) (𝑼 −𝑢𝑖𝑔)⊤. Next, we
recompute the dot products for the updated row 𝒖𝑖 by computing
(𝒖𝑖 −𝑢𝑖𝑔) (𝑼 −𝑢𝑖𝑔)⊤ via sparse parallel vector matrix multiplication
in Lines 5–10. From the result, we obtain the updated top-𝑘 similari-
ties tnew (representing T𝑼−𝒖𝑖𝑔

(𝑖)), updated similarities and affected
rows 𝑅 (which have a non-zero dot product with 𝒖𝑖 ) (Line 11).
Stage 3 – Parallel updates of affected top-k entries. Next, we inspect
and potentially change each entry T𝑼 (𝑟 ) for an affected row 𝒖𝑟 ∈ 𝑅
with an updated similarity 𝜙𝑖𝑟 between 𝒖𝑖 and 𝒖𝑟 (Lines 13–24).
Note that we need to distinguish several cases here:
• Not-in-top-𝑘 : In Line 15 we first test whether the row 𝒖𝑖 is al-
ready part of the top-𝑘 entry T𝑼 (𝑟 ) of 𝒖𝑖 via binary search on
topk[𝑟 ] .sorted_keys. If 𝒖𝑖 is not contained, we check whether
the unlearning operation changed 𝒖𝑖 to be part of the top-𝑘 entry
of 𝒖𝑖 by comparing the new similarity 𝜙𝑖𝑟 to the heap root of
topk[𝑟 ] (the 𝑘-largest similarity to 𝒖𝑟 ). If this holds, we update
the corresponding top-𝑘 entry via update_root in Line 16.
• Already-in-top-𝑘 : If 𝒖𝑖 is already in the top-𝑘 of 𝒖𝑟 and the up-
dated similarity 𝜙𝑖𝑟 is non-zero, then we have to distinguish two
cases: (𝑖) if 𝜙𝑖𝑟 is not smaller than the current heap root, we can
simply recreate the corresponding heap to reflect the changed

Table 1: Sparse interaction datasets used for evaluation.
Dataset Domain #Users #Items #Interactions

movie [12] movie 69,879 10,678 10,000,055
lastfm [21] band 993 174,078 19,150,868
syn [29] synthetic 100,000 50,000 50,000,000
spotify [33] song 1,000,000 2,262,292 66,346,428
yahoo [39] song 1,000,991 624,962 256,804,236

similarity (Line 20). Otherwise, (𝑖𝑖) the 𝑘 + 1th element (which
is not contained in the index) might actually be larger than the
updated one for 𝒖𝑖 , therefore we need to recompute the top-𝑘
entry for 𝒖𝑟 from scratch. We add 𝑟 to the set 𝐹 to schedule this
recomputation later (Line 19).
• To-be-removed-from-top-𝑘 : The trickiest case is when 𝒖𝑖 has
been in the top-𝑘 of 𝒖𝑟 already, but the unlearning operation
results in a zero similarity 𝜙𝑖𝑟 (Line 21). This happens if 𝑔 is the
last shared non-zero column between 𝒖𝑖 and 𝒖𝑟 . We distinguish
two cases here: (𝑖) if there are less than 𝑘 similar rows for 𝒖𝑟 in
the data anyway, we can just delete 𝒖𝑖 from the top-𝑘 entry of
𝒖𝑟 via remove_from_topk (Line 22). However, (𝑖𝑖) if the top-𝑘
entry of 𝒖𝑟 has 𝑘 elements, than we would need to remove 𝒖𝑖
and replace it with the (𝑘 + 1)-st most similar row (which is not
stored in the current index). As a consequence, we again need to
recompute the top-𝑘 entry for 𝒖𝑟 from scratch, and add 𝑟 to the
set 𝐹 to schedule this recomputation later (Line 23).

Stage 4 – Parallel recomputation of non-updatable top-k entries. We
finally recompute the non-updatable top-𝑘 entries contained in the
set 𝐹 from scratch via parallel sparse vector matrix multiplications
in Lines 25–30. We empirically find this to happen rarely.
Due to lack of space, we refer to our shared code repository for
details on the accumulators and update functions.

4 EXPERIMENTAL EVALUATION
We implement caboose in Rust and evaluate it on five sparse in-
teraction datasets listed in Table 1. We use cosine similarity for
the index, and if not reported otherwise, run experiments on a
machine with a four-core Intel i7-8569U CPU @2.80GHz, 16GB
of RAM and MacOS 12.6. Our experiment code is available at
https://github.com/amsterdata/caboose.
Experiment 1: Index building time. In our first experiment,
we showcase that caboose can be built in a time that is competi-
tive with existing approaches. We compute the top-𝑘 similar users
for all datasets with 𝑘 = 50 using our index and two baselines:
similaripy [32] from the RecSys Challenge 2018, and unsuper-
vised nearest neighbors from sklearn [25]. We repeat each run
seven times and report the mean time to build the index. Note that
we run the experiments for spotify and yahoo on a larger machine
with 64 AMD EPYC 7H12 2.6 GHz cores and AlmaLinux 8.6, as the
experiment would take several days otherwise.
Results and discussion. Figure 2 plots the mean runtimes in mil-
liseconds on a logarithmic scale. We had to cancel the experiments
for sklearn on the large datasets, as this implementation did not
manage to make proper use of all cores of the system. We find
that caboose outperforms sklearn in all cases by a factor of up
to 2.26 and similaripy in three out of five datasets by a factor of
up to 2.27. We attribute the runtime differences with similaripy

https://github.com/amsterdata/caboose
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for different datasets.

to different optimization choices in the underlying parallelization
libraries OpenMP and rayon. We conclude that our index building
time is competitive, even though caboose has to conduct extra
work for its unlearning capability. Additionally, we see that the
unlearning functionality becomes crucial when scaling to large
datasets, where indexing can take several hours.
Experiment 2: Low-latency unlearning. The goal of our next
experiment it to show that caboose can unlearn interactions with
sub-second latency, and is thereby fast enough for interactive use.
We build indexes with 𝑘 ∈ [10, 50, 100] for our datasets. Next,
we randomly choose 500 interactions to forget and measure the
median (p50) and 90-th percentile (p90) of the unlearning time
per interaction. We cannot include similaripy or sklearn in this
experiment, as they lack unlearning functionality.
Results and discussion. Figure 3 plots the unlearning latencies in
milliseconds on a logarithmic scale. caboose unlearns interactions
very fast with a median latency of less than 100ms for all datasets,
except for yahoo. Even for this large dataset with over one million
users, our index still achives sub-second unlearning latencies with a
p50 of 317ms and a p90 of 550ms. In the majority of cases, unlearn-
ing an interaction is about four orders of magnitude faster than
rebuilding the index from scratch. For lastfm, unlearning always
takes less than a millisecond, due to the low number of users in
this dataset. Additionally, we observe that the range of 𝑘 has a low
impact on the unlearning latency, the p50 latencies for spotify
and yahoo only increase by 4.7% and 11.9% when we increase 𝑘
from 10 to 100. These findings confirm that caboose is suitable for
interactive use, as end users in general perceive response latencies
below 500ms as instantaneous [2].
Experiment 3: Prediction adjustment via unlearning. Next,
we integrate caboose into the Python implementations of the three
recent state-of-the-art NBR approaches TIFU-KNN [14], PerNIR [3]
and UP-CF@r [7], to enhance them with unlearning functionalities.
Note that PerNIR is originally proposed for within-basket recom-
mendation, but can be used as a NBR model assuming the cur-
rent basket is empty. We implement an algorithm-specific forget
method for each approach, which uses caboose to unlearn interac-
tions and updates algorithm-specific internal data structures.

In our last experiment, we showcase that unlearning selected
interactions provides a simple way for users to adjust their predic-
tions from recommendation models, e.g., to remove sensitive items
from their recommendations. There is no hard guarantee for this
to work, as the impact of removals depends on the model details
and co-occurrence structure in the data. In the worst, a user could
simply unlearn all interactions stored for them to get rid of any
personalized recommendations. We evaluate a simple strategy in
an e-commerce setting: We assume that a user does not want to see

Table 2: Impact of unlearning sensitive items from user his-
tories to remove sensitive items from their predictions.
Sensitive Users affected Removal success

category TIFU PerNIR UP-CF TIFU PerNIR UP-CF

baby items 22.4% 23.5% 21.5% 100.00% 100.00% 99.80%
meat 36.3% 37.5% 35.3% 100.00% 100.00% 99.79%
alcohol 33.1% 33.2% 35.3% 99.65% 99.62% 97.90%

products from a certain sensitive product category, even though
they interacted with such products in the past. If the user is exposed
to recommendations with such sensitive items, they ask the system
to unlearn their past interactions with products from this sensitive
category. We use the instacart30k [15] dataset for grocery shopping
as a basis for the experiment. We define three types of sensitive
product categories: (𝑖) baby items motivated by a report on a re-
cent traumatizing case [36], (𝑖𝑖) meat-related categories to mimic
a person changing to a vegetarian diet, and (𝑖𝑖𝑖) alcohol-related
categories to mimic a person suffering from alcohol addiction.

For each sensitive category, we sample the baskets of 1,000 users
who bought at least one item from this category, determine the
other non-sensitive categories in their baskets, and sample 1,000
additional users who bought items from these categories but not
from the sensitive category. We train the models on this dataset of
2,000 users (with default hyperparameters), and inspect the top-10
predicted items for each user with sensitive purchases. If such a
user has sensitive items in their predictions, we make the model
forget all the user’s historical interactions with items from the sen-
sitive category, recompute the predictions for the user and check
if any sensitive items remain in the top-10 predictions. We repeat
this experiment with seven random seeds for the three models and
three categories, and report the mean number of affected users (who
initially had sensitive items in their recommendations) and the frac-
tion of such users where the simple unlearning strategy successfully
removed the sensitive items from their recommendations.
Results and discussion. We detail the results of this experiment in
Table 2. Across all models and categories, a large fraction (between
21.5% and 37.5%) of users who interacted with sensitive items also
get exposed to sensitive items in their top-10 predictions. The simple
removal strategy of forgetting past interactions with sensitive items
is very effective, and removes almost all sensitive items from the
predictions. It fails in a small number of cases (mostly for alcohol),
which we attribute to the strong coocurrence between an alcoholic
beverage and non-alcoholic items like certain dishes in the data;
here the user would have to forget these interactions as well.

5 CONCLUSION
We formalized the problem of unlearning for kNNmodels on sparse
data, and detailed how to unlearn interactions in a fast and exact
manner from a custom in-memory top-𝑘 index. For future work,
we plan to integrate GraphBLAS [6] for accelerating our sparse
operations. We aim to avoid the potential full recomputation of
individual top-𝑘 entries from a “budget” of more than the required
𝑘 most similar users computed at indexing time.
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