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ABSTRACT
Evaluation methods for information retrieval systems come in three
types: offline evaluation, using static data sets annotated for rele-
vance by human judges; user studies, usually conducted in a lab-
based setting; and online evaluation, using implicit signals such as
clicks from actual users. For the latter, preferences between rankers
are typically inferred from implicit signals via interleaved compar-
ison methods, which combine a pair of rankings and display the
result to the user. We propose a new approach to online evaluation
called multileaved comparisons that is useful in the prevalent case
where designers are interested in the relative performance of more
than two rankers. Rather than combining only a pair of rankings,
multileaved comparisons combine an arbitrary number of rankings.
The resulting user clicks then give feedback about how all these
rankings compare to each other. We propose two specific multi-
leaved comparison methods. The first, called team draft multileave,
is an extension of team draft interleave. The second, called op-
timized multileave, is an extension of optimized interleave and is
designed to handle cases where a large number of rankers must be
multileaved. We present experimental results that demonstrate that
both team draft multileave and optimized multileave can accurately
determine all pairwise preferences among a set of rankers using far
less data than the interleaving methods that they extend.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval
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1. INTRODUCTION
Deployed search engines often have several teams of engineers

tasked with developing potential improvements to the current pro-
duction ranker. To determine whether the candidate rankers they
develop are indeed improvements, such teams need experimental
feedback about their performance relative to the production ranker.
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However, in order to develop and refine those candidate rankers in
the first place, they also need more detailed feedback about how the
candidate rankers compare to each other. For example, to explore a
parameter space of interest, they may be interested in the relative
performance of multiple rankers in that space.

Several existing approaches could be used to generate this feed-
back. Firstly, assessors could produce relevance assessments from
which offline metrics (e.g., MAP, nDCG, ERR [23]) could be com-
puted. However, offline metrics do not tell the whole story since
relevance assessments come from assessors, not users. Secondly,
online experiments could generate user feedback such as clicks from
which rankers could be evaluated. In particular, interleaved com-
parison [15, 16] methods enable such evaluations with greater data
efficiency than A/B testing [22]. But teams of engineers can easily
produce enough candidate rankers that comparing all of them to
each other using interleaving methods quickly becomes infeasible.

To address this difficulty, we propose a new evaluation paradigm,
which we call multileaved comparison, that makes it possible to
compare more than two rankers at once. Multileaved comparisons
can provide detailed feedback about how multiple candidate rankers
compare to each other using much less interaction data than would
be required using interleaved comparisons.

In particular, we propose two specific implementations of multi-
leaved comparisons. The first, which we call team draft multileave
(TDM), builds off of team draft (TD) [22], an interleaving method
that assigns documents in the interleaved list to a team per ranker.
Surpisingly, only a minor extension to TD is necessary to enable
it to perform multileaved comparisons, yielding TDM. However,
despite its appealing simplicity, TDM has the important drawback
that it requires multileavings, i.e., the result lists shown to the user,
to be long enough to represent teams for each ranker.

Therefore, we propose a second method that we call optimized
multileave (OM), which builds off of optimized interleave (OI) [21],
an interleaved comparison method that uses a prefix constraint to
restrict the allowed interleavings to those that are “in between” the
two rankers and then solves an optimization problem to ensure un-
biasedness and maximize sensitivity of the interleavings shown to
users. OM requires deriving a new prefix constraint, new definitions
of unbiasedness and sensitivity, a new credit function upon which
these definitions depend, and a new sampling scheme to make opti-
mization tractable. Because it avoids the limitations of TDM, OM
is better suited to handle larger numbers of rankers.

We present experimental results on several datasets that aim to
answer the following research questions.

RQ1 Can multileaved comparison methods identify preferences
between rankers faster than interleaved comparison methods?

RQ2 Does OM scale better with the number of rankers than TDM?



RQ3 How does the sensitivity of multileaving methods compare to
that of interleaving methods?

RQ4 Do multileaving methods improve over interleaving methods
in terms of unbiasedness and online performance?

Our experimental results demonstrate that TDM and OM can accu-
rately determine a set of pairwise preferences among a set of rankers
using much less data than TD and OI, respectively.

The main contributions of this work are: (1) a novel ranker eval-
uation paradigm in which more than two rankers can be compared
at once, (2) two implementations of this new paradigm, TDM and
OM, and (3) a thorough experimental comparison of TDM and OM
against each other and against TD and OI that shows that multi-
leaved comparison methods can find preferences between rankers
much faster than interleaved comparison methods. Our experiments
also show that TDM outperforms OM unless the number of rankers
becomes too large to handle for TDM, at which point OM performs
better. Finally, our experiments show that, when the differences
between evaluated rankers are varied, the sensitivity of TDM and
OM is affected in the same way as for TD and OI.

2. RELATED WORK
Evaluation of information retrieval systems, i.e., rankers, has

always been a central topic in IR research. Cranfield-style evalu-
ation, as described by Cleverdon et al. [7], uses a fixed document
collection, a fixed set of queries, and relevance judgments for the
documents in the collection with respect to the queries. These judge-
ments are produced by trained assessors. The relevance judgements
are used to compute metrics, such as MAP, nDCG and ERR, for
rankers; see [23]. We refer to this type of evaluation as offline eval-
uation, and it is still the predominant form of evaluation in, e.g.,
TREC-style competitions [26]. Obtaining reliable relevance judg-
ments is typically expensive and time-consuming. However, once
collected, performing repeatable experiments to compare existing
rankers and try out new ones is fast and straightforward. Carterette
and Allan [3] and Sanderson and Joho [24] discuss approaches
to building test sets for evaluation at low cost; Azzopardi et al.
[1], Berendsen et al. [2] go a step further and describe methods for
automatically generating test collections and training material for
learning-based rankers, respectively.

Another way to evaluate rankers is through user studies. Such
studies are usually conducted in a lab setting [18]; as a consequence,
they are expensive, hard to repeat and laborious to scale up.

In this paper, we focus on the more recent online evaluation
paradigm, as described by Kohavi et al. [19], which relies on real
users of a search engine. Online evaluation comes in several forms.
One variant, called A/B testing, compares two rankers by showing
ranker A to one group of users and ranker B to another group.
Then, absolute click metrics are computed for ranker A and B, the
outcome of which is used to select a winner. Carterette and Jones
[4] studied the relationship between clicks coming from users and
offline evaluations metrics. In particular, they were able to reliably
predict nDCG from clicks.

Interleaved comparison [5, 15, 16] is a variant of online evalua-
tion which has been shown to produce very reliable comparisons of
rankers [22] using much less data then A/B testing. Interleaved com-
parison methods take as input two rankers and a query, and produce
as output a combined result list to show to the user. The resulting
clicks are then interpreted by the interleaving method to decide on
a winning ranker. Balanced interleave (BI) [17] randomly selects
a ranker to start with. Then, it takes the first document from this
ranker and, alternating, each ranker contributes its next document.
This document is added to the interleaving only if it was not yet
present. BI can produce biased results: in comparisons of two very

similar rankers, it can favor one ranker regardless of where the user
clicks. This bias was subsequently fixed in team draft (TD) [22],
which we discuss further in Section 4.1. Other methods include
document constraints (DC) [9] and probabilistic interleave (PI) [11].
PI has the advantage that historical interaction data can be reused
using importance sampling, for instance in an online learning to
rank setting [12]. In principle, PI with importance sampling could
also be used in our setting, in which multiple rankers must be com-
pared. However, because PI relies on probabilistic rankers, it risks
showing the user poor rankers that are not related to the original
rankers to be interleaved, which can affect on-line performance [12].
Optimized interleave (OI) [21] addresses this issue by restricting the
allowed interleavings to those that are the union of prefixes of the
input rankings. In addition, it computes a probability distribution
over these rankers that avoids bias and maximizes sensitivity. In
this paper, we extend both TD and OI. Previously, TD was extended
by Chuklin et al. [6] to handle non-uniform result lists that contain
vertical documents such as images.

Also related is work on the K-armed dueling bandit problem
[27]. Existing algorithms that aim at solving this problem (e.g.,
[28, 29]) all work by performing a series of pairwise interleaved
comparisons, with a focus on finding the best ranker in a set of
rankers. By contrast, in this paper, we show how multiple rankers
can be compared at once and focus on the task of finding out how
all rankers in a set relate to one another.

Our work differs from earlier work in that it does not rely on
pairwise comparisons. As a result, when a set of rankers are eval-
uated, it is no longer necessary to separately compare each ranker
pair. We obviate that need by introducing a new paradigm called
multileaved comparisons that can evaluate a complete set of rankers
in one comparison and thereby requires substantially less data.

3. PROBLEM DEFINITION
The problem we want to tackle can be formulated as follows: we

have a set of rankers R whose performance we want to evaluate
using click feedback. We may be interested in knowing how all
rankers in R compare to each other, as doing so gives valuable
feedback to the engineers who design new rankers. If we already
have a working production ranker, we may also be interested in
determining how each ranker inR compares to it.

In this paper, we focus on developing multileaved comparisons
methods for the former task because it represents a scenario that is
vital for enabling ranker development in deployed search engines.
For completeness, in Section 6.6, we also evaluate our methods,
designed to compare all rankers to each other, on the task variation
in which they are asked to compare a set of rankers to a single
production ranker.

To formalize the task of determining how all rankers inR com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an |R| × |R| matrix in which each cell Pij contains
the difference in expected nDCG [14] between rankers Ri and Rj ,
normalized to lie between 0 and 1:

Pij = 0.5(nDCG(Ri)− nDCG(Rj)) + 0.5,

where nDCG(Ri) is the expected nDCG of ranker Ri across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P . Its perfor-
mance is thus measured using the error of P̂ with respect to P . We
propose a binary error metric that counts the number of times P̂ is
incorrect about which ranker has a higher expected nDCG:

Ebin =

∑
i,j∈R∧i6=j sgn(P̂i,j − 0.5) 6= sgn(Pi,j − 0.5)

|R| · (|R| − 1)
,



Algorithm 1 Team draft multileave (TDM).
Require: set of rankingsR, multileaving length k.
1: L← [ ] //initialize new multileaving
2: ∀Rx ∈ R : Tx ← ∅ //initialize teams for each ranking
3: while |L| < k do
4: select Rx randomly s.t. |Tx| is minimized
5: p← 0
6: while Rx[p] ∈ L and p < k − 1 do
7: p← p+ 1
8: if Rx[p] /∈ L then
9: L← L+ [Rx[p]] //append document to multileaving

10: Tx ← Tx ∪ {Rx[p]} //add document to team
11: return L, T

where sgn(·) returns −1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
Using interleaving methods, learning P̂ requires interleaving

each ranker pair (Ri, Rj) separately to estimate each Pij , which
means that many interleavings are required for learning. The goal
of multileaved comparison methods is to reduce the cost of learning
by constructing multileavings that, by combining documents from
all rankersR, can learn about all cells in P at once.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1, and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
limitation of TDM on the number of rankers that it can compare
using a single query.

4.1 Team draft multileave
The first variant of multileaved comparisons is based on team

draft (TD) [22]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents in
the multileaving belong.

These team assignments are used after a user interacts with the
interleaving to update the matrix P̂ij . We maintain an empirical
mean for all P̂ij . We increase the preference P̂ij if and only if there
were more clicks on documents belonging to the team of ranker i
than on documents belonging to the team of ranker j. Note that one
reason why this may happen is that ranker j was not represented in
the multileaving.

4.2 Optimized multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [21], which does not have
this drawback and thus may scale better with the number of rankers.

Algorithm 2 Prefix constraint sampling.
Require: set of rankingsR, multileaving length k, sample size η.
1: L ← ∅ //initialize empty set of multileavings
2: while |L| < η do
3: Li ← [ ] //initialize new multileaving
4: while |Li| < k do
5: select Rx randomly fromR
6: p← 0
7: while Rx[p] ∈ Li and p < k − 1 do
8: p← p+ 1
9: if Rx[p] /∈ Li then

10: Li ← Li + [Rx[p]] //append document to multileaving
11: L ← L ∪ {Li} //add constructed multileaving to set
12: return L

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [21]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed multileavings
The prefix constraint proposed in [21] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {Li : ∀k, ∀Rx ∈ R,∃mx such that Lk
i =

⋃
Rmx

x }. (1)

Here, R is the set of original input rankings Rx that we want to
compare, Lk

i is the top k documents of multileaving Li, and Rmx
x

is the top mx documents in ranking Rx. Note that when there are
only two rankings (A and B in the definition in [21]) inR, then (1)
coincides with the prefix constraint in [21].

Our constraint in (1) allows for at most |R||Li| multileavings.
Even with a relatively small |R| and |Li|, this is more than can be
handled by the optimization step described in the following sections.
Therefore, we consider a sampling approach. Instead of material-
izing all multileavings allowed by (1), we construct only a small
number of them using Algorithm 2. The result of this algorithm is
a set L of multileavings that obey the prefix constraint (1) because
documents from a ranking can be added to the multileaving only if
all documents above it in the ranking have already been added.

The size of the set L of multileavings can be controlled by the
parameter η. Keeping η small reduces the size of the resulting
optimization problem but could introduce bias, since only a subset
of allowed multileavings are considered. Besides that, due to the
small number of multileavings considered, it may be the case that the
optimization problem becomes overconstrained. As a result, it may
no longer be possible to satisfy the unbiasedness constraint, leading
to a second source of bias. We hypothesize, however, that this will
not lead to severe degradation of the algorithm’s performance, since
ranker evaluation methods can perform well in practice even when
they are biased [13].



4.2.2 Simplex and unbiasedness constraints
Every allowed multileaving Li ∈ L is shown to the user with

probability pi. These probabilities have to satisfy a number of
constraints. First of all, as in [21], they must satisfy the simplex
constraint to form a valid probability distribution:

pi ∈ [0, 1], (2)
|L|∑
i=1

pi = 1. (3)

Furthermore, the multileavings satisfy the unbiasedness constraint:
they should be shown to the user in such a way that none of the orig-
inal rankings gets an unfair advantage. We instantiate this constraint
by insisting that if the multileavings are presented to a randomly
clicking user (according to the probability distribution), all original
rankings receive the same expected credit.

In [21], a randomly clicking user is assumed to pick a number
k, and clicks every result in the top k of the presented list with
the same probability. When a user clicks in this way, none of the
original rankings should be preferred and they should all receive the
same expected credit. We adapted the resulting constraint for the
multileave case. Here, given a multileaving Li, let dij denote its
j-th document and let δ(dij , Rx) be the credit assigned to ranker
Rx when dij is clicked. The following constraint directly extends
[21] and expresses that, for every k, there should be some constant
ck such that when the user clicks every document in the top k, every
original ranking receives the same expected credit ck:

∀k, ∃ck such that ∀x,
|L|∑
i=1

(
pi

k∑
j=1

δ(dij , Rx)

)
= ck. (4)

4.2.3 Optimizing for sensitivity
Given the above constraints, multiple probability distributions

over multileavings may still be possible, because the optimization
problem may be underconstrained. Whether it is underconstrainted
or overconstrained, however, depends on the number of sampled
multileavings. As described in Section 4.2.1, if the number of
samples is small, there might not even be a single solution to the
optimization problem.

If the optimization problem is indeed underconstrained, there
is the opportunity to prefer one probability distribution over mul-
tileavings over another. Following [21], we want to optimize the
probabilities for maximal sensitivity. Intuitively, this means that
probability distributions that distribute more mass to multileavings
that can distinguish between rankers are preferred. We follow the
alternative suggestion by [21], in that we minimize variance, as
opposed to maximizing entropy.

The expected credit assigned to ranking Rx after the user clicks
on documents in multileaving Li is:

E[δ(Rx)] =

|Li|∑
j=1

f(j) · δ(dij , Rx).

Here f(j) is the probability with which a user clicks a document
at position j. For simplicity and following [21], we assume that
f(j) = 1/j. Given a multileaving Li, we define the expectation
over the variance in credit assigned to the different rankings as:

E[Var i] =

|R|∑
x=1

|Li|∑
j=1

f(j) · δ(dij , Rx)

− µi

2

, (5)

µi =
1

|R|

|R|∑
x=1

|Li|∑
j=1

f(j) · δ(dij , Rx). (6)

Then the aim of the optimization is to find the pi’s such that the sum
of all variances is minimized:

|L|∑
i=1

pi · E[Var i]. (7)

Note that we minimize the sum of all variances while taking all other
constraints from Section 4.2.2 into account. In particular, if we did
not ensure unbiasedness, we would find pi = 1 for multileaving Li

with the lowest E[Var i].

4.2.4 Assigning credit
We have not yet defined the credit function δ. This function is

used in a number of places in the multileaved comparison method:
(1) ensuring unbiasedness, (2) optimizing for sensitivity, and (3) de-
termining the outcome. The credit function should assign credit
to an input ranking, given a clicked document in a multileaving.
However, in the optimization step, there is no observed click yet.
There, we assume all documents are clicked.

Following [21], we define two possible credit functions. Intu-
itively, both assign more credit to rankings that rank clicked docu-
ments at a higher position. The first is inverse rank and analogous
to the function with the same name in [21]:

δ(dij , Rx) =
1

rank(dij , Rx)
. (8)

Here, rank(dij , Rx) is the rank of document dij in Rx if it is
present in the ranking, and otherwise |Rx|+ 1. Note that this is the
rank in the full ranking Rx and not just the top k.

An alternative credit function is negative rank:

δ(dij , Rx) = − rank(dij , Rx). (9)

This credit function is analogous to the linear rank difference credit
function from [21].1 The difference between the credit functions in
[21] and the ones defined here is that we cannot define them on a
pair of rankings. Instead, our credit functions are defined as giving
certain credit to a single ranking.

4.2.5 Optimized multileaved comparisons
Above, we described the ingredients of OM. Here and in Algo-

rithm 3 we put them all together. In short, when a multileaved com-
parison is performed, the following happens. Each of the rankers
that are to be compared generates a ranking, given the user’s query.
A set of multileavings is generated from these rankings using Algo-
rithm 2. Then, a probability distribution over these multileavings is
computed that obeys the unbiasedness constraints in Section 4.2.2.
Following [21] we use a linear constraint optimization solver to find
a distribution that satisfies these constraints. If there is more than
one such distribution, we select the distribution that the minimizes
variance in Section 4.2.3.2 A single multileaving is sampled from
this distribution and shown to the user who issued the query.

The user’s clicks are used to assign credit to each ranker that
participated in the comparison. As with TDM, we maintain an
empirical mean for all P̂ij . We increase the preference P̂ij if and
only if the sum of credit for ranker i was larger than the sum of
credit for ranker j.

1We use the term negative rank even when we refer to OI with
linear rank difference.
2Gurobi optimization toolkit http://www.gurobi.com.

http://www.gurobi.com


Algorithm 3 Optimized multileave (OM).
Require: set of rankingsR, multileaving length k, sample size η.
1: L ← prefix_constraint_sampling(R, η) // Algorithm 2
2: C ← ∅ //initialize set of constraints
3: ∀Li ∈ L : C ← C ∪ {0 < pi < 1} // add simplex constraints

4: ∀k∀x : C ← C ∪ {
∑|L|

i=1

(
pi
∑k

j=1 δ(dij , Rx)
)
= ck} // add

unbiasedness constraints
5: ∀Li ∈ L : µi ← 1

|R|
∑|R|

x=1

∑|Li|
j=1 f(j) ·δ(dij , Rx) //compute

means
6: si ←

∑|R|
x=1

((∑|Li|
j=1 f(j) · δ(dij , Rx)

)
− µi

)2
// sensitivity

7: o←
∑|L|

i=1 pi · si // optimization objective
8: p← minimize(o, C) // constrained optimization problem
9: Li ← sample from L with probability pi

10: return Li

5. EXPERIMENTS
In this section, we detail our experimental setup.3 We first de-

scribe the data sets that we use in Section 5.1. Then, in Section 5.2
we describe how we select rankers. In Section 5.3, we detail our
click simulation framework, in Section 5.4 we describe our experi-
ments, and in Section 5.5 we detail our parameter settings.

5.1 Data sets
Our experiments for RQ1, RQ2, and RQ4 are conducted on nine

data sets that are distributed as LETOR 3.0 and 4.0 [20]. Each data
set contains feature vectors representing the relationships between
queries and documents. These feature vectors contain between
45 and 64 features. Examples of features are BM25, Language
Modeling, and PageRank. Each of these features can be treated
independently as rankers, by simply sorting on the feature value.
While we use learning to rank data sets, we perform ranker evalua-
tion rather than learning. The (manually assessed) relevance level
of each document-query pair is also provided in the dataset. Finally,
all data sets are pre-split by query for 5-fold cross validation. In
the nine data sets, the following search tasks are implemented. The
OHSUMED data set models a literature search task which is based
on a query log of a search engine for the MedLine abstract database.
This data set contains 106 queries that implement an informational
search task. The remaining eight data sets are based on TREC
Web track tasks run between 2003 and 2008. The datasets HP-
2003, HP2004, NP2003, and NP2004 implement navigational tasks,
homepage finding and named-page finding respectively. TD2003
and TD2004 implement an informational task: topic distillation.
These last six data sets are based on the .GOV document collection,
a crawl of the .gov domain, and contain between 50 and 150 queries
and approximately 1000 judged documents per query. The more
recent .GOV2 collection formed the basis of MQ2007 and MQ2008;
two data sets that contain 1700 and 800 queries respectively, but
far fewer judged documents per query. The data sets OHSUMED,
MQ2007 and MQ2008 are annotated with graded relevance judg-
ments (3 grades, from 0, not relevant, to 2, highly relevant). The
other data sets have binary relevance labels (grade 0 for not relevant,
2 for relevant).

5.2 Selecting rankers
For experiments aimed at answering RQ1, RQ2, and RQ4, we

handpick a set of features that are known to perform well and treat
each of them independently as a ranker. Among others, we select
BM25, LMIR.JM, Sitemap, PageRank, HITS and TF.IDF. Most
3Open source https://bitbucket.org/ilps/lerot.

Table 1: Instantiations of the cascade click model [8].

P (click = 1|R) P (stop = 1|R)
0 1 2 0 1 2

perfect 0.0 0.5 1.0 0.0 0.0 0.0
navigational 0.05 0.5 0.95 0.2 0.5 0.9
informational 0.4 0.7 0.9 0.1 0.3 0.5

random 0.5 0.5 0.5 0.0 0.0 0.0

of our experiments are run with |R| = 5 rankers; only those ex-
periments that investigate the impact of the number of rankers use
a different number of rankers. We compute nDCG [14] for each
ranker to produce the ground truth Pij for all ranker pairs i, j on the
held-out test fold, as described in Section 3. Some average nDCG
values of rankers that we use are 0.46 (BM25), 0.43 (Hyperlink
based), 0.11 (PageRank), 0.50 (Sitemap), and 0.39 (LMIR.JM).

To answer RQ3, that is, to understand the impact of the difference
between evaluated rankers on interleaving and multileaved compari-
son methods, we use synthetic data generated in a controlled way.
We first generate, for each query, a ranking with 10 documents, 4
to 6 of them being relevant, using 3 grades for relevance labels as
in, e.g., OHSUMED above. Then, we derive additional rankings
by altering the initial ranking depending on the expected difference
between them (see Section 6.3).

5.3 Simulating clicks
To produce clicks, we use a click simulation framework that

is analogous to [12], which is explained in [25]. The framework
produces clicks based on a cascade click model also used by [10]
that effectively explains the click behavior of web search users. The
cascade click model explains position bias by assuming that users
start examining a result from the top of the list. Then, when the user
scans down the list, for each document they determine whether it
looks promising enough to deserve a click. This is modeled with
a click probability given some relevance label P (click = 1|R).
After a click, a user decides whether their information need has
been satisfied with the document just clicked. We model this with a
stop probability P (stop = 1|R). Table 1 lists the instantiations of
the click model used in our experiments. The perfect instantiation
provides unrealistically reliable feedback, and is used to obtain an
upper bound on performance. The second (navigational) and third
(informational) instantiations reflect two types of search task also
implemented by our data sets, as well as increasing levels of noise
(i.e., smaller differences in click probabilities for different relevance
levels). For each instantiation, the table provides the click and stop
probabilities given a relevance grade R. For example, under the
navigational model, simulated users would be very likely to click
on a highly relevant document (P (click = 1|2) = 0.95), and very
likely to stop examining documents once they clicked on such a
document (P (stop = 1|2) = 0.9). Under the informational model,
users are less likely to stop, and click probabilities for the different
relevance grades are much more similar, resulting in a higher level
of noise. The random instantiation of the click model is used to
examine behavior of the evaluation methods when no information is
present in the clicks. For data sets with binary relevance judgments,
only the two extremes are used.

5.4 Experimental runs
Our experiments consider the following evaluation methods.

TD teamdraft interleave [22], pairwise comparisons (baseline).
TDM teamdraft multileave, our extension of TD that performs

multileaved comparisons.
OI optimized interleave [21], pairwise comparisons (baseline).

https://bitbucket.org/ilps/lerot


OM optimized multileave, our extension of OI that performs mul-
tileaved comparisons. We experiment with several sample
sizes η and the credit function.

Our experiments for RQ1, RQ2, and RQ4 are performed as follows.
We select a set of rankers that to compare. We then repeatedly
sample queries randomly with replacement from the pool of queries.
This simulates a user arriving at our search engine and entering a
query. We assume that there is no dependence between two con-
secutive queries. When a query has been selected, it is given to the
online evaluation methods. For the pairwise (baseline) methods, we
select a pair of rankers such that all pairs of ranker pairs i, j where
i 6= j are compared the same number of times. The multileaved
comparison methods, on the other hand, compare all rankers at the
same time. So, either an interleaving of two rankers or a multi-
leaving of all rankers is shown to the user. We then simulate the
user interacting with the result list and produce clicks according to
the given instantiation of the click model. Using these clicks, for
the pairwise (baseline) methods, we update P̂ij only for the pair of
rankers that we compared. For the multileaved comparison meth-
ods, we update all P̂ij for all pairs of rankers. For RQ3, we follow
the above approach as closely as possible. However, since there is
no notion of a ranker that generalizes over queries, we repeatedly
(N = 100) issue the same set of rankings to produce clicks with the
click model in order to obtain a stable P̂ij .

The main objective for all experiments is to find the P̂ij that
minimizes the error metric Ebin when compared to ground truth
Pij computed using nDCG (see Section 3). We also investigate
other properties. We measure the bias of each method by using a
random instantiation of the click model and comparing with Ebin

to a ground truth where Pij = 0.5 for all pairs of rankers. We
also measure online performance in terms of nDCG of the rankings
presented to the user. Lastly, we measure the effect of the number
of rankers we compare and the effect of the length of the result list.
We test for significant differences using a two tailed t-test.

5.5 Parameter settings
For OM, we set the number of multileavings to η = 1, 5, 10, 100.

For both OI and OM we test two types of credit function: negative
credit and inverse credit. For OM, we use inverse credit by default
and for OI we use negative credit unless stated otherwise as these
performed best for the respective methods. For all experiments
except those that investigate the effects of these parameters, the
number of rankers is |R| = 5 and the results lists length is k = 10.

6. RESULTS AND ANALYSIS
Here, we answer the research questions posed in Section 1.

6.1 Main result
Our main result is depicted in Fig. 1. It shows the error mea-

sured with Ebin for the two baseline interleaving methods OI and
TD and for our two multileaving methods OM and TDM. These
results are obtained by aggregating over all the datasets that we
consider. Table 2 provides an alternative view on the same results
by splitting them per dataset. We performed our analysis for three
levels of increasing noise in the feedback: perfect, navigational and
informational instantiations of the click model.

Interestingly, as can be seen in Fig. 1, the multileaved extensions
of the interleaving methods converge to an error close to their inter-
leaving counterparts. Both OI and OM have difficulties coping with
noise in user feedback: the error to which these methods converge
increases when the noise increases. This is in contrast with TD and
TDM: with increasing noise they are capable of learning the ranker
preference almost as well as with the perfect click model.
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Figure 1: Average Ebin error of interleaved and multileaved
comparisons. Averaged over 25 repetitions, 9 datasets with 5
folds each. The plots depict error for three instantiations of the
click model: perfect, navigational and informational. Result
list length l = 10 and number of rankers |R| = 5.

In response to RQ1, Fig. 1 shows clearly that the error of both of
our multileaving methods drops much faster than their interleaving
counterparts. This indicates that multileaved comparison methods
can learn preferences between multiple rankers with far less data
(i.e., queries and clicks) than interleaved comparison methods.

Under perfect feedback, TDM and OM learn ranker preferences
equally fast. When noise increases, OM initially learns these pref-
erences faster than TDM does. Under noisy feedback, TDM keeps
improving the learned preferences long after OM has plateaued.

Table 2 shows the error Ebin at 500 queries. We choose a rather
low number of queries to emphasize learning speed. Note that the
rightmost column is equal to the Ebin values in a slice of Fig. 1
after 500 queries. For the multileaving methods, each P̂ij has had
500 updates by then. The interleaving methods only performed 50
updates of P̂ij for each pair of rankers. The results show that, in
general, the multileaving methods have significantly less error than
the interleaving methods. In particular, OM has less error than OI
does in 24 out 27 experiments. The exception to this rule are the
three experiments on MQ2007. TDM has less error than TD in 22
out of 27 experiments. In two experiments, TDM has a significantly
higher error; those experiments are on perfect and navigational
instantiations of the click model on the TD2003 data set. In both
these exceptions convergence was reached far before 500 queries for
all methods. While the multileaving methods still converged faster,
they did so to a slightly higher error.

For OM we see in both Table 2 and Fig. 1 that η, the sample size,
does not seem have a large effect on the error. Therefore, with a



Table 2: Ebin at 500 queries. Averaged over 25 repetitions and 5 folds. Standard deviation is between brackets. Per data set and
instantiation of the click model, we print the best method in bold. Statistically significant improvements (losses) over the respective
baselines are indicated by M (p < 0.05) and N (p < 0.01) (O and H).
Method HP2003 HP2004 MQ2007 MQ2008 NP2003 NP2004 OHSUMED TD2003 TD2004 Average

perfect click model

OM η = 1 0.000 (0.00) N 0.000 (0.00) N 0.324 (0.13) H 0.043 (0.05) N 0.067 (0.07) N 0.088 (0.09) M 0.340 (0.15) N 0.194 (0.13) N 0.096 (0.07) N 0.128 (0.15)

OM η = 5 0.000 (0.00) N 0.000 (0.00) N 0.285 (0.11) O 0.040 (0.05) N 0.068 (0.07) N 0.084 (0.08) N 0.341 (0.14) N 0.195 (0.13) N 0.106 (0.08) M 0.124 (0.15) M

OM η = 10 0.000 (0.00) N 0.000 (0.00) N 0.297 (0.11) H 0.049 (0.06) N 0.071 (0.07) N 0.090 (0.10) M 0.338 (0.14) N 0.186 (0.12) N 0.107 (0.08) M 0.126 (0.15) M

OM η = 100 0.000 (0.00) N 0.000 (0.00) N 0.233 (0.11) 0.049 (0.05) N 0.067 (0.06) N 0.093 (0.10) 0.338 (0.15) N 0.193 (0.12) N 0.114 (0.08) 0.136 (0.15)

OI 0.014 (0.04) 0.035 (0.05) 0.254 (0.12) 0.155 (0.10) 0.111 (0.09) 0.116 (0.09) 0.440 (0.16) 0.243 (0.12) 0.131 (0.10) 0.167 (0.16)

TDM 0.005 (0.02) 0.018 (0.04) 0.166 (0.08) N 0.050 (0.07) N 0.086 (0.06) N 0.097 (0.10) 0.265 (0.19) N 0.270 (0.10) O 0.159 (0.07) 0.124 (0.13)

TD 0.007 (0.03) 0.024 (0.04) 0.305 (0.13) 0.134 (0.09) 0.114 (0.09) 0.122 (0.10) 0.350 (0.16) 0.235 (0.12) 0.143 (0.10) 0.159 (0.15)

navigational click model

OM η = 1 0.005 (0.02) N 0.006 (0.02) N 0.530 (0.10) H 0.138 (0.09) N 0.062 (0.05) N 0.080 (0.07) N 0.430 (0.11) N 0.228 (0.15) M 0.159 (0.12) 0.182 (0.20)

OM η = 5 0.011 (0.03) M 0.011 (0.03) N 0.518 (0.12) H 0.132 (0.09) N 0.068 (0.06) N 0.080 (0.07) N 0.438 (0.12) N 0.227 (0.15) M 0.154 (0.11) 0.182 (0.20)

OM η = 10 0.018 (0.04) 0.012 (0.03) N 0.503 (0.10) H 0.134 (0.10) N 0.063 (0.06) N 0.081 (0.08) N 0.419 (0.13) N 0.237 (0.14) 0.158 (0.11) 0.181 (0.19)

OM η = 100 0.013 (0.03) 0.019 (0.04) N 0.462 (0.11) H 0.137 (0.09) N 0.068 (0.06) N 0.082 (0.08) N 0.436 (0.13) N 0.253 (0.16) 0.167 (0.10) 0.211 (0.20)

OI 0.022 (0.04) 0.044 (0.06) 0.398 (0.14) 0.229 (0.12) 0.116 (0.08) 0.137 (0.09) 0.635 (0.16) 0.269 (0.12) 0.166 (0.10) 0.224 (0.21)

TDM 0.021 (0.04) 0.026 (0.04) 0.190 (0.09) N 0.082 (0.08) N 0.086 (0.07) N 0.106 (0.10) N 0.330 (0.17) N 0.308 (0.14) O 0.188 (0.08) 0.149 (0.15)

TD 0.017 (0.04) 0.030 (0.05) 0.322 (0.14) 0.198 (0.11) 0.126 (0.09) 0.154 (0.10) 0.386 (0.16) 0.272 (0.14) 0.169 (0.10) 0.186 (0.16)

informational click model

OM η = 1 0.089 (0.03) N 0.071 (0.05) N 0.635 (0.12) H 0.169 (0.10) N 0.064 (0.05) N 0.083 (0.07) N 0.397 (0.09) N 0.289 (0.17) N 0.213 (0.10) N 0.223 (0.20) N

OM η = 5 0.095 (0.02) N 0.081 (0.05) N 0.602 (0.13) H 0.170 (0.12) N 0.070 (0.06) N 0.090 (0.07) N 0.383 (0.10) N 0.289 (0.16) N 0.199 (0.10) N 0.220 (0.20) N

OM η = 10 0.096 (0.02) N 0.087 (0.04) N 0.583 (0.15) H 0.186 (0.11) N 0.072 (0.05) N 0.086 (0.07) N 0.380 (0.11) N 0.294 (0.16) N 0.199 (0.09) N 0.220 (0.19) N

OM η = 100 0.100 (0.00) N 0.101 (0.03) N 0.518 (0.13) H 0.178 (0.11) N 0.080 (0.06) N 0.095 (0.07) N 0.393 (0.11) N 0.282 (0.15) N 0.200 (0.09) N 0.243 (0.18) N

OI 0.202 (0.12) 0.198 (0.13) 0.421 (0.15) 0.318 (0.14) 0.186 (0.11) 0.246 (0.11) 0.674 (0.14) 0.382 (0.13) 0.280 (0.13) 0.323 (0.20)

TDM 0.060 (0.07) N 0.066 (0.06) N 0.276 (0.16) N 0.177 (0.12) N 0.139 (0.10) N 0.147 (0.09) N 0.366 (0.19) N 0.317 (0.13) 0.198 (0.11) N 0.194 (0.16) N

TD 0.120 (0.10) 0.131 (0.09) 0.419 (0.15) 0.307 (0.14) 0.190 (0.10) 0.207 (0.11) 0.438 (0.17) 0.352 (0.16) 0.242 (0.14) 0.267 (0.17)

Table 3: Ebin when the number of rankers |R| is varied. Result
list length k = 10, averaged over 10 repetitions and 5 folds of
the NP2003 data set.

Method |R| = 3 |R| = 5 |R| = 7 |R| = 10

OM η = 10 0.144 (0.16) 0.154 (0.12) 0.111 (0.06) 0.116 (0.04)

TDM 0.191 (0.18) 0.192 (0.09) 0.190 (0.06) 0.203 (0.05)

OI 0.189 (0.18) 0.200 (0.08) 0.255 (0.06) 0.316 (0.04)

TD 0.143 (0.13) 0.214 (0.09) 0.246 (0.05) 0.284 (0.04)

surprisingly small number of samples, effective and computationally
efficient multileaving is possible. Consequently, in most of the
analyses that follow, we report only on OM with η = 10.

6.2 Scaling the number of rankers
The motivation for performing multileaved comparisons lies in

the fact that it is possible to compare multiple rankers at once. Most
of our experiments in this paper use a set of 5 rankers but, in response
to RQ2, in this section we analyze what happens when the number
of rankers being compared increases.

Table 3 lists how each method performs when the number of
rankers to be compared varies. We kept the result list length fixed at
k = 10. Both interleaving methods OI and TD are impacted greatly
when the number of rankers increases. This is largely due to the
fact that many more comparisons are needed and as such each P̂ij

receives fewer updates. By contrast, OM and TDM do not show
significant degradation when the number of rankers increases.

We suspect that there may be an interaction between the number
of rankers that are compared and the length of the result list shown
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Figure 2: Scaling with the number of rankers. Average
Ebin against the number of rankers x per result list length
k. Computed on all combinations of |R| = 3, 5, 7, 10 and
k = 3, 5, 7, 10. Averaged over 10 repetitions and 5 folds of the
NP2003 data set. Standard deviation is indicated with error
bars and lines are fitted using least squares.

to the user. Depending on the method, the result list length may limit
the number of rankers that can be represented at once. We experi-
mented with several settings where we varied the number of rankers
to be compared and the result list length. We considered all com-
binations of |R| = 3, 5, 7, 10 rankers and lengths k = 3, 5, 7, 10.
Because of computational limitations, we had to limit ourselves to a
single data set, a single user model, with fewer repetitions and fewer
queries. We selected the NP2003 dataset with the informational
instantiation of the click model with 10 repetitions and 2.5K queries.

In Fig. 2, we plot the error Ebin against the number of rankers
per documents in the result list. The four rightmost data points, for
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Figure 3: The effect of differences between rankings, the num-
ber of moved documents and the amplitude of the move is con-
trolled. Ebin at 500 queries, 100 issues, averaged over 125 repe-
titions. We used the informational click model.

instance, were produced using 10 rankers and result lists of length 3
only. The leftmost points are from the opposite scenario: 3 rankers
were compared with document lists of length 10. Note that there are
many ways in which |R|

k
can be equal to 1, and that therefore there

is a relatively wide spread of error.
We fitted lines for each evaluation method using least squares.

Though these lines are not perfect fits, they give a useful indication
of the behavior of the methods when the ratio between the number
of rankers and the number of documents increases. Fig. 2 shows that
the multileaving methods can cope better with an increase in this
ratio than the interleaving baselines. The performance of OM is not
impacted by an increase of this ratio; the two interleaving methods
almost double their error when the ratio increases from 3

10
to 10

3
.

While Table 3 shows that TDM is not impacted by the number of
rankers, in Fig. 2, we see that the error for TDM does increase when
the ratio of rankers per result list length goes up. We attribute this
to the fact that team draft methods always assign a document in an
interleaving to a single input ranker. When there are (many) more
rankers than documents to which they can be assigned, then most
rankers cannot be distinguished from one another. Consequently,
not all P̂ij can be updated per comparison.

6.3 Sensitivity
In this section, we investigate RQ3. We study the impact of

the difference between evaluated rankers on interleaving and mul-
tileaved comparison methods using synthetic data as discussed in
Section 5.2. We consider cases when the position of one or more
document(s) changes from one ranking to another (we also inves-
tigated cases when one or more document(s) are replaced by new
ones and obtained similar results). In doing so, we control two
things: the number of documents moved as well as the amplitude of
the move, i.e., how far away is the moved document located from
its original position. While we only control the difference w.r.t. a
single ranking and not between all pairs of rankings, by increasing
the number and amplitude of the changes, we increase the space of
possible rankings, effectively increasing the chance of them being
different from each other.

For each interleaving and multileaved comparison method, we
look at the impact on Ebin at 500 queries of the difference between
rankings using the informational click model, with |R| = 5 rankers,
result lists of length k = 10 and 100 issues of each query. Results
are depicted in Fig. 3 as a heat map of Ebin depending on the
number of documents moved and the amplitude of the move. We
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Figure 4: Incorrectly identified preferences under a random
click model, with |R| = 5 rankers and result list of length
k = 10. Measured as Ebin versus a ground truth with no pref-
erences, Pij = 0.5 for all i, j. Averaged over 25 repetitions, 9
dataset with each 5 folds.

observe that Ebin decreases as the difference between rankings
increases (whether this is the number of moves or the amplitude
of the moves) in the same way for all methods, which means that
differences between rankers affect all methods in the same way. We
also observe that OM performs much better than other methods,
which is in line with Fig. 1 at the 100 query issue point.

Returning to RQ3, these results show that the sensitivity of mul-
tileaving methods is affected in the same way as for interleaving
methods when the differences between rankers vary. Interestingly,
this means that multileaved methods can distinguish between rankers
just as well as interleaving methods even when the differences be-
tween them is very small. Hence, multileaved comparison methods
can be used to explore a parameter space using very small steps.

6.4 Bias
Next, we address RQ4. We evaluate fidelity requirement (2) from

[13] which states that, under random clicks, rankers should tie in
expectation. TD was designed to fulfill this requirement. We run ex-
periments with the random instantiation of the click model (see Sec-
tion 5.3). When a user clicks on a result list without any preference
for relevant documents, an online evaluation method that interprets
these clicks should not detect any preferences among rankers. We
measure how many preferences each comparison method detects
when exposed to a random user by comparing the P̂ij of the method
to a ground truth that consists of Pij = 0.5 for all i, j using Ebin.

The result is shown in Fig. 4. For all methods, the error quickly
drops to rather low values. Both TD and TDM steadily converge
to values near 0. Within a few hundred queries, their error is below
5%. In the long run, neither method detects differences among
rankers when it should not. OI takes much longer to drop below
5% and plateaus higher than both team draft methods. For OM, it
turns out that the number of multileavings that is sampled, η (see
Section 4.2.1) has a big impact on the bias of the method. The larger
the sample size, the less bias the OM method has. A more elaborate
explanation of this effect can be found in Section 6.7. It may come
as a surprise that both OI and OM have such a large bias since both
these methods explicitly restrict themselves to producing unbiased
result lists. The fact that the error increases when η goes up (see
Table 2) can be explained by a bias-variance trade-off: when η goes
up, the bias goes down at the cost of variance that is introduced.

6.5 Online performance
A general concern with online ranker evaluation is that users

may be confronted with inferior systems. The degree to which this
happens may vary per evaluation method. Again, in response to RQ4,
we measure online performance of the four evaluation methods using



Table 4: Online performance measured with nDCG (higher is better). Averaged over 5K queries, 25 repetitions and 5 folds. Standard
deviation is between brackets. Per data set, we print the best value in bold.
Method HP2003 HP2004 MQ2007 MQ2008 NP2003 NP2004 OHSUMED TD2003 TD2004 total

OM η = 1 0.522 (0.01) 0.465 (0.01) 0.289 (0.01) 0.377 (0.02) 0.500 (0.02) 0.445 (0.03) 0.396 (0.02) 0.183 (0.03) 0.180 (0.01) 0.373 (0.12)

OM η = 5 0.491 (0.01) 0.430 (0.01) 0.289 (0.00) 0.374 (0.02) 0.463 (0.02) 0.410 (0.02) 0.396 (0.02) 0.174 (0.02) 0.172 (0.01) 0.355 (0.11)

OM η = 10 0.486 (0.01) 0.425 (0.01) 0.289 (0.00) 0.373 (0.02) 0.460 (0.02) 0.407 (0.02) 0.394 (0.02) 0.173 (0.02) 0.170 (0.01) 0.353 (0.11)

TDM 0.536 (0.01) 0.476 (0.01) 0.288 (0.01) 0.376 (0.02) 0.513 (0.02) 0.457 (0.03) 0.398 (0.02) 0.196 (0.03) 0.184 (0.01) 0.380 (0.13)

OI 0.539 (0.01) 0.476 (0.01) 0.297 (0.00) 0.383 (0.02) 0.506 (0.02) 0.432 (0.03) 0.388 (0.02) 0.173 (0.03) 0.188 (0.01) 0.376 (0.13)

TD 0.493 (0.01) 0.446 (0.01) 0.293 (0.00) 0.380 (0.02) 0.482 (0.02) 0.419 (0.03) 0.394 (0.02) 0.166 (0.02) 0.175 (0.01) 0.361 (0.12)
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Figure 5: One rankers versus many rankers, measured with
Ebin of P̂ij against Pij where we keep i fixed. Averaged over 25
repetitions, 9 data sets and 5 folds.

nDCG [14]. Table 4 lists the nDCG for each evaluation method
measured on the result list that was actually shown to the user. On
average, TDM produces the highest online performance, i.e., users
were the least affected by the evaluation in which they participated.

Interestingly, for OM, the nDCG score goes down when the
sample size η goes up. This may be due to the fact that, when the
number of sampled multileavings goes up, the optimization problem
is less overconstrained. As a consequence, it is easier to satisfy the
unbiasedness constraint. Less biased multileavings are more “in
between” the input rankings and therefore they do not represent
a strong preference for one ranker. Such multileavings turn out
to have a lower nDCG. TDM does not suffer from this problem.
On some data sets, in particular HP2003, HP2004, NP2003 and
NP2004, for OM the online performance drops considerably when
η goes up. Incidentally, on these data sets, the error also increases
when η goes up (see Table 2); less biased multileavings have a lower
online performance.

6.6 Comparing to a production ranker
Though we focus on efficiently comparing all rankers to each

other, other variants are also useful in practice, as detailed in Sec-
tion 3. Here, we investigate how online evaluation methods perform
on one such variant: comparing a set of rankers to a single bench-
mark, e.g., a production ranker. Though our multileaving methods
were not specifically designed for this variant, we can measure their
performance on it by computing the error Ebin of P̂ij against Pij

where we keep i fixed. We perform this experiment on the infor-
mational instantiation of the click model and we average over 25
repetitions, 9 data sets and 5 folds.

Fig. 5, which presents the result of this analysis, shows that mul-
tileaving methods outperform the interleaving methods. OM, in
particular, continues to learn much more quickly than the alterna-
tives. Unsurprisingly, when comparing Fig. 5 to Fig. 1, we see that
the advantage of multileaving methods over interleaving methods
diminishes when the task changes from learning all cells in P̂ to
learning just one row and column in P̂ . Note that the multileaving
methods do still learn all cells in P̂ .

Table 5: Overconstrainedness of OM η = 10 averaged over 10
repetitions and 5 folds of the NP2003 data set.

k |R| = 3 |R| = 5 |R| = 7 |R| = 10

3 0.393 (0.21) 0.976 (0.03) 0.999 (0.00) 1.000 (0.00)

5 0.934 (0.18) 0.996 (0.01) 0.999 (0.00) 1.000 (0.00)

7 0.984 (0.05) 0.997 (0.00) 0.999 (0.00) 1.000 (0.00)

10 0.995 (0.01) 0.998 (0.00) 1.000 (0.00) 1.000 (0.00)
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Figure 6: Impact of negative and inverse credit functions (see
Section 4.2.4) in OI and OM on the perfect click model. Aver-
aged over 25 repetitions, 9 dataset with 5 folds each.

6.7 Parameters of OM and OI
In this section, we investigate some of the design choices made

when extending OI to OM; where possible, we do so by comparing
to the impact of our same choices on OI.

As described in Section 4.2.1, we had to restrict the number of
multileavings we can consider in the optimization problem of OM.
As we saw in Section 6.4 and to a lesser extent in Section 6.1,
the number of sampled multileavings η does have an impact on
the performance of OM. We hypothesized that this is due to the
optimization problem of OM becoming overconstrained when the
number of multileavings is small. When we investigate this effect,
we find the following. For smaller sample sizes, η = 1, 5, 10, the
problem was almost always overconstrained on all of the nine data
sets. With η = 100, the problem was overconstrained in 85% of
the multileaved comparisons. For OI, we confirm the claim by
Radlinski and Craswell [21] that the optimization problem is usually
underconstrained: we found that the problem was overconstrained
in only 1% of the interleavings.

The above findings were all for the scenario with |R| = 5 rankers
and k = 10 documents in the result lists. In Table 5, we see what
happens when we vary |R| and k and keep η = 10. Computational
limitations prevented us from evaluating what would happen with
values larger than η = 100. As long as the number of rankers is
small and the length of the multileaving is short, a small number of
samples is enough to avoid having an overconstrained problem.

In Fig. 6, we analyze the impact of the credit function (see Sec-
tion 4.2.4) on OI and OM. We see that OM performs best when using



the inverse credit function while the effect of the credit function on
OI is smaller than on OM. The observed degraded performance of
the negative credit function for OM is explained by the fact that this
credit function assumes a linear relation between the rank and credit.
This effect is stronger in OM because the credit function does not
model the difference but rather absolute values.

7. CONCLUSION
We presented a new paradigm for online evaluation of informa-

tion retrieval systems. We have shown that it is possible to extend
interleaved comparison methods to variants that, instead of compar-
ing two rankers, compare multiple rankers at a time. We introduced
two implementations of this paradigm that extend state-of-the-art
interleaving methods to their multileaving counterparts. One is team
draft multileave (TDM) and is an extension of team draft. The sec-
ond is optimized multileave (OM) and extends optimized interleave.
We have shown in extensive experiments that both multileaving
methods have their merits. OM learns preferences between rankers
very quickly while TDM learns them slightly more slowly, though
faster than either of the interleaving methods. However, TDM learns
more accurate preferences in the long run than OM or either of the
interleaving methods to which we compare. On the other hand, OM
scales much better than TDM when the number of rankers increases.
Thus, depending on the number of rankers to be compared, one
might prefer one multileaving algorithm over the other but both
should be preferred over interleaving algorithms when more than
two rankers are to be compared.

As to future work, currently, in TDM, when documents belonging
to the team of a ranker are clicked, preferences for this ranker over
other rankers without clicks are inferred, even when those other
rankers are not even represented by a team in the multileaving.
This may happen when the number of rankers to be compared is
larger than the number of documents in the multileaving. We aim
to develop a variant of TDM that avoids this problem. Another
future direction is to customize TDM and OM to tasks other than
comparing all rankers in a set to each other. When comparing
all rankers to a production ranker, as we do in Section 6.6, the
definitions of unbiasedness and sensitivity could be adjusted to take
into account the restricted goal of this task variant. In addition,
multileaved comparison methods could form the basis of a new
approach to tackling the K-armed dueling bandit problem, in which
the best ranker among a set is sought. By measuring the uncertainty
associated with each P̂ij , such a method could gradually exclude
rankers from the multileaving that are deemed unlikely to be the best,
thereby homing in on the most promising rankers. Finally, we are
interested in integrating multileaving methods into learning methods
analogous to the dueling bandits gradient descent method [27].
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