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Abstract
To evaluate disentangled representations several
metrics have been proposed. However, theoreti-
cal guarantees for conventional metrics of disen-
tanglement are missing. Moreover, conventional
metrics do not have a consistent correlation with
the outcomes of qualitative studies. In this paper
we analyze metrics of disentanglement and their
properties. We conclude that existing metrics of
disentanglement were created to reflect different
characteristics of disentanglement and do not sat-
isfy two basic desirable properties: (1) assign a
high score to representations that are disentan-
gled according to the definition; and (2) assign
a low score to representations that are entangled
according to the definition.

1. Introduction
Algorithms for learning representations are crucial for a
variety of machine learning tasks, including image classifi-
cation (Vincent et al., 2008; Hinton & Salakhutdinov, 2006)
and image generation (Goodfellow et al., 2014; Makhzani
et al., 2015). One type of representation learning algo-
rithm is designed to create a disentangled representation.
While there is no standardized definition of a disentangled
representation, the key intuition is that a disentangled repre-
sentation should capture and separate the generative factors
(Bengio et al., 2013; Higgins et al., 2018). In this paper,
we assume that the generative factors of the dataset are
interpretable factors that describe every sample from the
dataset.

Consider, for example, a dataset containing rectangles of
different shapes. The disentanglement of the representation
depends on the chosen set of generative factors. One pos-
sible set of generative factors on this dataset are the length
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Figure 1. Example of a dataset containing rectangles

and width (see Fig. 1). In the disentangled latent representa-
tion with respect to the length and width we can choose two
latent factors. One of these factors is an invertible function
of the length of the rectangles. Another is an invertible
function of the width of the rectangles.

Learning a disentangled representation is an important step
towards better representation learning because a disentan-
gled representation contains information about elements in
a dataset in an interpretable and compact structure (Bengio
et al., 2013; Higgins et al., 2018). Therefore, the devel-
opment of algorithms that learns disentangled representa-
tions has become an active area of research (Detlefsen &
Hauberg, 2019; Dezfouli et al., 2019; Lorenz et al., 2019).
The conventional way to measure the quality of these al-
gorithms is to provide the results according to one of fol-
lowing metrics (Locatello et al., 2018): BetaVAE (Higgins
et al., 2017), FactorVAE (Kim & Mnih, 2018), DCI (East-
wood & Williams, 2018), SAP score (Kumar et al., 2017),
and MIG (Chen et al., 2018). However, it has been shown
that the outcomes of these metrics are inconsistent with the
outcomes of a qualitative study of the disentanglement of
learned representations (Abdi et al., 2019); moreover, it is
not clear which metric should be preferred.

In this paper, we theoretically analyze the conventional met-
rics. The outcome of our analysis is an understanding of the
reasons why conventional metrics do not always correlate
with each other: different metrics were designed to reflect
different characteristics of disentanglement. As a conse-
quence, a metric for evaluating an algorithm that learns
disentangled representations should be determined by char-
acteristic of disentanglement that the method is designed
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to reflect. Moreover, we also discover why outcomes of
conventional metrics are inconsistent with the definition of
disentanglement. We check whether the metrics satisfy two
basic desirable properties: (1) assign a high score to repre-
sentations that are disentangled according to the definition;
and (2) assign a low score to representations that are entan-
gled according to the definition. We show that the majority
of the metrics do not satisfy these two conditions.

In summary, our key contribution in this paper is that we
review existing metrics of disentanglement and discuss their
fundamental properties.

2. Metrics of Disentanglement of
Representations

The main purpose of this paper is to analyze conventional
metrics of disentangled representations (the formal defini-
tions of the metrics are given in the Appendix), which is
done in this section. Though there is no universally accepted
definition of disentanglement, most metrics are based on the
definition proposed in (Bengio et al., 2013) and reflect char-
acteristics of a disentangled representation in accordance
with this definition. However, conventional metrics were
designed to reflect different characteristics of disentangled
representations: conventional metrics can be divided into
two groups, depending on which characteristic they reflect.
In this paper, we analyze whether conventional metrics sat-
isfy the following fundamental properties:

Property 1. A metric gives a high score to all representa-
tions that satisfy the characteristic that the metric reflects.

Property 2. A metric gives a low score for all representa-
tions that do not satisfy the characteristic that the metric
reflects.

2.1. BetaVAE, FactorVAE and DCI

In this subsection, we analyze metrics that reflect the fol-
lowing characteristic of disentangled representations.

Characteristic 1. In a disentangled representation a
change in one latent dimension corresponds to a change
in one generative factor while being relatively invariant to
changes in other generative factors (see Fig. 2a).

2.1.1. ANALYSIS OF WHETHER METRICS SATISFY THE
PROPERTY 1

Fact 1. BetaVAE and FactorVAE do not satisfy Property 1.

Proof. In a representation that satisfies Characteristic 1
there could be several generative factors that are not cap-
tured by any latent factors. In this case BetaVAE and Fac-
torVAE cannot distinguish these generative factors.

Fact 2. DCI does not satisfy Property 1.

(a) First characteristic of disen-
tanglement.

(b) Second characteristic of dis-
entanglement.

Figure 2. Different characteristics of disentanglement.

Figure 3. Example of the representation, satisfying Characteris-
tic 1, but BetaV AE = FactorV AE = 3

K
.

Proof. We argue that using entropy as a score of disentan-
glement of one latent variable is not correct. Indeed, a score
of disentanglement of ci should be high when ci reflects
one generative factor well, while it reflects other generative
factors equally poorly. However, since the distribution may
be close to uniform for these generative factors, the entropy
is large. Let us provide an example that is built on this
observation. Suppose there are 11 generative factors, and
11 is the dimension of the latent representation. Each latent
factor ci captures primarily a generative factor zi:

Ii,i = 0.8, Ii,k = 0.02, k 6= i.

Then, the DCI score is 0.6, so the DCI assigns a small score
to a representation that satisfies Characteristic 1.

2.1.2. ANALYSIS OF WHETHER METRICS SATISFY THE
PROPERTY 2

Fact 3. BetaVAE does not satisfy Property 2.
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(a) Entangled representation
with BetaVAE equal to 1.

(b) Entangled representation
with FactorVAE equal to 1.

Figure 4. Failures of BetaVAE and FactorVAE

Proof. As a proof, we give a counterexample (see Fig. 4a).
Suppose there are 3 generative factors from a uniform dis-
tribution and the dimension of the latent representation is 3.
Assume that the latent variables are equal to the generative
factors with the following probabilities:

p1 = (0.5, 0.5, 0), p2 = (0, 0.5, 0.5), p3 = (0.5, 0, 0.5).

We generate 10,000 training points with a batch size of
128. The accuracy of the linear classifier is equal to 0.9967
in this case, but the latent representation does not satisfy
Characteristic 1. This shows that BetaVAE does not satisfy
Property 2.

Fact 4. FactorVAE does not satisfy Property 2.

Proof. Let us consider the following example (see Fig. 4b).
Suppose there are 3 generative factors from a Gaussian
distribution with µ = 0, σ = 1, and each latent variable is a
weighted sum of the generative factors:

c1 = 0.5 · z1 + 0.4 · z2 + 0.5 · z3
c2 = 0.4 · z1 + 0.5 · z2 + 0.5 · z3
c3 = 0.4 · z1 + 0.4 · z2 + 0.6 · z3.

We generate 10,000 training points with a batch size of 128.
The FactVAE disentanglement score is equal to 1 in this
case, but the representation does not satisfy Characteristic 1.
This shows that FactoVAE does not satisfy Property 2.

Fact 5. DCI does not satisfy Property 2.

Proof. We give a counterexample, which is built on the
fact that the weighted sum in Eq. 2 can be large if only
one latent variable is disentangled, while the other latent
variables do not capture any information about generative
factors. Suppose there are 2 generative factors and the
dimension of the latent representation is 2, and the matrix
of informativeness is the following:

P0,0 = 1, P0,1 = 0, P1,1 = 0.09, P1,0 = 0.01.

In this case, the DCI score is 0.957. This counterexample
shows that the DCI score can be close to 1 for the represen-
tation does not satisfy Characteristic 1.

2.2. SAP and MIG metrics

In this subsection, we analyze metrics that reflect the fol-
lowing characteristic of disentangled representations.

Characteristic 2. In a disentangled representation a
change in a single generative factor leads to a change in
a single factor in the learned representation (see Fig. 2b).1

2.2.1. ANALYSIS OF WHETHER METRICS SATISFY
PROPERTY 1

Fact 6. SAP does not satisfy Property 1.

Proof. We claim that it is incorrect to use the R2 score of
linear regression as informativeness between latent variables
and generative factors. Indeed, a linear regression cannot
capture non-linear dependencies. Thus, informativeness,
which is calculated using the R2 score of a linear regression,
may be low if each generative factor is a non-linear function
of some latent variable. Let us give an example that is built
on this observation. Suppose there are 2 generative factors
from the uniform distribution U([−1, 1]) and the dimension
of the latent representation is 2. Let us assume the latent
variables are obtained from the generative factors according
to the following equations:

c1 = z151 , c2 = z152 .

For this representation, we generate 10,000 examples and
obtain the SAP score equal to 0.32. It proves that SAP can
assign a low score to a representation that satisfies Charac-
teristic 2.

Fact 7. MIG satisfies Property 1.

Proof. Indeed, in a disentangled representation each genera-
tive factor is primarily captured in only one latent dimension.
This means that for each generative factor zj , there is ex-
actly one latent factor cij for which zj is a function of cij :

1This property of representations is also called complete-
ness (Eastwood & Williams, 2018).
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zj ∼ f(cij ). Therefore,

Iij ,j = H(zj)−H(zj |ci,j) ∼ H(zj),

whereas for other latent variables Ik,j = I(ck, zj) ∼ 0.
Consequently, according to MIG, the score of disentangle-
ment of each generation factor is close to 1:

Iij ,j −maxk 6=ij Ik,j

H(zj)
∼ 1. (1)

Therefore, the average of these scores is also close to 1. This
shows that MIG always assigns a high score to a representa-
tion that satisfies Characteristic 2.

2.2.2. ANALYSIS OF WHETHER METRICS SATISFY
PROPERTY 2

Fact 8. SAP does not satisfy Property 2.

Proof. A high SAP score indicates that the majority of gen-
erative factors is captured linearly in only one latent di-
mension. However, the SAP metric does not penalize the
existence of several latent factors that capture the same gen-
erative factor non-linearly. Let us consider the following
example. Suppose there are 2 generative factors from the
uniform distribution U([−1, 1]), and the dimension of the
latent representation is 3. Let us assume that the latent fac-
tors are obtained from the generative factors according to
the following equations:

c1 = z1, c2 = z251 + z252 , c3 = z2.

For this latent representation, a change in each generative
factor leads to a change in several latent factors, but the SAP
score is equal to 0.98. This shows that the SAP score can
be close to 1 for a latent representation that does not satisfy
Characteristic 1.

Fact 9. MIG satisfies Property 2.

Proof. A high MIG score indicates that the majority of
generative factors is captured in only one latent dimension.
Consequently, a change in one of the generative factors
entails a change primarily in only one latent dimension.

A summary of the results of our analysis is given in Table 1.

2.3. Difference between Characteristics 1 and 2

The Characteristics 1 and 2 of a disentangled representa-
tion have important differences. Indeed, a representation in
which several latent factors capture one common generative
factor satisfies a Characteristic 1, but not a Characteristic 2.
On the other hand, a representation in which a latent variable
captures multiple generative factors while there are no other

Table 1. Summary of facts about proposed metrics of disentangled
representations.

Metric Satisfies Property 1 Satisfies Property 2

BetaVAE No No
FactorVAE No No
DCI No No
SAP No No
MIG Yes Yes

latent variables that capture these generative factors does
not satisfy Characteristic 1, but satisfies Characteristic 2.

Consider, for example, the following latent representation of
dimension 4 of the dataset containing rectangles of different
shapes shown in Fig. 1:

z1 = x, z2 = x2, z3 = y, z4 = y3,

where x is the length of a rectangle, while y is the width of a
rectangle. It satisfies Characteristic 1, but not a Characteris-
tic 2. Conversely, any one-dimensional latent representation
of the same dataset would satisfy Characteristic 2, but not
necessarily Characteristic 1.

3. Conclusion
In recent years, several models have been developed to ob-
tain disentangled representations (Yu & Grauman, 2017;
Hu et al., 2017; Denton et al., 2017; Kim & Mnih, 2018).
Currently, there are five metrics that are commonly used to
evaluate the models: BetaVAE (Higgins et al., 2017), Fac-
torVAE (Kim & Mnih, 2018), DCI (Eastwood & Williams,
2018), SAP (Kumar et al., 2017) and MIG (Chen et al.,
2018). Interestingly, all of these metrics are based upon the
definition of disentangled representation proposed in (Ben-
gio et al., 2013). However, three of the metrics were de-
signed to reflect Characteristic 1 of disentangled representa-
tions, while two were designed to reflect Characteristic 2.

The primary goal of this paper has been to provide an analy-
sis of the existing metrics of disentangled representations.
We theoretically analyze how well the proposed metrics re-
flect the characteristics of disentangled representations that
they are intended to reflect. In particular, we analyze each
of the existing metrics of disentanglement by two properties:
whether a metric is close to 1 when a representation satisfies
the characteristic that the metric reflects and whether the
metric is close to 0 when a representation does not satisfy
the characteristic. Surprisingly, we found that most of the
existing metrics do not satisfy these basic properties.
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Supplement to “How Not to Measure
Disentanglement”

A. Metrics of Disentanglement of
Representations

A.1. Definition of BetaVAE

The algorithm that calculates BetaVAE (Higgins et al., 2017)
consists of the following steps:

1. Choose a generative factor zr.
2. Generate a batch of pairs of vectors for which the value

of zr within the pair is equal, while other generative
factors are chosen randomly:

(p1 = 〈z1,1, . . . , z1,K〉,p2 = 〈z2,1, . . . , z2,K〉),
z1,r = z2,r

3. Calculate the latent code of the generated pairs: (c1 =
fe(g(p1)), c2 = fe(g(p2)))

4. Calculate the absolute value of the pairwise differences
of these representations:

e = 〈
∣∣c1,1 − c2,1∣∣ , . . . ,∣∣c1,N − c2,N ∣∣〉

5. The mean of these differences across the examples in
the batch gives one training point for the linear regressor
that predicts which generative factor was fixed.

6. BetaVAE is the accuracy of the linear regressor.

A.2. Definition of FactorVAE

The idea behind FactorVAE (Kim & Mnih, 2018) is very
similar to BetaVAE. The main difference between them
concerns how a batch of examples is generated to obtain
a variation of latent variables when one generative factor
is fixed. Another difference is the classifier that predicts
which generative factor was fixed using the variation of
latent variables. FactorVAE can be calculated by performing
the following steps:

1. Choose a generative factor zr.
2. Generate a batch of vectors for which the value of zr

within the batch is fixed, while other generative factors
are chosen randomly.

3. Calculate latent codes of vectors from one batch.
4. Normalize each dimension in the latent representation

by its empirical standard deviation over the full data.
5. Take the empirical variance in each dimension of these

normalized representations.
6. The index of the dimension with the lowest variance and

the target index r provides one training point for the
classifier.

7. FactorVAE is the accuracy of the classifier.

A.3. DCI: Disentanglement, Completeness and
Informativeness

Eastwood & Williams (2018) propose to use a metric of
disentangled representations, which we call DCI, that is
calculated as follows:

1. First, the informativeness between ci and zj is calcu-
lated. To determine the informativeness between ci
and zj , Eastwood & Williams (2018) suggest training
K regressors. Each regressor fj predicts zj given c
(ẑj = fj(c)) and can provide an importance score Pi,j

for each ci. The normalized importance score obtained
by regressor fj for variable ci is used as the informative-
ness between ci and zj :

Ii,j =
Pi,j∑k=K

k=0 Pi,k

.

2. For each latent variable its score of disentanglement is
calculated as follows:

HK(Ii) = 1 +

K∑
k=1

Ii,k logK Ii,k.

3. The weighted sum of the obtained scores of disentangle-
ment for the latent variables is DCI:

DCI(c, z) =
∑
i

(
ρi ·HK(Ii)

)
, (2)

where ρi =
∑

j Pi,j/
∑

ij Pi,j .

A.4. SAP score: Separated Attribute Predictability

Kumar et al. (2017) provide a metric of disentanglement
that is calculated as follows:

1. Compute a matrix of informativeness Ii,j , in which the
ij-th entry is the linear regression or classification score
of predicting the j-th generative factor using only the
i-th variable in the latent representation.

2. For each column in the matrix of informativeness Ii,j ,
which corresponds to a generative factor, calculate the
difference between the top two entries (corresponding to
the top two most predictive latent factors). The average
of these differences is the final score, which is called the
SAP:

SAP(c, z) =
1

K

∑
k

(
Iik,k −max

l 6=ik
Il,k

)
,

where ik = argmaxi Ii,k.

A.5. MIG: Mutual Information Gap

Chen et al. (2018) propose a disentanglement metric, Mu-
tual Information Gap (MIG), that uses mutual information
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between the j-th generative factor and the i-th latent variable
as a notion of informativeness between them. The mutual
information between two variables c and z is defined as

I(c; z) = H(z)−H(z|c),

where H(z) is the entropy of the variable z. Mutual infor-
mation measures how much knowing one variable reduces
uncertainty about the other. A useful property of mutual
information is that it is always non-negative I(c; z) > 0.
Moreover, I(c; z) is equal to 0 if and only if c and z are
independent. Also, mutual information achieves its maxi-
mum if there exists an invertible relationship between c and
z. The following algorithm calculates the MIG score:

1. Compute a matrix of informativeness Ii,j , in which the
ij-th entry is the mutual information between the j-th
generative factor and the i-th latent variable.

2. For each column of the score matrix Ii,j , which corre-
sponds to a generative factor, calculate the difference
between the top two entries, and normalize it by dividing
by the entropy of the corresponding generative factor.
The average of these normalized differences is the MIG
score:

MIG(c, z) =
1

K

∑
k

Iik,k −maxl 6=ik Il,k
H(zk)

,

where ik = argmaxi Ii,k.


