
Expanded Acyclic Queries: Containment and
an Application in Explaining Missing Answers

Evgeny Sherkhonov

Expanded Acyclic Queries: Containment and
an Application in Explaining Missing Answers

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op vrijdag 12 februari 2016, te 10:00 uur

door

Evgeny Sherkhonov

geboren te Ulan-Ude, Rusland

Promotiecommissie

Promotor:
Prof. dr. M. de Rijke

Co-promotor:
Dr. M. Marx

Overige leden:
Prof. dr. H. Afsarmanesh
Prof. dr. J. A. Bergstra
Dr. ir. A. J. H. Hidders
Dr. E. Kanoulas
Prof. dr. J. Wijsen

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2016-05
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

The research was supported by the Netherlands Organisa-
tion for Scientific Research (NWO) under project number
612.001.012 (DEX).

Copyright c© 2015 Evgeny Sherkhonov, Amsterdam, The Netherlands
Cover by David Graus
Printed by Off Page, Amsterdam

ISBN: 978-94-6182-652-7

Acknowledgements

There are a number of people that have supported me in this four-year-long journey. Even
if you are not mentioned in the list below, you should know that I am very grateful for all
the good you have done for me.

Special thanks go to:

Maarten Marx, my supervisor. Thank you Maarten for the guidance, your open heart and
remarkable creativity.

Balder ten Cate. Thank you Balder for having me in Santa Cruz, it was one of the greatest
periods of my life. I am indebted to you for opening a totally new research direction to
me.

Maarten Marx, Yoichi Hirai, Alessandro Facchini, Balder ten Cate, Cristina Civili, and
Wang-Chiew Tan, co-authors of the chapters of this thesis. I am grateful for all the great
ideas and discussions we have had together.

Maarten de Rijke, my promotor. Thank you for creating a very stimulating environment
in the group.

Sergey P. Odintsov, my first supervisor back in Novosibirsk. Thank you Sergey Pavlovich
for sparking my interest in logic.

The Netherlands Organisation for Scientific Research (NWO) for sponsoring my PhD
project and the Dutch Research School for Information and Knowledge Systems (SIKS)
for their additional support.

Former and current members of ILPS, for all the fun at coffee breaks, parties and else-
where. I wish I could mention all your names, but ILPS is very large.

#Running and #Beachvolley teams at ILPS for sports during and after the work hours.

Katya and Abdo, my paranymphs.

Last but foremost my family for being there for me.

Evgeny Sherkhonov
Amsterdam, December 2015

Contents

1 Introduction 1
1.1 Research outline and goals . 3
1.2 Main contributions and overview . 6
1.3 Origins . 8

2 Background and Preliminaries 9
2.1 Containment for queries over relational data 9
2.2 Containment for XPath . 15

2.2.1 XML and tree models . 15
2.2.2 XPath and its fragments . 16
2.2.3 XPath query containment . 19
2.2.4 Conjunctive queries interpreted over trees and containment . . . 19

2.3 Why and why-not explanations . 20
2.3.1 Why explanations . 20
2.3.2 Why-not explanations . 22

I Containment Problem for Acyclic Queries 25

3 Containment for Queries over Trees with Attribute Value Comparisons 27
3.1 Introduction . 27
3.2 Preliminaries . 28
3.3 Containment of PosXPath@ and CQ@ 33

3.3.1 Containment of Positive XPath and CQs with safe negation . . . 34
3.3.2 Adding attributes . 39
3.3.3 Restricting the attribute domain 44
3.3.4 Lower bounds . 46
3.3.5 Tractable cases . 50

3.4 Conclusion . 50

4 Containment for ACQ with Atomic Negation and Arithmetic Comparisons 51
4.1 Introduction . 51
4.2 Preliminaries . 53
4.3 Containment for ACQ with guarded atomic negation or comparisons . . 57
4.4 Polynomial-time algorithms for containment 63
4.5 Conclusion and future work . 67
4.A Polynomial time algorithms for containment 68

4.A.1 Descendant-only tree patterns with label negation 68
4.A.2 Tree patterns with attribute value comparisons 69

v

CONTENTS

5 Containment for Conditional Tree Patterns 73
5.1 Introduction . 73

5.1.1 Related work . 77
5.2 Preliminaries . 78

5.2.1 Trees . 78
5.2.2 XPath and Tree Patterns . 78
5.2.3 Containment . 80

5.3 Expressivity . 82
5.3.1 Interpreting Conditional Tree Patterns by simulations 82
5.3.2 Expressivity characterization 84

5.4 Containment . 86
5.4.1 Containment preliminaries . 86
5.4.2 Lower bounds . 92
5.4.3 Upper bounds . 94

5.5 Conclusion . 97
5.A Translations between CTP and ctp . 98

II Application: Why-not Explanations 101

6 High-Level Why-Not Explanations using Ontologies 103
6.1 Introduction and results . 103
6.2 Preliminaries . 107
6.3 Why-not explanations . 109
6.4 Obtaining ontologies . 112

6.4.1 Leveraging an external ontology 113
6.4.2 Ontologies derived from a schema 116

6.5 Algorithms for computing most-general explanations 121
6.5.1 Case 1: External ontology . 122
6.5.2 Case 2: Ontologies from an instance 123
6.5.3 Case 3: Ontologies from schema 126

6.6 Variations of the framework . 127
6.7 Conclusion . 129
6.A Missing proofs for Section 4 . 131

6.A.1 Proofs for Section 6.4.1 . 131
6.A.2 Proof of Theorem 6.4.3 . 131

6.B Missing proofs of Section 5 . 142
6.B.1 Proofs for Section 6.5.1 . 142
6.B.2 Proofs for Section 6.5.2 . 144
6.B.3 Proofs for Section 6.5.3 . 147

6.C Missing proofs for Section 6 . 148
6.C.1 Cardinality based preference 150

7 Conclusion 153
7.1 Main findings . 153
7.2 Future work . 156

Bibliography 159

Samenvatting 163

vi

1
Introduction

One of the main uses of computers is to store, manage, and retrieve information. Large
amounts of data stored on computers and structured by a defined schema are called
databases. Software that helps to manipulate and retrieve data (by means of querying) is
called a database management system. Database theory is the field of computer science
that studies the foundations underlying the design and use of such systems.

Static analysis for queries is one of the main themes in database theory. One of
the main static analysis problems for query languages is containment. Ever since the
creation of the relational model, and SQL query language, the containment problem
has been a topic of considerable interest (Chandra and Merlin, 1977a; Chekuri and Ra-
jaraman, 2000; Gottlob et al., 2001). With the creation of other data models such as
(tree) XML, data trees, graph databases, and corresponding languages (e.g., XPath and
SPARQL, graph patterns or path queries) the containment problem has received renewed
interest (Kostylev et al., 2014; Miklau and Suciu, 2004; Wood, 2003). Roughly, the con-
tainment problem for a query language L over the data model D can be formalized as
follows. Let Q1 and Q2 be two queries from L. Then we say that Q1 is contained in Q2,
denoted as

Q1 ⊆ Q2,

if for every D-database I , the answers to Q1 over I are among the answers to Q2 over I .
This problem has a number of important applications. We list a few of them.

Query optimization. The task of query optimization is to produce a queryQ′ for a given
query Q such that the answers of the queries are the same (i.e., they are equivalent
and denoted as Q ≡ Q′) and the “cost” of executing Q′ is lower than of Q. Thus,
checking equivalence of two queries is an essential step for any optimization algo-
rithm. Checking ifQ′ is equivalent toQ can be done by checking two containment
relations: Q ⊆ Q′ and Q′ ⊆ Q. Vice versa, for many query languages, the equiva-
lence problem turns out to be equivalent to the containment problem. Indeed, if L
contains conjunction ∧, then checking Q ⊆ Q′ amounts to checking Q ≡ Q ∧Q′.

Query answering using views. Another problem involving containment is query an-
swering using materialized views. This problem has received considerable at-
tention in the literature because of its various applications in other areas such as
speeding up query evaluation, mobile computing, semantic data caching, and data
warehouse design, see (Levy et al., 1995) for references, and (Halevy, 2000) for an

1

1. Introduction

overview of the results in this area. Roughly, the problem can be stated as follows.
Given a query Q and a set of view definitions V1, . . . , Vn, can we answer Q using
only the answers computed for V1, . . . , Vn?

A common approach to solve this problem is query rewriting. That is, finding a
query Q′ which uses only the views V1, . . . , Vn such that Q′ ≡ Q. This definition
shows that checking equivalence is an essential step in query rewriting. As we have
mentioned above, this problem is tightly connected with the containment problem.

Why-not explanations. A third application that we mention here has recently appeared
in the context of explanations to why-not questions. A why-not question aims
to explain why particular data is missing from the result of a query. A newly
proposed framework for why-not explanations (ten Cate et al., 2015) makes use of
ontologies. Roughly, an ontology is a hierarchy of concepts that models a domain
of interest. As an example, assume that Woman and Man are two concepts that
represent women and men, while the concept Human represents human beings.
These concepts obey the following hierarchy: Woman v Human and Man v Human,
which is read as “the concept Human subsumes the concepts Woman and Man”, and
simply formalizes the fact that every woman and every man is a human being.

Without going too much into the details of the framework in (ten Cate et al.,
2015), we point out that an explanation is a tuple of concepts that “generalizes”
the missing data and thus gives a high level explanation to why this data is miss-
ing. As an example, given a database of train connections, and the query asking
for pairs of cities reachable from each other, one can see that the tuple 〈New York,
Amsterdam〉 is missing from the query result. One possible high-level explanation
is the tuple 〈AmericanCity, EuropeanCity〉, which denotes that fact that there
is no train connection between any two cities of America and Europe, and thus it
explains the fact why 〈New York, Amsterdam〉 is missing. Note that the tuple of
concepts 〈City, City〉 would not be an explanation, because there are cities that
are connected to each other.

In this framework, we are interested in most general explanations. That is, in
explanations such that there is no other explanation which is strictly more general
(or which does not strictly subsume). Therefore, checking subsumption between
two concepts is essential in algorithms for producing a most general explanation.
Concepts are in fact queries and thus checking subsumption between concepts is
the same as checking containment between queries.

The above list of applications, by no means exhaustive, is meant to demonstrate the im-
portance of the containment problem. Note that these applications can also be casted
in any query language and data model. This emphasizes the fact that we need to study
the containment problem for various query languages and data models. In this thesis
we dwell on fragments and expansions of popular query languages such as XPath and
Conjunctive Queries over XML and relational data, respectively. One notable structural
property that all the languages considered in this thesis share is acyclicity. The acyclicity
condition on either languages or their underlying models, is prominent in database theory.
Indeed, acyclicity has appeared in various settings where a problem at hand is intractable
while acyclicity allows for efficient solutions. A notable example is the query evaluation

2

1.1. Research outline and goals

problem for conjunctive queries. It is known that the problem is NP-complete (Chan-
dra and Merlin, 1977a), while acyclic conjunctive queries allow for fast parallelizable
algorithms (Gottlob et al., 2001).

Next we elaborate more on the research questions that we address in the thesis.

1.1 Research outline and goals

This thesis is divided into two parts. The first part is devoted to the containment prob-
lem for expansions of fragments of XPath interpreted over trees and Conjunctive Queries
(CQ) interpreted over both trees and relational structures. Concerning this part of the the-
sis, we list the classes of queries under consideration, with the corresponding expansions.
Then we define the research questions addressed in this thesis.

XPath fragments
XPath (W3C, 1999a) is a standard language for selecting paths or patterns in XML docu-
ments. It is an essential component in query languages for XML, such as XQuery (W3C,
2010), the transformation language XSLT (W3C, 1999b), and constraint languages such
as XML Schema (W3C). Because of its presence in practically all programming tools for
manipulating XML documents, XPath and in particular its static analysis (query evalua-
tion, satisfiability and containment) have received siginificant interest over the past few
years (see an overview in (Benedikt and Koch, 2009), and Chapter 2 for an overview on
the containment for fragments of XPath).

Although XPath has many features, we restrict our attention to its navigational part,
also known as Core Xpath (Gottlob et al., 2005b). The complexity of static analysis
crucially depends on the syntactic constructs, or axes such as child and descendent,
being used in queries. In particular, for a large class of fragments of XPath that contain
full negation and filter expressions, the problems of satisfiability and containment are
equivalent. For the latter problem, i.e., satisfiability, a rather complete picture of the
complexity landscape is understood (Benedikt et al., 2008; Hidders, 2003), thus settling
the containment problem for many fragments. On the other hand, for fragments without
negation, or positive fragments, the containment and satisfiability are different. A lot of
work has been devoted to positive fragments of XPath, a notable one of which is Tree
Patterns (Amer-Yahia et al., 2002; Miklau and Suciu, 2004). Tree Patterns is a fragment
that uses only downward axes, i.e., child and/or descendent, and that may also use
filter expressions and the wildcard.

In this thesis we continue the study of the containment problem for fragments of
Positive XPath but with a few additional constructs that allow to express some useful
properties of trees. In particular, we single out the following additional constucts, which
are formally defined in the corresponding chapters.

• Label negation. As opposed to full negation, in XPath formulas with label negation
we allow the negation sign only in front of a label. An additional restriction that is
prominent in this thesis is safety that allows an occurrence of a negated label only
in conjunction with an occurrence of a positive label. In Chapter 3 we study the
impact of safe label negation on the containment problem.

3

1. Introduction

• Attribute value comparisons. This type of construct allows us to reason over nu-
meric values that sit in the attributes of tree nodes. As an example, the XPath
query //person/ ? [@age ≥ 18] selects all adults present in a document about
people. Likewise, in Chapter 3 we study the impact of expanding positive XPath
with attribute value comparisons on the containment problem.

• Conditional descendent axis. We initiate the study on downward positive XPath
expanded with a restricted form of the transitive closure of the child relation, called
conditional descendent axis. This expansion can easily be explained pictorially: to
descendent edges in usual Tree Patterns we add labels that are (conditional) Tree
Patterns themselves. The meaning of a descendent edge labeled withQ and ending
in P is a path of child steps ending in a P node such that all the intermediate
nodes are Q-nodes. This very much resembles the until operator from temporal
logic (Kamp, 1968).

When boosting the expressive power, we can expect that the complexity of con-
tainment is higher than for usual Tree Patterns. In Chapter 5 we investigate what
the exact complexity of containment is.

Conjunctive Queries
Conjunctive Queries (CQ) are one of the most popular query languages used in prac-
tice (Abiteboul et al., 1995). In SQL they correspond to select-from-where queries where
the conditions can only be combined using “AND”. The containment problem for con-
junctive queries interpreted over relational databases was one of the first fundamental
problems in database theory, though under a different name. In particular, for this class
of queries the containment problem is equivalent to the query evaluation problem that
was studied in (Chandra and Merlin, 1977b). Furthermore, this problem has deep con-
nections with other areas, and appears in a different disguise in AI as the Constraint
Satisfaction Problem (Kolaitis and Vardi, 2000), and in graph theory as the H-coloring
problem (Hell and Nesetril, 2004).

While being well studied over relational databases, the containment problem for con-
junctive queries interpreted over unranked trees has been considered only recently (Björklund
et al., 2011). In this contexts, conjunctive queries are built of unary relations, and the bi-
nary relations Child, Descendent and Following. In (Björklund et al., 2011) it is
shown that containment for CQ over trees is ΠP

2 -complete. In Chapter 3, we investigate
the impact of the following constructs on the containment problem: (safe) label negation,
and attribute value comparisons.

All in all, for every language L of Positive Xpath, Tree Patterns and Conjunctive
Queries expanded with the new constructs mentioned above, we study the following
research question.

RQ 1 What is the complexity of the containment problem for L over unranked trees?

Tractable containment for expansions of Conjunctive Queries
From (Chandra and Merlin, 1977a) it is known that containment for CQ over relational
databases is NP-complete. Because of the practical importance of this query language,

4

1.1. Research outline and goals

a lot of research has been devoted to finding natural and large classes of restrictions on
CQ allowing for tractable containment. One such restriction is acyclicity (Gottlob et al.,
2001) that allows for a fast parallelizable algorithm.

Various expansions of Conjunctive Queries over relational databases have been con-
sidered in the past. Atomic negation and arithmetic comparisons are among them (Ull-
man, 2000; van der Meyden, 1997). A conjunctive query is said to have atomic negation
if the negation sign appears only in front of an atom (or a subgoal). A conjunctive query
has arithmetic comparisons if it contains comparisons of the form Xop c as subgoals,
where X is a variable appearing in some subgoal, op is a comparison operator and c a
constant.

It turns out that adding these new features results in higher complexity for contain-
ment – ΠP

2 . However, it is rather surprising that tractable restrictions of these expanded
languages have received little attention before. In Chapter 4 we start addressing this issue
by considering a natural candidate for a restriction – acyclicity. Thus, we try to answer
the following

RQ 2 Does acyclicity make the complexity of containment for conjuctive queries ex-
panded with atomic negation or arithmetic comparison tractable? If not, what
additional restrictions can be imposed to make it tractable?

Why-not explanations

The second part of this thesis is devoted to a new framework for why-not explanations.
Given a (relational) database possibly with integrity constraints, a computed answer to
a query, and a tuple that does not belong to the answer, a why-not question asks why
the tuple is missing in the answer. This problem appears quite often during the process
of debugging either a database system, or a query posed against the system. Explana-
tions to why-not questions might pinpoint a possible source of error which could be the
constraints, views, the query or gaps in the data.

The proposed framework makes use of ontologies and provides high-level explana-
tions. Ontologies contain concepts and relationships between them. In this way, ontolo-
gies are a powerful way to model the domain of interest and provide a high-level view
of the data. Our framework can make use of either an existing ontology (e.g., DBPedia)
or an ontology extracted from the database and/or a schema that includes integrity con-
straints. Since an ontology is a central object in our framework, the first question that we
try to answer in Chapter 6 is

RQ 3 How to extract an ontology from a database instance or a schema?

It turns out that this problem can be cast as the containment problem. Indeed, an
ontology can be represented as a set of concept subsumptions. In case we want to extract
an ontology from a schema with integrity constraints, concepts have a form of a view (or
a query) and thus subsumption is just a reformulation of the containment problem. The
exact answer to the research question largely depends on the type of constraints available
in the schema. In Chapter 6 we answer the questions for various constraints, including
views, inclusion and functional dependencies.

5

1. Introduction

Next, in the framework, among all why-not explanations we are interested in “good”
ones only. Intuitively, good explanations are those that are as general as possible with
respect to the ontology, and thus they are “high-level” and capture a general gap/error in
the system. Consider the following example. Suppose we have a database of publications
that was obtained as the result of an integration process (say, from DBLP, Google Scholar,
and PubMed). Then suppose we are asking for all publications of Ronald Fagin that were
published between the year 2000 and 2005. When we query the database, it turns out that
his most cited paper R. Fagin et al. “Reasoning about knowledge.” MIT Press, 2003, is
not in the result. A possible “good” solution could be that “it is an MIT Press publication
and all MIT Press publications are missing”.

We are interested in the following research question.

RQ 4 How to produce “good” explanations?

In the following research chapters we seek answers to all of the above research ques-
tions.

1.2 Main contributions and overview

In this section we outline the structure of the thesis and summarize the contributions of
each chapter except the introduction chapter.

Chapter 2. In this chapter we review related work and introduce key concepts that are
useful for presenting the main material. In particular, we review previous work on the
containment problem for various fragments of XPath, as well as Conjunctive Queries
over trees and relational structures. Related to why-not explanations, we review known
results on why and why-not explanations.

Part I: Containment problem for Acyclic queries

Chapter 3. In this chapter we study the containment problem for queries over trees
expanded with attribute value comparisons. Björklund et al. (2011) showed that con-
tainment for conjunctive queries (CQ) over trees and positive XPath is respectively ΠP

2

and CONP-complete. In this chapter we show that the same problem has the same com-
plexity when we expand these languages with XPath’s attribute value comparisons. We
show that different restrictions on the domain of attribute values (finite, infinite, dense,
discrete) have no impact on the complexity. Making attributes required does have an
impact: the problem becomes harder. We also show that containment of tree patterns
without the wildcard ∗, which is in PTIME, becomes CONP hard when adding equality
and inequality comparisons, i.e., comparisons of the form @a = c and @a 6= c.

Chapter 4. In this chapter we study the containment problem for conjunctive queries
(CQ) with atomic negation or arithmetic comparisons over relational databases. It is
known that the problem is ΠP

2 -complete (Ullman, 2000; Wei and Lausen, 2003). The
aim of this chapter is to find restrictions on CQ that allow for tractable containment.

6

1.2. Main contributions and overview

In particular, we consider acyclic conjunctive queries. It turns out that even with the
most restrictive form of acyclicity (Berge-acyclicity), containment is CONP-hard. We
show that for a particular fragment of Berge-acyclic CQs with atomic negation, namely
the class of child-only tree patterns with a restricted form of negation, containment is
solvable in PTIME.

Chapter 5. In this chapter we consider an expansion of traditional tree patterns. A
Conditional Tree Pattern (CTP) expands an XML tree pattern with labels attached to the
descendant edges. These labels can be XML element names or Boolean CTP’s. The
meaning of a descendant edge labelled by A and ending in a node labelled by B is a path
of child steps ending in a B node such that all intermediate nodes are A nodes. In effect
this expresses the until B, A holds construction from temporal logic.

This chapter studies the containment problem for CTP. For tree patterns (TP), this
problem is known to be CONP-complete. We show that it is PSPACE-complete for CTP.
This increase in complexity is due to the fact that CTP is expressive enough to encode
an unrestricted form of label negation: ∗ \ a, meaning “any node except an a-node”.
Containment of TP expanded with this type of negation is already PSPACE-hard.

CTP is a positive, forward, first order fragment of Regular XPath. Unlike TP, CTP
expanded with disjunction is not equivalent to unions of CTP’s. Like TP, CTP is a
natural fragment to consider: CTP is closed under intersections and CTP with disjunc-
tion is equally expressive as positive existential first order logic expanded with the until
operator.

Part II: Why-not explanations

Chapter 6. In this chapter we propose a foundational framework for why-not explana-
tions, that is, explanations for why a tuple is missing from a query result. Our why-not
explanations leverage concepts from an ontology to provide high-level and meaningful
reasons for why a tuple is missing from the result of a query.

A key algorithmic problem in our framework is that of computing a most-general
explanation for a why-not question, relative to an ontology, which can either be provided
by the user, or it may be automatically derived from the data and/or schema. We study
the complexity of this problem and associated problems, and present concrete algorithms
for computing why-not explanations. In the case where an external ontology is provided,
we first show that the problem of deciding the existence of an explanation to a why-not
question is NP-complete in general. However, the problem is solvable in polynomial
time for queries of bounded arity, provided that the ontology is specified in a suitable
language, such as a member of the DL-Lite family of description logics, which allows
for efficient concept subsumption checking. Furthermore, we show that a most-general
explanation can be computed in polynomial time in this case. In addition, we propose
a method for deriving a suitable (virtual) ontology from a database and/or a schema,
and we present an algorithm for computing a most-general explanation to a why-not
question, relative to such ontologies. This algorithm runs in polynomial-time in the case
when concepts are defined in a selection-free language, or if the underlying schema is
fixed. Finally, we also study the problem of computing short most-general explanations,

7

1. Introduction

and we briefly discuss alternative definitions of what it means to be an explanation, and
to be most general.

Notably, in the above algorithms, it is important to decide the containment (or, sub-
sumption) between two concepts. We provide a detailed complexity analysis for this
problem when concepts are defined as projections of relations, or projections of relations
with selection, or conjunctions thereof, with respect to different types of constraints.

1.3 Origins

We list publications and submissions on which the content chapters are based, and we
discuss the role of co-authors.

Chapter 3 This chapter is based on M. Marx and E. Sherkhonov. “Containment for
queries over trees with attribute value comparisons” (Marx and Sherkhonov, 2015),
which is accepted for publication at Information Systems and an expanded version
of E. Sherkhonov and M. Marx. “Containment for tree patterns with attribute
value comparisons.” Proceedings of the 16th International Workshop on the Web
and Databases 2013, WebDB 2013, 2013 (Sherkhonov and Marx, 2013). Both
authors contributed to the proofs of the results and to the text.

Chapter 4 This chapter is based on a journal submission E. Sherkhonov and M. Marx.
“Containment of Acyclic conjunctive queries with atomic negation and arithmetic
comparisons”. (Sherkhonov and Marx, 2015), which is currently under review.
Both authors contributed to the proofs of the results and to the text.

Chapter 5 This chapter is based on A. Facchini, Y. Hirai, M. Marx, and E. Sherkhonov.
“Containment for conditional tree patterns”. Logical Methods in Computer Sci-
ence, 2015 (Facchini et al., 2015). All authors contributed to the proofs of the
results and to the text.

Chapter 6 This chapter is based on B. ten Cate, C. Civili, E. Sherkhonov and W-C. Tan.
“High-Level Why-Not Explanations using Ontologies”. Proceedings of the 34th
ACM Symposium on Principles of Database Systems, PODS 2015 (ten Cate et al.,
2015). We introduce a new framework for why-not explanations. All authors con-
tributed to the development of the framework, algorithms, proofs of the results
and to the text. This work also appears in the PhD thesis of Cristina Civili ti-
tled “Processing Tuple-Generating Dependencies for Ontological Query Answer-
ing and Query Explanation”, Sapienza University of Rome. Technical contribu-
tions of Civili were Section 6.4.1 on the case of external ontology and Section 6.5
on algorithms for computing why-not explanations. Sherkhonov’s contributions
include Section 6.5.3 on deriving an ontology from a schema, and Section 6.6 on
variations of the framework.

The chapters are almost exact copies of the conference and journal papers, except for the
related work sections of the papers. Relevant related work is discussed in Chapter 2.

8

2
Background and Preliminaries

In this chapter we introduce the main concepts that will be useful for explaining our ideas
as well as for providing the background on known results in the field.

We introduce some underlying concepts from database theory. First we recall the
relational data model and conjunctive queries. After that, we review XML and its tree
model, together with the XPath query language and its fragments. In particular, we give
special attention to Tree Patterns.

At the end of this chapter we discuss existing approaches to why and why-not expla-
nations.

2.1 Containment for queries over relational data

Relational data

Relational databases, proposed by E. Codd (Codd, 1970) is the standard model for stor-
ing data. In this model, data is stored in tables, where each row represents an entity or
an object with information about their properties. For instance, a row can contain infor-
mation about a person with their name, address and contact information. A table then
represents a collection of objects of a similar type. An attribute of a table is a particular
type that the objects share. By a schema we mean the set of all table names, with a set of
integrity constraints.

Mathematically, each table name is a relational name R whose arity the same as
the number of attributes in the table. Then each table in a given database defines the
extension of the corresponding relation R, and each entry in the table is a tuple in the
relation R. This way, a database defines a relational structure I = (dom, ·I) where
dom is the set consisting of all data elements of the database, and ·I is the interpretation
function assigning to each relational name R the set of tuples in the table corresponding
to R. Alternatively, a database can be represented as a set of facts R(ā) such that ā is an
entry in the table of R.

Many systems are built upon the relational model, called Relational Database Man-
agement System (RDBMS), including MySQL, PostgreSQL, IBM DB2, Microsoft SQL
Server and Oracle.

9

2. Background and Preliminaries

Conjunctive queries over relational databases

Querying is the basic operation of retrieving needed information from a database. Prac-
tically all database systems use SQL as the query language.

The most frequent class of SQL queries are select-from-where queries, or also known
as conjunctive queries. Let S be a relational schema. Then a k-ary (k ≥ 0) conjunctive
query is a first-order logic formula of the form ∃x̄.(P1(x̄, ȳ) ∧ . . . ∧ Pn(x̄, ȳ)), where
Pi ∈ S for every i ∈ [1, . . . , n], such that the free variables are in ȳ and |ȳ| = k. Each
atom Pi is also called a subgoal of the query. Often conjunctive queries are written in
the following datalog notation:

Q(ȳ) :- P1(x̄, ȳ), . . . , Pn(x̄, ȳ),

for a new relational symbol Q. In this case the atom Q(ȳ) is called the head, and the
expression on the right hand side is the body of the query. We will be using either of
these notations.

As an example,

Q(e name,m name) :- Employee(id, p id, e name, b date), P roject(p id, p name),
Manager(p id,m name)

is a conjunctive query which asks for employees and their supervisors. The semantics of
conjunctive queries is as follows. We say that Q holds in a database instance I if there is
an assignment θ of the variables ofQ to the domain of I such that for every subgoal P (x̄)
of Q, the fact P (θ(x̄)) is in I . Then the answer of Q(ȳ) on I is the set of tuples θ(ȳ)
for every such assignment θ. If there is such an assignment θ, the instance I is called a
model of Q.

Conjunctive queries are a major success in database theory. They are not only the
most frequent class of queries used in practice, but also possesses some nice properties.

We start with the problem of query evaluation. Formally, given a database I and a
conjunctive query Q and a tuple ā, the evaluation problem is to decide if ā ∈ Q(I), i.e.,
if the tuple is present in the query result. When a database is considered part of the input,
i.e., we talk about combined complexity, the evaluation problem for conjunctive queries
is NP-complete (Chandra and Merlin, 1977b). However, when the query is fixed, i.e.,
we talk about data complexity, then the evaluation problem belongs to the low complex-
ity class AC0. Due to this low data complexity and their reasonable expressive power,
conjunctive queries have been extremely successful in databases.

One of the characteristic properties of conjunctive queries is that the evaluation and
containment problems are equivalent (Abiteboul et al., 1995). This is proved via the
canonical model of a conjunctive query. That is, each conjunctive query can be consid-
ered as a database instance itself, where each variable is replaced with a distinct constant.
This database is a model of the query. Thus, the containment of a query Q1 in a query
Q2 amounts to evaluating Q2 on the corresponding canonical model IQ1 . Vice versa,
each database instance can be considered as a query, where each fact is considered as a
subgoal of the query. Then evaluatingQ on a database instance I is the same as checking
containment QI ⊆ Q, where QI is the query that corresponds to I .

This characterization gives some more nice properties. An immediate one is the small
counter-example property. The latter means that if containment between two queries does

10

2.1. Containment for queries over relational data

not hold, then there is a witness for non-containment whose size is polynomial in the
sizes of the input. Indeed, the canonical model of the left-hand side conjunctive query is
already a counter-example and of linear size. Another nice property is that containment
of unions of conjunctive queries can be reduced to containment of conjunctive queries.
This is due to the following disjunctive property. For a database instance I and a union
of conjunctive queries

⋃
Qi it holds that I |= ⋃

Qi if and only if I |= Qj for some j
(Sagiv and Yannakakis, 1980).

Conjunctive queries with atomic negation and arithmetic comparisons

Conjunctive queries are a good language for specifying positive information. However
often in practice we need to express negative information as well. Certain negative infor-
mation can be expressed by expanding conjunctive queries with atomic negation, or in
other words by negating subgoals of the query. For instance, the following is a conjunc-
tive query with atomic negation

Q′(e name) :- Employee(id, p id, e name, b date),¬Manager(p id, e name),

which asks for the names of the employees for whom there is a project they are involved
in but which they are not managing. The result of applying a conjunctive query with
atomic negation to a database is essentially the same as for usual conjunctive queries.
The only difference is that when we apply a substitution of constants for variables the
atoms in the negated subgoals must be false in the database. We distinguish a restricted
form of atomic negation, called guarded. In conjunctive queries with guarded negation,
for an occurrence of a negated subgoal ¬R(x̄) in the query there must be an occurrence
of a positive subgoal P (ȳ) in the query such that the variables x̄ are contained in the
variables ȳ. Note that the negation in the queryQ′ above is guarded. In Chapter 4 we will
see that this restricted form of negation helps to reduce the complexity of containment
for acyclic conjunctive queries with atomic negation.

Another important expansion of conjunctive queries is arithmetic comparisons. In
this case we assume that data values come from a total order (Const, <). In real
databases, (Const, <) can be a numeric domain such as reals, rational or natural num-
bers, or the domain of strings with the lexicographic order. Syntactically, in addition
to relational atoms we can have arithmetic comparisons of the form Xop c or Xop Y ,
where X and Y are variables, c ∈ Const a constant and op a comparison operator in
{=, 6=, <,>,≤,≥}. The semantics is obvious: when the constants are substituted for
constants, every arithmetic comparison must hold in (Const, <).

As an example, the simple query

Q′′(e name) :- Employee(id, p id, e name, b date), b date ≥ ’1980-01-01’

asks for names of the employees that were born in 1980 or after. Here the order < is the
natural order on the timeline.

Note that arithmetic comparisons also introduce some form of negative and disjunc-
tive information.

11

2. Background and Preliminaries

Datalog

Datalog is another expansion which adds recursion capabilities to conjunctive queries.
A datalog program Π consists of rules of the same form as conjunctive queries defined
above. Now the relational schema is divided into two sets of extensional (EDB predi-
cates) and intentional (IDB predicates) relations. Extensional relations can only appear
in the body of the rules of the program. Intentional relation must appear in the head
of some rule of the program, and can appear in the body of the rules. A distinguished
intensional predicate G is called the goal predicate.

As an example, the following program computes the transitive closure of the exten-
sional binary relation R, where T is the goal predicate:

T (x, y) :- R(x, y)

T (x, y) :-R(x, z), T (z, y).

Let Π be a datalog program, P an IDB predicate and I a database instance interpret-
ing EDB predicates. We define the semantics of P in I w.r.t. Π as the fixpoint of relations
Pi(I) defined via the following process, starting with P0(I) = ∅:
• Let Ii be the expansion of I with Pi(I) for all IDB predicates P .

• If r is a rule with P (x1, . . . , xk) in the head, ȳ the bound variables of r and ϕ(x̄, ȳ)
is the body of r, let P ri+1(I) be defined as {ā | Ii |= ∃ȳϕ(ā, ȳ)}.

We define Pi+1(I) to be the union of P ri+1(I) over all rules r with P in the head. Then
the result of Π on I is GΠ(I), the result of evaluating the goal predicate. By Π(I) we
denote the minimal model of Π on I , i.e., the union of I and PΠ(I) over all intensional
predicates P of Π.

Datalog can also be considered as a language for expressing views. If datalog is
not allowed to use recursion, then we talk about UCQ-view definitions. We say that
a relation R depends on a relation P w.r.t. a datalog program if there is a rule in the
program such that R appears in the head and P in the body of the rule. The program
is called nonrecursive if the depends relation is acyclic. Expressivity-wise nonrecursive
datalog programs are exactly the unions of conjunctive queries. Indeed, this can be seen
by performing unfolding. Namely, we keep replacing each intensional predicate P with
the union of the bodies of the rules with P in the head, and bring the union in front.
This process terminates due to the acyclicity condition of the depends relation. This
way, non-recursive Datalog is a macro facility for conjunctive queries, which is very
succinct. More precisely, Datalog is doubly exponential more succinct than conjunctive
queries (Benedikt and Gottlob, 2010).

Query containment
Containment for queries is one of the well studied problems in database theory. A cele-
brated result of (Chandra and Merlin, 1977b) is NP-completeness of CQ containment. As
mentioned in Chapter 1, the conjunctive query containment problem is underpinning for
many other problems and thus it has been studied under various settings since the work
of (Chandra and Merlin, 1977b). We review the following settings related to conjunctive
query containment.

12

2.1. Containment for queries over relational data

• Restrictions for tractable conjunctive query containment,

• Containment of expanded conjunctive queries,

• Conjunctive query containment under constraints.

Tractable restriction for containment of conjunctive queries

Because of its importance to practice, there has been a lot of work devoted to finding
natural and large classes of conjunctive queries for which containment is tractable.

One of the most prominent restriction is acyclicity. From the lower bound proofs,
it follows that NP hardness for containment is due to certain cycles in the hypergraph
representation of conjunctive queries. A hypergraph is a structure with a non-empty set
of vertices, and a collection of subsets of the set of vertices called hyperedges. For a
given conjunctive query, the corresponding hypergraph is constructed as follows. The set
of variables in the query constitutes the set of vertices. Furthermore, for every atom in
the query there is a hyperedge consisting of the variables of the atom. Note that in case a
conjunctive query contains atoms of arity at most 2, the corresponding hypergraph is an
ordinary graph.

There is a number of non-equivalent definitions of acyclicity for hypergraphs. They
are in decreasing order of restrictiveness: Berge-acyclicity, γ-acyclicity, β-acyclicty and
α-acyclicity. We refer to (Fagin, 1983) for the definitions of acyclicity and examples that
the order of restrictiveness is strict. All of them, however, collapse to ordinary acyclicity
in case of graphs.

In (Yannakakis, 1981) it was shown that some problems that are NP-complete in
general, have PTIME algorithms with the assumption of α-acyclicity. The evaluation
problem, and thus containment, is one of them. The algorithm proposed in (Yannakakis,
1981) is based on the notion of join forest, where each node is labeled with an atom
such that if a variable occurs in two atoms, then the corresponding nodes are connected
and the variable occurs in each node on the unique path connecting these two nodes.
Then the evaluation algorithm works in a bottom up manner on each tree of the join
forest by performing a number of semi-join operations. This algorithm runs in PTIME.
Gottlob et al. (2001) show that the evaluation and containment problems for α-acyclic
conjunctive queries are in fact LOGCFL-complete. The latter is the class of decision
problems that are logspace reducible to a context-free language, and which allow for
highly parallelizable algorithms.

Since then there have been a number of publications on generalizing this tractability
result. In this direction different notions of “width” have been introduced. Intuitively,
these notions of width measure how “far” the query is from being acyclic.

One such notion of width is query width from (Chekuri and Rajaraman, 2000). In this
paper the authors prove that if the query width of the left hand side of the containment
problem is bounded by a fixed constant k, then containment is decidable in polynomial
time. This result extends the result of (Yannakakis, 1981) since acyclic queries are ex-
actly of query width 1. However, one drawback of the tractability result is that it is
NP-complete to decide if the query width is bounded by a given constant (Gottlob et al.,
2002). In (Gottlob et al., 2002) the authors further generalize the notion of query width,
with the notion of hypertree width and show that containment is solvable in polynomial

13

2. Background and Preliminaries

time. Furthermore, boundedness of a hypertree width by a constant is recognizable in
polynomial time.

Containment for expansions of conjunctive queries

It is not surprising that when conjunctive queries are expanded with more expressivity
capabilities, the complexity of the containment problem increases. In (Ullman, 2000) it
is argued that conjunctive queries with atomic negation is ΠP

2 -complete. For the upper
bound, canonical databases are used. In particular, the algorithm constructs canonical
models of the left hand side of the containment problem and checks if the right hand side
query is true on each model. Note, there might be an exponential number of canonical
models for a conjunctive query with atomic negation. In (Wei and Lausen, 2003) the
authors propose an algorithm for containment of conjunctive queries with safe negation
(this is when a variable occurring in a negative subgoal must occur in some positive sub-
goal) that can terminate earlier, but in the worst case takes the same time as the algorithm
in (Ullman, 2000). As for the lower bound, Farré et al. (2007) propose a method for
proving a ΠP

2 lower bound where only safe (and thus guarded) unary atoms are negated.
Containment for conjunctive queries when expanded with arithmetic comparisons

also turns out to be ΠP
2 -complete (Klug, 1988; van der Meyden, 1997). Afrati et al.

(2004) consider various restrictions on the type of comparison operations on either of the
two input conjunctive queries with comparisons, as well as on interaction between the
comparisons, so that the containment is in NP (cf. Table 1 in (Afrati et al., 2004)). How-
ever, it was left open what the exact complexity of containment of conjunctive queries
with comparisons of the typeXopc is, where c is a constant and op ∈ {=, 6=,≤,≥, <,>}.
Note that ΠP

2 -lower bound proof in (van der Meyden, 1997) uses inequalities of variables,
i.e., the construct X 6= Y for variables X and Y . Nevertheless, restricting arithmetic
comparisons to be of the form Xopc does not lower the complexity. This is argued in
(Farré et al., 2007), where ΠP

2 -hardness of containment for CQs with comparisons was
shown, using comparisons of the form X 6= c. This proof can also be adapted to use
comparisons of the form both X ≤ c and X > c (Nutt, 2013).

The containment problem for Datalog has also been a subject of large interest. Un-
fortunately, for full Datalog, containment is undecidable (Shmueli, 1993). The reason for
undecidability of containment is recursion. Chaudhuri and Vardi (1997) show that when
the use of recursion is forbidden in the right hand side program, containment becomes
decidable. In particular, they show that containment of a datalog program in a union
of conjunctive queries is 2EXPTIME-complete. Containment of a union of conjunctive
queries in a Datalog program is EXPTIME-complete (Cosmadakis and Kanellakis, 1986),
on the other hand. Furthermore, Benedikt et al. (2005) conduct a fine-grained complexity
analysis of the containment problem for various fragments of nonrecursive Datalog pro-
grams. In particular, containment for nonrecursive datalog is CONEXPTIME-complete.
In Chapter 6 we will make use of these results for nonrecursive datalog, to establish
complexity bounds for the problem of extracting an ontology from a set of views.

Containment for conjunctive queries under constraints

Constraints are used to validate databases and thus discard unwanted ones. Typical in-
tegrity constraints for relational databases can be classified into the classes of functional

14

2.2. Containment for XPath

<company>
<department code ="d1">

<name>
Supply

</name>
<manager>

John
</manager>
<member id ="0005">
Jack

</member>
<member id ="0003">
Maria

</member>
</department>

<department code ="d2">
<name>

HR
</name>
<manager>
Jude

</manager>
<member id ="0023">
Dan

</member>
</department>

</company>

Figure 2.1: Example XML document containing data about company employees.

dependencies, which include key dependencies, join dependencies which include multi-
valued dependencies, and inclusion dependencies (Abiteboul et al., 1995). Query con-
tainment under constraints is defined in the same way as the usual containment with the
difference that quantification is only over databases that conform to the constraints. Con-
junctive query containment under constraints has been studied extensively as well. It is
studied in (Johnson and Klug, 1984) for the case of inclusion and functional dependen-
cies, in (Aho et al., 1979) for multi-valued and functional dependencies, in (Dong and
Su, 1996) for constraints expressed as Datalog programs, and in (Calvanese et al., 2008)
for constraints expressed in Description Logic.

2.2 Containment for XPath

In this section we recall the XML data model, the syntax and semantics of XPath, its
popular fragments and results on the containment problem for these languages.

2.2.1 XML and tree models

The Extensible Markup Language (XML) is a standard markup language used to repre-
sent, store and transfer data across the web. It is used to describe hierarchical data with
user defined nested tags. For instance, Figure 2.1 illustrates an XML document contain-
ing a piece of information about a company. As seen from this example, the structure
of the document is hierarchical, and formed by nested tags. Each tag name is called an
element type, and each occurrence of a tag is an element. Each element might contain
attributes. In this example each department element contains an attribute code which
denotes the unique code of the department.

Usually XML documents are abstracted as labeled sibling-ordered unranked trees.
Here, each element type is a label. An element can have attributes. A tree structure
explicitly illustrates the hierarchical structure of XML documents. For instance, the XML
document from Figure 2.1 is represented as a tree in Figure 2.2.

15

2. Background and Preliminaries

company

department department

@code name manager member member @code name manager member

"d1" "Supply" "John"

@id

"Jack"

@id

"Maria" "d2" "HR" "Jude" "Dan"

@id

"0005" "0003" "0023"

Figure 2.2: Ordered unranked tree corresponding to the document from Figure 2.1.

Let Σ be a countably infinite set of labels that correspond to the tag names, A a set
of attribute names, Const a set of constants, all are pairwise disjoint. Formally, an XML
tree with attributes, is a tuple (N,E,<, r, ρ, att), whereN , the set of nodes of the tree, is
a prefix closed set of finite sequences of natural numbers,
E = {(〈n1, . . . , nk〉, 〈n1, . . . , nk, nk+1〉) | 〈n1, . . . , nk+1〉 ∈ N} is the child relation,
the sibling order < is defined as {(〈n1, . . . , nk〉, 〈n1, . . . , nk + 1〉)
| 〈n1, . . . , nk〉, 〈n1, . . . , nk + 1〉 ∈ N}, r = 〈〉 is the root of the tree, ρ is the func-
tion assigning to each node in N an element of Σ, and att : N × A → Const a partial
function. In this thesis we also consider multi-labeled trees which are defined in the
same way as XML trees with the exception that the function ρ assigns to each node a
finite subset of Σ.

2.2.2 XPath and its fragments
XPath is a popular query language for XML documents that lies at the heart of the more
expressive language XQuery, the XML schema languages, and the transformation lan-
guage XSLT. It is used to navigate and select nodes in an XML tree. In this thesis we
consider fragments and expansions of the navigational part of XPath 1.0, called Core
XPath in (Gottlob et al., 2005a). Its syntax allows for composing, and taking unions
of path expressions, and all boolean operations in the filter expressions. We adopt the
following syntax for XPath, where ϕ is a node expression, and α a path expression.

step ::= ↓ | ↑ | ← | → ,
ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ
α ::= step |?ϕ | α;α | α ∪ α | step+ | →f |←p.

Given a tree T = (N,E,<, r, ρ), the semantics of path and node expressions are defined
by a mutual induction, where R∗ and R+ denote the reflexive transitive and transitive
closure of the relation R respectively:

• J↓KT = E,

• J↑KT = E−1,

16

2.2. Containment for XPath

• J→KT = <,

• J←KT = <−1,

• J→f KT = J↑K∗ ◦ J→K+ ◦ J↓K∗,

• J←pKT = J→f K−1,

• J?ϕKT = {(n, n) ∈ N ×N | T, n |= ϕ},

• Jα;βKT = JαKT ◦ JβKT ,

• Jα ∪ βKT = JαKT ∪ JβKT ,

• Jα+KT = (JαKT)+ for α ∈ {↓, ↑,→,←},

and

• T, n |= >,

• T, n |= p iff p ∈ ρ(n),

• T, n |= ¬ϕ iff T, n 6|= ϕ,

• T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ,

• T, n |= ϕ ∨ ψ iff T, n |= ϕ or T, n |= ψ,

• T, n |= 〈α〉ϕ iff there is a node m with (n,m) ∈ JαKT and T,m |= ϕ.

Thus, step selects a pair of nodes that are in the child, parent, next-sibling or previous-
sibling relations in the tree. Furthermore, the→f and←p axes select nodes that are in
the following and the preceding relations in the tree respectively. Note that> is the same
as the wild card axis known in other variants of XPath syntax.

As an example, the following path expression ↓+; ?department; ↓; ?manager se-
lects the managers of every department from the document in Figure 2.1.

Core XPath can be extended with attribute value comparisons of the form (α1; @a)
op(α2; @b) and @aopc as node expressions, where a and b are attribute names, c a con-
stant and op ∈ {=, 6=, >,<,≥,≤}. Given a tree T = (N,E,<, r, ρ, att) with attributes,
the semantics for these expressions is as follows:

• T, n |= (α1; @a)op(α2; @b) iff there are nodes n′ and n′′ such that (n, n′) ∈
Jα1KT , (n, n′′) ∈ Jα2KT and att(n′, a)opatt(n′′, b),

• T, n |= @aopc iff att(n, a)opc.

Note that these constructs are available in XPath 1.0. This expansion allows us to reason
about the attribute values of trees. A number of other expansions of XPath have been
proposed and used in practices. XPath expanded with Kleene star for path expressions
results in Regular XPath (ten Cate, 2006). XPath expanded with conditional axes re-
sults in Conditional XPath (Marx, 2005). Using Kleene star, the conditional axis can be
expressed as (?ϕ; step)∗. Notably, Conditional XPath is expressively complete for FO

17

2. Background and Preliminaries

departmentdepartment

”Supply””Supply” membermember

??

Figure 2.3: Tree representation of .//department[//”Supply”]/member/?.

on XML trees. That is, every query defined in FO (over the signature for trees) can be
expressed in Conditional XPath as well (Marx, 2005).

A popular fragment of XPath that has received considerable attention in the past is
Tree Patterns. They can be considered to be the analog of conjunctive queries for XML.
Formally, Tree Patterns is the positive downward fragment of XPath. That is, this is
the fragment where in path expressions step is restricted to ↓ only, and only the test,
the transitive closure and compositions of paths are allowed. In node expressions, dis-
junction and negation are disallowed. For instance, the expression ↓+; ?department; ↓
; ?manager is also a Tree Pattern. A much more succinct syntax is very common:

q := l | ? | . | q/q | q//q | q[q]
In this grammar, l is a label, ? is the wildcard, . denotes the current node. Then / and
// denote the child and descendant constructs, and [] is a filter expression. In (Miklau
and Suciu, 2004) this fragment is denoted as XP{[],?,//}. In this more succinct syntax,
the above expression can be written as //department/manager. Tree patterns allow
for a nice graphical representation, just like XML documents. That is, a tree pattern
can be considered as a tree where each node is labeled by a label or by a wildcard,
and with two types of edges: child and descendant edges. For instance, the expression
.//department[//“Supply”]/member/? asks for all members of the department of sup-
ply. It can be represented as a tree on Figure 2.3. The square node is the output node.
With this tree representation, tree patterns admit an equivalent semantic characterization
via an embedding (Miklau and Suciu, 2004). Let t be a tree pattern (N ′, E/, E//, r′, l),
where E/ and E// are the child and descendant edges respectively, and T = (N,E, r, ρ)
an XML tree (the order< is omitted since tree patterns are oblivious to the sibling order).
Then a mapping e : N ′ → N is called an embedding if all of the following conditions
are met

(root preservation) e(r′) = r,

(label preservation) For every x ∈ N ′, ρ(x) = ? or ρ(x) = l(e(x)),

18

2.2. Containment for XPath

(child-edge preservation) If xE/y, then e(x)Ee(y),

(descendant-edge preservation) If xE//y, then e(x)E+e(y).

For complete results on the evaluation problem for XPath, we refer the reader to the
overview paper (Benedikt and Koch, 2009).

2.2.3 XPath query containment
The containment problem for various XPath fragments has been a topic of wide interest
for the past several years. A polynomial time algorithm for tree patterns without the wild-
card based on homomorphism between queries was given in (Amer-Yahia et al., 2002).
The main result ofMiklau and Suciu (2004) is the CONP-completeness of containment of
tree patterns with the wildcard. Almost a complete picture of the containment problem
for the XPath fragments with disjunction, in the presence of DTDs and variables was
given in (Neven and Schwentick, 2006). Notably, it was shown that with a finite alphabet
the containment problem rises to PSPACE. Wood (2003) gives decidability results for
various fragments with DTDs and a class of integrity constraints. XPath containment
in the presence of dependency constraints was studied in (Deutsch and Tannen, 2001,
2005). A thorough investigation and overview of the results on the containment problem
for tree patterns with or without constraints has recently been presented in (Czerwinski
et al., 2015).

A closely related problem is XPath satisfiability (Benedikt et al., 2008; Hidders,
2003). Given an XPath expression, the satisfiability problem asks whether there exists a
tree (conforming constraints if necessary) such that the result of evaluating the expression
on the tree is not empty. Benedikt et al. (2008) contains an almost complete picture for
the complexity of the satisfiability problem with or without the presence of constraints
for various fragments of XPath. Query containment reduces to XPath satisfiability in
fragments with enough expressive power (e.g. with negation and filter expressions).

Afrati et al. (2011) consider the containment problem for tree patterns with general
arithmetic comparisons. They add the ability to compare the value of an attribute in two
different nodes (note that this is not expressible in Core XPath) and show that contain-
ment for this fragment is ΠP

2 -complete. As mentioned in the introduction, we extend
their CONP result for tree patterns with attribute value comparisons.

We end with some results on tractable (PTIME) containment. As mentioned above,
Amer-Yahia et al. (2002) provides a PTIME algorithm for containment of tree patterns
without the wildcard. PTIME containment for acyclic conjunctive queries implies tractabil-
ity for containment of tree patterns without descendant. Moreover, containment for tree
patterns without filters is in PTIME as well (Miklau and Suciu, 2004). However, adding
attribute value comparisons may raise the complexity. For instance, as shown below in
Chapter 3 (Proposition 3.3.4), containment for tree patterns without the wildcard together
with equality and inequality attribute comparisons is CONP-hard.

2.2.4 Conjunctive queries interpreted over trees and containment
Conjunctive queries can also be interpreted over unranked trees. In this case the re-
lational schema consists of relation names corresponding to the axes relations Child,

19

2. Background and Preliminaries

NextSibling, Descendant, NextSigbling+ and Following. Then the semantics of
conjunctive queries on trees over such schema is defined in the same way as the seman-
tics of conjunctive queries over relational databases.

A systematic study of conjunctive queries interpreted over trees started in (Gottlob
et al., 2006), where the central problem was the evaluation problem. The authors es-
tablished a PTIME and NP dichotomy of the problem. The containment problem for
this language was considered in (Björklund et al., 2011), where it was shown to be ΠP

2 -
complete. The ΠP

2 upper bound was shown via the small counter-example property,
similar to the one in (Miklau and Suciu, 2004). On the other hand, the ΠP

2 lower bound
proof heavily relies on the DAG structure of conjunctive queries. Containment of con-
junctive queries under schema constraints was studied in (Björklund et al., 2008), where
2EXPTIME-completeness of the problem was established.

2.3 Why and why-not explanations

An increasing number of databases are derived, extracted, or curated from disparate data
sources. Consequently, it becomes more and more important to provide data consumers
with mechanisms that will allow them to gain an understanding of the data that they are
confronted with. An essential functionality towards this goal is the capability to provide
meaningful explanations about why data is present or missing form the result of a query.
Explanations help data consumers gauge how much trust one can place on the result.
Perhaps more importantly, they provide useful information for debugging the query or
data that led to incorrect results.

There have been a number of publications on why explanations (that is, for why
particular data is present in the query result) and why-not explanations (that is, for why
particular data is missing from the query result). Why explanations have been thoroughly
studied in the past in the context of provenance and lineage, see (Cheney et al., 2009). In
contrast, models for why-not explanations have only appeared fairly recently. We now
review the main approaches to both why and why-not explanations.

2.3.1 Why explanations

The general formulation of the why-problem is as follows. Given a database I , a query
Q, its computed result Q(I) and a tuple ā ∈ Q(I), explain why this tuple is in the query
result, i.e., why ā ∈ Q(I)? One of the first models for why explanations in the context of
databases is called lineage which has been proposed in (Cui et al., 2000). In this model,
the lineage of ā is a collection of “source” tuples from the database I which “helped”
to produce ā. For instance, let I be the database containing two tables T1 and T2 as in
Figure 2.4. For convenience, each row of the database has a tag. Now suppose we pose
the conjunctive query

Q′(x, y) :- T1(x, y), T2(y, z),

which has the answer set Q′(I) = {(1, A), (2, B)}. Then the lineage of the tuple (2,
B) are the tuples t2 and t6. The lineage of (1, A), on the other hand, consists of t1 and
{t4, t5}. The latter shows one of the shortcomings of the lineage model. That is, an

20

2.3. Why and why-not explanations

T1

t1 : 1 A
t2 : 2 B
t3 : 3 C

T2

t4 : A 4
t5 : A 5
t6 : B 6

Figure 2.4: Example database.

explanation might not be as precise as one might like, as it does not specify that the
tuples t4 and t5 need not be together to witness the tuple (1, A).

In fact, either of the “witnesses” {t1, t4} or {t1, t5} would be enough for explaining
the tuple (1, A). This is formalized in the notion of why provenance which captures such
different witnesses (Buneman et al., 2001). According to this model, an explanation (or a
witness) to why ā ∈ Q(I) is a part of the database I ′ ⊆ I that is enough to ensure that ā
is in the output, i.e., ā ∈ Q(I ′). Besides the two witnesses provided above for the query
Q′, the set {t1, t4, t5} is a witness for the tuple (1, A) as well. There might be multiple
witnesses, in fact exponentially many of them. For that reason, why provenance of ā in
(Buneman et al., 2001) is defined as a particular set of small witnesses, called witness
basis of ā. The witness basis can be seen as a compact representation of the space of all
witnesses, as every element of a witness contains an element from the witness basis. In
our example, {{t1, t4}, {t1, t5}} is the witness basis for (1, A).

Another form for explanations that has been proposed in (Buneman et al., 2001)
is “where-provenance”. Where-provenance describes the way how the source and the
output locations are related. A location for a data value is a cell defined by a table name,
a tuple in the table and an attribute name. Then the where-provenance of an output value
is the location where this valued was copied from. For instance, the where-provenance
for the value “2” in the output of Q′ is (T1, t2, 1), i.e., it is the first attribute of tuple t2 in
table T1.

The above models for why-provenance and where-provenance do not, however, ex-
plain how the source tuples contributed to the output tuple. This issue has been addressed
in (Green et al., 2007b) using the notion of a provenance semiring. According to Green
et al. (2007b), the provenance of an output tuple is represented by a polynomial using
the semiring operations with integer coefficients where each variable is a source tuple.
Such a polynomial hints to the structure of the proof (or the query plan) how the output
tuple has been derived. Note that although query plans for equivalent queries are differ-
ent, their provenance polynomials are always equivalent in the semiring. Moreover, from
provenance polynomials we can easily read the why-provenance of an output tuple. As
an example, let

Q′′(x, y) :- T1(x, y), (T1(x, z) ∨ T2(y, u))

be a query, for which the tuple (2, B) is in the output of Q′′(I). Then the provenance of
this tuple is the polynomial t2 · (t2 + t6). This polynomial hints that t2 and t6 contribute
to the output of the inner query (T1(x, z) ∨ T2(y, u)) and then t2 contributes to the join.
For comparison, the why-provenance of this tuple according to (Buneman et al., 2001) is
the set {t2, t6}.

It is worth to note that in all the models above there could be multiple solutions
(explanations), many of which are not useful or redundant to the user. Thus, certain pref-

21

2. Background and Preliminaries

erence criteria are imposed in order to single out “good” or “interesting” explanations.
Note also that the above models (except for the lineage model of (Cui et al., 2000)) as-
sume the queries to be monotone. The presence of negation in queries causes some nice
properties to disappear. Overall, the principles of provenance in the presence of negation
and aggregation have not been fully understood yet (Cheney et al., 2009).

We end with some applications and implementations of the above models of the why
problem. Algorithms for computing lineage have been implemented in the WHIPS data
warehouse system (Cui and Widom, 2000). Minimal witnesses from (Buneman et al.,
2001) have been used in (Buneman et al., 2002) for the view deletion problem, i.e., the
problem of finding source tuples to remove in order to remove the tuple from the view
expressed as the union of conjunctive queries. Where-provenance has been applied to
study annotation propagation in (Buneman et al., 2002), and implemented in an annota-
tion management tool (Bhagwat et al., 2005). An application of how-provenance based
on semirings appears in the context of ORCHESTRA (Green et al., 2007a), a collabora-
tive data sharing system.

2.3.2 Why-not explanations
The input for the why-not problem is almost the same as for why problem. Given a
database I , a query Q, its computed result Q(I) and a tuple ā 6∈ Q(I), explain why
the tuple ā is missing from the query result Q(I). As opposed to why explanations in
which the output tuple can be explained using the derivation or query plan, for why-not
explanations the situation is different. Indeed, in this case we cannot talk about witnesses
since there is no derivation to begin with. There have been a number of proposals for
why-not explanations in the literature which can be classified into two groups: query-
driven and data-driven approaches.

Query-driven approaches. In query-driven approaches, a reason for why a tuple is
missing from the query result lies in the query itself. In (Chapman and Jagadish,
2009), an explanation is a query operator (e.g., selection) that prevented the given
tuple from appearing in the query result. This approach was defined for the class
of unions of conjunctive queries. In (Bidoit et al., 2014a) it was further extended to
deal with aggregate queries. One of the shortcomings of the algorithms proposed
in these articles is that the generated explanations are dependent on a particular
query plan. As a consequence, these algorithms might produce different expla-
nations for the same query and may miss some of them. To tackle this problem,
Bidoit et al. (2014b) proposed explanations in the form of polynomials, similarly
to the approach of (Green et al., 2007b).

In (Tran and Chan, 2010), an explanation is not an operator, but a relaxation (or
refinement) of the original query such that it contains the missing tuple while re-
taining the previous results. As there are many possible refinements, a preference
condition is imposed as well. A similar type of explanations are considered in
(He and Lo, 2012) for reverse top-k queries and in (Islam et al., 2013) for reverse
skyline queries.

Data-driven approach. In data-driven approaches, the assumption is that the query is
correct and only the database lacks certain information allowing to infer the needed

22

2.3. Why and why-not explanations

query results. In (Huang et al., 2008b), an explanation is a sequence of updates to
the database such that the missing tuple is present in the query result. In this paper
the attention is restricted to conjunctive queries. Herschel and Hernández (2010)
extend this approach to the class of unions of conjunctive queries with aggregation
and grouping.

Calvanese et al. (2013) consider the why-not question in the context of ontology-
based data access (OBDA). In this setting, queries are restricted to be unions of
conjunctive queries and defined over a possibly richer vocabulary than the database
schema. An explanation is now a database (or an ABox, in description logic no-
tation) such that the tuple is present in the result of the query asked against the
combination of the new and the original databases. Calvanese et al. (2013) phrase
this problem as an abductive reasoning problem. In such a setting, one imposes a
preference (or minimality) condition on the space of possible explanations which
allows to leave out trivial explanations. As opposed to the previous papers on
why-not explanations whose focus is the problem of producing explanations, the
main focus of (Calvanese et al., 2013) is to study the computational complexity of
associated problems (e.g., the problem of existence of an explanation).

In Chapter 6 we introduce a new framework for why-not explanations which is nei-
ther query-driven nor data-driven. In our approach we do not propose a fix to a query
or a database, but rather give a hint to a possible general pattern or a gap in the data. In
particular, an explanation is a tuple of concepts that “generalizes” the missing data and
thus gives a high level explanation to why this data is missing. As an example, given a
database of train connections, and the query asking for pairs of cities reachable from each
other, one can see that the tuple 〈New York, Amsterdam〉 is missing from the query re-
sult. One possible high-level explanation is the tuple 〈AmericanCity, EuropeanCity〉,
which denotes that fact that there is no train connection between any two cities of Amer-
ica and Europe, and thus it explains the fact why 〈New York, Amsterdam〉 is missing. As
in (Calvanese et al., 2013) we impose a preference condition on explanations. More pre-
cisely, we prefer most general explanations, i.e., explanations such that there is no strictly
more general explanation. For instance, the tuple 〈AmericanCity, EuropeanCity〉 is
strictly more general concept tuple than 〈NorthAmericanCity, DutchCity〉.

In order to reason about concepts like AmericanCity and EuropeanCity, we make
use of ontologies that provide a formal specification of the relationships between con-
cepts. The use of ontologies to facilitate access to databases is not new. A prominent
example is OBDA mentioned earlier, where queries are either posed directly against an
ontology, or an ontology is used to enrich a data schema against which queries are posed
with additional relations, namely, the concepts from the ontology (Bienvenu et al., 2013;
Poggi et al., 2008). Answers are computed based on an open-world assumption and using
the mapping assertions and ontology provided by the OBDA specification. However, un-
like in OBDA, in our framework we consider queries posed against a database instance
under the traditional closed-world semantics, and the ontology is used only to derive
why-not explanations.

23

Part I

Containment Problem for
Acyclic Queries

25

3
Containment for Queries over Trees with

Attribute Value Comparisons

In this chapter we address RQ 1 for expanded conjunctive queries (CQ) and positive
XPath (PosXPath) interpreted over trees. Björklund et al. (2011) showed that contain-
ment for CQ and PosXPath is respectively ΠP

2 and CONP-complete. In this chapter we
show that the same problem has the same complexity when we expand these languages
with XPath’s attribute value comparisons. We show that different restrictions on the do-
main of attribute values (finite, infinite, dense, discrete) have no impact on the complex-
ity. Making attributes required does have an impact: the problem becomes harder. We
also show that containment of tree patterns without the wildcard ∗, which is in PTIME,
becomes CONP-hard when adding equality and inequality comparisons.

3.1 Introduction

In this chapter we study the containment problem for positive XPath (PosXPath) and
conjunctive queries (CQ) interpreted over finite unranked ordered trees with respect to the
axes Child,NextSibling, Descendant, NextSibling+ and Following. PosXPath is
a large fragment of Core XPath (Gottlob et al., 2005a) that contains all the axes and
constructs except negation. Conjunctive queries over trees are an analog of relational
conjunctive queries, which correspond to the select-from-where SQL queries in which
the where-condition uses only conjunctions of equality comparisons, and are the most
widely used query language in practice. A thorough study of the containment problem
for CQ over trees has been carried out in (Björklund et al., 2011). Their main result is
ΠP

2 -completeness of the problem. In fact, conjunctive queries can be reformulated as the
positive fragment of Core XPath with path intersection. Thus, the ΠP

2 hardness result
also holds for the containment problem for this fragment. Inspection of the proof in
(Björklund et al., 2011) also indicates that the containment for just PosXPath remains in
CONP. This extends the result of Miklau and Suciu (2004), who showed that containment
for tree patterns is CONP-complete.

The query language considered in these previous results ignores attributes. However,
in many practical scenarios we deal with data that come from numeric domains, such
as real or natural numbers. Thus, it is natural to consider conjunctive queries expanded
with attribute value comparisons and study basic static analysis problems such as satis-

27

3. Containment for Queries over Trees with Attribute Value Comparisons

fiability and containment. Such an expansion has been considered for Tree Patterns in
(Afrati et al., 2011), where a ΠP

2 -completeness result for the containment has been es-
tablished. However, the hardness proof relies on the construct that allows comparisons
of attributes of two different nodes, a feature that is not expressible in Core XPath. As a
positive counterpart, a CONP upper bound for containment was shown in the case when
comparisons are restricted to either so-called left semi-interval or right semi-interval at-
tribute constraints. For an attribute a and constant c, an attribute constraint (@aopc) is
left semi-interval if op ∈ {<,≤,=}.

In this chapter we show that essentially the complexity does not increase if positive
XPath and conjunctive queries over trees are expanded with both left and right semi-
intervals constraints together with inequality constraint. Furthermore, the same upper
bounds hold when we make certain assumptions on the underlying attribute domain D.
That is, we show that all the complexity results still hold for the cases when D is a dense
or discrete infinite linear order, with or without endpoints, or a finite linear order. As
another result, we show that by requiring at least one attribute to be defined in every
node of a tree, the complexity of containment over such trees rises to PSPACE. If, on the
other hand, we require attributes to be defined only at nodes with a certain label (which
can be expressed in DTDs) the complexity remains in CONP.

All the upper bound results for both PosXPath and CQ are obtained from a suitable
polynomial reduction to the containment problem in PosXPath¬

s

and UCQ¬
s

(PosXPath
and CQ expanded with safe label negation and union) over trees in which nodes may have
multiple labels, respectively. Safe label negation is the construct p \ {q1, . . . , qn} which
denotes p-labelled nodes that are not labelled with any of the labels q1, . . . , qn. Table 3.1
summarizes our results.

Organization

The chapter is organized as follows. Section 3.2 contains all the necessary preliminary
notions. Section 3.3 contains the main results. In particular, in Subsection 3.3.1 we
show that containment for UCQ¬

s

and PosXPath¬
s

is in ΠP
2 and CONP respectively.

Next in Subsection 3.3.2 we consider containment for CQ@ and PosXPath@ and show
the same upper bounds by reducing to the previous problem. Then in Subsection 3.3.3
we show that the upper bounds of containment do not change in case of some natural
restrictions on the attribute domain. Section 3.3.4 contains lower bounds: containment
of tree patterns without wildcard rises from PTIME to CONP when we add equality and
inequality comparisons; containment of tree patterns rises from CONP to PSPACE when
we add equality and inequality comparisons and interpret them on trees in which at least
one attribute is defined at each node (a so-called required attribute). We finish the chapter
with conclusions and future work.

3.2 Preliminaries

We work with node-labelled ordered unranked finite trees, where the nodes are labeled
by finite subsets of the infinite set of labels Σ. Formally, a tree over Σ is a tuple (N,E,<
, r, ρ), where N , the set of nodes of the tree, is a prefix closed set of finite sequences of
natural numbers, E = {(〈n1, . . . , nk〉, 〈n1, . . . , nk, nk+1〉) | 〈n1, . . . , nk+1〉 ∈ N} is

28

3.2. Preliminaries

PosXPath@ CQ@

no attributes CONP (Björklund et al., 2011) ΠP
2 (Björklund et al., 2011)

optional attributes CONP (Thm. 3.3.2) ΠP
2 (Thm. 3.3.2)

required attributes PSPACE-hard (Thm. 3.3.3) PSPACE-hard (Thm. 3.3.3)

Table 3.1: Complexity results for containment of Positive XPath and CQ with attribute
value comparisons.

the child relation, the sibling relation < is defined as {(〈n1, . . . , nk〉, 〈n1, . . . , nk + 1〉) |
〈n1, . . . , nk〉, 〈n1, . . . , nk + 1〉 ∈ N}, r = 〈〉 is the root of the tree, and ρ is the function
assigning to each node in N a finite subset of Σ. If for every node n of a tree ρ(n) is
singleton, we call such a tree as a single-labeled tree. Otherwise, it is multi-labeled. A
pointed tree is a pair T, n, where n is a node in T .

Let A be a set of attribute names and (D,<) a dense linear order without endpoints.
Then a tree with attributes fromA over Σ is a tuple (N,E,<, r, ρ, att) such that (N,E,<
, r, ρ) is a tree over Σ and att : N ×A→ D is a partial function.

By E+ and <+ we denote the descendant and the following sibling relations which
are transitive closures of the child and sibling relations respectively. We will also use <f
for the following relation, i.e., the abbreviation for (E−1)∗◦ <+ ◦E∗. For x, y ∈ N and
R ∈ {E,E+, <,<+, <f}, by T |= xRy we denote the fact that (x, y) ∈ R.

Positive XPath with attribute value comparisons. We define the syntax of Positive XPath
(denoted as PosXPath@) node and path formulas with attribute value comparisons with
the following grammar.

step ::= ↓ | ↑ | ← | → ,
ϕ ::= p | > | @aop c | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ
α ::= step |?ϕ | α;α | α ∪ α | step+ | →f |←p,

where p ∈ Σ, a ∈ A, op ∈ {≤,≥, <,>,=, 6=}, and c ∈ D.
The semantics of PosXPath@ path formulas α and node formulas ϕ is defined as

follows. Let T = (N,E,<, r, ρ, att) be a tree over Σ with attribute names from A. In
a mutual induction we define the relation JαKT ⊆ N × N and the satisfaction relation
T, n |= ϕ.

• J↓KT = E,

• J↑KT = E−1,

• J→KT =<,

• J←KT =<−1,

• J→fKT =<f ,

• J←pKT = (<f)−1,

• J?ϕKT = {(n, n) ∈ N ×N | T, n |= ϕ},

29

3. Containment for Queries over Trees with Attribute Value Comparisons

• Jα;βKT = JαKT ◦ JβKT ,

• Jα ∪ βKT = JαKT ∪ JβKT ,

• Jα+KT = (JαKT)+ for α ∈ {↓, ↑,→,←},

and

• T, n |= >,

• T, n |= p iff p ∈ ρ(n),

• T, n |= @aop c iff (D,<) |= att(n, a) op c,

• T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ,

• T, n |= ϕ ∨ ψ iff T, n |= ϕ or T, n |= ψ,

• T, n |= 〈α〉ϕ iff there is a node m with (n,m) ∈ JαKT and T,m |= ϕ.

The step axes select a pair of nodes that are in the child, parent, next-sibling or previous-
sibling relations in the tree. Furthermore, the →f and ←p axes select nodes that are in
the following and the preceding relations in the tree respectively. Note that> is the same
as the wild card axis.

Sometimes we will write T |= ϕ to denote T, r |= ϕ.

Conjunctive queries with attribute value comparisons. Let V ar be a set of variables,
A a set of attribute names and (D,<) the attribute domain, which is a dense linear or-
der without endpoints. A conjunctive query with attribute value comparisons (CQ@)
over Σ, A and D is a positive existential first-order formula without disjunction in
prenex normal form over a set of unary predicates p(x) and @a(x)op c, where p ∈ Σ,
x ∈ V ar, c ∈ D and op ∈ {≤,≥, <,>,=, 6=}; and the binary predicates Child,
Descendant,NextSibling,NextSibling+ andFollowing. IfQ is a CQ@, by V ar(Q)
we denote the set of variables occurring in Q. By FV ar(Q) we denote the set of free
variables in Q. If |FV ar(Q)| = k > 0, we call Q a k-ary conjunctive query. If
|FV ar(Q)| = 0, we call Q a Boolean conjunctive query.

LetQ be a conjunctive query and T = (N,E,<, r, ρ, att) a tree over Σ and attributes
from A. A valuation of Q on T is a total function θ : V ar(Q) → N . A valuation is a
satisfaction if it satisfies the query, that is, every atom of Q is satisfied by the valuation.
Satisfaction of an atom in T , given a valuation θ, is defined as follows.

• T, θ |= p(x) iff p ∈ ρ(θ(x)),

• T, θ |= @a(x)op c iff (D,<) |= att(θ(x), a) op c,

• T, θ |= Child(x, y) iff T |= θ(x)Eθ(y),

• T, θ |= Descendant(x, y) iff T |= θ(x)E+θ(y),

• T, θ |= NextSibling(x, y) iff T |= θ(x) < θ(y),

• T, θ |= NextSibling+(x, y) iff T |= θ(x) <+ θ(y),

30

3.2. Preliminaries

• T, θ |= Following(x, y) iff T |= θ(x) <f θ(y)

A tree T modelsQ, denoted as T |= Q, if there is a satisfaction ofQ on T . If (x1, . . . , xk)
is the tuple of free variables inQ, then the answer ofQ over T is the set answer(Q,T) =
{(θ(x1), . . . , θ(xk)) | θ is a satisfaction of Q on T}. Note that tuples can be nullary as
well. Thus, for a Boolean query Q, answer(Q,T) = {〈〉} (and we say Q is true on T)
if there is a satisfaction of Q on T and answer(Q,T) = ∅ (and we say Q is false on T)
otherwise.

We also consider unions of conjunctive queries with attribute value comparisons,
denoted as UCQ@. These are formulas of the form

∨n
i=1Qi, where Qi ∈ CQ@. The

semantics of these formulas is defined in the obvious way.

PosXPath@ formulas as CQ@ formulas with disjunction. Every PosXPath@ formula can
be translated into an equivalent CQ@ formula with disjunction in linear time. The trans-
lation is a standard translation of XPath into first-order logic language. It is defined by
induction on the complexity of path and node formulas of PosXPath@ as follows. Note
that the translation can be easily modified to yield a translation into the three variable
fragment of first order logic.

TRxy(↓) = Child(x, y)
TRxy(↑) = Child(y, x)
TRxy(→) = NextSibling(x, y)
TRxy(←) = NextSibling(y, x)
TRxy(?ϕ) = x = y ∧ TRx(ϕ)
TRxy(α1;α2) = ∃z.(TRxz(α1) ∧ TRzy(α2))

where z is a fresh variable.
TRxy(α1 ∪ α2) = TRxy(α1) ∨ TRxy(α2)
TRxy(↓+) = Descendant(x, y)
TRxy(↑+) = Descendant(y, x)
TRxy(→+) = NextSibling+(x, y)
TRxy(←+) = NextSibling+(y, x)
TRxy(→f) = Following(x, y)
TRxy(←p) = Following(y, x)

TRx(p) = p(x)
TRx(@aop c) = @a(x)op c
TRx(>) = >
TRx(ϕ1 ∧ ϕ2) = TRx(ϕ1) ∧ TRx(ϕ2)
TRx(ϕ1 ∨ ϕ2) = TRx(ϕ1) ∨ TRx(ϕ2)
TRx(〈α〉ϕ) = ∃y.(TRxy(α) ∧ TRy(ϕ)),

where y is a fresh variable.

Query graphs and embeddings. It is convenient to consider CQ@ and PosXPath@ with-
out path union and disjunction in the node formulas as graphs (Gottlob et al., 2006).

By ΣA we denote the attribute labels of the form @aop c, where a ∈ A, c ∈ D and
op ∈ {≤,≥, <,>,=, 6=}.

31

3. Containment for Queries over Trees with Attribute Value Comparisons

Definition 3.2.1 (Graph query). Let Q be a CQ@. Then GQ = (V,E,E+, <,<+,
<f , ρ, ρatt), where V is the set of nodes, R ⊆ V × V for R ∈ {E,E+, <,<+, <f},
ρ : V → 2Σ, ρatt : V → 2ΣA , is a graph query of Q if the following holds.

• V = V ar(Q),

• p ∈ ρ(x) iff p(x) occurs as a conjunct in Q,

• @aop c ∈ ρatt(x) iff @a(x)op c occurs as a conjunct in Q,

• (x, y) ∈ E iff Child(x, y) occurs as a conjunct in Q,

• (x, y) ∈ E+ iff Descendant(x, y) occurs as a conjunct in Q,

• (x, y) ∈< iff NextSibling(x, y) occurs as a conjunct in Q,

• (x, y) ∈<+ iff NextSibling+(x, y) occurs as a conjunct in Q,

• (x, y) ∈<f iff Following(x, y) occurs as a conjunct in Q.

By Nodes(G) we denote the set of nodes V of G. We write GQ |= u1Ru2, to
specify that (u1, u2) ∈ R forR ∈ {E,E+, <,<+, <f}. Note that for fragments without
attribute value comparisons, the value of the labeling function ρatt is always the empty
set. In these cases we omit ρatt in query graphs. The semantics of query graphs is given
in terms of embeddings, which are essentially valuations for conjunctive queries.

Definition 3.2.2 (Embedding). Let T = (N,E,<, r, ρ, att) be a tree over Σ with at-
tributes from A and G = (V,E,E+, <,<+, <f , ρ, ρatt) a graph query. A function
g : V → N is called an embedding of G into T if the following conditions are satisfied.

• Edge preserving. For every u1, u2 ∈ V , if G |= u1Ru2 then T |= g(u1)Rg(u2),
for any of the edge relations R ∈ {E,E+, <,<+, <f},

• Label preserving. For every u ∈ V , ρ(u) ⊆ ρ(g(u)).

• Attribute comparison preserving. For every u ∈ V , if @aop c ∈ ρatt(u), then
(D,<) |= att(e(u), a) op c.

Proposition 3.2.1. Let T be a tree,Q a CQ@ query,GQ its graph query, and θ a function
from Nodes(GQ) to T . Then

T, θ |= Q iff θ is an embedding of GQ into T.

Containment. LetQ and P be two k-ary conjunctive queries. We say that P is contained
inQ, denoted as P ⊆ Q, if for every single-labeled tree T , it holds that answer(P, T) ⊆
answer(Q,T). We also say that P is contained in Q over multi-labeled trees and denote
it by P ⊆ML Q if answer(P, T) ⊆ answer(Q,T) for every multi-labeled tree T .

In this chapter, the central problem is the following decision problem.

• Given two conjunctive queries P and Q,

• Decide: is P ⊆ Q?

32

3.3. Containment of PosXPath@ and CQ@

As pointed out in (Björklund et al., 2011), the containment of k-ary queries can be
PTIME reduced to the containment of Boolean conjunctive queries, i.e., queries without
free variables. The same reduction works for positive XPath and for containment over
multi-labeled trees. Thus, in the remainder of this chapter we concentrate on Boolean
query containment only.

Removing the attribute value comparisons. In our upper bound proofs we will treat
the attribute value comparisons as ordinary labels, whose interpretation will be restricted
by adding constraints. We make that precise using the translation (̃·) which maps each
@̃aop c to a new label p@aopc. This tranlation can then be homomorphically extended to
the translation (̃·) from formulas in PosXPath@ and CQ@ over Σ, A and D to formulas
without attribute value comparisons in respectively PosXPath and CQ over the alphabet
Σ ∪ {p@aopc | op ∈ {=, 6=, <,>,≤,≥}, a ∈ A, c ∈ D}.

PosXPath and CQ with safe negation

We define an expansion of the languages PosXPath@ and CQ@ (UCQ@) with a re-
stricted form of negation. That is, we define formulas of PosXPath@,¬s as formu-
las of PosXPath@ with the additional node formulas p ∧ ¬q1 ∧ . . . ∧ ¬qk, whenever
p, q1, . . . , qk are labels from Σ. We define T, n |= p ∧ ¬q1 ∧ . . . ∧ ¬qk iff p ∈ ρ(n) and
qi 6∈ ρ(n), 1 ≤ i ≤ k.

Similarly, formulas of CQ@,¬s (UCQ@,¬s) are formulas of CQ@ (UCQ@) expanded
with the construct p(x) ∧ ¬q1(x) ∧ . . . ∧ ¬qk(x), where x ∈ V ar and p, q1, . . . , qk ∈ Σ
with semantics: T, θ |= p(x) ∧ ¬q1(x) ∧ ¬qk(x) iff p ∈ ρ(θ(x)) and qi 6∈ ρ(θ(x)), for
every 1 ≤ i ≤ k.

For a formula from CQ@,¬s its corresponding graph query is defined in the same way
as in Definition 3.2.1 with the addition that nodes can have negative labels. The notion
of an embedding can also be extended for CQ@,¬s . The additional clause that has to be
added to Definition 3.2.2 requires preservation of negated labels:

• For every u ∈ V , if ¬p ∈ ρ(u) then p 6∈ ρ(g(u)).

By PosXPath¬
s

, CQ¬
s

and UCQ¬
s

we denote the fragments of PosXPath@,¬s ,
CQ@,¬s and UCQ@,¬s without attribute value comparisons respectively.

3.3 Containment of PosXPath@ and CQ@

This section contains the main result of this chapter. First, in Section 3.3.1 we show that
containment for PosXPath and CQ expanded with safe negation are in CONP and ΠP

2

respectively. Next we show that containment for these fragments expanded with attribute
value comparisons remains the same by a polynomial reduction to the corresponding
fragments without attribute value comparisons. This result holds under the assumption
that attribute values come from a dense linear order without endpoints. In Section 3.3.3
we show that imposing different constraints on the linear domain of attribute values does
not impact the complexity. However, making attributes required everywhere in a tree
increases the complexity of containment, as shown in Section 3.3.4.

33

3. Containment for Queries over Trees with Attribute Value Comparisons

3.3.1 Containment of Positive XPath and CQs with safe negation

In Subsection 3.3.2 we will reduce the complexity of the containment problem for PosXPath@

and CQ@ to that of PosXPath¬
s

and UCQ¬
s

. The next theorem shows that adding safe
negation to PosXPath and UCQ does not make the containment problem harder. The
argument is similar to the one in (Björklund et al., 2011), but additional care needs to be
taken when we deal with negation.

Theorem 3.3.1. The containment problem over multi-labeled trees for PosXPath¬
s

and
UCQ¬

s

is in CONP and ΠP
2 respectively.

Proof. In both cases the proof strategy is the same. Throughout the proof we assume that
we deal with multi-labeled trees without attributes. Our goal is to show that whenever
ϕ 6⊆ ψ, there is a small (polynomial in ϕ and ψ) counterexample witnessing this fact. In
the proof, we start with an arbitrary counterexample T , and shrink it in two steps: in the
first step (creating T ∗), we roughly restrict T to the image of ϕ and intermediate nodes.
This can still be too large. In the second step we shrink long paths between image nodes.

Letϕ =
∨
i ϕi andψ =

∨
j ψj be UCQ¬

s

formulas. Let T = (N,E,<, r, ρ) be a tree
such that T |= ϕ and T 6|= ψ. Then there exist i and an embedding e : Nodes(Gϕi)→ T ,
where Gϕi is the query graph of ϕi. By e(Gϕi) we denote the image of Nodes(Gϕi). If
Gϕi |= u1 <f u2, then there must exist nodes x1 and x2 such that e(u1)(E−1)∗x1 <

+

x2E
∗e(u2) in T . We call such x1 and x2 knee-nodes for G.

Our aim is to create a small tree out of T which is still a counterexample. For the first
“shrinking step”, we color nodes that we must keep. We use three colors: {I, V,H}.
• Mark the root r with I ,

• If x ∈ e(Gϕi), mark x with I (“image” nodes),

• If Gϕi |= u1 <f u2, then there must exist knee-nodes x1 and x2. Mark x1 and x2

by I too,

• If there exist two nodes x and y marked by I such that T |= xE+y and there is no
node z marked by I with T |= xE+z ∧ zE+y, then mark all the nodes on the path
from x to y by V (“vertical” nodes),

• If there exist two nodes x and y marked by I or V such that T |= x <+ y and
there is no node z marked by I or V with T |= x <+ z ∧ z <+ y, then mark all
the sibling nodes between x and y by H (“horizontal” nodes),

• Let T ∗ = (N∗, E∗, <∗, r∗) be the substructure of T restricted to the nodes marked
by I , H or V .

• Let ρ∗(n) = ρ(n) for n ∈ I and ρ∗(n) = ∅ otherwise.

Example 3.3.1. Let T be a tree as in Figure 3.1 and Q the Boolean conjunctive query
∃xyzw(a(x)∧Descendant(x, y) ∧b(y)∧Child(x, z)∧ c(z)∧NextSibling+(z, w)∧
d(w)). The corresponding query graphGQ is depicted in Figure 3.1, where the downward
and horizontal double line arrows denote E+ and <+ respectively, and the single line
arrow denotes E. The embedding e is defined by the dashed arrows. The marking of
nodes of T with the colors {I, V,H} is depicted in Figure 3.1.

34

3.3. Containment of PosXPath@ and CQ@

aa

bb cc dd

rr

aa

bb

cc
dd

pp qq

II

II

II

II

II

V, HV, H HH

T :T : GQ :GQ :

Figure 3.1: The tree T and the query graph corresponding to Q from Example 3.3.1.

Claim 3.3.1. T ∗ = (N∗, E∗, <∗, r∗, ρ∗) is a tree and T ∗ |= ϕ and T ∗ 6|= ψ.

Proof of Claim 3.3.1. It is easy to check that adding the V and H nodes to I is the min-
imum needed to ensure that T ∗ is a tree. First, we argue that T ∗ |= ϕi. Since we
maintained the image of Gϕi (nodes labeled by I), we have that e is a mapping from
Nodes(Gϕi) to N∗. The node labels are preserved under e since we did not change the
labeling of I nodes. Let 〈x, y〉 be an edge in Gϕi . If Gϕi |= xEy, or Gϕi |= x < y
then e(x) and e(y) are in child or next sibling relation in T ∗ respectively since both
nodes are labeled with I and they were in that relation in T . If Gϕi |= xE+y or
Gϕi |= x <+ y, then e(x) and e(y) are in the corresponding relations in T ∗ since the
intermediate vertical (V) and horizontal (H) nodes were kept. In case Gϕi |= x <f y
we have T ∗ |= e(x) <f e(y) since we kept the knee-nodes which witness the following
relation in T . Thus, we obtain T ∗ |= ϕ.

Now we show T ∗ 6|= ψ. Suppose to the contrary that T ∗ |= ψ. Then there exists an
embedding g of Gψj into T ∗ for some j. Because T ∗ is a substructure of T , g is also
a mapping of Nodes(Gψj) into Nodes(T) that preserves the edge relation. We show
that g also preserves the labels. Note that by definition of T ∗, the label ρ∗(n) is either
equal to ρ(n), when n ∈ I , or empty otherwise. Positive labels are always preserved:
ρj(u) ⊆ ρ∗(g(u)) ⊆ ρ(g(u)) for every node u ∈ Nodes(Gψj), where ρj is the labeling
function of Gψj . We show that negative labels are preserved too. Let u ∈ Nodes(Gψj).
If ¬p ∈ ρj(u), we have that p 6∈ ρ∗(g(u)), since g preserves negative labels. Since
negation is safe, there must exist a label q ∈ ρj(u), which implies q ∈ ρ∗(g(u)), and,
thus, ρ∗(g(u)) is not empty. In this case ρ∗(g(u)) = ρ(g(u)), and thus p 6∈ ρ(g(u))
as required. Thus, T |= ψ, which is a contradiction since T is a counterexample for
ϕ 6⊆ ψ.

Next, we prove two crucial lemmas. In particular, the following lemma claims that if we
have a tree T with a long enough non-branching vertical path, where each node has the
empty label, and a query Q with T |= Q, then the path can be extended even more while
preserving the fact that Q is true in the tree. We use the contrapositive of the lemma to
shrink such long paths while keeping the query ψ false in the smaller tree. The same
reasoning applies for horizontal paths.

35

3. Containment for Queries over Trees with Attribute Value Comparisons

Lemma 3.3.1 (V -path). Let G be a query graph with labels from Σ and T = (N,E,<
, ρ, r) a tree such that there is an embedding of G into T . Suppose u1Eu2E . . . Eun is a
path in T , such that

• ρ(ui) = ∅, for every i ∈ {1, . . . , n},

• If T |= uiEx, then x = ui+1 for i < n,

• n > |Nodes(G)|.

Let T̂ be the tree obtained from T by inserting a node with the empty label in the middle of
the path, i.e., by making um the parent and um+1 a child of the new node, where n = 2m
(when n is even) or n = 2m − 1 (when n is odd). Then there exists an embedding from
G into T̂ .

Proof. LetG = (V,E,E+, <,<+, <f , ρ) be the given query graph and g an embedding
of G into T . Since the length n of the path is strictly greater than the number of nodes
in G, there must exist an index k ≤ n such that uk 6∈ g(V), k ∈ {1, . . . , n}. Let
T ′ = (N ′, E′, <′, ρ′, r′) be the tree defined as follows:

• r′ = r,

• N ′ = N ∪ {u′k}, u′k 6∈ N ,

• E′ = (E \ {(uk, x) ∈ E | x ∈ N}) ∪ {(uk, u′k)} ∪ {(u′k, x) | T |= ukEx},

• <′ = <,

• For every node v ∈ N , ρ′(v) = ρ(v), and ρ′(u′k) = ∅.

We prove that in fact the same g is an embedding of G into T ′.1 First, from the
definition of T ′ we obtain the following properties.

Claim 3.3.2. Let T be from the statement of Lemma 3.3.1 and T ′ as defined above. Then

(i) If T |= xE+y, then T ′ |= xE′+y,

(ii) If x 6= uk and T |= xEy, then T ′ |= xE′y,

(iii) If T |= x < y (resp. T |= x <+ y and T |= x <f y), then T ′ |= x <′ y (resp.
T ′ |= x<′+y and T ′ |= x <′f y).

Proof of Claim 3.3.2. All items except (i) are immediate by the definition of E′. For
(i), let T |= xE+y. We then consider two cases: First suppose T |= ukEy. Then
T |= xE∗uk and thus T ′ |= xE′∗uk. Since T ′ |= ukE

′u′k and T ′ |= u′kE
′y, we have

T ′ |= xE′+y. In the case that T 6|= ukEy, we obtain T ′ |= xE′+y by the definition of
E′.

1Note that the defined T ′ is isomorphic to the “real” intended tree T ′ where the nodes are sequences of
natural numbers. Here, we treat g as the old g composed with the isomorphism.

36

3.3. Containment of PosXPath@ and CQ@

We prove that g : V → N ′ is an embedding.
Preservation of labels follows from the fact that the image of g is in N and g is an

embedding of G into T and thus preserves labels. We show that g still preserves the edge
relations. Let xEy hold in G. Then it holds that g(x) 6= uk as uk is not in the image
of g. Since g is an embedding of G into T , it holds that T |= g(x)Eg(y). Then by
Claim 3.3.2(ii), it holds that T ′ |= g(x)E′g(y).

Let G |= xE+y. Since g is an embedding of G into T , we have T |= g(x)E+g(y).
By Claim 3.3.2 (i), it follows that T ′ |= g(x)E′+g(y). Preservation of the relations <,
<+ and <f under g follow from Claim 3.3.2 (iii).

Now let T̂ be the tree defined in the statement of the Lemma. Formally, T̂ =
(N̂ , Ê, <̂, ρ̂, r̂) is defined as follows.

• r̂ = r,

• N̂ = N ∪ {u′m}, u′m 6∈ N ,

• Ê = (E \ {(um, x) ∈ E | x ∈ N}) ∪ {(um, u′m)} ∪ {(u′m, x) | T |= umEx},

• <̂ = <,

• For every node v ∈ N , ρ̂(v) = ρ(v), and ρ̂(u′m) = ∅.

The trees T̂ and T ′ are isomorphic. Recall the indexes m and k from the definitions
of T̂ and T ′. We define a mapping f : N ′ → N̂ as follows.

• If m ≤ k, then f(v) =

v if v ∈ N \ {um+1, . . . , uk},
u′m if v = um+1,

ui−1 if v = ui,m+ 1 < i ≤ k,
uk if v = u′k.

• If m > k, then f(v) =

v if v ∈ N \ {uk+1, . . . , um},
uk+1 if v = u′k,

ui+1 if v = ui, k + 1 ≤ i < m,

u′m if v = um+1.

The function f is onto and 1-1. We show that the V -paths in T ′ and T̂ are isomor-
phic. We consider the case m ≤ k, the other case is similar. Let T ′ |= uE′v for
u, v ∈ {u1, . . . , uk, u

′
k, uk+1, uk+2, . . . , un}. We need to show that T ′ |= uE′v iff

T̂ |= f(u)Êf(v). There are the following possible cases.

• u = ui and v = ui+1 with 1 ≤ i < m or k < i < n. In this case f(uj) =

uj , j ∈ {i, i + 1}. By definition of T ′ and T̂ it holds that T ′ |= uiE
′ui+1 and

T̂ |= uiÊui+1. Thus, T ′ |= uE′v iff T̂ |= f(u)Êf(v).

• u = um and v = um+1. In this case f(um) = um and f(um+1) = u′m. By
definition, it holds that T ′ |= umE

′um+1 and T̂ |= umÊu
′
m. Thus, T ′ |= uE′v iff

T̂ |= f(u)Êf(v).

37

3. Containment for Queries over Trees with Attribute Value Comparisons

• u = um+1 and v = um+2. In this case f(um+1) = u′m and f(um+2) = um+1.
By definition, it holds that T ′ |= um+1E

′um+2 and T̂ |= u′mÊum+1. Thus,
T ′ |= uE′v iff T̂ |= f(u)Êf(v).

• u = ui and v = ui+1 with m + 1 < i < k. In this case, f(ui) = ui−1 and
f(ui+1) = ui. By definition, it holds that T ′ |= uiE

′ui+1 and T̂ |= ui−1Êui.
Thus, T ′ |= uE′v iff T̂ |= f(u)Êf(v).

• u = uk and v = u′k. In this case, f(uk) = uk−1 and f(u′k) = uk. By definition,
it holds that T ′ |= ukE

′u′k and T̂ |= uk−1Êuk. Thus, T ′ |= uE′v iff T̂ |=
f(u)Êf(v).

• u = u′k and v = uk+1. In this case, f(u′k) = uk and f(uk+1) = uk+1. By
definition, it holds that T ′ |= u′kE

′uk+1 and T̂ |= ukÊuk+1. Thus, T ′ |= uE′v iff
T̂ |= f(u)Êf(v).

Since f(v) = v for every v ∈ N \ {u1, . . . , un, u
′
k, u
′
m} and ρ(v) = ∅ for every

v ∈ {u1, . . . , un, u
′
k, u
′
m}, the labels are preserved as well.

Thus, the mapping f ◦ g is an embedding of G into T̂ .

Analogous to the above lemma for V -paths, we formalize one for H-paths. The
crucial properties of H-paths are that their labels are empty and that all nodes in the path
are leafs. We omit the proof.

Lemma 3.3.2 (H-path). Let G be a query graph with labels from Σ and T = (N,E,<
, ρ, r) an ordered tree such that there is an embedding of G into T . Suppose T has a
horizontal path v1 < v2 < . . . < vn and v is their parent in T , where

• ρ(vi) = ∅ for every i ∈ {1, . . . , n},

• Vi = {u | T |= viEu} = ∅ for every i ∈ {1, . . . , n},

• n > |Nodes(G)|.
Let T̂ be the tree obtained from T by inserting a node with the empty label in the middle
of the horizontal path, i.e., by making vm the predecessor and vm+1 a the successor of
the new node, where n = 2m (when n is even) or n = 2m − 1 (when n is odd). Then
there exists an embedding from G into T̂ .

The proof of Theorem 3.3.1 relies on the small tree property which follows from the
two lemmas above. We first show how, using Lemma 3.3.1, we can reduce the number
of V -nodes. Let Gψj be the query graph of maximal number of nodes among all Gψi .
Let u1Eu2 . . . Eun be a V -path in T ∗ of length greater than |Nodes(Gψj)| + 1. Then
we remove the node um, where n = 2m (i.e., if n is even) or n = 2m + 1 (i.e., if n is
odd), from T ∗, and make um+1 to be the child of um−1. Let T ∗∗ be the resulting tree.
We claim that T ∗∗ |= ϕ and T ∗∗ 6|= ψ. The former follows from the fact that we did not
change I-nodes in T ∗∗. For the latter, suppose T ∗∗ |= ψ. Then there exists an embedding
g : Gψi → T ∗∗ for some i. Since n − 1 > |Nodes(Gψj)| ≥ |Nodes(Gψi)|, we can
apply Lemma 3.3.1 to show that there is an embedding of Gψi to T ∗, which contradicts
to the fact T ∗ 6|= ψ.

38

3.3. Containment of PosXPath@ and CQ@

Thus, we can iteratively apply the same argument to make long V -paths shorter and
while preserving the fact that T ∗ 6|= ψ and T ∗ |= ϕ. Similar for H-paths, if they are
longer than |Nodes(Gψj)|+ 1, we can apply Lemma 3.3.2 to shorten them.

Let us find out how the size of the small tree is bounded. The number of I nodes in
T ∗ is bounded by |Nodes(Gϕi)|. Each I node has at most one V path above it, one H
path to its right, and one H path through its children. The number of nodes in all these
paths is, by the argument above, maximally |Nodes(Gψj)| + 1. Thus after repeated
application of the Lemmas to T ∗ the resulting size is bounded by O(|ϕ| · |ψ|).

A ΠP
2 algorithm for deciding the UCQ¬

s

containment then works as follows. It first
guesses a tree T of size O(|ϕ| · |ψ|) and then checks in NP if T |= ϕ and in CONP if
T 6|= ψ. The CONP algorithm for PosXPath¬

s

works similarly. It also guesses a tree T of
polynomial size and checks if T |= ϕ and T 6|= ψ which can be done in PTIME (Gottlob
et al., 2005a).

Note that the safeness condition for negation turns out to be crucial. Indeed, in Chap-
ter 5 we will see that containment for tree patterns with unrestricted label negation is
already PSPACE-complete.

3.3.2 Adding attributes

Now we are ready to provide upper bounds for our fragments with attribute value com-
parisons.

Theorem 3.3.2. The containment problem over trees with attributes is

• in CONP for PosXPath@,¬s ,

• in ΠP
2 for UCQ@,¬s .

Given the containment problem ϕ ⊆ ψ for ϕ,ψ ∈ PosXPath@,¬s (UCQ@,¬s), we
reduce it to the containment problem ϕ′ ⊆ML ψ′ in PosXPath¬

s

(UCQ¬
s

), which is
known to be in CONP (ΠP

2) by Theorem 3.3.1. Thus Theorem 3.3.2 is a consequence of
the following lemma.

Lemma 3.3.3. Let ϕ and ψ be PosXPath@,¬s (UCQ@,¬s) formulas. Then there exist
PTIME computable PosXPath¬

s

(UCQ¬
s

) formulas ϕ′ and ψ′ such that

ϕ ⊆ ψ iff ϕ′ ⊆ML ψ
′.

This holds for both single-labeled and multi-labeled trees.

Proof. The idea behind the proof is as follows. We abstract away from arithmetic com-
parisons by replacing each of them with a new label. These labels have to obey certain
constraints, like comparisons do. To this purpose, we define a list of axioms (Figure 3.2)
that faithfully encode these constraints.

In case of PosXPath@,¬s we define ϕ′ := ϕ̃ and ψ′ := ψ̃ ∨ Ax, where (̃·) replaces
comparisons with labels (definition is in Section 3.2) and Ax is the disjunction of the
formulas in Figure 3.2. In the definition of Ax, Σp, Σa and Σc are respectively the

39

3. Containment for Queries over Trees with Attribute Value Comparisons

sets of labels, attributes and constants appearing in ϕ or ψ. We use the abbreviation
〈↓∗〉θ = θ ∨ 〈↓+〉θ. Note that the formula Ax is in PosXPath¬

s

. In case of UCQ@,¬s

the translation (·)′ is defined essentially the same. The only difference is that we take
∃x.TRx(Ax) instead of Ax. Notice that the resulting formulas ϕ′ and ψ′ are in UCQ¬

s

.
We first argue that the size ofAx isO((|ϕ|+ |ψ|)3). Since the sets Σp, Σa and Σc are

respectively the sets of labels, attributes and constants appearing in ϕ or ψ, their sizes are
bounded by the combined size |ϕ| + |ψ|. The axioms in Ax are in fact axiom schemas.
Each schema has at most 3 parameters from Σp, Σa and Σc and 1 parameter from the
set of possible operators from {=, 6=, <,>,≤,≥}. Thus each schema stands for at most
6 · (|ϕ|+ |ψ|)3 disjuncts. The number of axioms and their size does not depend on ϕ and
ψ. Whence the size of Ax is bounded by O((|ϕ|+ |ψ|)3).

We give some intuition behind Ax. In order to prove this lemma, we need to show
that there is a counterexample for ϕ ⊆ ψ iff there is a counterexample for ϕ′ ⊆ML ψ

′.
Note that every counterexample tree T for ϕ′ ⊆ML ψ

′ must refute every disjunct (axiom)
in Ax. Intuitively, the axioms enforce the following properties of T :

• (Label): each node has at most one label from Σp,

• (SName): each attribute of a node can take only at most one value,

• (MExcl),(Eq): there is no inconsistent comparison,

• (DNeg): if a node contains a comparison with a constant, then it must contain a
comparison with all other constants from Σc,

• (LEQ1) – (LEQGEQ): the natural interaction between the comparisons with a con-
stant,

• (Order1) – (Order4): the order is preserved.

The following claim is crucial for constructing a counterexample tree for ϕ ⊆ ψ from
a counterexample for ϕ′ ⊆ML ψ

′.

Claim 3.3.3. Let T = (N,E,<, r, ρ) be a multi-labeled tree over Σ′ such that T, r 6|=
Ax. Then for every a ∈ Σa, c ∈ Σc, node n ∈ N , exactly one of the following holds.

(i) there is no p@aopc ∈ ρ(n) for every op ∈ {=, 6=,≥,≤, <,>},
(ii) there is exactly one p@a=c ∈ ρ(n) and for every c1 ∈ Σc it holds that p@aopc1 ∈

ρ(n) iff D |= c op c1,
(iii) there is no p@a=c ∈ ρ(n) and there exists c′ ∈ D \Σc such that for every c1 ∈ Σc

it holds that p@aopc1 ∈ ρ(n) iff D |= c′ op c1.

Proof of Claim. Let T be as stated in the Claim, a ∈ Σa an attribute name, c ∈ Σc a
constant, n ∈ N a node in T . Assume that there exists p@aopc in ρ(n). Otherwise, item
(i) holds. Assume that op is in fact “=”. Because T, r 6|= Ax, the formula (SName) is
false and thus there cannot be another p@a=c1 in ρ(n).

We show, for every c1 ∈ Σc and op ∈ {=, 6=, >,<,≥,≤}, that p@aopc1 ∈ ρ(n) iff
D |= c op c1.

(i) op is =. Assume p@a=c1 ∈ ρ(n), then we have c = c1 by (SName). The converse
implication holds since p@a=c ∈ ρ(n) by the assumption.

40

3.3. Containment of PosXPath@ and CQ@

For every pi, pj ∈ Σp, pi 6= pj :

〈↓∗〉(pi ∧ pj), (Label)

For every a ∈ Σa, c, c1, c2 ∈ Σc, c1 6= c2

〈↓∗〉(p@a=c1 ∧ p@a=c2), (SName)
〈↓∗〉(p@a=c ∧ p@a 6=c), (Eq)

For every a ∈ Σa, c ∈ Σc and R,S in {<,=, >} with R 6= S,

〈↓∗〉(p@aRc ∧ p@aSc), (MExcl)

For every a ∈ Σa, c, c1 ∈ Σc and R ∈ {6=,≤,≥, <,>},

〈↓∗〉(p@aRc1 ∧ ¬p@a=c ∧ ¬p@a>c ∧ ¬p@a<c), (DNeg)
〈↓∗〉(p@a≤c ∧ ¬p@a=c ∧ ¬p@a<c), (LEQ1)
〈↓∗〉(p@a≥c ∧ ¬p@a=c ∧ ¬p@a>c), (GEQ1)
〈↓∗〉(p@a=c ∧ ¬p@a≤c), (LEQ2)
〈↓∗〉(p@a=c ∧ ¬p@a≥c), (GEQ2)
〈↓∗〉(p@a<c ∧ ¬p@a≤c), (LEQ3)
〈↓∗〉(p@a>c ∧ ¬p@a≥c), (GEQ3)
〈↓∗〉(p@a<c ∧ ¬p@a 6=c), (LNEQ)
〈↓∗〉(p@a>c ∧ ¬p@a 6=c), (GNEQ)
〈↓∗〉(p@a 6=c ∧ ¬p@a<c ∧ ¬p@a>c), (TRI)
〈↓∗〉(p@a≥c ∧ p@a≤c ∧ ¬p@a=c), (LEQGEQ)

For every c1 < c2, c1, c2 ∈ Σc, add the disjuncts,

〈↓∗〉(p@a<c1 ∧ ¬p@a<c2), (Order1)
〈↓∗〉(p@a>c2 ∧ ¬p@a>c1), (Order2)
〈↓∗〉(p@a=c1 ∧ ¬p@a<c2), (Order3)
〈↓∗〉(p@a=c2 ∧ ¬p@a>c1). (Order4)

Figure 3.2: The disjuncts of the formula Ax from the proof of Lemma 3.3.3.

(ii) op is 6=. Assume p@a 6=c1 ∈ ρ(n). By Eq, it follows that c1 6= c. Thus, D |=
c 6= c1. Conversely, assume D |= c 6= c1. It means that either c > c1 or c < c1.
First assume that c > c1. Since p@a=c ∈ ρ(n) and c > c1, by (Order4) we
obtain p@a>c1 ∈ ρ(n). Then, by (GNEQ), it follows that p@a 6=c1 ∈ ρ(n), as
desired. Similarly for the case c < c1, using (Order3) and (LNEQ), we can show
p@a 6=c1 ∈ ρ(n).

41

3. Containment for Queries over Trees with Attribute Value Comparisons

(iii) op is >. Assume p@a>c1 ∈ ρ(n). We show that D |= c > c1. Suppose the
opposite, i.e., either c = c1 or c1 > c. In the first case, it would mean that both
p@a=c and p@a>c occur in ρ(n), which is a contradiction with (MExcl). In the
second case, by (Order3), both p@a<c1 and p@a>c1 are in ρ(n), which is again a
contradiction with (MExcl).

Now suppose D |= c > c1. Then by (Order4), it follows that p@a>c1 ∈ ρ(n), as
needed.

(iv) op is <. Similar to the previous case.

(v) op is ≥. Assume p@a≥c1 ∈ ρ(n). If c1 = c, then we immediately obtain D |= c ≥
c1. Now suppose c 6= c1 and we show thatD |= c ≥ c1. Suppose the opposite, i.e.,
D |= c < c1. Then by (Order3), we have p@a<c1 ∈ ρ(n). By (LEQ3), it implies
that p@a≤c1 ∈ ρ(n), which in turn by (LEQGEQ) implies that p@a=c1 ∈ ρ(n).
The latter is a contradiction with (SName).

Now assume D |= c ≥ c1. This means that either c = c1 or c > c1 in D. In the
first case, we have p@a=c ∈ ρ(n) by the assumption. Thus by (GEQ2), we have
that p@a≥c ∈ ρ(n). In the second case, similarly to the case when op is >, we can
show that p@a>c1 ∈ ρ(n). Then by (GEQ3), we have p@a≥c1 ∈ ρ(n), as needed.

(vi) op is ≤. Similar to the previous case.

Thus we have proved item (ii).
Let us consider (iii). Now there is no p@a=c ∈ ρ(n) for any c ∈ D. We define

c1 = max{c | p@a>c ∈ ρ(n)} and c2 = min{c | p@a<c ∈ ρ(n)}. If the former set
is empty, we let c1 = −∞, and if the latter set is empty, we let c2 = +∞. We claim
that at least one of c1 and c2 is finite. Indeed, there must be p@aRc in ρ(n) for some
R ∈ {6=, <,>,≤,≥} since otherwise item (i) would hold. By DNeg it follows that
either p@a<c or p@a>c is in ρ(n), which means that c1 or c2 is finite.

We also claim that c1 < c2. It is trivially true if one of c1 and c2 is infinity, thus
assume both are finite. If c1 = c2, then both p@a>c1 and p@a<c1 appear in ρ(n) at the
same time, which is forbidden due to (MExcl). If c1 > c2, then by (Order1), both p@a>c1

and p@a<c1 are in ρ(n), which is again forbidden by (MExcl).
Now, since c1 < c2 and the assumption that D is a dense order, there exists c′ ∈ D

such that c1 < c′ < c2.
We claim that c′ 6∈ Σc. Suppose the opposite. Then since p@a=c′ 6∈ ρ(n) by the

assumption and the fact that p@aRc′′ ∈ ρ(n) for some R and c′′ (otherwise we would be
in case (i)), we obtain either p@a<c′ ∈ ρ(n) or p@a>c′ ∈ ρ(n), by (DNeg). If p@a<c′ ∈
ρ(n), then D |= c′ ≥ c2 which contradicts the fact that D |= c′ < c2. Similarly, if
p@a>c′ ∈ ρ(n), then D |= c′ ≤ c1, which contradicts with D |= c′ > c1.

We now show that for every c ∈ Σc and op ∈ {=, 6=, >,<,≥,≤}, p@aopc ∈ ρ(n) iff
D |= c′ op c.

(i) op is =. The equivalence holds since for every c ∈ Σc, there is no p@a=c in ρ(n)
and D 6|= c′ = c since c′ 6∈ Σc.

(ii) op is 6=. Assume p@a 6=c ∈ ρ(n). Then we have that D |= c′ 6= c because c′ is
not in Σc. Conversely, assume D |= c′ 6= c. By (DNeg), since there is no p@a=c

42

3.3. Containment of PosXPath@ and CQ@

in ρ(n) for every c ∈ Σc and there is p@aRc1 for some c1, it follows that either
p@a<c ∈ ρ(n) or p@a>c ∈ ρ(n). Applying (LNEQ) or (GNEQ), respectively, we
obtain p@a 6=c ∈ ρ(n), as desired.

(iii) op is >. Assume p@a>c ∈ ρ(n). Then D |= c′ > c by definition of c′. Conversely,
assumeD |= c′ > c. We show that p@a>c ∈ ρ(n). Since there is no p@a=c ∈ ρ(n)
and there exists p@aRc1 ∈ ρ(n), we obtain either p@a<c or p@a>c in ρ(n), by
(DNeg). The first case is impossible since it would imply c′ < c which contradicts
the assumption. Thus we have p@a>c ∈ ρ(n), as desired.

(iv) op is <. Similar to the previous case.

(v) op is ≥. If p@a≥c ∈ ρ(n), then by (GEQ1) either p@a=c ∈ ρ(n) or p@a>c ∈ ρ(n).
The first case is impossible by the assumption. In the second case, we obtain that
D |= c′ > c by definition of c′. Thus, D |= c′ ≥ c.
Now assume D |= c′ ≥ c. This means that either c′ = c or c′ > c in D. The first
case is impossible, since c′ 6∈ Σc. In the second case, as with the case op = ”>”,
we can show that p@a>c ∈ ρ(n). Then by (GEQ3), it holds that p@a≥c ∈ ρ(n).

(vi) op is ≤. Similar to the previous case.
This concludes the proof of the claim.

We now prove that ϕ ⊆ ψ iff ϕ′ ⊆ML ψ
′,

(⇒) Let T = (N,E,<, r, ρ) be a multi-labeled tree such that T, r |= ϕ′ and T, r 6|=
ψ′. Note that then T, r 6|= Ax. Then we define a single-labeled tree T ′ := (N,E,<
, r, ρ′, att), where att is a partial function assigning a value in D to a given node and an
attribute name, as follows:

• For p ∈ Σp, ρ′(n) = p iff p ∈ ρ(n). If there is no p ∈ Σp such that p ∈ ρ(n), we
set ρ′(n) = z for a fresh symbol z.

• att(n, a) =

undefined if there is no p@aopc1 in ρ(n),

c if p@a=c ∈ ρ(n),

c′ from Claim 3.3.3, (iii), otherwise.

We claim that T ′ is well defined. Indeed, (Label) ensures that every node is labeled by
exactly one label from Σp or by z. Morever, the function att is well defined since exactly
one of the conditions in the definition of att is fulfilled, according to Claim 3.3.3. By
induction, using Claim 3.3.3, we can show that for every θ, T, n |= θ̃ iff T ′, n |= θ. Thus,
it follows T ′, r |= ϕ and T ′, r 6|= ψ, which was desired.

(⇐) Let T = (N,E,<, r, ρ, att) be a single-labeled tree such that T |= ϕ and
T 6|= ψ. We define the tree T ′ := (N,E,<, r, ρ′), where ρ′ is defined as follows:

• For p ∈ Σp, p ∈ ρ′(n) iff ρ(n) = p,
• p@a=c ∈ ρ′(n) iff att(n, a) = c,
• p@aopc ∈ ρ′(n) iff D |= att(n, a) op c for op ∈ {6=,≤,≥, <,>}, c ∈ Σc.

It is straightforward to check that T ′ does not satisfy any of the disjuncts inAx. Thus,
we obtain T ′ |= ϕ′ and T ′ 6|= ψ′.

The same argument goes through for multi-labeled trees, except that we must not
include formulas (Label) as disjuncts of Ax.

43

3. Containment for Queries over Trees with Attribute Value Comparisons

3.3.3 Restricting the attribute domain

We now show that the same complexity results for the containment problem hold in
presence of various restrictions on the domain of attribute values. A linear order D has
a smallest (largest) element if there exists c′ ∈ D such that c′ ≤ c (c ≥ c′) for every
c ∈ D. We say D has an endpoint if there exists a smallest or a largest element in D.
D is discrete if any point which has a successor also has an immediate successor. D is
dense linear order if for every x < y in D there exists z ∈ D such that x < z < y.

Proposition 3.3.1. Let D be one of the following linear orders:

(i) finite,

(ii) discrete,

(iii) dense or discrete with one or two endpoints.

Then the containment problem for PosXPath@,¬s and UCQ@,¬s over single-labeled trees
with the domain of attribute values D is in CONP and ΠP

2 respectively.

Proof. Let ϕ and ψ be PosXPath@,¬s (UCQ@,¬s) formulas overD and Σc ⊆ D, Σa and
Σp the sets of constants, attribute names and labels in Σ appearing in ϕ or ψ. We then
construct in PTIME formulas ϕ′ and ψ′ over Σ′ = Σp ∪ {p@aopc | a ∈ Σa, c ∈ Σc, op ∈
{=, 6=, <,>,≤,≥}} such that

ϕ ⊆ ψ if and only if ϕ′ ⊆ML ψ
′. (1)

Namely, we take ϕ′ := ϕ̃ and ψ′ := ψ̃ ∨ Ax ∨ Axk, where (̃·) is defined in Section 3.2,
Ax is from Figure 3.2 and Axk, k ∈ {(Fin), (Discr), (End)} is constructed according
to the cases (i), (ii) and (iii) of the Proposition. Note that the formulas ϕ′ and ψ′ in all the
cases are in fact PosXPath¬

s

formulas. In case of UCQ@,¬s , the translation (·)′ is defined
essentially the same. The difference is that we use ∃x.TRx(Ax) and ∃y.TRy(Axk)

instead. Note that the result of (·)′ is a union of CQ¬
s

formulas. The upper bounds then
follow from Theorem 3.3.1.

Now we construct the formulas Axk, k ∈ {(Fin), (Discr), (End)}.
(i). Assume D = {c1 < c2 < . . . < ck} is a finite linear order. We then write

down the formulas of Ax(Fin). It is the disjunction of the following formulas. For every
a ∈ Σa, c ∈ Σc and op ∈ {=, 6=, <,>,≤,≥}:

〈↓∗〉(p@aopc ∧ ¬p@a=c1 ∧ . . . ∧ ¬p@a=ck). (Fin)

This axiom enforces that whenever an attribute is defined, its value equals one of
ci, 1 ≤ i ≤ k. The following claim, which is easy to verify using (Fin), is crucial.

Claim 3.3.4. Let T = (N,E,<, r, ρ) be a multi-labeled tree over Σ′ such that T, r 6|=
Ax ∨ Ax(Fin). Then for every a ∈ Σa, c ∈ Σc, node n ∈ N and op ∈ {=, 6=,≥,≤, <
,>}, exactly one of the following holds:

(i) there is no p@a=c ∈ ρ(n),

44

3.3. Containment of PosXPath@ and CQ@

(ii) there is exactly one p@a=c ∈ ρ(n) and for every c1 ∈ Σc it holds that p@aopc1 ∈
ρ(n) iff D |= c op c1.

Now we prove the equivalence (1). For the direction from left to right, given a multi-
labeled tree T over Σ′ such that T |= ϕ′ and T 6|= ψ′, we construct a single-labeled tree
with attributes T ′ as it was done in Lemma 3.3.3. The only difference is in the definition
of the attribute function att. In our case we take

att(n, a) =

{
undefined if there is no @aop c in ρ(n), op ∈ {=, 6=, <,>,≥,≤}, c ∈ Σc

c if @a = c ∈ ρ(n).

Using Claim 3.3.4 we can show that for every n ∈ T , θ over Σ, A and D, T, n |= θ̃ iff
T ′, n |= θ.

The direction from right to left of (1) can be proved exactly as in Lemma 3.3.3.
(ii). D is a discrete linear order. We assume that D is infinite, as the finite case is

covered by the case (i). We take Ax(Discr) as the disjunction of the following formulas.
For every a ∈ Σ, c1, c2 ∈ Σc such that c1 < c2 in D and there is no c′ in D with
c1 < c′ < c2,

〈↓∗〉(p@a>c1 ∧ p@a<c2), (Discr)

This axiom enforces the requirement that a value for a-attribute cannot be between an
element in D and its immediate successor.

Similarly to Lemma 3.3.3 we can show that the reduction is correct. To this purpose
we need the claim which is a reformulation of Claim 3.3.3 where instead of Ax we take
Ax ∨Ax(Discr) and D is the discrete linear order.

We highlight the difference with the proof of Claim 3.3.3. The only nontrivial differ-
ence is item (iii). Assume the conditions (i) and (ii) of Claim 3.3.3 do not hold for a ∈ A
and n ∈ T . We define c1 = max{c | p@a>c ∈ ρ(n)} and c2 = min{c | p@a<c ∈ ρ(n)}.
As in Claim 3.3.3 we can show that D |= c1 < c2. Having that, there exists c′ such that
c1 < c′ < c2. Indeed, suppose the opposite. Then both p@a>c1 and p@a<c2 are in ρ(n)
and c2 is the immediate successor of c1 in D, which is a contradiction with (Discr). It
follows from (DNeg) that c′ 6∈ Σc. Moreover, for every c′′ ∈ Σc, p@aopc′′ ∈ ρ(n) iff
D |= c′ op c′′. This can be verified as it was done in Claim 3.3.3. Thus we have proved
the claim. Having this claim at hand, we can prove the equivalence (1) in the same way
as in Lemma 3.3.3.

(iii). D is dense or discrete linear order with one or two endpoints. If D is dense,
take Ax(End) as the disjunction of the following formulas:

If D has the least endpoint cl, for every a ∈ Σa :

〈↓∗〉p@a<cl . (LEnd)

If D has the greatest endpoint cg , for every a ∈ Σa:

〈↓∗〉p@a>cg . (REnd)

In case D is discrete linear order, Ax(End) additionally has (Discr) as a disjunct.

45

3. Containment for Queries over Trees with Attribute Value Comparisons

The axioms (LEnd) and (REnd) enforce the requirement that attributes cannot take
their values outside of the bounds in D. As in the previous case, we can prove the variant
of Claim 3.3.3, where we consider Ax(End) and D a dense or discrete linear order with
one or two endpoints. We do not spell out the proof, but the crucial difference is that in
item (iii) axioms (LEnd) and (REnd) ensure the fact that c′ is chosen within the interval
[cl, cg].

Having this claim, we can prove the equivalence (1) in the same way as in Lemma 3.3.3.
Clearly, the constructed ϕ′ and ψ′ are PTIME computable from ϕ and ψ.

3.3.4 Lower bounds

In this section we show a number of lower bounds on containment for CQ@ and PosXPath@.
The following lower bound was shown in (Björklund et al., 2011).

Proposition 3.3.2 (Björklund et al. (2011)). Containment is ΠP
2 -hard for

CQ(Child,Descendant), i.e., conjunctive queries that use only the predicates Child
and Descendant.

For PosXPath@, the CONP lower bound for containment follows from hardness of
containment for tree patterns (Miklau and Suciu, 2004), which is a fragment of PosXPath@.
In order to compare our results to those in (Miklau and Suciu, 2004), we follow their no-
tation. Let XP{[],∗,//} denote the fragment of PosXPath without union and disjunction,
only the ↓ step, and no occurence of the following and preceding axes. These are called
tree patterns in the literature. Let XP{[],//} denote XP{[],∗,//} in which no wildcard
(denoted by > in PosXPath) occurs.

Containment of XP{[],//} and XP{[],∗,//} patterns is in PTIME and CONP-complete,
respectively. Let XP

{[],//}
=,6= and XP

{[],∗,//}
=,6= denote the expansions of XP{[],//} and

XP{[],∗,//} with equality and inequality attribute value comparisons, respectively. We
show that containment of XP

{[],//}
=, 6= patterns becomes CONP hard. Containment of

XP
{[],∗,//}
=,6= patterns becomes PSPACE hard when interpreted over trees with at least one

required attribute.
The following property is used in our lower bound arguments. The proof can be

found in (Miklau and Suciu, 2004, Lemma 3).

Proposition 3.3.3. Let L be XP
{[],∗,//}
=,6= or XP{[],//}

=,6= . Let ϕ be an L formula and ∆ a
finite set of L formulas. Then there are PTIME computable L formulas ϕ′ and ψ′ such
that

ϕ ⊆
∨

∆ iff ϕ′ ⊆ ψ′.

The same holds for the case of multi-labeled trees.

Proposition 3.3.4. The containment problem for XP{[],//}
=,6= is CONP-hard.

Proof. We reduce the 3SAT problem to the non-containment problem in XP
{[],//}
=,6= .

Firstly, we can use a union of tree patterns on the right side of the containment prob-
lem, due to Proposition 3.3.3.

46

3.3. Containment of PosXPath@ and CQ@

Let Q be the conjunction of clauses Ci = (Xi
1 ∨ Xi

2 ∨ Xi
3), 1 ≤ i ≤ k over the

variables {x1, . . . , xn}, where Xi
j are literals. From Q, we construct in PTIME two for-

mulas over the signature Σ = {r, b}, attribute names A = {a1, . . . , an} and an attribute
domain D containing values {0, 1, 2} as follows.

We define
ϕ := r ∧ 〈↓〉(b ∧@a1 6= 2 ∧ . . . ∧@an 6= 2)2

and

ψ :=

k∨
i=1

〈↓〉(b ∧Bi1 ∧Bi2 ∧Bi3),

where Bij = (@al = 0) iff Xi
j = xl in Ci and Bij = (@al 6= 0) iff Xi

j = ¬xl in Ci.
We claim that Q is satisfiable if and only if ϕ 6⊆ ψ. First assume that Q is satisfiable,

i.e., there is a variable assignment V : {x1, . . . , xn} → {0, 1} such that V |= Q. We then
define the following tree T = ({v1, v2}, {(v1, v2)}, v1, ρ, att), where the labeling ρ is
defined as ρ(v1) = {r}, ρ(v2) = {b} and att(v2, al) = 1 iff V (xl) = 1 and att(v2, al) =
0 iff V (xl) = 0 for every l, 1 ≤ l ≤ n. Clearly, T satisfies ϕ. Suppose T, v1 |= ψ. This
means there exists an index i such that T, v1 |= 〈↓〉(b ∧Bi1 ∧Bi2 ∧Bi3), which implies
T, v2 |= Bij , j = 1, 2, 3. Hence, by the definition of the attribute function we obtain that
if Bij = (@al = 0), then V (Xi

j) = V (xl) = 0 and, similarly, if Bij = (@al 6= 0), then
V (Xi

j) = V (¬xl) = 0. Thus, we obtain V 6|= Ci, which is a contradiction with the fact
that V is a satisfying variable assignment. Thus, T 6|= ψ.

We now prove the converse. Assume there is a tree T with T |= ϕ and T 6|= ψ.
The former implies that there exists a child of the root of T , v such that T, v |= b and
the attributes a1, . . . , an are defined at v. Moreover since T 6|= ψ, for every i, 1 ≤
i ≤ n it holds that T, v 6|= b ∧ Bi1 ∧ Bi2 ∧ Bi3. We define the variable assignment
V : {x1, . . . , xn} → {0, 1} as follows: V (xl) := 0 iff att(v, al) = 0 and V (xl) := 1 iff
att(v, al) 6= 0. We claim that V |= Q. Assume the opposite, i.e., there exists a clause Cj
which is mapped to 0 under V . By definition of V , it follows that T, v |= Bj1 ∧Bj2 ∧Bj3
and therefore, T, v |= b ∧Bj1 ∧Bj2 ∧Bj3, which is a contradiction.

Required attributes

In Section 3.3.2 we dealt with the case when attributes are optional. We now consider the
case when some attributes are required. We say that an attribute a ∈ A is required in a
tree T with domain N if the function att : N ×{a} → D is total. We show that when at
least one attribute is required, containment of tree patterns with equality and inequality
comparisons rises to PSPACE.

Theorem 3.3.3. The containment problem for XP{[],∗,//}
=,6= interpreted over trees with at

least one required attribute is PSPACE-complete.

Proof. We show the upper bound for XP{[],∗,//}
=,6= expanded with the other equality op-

erators (i.e., <,>,≤ and ≥). For that, we reduce the containment problem in this frag-
ment to containment for unions of XP{[],∗,//,¬} (tree pattern formulas with unrestricted

2The purpose of the inequalities @ai 6= 2 is to guarantee that the attribute ai is defined in the b-node of a
model of ϕ. We could express the same with the comparison @ai ≤ 1 or @ai ≥ 0.

47

3. Containment for Queries over Trees with Attribute Value Comparisons

label negation) similar to Lemma 3.3.3. The additional axiom in Ax (Figure 3.2) is
〈↓∗〉(¬p@a=c ∧ ¬p@a 6=c) for every required a ∈ A, where c is a constant (note that this
axiom contains unsafe negation). This axiom enforces that the attribute a is defined ev-
erywhere in the tree. In (Facchini et al., 2015) and Chapter 5 we show that containment
for unions of XP{[],∗,//,¬} is solvable in PSPACE.

For proving the lower bound we encode the corridor tiling problem, which is known
to be hard for PSPACE (Chlebus, 1986). Our lower bound proof uses the construction
from the PSPACE-hardness proof for the containment problem in tree patterns with dis-
junction over a finite alphabet in (Neven and Schwentick, 2006).

The corridor tiling problem is formalized as follows. Let Til = (D,H, V, b̄, t̄, n) be a
tiling system, where D = {d1, . . . , dm} is a finite set of tiles, H,V ⊆ D2 are horizontal
and vertical constraints, n is a natural number in unary notation, b̄ and t̄ are tuples overD
of length n. Given such a tiling system, the goal is to construct a tiling of the corridor of
width n using the tiles from D so that the constraints H and V are satisfied. Moreover,
the bottom and the top row must be tiled by b̄ and t̄ respectively.

Let a ∈ A be a required attribute. Now we construct two XP
{[],∗,//}
=,6= expressions ϕ

and ψ such that ϕ 6⊆ ψ over trees with a required attribute a iff there exists a tiling for Til.
To this purpose, we use a string representation of a tiling. Each row of the considered
tiling is represented by the tiles it consists of. If the tiling of a corridor of width n has k
rows, it is represented by its rows separated by the special symbol]. Thus, a tiling is a
word of the form u1]u2] · · ·]uk$, where each ui is the word of length n corresponding
to the i-th row in the tiling, and $ denotes the end of tiling. Note u1 = b̄ and uk = t̄.

For the sake of readability, for expression r, we use the abbreviation ri to denote the
path formula ?r; ↓; ?r; . . . ; ↓; ?r with i occurrences of r.

We then define the formulas over attributes {a} and attribute domain containing D ∪
{]}.

Define ϕ′ as

〈?(@a = b1); ↓;?(@a = b2); . . . ;

↓; ?(@a = bn); ↓; ?(@a =]); ↓+ ; ?(@a = t1), ↓; . . . ↓; ?(@a = tn); ↓〉$.

Intuitively, this expression enforces a tiling to start with a path starting with b̄ and fin-
ishing with t̄. Now the formula ψ′ defines all incorrect tilings and additional constraints.
It is the disjunction of the following XP

{[],∗,//}
=,6= formulas.

(1) Incorrect length of a row.

(1a)
∨n−1
i=0 〈↓+ ; ?(@a =]); ↓;>i; ↓〉(@a =]), a row is too short,

(1b) 〈↓+ ; (@a 6=])n+1〉>, a row is too long.

(2) 〈↓+; ?(@a 6= d1 ∧ . . .∧@a 6= dm ∧@a 6=]); ↓+〉$, neither the delimiter or a tile
on a position,

(3) Horizontal or vertical constraints are violated.

(3a)
∨

(d1,d2) 6∈H〈↓+; ?(@a = d1); ↓; ?(@a = d2)〉>, a horizontal constraint is
violated,

(3b)
∨

(d1,d2) 6∈V 〈↓+; ?(@a = d1); ↓; >n; ↓; ?(@a = d2)〉>, a vertical constraint
is violated.

48

3.3. Containment of PosXPath@ and CQ@

We show that there exists a tree with a required attribute a such that T |= ϕ′ and
T 6|= ψ′ iff there exists a tiling for Til.

(⇐). Assume that there exists a tiling of the corridor. Let s be the string represen-
tation of it. Then, s = u1]u2] . . .]uk$, where |ui| = n, ui ∈ Dn, u1 = b̄ and uk = t̄.
Moreover, on the one hand if x · y, is an infix of some ui, then (x, y) ∈ H , and on the
other hand for every infix x · u′ · y of length n+ 1 of ui] · ui+1, it holds that (x, y) ∈ V .
Let Ts be the corresponding tree, i.e., a single path of |s| nodes {v1, . . . , v|s|} where the
label of each node vi, i < |s| is z, the label of v|s| is $ and attribute function is defined
according to s, i.e., att(vi, a) = si. Clearly, Ts is a model of ϕ′ and not of ψ′.

(⇒). Let T be a tree such that T, r |= ϕ′, T, r 6|= ψ′ and att(n, a) is defined for
every n ∈ Nodes(T). Since T, r |= ϕ′, there must exist a path r = v1, . . . , vm in T
such that att(vi, a) = bi, 1 ≤ i ≤ n and att(vm−n+i, a) = tj , 1 ≤ j ≤ n. Moreover,
either] or a symbol from D is in the attribute of every node vi, 1 ≤ i < m, according to
(2).

We define a tiling function g : {0, . . . , n − 1} × N → D assigning a tile to every
position in the corridor as follows: g(i, j) = att(v(n+1)×j+i+1, a), 1 ≤ i ≤ n, where
l is the labeling function of T . Indeed, this function is well defined, as (1) ensures the
correct counting.

By formulas (3a) and (3b) the tiling defined by g satisfies the horizontal and vertical
constraints.

We then apply Proposition 3.3.3 to remove the outermost disjunction in ψ′ to obtain
the equivalent containment problem ϕ ⊆ ψ in XP

{[],∗,//}
=,6= .

Theorem 3.3.3 provides a lower bound for the containment problem for PosXPath@,¬s

and UCQ@,¬s over trees with required attributes. Only for tree patterns we know that
the problem is PSPACE-complete. Using the same reduction as in the proof of the up-
per bound in Theorem 3.3.3, and the results on containment for XPath (Marx, 2005)
and XPath with path intersection (ten Cate and Lutz, 2009), we obtain EXPTIME and
2EXPTIME upper bounds for containment for PosXPath@,¬s and UCQ@,¬s over trees
with required attributes, respectively.

However, if we restrict attributes to be required at nodes labeled with a certain sym-
bol, then the containment is still in CONP and ΠP

2 . Let p ∈ Σ be a label and a ∈ A
an attribute name. We say that a is required at label element p if att(n, a) is defined
whenever p ∈ ρ(n) for every tree T and node n ∈ Nodes(T).

Proposition 3.3.5. The containment problem for PosXPath@,¬s and UCQ@,¬s with re-
quired attributes at certain labeled nodes is in CONP and ΠP

2 respectively.

Proof. As before, we can prove a variant of Lemma 3.3.3. Let c be a constant name.
Whenever attribute a is required at nodes labelled by p we add the axiom 〈↓∗〉(p ∧
¬p@a=c ∧ ¬p@a 6=c) to the set Ax. Note that the negation is safe. This axiom is ob-
viously sound, and it enforces that whenever p holds, at least one p@aopc label holds as
well. This ensures that in the construction of the tree with attribues a is defined at each p
node.

49

3. Containment for Queries over Trees with Attribute Value Comparisons

3.3.5 Tractable cases

In this section we consider fragments of PosXPath@ where the containment problem
remains in PTIME. It is known that containment in XP{[],//} and XP{[],∗} is decidable
in PTIME (Amer-Yahia et al., 2002; Miklau and Suciu, 2004).

Proposition 3.3.6. Let XPX be any fragment whose containment problem over multiple-
labeled trees is in PTIME. Then the containment problem in XP@,X

= over multi-labeled
trees with attributes is also in PTIME.

Proof. Let ϕ and ψ be formulas in XP@,X
= .

Our algorithm first checks (in PTIME) if ϕ is consistent, i.e., if it contains both @a =
c and @a = d in the label of a node in ϕ for some a ∈ A, c, d ∈ D. If ϕ is inconsistent,
we output ϕ ⊆ ψ. Otherwise, we proceed as in the proof of Lemma 3.3.3 by reduction to
a containment of attribute-free formulas using the translation (̃·) and the formula (Label)
only.

3.4 Conclusion

We have considered the containment problem for positive XPath and conjunctive queries
over trees expanded with attribute value comparisons. We have shown that in general
attribute value comparisons do not increase the complexity of containment. The main
idea behind the upper bound was to extend the small counterexample technique to posi-
tive XPath and conjunctive queries expanded with a restricted form of negation. Then by
axiomatizing the needed constraints in the corresponding expanded fragment, we could
abstract away the attribute value comparisons.

The complexity, however, does increase from PTIME to CONP for the fragment
XP{//,[]} of XPath that uses child, descendant and filter expressions when we add equal-
ity and inequality comparisons. Another parameter that affects the complexity is option-
ality of attributes. If we restrict our trees to have at least one required attribute in every
node, then the complexity rises to PSPACE. If, however, attributes are required at ele-
ments with specific labels only, the complexity of containment remains the same: CONP
for positive XPath and ΠP

2 for conjunctive queries.
We end by listing some open problems. Proposition 3.3.6 shows that adding equality

comparison only does not affect the PTIME complexity of containment for fragments
XP{//,[]} and XP{[],∗} . We do not know what happens when only inequality compari-
son is added.

For conjunctive queries over trees, it is known that the fragments CQ(Child) and
CQ(NextSibling) have PTIME containment. It is open whether the complexity in-
creases if we add attribute value comparisons.

In this chapter we have introduced safe label negation and showed that if we add this
construct to CQ or PosXPath, complexity of containment remains the same. In Chap-
ter 5 we show that when label negation is unrestricted, containment becomes PSPACE-
complete already for tree patterns. In Chapter 4 we show that containment for child-only
tree patterns with label negation is solvable in PTIME.

50

4
Containment for Acyclic CQs with

Atomic Negation and Arithmetic
Comparisons

In the previous chapter (Chapter 3) we have considered containment for conjunctive
queries that are expanded with (safe) negation and attribute value comparisons and that
are interpreted over trees. In this chapter we consider conjunctive queries (CQ) expanded
with atomic negation or arithmetic comparisons and that are interpreted over relational in-
stances. It is known that the containment problem for this language is ΠP

2 -complete (Ull-
man, 2000; Wei and Lausen, 2003). The aim of this chapter is to find restrictions on
CQ that allow for tractable containment. In particular, we consider acyclic conjunctive
queries and we seek an answer for RQ 2. We show that even with the most restrictive
form of acyclicity (Berge-acyclicity), containment is CONP-hard. But for a particular
fragment of Berge-acyclic CQ with atomic negation or arithmetic comparisons—child-
only tree patterns—containment is solvable in PTIME.

4.1 Introduction

We revisit the containment problem for conjunctive queries, one of the classic fundamen-
tal problems in database theory. As explained in Chpater 2, conjunctive queries (CQ)
correspond to select-from-where SQL queries, a class of most frequent queries used in
practice. The containment problem is to decide, given two conjunctive queries Q1 and
Q2, whether the answers of Q1 are contained in the answers of Q2 over every database.
A well-known result of Chandra and Merlin (1977a) is NP-completeness of the contain-
ment problem for CQ. Because of the topic’s relevance to practice, there have been a
number of papers dedicated to finding syntactic restrictions of conjunctive queries allow-
ing polynomial-time algorithms for containment. Acyclic conjunctive queries have been
studied as one of the restrictions (Gottlob et al., 2001; Yannakakis, 1981).

Conjunctive queries expanded with atomic negation or arithmetic comparisons are
used in practice as well. The containment problem is harder for these classes than for
CQ – ΠP

2 -complete (Klug, 1988; Ullman, 2000; van der Meyden, 1997). There has been
little work on finding fragments of CQ with negation or comparisons that have tractable
query containment. Even the restriction of acyclicity for CQ has not been considered in

51

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

presence of atomic negation or arithmetic comparisons. Indeed, it is a restriction of CQ
allowing polynomial-time containment and, furthermore, the known ΠP

2 -lower bounds
(both in presence of atomic negation and comparisons) involve cyclic queries.

We show that in some cases the acyclicity condition does reduce the complexity of
containment. We show a CONP upper bound for acyclic conjunctive queries with negated
atoms of bounded arity, and where, furthermore, the negation is guarded. We call this
fragment ACQ(¬g). Atomic negation in a conjunctive queryQ is guarded if the variables
of each negated atom occur in a positive atom of Q (Bárány et al., 2011). Moreover, we
show that containment for acyclic conjunctive queries with arithmetic comparisons of
the form xop c, where x is a variable, c a constant and op a comparison operator from
{=, 6=, <,>,≤,≥}, is also solvable in CONP. We obtain several CONP-hardness results
for containment of acyclic queries with atomic negation or comparisons. These lower
bounds indicate that the usual notions of acyclicity are not enough to obtain tractability,
even with guarded negation and the most restrictive form of acyclicity – Berge acyclic-
ity (Fagin, 1983). On the positive side we show that containment for a particular fragment
of Berge-acyclic conjunctive queries with guarded negation, namely child-only tree pat-
terns, is decidable in PTIME. We extend this PTIME result to the case with arithmetic
comparisons. The PTIME results are based on a characterization of containment in terms
of the existence of a homomorphism. The latter can be checked by reducing to known
efficient algorithms for positive acyclic queries (Gottlob et al., 2001).

The contributions of this chapter are summarized in Table 4.1. In particular,

• We identify a fragment of CQ with atomic negation for which containment is
CONP-complete: acyclic conjunctive queries with guarded negation with bounded
arity of negated atoms. We derive the same bound for acyclic CQ with arithmetic
comparisons.

• Consider the following three conditions on a conjunctive query Q with guarded
atomic negation (resp. with arithmetic comparisons). Let root be a fixed constant.

(i) Q contains an atom with root as an argument,

(ii) Q is connected,

(iii) Q is Berge-acyclic.

We call queries satisfying conditions (i)–(iii) pointed Berge-acyclic with guarded
atomic negation (with arithmetic comparisons). We show that for a class of con-
junctive queries with guarded atomic negation or comparisons (containing a binary
relational name) satisfying at most two of the conditions (i)–(iii), containment is
CONP-hard.

• We show that containment for a particular fragment of pointed Berge acyclic con-
junctive queries with guarded atomic negation is in PTIME using the homomor-
phism characterisation of containment. It is the class of conjunctive queries with
guarded atomic negation that express rooted child-only tree patterns with label
negation, or more precisely, queries Q that are built over unary and binary re-
lational names, contain a constant root such that it can only appear in the first

52

4.2. Preliminaries

Class Complexity
CQ with atomic ¬ ΠP

2 -c (Ullman, 2000),
(Wei and Lausen, 2003)

CQ with comparisons ΠP
2 -c (Klug, 1988),

(van der Meyden, 1997)
ACQ(¬g) , ACQ with comparisons CONP-c (Thm. 4.3.2, Thm. 4.3.3)
pointed Berge-ACQs with ¬g or comparisons in CONP
child-only Tree patterns with ¬g PTIME (Cor. 4.4.1)
desc.-only Tree patterns with ¬g PTIME (Cor. 4.4.2)
child-only Tree patterns with comparisons PTIME (Cor. 4.4.2)
desc.-only Tree patterns with comparisons PTIME (Cor. 4.4.2)

Table 4.1: Known results and the results of this chapter. Here ¬g denotes guarded atomic
negation.

position of an atom in Q, and are Berge-acyclic and satisfiy the following prop-
erty: if E1(x1, y) ∧ E2(x2, y) ∈ Q, then E1 = E2 and x1 = x2. We use the
same technique to show that containment for descendant-only tree patterns, which
are defined exactly like child-only tree patterns with the exception that each binary
relation E is interpreted as the transitive closure of E in the model, is in PTIME as
well.

Organization

In Section 4.2 we introduce the needed concepts and notation. In Section 4.3 we show
CONP completeness for containment of acyclic conjunctive queries with guarded negated
atoms of bounded arity, or comparisons. In Section 4.4 we provide PTIME results for tree
patterns with label negation or arithmetic comparisons. We end with conclusions, open
problems and future work.

4.2 Preliminaries

A relational schema S is a set of relational names with associated arities. We assume
countably infinite disjoint sets of variables and constants Var and Const. A term is
an element from Var ∪ Const. We also assume a dense linear order < on Const.
For tuples of terms x̄ and ȳ, by x̄ ⊆ ȳ we denote the fact that every element of x̄ is an
element of ȳ. An instance I over S is a set of facts of the form R(a1, . . . , an), where
R ∈ S is a relational name of arity n and each ai ∈ Const. By dom(I) we denote
the domain of I , i.e. all the constants appearing in I . A positive atom (or just an atom)
and a negative atom are expressions of the form R(x1, . . . , xn) and ¬R(x1, . . . , xn),
respectively, where R ∈ S is a relational name of arity n and each xi is a term.

A k-ary conjunctive query (k ≥ 0) over S is an expressionQ(x̄) = ∃ȳ.ϕ(x̄, ȳ), where
x̄ is a k-tuple of variables andϕ(x̄, ȳ) is a conjunction of positive atoms over S containing
all the terms in x̄, ȳ. A 0-ary query is called Boolean. We say thatQ(x̄) = ∃ȳ.ϕ(x̄, ȳ) is a

53

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

conjunctive query with atomic negation if ϕ(x̄, ȳ) is a conjunction of positive or negative
atoms. We say that an atom R(x̄) is negated inQ if ¬R(x̄) is a conjunct ofQ. Negation
is guarded in Q if for every negative atom ¬R(x̄) in Q there is a positive atom P (ȳ) in
Q such that x̄′ ⊆ ȳ, where x̄′ are the variables in x̄. In this case, we call P (ȳ) a guard
of ¬R(x̄) in Q, and ¬R(x̄) a guarded negated atom in Q. Query Q is inconsistent if an
atom and its negation appear in Q at the same time. Otherwise, it is consistent.

We say that Q(x̄) = ∃ȳϕ(x̄, ȳ) is a conjunctive query with arithmetic comparisons
if ϕ(x̄, ȳ) is a conjunction of atoms and expressions of the form xop c, where op ∈ {=
, 6=, <,>,≤,≥}, x ∈ Var is a variable from x̄, ȳ, and c ∈ Const. Note that we do
not allow comparisons of the form xop y, where x and y are variables. We say that Q is
consistent if the comparisons of Q are consistent.

For a positive or a negative atom P and conjunctive query Q, P ∈ Q denotes the
fact that P is a conjunct of Q. We denote by V ar(Q), Const(Q) and Term(Q) the
sets of variables, constants and terms occurring in Q. We say that Q is connected if for
every pair t and t′ of terms in Q, there is a sequence of atoms P1, . . . , Pn in Q such
that t ∈ Term(P1), t′ ∈ Term(Pn) and Term(Pi) ∩ Term(Pi+1) 6= ∅, for every
i, 1 ≤ i < n.

The answer of a k-ary conjunctive query with atomic negation Q(x̄) on an instance
I is a k-ary relation Ans(Q, I) ⊆ Constk that consists of all tuples θ(x̄) such that θ :
V ar(Q)→ dom(I) is a substitution such that for every positive atomR(ū) ∈ Q it holds
that R(θ(ū)) ∈ I , and for every negative atom ¬P (v̄) ∈ Q it holds that P (θ(v̄)) 6∈ I
(here we assume that θ is identity on Const.). A Boolean conjunctive queryQ evaluates
to true in I (denoted as I |= Q) if the empty tuple is the answer of the query on I , and
false otherwise. If I |= Q, we refer to θ that witnesses that fact as a satisfying assignment
for Q in I . The semantics for conjunctive queries with comparisons is defined similarly.
Now instead of preserving negation, a substitution θ must preserve the comparisons.

Let Q1 and Q2 be conjunctive queries of the same arity (with atomic negation or
comparisons). We say that Q1 is contained in Q2, denoted as Q1 ⊆ Q2, if for every
instance I it holds Ans(Q1, I) ⊆ Ans(Q2, I). In case Q1 and Q2 are Boolean, Q1 is
contained in Q2 if I |= Q1 implies I |= Q2, for every instance I .

Let C be a class of conjunctive queries. The containment problem for C is the follow-
ing decision problem:

• Given: Q1 and Q2 from C,

• Decide: Q1 ⊆ Q2?

We follow Gottlob et al. (2001) in the definition of acyclic conjunctive queries.
Acyclicity is defined using the notion of a hypergraph. A hypergraph is a pair H =
(V,E), where V is a set of vertices and E ⊆ 2V a set of hyperedges. Given a hypergraph
H = (V,E), the GYO-reduct, denoted as GYO(H), is the hypergraph obtained from H
by repeatedly applying the following rules in exhaustive manner:

• Remove hyperedges that are empty or contained in other hyperedges,

• Remove vertices that appear in at most one hyperedge.

A hypergraph H is (α-)acyclic if GYO(H) is the empty hypergraph. The hypergraph
H(Q) = (V,E) of a conjunctive query Q is defined as follows. The set of vertices

54

4.2. Preliminaries

V = V ar(Q), and for each atom R(x̄) in Q, the set E contains a hyperedge consisting
of all variables occurring in x̄. If H(Q) is acyclic, then Q is an acyclic conjunctive
query. By ACQ(¬g) we denote the class of acyclic conjunctive queries with guarded
atomic negation, that is, the class of conjunctive queries with guarded atomic negation
whose positive part (the conjunctive query obtained by removing all negative atoms) is
acyclic. Acyclic conjunctive queries with arithmetic comparisons is a class of conjunctive
queries whose “relational part” (that is, the query obtained by removing the comparisons
in the original query) is acyclic. Here we assume that if the comparisons of a query entail
that x = y, then every occurrence of y in the query is replaced by x.

There is a number of notions of acyclicity for hypergraphs (Fagin, 1983). α-acyclicity
is the least restrictive among those. The most restrictive one is Berge-acyclicity (Berge,
1985) defined next.

Definition 4.2.1 (Berge cycle). LetH be a hypergraph. A Berge cycle inH is a sequence
(S1, x1, S2, x2, . . . , Sm, xm, Sm+1) such that

(i) x1, . . . , xm are distinct vertices in H ,

(ii) S1, . . . , Sm are distinct hyperedges in H , and Sm+1 = S1,

(iii) m ≥ 2, that is, there are at least 2 hyperedges involved, and

(iv) xi is in Si and Si+1, 1 ≤ i ≤ m.

We say that H is Berge-cyclic if it has a Berge cycle, otherwise it is Berge-acyclic.
We say that a conjunctive query Q is Berge-cyclic (Berge-acyclic) if its hypergraph
is Berge-cyclic (respectively Berge-acyclic). Similarly to α-acyclicity, we can define
Berge-acyclic conjunctive queries with guarded atomic negation or arithmetic compar-
isons. Note that if a hypergraph contains two hyperedges that share two or more vertices
then the hypergraph is Berge-cyclic. By Berge tree queries we mean the class of con-
junctive queries Q with unary guarded negation (that is, negation occurs only in front of
a unary atom) or arithmetic comparisons such that

• Q uses only unary and binary relational names,

• Q contains no self-loops, i.e., atoms of the form E(x, x),

• Q contains a constant root which may appear only in the first position of atoms
in Q, and Q contains no other constant,

• Q is Berge-acyclic,

• Q is connected,

• If E1(x1, y) ∧ E2(x2, y) ∈ Q, then E1 = E2 and x1 = x2. In other words, the
(hyper)graph of Q is a tree.

It is easy to see that this class of queries defined over a schema with a single binary rela-
tion and (possibly many) unary relations, is precisely the class of child-only tree patterns
(with negated labels or comparisons) used in an XML context (Miklau and Suciu, 2004).

55

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

We give the definition of Tree Patterns that can contain labeled child and descendent
edges, and that capture Berge tree queries.

Let Σ and Σe be disjoint sets of node and edge labels. A tree pattern with label
negation is a tree (N,E,E//, r, le, l

+, l−), whereN is the set of nodes,E∪E// ⊆ N2 is
the edge relation consisting of disjoint child and descendant relations respectively, r ∈ N
the root node, le : E ∪ E// → Σe the edge labeling function and l+, l− : N → 2Σ are
positive and negative node labeling functions. For a tree pattern P , by Nodes(P) we
denote the set of nodes of P . Let additionally A be a set of attribute names. By ΣA we
denote the set {@aop c | a ∈ A, op ∈ {=, 6=, <,>,≤,≥}, c ∈ Const}. A tree pattern
with attribute comparisons is a tree (N,E,E//, r, le, l), such that N , E,E//, r, le are as
above, and l : N → 2Σ∪ΣA is a node labelling function.

We define what it means that a tree pattern is true in a graph as follows. Let G =
(dom(G), E′, ρe, ρn, r′) be a graph, where dom(G) is the set of nodes, E′ ⊆ dom(G)2

the edge relation, ρe : E′ → 2Σe and ρn : dom(G)→ 2Σ are the edge and node labelling
functions, and r′ ∈ dom(G) is a fixed designated node. We say that a tree pattern with
label negation P is true in G, or G satisfies P , denoted as G |= P , if there is a function
e : N → dom(G), called embedding of P in G, such that all of the following hold:

(1) If (x, y) ∈ E and le(〈x, y〉) = α, then (e(x), e(y)) ∈ E′ andα ∈ ρe(〈e(x), e(y)〉);

(2) If (x, y) ∈ E// and le(〈x, y〉) = α, then there exist nodes n1, . . . , nk in dom(G)
such that n1 = e(x), nk = e(y), (ni, ni+1) ∈ E′ and α ∈ ρe(〈ni, ni+1〉), for
every i, 1 ≤ i ≤ k − 1;

(3) For every x ∈ N , l+(x) ⊆ ρn(e(x));

(4) For every x ∈ N , l−(x) ∩ ρn(e(x)) = ∅.
We say that G strongly satisfies P , denoted as G |=s P , if there is an embedding e of P
in G such that it additionally satisfies the following condition:

(0) e(r) = r′.

The semantics of tree patterns with attribute comparisons is defined over graphs that are
additionally equipped with a partial function att : dom(G) × A → Const. The defi-
nition of G |= P and G |=s P , where P is a tree pattern with attribute comparisons, is
defined similarly to the above definition, where (3) and (4) are replaced with the follow-
ing conditions:

(3’) For every x ∈ N , l(x) ∩ Σ ⊆ ρn(e(x));

(4’) For every x ∈ N , if @aop c ∈ l(x), then att(e(x), a)op c.

We say that a tree pattern P = (N,E,E//, r, le, l
+, l−) is consistent if for every x ∈ N it

holds l+(x)∩l−(x) = ∅. Similarly, a tree pattern with attribute comparisons is consistent
if the comparisons of every attribute in every node are consistent. Note that a tree pattern
P is consistent if and only if there is a structure G such that G |= P . Furthermore,
consistency of a tree pattern can be checked in PTIME.

For tree patterns with label negation or comparisons P and Q, we say that P is
contained in Q (resp. strongly contained), denoted as P ⊆ Q (P ⊆s Q), if for every G
it holds that G |= P (G |=s P) implies G |= Q (G |=s Q).

56

4.3. Containment for ACQ with guarded atomic negation or comparisons

We say that a tree pattern is child-only if the set E// is empty, and descendant-only
if E is empty. In these cases we omit the relations E// and E respectively. It is easy
to see that every child-only tree pattern with label negation is equivalent (in a strong
sense) to a Berge tree query and vice versa. Likewise, every child-only tree pattern
with comparisons (with one attribute name) is equivalent to a Berge tree query with
comparisons, and vice versa. We omit details of the translations. Thus, child-only tree
patterns can be seen as particular fragments of acyclic conjunctive queries. We show in
Section 4.4 that containment for this fragment is in PTIME.

4.3 Containment for acyclic conjunctive queries with
guarded atomic negation or comparisons

We first state the known result on the containment for CQ with atomic negation or com-
parisons.

Theorem 4.3.1 (Klug (1988); Nutt (2013); van der Meyden (1997)). The containment
problem for conjunctive queries with atomic negation or arithmetic comparisons is ΠP

2 -
complete.

As noted in the introduction of this chapter, the known proofs for the ΠP
2 lower bound

involve conjunctive queries that are cyclic.
In this section we show that containment for acyclic conjunctive queries with guarded

negated atoms of bounded arity or comparisons is CONP-complete. We also provide sev-
eral CONP lower bounds that help to identify the sources of intractability. W.l.o.g. we
can consider containment for acyclic Boolean conjunctive queries. Indeed, the contain-
ment problem for non-Boolean CQ can be reduced in PTIME to containment of Boolean
CQ while preserving the acyclicity restriction.

Proposition 4.3.1. Let P and Q be acyclic conjunctive queries with guarded atomic
negation (with comparisons). Then there exist PTIME computable acyclic Boolean con-
junctive queries with guarded atomic negation (with comparisons) P ′ and Q′ such that

P ⊆ Q iff P ′ ⊆ Q′.

This also holds for Berge-acyclic queries.

Proof. Let P(x̄) and Q(ȳ) be acyclic conjunctive queries with guarded atomic negation
(comparisons). We check ifP andQ are inconsistent which can be done in PTIME (van der
Meyden, 1997; Wei and Lausen, 2003). If P is inconsistent, let P ′ = Q′ = ∃x.P (x).
If Q is inconsistent or the length of x̄ and the length ȳ are different, let P ′ = ∃x.P1(x)
and Q′ = ∃x.P2(x). In case P and Q are consistent, let x̄ = (x1, . . . , xn) and ȳ =
(y1, . . . , yn), and P1, . . . , Pn be unary relational names that do not appear in P or Q.
Then we define P ′ = ∃x̄.P1(x1) ∧ . . . ∧ Pn(xn) ∧ P(x̄) and Q′ = ∃ȳ.P1(y1) ∧ . . . ∧
Pn(yn) ∧ Q(ȳ). Clearly, P ′ and Q′ are PTIME computable. Moreover, if P and Q are
p-acyclic (p ∈ {α,Berge}), then P ′ and Q′ are p-acyclic as well. It is easy to show that
P ⊆ Q iff P ′ ⊆ Q′.

57

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

Thus, in the rest of the chapter we only consider containment for Boolean acyclic CQ
with guarded atomic negation or comparisons.

Now we show that restricting conjunctive queries with atomic negation to be acyclic
and with guarded negated atoms of bounded arity makes the containment problem CONP-
complete.

Theorem 4.3.2. The containment problem for acyclic conjunctive queries with guarded
negated atoms of bounded arity (or with arithmetic comparisons), is in CONP.

Proof. Let P and Q be input queries. A CONP algorithm then works as follows. We
first guess a potential counterexample I , and, second, check whether I |= P and I 6|= Q.
Lemma 4.3.1 below guarantees that it is enough to guess a counterexample with size
polynomial in the sizes of P andQ. By Lemma 4.3.2 below, the second step can be done
in PTIME. The guardness condition is not used in the proof of Lemma 4.3.1, but it is
crucial in the proof of Lemma 4.3.2.

Lemma 4.3.1. Let Q1 and Q2 be Boolean ACQ(¬g) queries such that the arity of neg-
ative atoms is bounded by a fixed constant k (resp. with arithmetic comparisons). If
Q1 6⊆ Q2, then there is an instance I such that I |= Q1, I 6|= Q2, and the size of I is
polynomial in the sizes of Q1, Q2.

Proof. We first consider the case of ACQ(¬g). By assumption, for every negative atom
¬R in Q2, the arity of R is bounded by a constant k. Let I ′ be a counterexample for
Q1 ⊆ Q2. Since I ′ |= Q1, there is a satisfying assignment θ : V ar(Q1) → dom(I ′).
By θ(V ar(Q1)) we denote the range of θ. Furthermore, by θ(Q1) we denote the image
of positive atoms in Q1 wrt θ, i.e., the set {R(θ(x̄)) | R(x̄) ∈ Q1}. We then define the
instance I as the set

θ(Q1) ∪ {P (ā) ∈ I ′ | P occurs negatively in Q2,

ā ⊆ θ(V ar(Q1)) ∪ Const(Q1) ∪ Const(Q2)}.

Note that I is a subinstance of I ′ and its size is bounded by |Q1|+ |Q2| · (|Q1|+ |Q2|)k.
Firstly, θ is a satisfying assignment for Q1 in I , and thus I |= Q1. Indeed, the positive
atoms are preserved since θ(Q1) ⊆ I . Furthermore, no negative atom in Q1 becomes
true under θ since I is a subinstance of I ′ and θ is a satisfying assignment for Q1 in I ′.
Secondly, we show I 6|= Q2. Suppose the opposite. This means there is a satysfying
assignment h : V ar(Q2)→ dom(I). We show that h is also a satisfying assignment for
Q2 in I ′, which contradicts the assumption.

• Let R(x̄) ∈ Q2. Then R(h(x̄)) ∈ I ⊆ I ′.
• Let ¬R(x̄) ∈ Q2. Then R(h(x̄)) 6∈ I . Note that h(x̄) ⊆ θ(V ar(Q1)) ∪
Const(Q1) ∪ Const(Q2). Thus, because of that and the fact that R occurs nega-
tively in Q2, it follows that R(ā) 6∈ I ′ by the definition of I .

We now prove the lemma for the case of arithmetic comparisons. Let θ be a satisfying
assignment for Q1 in I ′. We take I as θ(Q1) = {R(θ(x̄)) | R(x̄) ∈ Q1}. The size of I
is obviously polynomial. I |= Q1 holds because θ is a satisfying assignment forQ1 in I .
Furthermore, I 6|= Q2 holds since any satisfying assignment for Q2 in I is a satisfying
assignment for Q2 in I ′.

58

4.3. Containment for ACQ with guarded atomic negation or comparisons

The evaluation problem for a class of Boolean queries C is the following decision
problem. Given an instance I , a Boolean query Q ∈ C, decide whether Q evaluates to
true in I , i.e., I |= Q.

Lemma 4.3.2. The evaluation problem is in PTIME for each of the following classes of
Boolean queries:

(i) Boolean acyclic conjunctive queries with guarded negated atoms of bounded arity,
and

(ii) Boolean acyclic conjunctive queries with arithmetic comparisons.

Proof. We prove item (i). Let I be an instance and Q a Boolean acyclic query with
guarded atomic negation such that each negated atom is bounded by a constant k. We
make a polynomial reduction to the evaluation problem for (positive) acyclic Boolean
conjunctive queries which is known to be in PTIME (Gottlob et al., 2001; Yannakakis,
1981).

For every relational name R that occurs negatively in Q, we introduce a new rela-
tional name R̃ of the same arity as R. By Q̃ we denote the result of replacement of each
negated atom ¬R(x̄) in Q by R̃(x̄). Note that Q̃ now is an ordinary CQ. Moreover, Q̃
is acyclic because (1) Q is acyclic and (2) every hyperedge in H(Q̃) corresponding to
an atom R̃(x̄) is contained in a hyperedge corresponding to an (positive) atom P (ȳ) that
appears in Q and Q̃. We then define the instance

Ĩ = I ∪ {R̃(ā) | ā ⊆ dom(I),¬R(x̄) ∈ Q, and R(ā) 6∈ I}.

Note that the size of Ĩ is bounded by |I| + |Q| · |dom(I)|k which is polynomial in the
sizes of I and Q. We claim that I |= Q if and only if Ĩ |= Q̃.

(⇒). Suppose I |= Q, i.e., there is a satisfying variable assignment θ : V ar(Q) →
dom(I). Note that V ar(Q) = V ar(Q̃) and dom(I) = dom(Ĩ). We show that θ is a
satisfying assignment for Q̃ in Ĩ . The positive atoms fromQ are still preserved since we
did not remove any facts from I . Let R̃(x̄) ∈ Q̃. This means that ¬R(x̄) ∈ Q. Hence,
R(θ(x̄)) 6∈ I . Since also θ(x̄) ⊆ dom(I), we have that R(θ(x̄)) ∈ Ĩ , as needed.

(⇐). Suppose Ĩ |= Q̃, i.e., there is a satisfying assignment θ : V ar(Q̃) → dom(Ĩ).
We show that θ is a satisfying assignment for Q in I . Positive atoms in Q are pre-
served since they are positive atoms in Q̃ as well and θ preserves them in Ĩ and thus in
I . Let ¬R(x̄) ∈ Q. This means that R̃(x̄) ∈ Q̃. Hence R̃(θ(x̄)) ∈ Ĩ and, in partic-
ular, R̃(θ(x̄)) ∈ {R̃(ā) | ā ⊆ dom(I),¬R(x̄) ∈ Q, and R(ā) 6∈ I}. It follows that
R(θ(x̄)) 6∈ I .

Item (ii) is shown similarly. Now each arithmetic comparison xop c that occurs in Q
is replaced with a new unary atom Pop c(x). Let Q̃ be the result of this replacement. Let
Σc be the constants occurring in the comparisons of Q. Note that |Σc| ≤ |Q|. We define
the instance

Ĩ = I ∪ {Pop c(a) | a ∈ dom(I), op ∈ {=, 6=, <,>,≤,≥} and aop c}.

Note that the size of Ĩ is bounded by |I|+ 6 · |Q| · |dom(I)|, which is polynomial in the
sizes of I and Q. It is straightforward to show that I |= Q if and only if Ĩ |= Q̃.

59

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

x1

. . .

Sb

xk�1

Sb
xk

xk+1

Sb

yk

P

b

. . .

x2k

Sb

k �
1

variables

k �
1

variables

a

a

a

a

a

x0
1 a

x0
2

ay0
1 b

. . .
x0

k a
k

variables
Q1

y0
2 b

Q2

y0
k b

Qk

4.1(a) Query P ′. 4.1(b) Query Q′.

Figure 4.1: Queries P ′ and Q′ from Lemma 5.4.2.

We show that the corresponding CONP lower bound for containment already holds
for child-only tree patterns with negated labels (or comparisons). For this, we first show
that we can allow disjunction on the right hand side query of the containment problem.

We extend the definition of containment for unions of tree patterns with label nega-
tion, i.e., expressions of the form

∨k
i=1Qi where each Qi is a tree pattern with label

negation. Let P be a tree pattern and Q =
∨k
i=1Qi a union of tree patterns with label

negation. We say that P is contained (resp. strongly contained) in Q if for every G it
holds that G |= P (G |=s P) implies that there is a j ∈ {1, . . . , k} such that G |= Qj
(G |=s Qj).

Lemma 4.3.3. Let P be a child-only tree pattern with label negation (resp. attribute
comparisons) and Q =

∨k
i=1Qi a union of child-only tree patterns with label negation

(attribute comparisons). There exist PTIME computable child-only tree patterns with
label negation (attribute comparisons) P ′ and Q′ such that

P ⊆s Q if and only if P ′ ⊆ Q′.

Proof. The proof is similar to the one of Lemma 3 in (Miklau and Suciu, 2004). Let
a, b be node labels not occurring in P or Q. Let Sb be the child-only tree patterns
corresponding to (written as conjunctive queries) b(x) ∧ ∧ki=1(e(x, yi) ∧ Qi), where
yi is the root of Qi, x is not among the variables of every Qi and e is the child relation.
We define P ′ and Q′ as in Figure 4.1.

Clearly P ′ and Q′ are child-only tree patterns with label negation and PTIME com-
putable. We verify that P ⊆s Q if and only if P ′ ⊆ Q′.

(⇒). Assume P ⊆s Q. Let I be an instance (graph) such that I |= P ′. That means
there is an embedding θ : Nodes(P ′) → dom(I). Note that θ is also an embedding for
P in I as well, since P is a subquery of P ′. Thus, I |= Q, i.e., there exists an index

60

4.3. Containment for ACQ with guarded atomic negation or comparisons

a

a

k�
1

con
stants

...

a

. . .
I1 Ik

b

I

b

. . .
I1 Ik

b

a k�
1

con
stants

...

a

. . .
I1 Ik

b

. . .
I1 Ik

b

Figure 4.2: The instance I ′ from Lemma 5.4.2.

j, 1 ≤ j ≤ k, such that I |= Qj . The latter implies there is an embedding h′ of Qj in I .
Moreover, since the containment of P in Q is strong, we must have that h′ maps the root
of Qj to the θ-image of the root of P . Then we define a mapping θ′ : Nodes(Q′) → I
as the composition of h with θ, where h is a mapping from Nodes(Q′) to Nodes(P ′)
that extends h′ and is defined for the other nodes as follows. For every i, 1 ≤ i ≤ k, we
define h(x′i) := xk−j+i, h(y′i) = yk−j+i and the nodes of Qi (i 6= j) in Q′ are mapped
“canonically” to the corresponding nodes in Sb. It is easy to see that θ′ is indeed an
embedding of Q′ in I .

(⇐). Assume P ′ ⊆ Q′. Let I be an instance such that I |= P and h an embedding
of P in I . Let also Ii be the canonical tree (instance) of Qi (i.e., the instance containing
only the positive atoms of Qi and replacing each variable by a fresh constant). Then we
construct the instance I ′ depicted in Figure 4.2. Note that I is connected to the b-node
via the h-image of the root of P . By the assumption, it holds that I ′ |= Q′, i.e., there
is an embedding θ : Nodes(Q′) → dom(I ′). In particular, since a only appears in the
vertical span of 2k − 1 nodes in Figure 4.2, the span of k a-nodes of Q′ can only be
mapped on that vertical span in I ′. Because of this and the fact that a b-node in Q′ must
be mapped to a b-node in I ′, there must exist an index j for which θ is an embedding of
Qj in I . Moreover, this embedding maps the root of Qj to the h-image of the root of P .
Thus, I |=s Qj and, therefore, I |=s Q.

The case of tree patterns with comparisons is proved similarly.

Lemma 4.3.4. The containment problem ϕ ⊆s
∨m
i=1 ψi is CONP-hard for each of the

following cases:

(i) ϕ,ψi are propositional conjunctive formulas with guarded atomic negation,

61

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

(ii) ϕ,ψi are child-only tree patterns with attribute comparisons.

Proof. (i). We reduce 3SAT to the complement of the containment problem for the stated
fragment. Let ϕ′ be a conjunction of clauses Ci = (bi1 ∨ bi2 ∨ bi3), 1 ≤ i ≤ k, over the
variables {x1, . . . , xn}, where bij are literals, i.e., variables or their negations. For a
literal l, by ¬̇ l we denote ¬p if l = p and p if l = ¬p.

For every clause Ci we introduce a propositional variable ci. Then we define propo-
sitional conjunctive formulas with atomic negation ϕ and ψi over the propositional vari-
ables ci, 1 ≤ i ≤ k, and xj , 1 ≤ j ≤ n, as follows. We define ϕ = c1 ∧ . . . ∧ ck and
ψi = ci ∧ ¬̇bi1 ∧ ¬̇bi2 ∧ ¬̇bi3.

We claim that ϕ′ is satisfiable iff ϕ 6⊆s
∨k
i=1 ψi. This is easy to see using de Morgan’s

laws. In particular, ϕ 6⊆s
∨k
i=1 ψi iff ϕ ∧ ∧ki=1 ¬ψi is satisfiable iff c1 ∧ . . . ∧ ck ∧∧k

i=1(¬ci ∨ bi1 ∨ bi2 ∨ bi3) is satisfiable iff
∧k
i=1(bi1 ∨ bi2 ∨ bi3) is satisfiable, i.e., ϕ′ is

satisfiable.
Item (ii) is proved as follows. Let ϕ′ be as above. The tree pattern ϕ is defined

as ({r,m1, . . . ,mn}, {〈r,m1〉, . . . , 〈r,mn〉}, r, le, l), where for every i ∈ {1, . . . , n},
le(〈r,mi〉) = α, for some α, and l(mi) = {pi,@a 6= 2}. Each ψi is defined as
({ri, n1

i , n
2
i , n

3
i }, {〈ri, n1

i 〉, 〈ri, n2
i 〉, 〈ri, n3

i 〉}, ri, lie, li), where lie(〈ri, nji 〉) = α and
l(nji) = {pl, Bij}, where Bij is (@a = 0) iff bij = xl and Bij is (@a 6= 0) iff bij = ¬xl in
Ci. It is straightforward to show that ϕ′ is satisfiable iff ϕ 6⊆s

∨k
i=1 ψi.

Theorem 4.3.3. Containment is CONP-hard for each of the following classes of queries:

a) for connected Berge-acyclic conjunctive queries with guarded unary negated atoms
(or with comparisons),

b) for Berge-acyclic conjunctive queries with guarded unary negated atoms (with
comparisons) and with the requirement that they contain an atom with root as
an argument, for a fixed constant root.

c) and for connected α-acyclic conjunctive queries with guarded unary negation
(with comparisons) and with the requirement that they contain an atom with root

as an argument, for a fixed constant root.

Proof. Item a) follows from Lemmas 5.4.2 and 4.3.4, since tree patterns with negated
labels (resp. with comparisons) are connected Berge-acyclic conjunctive queries with
guarded unary negated atoms (with comparisons).

Item b) follows from a). Indeed, let P ⊆ Q be the encoding from a). Then for
P ′ = R(root) ∧ P and Q′ = R(root) ∧ Q, where root is a constant and R a unary
relational name, it holds P ⊆ Q if and only if P ′ ⊆ Q′.

For item c) we use the encoding from a). Let P ⊆ Q be the encoding from a). We
construct Boolean α-acyclic conjunctive queries P ′ andQ′ as follows. Let {x1, . . . , xn}
be the variables ofP , P a fresh (n+1)-ary relational name, root a constant,G a fresh bi-
nary relational name, and r the root (variable) of Q. Then P ′ = P (root, x1, . . . , xn) ∧
P ∧ ∧ni=1G(root, xi) and Q′ = G(root, r) ∧ Q. Note that both P ′ and Q′ are (α-
)acyclic queries with guarded negation. In particular, P ′ is acyclic because all its hyper-
edges are contained in the hyperedge P . We show that P ⊆ Q iff P ′ ⊆ Q′.

62

4.4. Polynomial-time algorithms for containment

(⇒). Let I be an instance such that I |= P ′. Thus there exists a satisfying variable
assignment θ : V ar(P ′) → dom(I). In particular, θ is satisfying for P in I . Let
I ′ = I � θ({x1, . . . , xn}). Since I ′ |= P , it holds that I ′ |= Q. Let θ′ be a satisfying
assignment for Q in I ′. Then r is mapped to one of θ(xj). Since root must be mapped
to root and G(root, θ(xi)) holds in I for every i, we have that θ′ ∪ {root→ root} is
a satisfying assignment for Q′ in I .

(⇐). Let I be an instance such that I |= P . Let θ be a satisfying assignment for P in
I . W.l.o.g. we can assume that I = I � θ(V ar(P)). We then construct the instance I ′ as

I ′ = I∪{P (root, θ(x1), . . . , θ(xn)),

G(root, θ(x1)), . . . , G(root, θ(xn)).

Clearly, θ ∪ {root → root} is a satisfying assignment for P ′ in I ′. Then it holds that
I ′ |= Q′. Let θ′ be a satisfying assignment for Q′ in I ′. In particular, V ar(Q) must be
mapped to θ({x1, . . . , xn}) since G is fresh and root is mapped to root. Thus, θ′ is a
satisfying assignment for Q in I . Thus I |= Q.

We say that a conjuntive query Q with guarded negation (resp. with arithmetic com-
parisons) is pointed Berge acyclic with guarded negation (resp. with arithmetic compar-
isons) if Q contains at least one binary atom and

(i) is connected,

(ii) contains an atom having root as an argument, where root is a fixed constant, and

(iii) is Berge-acyclic.

Theorem 4.3.3 shows that containment for the class of conjunctive queries with guarded
atomic negation or arithmetic comparisons (with at least one binary atom) that satisfies
at most two of the conditions (i)–(iii) is CONP-hard.

We leave it as an open question whether containment for pointed Berge acyclic
queries is in PTIME. However, we are able to obtain PTIME results for containment
of child-only tree patterns with label negation or comparisons, which is a fragment of
pointed Berge acyclic queries.

4.4 Polynomial-time algorithms for containment
In this section we consider a fragment of pointed Berge-acyclic conjunctive queries with
guarded negation – child-only tree patterns with label negation. The additional require-
ment for tree patterns is that every query must contain a constant root, which always
maps to the designated node in a graph, i.e., we consider strong satisfaction. We re-
fer to such tree patterns as rooted child-only tree patterns. This root requirement, besides
Berge-acyclicity and connectedness, turns out to be crucial for PTIME containment, since
without this requirement containment becomes CONP-hard, by Theorem 4.3.3, (b). Note
that containment in this case is the same as strong containment.

We characterize containment via the notion of homomorphism. Let
P = (N,E, r, le, l

+, l−) and Q = (N ′, E′, r′, l′e, l
′+, l′−) be child-only tree patterns

with label negation. A mapping h : N ′ → N is called a homomorphism from Q to P , if
the following are satisfied:

63

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

(i) h(r′) = r;

(ii) If (x, y) ∈ E′ and l′e(〈x, y〉) = α, then (h(x), h(y)) ∈ E and le(〈h(x), h(y)〉) =
α;

(iii) l′+(x) ⊆ l+(h(x)), for every x ∈ N ′;

(iv) l′−(x) ⊆ l−(h(x)), for every x ∈ N ′.

Note that the above definition without item (iv) coincides with the usual definition of
homomorphism for tree patterns without negation (Miklau and Suciu, 2004).

Theorem 4.4.1. Let P and Q be consistent child-only tree patterns with label negation.
Then P ⊆ Q if and only if there exists a homomorphism from Q to P .

Proof. Let P = (N,E, r, le, l
+, l−) and Q = (N ′, E′, r′, l′e, l

′+, l′−) be child-only tree
patterns with label negation.

(⇐). Assume h : N ′ → N is a homomorphism. LetG = (Nodes(G), E′′, ρe, ρn, r′′)
be a graph such that G |= P , i.e., there is an embedding e : N → Nodes(G) with
e(r) = r′′. Then we claim that e′ = e ◦ h is an embedding of Q in G. We check the
conditions (0)–(4) from the definition of embedding (except (2)):

(0) e′(r′) = e ◦ h(r′) = e(r) = r′′.

(1) Let (x, x′) ∈ E′ and l′e(〈x, x′〉) = α. Then (h(x), h(x′)) ∈ E and le(〈h(x), h(x′)〉) =
α, which implies (e(h(x)), e(h(x′))) ∈ E′′ and α ∈ ρe(〈e(h(x)), e(h(x′))〉).

(3) Let x ∈ N ′ and p ∈ l′+(x). Then p ∈ l+(h(x)), which implies that p ∈
ρn(e(h(x))), as needed.

(4) Let x ∈ N ′ and p ∈ l′−(x). Then p ∈ l−(h(x)), which implies that p 6∈
ρn(e(h(x))), as needed.

(⇒). We show the contrapositive. Suppose there is no homomorphism from Q to P .
We then construct a counter-example by taking a graph (tree) with the same structure as
P . Let P.y be the subtree of P rooted in y and Q.x the subtree of Q rooted in x. By
induction on the depth of P.y we show

(IH) If there is no homomorphism from Q.x to P.y, then there exists a tree T such that
T |= P.y and T 6|= Q.x.

Base of induction: depth(P.y) = 0. Then there is no homomorphism from Q.x to P.y
if either

• there exists a label p ∈ Σ such that either (i) p ∈ l′+(x) and p 6∈ l+(y), or (ii)
p ∈ l′−(x) and p 6∈ l−(y). We define T = (Nodes(T), E′′, ρe, ρn, y), where
Nodes(T) = {y}, E′′ = ∅, and ρn is defined according to the above cases: (i)
ρn(y) = l+(y) or (ii) ρn(y) = l+(y) ∪ {p}. By construction, we have T |= P.y.
It also holds that T 6|= Q.x. Indeed, otherwise it would hold that l′+(x) ⊆ ρn(y)
and l′−(x) ∩ ρn(y) = ∅, which contradicts with the definition of ρn.

64

4.4. Polynomial-time algorithms for containment

• Or there exists x′ such that (x, x′) ∈ E′. In this case, we define
T = (Nodes(T), E′′, ρe, ρn, y), where Nodes(T) = {y}, E′′ = ∅, and ρn(y) =
l+(y). By construction we have that T |= P.y. Moreover, T 6|= Q.x since there is
no child of the image of x in T .

Induction step: depth(P.y) > 0 and there is no homomorphism from Q.x to P.y. It is
because either

• there exists a label p such that either (i) p ∈ l′+(x) and p 6∈ l+(y), or (ii) p ∈ l′−(x)
and p 6∈ l−(y). We define T = (NT , ET , ρe, ρn, y), where NT = {n ∈ N | P |=
yE∗n}, i.e., the nodes below y in P , ET = E|N2

T
, ρe = le, and the node labeling

ρ is defined as follows.

ρ(u) =

l+(u) if u = y and (i) holds,
l+(u) ∪ {p} if u = y and (ii) holds,
l+(u) if u 6= y.

It is easy to see that T |= P.y and T 6|= Q.x.

• Or there exists x′ such that (x, x′) ∈ E′ and for all yi with (y, yi) ∈ E and
le(〈y, yi〉) = l′e(〈x, x′〉) it holds that there is no homomorphism fromQ.x′ to P.yi.
Since depth(P.yi) < depth(P.y) for every such yi, by the induction hypothesis,
it holds that there exists a tree Ti = (Ni, Ei, ρ

i
e, ρ

i
n, ri) such that Ti |= P.yi and

Ti 6|= Q.x′. Let T ′j = (N ′j , E
′
j , ρ
′j
e , ρ

′j
n , r
′
j) be the canonical trees for the subtrees

P.uj such that yEuj and le(〈y, uj〉) 6= l′e(〈x, x′〉). We can assume that these trees
are pairwise disjoint. We then define the tree T = (NT , ET , ρe, ρn, y) such that
NT = {y} ∪⋃iNi ∪⋃j N ′j , ET =

⋃
i(Ei ∪ {〈y, yi〉}) ∪

⋃
j(E

′
j ∪ {〈y, uj〉}),

ρe(〈u, v〉) =

le(〈u, v〉) if u = y,

ρie(〈u, v〉) if Ti |= uEiv,

ρ′j(〈u, v〉) if T ′j |= uE′jv, and

ρ(u) =

l+(y) if u = y,

ρi(u) if Ti |= yiE
∗
i u,

ρ′j(u) if T ′j |= ujE
′∗
j u.

We claim that T |= P.y and T 6|= Q.x. The former is by definition of T . For the
latter, suppose e : Q.x→ T is an embedding. In particular, that means that e is an
embedding of Q.x′ to one of Ti, where yi is a child of y. Thus, Ti |= Q.x′, which
is a contradiction.

Thus, since there is no homomorphism from Q.r′ to P.r, there exists a tree such that
T |= P and T 6|= Q.

Corollary 4.4.1. Containment for child-only tree patterns with label negation is in PTIME.

Proof. Let P ⊆ Q be a containment problem, where P andQ are child-only tree patterns
with label negation. We first check if P is consistent. If not, we output “yes”. If it is con-
sistent, we check if Q is consistent. If not, we output “no”. Otherwise, by Theorem 4.4.1

65

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

it is enough to check existence of a homomorphism from Q to P . To this purpose, we
reduce the problem to checking homomorphism for tree patterns without label negation.
The latter can be done e.g., using a bottom-up procedure (Miklau and Suciu, 2004). For
each negated label ¬p occurring in P or Q, we introduce a new label p̃. For a tree pattern
with label negation Q, by Q̃ we denote the result of replacing each negated label ¬p with
the corresponding label p̃. It is easy to verify that there is a homomorphism from Q to P
if and only if there is a homomorphism from Q̃ to P̃ .

Interestingly, using a similar homomorphism characterization, we can prove PTIME
results for containment of descendant-only tree patterns with label negation and tree pat-
terns with attribute comparisons. For each of the cases we introduce the corresponding
notions of homomorphism.

Let P = (N,E//, r, le, l
+, l−) and Q = (N ′, E′//, r

′, l′e, l
′+, l′−) be descendant-

only tree patterns. A mapping h : N ′ → N is called a d-homomorphism of Q to P if it
satisfies the conditions (i), (iii) and (iv) of the definition of a homomorphism above, and,
furthermore, the following condition:

(ii’) If (x, y) ∈ E′// and le(〈x, y〉) = α, then (h(x), h(y)) ∈ E+
// and every edge on

the path from h(x) to h(y) in P is labeled with α.

Let P = (N,E, r, le, l) and Q = (N ′, E′, r′, l′e, l
′) be child-only tree patterns with

attribute comparisons. Then a mapping h : N ′ → N is called an a-homomorphism if it
satisfies the conditions (i), (ii) and (iii’) (where (iii’) is obtained from (iii) by replacing
l′+ and l+ with l′ and l), and, furthermore, the following condition:

(iv’) For every x ∈ N ′, if @aopc ∈ l′(x) then there must exist @aop
′c′ ∈ l(h(x))

for some op′ and c′, and, C |= @aop c, where C is the set of comparisons of
a-attribute in l(h(x)).

The following theorem is proved similarly to Theorem 4.4.1 and given in Appendix 4.A.

Theorem 4.4.2. Let P and Q be consistent descendant-only tree patterns with label
negation (resp. child-only tree patterns with attribute comparisons). Then P ⊆ Q if and
only if there exists a d-homomorphism (a-homomorphism) of Q to P .

Since the existence of d- and a-homomorphism can be checked in PTIME, we obtain
the following.

Corollary 4.4.2. The containment problem is in PTIME for the following classes of
queries.

• Descendant-only tree patterns with label negation,

• Child-only tree patterns with attribute comparisons.

As pointed before, child-only tree patterns with label negation is a fragment of pointed
Berge-acyclic conjunctive queries with guarded negation. The precise complexity for the
latter fragment is an open question. In the end of this section, we give an example show-
ing that the homomorphism characterization fails for this fragment.

66

4.5. Conclusion and future work

Example 4.4.1. Let Q1 be the Boolean query R(c, x), R(c, y), Q(y), R(z, x), R(z, w),
¬Q(w) and Q2 the Boolean query R(c, u), Q(u), R(v, u), R(v, t),¬Q(t). Clearly, there
is no such homomorphism mapping c to c, however the containment holds. Indeed,
let I be an instance such that I |= Q1, i.e., there is a satisfying variable assignment
θ : V ar(Q1) → dom(I). We then define a variable assignment θ′ : V ar(Q2) → I as
the composition of h : V ar(Q2) → V ar(Q2) with θ, where h is defined according to
the following cases.

• I |= Q(θ(x)). In this case we define h = {c→ c, u→ x, v → z, t→ w}.

• I 6|= Q(θ(x)). In this case we define h = {c→ c, u→ y, v → c, t→ x}.

It is straightforward to verify that θ is a satisfying assignment, thus I |= Q2.

4.5 Conclusion and future work

In this chapter we considered the containment problem for conjunctive queries expanded
with atomic negation and arithmetic comparisons. In particular, we studied the com-
mon acyclicity restriction on conjunctive queries and addressed the following research
question:

RQ 2 Does acyclicity make the complexity of containment for conjuctive queries ex-
panded with atomic negation or arithmetic comparison tractable? If not, what
additional restrictions can be imposed to make it tractable?

Firstly, we have shown that complexity of containment for acyclic conjunctive queries
with atomic negation can be lowered from ΠP

2 to CONP if negation is guarded and the
arity of negated atoms is bounded by a fixed constant. Secondly, we have shown several
CONP lower bound proofs that indicate that much stronger restrictions than acyclicity
need to be imposed to make containment tractable. As a result, we have defined a new
fragment of acyclic conjunctive queries with atomic negation–pointed Berge acyclic con-
junctive queries for which the complexity of containment is left open. On the positive
side, for one particular restricted fragment, namely child-only tree patterns with label
negation, containment is in PTIME. We have also shown that containment for child-
only tree patterns with attribute comparisons and descendant-only tree patterns with label
negation is in PTIME.

The two main remaining open problems are:

• What is the complexity of containment for pointed Berge acyclic conjunctive queries?

• What is the complexity of containment for acyclic conjunctive queries with guarded
negation (with no bound on the arity of the negated atoms)?

In Chapter 5 we show that when both child and descendant are allowed in tree patterns
with unrestricted label negation, than containment rises to PSPACE. In Chapter 3 we have
seen that safe label negation does not increase the complexity of containment when added
to tree languages.

67

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

4.A Polynomial time algorithms for containment

4.A.1 Descendant-only tree patterns with label negation
In this section we consider descendant-only tree patterns with label negation.

We prove Theorem 4.4.2 for the case of descendant-only tree patterns.

Proof. (of Theorem 4.4.2) LetP = (N,E//, r, le, l
+, l−) andQ = (N ′, E′//, r

′, l′e, l
′+, l′−)

be descendant-only tree patterns with label negation.
(⇐). Assume h : N ′ → N is a d-homomorphism.
Let G = (Nodes(G), E′′, ρe, ρn, r′′) be a graph such that G |= P , i.e. there is an

embedding e : N → Nodes(G). Then we claim that e′ = e ◦ h is an embedding of Q
into G. We check the conditions (0)-(4), except (1):

(0) e′(r′) = e ◦ h(r′) = e(r) = r′′,

(2) Let (x, x′) ∈ E′// and l′e(〈x, y〉) = α. Then (h(x), h(x′)) ∈ E+
// and ev-

ery edge on the path from h(x) to h(x′) in P is labeled with α, which implies
(e(h(x)), e(h(x′))) ∈ E′′+, and every edge on the path is labeled with α,

(3) Let x ∈ N ′ and p ∈ l′+(x). Then p ∈ l+(h(x)), which implies that p ∈
ρ(e(h(x))), as needed,

(4) Let x ∈ N ′ and p ∈ l′−(x). Then p ∈ l−(h(x)), which implies that p 6∈
ρ(e(h(x))), as needed.

(⇒). We show the contrapositive. Suppose there is no d-homomorphism from Q to
P . We then construct a counter-example graph with the same structure as P . Let P.y be
the subtree of P rooted in y and Q.x the subtree of Q rooted in x. By induction on the
depth of P.y we show

(IH) If there is no d-homomorphism from Q.x to P.y, then there exists a tree T such
that T |= P.y and T 6|= Q.x.

Base of induction: depth(P.y) = 0. This part is practically the same as for child-only
tree patterns. There is no d-homomorphism from Q.x to P.y if either

• there exists a label p such that either (i) p ∈ l′+(x) and p 6∈ l+(y), or (ii) p ∈ l′−(x)
and p 6∈ l−(y). We define T = ({y}, ∅, ρe, ρn, y), where the labeling function
ρn is defined according to the above cases: (i) ρn(y) = l+(y) or (ii) ρn(y) =
l+(y) ∪ {p}. By construction, we have T |= P.y. It also holds that T 6|= Q.x.
Indeed, otherwise it would hold that l′+(x) ⊆ ρn(y) and l′−(x) ∩ ρn(y) = ∅,
which contradicts with the definition of ρ.

• Or there exists x′ such that (x, x′) ∈ E′//. In this case, we define T = ({y}, ∅, ρe, ρn, y),
where ρn(y) = l+(y). By construction we have that T |= P.y. Moreover,
T 6|= Q.x since there is no descendant of the image of x in T .

Induction step: depth(P.y) > 0 and there is no d-homomorphism from Q.x to P.y. It
is because either

68

4.A. Polynomial time algorithms for containment

• there exists a label p such that either (i) p ∈ l′+(x) and p 6∈ l+(y), or (ii) p ∈ l′−(x)
and p 6∈ l−(y). We define T = (NT , ET , ρe, ρn, y), where NT = {n ∈ N | P |=
yE∗n}, i.e., the nodes below y in P , ET = E//|N2

T
, and the labeling ρe = le and

ρn is defined as follows.

ρn(u) =

l+(u) if u = y and (i) holds,
l+(u) ∪ {p} if u = y and (ii) holds,
l+(u) if u 6= y.

It is easy to see that T |= P.y and T 6|= Q.x.

• Or there exists x′ such that (x, x′) ∈ E′// and for all y′ with (y, y′) ∈ E+
// it

holds that there is no d-homomorphism from Q.x′ to P.y′. Let yi, i ∈ {1, . . . , k},
be the direct successors of y′. Since depth(P.yi) < depth(P.y), by the induction
hypothesis, it holds that for every yi of y there exists a tree Ti = (Ni, Ei, ρ

i
e, ρ

i
n, ri)

such that Ti |= P.yi and Ti 6|= Q.x′. Moreover, these trees have the shape of P.yi.
We then define the tree T = (NT , ET , ρe, ρn, y) with the shape as P , i.e., such
that NT = {y} ∪⋃iNi, ET =

⋃
i(Ei ∪ {〈y, yi〉}) and

ρn(u) =

{
l+(y) if u = y,

ρi(u) if Ti |= yiE
∗u.

We claim that T |= P.y and T 6|= Q.x. The former is by definition of T . For
the latter, suppose e : Q.x → T is an embedding. In particular, that means that
e is an embedding of Q.x′ to a subtree Ti.y, where yi is a descendant of y. Thus,
Ti |= Q.x′, which is a contradiction.

Thus, since there is no homomorphism from Q.r′ to P.r, there exists a tree such that
T |= P and T 6|= Q.

Corollary 4.A.1. Containment for descendant-only tree patterns with label negation is
solvable in PTIME.

Proof. Let P ⊆ Q, where P and Q are (descendant-only) tree patterns with negation, be
an instance of the containment problem. We first check if the input tree patterns are con-
sistent. Consistency check can be done in PTIME by simple check if no node contains a
label p in both positive and negative labeling. If P is inconsistent, we output “yes”. Oth-
erwise, if Q is inconsistent we output “no”. Otherwise, by Theorem 4.4.2 it is enough to
check existence of a d-homomorphism fromQ to P . We reduce this problem to checking
a homomorphism from Q̃ to P̃ , where P̃ and Q̃ are tree patterns without negated labels
obtained from P and Q by replacing each ¬p with p̃. From the definition of a homo-
morphism, it can be seen that existence of a homomorphism for positive descendant tree
patterns amounts to existence of a homomorphism of a descendent-only tree pattern into
a tree. The latter problem can be solved in PTIME (Götz et al., 2007).

4.A.2 Tree patterns with attribute value comparisons

In this section we prove the second part of Theorem 4.4.2.

69

4. Containment for ACQ with Atomic Negation and Arithmetic Comparisons

Proof. (of Theorem 4.4.2) For simplicity, we assume all edges have the same label, and
thus le is a constant function. Let P = (N,E, r, l) and Q = (N ′, E′, r′, l′) be tree
patterns with attribute value comparisons.

(⇐). Assume h : N ′ → N is an a-homomorphism. LetG = (Nodes(G), E′′, ρn, r′′, att)
be a graph such that G |= P , i.e., there is an embedding e : N → Nodes(G). Then we
claim that e′ = e ◦ h is an embedding of Q into G. We check the conditions (1)-(4):

(1) e′(r′) = e ◦ h(r′) = e(r) = r′′,

(2) Let (x, x′) ∈ E′. Then (h(x), h(x′) ∈ E, which implies (e(h(x)), e(h(x′))) ∈
E′′,

(3) Let x ∈ N ′ and p ∈ l′(x). Then p ∈ l(h(x)), which implies that p ∈ ρn(e(h(x))),
as needed,

(4) Let x ∈ N ′ and @aopc ∈ l′(x). Then there exists @aop
′c′ ∈ l(h(x)) and,

C |= @aop c, whereC is the set of constraints of a in l(h(x)). Since e is an embed-
ding, it holds that att(e(h(x)), a) is defined and C is satisfied by att(e(h(x)), a).
Let att(e(h(x)), a) = c′′.It holds that c′′op c and thus G, e(h(x)) |= @aopc, as
needed.

(⇒). We show the contrapositive. Suppose there is no a-homomorphism from Q to
P . We then construct a counter-example with the same structure as P . Let P.y be the
subtree of P rooted in y and Q.x the subtree of Q rooted in x. By induction on the depth
of P.y we show

(IH) If there is no homomorphism from Q.x to P.y, then there exists a tree T such that
T |= P.y and T 6|= Q.x.

Base of induction: depth(P.y) = 0. Then there is no homomorphism from Q.x to P.y
if either

• there exists a label p such that either p ∈ l′(x) and p 6∈ l(y).We define T =
({y}, ∅, y, ρ), where the labeling function ρ(y) = l(y). By construction, we have
T |= P.y. It also holds that T 6|= Q.x. Indeed, otherwise it would hold that
l′(x) ⊆ ρ(y), which contradicts with the definition of ρ.

• there exists @aopc ∈ l′(x) such that no @aop
′c′ ∈ l(y) or C 6|= @aop c, where

C is the set of constraints of a-attribute in l(y). In the first case we take T =
({y}, ∅, y, ρ, att) with ρ(y) = l(y), att(y, a) undefined and att(y, b) = cb for
every b 6= a such that cb satisfies the constraint of b in l(y). By construction,
T |= P.y and T 6|= Q.x. In the second case there is a constant c′′ that satisfies C
but not c′′op c. Thus, T |= P.y and T 6|= Q.x.

• Or there exists x′ such that (x, x′) ∈ E′. In this case, we define T = ({y}, ∅, y, ρ),
where ρ(y) = l(y). By construction we have that T |= P.y. Moreover, T 6|= Q.x
since there is no child of the image of x in T .

Induction step: depth(P.y) > 0 and there is no a-homomorphism from Q.x to P.y. It
is because either

70

4.A. Polynomial time algorithms for containment

• there exists a label p such that p ∈ l′(x) and p 6∈ l(y). We define T = (NT , ET , y, ρ, att),
where NT = {n ∈ N | P |= yE∗n}, i.e., the nodes below y in P , ET = E|N2

T
,

the labeling ρ is defined as l, and att is defined canonically to satisfy constraints
in P .

It is easy to see that T |= P.y and T 6|= Q.x.

• there exists @aopc ∈ l′(x) such that either (i) no @aop
′c′ is in l(y) or (ii) C 6|=

@aop c, where C is the set of constraints of a-attribute in l(y). We define T =
(NT , ET , y, ρ, att), where NT = {n ∈ N | P |= yE∗n}, i.e. the nodes below y
in P , ET = E|N2

T
, the labeling ρ is defined as l. The attribute function is defined

as follows. If @bop c, appeared in a node z in P , then att(z, b) = cb such that
cb satisfies the constraints of b-attribute in l(z). Additionally, we take att(y, a) as
undefined in case (i) and the constant witnessing C 6|= @aopc in case (ii). It holds
that T |= P.y and T 6|= Q.x.

• Or there exists x′ such that (x, x′) ∈ E′ and for all yi with (y, yi) ∈ E it holds that
there is no a-homomorphism fromQ.x′ to P.yi. Since depth(P.yi) < depth(P.y),
by the induction hypothesis, it holds that for every child yi of y there exists a tree
Ti = (Ni, Ei, ri, ρi, atti) such that Ti |= P.yi and Ti 6|= Q.x′. We can assume that
these trees are pairwise disjoint. We then define the tree T = (NT , ET , y, ρ, att)
such that NT = {y} ∪⋃iNi, ET =

⋃
i(Ei ∪ {〈y, yi〉}) and

ρ(u) =

{
l(y) if u = y,

ρi(u) if Ti |= yiE
∗u.

and att = ∪iatti. We claim that T |= P.y and T 6|= Q.x. The former is by
definition of T . For the latter, suppose e : Q.x→ T is an embedding. In particular,
that means that e is an embedding of Q.x′ to one of Ti, where yi is a child of y.
Thus, Ti |= Q.x′, which is a contradiction.

Thus, since there is no homomorphism from Q.r′ to P.r, there exists a tree such that
T |= P and T 6|= Q.

Corollary 4.A.2. Containment for child-only tree patterns with attribute value compar-
isons is solvable in PTIME.

Proof. We first check consistency of the input tree patterns which can be done in PTIME.
If one of the tree patterns is inconsistent, the problem is trivial. Otherwise, according to
the theorem above, it is enough to check existence of a homomorphism. The latter can
be done in PTIME, since < can be decided in PTIME.

71

5
Containment for Conditional Tree Patterns

We have already seen tree patterns in Chapter 3 and Chapter 4. In this chapter we study
an expansion of tree patterns. A Conditional Tree Pattern (CTP) expands a tree pattern
with labels attached to the descendant edges. These labels can be XML element names or
Boolean CTP’s. The meaning of a descendant edge labelled by A and ending in a node
labelled by B is a path of child steps ending in a B node such that all intermediate nodes
are A nodes. In effect this expresses the until B, A holds construction from temporal
logic.

This chapter studies the containment problem for CTP. For tree patterns (TP), this
problem is known to be CONP-complete (Miklau and Suciu, 2004). We show that it
is PSPACE-complete for CTP. This increase in complexity is due to the fact that CTP
is expressive enough to encode an unrestricted form of label negation: ∗ \ a, meaning
“any node except an a-node”. Containment of TP expanded with this type of negation is
already PSPACE-hard.

CTP is a positive, forward, first order fragment of Regular XPath. Unlike TP, CTP
expanded with disjunction is not equivalent to unions of CTP’s. But like TP, CTP is a
natural fragment to consider: CTP is closed under intersections and CTP with disjunc-
tion is equally expressive as positive existential first order logic expanded with the until
operator.

5.1 Introduction

Tree Patterns are one of the most studied languages for XML documents and used in
almost all aspects of XML data managment. Tree patterns are a natural language: over
trees, unions of tree patterns are equally expressive as positive first order logic (Benedikt
et al., 2005). Also, like relational conjunctive queries, the semantics of TP’s can be given
by embeddings from patterns to tree models (Amer-Yahia et al., 2002). Equivalence and
containment of TP’s is decidable in PTIME for several fragments (Amer-Yahia et al.,
2002), and CONP complete in general (Miklau and Suciu, 2004). Tree patterns can be
represented as trees, as in Figure 5.1, or be given a natural XPath-like syntax.

In this chapter, we study the expansion of tree patterns with the conditional de-
scendant axis. We call this expansion Conditional Tree Patterns, abbreviated as CTP.
Where the descendant axis in TP can be written as the transitive reflexive closure of
the XPath step child::∗, the conditional descendant axis is the transitive closure of

73

5. Containment for Conditional Tree Patterns

p

t

v

s

Figure 5.1: The tree pattern corresponding to the XPath expression
/p[t]//s[.//v]. The node in the square box denotes the output node.

p

t s

v

a

b

r

a

Figure 5.2: Conditional tree pattern corresponding to (5.1).

child :: p[F1][F2] . . . [Fn], where n ≥ 0 and each Fi is an XPath expression which might
contain the conditional descendent axis itself, followed by a child step. Syntactically,
the expansion is straightforward: in the tree representation add labels representing con-
ditional tree patterns themselves to the edges. Figure 5.2 contains an example which
is equivalent to the following XPath-like formula in which we use (·)∗ to denote the
reflexive transitive closure of a path formula:

self :: p[child :: t]/(child :: r)∗/child :: s

[(child :: a[(child :: a)∗/child :: b])∗/child :: v] (5.1)

The edge in Figure 5.2 labeled by r corresponds to the expression
(child :: r)∗/child :: ∗, and merely states that all intermediate nodes are labeled by
r. The other labeled edge shows a nesting of patterns, corresponding to a nested transi-
tive closure statement: all intermediate nodes have to be labeled by a and moreover have
to start an a-labeled path ending in a b-node.

Conditional tree patterns are the forward fragment of Conditional XPath (Marx, 2005)
without disjunction and negation. The conditional descendant axis is closely related to
the strict until operator from temporal logic (Libkin and Sirangelo, 2010; Marx, 2005).

74

5.1. Introduction

Main results
Our main results concern the expressivity of CTP and the complexity of the containment
problem. We consider two types of models: the standard XML trees in which each node
has exactly one label, and trees in which nodes can have an arbitrary number of labels.
These latter, called multi-labeled trees, are the models considered in temporal logic. All
our results hold for both semantics. Models with multiple labels are a convenient logical
abstraction for reasoning about tree patterns expanded with attribute value equalities.
These are expressions of the form @a = c, where a is an attribute, c a constant, meaning
that it holds at a node if and only if the value of the a-attribute of the node equals c. (With
that we can express XPath formulas like //table[@border = ’1’]).

Containment of tree patterns has been studied in (Amer-Yahia et al., 2002; Miklau
and Suciu, 2004; Neven and Schwentick, 2006). The most relevant results for us are
that containment of TP’s is CONP-complete in general (Miklau and Suciu, 2004) and
PSPACE-complete when the domain of labels is finite (Neven and Schwentick, 2006).
We show that containment of CTP’s is PSPACE-complete (with both finite and infinite
domains of labels). Interestingly, this increase in complexity is due to the fact that CTP is
expressive enough to encode an unrestricted form of label negation: ∗ \ a, meaning “any
node except an a-node”. We show that containment of TP’s expanded with this form of
negation is already PSPACE-hard. The matching upper bound for CTP containment is
easily obtained by a translation into Existential CTL (Kupferman and Vardi, 2000). As
a contrast we consider the expansion of TP with a safe form of propositional negation
n\a , which selects nodes with the label containing n and not a, instead of ∗\a (Bárány
et al., 2011). Note that this construct only makes sense on models with multiple labels.
With respect to expressivity, we show that most results for TP can be generalized to CTP.
CTP’s can be interpreted in trees by generalizing the TP-embeddings to simulations
known from temporal logic. Similarly to the characterization for TP in (Benedikt et al.,
2005), we show that CTP’s with disjunction and union are equally expressive as positive
first order logic expanded with an until operator. From this we obtain that like TP’s,
CTP’s are closed under taking intersections.

Organization
The chapter is organized as follows. This section is continued with a few more com-
parisons between TP and CTP and a motivating example. Section 5.2 contains prelim-
inaries. Section 5.3 contains the expressivity results and Section 5.4 the results on the
complexity of the containment problem. We end with conclusions and open questions.

Comparing logical properties of TP and CTP

A characteristic difference between TP and Relational Conjunctive Queries (CQ) is the
disjunction property: if A |= B ∨ C, then A |= B or A |= C. This holds for CQ, but not
for TP. A counterexample is //p |= /p ∨ /∗//p. The languages TP and CTP differ on
the following:

Unions TP expanded with disjunction is equally expressive as unions of TP (Benedikt
et al., 2005). However, CTP with disjunction is more expressive than unions of
CTP.

75

5. Containment for Conditional Tree Patterns

Countermodels If containment between two TP’s fails, there is a countermodel for it of
polynomial size (Miklau and Suciu, 2004). Countermodels for CTP containment
may be exponential.

Complexity TP containment is CONP-complete (Miklau and Suciu, 2004) and CTP
containment is PSPACE-complete. For both languages these results remain true if
we add disjunction to the language (for TP see (Neven and Schwentick, 2006)).

However, there are a few useful technical results that TP and CTP share.

Monotonicity TP and CTP formulas are preserved under extensions of models at the
leaves (i.e. when the original model is a subtree of the extension). This means that
if a TP (CTP) formula holds in a tree, then it holds in the extensions of the tree.

Multiple output nodes The containment problem for TP and CTP formulas with multi-
ple output nodes can be reduced to containment of Boolean TP and CTP formulas
(i.e., when the formula has a single output node which is the root).

Containment for unions Containment for unions of TPs can be reduced in PTIME to
checking a set of containments between TP formulas (Miklau and Suciu, 2004).
This reduction can be seen as a weak disjunction property. A similar property
holds for CTP (see Proposition 5.4.2).

Multi-labeled models There is a PTIME reduction from the containment problem over
trees in which each node has exactly one label to the containment problem over
multi-labeled trees. This holds for both TP and CTP.

For TP, most of these results are in (Miklau and Suciu, 2004). Here we show how their
proofs can be generalized to CTP.

Motivation
Tree patterns exhibit a nice tradeoff between expressive power and the complexity of
static analysis. However, there are natural scenarios where tree patterns are not powerful
enough, e.g. in Example 5.1.1. The conditional axis gives us more querying capabilities
while preserving some of the nice properties of tree patterns (see the comparison above).

Example 5.1.1. Conditional tree patterns are used to query tree shaped structures. As
an example, take the tree structure of the UNIX file system. In this file system, every
file and directory has different access permissions (read, write or execute) for different
type of users (the user, the group and others). Thus, the file system can be modeled as
a tree where each node corresponds to a directory or a file (labeled by “dir” and “file”
respectively) and has a required attribute for each pair (user, access right) which takes
values from {0, 1}. A file can only be a leaf in the tree.

Assume we want to ask for all the files that are readable by the user. This means that
we are looking for precisely those files for which the following permissions hold:

• the file is readable for the user,

76

5.1. Introduction

• the directory in which the file resides is both readable and executable for the user,

• the same holds recursively for all the directories from the root to the file.

This query can be neatly expressed as a CTP path formula:

/(child :: dir[@(user,read) = 1][@(user,execute) = 1])∗/child :: file[@(user,read) = 1].

Additionally, CTP can express non-trivial constraints over the tree representing the file
system. For instance, the formula

//self :: file[@(other,read) = 1]→ /

/(child ::dir[@(other,read) = 1][@(other,execute) = 1])∗/∗
imposes the constraint that for all files that are readable it holds that every directory on
the path from the root to this file must be both readable and executable by others.

It is known that the conditional axis cannot be expressed by tree patterns or in Core
XPath (Marx, 2005). On the other hand, the queries from Example 5.1.1 can be ex-
pressed in the positive forward fragment of Regular XPath, which is more expressive
than CTP. However, we believe this additional expressive power leads to an increase in
the complexity (of containment) than for conditional tree patterns.

5.1.1 Related work
The complexity of tree patterns is studied in a number of papers and since (Neven and
Schwentick, 2006) a virtually complete picture exists for the complexity of the contain-
ment problem for positive fragments of XPath. Miklau and Suciu (2004) show that the
complexity of the containment problem for TP with filters, wildcard and descendant is
CONP-complete. Containment and equivalence for fragments of TP were studied before.
The most interesting result is that containment for TP without the wildcard is in PTIME
(Amer-Yahia et al., 2002).

Our conditional tree patterns are a first order fragment of conjunctive regular path
queries. Calvanese et al. (2000) show that containment of these queries is EXPSPACE-
complete, but these are interpreted on general graph models.

Conditional XPath (Marx, 2005) and conditional tree patterns are closely related to
branching time temporal logic CTL (Clarke et al., 1986). The conditional child axis
and the strict until connective are interdefinable. Kupferman and Vardi (2000) show that
the containment problem for ∃CTL, which is the restriction of CTL to formulas having
only the ∃ path quantifier in front of them, is a PSPACE-complete problem. The posi-
tive ∃CTL-fragment without until was also studied by Miklau and Suciu (2004). They
show that the containment problem for this fragment is equivalent to the TP-containment
problem and thus also CONP-complete.

This chapter studies the containment problem without presence of schema infor-
mation. A number of complexity results for containment in TP w.r.t DTDs are given
in (Neven and Schwentick, 2006). In particular, containment for TP with filters, the
wildcard and descendent w.r.t. DTD is EXPTIME-complete. This hardness result to-
gether with an EXPTIME upper bound for Conditional XPath (Marx, 2005), which con-
tains CTP, gives us EXPTIME-completeness of containment for CTP in the presence of
DTDs.

77

5. Containment for Conditional Tree Patterns

5.2 Preliminaries

We briefly review the basic definitions of XML trees, Regular XPath and its semantics.
Then we present Tree Patterns and Conditional Tree Patterns as sublanguages of Regular
XPath. Tree patterns have an alternative semantics in terms of embeddings (Miklau and
Suciu, 2004). We give such an “embedding semantics” for Conditional Tree Patterns
using “until-simulations” in Section 5.3.

5.2.1 Trees
We work with node-labeled unranked finite trees, where the node labels are elements
of an infinite set Σ. Formally, a tree over Σ is a tuple (N,E, r, ρ), where N , the set
of nodes of the tree, is a prefix closed set of finite sequences of natural numbers, E =
{(〈n1, . . . , nk〉, 〈n1, . . . , nk, nk+1〉) | 〈n1, . . . , nk+1〉 ∈ N} is the edge or child relation,
r is the root of the tree, that is the empty sequence, and ρ is the function assigning to each
node in N a finite subset of Σ. We refer to a tree over Σ just as a tree if Σ is clear from
the context.

Trees in which ρ(·) is always a singleton are called single-labeled or XML trees.
Trees without this restriction are called multi-labeled trees.

We denote by E+ the descendant relation, which is the transitive closure of the edge
relation E, and by E∗ the reflexive and transitive closure of E, and by E(x) the set of
all children of the node x. A node n is a leaf if E(n) is empty. A path from a node n
to a node m is a sequence of nodes n = n0, . . . , nk = m, with k > 0, such that for
each i ≤ k, ni+1 ∈ E(ni). We call a branch any maximal path starting from the root. If
mE+n, m is called an ancestor of n, and if mEn, m is called the parent of n.

If n is in N , by T.n we denote the subtree of T rooted at n. A pointed tree is a pair
T, n where T is a tree and n is a node of T . The height of a pointed tree T, n is the length
of the longest path in T.n.

Given two trees T1 = (N1, E1, r1, ρ1) and T2 = (N2, E2, r2, ρ2) such that N1 and
N2 are disjoint, we define the result of fusion of T1 and T2, denoted as T1 ⊕ T2, as the
tree obtained by joining the trees T1 and T2 without the roots under a new common root
labeled by the union of the labels of the roots of T1 and T2. Formally, T1 ⊕ T2 is the tree
T = (N,E, r, ρ), where N = (N1 \ {r1}) ∪ (N2 \ {r2}) ∪ {r}, E = (E1 \ {〈r1, n〉 |
n ∈ N1}) ∪ (E2 \ {〈r2, n〉 | n ∈ N2}) ∪ {〈r, n〉 | 〈r1, n〉 ∈ E1 or 〈r2, n〉 ∈ E2} and

ρ(n) =

ρ1(r1) ∪ ρ2(r2) if n = r,

ρ1(n) if n ∈ N1 \ {r1},
ρ2(n) if n ∈ N2 \ {r2}.

5.2.2 XPath and Tree Patterns
We define Tree Patterns and Conditional Tree Patterns as sublanguages of Regular XPath
(ten Cate, 2006).

Definition 5.2.1 (Forward Regular XPath). Let Σ be an infinite domain of labels. For-
ward Regular XPath, RXPath for short, consists of node formulas ϕ and path formulas
α which are defined by the following grammar

78

5.2. Preliminaries

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | α ∪ α | α∗,

where p ∈ Σ.

We will use α+ as an abbreviation of α;α∗.
For the semantics of RXPath, given a tree T = (N,E, r, ρ) over Σ, the relation

JαKT ⊆ N ×N for a path expression α and the satisfaction relation |= between pointed
trees and node formulas are inductively defined as follows:

• J↓KT = E,

• J?ϕKT = {(n, n) ∈ N ×N | T, n |= ϕ},

• Jα;βKT = JαKT ◦ JβKT ,

• Jα ∪ βKT = JαKT ∪ JβKT ,

• Jα∗KT = (JαKT)∗,

and

• T, n |= >,

• T, n |= p iff p ∈ ρ(n),

• T, n |= ¬ϕ iff T, n 6|= ϕ,

• T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ,

• T, n |= ϕ ∨ ψ iff T, n |= ϕ or T, n |= ψ,

• T, n |= 〈α〉ϕ iff there is a node m with (n,m) ∈ JαKT and T,m |= ϕ.

Sometimes we will write T |= ϕ to denote T, r |= ϕ. If the latter holds, we say that T is
a model of ϕ.

(Conditional) Tree Patterns

Tree patterns are the conjunctive fragment of RXPath without unions of paths and with
a strongly restricted Kleene star operation. Node formulas correspond to Boolean tree
patterns, and path formulas to tree patterns with one output node.

In the following definitions we again let Σ be an infinite domain of labels. We define
Tree Patterns by restricting the syntax of RXPath as follows:

Definition 5.2.2 (Tree Pattern). Tree Patterns (TP) consist of node formulas ϕ and path
formulas α defined by the following grammar:

ϕ ::= p | > | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | ↓+,

where p ∈ Σ.

79

5. Containment for Conditional Tree Patterns

For example, the tree pattern from Figure 5.1 can be written as the path formula α =
?(p ∧ 〈↓〉t); ↓+; ?(s ∧ 〈↓〉v). Conditional Tree Patterns can also be defined by restricting
the syntax of RXPath, where we allow conditional descendant paths.

Definition 5.2.3 (Conditional Tree Pattern). Conditional Tree Patterns (CTP) consist of
node formulas ϕ and path formulas defined by the following grammar:

ϕ ::= p | > | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | (↓; ?ϕ)∗; ↓ ,

where p ∈ Σ.

The tree from Figure 5.2 can be written as the path formula

?(p ∧ 〈↓〉t); (↓; ?r)∗; ↓; ?(s ∧ 〈(↓; ?(a ∧ 〈(↓; ?a)∗; ↓〉b))∗; ↓〉v).

Note that the node formula 〈(↓; ?ϕ)∗; ↓〉ψ is exactly the strict until ∃U(ψ,ϕ) from branch-
ing time temporal logic CTL (Kupferman and Vardi, 2000). We will abbreviate this for-
mula simply as 〈ϕ+〉ψ. Because of the equivalences 〈α;β〉ϕ ≡ 〈α〉〈β〉ϕ and 〈?ϕ〉ψ ≡
ϕ ∧ ψ, CTP node formulas can be given the following equivalent definition:

ϕ ::= p | > | ϕ ∧ ϕ | 〈↓〉ϕ | 〈↓+〉ϕ | 〈ϕ+〉ϕ.

Even though the syntax is slightly different, CTP is the conjunctive forward only frag-
ment of Conditional XPath (Marx, 2005).

Expansions

We consider two expansions of TP and CTP, with negated labels and with disjunction in
node formulas together with union in paths. Negated labels is a restricted type of negation
where only the construct ¬p is allowed in the node formulas. We denote expansions of
the language L with one or two of these features by LS for S ⊆ {¬,∨}.

Query evaluation

In (Gottlob et al., 2005a) it was shown that the query evaluation problem for Core XPath
is PTIME-complete in the combined complexity. As noted in (Marx, 2005), using results
on model checking for Propositional Dynamic Logic, this can be extended to Regular
XPath, and thus to all our defined fragments.

Fact 1 (Marx (2005)). Let T be a tree, n1, n2 nodes in T , and α a Regular XPath path
formula. The problem whether (n1, n2) ∈ JαKT is decidable in time O(|T | × |α|) with
|T | the size of the tree and |α| the size of the formula.

5.2.3 Containment
As we are considering two kinds of expressions, path and node expressions, we have
different notions of containment.

Definition 5.2.4. Let ϕ and ψ be two RXPath-node formulas. We say that ϕ is contained
in ψ, notation ϕ ⊆ ψ, if for every T, n, T, n |= ϕ implies T, n |= ψ. Let α and β be two
RXPath-path formulas. We say that

80

5.2. Preliminaries

• α is contained as a binary query in β, denoted α ⊆2 β, if for any tree T , JαKT ⊆
JβKT ,

• α is contained as a unary query in β, denoted α ⊆1 β, if for any tree T with root
r, and any node n, (r, n) ∈ JαKT implies (r, n) ∈ JβKT .

Containment over single-labeled trees is denoted by ⊆, and containment over multi-
labeled models by ⊆ML.

Luckily, these three notions are closely related, and containment of path formulas can
be reduced to containment of node formulas and vice versa (cf. also (Miklau and Suciu,
2004; Neven and Schwentick, 2006)).

Proposition 5.2.1. Let α and β be two RXPath-path formulas, ϕ and ψ RXPath-node
formulas, in which negation is restricted to labels only.

(i) α ⊆2 β iff α ⊆1 β,

(ii) Let p be a label not occurring in α or in β. Then, α ⊆2 β iff 〈α〉〈↓〉p ⊆ 〈β〉〈↓〉p,

(iii) ϕ ⊆ ψ iff ?ϕ ⊆2?ψ.

All the above items also hold for the case of multi-labeled trees.

Proof. (i) (⇒) Let T = (N,E, r, ρ) be a tree such that (r, n) ∈ JαKT . By the assumption,
we have JαKT ⊆ JβKT . This implies that (r, n) ∈ JβKT , which was required to show.

(⇐) Let T = (N,E, r, ρ) be a tree, n1 and n2 inN such that (n1, n2) ∈ JαKT . Since
α is from the forward fragment of Regular XPath, we have that (n1, n2) ∈ JαKT.n1

.
Using the assumption, we have (n1, n2) ∈ JβKT.n1 . Then by monotonicity, we obtain
(n1, n2) ∈ JβKT , which was desired.

(ii) (⇒) Suppose α ⊆2 β, and let T, n |= 〈α〉〈↓〉p. Thus there is a descendant m of
n in T such that (n,m) ∈ JαKT and T,m |= 〈↓〉p. By the hypothesis we therefore have
(n,m) ∈ JβKT and thus T, n |= 〈β〉〈↓〉p.

(⇐) Assume 〈α〉〈↓〉p ⊆ 〈β〉〈↓〉p. Consider a tree T = (N,E, r, ρ) and a pair
(n,m) ∈ JαKT . Since p does not occur in α, we may assume that T, n 6|= p for ev-
ery node n ∈ N . We then define the tree T ′ = (N ′, E′, r, ρ′), where

• N ′ := N ∪ {x},

• E′ := E′ ∪ {〈m,x〉},

• ρ′(y) :=

{
p if y = x,
ρ(y) otherwise.

By definition of T ′, we have T ′,m |= 〈↓〉p and (n,m) ∈ JαKT ′ . Hence, T ′, n |= 〈α〉〈↓
〉p. By assumption, this implies that T ′, n |= 〈β〉〈↓〉p. Since p holds at x only, and x is a
child of m, we have that (n,m) ∈ JβKT ′ . By definition of T ′, the path between n and m
is also in T . Thus, (n,m) ∈ JβKT , as desired.

Item (iii) easily follows from the definitions.

In light of Proposition 5.2.1, from now on we consider the containment problem of
node formulas only. We now give an interesting example of CTP containment.

81

5. Containment for Conditional Tree Patterns

Example 5.2.1. Let us consider the CTP node formulas

ϕ = 〈(〈b+〉d)
+〉〈a+〉b and

ψ = 〈(〈c+〉d)
+〉〈a+〉b.

Although it is hard to see from a first glance, ϕ ⊆ ψ holds. Indeed, in every model
T of ϕ either there is a direct child of the root where 〈a+〉b holds, or there is a path
r = v1, . . . , vn in T to the node vn where 〈a+〉b holds and 〈b+〉d holds in every node vi
(1 < i < n) on the path. In the first case, ψ holds at the root since 〈a+〉b holds at the
direct child.

Now let’s consider the second case. Let j ∈ {2, . . . , n − 1} be the least number
with the property that vj has a non-empty b-path to the d-descendant. If there is no such
number, then 〈c+〉d holds at every vi, 1 < i < n (as each of them has a direct d-child)
and, thus, T, r |= ψ.

Assume there is such a j. Since vj has a b-node as a child, we have that T, vj |=
〈a+〉b. Moreover, 〈c+〉d holds at each vi for i < j since vi has a d-node as a child. Thus
in this case we obtain that T, r |= ψ holds too.

5.3 Expressivity

We extend the semantics of TP given by embeddings of queries into trees to CTP. In-
stead of embeddings we need a simulation known from temporal logic.

5.3.1 Interpreting Conditional Tree Patterns by simulations
The semantics of conditional tree patterns can be defined using simulations developed for
LTL (Blackburn et al., 2001). These simulations generalize the embeddings for tree pat-
terns from (Amer-Yahia et al., 2002; Miklau and Suciu, 2004) with an additional clause
for checking the labels on the edges.

We start by defining the tree pattern analogues of CTP node and path expressions.

Definition 5.3.1. A conditional tree pattern is a node and edge labeled finite tree (N,E, r,
ō, ρN , ρE), where N is the set of nodes of the tree, E ⊆ N ×N is the set of edges, r is
the root of the tree, ō is a k-tuple (k > 0) of output nodes, ρN is the function assigning
to each node in N a finite set of labels from Σ and ρE is the function assigning to each
pair in E either ↓ or a Boolean conditional tree pattern.
A Boolean conditional tree pattern is a conditional tree pattern with a single output node
which equals the root.
A conditional tree pattern is said to have multiple output nodes if the number k = |ō| is
greater than 1.
A tree pattern is a conditional tree pattern whose edges are only labeled by ↓ or >.

To be consistent with the pictorial representation of TP, in CTP an edge labeled with
↓ is drawn as a single line, while an edge labeled with a CTP node formula is drawn as
a double line with a CTP as the label (e.g. as in Figure 5.2). The output nodes have the
square shape.

82

5.3. Expressivity

CTP node and path expressions can be translated into (Boolean) conditional tree pat-
terns with one output node and vice-versa. The translations are given in Appendix 5.A.
We denote the equivalent (Boolean) conditional tree pattern of a CTP path or node ex-
pression α or ϕ by c(α) and c(ϕ), respectively.

Next we generalize the notion of TP-embeddings (Miklau and Suciu, 2004) to CTP-
simulations.

Definition 5.3.2. Let T = (N,E, r, ō, ρN , ρE) be a conditional tree pattern as in the
previous definition and T ′ = (N ′, E′, r′, ρ′) a tree. A total function f : N → N ′

is called a simulation from the pattern T into the pointed tree T ′, r′ if it satisfies the
following properties:

root preserving f(r) = r′;

label preserving if p ∈ ρN (n), then p ∈ ρ′(f(n));

child edge preserving if nEn′ and ρE(n, n′) = ′ ↓′, then f(n)Ef(n′);

conditional edge simulation if nEn′ and ρE(n, n′) is not equal to ↓, then f(n)E′+f(n′)
and for every x such that f(n)E′+xE′+f(n′) there is a simulation from the Boolean
conditional tree pattern ρE(n, n′) into T ′.x (the subtree of T ′ rooted at x).

When a pattern is a tree pattern, ↓ and> are the only labels on edges. For the label>,
the “conditional edge simulation” clause trivializes to checking that f is an embedding
for the descendant edges. Simulations for tree patterns are thus equivalent to tree pattern
embeddings (Amer-Yahia et al., 2002; Miklau and Suciu, 2004).

The next theorem states that simulations can be used to evaluate conditional tree
patterns.

Theorem 5.3.3. Let ϕ and α be a CTP node and path expression, respectively. Let T be
a tree and n a node in T .

(i) T, n |= ϕ if and only if there is a simulation from c(ϕ) into T.n.

(ii) (n, n′) ∈ JαKT if and only if there is a simulation from c(α) into T.n which relates
the output node of c(α) to node n′.

(iii) Items (i) and (ii) also hold when T is an infinite tree.

The proof is by mutual induction on the node and path expressions.

Remark 5.3.1. The notions of (conditional) tree pattern and embedding for tree patterns
and simulation for conditional tree patterns are easily extended to work for expansions
of these languages with negated labels (denoted by TP¬ and CTP¬, respectively).

For (conditional) tree patterns, add a second node labelling function ρ¬N (·) that also
assigns each node a finite set of labels. These are interpreted as the labels that are false
at the node.

For the embeddings and simulations, in Definition 5.3.2 we add a clause stating that
also negated labels are preserved:

negated label preserving If p ∈ ρ¬N (n), then p 6∈ ρ′(f(n)).

With these modifications, Theorem 5.3.3 also holds for TP¬ and CTP¬.

83

5. Containment for Conditional Tree Patterns

5.3.2 Expressivity characterization
In this section we give an expressivity characterization for CTP similar to the one for
various fragments of XPath in (Benedikt et al., 2005). The exact logical characteriza-
tion allows one to compare different fragments of (Regular) XPath and derive non-trivial
closure properties such as closure under intersection. We show that CTP path formulas
correspond to a natural fragment of first order logic (FO) and are closed under intersec-
tions.

Forϕ a formula, let descϕ(x, y) be an abbreviation of the “until” formula desc(x, y)∧
∀z(desc(x, z) ∧ desc(z, y) → ϕ(z)). Let ∃+(child, descϕ) be the fragment of first or-
der logic built up from the binary relations child and desc, label predicates p(x) for each
label p ∈ Σ and equality ′=′, by closing under ∧, ∨ and ∃ as well as under the rule:

if ϕ(x) ∈ ∃+(child, descϕ), then descϕ(x, y) ∈ ∃+(child, descϕ). (5.2)

We use ∃+(child, descϕ)(c, s) to denote ∃+(child, descϕ) formulas with exactly two
variables c and s free. Following Benedikt et al. (2005), we restrict the FO fragment
to its downward fragment ∃+(child, descϕ)[down](c, s) by requiring that every bound
variable as well as s is syntactically restricted to be a descendant of c or equal to c.

Note that ∃+(child, descϕ)[down](c, s) without the rule (5.2) is the logic
∃+(child, desc)[down](c, s) from Benedikt et al. (2005), and shown there to be equiv-
alent to unions of tree patterns. Even though ∃+(child, descϕ)[down](c, s) does not
contain negation, not every formula is satisfiable (e.g. desc(x, x)).

We can now characterize conditional tree patterns in terms of ∃+(child, descϕ)[down](c, s).

Theorem 5.3.4. The following languages are equivalent in expressive power:

• unions of the false symbol and CTP paths which can have disjunctions in the node
formulas

• ∃+(child, descϕ)[down](c, s).

Proof. Translating a CTP path formula α into an equivalent formula in
∃+(child, descϕ)[down](c, s) can be done via a standard translation TRxy(·). The trans-
lation is essentially the semantics of path and node formulas written in the first order
language.

TRxy(∅) = child(x, y) ∧ x = y
TRxy(↓) = child(x, y)
TRxy(?ϕ) = x = y ∧ TRx(ϕ)
TRxy(α1;α2) = ∃z.(TRxz(α1) ∧ TRzy(α2)),

where z is a fresh variable
TRxy((↓; ?ϕ)∗; ↓) = descTRz(ϕ)(x, y)
TRxy(α1 ∪ α2) = TRxy(α1) ∨ TRxy(α2)

TRx(p) = p(x)
TRx(>) = x = x
TRx(ϕ1 ∧ ϕ2) = TRx(ϕ1) ∧ TRx(ϕ2)
TRx(ϕ1 ∨ ϕ2) = TRx(ϕ1) ∨ TRx(ϕ2)
TRx(〈α〉ϕ) = ∃y.(TRxy(α) ∧ TRy(ϕ)),

where y is a fresh variable.

84

5.3. Expressivity

By definition, TRcs(α) is a formula in ∃+(child, descϕ)[down](c, s) and equivalent
to α.

For the other direction, let θ ∈ ∃+(child, descϕ)[down](c, s). We use our earlier
notation descψ(x, y) for the “until” formulas. First we introduce two special formulas
>(x) and ⊥(x) which stand for x = x and desc(x, x), respectively.

We will modify θ in several steps. First we replace child(x, y) and desc(x, y) by the
equivalent desc⊥(x, y) and desc>(x, y), respectively. Then eliminate all equalities by
renaming variables. Bring all existential quantifiers inside θ to the front, bring the body
into disjunctive normal form and distribute the disjunctions over the quantifiers. We then
end up with a disjunction of formulas of the form ∃x̄ϕ(c, s), with ϕ a conjunction of
formulas descψ(x, y), p(x), >(x) and ⊥(x). If ϕ contains ⊥ replace ∃x̄ϕ(c, s) with ⊥.

As our target language is closed under unions and ⊥, we only need to translate the
“conjunctive queries” ∃x̄ϕ(c, s). Consider the graph of the variables in ϕ in which two
variables x, y are related if ϕ contains an atom descψ(x, y). If the graph is cyclic, it
cannot be satisfied on a tree and ∃x̄ϕ(c, s) is equivalent to ⊥. If it is a tree, c will be
the root. Assuming that we can rewrite all ψ in the atoms descψ(x, y), we can rewrite
it as a conditional tree pattern. If ψ is a boolean combination of p(z), >(z) and ⊥(z)
atoms, this is not hard: Simply bring it into disjunctive normal form, and remove each
conjunct containing ⊥. If the result is not empty, then translate to a union of (trivial)
conditional tree patterns. If it is empty, translate descψ(x, y) to a child step. If ψ contains
subformulas of the form descϕ(x, y), we apply the current procedure to it.

Thus assume that the variable graph is a directed acyclic graph. We eliminate undi-
rected cycles step by step. The length of a cycle equals the number of variables in it.
Consider that the graph contains two paths π1 and π2 both going from x to y and with-
out other common variables. We show that this subgraph is equivalent to a union of
subgraphs with no or smaller cycles.

In the simplest case, both paths are of length 1 and thus consist of a descψ(x, y)
atom. But then we can use the following equivalence to remove the cycle:

descϕ(x, y) ∧ descψ(x, y) ≡ descψ∧ψ(x, y) (5.3)

So assume the cycle looks like Figure 5.3.

C' C

⇡0
1 ⇡0

2

z2z1

x

y

Figure 5.3: Undirected cycle in ϕ.

If this is satisfied on a tree (N,E, r, ρ) with assignment g, there are three possibilities:
g(z1) = g(z2), g(z1)E+g(z2) or g(z2)E+g(z1). In each case our original formula is
equivalent to one with a smaller cycle. The three possibilities are

85

5. Containment for Conditional Tree Patterns

when g(z1) = g(z2) descϕ∧ψ(x, z1) ∧ z1π
′
1y ∧ z1π

′
2y

when g(z1)E+g(z2) descϕ∧ψ(x, z1) ∧ ψ(z1) ∧ z1π
′
1y ∧ descψ(z1, z2) ∧ z2π

′
2y

when g(z2)E+g(z1) descϕ∧ψ(x, z2) ∧ ϕ(z2) ∧ z2π
′
2y ∧ descϕ(z2, z1) ∧ z1π

′
1y.

In the first case the length of the cycle decreased by two, in the two other cases by one.
Thus their disjunction is equivalent to the formula of Figure 5.3. We replace that

formula by this disjunction, bring the result in disjunctive normal form and distribute the
disjuncts out. We again have a disjunction of “conjunctive queries”. As the new cycles
are smaller, this procedure will terminate, and results in a (big) disjunction of trees.

An important consequence of this result is that CTP patterns are closed under inter-
section:

Theorem 5.3.5. The intersection of two CTP paths is equivalent to⊥ or a union of CTP
paths.

Theorem 5.3.4 together with the translation of Regular XPath into FO∗(c, s) from
ten Cate (2006) implies that every union of CTP patterns with disjunctions is in the
intersection of first order logic and positive downward FO∗(c, s). It is an intriguing
open problem whether the converse also holds.

5.4 Containment

Before we determine the exact complexity of the containment problem for CTP and
expansions we prove a number of reductions. Most are generalizations from TP to CTP.
The key new result is the encoding of negated labels in CTP.

5.4.1 Containment preliminaries

The following reductions will be used later in our upper and lower bound proofs.

Multiple output nodes

The main difference between tree patterns and their XPath formulation is that tree pat-
terns can have multiple output nodes. Kimelfeld and Sagiv (2008) (Proposition 5.2)
show that for the TP containment problem the number of output nodes is not important:
the problem can be PTIME reduced to a containment problem of Boolean TPs. This is
achieved, given ϕ,ψ ∈ TP, by adding a child labeled with a new label ai to every output
node Xi in both ϕ and ψ. Second, to every leaf that is not an output node or a newly
added node, we add a child labeled with >. The same result, using the same argument,
holds for CTP.

Proposition 5.4.1. Let S ⊆ {∨,¬}. For CTPS patterns with multiple output nodes ϕ,ψ
there are PTIME computable Boolean CTPS , ϕ′, ψ′ such that ϕ ⊆ ψ iff ϕ′ ⊆ ψ′. The
same holds for multi-labeled trees.

86

5.4. Containment

a

a

. . .γ

a

γ
a

a

γϕ

b

. . .

a

γ

k −
1

nodes

k −
1

nodes

a

a

ab

. . .
a

k
nodes

�1
b

�2

b

�k

a

5.4(a) Pattern ϕ′. 5.4(b) Pattern ψ.

Figure 5.4: Patterns ϕ′ and ψ from Proposition 5.4.2.

a

a

a

k�
1

n
od

es

...

a

. . .
T1 Tk

b

T.n

b

. . .
T1 Tk

b

a k�
1

n
od

es

...

a
. . .

T1 Tk

b

. . .
T1 Tk

b

Figure 5.5: Model for pattern ϕ′ from Proposition 5.4.2.

Disjunctions in the consequent

We now show that the containment problem for both unions of CTP¬ and unions of TP¬

can be reduced to containments without unions. This is useful in lower bound proofs, as
we can use a union in the consequent to express multiple constraints.

The proof of the following proposition is a slight modification of the proof for TP in
(Miklau and Suciu, 2004).

87

5. Containment for Conditional Tree Patterns

Proposition 5.4.2. Let ϕ be a CTP¬ (TP¬) formula and ∆ a finite set of CTP¬ (resp.
TP¬) formulas. Then there are PTIME computable CTP¬ (TP¬) formulas ϕ′ and ψ
such that ϕ ⊆ ∨∆ iff ϕ′ ⊆ ψ.
If ϕ and ∆ are in CTP (TP), ϕ′ and ψ are in CTP (TP) as well.
The same holds for containment over multi-labeled trees.

Proof. First, for the case of TP¬, the proof from Miklau and Suciu (2004) can be readily
applied here (using embeddings which also preserve negated labels, cf Remark 5.3.1).

Now we prove the proposition for CTP¬. For simplicity, we use the same letter to
denote a CTP¬ formula and its corresponding tree pattern representation. Assume ∆ is
{δ1, . . . , δk}. If ι is a CTP¬ pattern, by ιa we denote the CTP¬ pattern defined as having
the root labeled by a, whose unique child is the root of ι. Consider new labels a and b
occurring neither in ϕ nor ∆. Let γ =

∧
0<`≤k δ

b
` . Note that γ is consistent if every δ` is

consistent. Now define ϕ′ as the CTP¬ tree pattern in Figure 5.4(a), and ψ as the CTP¬

tree pattern in Figure 5.4(b).
We verify that ϕ ⊆ ∨∆ iff ϕ′ ⊆ ψ. Without loss of generality, we assume that each

of ϕ, δ1, . . . , δk is consistent.
For the direction from left to right, assume ϕ ⊆ ∨∆ and T, n |= ϕ′ for an arbitrary

T, n. This means that there is a path n = m0 . . .m2k−1 of nodes in T that are labeled
with a and such that:

• for every 0 < ` ≤ k: T,mi |= (δb`)
a, with i ∈ {1, . . . , k−1}∪{k+1, . . . , 2k−1},

• T,mk |= (ϕb)a.

By the assumption, it follows that there is an index j such that T,mk |= (δbj)
a. Then,

by Theorem 5.3.3, there is a simulation f ′ from (δbj)
a into T.mk. The simulation f ′

can be extended to a simulation f from ψ into T, n in the obvious way such that f is a
simulation from (δbi)

a into T,mk−j+i and the a-descendant edge in ψ is simulated on
the path m0, . . .mk−j+1. Thus, T, n |= ψ.

For the other direction, assume ϕ′ ⊆ ψ and T, n |= ϕ for an arbitrary T rooted at
n. As all δ` are consistent, there are trees T`, n` |= δ`, for each ` ∈ {1, . . . , k}. Let
T ′ be the tree created from T.n and the T`’s depicted in Figure 5.5 with root r. Then
T ′, r |= ϕ′. Because we assumed ϕ′ ⊆ ψ, then also T ′, r |= ψ, which by Theorem 5.3.3
implies the existence of a simulation g from ψ into T ′.r. In particular, the span of k a-
nodes in ψ has to be simulated on an a-path of length k in T ′. This means that for some
j ∈ {1, . . . , k}, g is a simulation from δj into T.n. By Theorem 5.3.3 again, T, n |= δj ,
and thus T, n |= ∨∆.

Note that if ϕ and ∆ are in CTP, then the constructed ϕ′ and ψ are in CTP too.

From single-labeled to multi-labeled trees

We now show that the containment problem over single-labeled trees can be reduced to
a containment problem over multi-labeled trees.

Proposition 5.4.3. Let S ⊆ {¬,∨}. Given CTPS (TPS) patterns ϕ,ψ, there are PTIME
computable CTPS (TPS) patterns ϕ′, ψ′ such that ϕ ⊆ ψ iff ϕ′ ⊆ML ψ

′.

88

5.4. Containment

Proof. Let p1, . . . , pn be the labels from Σ occurring in ϕ or ψ. We take ϕ′′ as ϕ, and
ψ′′ := ψ ∨ ∨1≤i<j≤n(pi ∧ pj) ∨

∨
1≤i<j≤n〈↓+〉(pi ∧ pj). The disjuncts added to ψ

ensure that every node of a counterexample is labeled with at most one label. Now we
show that ϕ ⊆ ψ iff ϕ′′ ⊆ML ψ

′′

(⇒) We show the contraposition. Let T be a multi-labeled tree such that T |= ϕ′′

and T 6|= ψ′′. Then let T ′ be the tree obtained from T by restricting the labels ρ′(v) :=
ρ(v) ∩ {p1, . . . , pn} for every node v. Since T does not satisfy ψ′′, the label of every
node in T ′ contains at most one symbol. Because we did not change the valuation of the
labels p1, . . . , pn, for each formula θ constructed from these tags, it holds that T, v |= θ
iff T ′, v |= θ. From this and the fact that the label of each node of T ′ is of size at most
one, it follows that T ′ |= ϕ′′ and T ′ 6|= ψ′′. In order to make a single-labeled tree out of
T ′, we add a dummy symbol q in the label of a node if its label in T ′ is empty. For the
resulting tree T ′′ it holds T ′′ |= ϕ and T ′′ 6|= ψ.

(⇐) Let T be a single-labeled tree such that T |= ϕ and T 6|= ψ. Then this tree can
be considered as a multi-labeled tree. Moreover, T |= ϕ′′ and T 6|= ψ′′ since T does not
satisfy any of the disjuncts in ψ′′.

Our transformation does not introduce negations, but only disjunctions in ψ′′. Thus
the proposition is proven for the cases when S contains disjunction, where we take
ϕ′ := ϕ′′ and ψ′ := ψ′′. For the remaining cases (S ⊆ {¬}), although ψ′′ contains
disjunctions, by Proposition 5.4.2, there exist two PTIME computable CTPS (TPS) pat-
terns ϕ′ and ψ′ such that ϕ′′ ⊆ML ψ

′′ iff ϕ′ ⊆ML ψ
′. This concludes the proof.

Negated labels

We now show that CTP is expressive enough to encode label negation, as far as the
containment problem is concerned.

The trick of the encoding lies in the fact that two nodes connected by a descendent
edge are in either child or descendant of a child relation. Additionally, if we require that
neither of these relations occur at the same time, we can faithfully encode label negation.

Proposition 5.4.4. Let ϕ and ψ be CTP¬ patterns. There are PTIME computable CTP
patterns ϕ′ and ψ′ such that

ϕ ⊆ ψ iff ϕ′ ⊆ ψ′.

This also holds for containment over multi-labeled trees.

Proof. Given a containment problem ϕ ⊆ ψ in CTP¬, we construct an equivalent con-
tainment problem ϕ• ⊆ ψ◦ with ϕ• in CTP and ψ◦ a union of CTP patterns. Applying
Proposition 5.4.2 then yields the desired result.

Let p1, ¬p1, . . . , pn,¬pn be the labels appearing in ϕ and ψ and their negations. Let
s be a new label and let ζ be the formula 〈↓〉(s ∧ ∧i〈↓+〉pi). We define the translation

89

5. Containment for Conditional Tree Patterns

(·)• inductively:

>• = ζ

(pi)
• = ζ ∧ 〈↓〉(s ∧ 〈↓〉pi)

(¬pi)• = ζ ∧ 〈↓〉(s ∧ 〈↓〉〈↓+〉pi)
(θ ∧ σ)• = θ• ∧ σ•
(〈↓〉ϕ)• = ζ ∧ 〈↓〉ϕ•

(〈ϕ+〉ψ)• = ζ ∧ 〈ϕ•+〉ψ•.

The translation is defined in such a way that for any ϕ, ϕ• implies ζ. Obviously (·)• is
a PTIME translation. Let 〈↓∗〉ϕ denote ϕ ∨ 〈↓+〉ϕ. Let AX be the disjunction of the
following formulas:

〈↓∗〉(s ∧ 〈↓∗〉ζ) (5.4)∨
i

〈↓∗〉(p•i ∧ (¬pi)•) (5.5)∨
i 6=j
〈↓∗〉(p•i ∧ p•j). (5.6)

In our intended models, none of these disjuncts are true at the root. The disjunct (5.4)
is technical, (5.5) states that no node makes the encodings of both p and ¬p true, and
(5.6) ensures that no node makes the encoding of two different labels true. We define
ψ◦ = ψ• ∨ AX . In the case of multi-labeled trees the translation is the same, except
that we do not include the disjunction (5.6) in the definition of ψ◦. Note that although in
ψ◦ we have disjunctions within the scope of a modality, we can (in PTIME) rewrite the
formula into an equivalent union of disjunction free formulas.

We now show that ϕ ⊆ ψ iff ϕ• ⊆ ψ◦.
(⇐) We show the contrapositive. Given a single-labeled tree T = (N,E, r, l) such
that T, r |= ϕ and T, r 6|= ψ, we build a single-labeled tree T ′ = (N ′, E′, r′, l′) as
follows. The set of nodes N ′ is the maximal E′-connected subset of N × {0, 1, 2, 3} ×
{p1, . . . , pn,]} that contains the root r′ = (r, 0,]). The relation E′ is defined as follows:
(n′, 0,]) is the parent of (n, 0,]) when n′ is the parent of n in T ; (n, 0,]) is the parent
of (n, 1,]); (n, 1,]) is the parent of (n, 2, pi), i = 1, . . . , n, and (n, 2, pi) is the parent of
(n, 3, pi), i = 1, . . . , n. The labeling l′ is defined as follows: s only labels nodes of the
form (n, 1,]). Then, pi labels (n, 2, pi) if T, n |= pi and pi labels (n, 3, pi) if T, n 6|= pi.
No other nodes are labeled by pi. In all other cases, we label a node by a fresh label z.

It is clear from the definition that T ′ is a single-labeled tree. Note that T ′ 6|= AX
and that ζ is true at all nodes of type (n, 0,]), and only at these nodes. Let θ be a
formula in variables {p1, . . . , pn}, and n ∈ N . By induction on θ, we show T, n |= θ iff
T ′, (n, 0,]) |= θ•.

• θ = >. This holds because by construction ζ is true at all nodes of type (n, 0,]).

• θ = p. We have T, n |= p⇔ l(n) = p⇔ l′(n, 2, p) = p⇔ (since (n, 2, p) is the
only child of (n, 1,]) labeled with p and (n, 1,]) is labeled by s)

90

5.4. Containment

T ′, (n, 1,]) |= s ∧ 〈↓〉p ⇔ (since (n, 1,]) is the only child of (n, 0,]) and ζ is
always true at (n, 0,])) T ′, (n, 0,]) |= ζ ∧ 〈↓〉(s ∧ 〈↓〉p)⇔ T ′, (n, 0,]) |= p•.

• θ = ¬p. We have T, n |= ¬p⇔ l(n) 6= p⇔ l′(n, 3, p) = p⇔ (since (n, 3, p) is
the only descendent of (n, 1,]) labeled with p and (n, 1,]) is labeled by s)
T ′, (n, 1,]) |= s ∧ 〈↓〉〈↓+〉p⇔ (since (n, 1,]) is the only child of (n, 0,]) and ζ
is always true at (n, 0,])) T ′, (n, 0,]) |= ζ ∧ 〈↓〉(s ∧ 〈↓〉〈↓+〉p)⇔ T ′, (n, 0,]) |=
(¬p)•.

• θ = ϕ1 ∧ ϕ2. We have T, n |= ϕ1 ∧ ϕ2 ⇔ T, n |= ϕ1 and T, n |= ϕ2 ⇔ (by the
induction hypothesis) T ′, (n, 0,]) |= ϕ•1 and T ′, (n, 0,]) |= ϕ•2 ⇔ T ′, (n, 0,]) |=
ϕ•1 ∧ ϕ•2 ⇔ T ′, (n, 0,]) |= (ϕ1 ∧ ϕ2)•.

• θ = 〈↓〉ϕ. We only show the right to left direction. T ′, (n, 0,]) |= (〈↓〉ϕ)• ⇔
T ′, (n, 0,]) |= ζ ∧ 〈↓〉ϕ• ⇔ ∃m ∈ N ′ such that (n, 0,])E′m and T ′,m |= ϕ•.
But then T ′,m |= ζ because ϕ• implies ζ. Thus m must be of the form (n′, 0,])
as only these make ζ true. But then n′ ∈ N and nEn′ and we may apply the
inductive hypothesis to get T, n′ |= ϕ, and thus T, n |= 〈↓〉ϕ.

• θ = 〈ϕ+〉ψ. We only show the right to left direction. T ′, (n, 0,]) |= (〈ϕ+〉ψ)• ⇔
T ′, (n, 0,]) |= ζ∧〈ϕ•+〉ψ•⇔∃m ∈ N ′ such that (n, 0,])E′+m and T ′,m |= ψ•

and ∀m′.(n, 0,])E′+m′E′+m it holds T ′,m′ |= ϕ•. Now, because ϕ• implies ζ
for all ϕ, the node m and all the nodes m′ are of the form (n′, 0,]) such that n′ is
in the original set N . Moreover they stand in the same way in the E relation. Thus
we can apply the inductive hypothesis and obtain T, n |= 〈ϕ+〉ψ.

As a special case, T ′, (r, 0,]) satisfies ϕ• but not ψ•. Recall that T ′, (r, 0,]) does not
satisfy the other disjunctsAX of ψ◦ either and thus, T ′, (r, 0,]) |= ϕ• and T ′, (r, 0,]) 6|=
ψ◦, as desired.

(⇒) Again we show the contrapositive. Suppose there is a model T = (N,E, r, l)
satisfying ϕ• but not ψ◦ at the root r. Then in particular T, r 6|= AX . Without loss of
generality, we can assume that the simulation from (the conditional tree pattern corre-
sponding to) ϕ• into T is surjective. (Otherwise the image of ϕ• is a subtree of T and
thus by monotonicity ψ◦ cannot be satisfied at the root of this subtree.) In this model,
as a consequence of the fact that ϕ• implies ζ, every branch has an initial segment satis-
fying ζ, immediately followed by a node labeled by s, which is followed by a segment
where ζ is never satisfied because of the first disjunct (5.4) of AX .

We define a tree T ′ = (N ′, E′, r′, l′) whose set of nodes N ′ consists of the nodes of
T where ζ is satisfied, i.e. N ′ = {n ∈ N | T, n |= ζ}; E′ is simply the restriction of E
to N ′ and r′ = r. We define l′(n) = pi iff T, n |= p•i , and if T, n 6|= p•i for any i, then
we label n with a fresh variable z. This definition of l′ is well-defined because the falsity
of the disjunction (5.6) in AX ensures that each node makes at most one p•i true in T .

Let θ be a formula in variables {p1, . . . , pn}, and n ∈ N . By induction on θ, we
show that

T, n |= θ• iff T ′, n |= θ. (5.7)

• θ = >. Then T, n |= >• ⇔ (by definition of (·)•) T, n |= ζ ⇔ (by definition of
N ′)⇔ T ′, n |= >.

91

5. Containment for Conditional Tree Patterns

• θ = p. Then T, n |= p•⇔ (by definition of the labeling l′) l′(n) = p⇔ T ′, n |= p.

• θ = ¬p. If T, n |= (¬p)•, then by the falsity ofAX , T, n 6|= p•, and thus l′(n) 6= p
and T ′, n 6|= p and thus T ′, n |= ¬p. Conversely, T ′, n |= ¬p ⇔ l′(n) 6= p ⇔
T, n 6|= p•. But T, n |= ζ and thus either p• or (¬p)• must hold at T, n. Thus
T, n |= (¬p)•.

• θ = ϕ1 ∧ ϕ2. Then T, n |= (ϕ1 ∧ ϕ2)• ⇔ T, n |= ϕ•1 and T, n |= ϕ•2 ⇔
(n ∈ N ′ because ϕ• implies ζ and thus by the inductive hypothesis) T ′, n |= ϕ1

and T ′, n |= ϕ2⇔ T ′, n |= ϕ1 ∧ ϕ2.

• θ = 〈↓〉ϕ. Then T, n |= (〈↓〉ϕ)• ⇔ T, n |= ζ and T, n |= 〈↓〉ϕ• ⇔ there exists
n′ ∈ N such that nEn′ and T, n′ |= ϕ• ⇔ (by the fact T, n′ |= ζ and, thus,
n′ ∈ N ′ and the inductive hypothesis) there exists n′ ∈ N ′ such that nE′n′ and
T ′, n′ |= ϕ⇔ T ′, n |= 〈↓〉ϕ, as desired.

• θ = 〈θ+〉τ . Assume T, n |= (〈θ+〉τ)•. Then, by definition of (·)•, T, n |=
ζ ∧ 〈θ•+〉τ•. That means there exists n′ in T with nE+n′ such that T, n′ |= τ•

and for all n′′ with nE+n′′E+n′ it holds T, n′′ |= θ•. By definition of (·)•, the
nodes n, n′ and all the nodes between n and n′ satisfy ζ and thus belong to T ′.
By inductive hypothesis, T ′, n′ |= τ and T ′, n′′ |= θ for all nE+n′′E+n′, which
means T ′, n |= 〈θ+〉τ holds. Conversely, assume T ′, n |= 〈θ+〉τ . By definition
of T ′, we have that T, n |= ζ, which is the first conjunct of (〈θ+〉τ)•. The second
conjunct follows by the inductive hypothesis.

As T is a counterexample for ϕ• ⊆ ψ◦, (5.7) implies that T ′ is a counterexample of
ϕ ⊆ ψ, as desired.

The same argument applies for multi-labeled trees. The only change is to remove the
last disjunction (5.6) from AX .

5.4.2 Lower bounds
In this section we show that the containment for TP¬ is PSPACE hard. This lower bound
will carry over to the containment problem for CTP.

Theorem 5.4.1. (i) The containment problem for CTP is PSPACE-hard.

(ii) The containment problem for TP¬ is PSPACE-hard,

(iii) Both results also hold for multi-labeled trees.

Proof. (i) follows from (ii) by Proposition 5.4.4. (iii) follows from (i) and (ii) by Propo-
sition 5.4.3. For proving (ii), we reduce the corridor tiling problem, which is known to
be hard for PSPACE (Chlebus, 1986; van Emde Boas, 1997), to the containment problem
for TP¬. We use the construction from the PSPACE-hardness proof for the containment
problem of TP with disjunction over a finite alphabet in (Neven and Schwentick, 2006).

The corridor tiling problem is formalized as follows. Let Til = (D,H, V, b̄, t̄, n) be a
tiling system, where D = {d1, . . . , dm} is a finite set of tiles, H,V ⊆ D2 are horizontal
and vertical constraints, n is a natural number given in unary notation, b̄ and t̄ are tuples

92

5.4. Containment

over D of length n. Intuitively, given a corridor of width n, the goal is to construct a
tiling of the corridor using the tiles from D so that the horizontal and vertical constraints
are satisfied and the bottom and top rows are tiled by b̄ and t̄, respectively. We say that
a tiling satisfies the horizontal constraints H(respectively the vertical constraints V) if
for every 1 ≤ i ≤ n, j ∈ N it holds that if d1 and d2 are the tiles on the positions
(i, j) and (i+ 1, j) of the corridor (respectively (i, j) and (i, j + 1)), then (d1, d2) ∈ H
((d1, d2) ∈ V).

Now we construct in PTIME in the length of Til, two TP¬ expressions ϕ and ψ such
that the following holds:

ϕ 6⊆ ψ iff there exists a tiling for Til. (5.8)

By Proposition 5.4.2, we may without loss of generality construct ψ as a disjunction of
TP¬ expressions. To this purpose, we use the string representation of a tiling. Each row
of the considered tiling is represented by the tiles it consists of. If the tiling of a corridor
of width n has k rows, it is represented by its rows separated by the special symbol]. The
top row is followed by the symbol $. Thus, a tiling is a word of the form u1]u2] · · ·]uk$,
where each ui is the word of length n corresponding to the i-th row in the tiling. In
particular u1 = b̄ and uk = t̄. For the sake of readability, for expression r, ri denotes the
path formula ?r; ↓; ?r; . . . ; ↓; ?r with i occurrences of r.

Let ϕ be

〈?b1; ↓; ?b2; . . . ; ↓; ?bn; ↓; ?]; ↓+ ; ?t1, ↓; . . . ↓; ?tn; ↓〉$.

Intuitively, this expression enforces a tiling to start with a path starting with b̄ and fin-
ishing with t̄ and the final symbol $. Now the formula ψ defines all incorrect tilings and
additional constraints. It is the disjunction of the following TP¬ formulas.

(0) 〈↓+ ; ?(¬d1 ∧ . . . ∧ ¬dm ∧ ¬]); ↓+〉$. There is a position that is labeled neither
by a tile nor a delimiter.

(1) Incorrect length of a row.

(1a)
∨n−1
i=0 〈↓+ ; ?];>i; ↓〉], a row is too short;

(1b) 〈↓+ ; (¬])n+1〉>, a row is too long;

(2)
∨

(d1,d2)6∈H〈↓+; ?d1; ↓; ?d2〉>, some horizontal constraints are violated;

(3)
∨

(d1,d2)6∈V 〈↓+; ?d1; ↓;>n; ↓; ?d2〉>, some vertical constraints are violated.

Note that negated labels are used in (0) and (1b). Also note that the size of ϕ and ψ is
bounded by a polynomial in the size of Til.

We now show (5.8).
(⇐). Assume that there exists a tiling of the corridor. Let s be the string represen-

tation of it. Then, s = u1]u2] . . .]uk$, where |ui| = n, ui ∈ Dn, u1 = b̄ and uk = t̄.
Moreover, on the one hand if x · y, is an infix of some ui, then (x, y) ∈ H , and on the
other hand for every infix x · u′ · y of length n+ 1 of ui] · ui+1, it holds that (x, y) ∈ V .
Let Ts be the corresponding tree, i.e. a single path of |s| nodes {v1, . . . , v|s|} where the

93

5. Containment for Conditional Tree Patterns

labeling is set in accordance with s, i.e. l(vi) = si. Clearly, Ts is a model of ϕ and not
of ψ.

(⇒). Let T be a tree such that T, r |= ϕ and T, r 6|= ψ. Since T, r |= ϕ, there must
exist a path r = v1, . . . , vm in T which starts with b̄ and finishes with t̄$. Moreover,
either] or a symbol from D is the label of every node vi, 1 ≤ i < m, according to (0).

We define a tiling function g : {0, . . . , n − 1} × N → D assigning a tile to every
position in the corridor as follows: g(i, j) = l(v(n+1)×j+i+1), 1 ≤ i ≤ n, where l is the
labeling function of T . Indeed, this function is well defined, as (1) ensures the correct
counting. By formulas (2) and (3) the tiling defined by g satisfies the horizontal and
vertical constraints.

The difference between CTP patterns and TP patterns is that CTP descendent edges
can be labeled by patterns. One might ask whether a bound on the degree of such a
labeling nesting can lead to a lower complexity of the containment problem. Define the
until nesting depth un : CTP→ N as follows.

• un(p) = un(>) = 0,

• un(〈↓〉ϕ) = un(〈↓+〉ϕ) = 1,

• un(ϕ1 ∧ ϕ2) = max{un(ϕ1), un(ϕ2)},
• un(〈ϕ+〉ψ) = un(ϕ) + 1.

Unfortunately, a close examination of the encoding in the lower bound proof and the
encodings in Propositions 5.4.2 and 5.4.4 gives a negative answer to the question. Thus
we obtain

Theorem 5.4.2. The CTP containment problem for formulas of until nesting depth one
is PSPACE-hard.

5.4.3 Upper bounds
In this section, we show a matching PSPACE upper bound for CTP containment.

The complexity of CTP¬,∨ containment follows from a translation into existential
CTL (∃CTL), whose containment problem is known to be PSPACE-complete (Kupfer-

man and Vardi, 2000). The only small technical issue is that ∃CTL formulas are inter-
preted over infinite finitely branching trees. We solve that by relativizing formulas with
a new propositional variable s, whose interpretation will provide the desired finite tree.

Theorem 5.4.3. The containment problem for CTP¬,∨ is decidable in PSPACE. This
also holds for multi-labeled trees.

Proof. We prove the upper bound for the case of multi-labeled trees. The upper bound
for single-labeled trees then follows by Proposition 5.4.3.

We recall from Kupferman and Vardi (2000) the definition of ∃CTL. Let Prop be a
set of propositional variables. ∃CTL node formulas ϕ and path formulas α are defined
by:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃α
α ::= ϕ | α ∧ α | α ∨ α | Xα | (αUα) | (αÛα)

94

5.4. Containment

where p ∈ Prop, and asking that in node formulas, the operators X(“next”), U (“until”)
and Û (“dual of until”) are always immediately preceded by ∃.

The semantics for ∃CTL is given by infinite finitely branching trees. ∃CTL path for-
mulas are interpreted at a (possibly infinite) paths of the tree and ∃CTL node formulas
are interpreted at nodes of the tree. Our reduction will translate CTP¬,∨ formulas to
∃CTL node formulas, with occurrences of formulas of the form ∃Xϕ and ∃ψUϕ. Se-
mantics of such formulas is defined as follows, given an infinite tree T = (N,E, r, ρ)
and a node n ∈ N .

T, n |= ∃Xϕ iff there exists a node m ∈ N such that nEm and T,m |= ϕ,

T, n |= ∃ψUϕ iff there exists a node m ∈ N such that nE∗m and T,m |= ϕ,

and for all n′ ∈ N with nE∗n′E+m it holds T, n′ |= ψ.

The CTP node formula 〈ϕ+〉ψ corresponds to the strict until operator, which is express-
ible in ∃CTL as ∃X∃ψUϕ.

We denote by ⊆∞ the containment relation for ∃CTL node formulas over finitely
branching trees where each branch is infinite.

Let ϕ,ψ be in CTP¬,∨ and let s be a new propositional variable not in ϕ,ψ. The
translation (·)s from CTP¬,∨ to ∃CTL node formulas relativizes every subformula with
s and adjusts the syntax.

(>)s = s ∧ >
(p)s = s ∧ p

(¬p)s = s ∧ ¬p
(ϕ1 ∧ ϕ2)s = ϕs1 ∧ ϕs2
(ϕ1 ∨ ϕ2)s = ϕs1 ∨ ϕs2

(〈↓〉ϕ)s = s ∧ ∃Xϕs
(〈ψ+〉ϕ)s = s ∧ ∃X∃ψsUϕs

We claim that ϕ ⊆ ψ iff ϕs ⊆∞ ψs.
The proof is by contraposition. First assume that for some finite tree T = (N,E, r, ρ)

and node n ∈ N it holds T, n |= ϕ and T, n 6|= ψ. We then construct an infinite tree
which is a counterexample. Let s be a propositional variable not occurring in ϕ or ψ.
Let T s∞ be the infinite tree obtained from T by adding to each leaf in T an infinite path.
The labeling is changed as follows: all new nodes have the empty label set and we add
the label s to the label set of all old nodes. Formally, T s∞ = (N∞, E∞, r, ρ∞), where
N∞ = N ∪ {nm1 , nm2 , . . . | m is a leaf in T} is the set of nodes, E∞ = E ∪ {(m,nm1) |
nm1 ∈ N∞} ∪ {(nmi , nmi+1) | nmi , nmi+1 ∈ N∞, i ≥ 1} is the set of edges, r is the root
and ρ∞ is the labeling function defined as follows.

ρ∞(n) =

{
ρ(n) ∪ {s} if n ∈ N,
∅ if n ∈ N∞ \N.

We show by induction on the structure of the formula that for every node n ∈ N and
every CTP¬,∨ formula θ, T, n |= θ iff T s∞, n |= θs.

95

5. Containment for Conditional Tree Patterns

To show this we will use the following two facts which are easy consequences of the
definitions of T s∞ and the translation (·)s:

T s∞, n |= s ⇔ n ∈ N, (∗)
and

T s∞, n |= ϕs ⇒ T s∞, n |= s. (∗∗)

• θ = >. We have T, n |= > iff n ∈ N iff n ∈ N∞ and s ∈ ρ∞(n) iff T s∞, n |=
s ∧ > iff T s∞, n |= (>)s.

• θ = p, p ∈ Σ. We have T, n |= p iff p ∈ ρ(n) iff (since n ∈ N) {p, s} ⊆ ρ∞(n)
iff T s∞, n |= s ∧ p iff T s∞, n |= (p)s.

• θ = ¬p, p ∈ Σ. We have T, n |= ¬p iff p 6∈ ρ(n) iff (since n ∈ N and, thus,
s ∈ ρ∞(n)) p 6∈ ρ∞(n) and s ∈ ρ∞(n) iff T s∞, n |= s ∧ ¬p iff T s∞, n |= (¬p)s.

• θ = ϕ1 ∧ ϕ2. We have T, n |= ϕ1 ∧ ϕ2 iff T, n |= ϕ1 and T, n |= ϕ2 iff
(by the induction hypothesis, (*) and (**)) T s∞, n |= ϕs1 and T s∞, n |= ϕs2 iff
T s∞, n |= ϕs1 ∧ ϕs2 iff T s∞, n |= ϕs.

• θ = ϕ1 ∨ ϕ2. By the same argument as for ϕ1 ∧ ϕ2.

• θ = 〈↓〉ϕ. We have T, n |= 〈↓〉ϕ iff there exists m ∈ N such that nEm and
T,m |= ϕ iff (by the induction hypothesis, (*), (**) and the fact that n ∈ N)
T s∞, n |= s and there exists m ∈ N∞ such that nE∞m and T s∞,m |= ϕs iff
T s∞, n |= s ∧ ∃Xϕs iff T s∞ |= (〈↓〉ϕ)s.

• θ = 〈ψ+〉ϕ. We have T, n |= 〈ψ+〉ϕ iff there exists m ∈ N such that T,m |= ϕ
and for all n′ ∈ N with nE+n′E+m it holds T, n′ |= ψ. Then by the induction
hypothesis, (*) and (**), the latter is equivalent to existence of m ∈ N∞ such
that T s∞,m |= ϕs and for all n′ ∈ N∞ with nE+

∞n
′E+
∞m it holds T s∞ |= ψs.

The latter implication holds because for every node n′ with nE+
∞n
′E+
∞m it holds

n′ ∈ N and nE+n′E+m. Equivalently, there exists n1 ∈ N∞ and m ∈ N∞
such that nE∞n1E

∗
∞m, T s∞,m |= ϕs and for all n′ with n1E

∗
∞n
′E+
∞m it holds

T s∞, n
′ |= ψs. This is equivalent to T s∞, n |= s ∧ ∃X∃ψsUϕs as desired.

Thus, we obtain both T s∞, n |= ϕs and T s∞, n 6|= ψs.
For the other direction, let T∞ = (N∞, E∞, r, ρ∞) be some infinite tree over Σ such

that T∞, r |= ϕs and T∞, r 6|= ψs. We then remove from the model all nodes without
s and their descendants. Formally, T = (N,E, r, ρ), where N = N∞ \ {n | ∃n′ ∈
N∞.s 6∈ ρ∞(n′) ∧ n′E∗∞n} is the set of nodes, E = E∞|N×N is the set of edges, r is
the root, and ρ(n) = ρ∞(n) is the labeling function.

By induction we can show that for every CTP¬,∨ formula θ and node n ∈ N , it holds
T∞, n |= θs if and only if T, n |= θs. The two non-trivial cases are the following.

• θ = 〈↓〉ϕ. We have T∞, n |= s ∧ ∃Xϕs iff T∞, n |= s and there exists m ∈ N∞
such that nE∞m and T∞,m |= ϕs iff T, n |= s and there exists m ∈ N such
that nEm and T,m |= ϕs. The direction from right to left is obvious, while

96

5.5. Conclusion

the direction from left to right because of the following. Since T∞,m |= ϕs, it
follows that T∞,m |= s, i.e. s ∈ ρ∞(m). Then since n ∈ N , we have that
m ∈ N too by the definition. The latter also implies that nEm holds in T and thus
that T, n |= s ∧ ∃Xϕs.

• θ = 〈ψ+〉ϕ. We have T∞, n |= s ∧ ∃X∃ψsUϕs iff T∞, n |= s and there exists
m ∈ N∞ such that T∞,m |= ϕs, nE+

∞m and for all n′ ∈ N∞ with nE+
∞n
′E+
∞m

it holds T∞, n′ |= ψs. This is equivalent to T, n |= s and there exists m ∈ N such
that T,m |= ϕs and for all n′ with nE+n′E+m it holds T,m |= ψs, which means
T, n |= s ∧ ∃X∃ψsUϕs as desired. The direction from left to write is trivial since
T is a substructure of T∞. The direction from right to left follows from the fact
that m ∈ N and all the nodes n′ such that nE+

∞n
′E+
∞m belong to N as well and,

moreover, it holds nE+n′E+m.

Thus, we obtain that T, r |= ϕs and T, r 6|= ψs. Because all nodes of T now make s
true, we can discard the relativization with s in the formulas. Thus obtaining T, r |= ϕ
and T, r 6|= ψ. The only problem is that T is infinite. But using the simulations from
Theorem 5.3.3 it is easy to see that we can turn T into a finite counterexample.

Thus, we have shown that ϕ ⊆ ψ if and only if ϕs ⊆∞ ψs. The latter containment
problem in ∃CTL is known to be decidable in PSPACE. This concludes the proof.

Corollary 5.4.1. The containment problem for TP¬ is PSPACE complete.

However, restricting negation to a safe negation p∧¬q1∧. . .∧¬qn keeps the complex-
ity of the containment problem for tree patterns in CONP. Note that p∧¬q1 ∧ . . .∧¬qn
only adds expressive power over multi-labeled models, because on single labeled models
p ≡ p∧¬q1∧ . . .∧¬qn. The proof of the following result can be found in Chapter 3 and
(Marx and Sherkhonov, 2015). Here TP∨,¬

s

is tree patterns expanded with disjunction
and the safe negation construct.

Theorem 5.4.4. The containment problem for TP∨,¬
s

over multi-labeled trees is in
CONP.

5.5 Conclusion

We have shown that adding conditions on the edges of tree patterns gives a boost in ex-
pressive power which comes with the price of a higher – PSPACE – complexity for the
containment problem than for tree patterns. We located the source of the extra com-
plexity in the fact that unrestricted negations of labels can be coded in Conditional Tree
Patterns. Adding negations of labels to tree patterns causes an increase in complexity of
the containment problem from CONP to PSPACE. In Chapter 3 we showed that if nega-
tion is restricted to be safe, then containment for PosXPath and CQ stays in CONP and
ΠP

2 , respectively. In Chapter 4 we show that containment for child-only tree patters with
label negation is solvable in PTIME.

This work is a first step in exploring “Regular Tree Patterns” and fragments of it. We
mention some directions for future work.

97

5. Containment for Conditional Tree Patterns

Miklau and Suciu (2004) mention that the existence of a homomorphism between
tree patterns is a necessary but not sufficient condition for containment in TP. Can we
extend the simulations between conditional tree patterns and trees to simulations between
queries, partly capturing containment as for tree patterns?

What is the complexity of containment of regular tree patterns, i.e., the positive frag-
ment of Regular XPath without disjunction and union? As the satisfiability (and thus also
the containment) problem for Regular XPath is known to be EXPTIME-complete, it must
lie in between PSPACE and EXPTIME.

There are also interesting characterization questions: what is the exact FO fragment
corresponding to CTP or CTP with disjunction and union? ten Cate (2006) showed that
full Regular XPath (with all four axis relations) expanded with path equalities is equally
expressive as binary FO∗ (First-order logic extended with a transitive closure operator
that can be applied to formulas with exactly two free variables). Is every positive forward
binary FO∗ formula expressible as a Regular Tree Pattern? Is CTP with disjunction and
union equally expressive as FO intersected with positive FO∗? Are unions of CTP
equivalent to unions of the first order fragment of conjunctive regular path queries (Cal-
vanese et al., 2000)?

5.A Translations between CTP and ctp

The following constructions are similar to the tree and graph representations for tree
patterns and conjunctive queries over trees (Björklund et al., 2011; Miklau and Suciu,
2004)

We define the translation function c(·) which assigns an equivalent conditional tree
pattern with one output node to every CTP formula. The output node of c(ϕ), where ϕ
is a node formula, equals the root.

Let α and ϕ be path and node CTP formulas. We define c(α) and c(ϕ) by mutual
induction on the complexity of the path and node formulas. We take c(α) or c(ϕ) to be
the tree (N,E, r, o, ρN , ρE), where the components are defined according to the cases.

• α =↓. Then N consists of two nodes r and n. The edge relation E is defined as
{〈r, n〉}. Moreover, o := n, ρN (v) = ∅ for v ∈ {r, n} and ρE(〈r, n〉) =↓,

• α =?ϕ. Then c(α) := c(ϕ),

• α = α1;α2. Let c(α1) and c(α2) be the conditional tree patterns for α1 and α2.
Then c(α) is the tree obtained as follows. We fuse the root of c(α2) with the output
node of c(α1) and declare the output node of c(α2) as the output node of c(α). The
label of the fusion node is the union of the labels of the output node of c(α1) and
the root of c(α2). Labels of other nodes and the edges remain the same as in c(α1)
and c(α2).

• α = (↓; ?ϕ)∗; ↓. Then N consist of two nodes r and n. The edge relation E is
defined as {〈r, n〉}. Moreover, o := n, ρN (v) = ∅ for v ∈ {r, n} and ρE(〈r, n〉) =
c(ϕ).

For node formulas, the output node of the translation result is always defined as the
root r.

98

5.A. Translations between CTP and ctp

• ϕ = p. Then N consists of a single node r, E is empty, the labeling ρN (r) = {p}.

• ϕ = >. Similar to the previous case, with the exception that ρN (r) = ∅

• ϕ = ϕ1 ∧ ϕ2. Then c(ϕ) := c(ϕ1)⊕ c(ϕ2), i.e. the fusion of the conditional tree
patterns c(ϕ1) and c(ϕ2).

• ϕ = 〈α〉ϕ1. Let c(α) and c(ϕ1) be the corresponding conditional tree patterns.
Then c(ϕ) is obtained by fusing the output node of c(α) with the root of c(ϕ). The
labeling of the fusion node is defined as the union of the labels of the root of c(ϕ)
and the output node of c(α). Labels of the other nodes and edges remain the same
as in c(α) and c(ϕ).

Translation f(·) works the other way around. Let t = (N,E, r, o, ρN , ρE) be a
conditional tree pattern with one output node. We define f(t) by induction on the nesting
depth and the depth of the tree. We first define a mapping ϕ from nodes v ∈ N to
CTP node formulas. The mapping is defined inductively starting from the leaves as
follows. Here, for a finite set S = {p1, . . . , pn}, by

∧
S we denote the finite conjunction

p1 ∧ . . . ∧ pn. We take
∧ ∅ to be >. For a conditional tree pattern t, by rt we denote the

root of t. For v a node in pattern t:

ϕ(v) = ∧ρN (v) ∧∧
〈v,v′〉∈E, ρE(v,v′)=t′

〈?ϕ(rt′)〉ϕ(v′) ∧

∧
〈v,v′〉∈E, ρE(v,v′)=↓

〈↓〉ϕ(v′)

Now let r = v1, . . . , vn = o be the path from the root r to the output node o in t.
Let the expression di, 1 ≤ i ≤ n − 1 be defined by: di =↓ if ρE(vi, vi+1) =↓ and
di = (↓; ?ϕ(rt′))

∗; ↓ if ρE(vi, vi+1) = t′. Then the result of the translation f(t) of the
conditional tree pattern t is the CTP path formula:

?ϕ(v1); d1; ?ϕ(v2); d2; . . . ; ?ϕ(vn−1); dn−1; ?ϕ(vn).

For the next proposition we need the definition of equivalence between conditional
tree patterns. Let t be a conditional tree pattern with output nodes ō,|ō|=k, and T a
tree. Then the answer set of t over T is the set Out(t, T) = {〈g(o1), . . . , g(ok)〉 |
g is a simulation of t in T}. We say that two conditional tree patterns t1 and t2 are equiv-
alent, denoted as t1 ' t2, if Out(t1, T) = Out(t2, T) for every tree T .

Proposition 5.A.1. Let ϕ and α be CTP node and path formulas, t a conditional tree
pattern. Then it holds that

(i) f(c(ϕ)) ≡ ϕ and f(c(α)) ≡ α,

(ii) c(f(t)) ' t.
The proof of (i) is by mutual induction on α andϕ, and the proof of (ii) is by induction

on nesting depth and depth of t.

99

Part II

Application: Why-not
Explanations

101

6
High-Level Why-Not Explanations using

Ontologies

In this chapter we propose a foundational framework for why-not explanations, that is,
explanations for why a tuple is missing from a query result. Our why-not explanations
leverage concepts from an ontology to provide high-level and meaningful reasons for
why a tuple is missing from the result of a query.

A key algorithmic problem in our framework is that of computing a most-general
explanation for a why-not question, relative to an ontology, which can either be provided
by the user, or it may be automatically derived from the data and/or schema. We study
the complexity of this problem and associated problems, and present concrete algorithms
for computing why-not explanations, thus addressing RQ 4. In the case where an exter-
nal ontology is provided, we first show that the problem of deciding the existence of an
explanation to a why-not question is NP-complete in general. However, the problem is
solvable in polynomial time for queries of bounded arity, provided that the ontology is
specified in a suitable language, such as a member of the DL-Lite family of description
logics, which allows for efficient concept subsumption checking. Furthermore, we show
that a most-general explanation can be computed in polynomial time in this case. In ad-
dition, we address RQ 3 by proposing a method for deriving a suitable (virtual) ontology
from a database and/or a schema. We will show that this is the same as solving the con-
tainment problem. Thus, the framework proposed here can be seen as a use case for the
containment problem.

We also present an algorithm for computing a most-general explanation to a why-not
question, relative to such derived ontologies. This algorithm runs in polynomial-time
in the case when concepts are defined in a selection-free language or if the underlying
schema is fixed. Finally, we also study the problem of computing short most-general
explanations, and we briefly discuss alternative definitions of what it means to be an
explanation, and to be most general.

6.1 Introduction and results

An increasing number of databases are derived, extracted, or curated from disparate data
sources. Consequently, it becomes more and more important to provide data consumers
with mechanisms that will allow them to gain an understanding of the data that they are

103

6. High-Level Why-Not Explanations using Ontologies

confronted with. An essential functionality towards this goal is the capability to provide
meaningful explanations about why data is present or missing from the result of a query.
Explanations help data consumers gauge how much trust one can place on the result.
Perhaps more importantly, they provide useful information for debugging the query or
data that led to incorrect results.

This is particularly the case in scenarios where complex data analysis tasks are speci-
fied through large collections of nested views (i.e., views that may be defined in terms of
other views). For example, schemas with nested view definitions and integrity constraints
capture the core of LogiQL (Green, 2015; Green et al., 2012; Halpin and Rugaber, 2014)
(where view definitions may, in general, involve not only relational operations, but also
aggregation, machine learning and mathematical optimization tasks). LogiQL is a lan-
guage developed and used at LogicBlox (Aref et al., 2015) for developing data-intensive
“self service” applications involving complex data analytics workflows. Similar recent
industrial systems include Datomic1 and Google’s Yedalog (Chin et al., 2015). In each
of these systems, nested view definitions (or, Datalog programs) are used to specify com-
plex workflows to drive data-analytics tasks. Explanations for unexpected query results
(such as an unexpected tuple or a missing tuple) are very useful in such settings, since
the source of an error can be particularly hard to track.

There has been considerable research on the topic of deriving explanations for why
a tuple belongs to the output of a query. Early systems were developed in (Arora et al.,
1993; Shmueli and Tsur, 1990) to provide explanations for answers to logic programs in
the context of a deductive database. The presence of a tuple in the output is explained by
enumerating all possible derivations, that is, instantiations of the logic rules that derive
the answer tuple. In (Shmueli and Tsur, 1990), the system also explains missing answers,
by providing a partially instantiated rule, based on the missing tuple, and leaving the user
to figure out how the rest of the rule would have to be instantiated. In the last decade or
so, there have been significant efforts to characterize different notions of provenance (or
lineage) of query answers (see, e.g., (Cheney et al., 2009; Green et al., 2007b)) which
can also be applied to understand why an answer is in the query result. More details on
this can be found in Chapter 2.

There have also been extensive studies on the why-not problem (e.g., more recent
studies include (Baid et al., 2015; Chapman and Jagadish, 2009; Herschel et al., 2009;
Huang et al., 2008a; Meliou et al., 2010; Tran and Chan, 2010)). The why-not problem
is the problem of explaining why an answer is missing from the output. Since (Shmueli
and Tsur, 1990), the why-not problem was also studied in (Herschel et al., 2009; Huang
et al., 2008a) in the context of debugging results of data extracted via select-project-join
queries, and, subsequently, a larger class of queries that also includes union and aggre-
gation operators. Unlike (Shmueli and Tsur, 1990) which is geared towards providing
explanations for answers and missing answers, the goal in (Huang et al., 2008a) is to
propose modifications to underlying database I , yielding another database I ′ based on
the provenance of the missing tuple, constraints, and trust specification at hand, so that
the missing tuple appears in the result of the same query q over the updated database
I ′. In contrast to the data-centric approach of updating the database to derive the miss-
ing answer, another line of research (Bidoit et al., 2014a; Chapman and Jagadish, 2009;
Tran and Chan, 2010) follows a query-centric approach whereby the query q at hand is

1www.datomic.com

104

www.datomic.com

6.1. Introduction and results

modified to q′ (without modifying the underlying database) so that the missing answer
appears in the output of q′(I). More details can be found in Chapter 2.

A new take on why-not questions

In this chapter, we develop a novel foundational framework for why-not explanations that
is principally different from prior approaches. Our approach is neither data-centric nor
query-centric. Instead, we derive high-level explanations via an ontology that is either
provided, or is derived from the data or schema. Our immediate goal is not to compute
repairs of the underlying database or query so that the missing answer would appear in
the result. Rather, as in (Shmueli and Tsur, 1990), our primary goal is to provide under-
standable explanations for why an answer is missing from the query result. As we will
illustrate, explanations that are based on an ontology have the potential to be high-level
and provide meaningful insight to why a tuple is missing from the result. This is because
an ontology abstracts a domain in terms of concepts and relationships amongst concepts.
Hence, explanations that are based on concepts and relationships from an ontology will
embody such high-level abstractions. As we shall describe, our work considers two
cases. The first is when an ontology is provided externally, in which case explanations
will embody external knowledge about the domain. The second is when an ontology
is not provided. For the latter, we allow an ontology to be derived from the schema,
and hence explanations will embody knowledge about the domain through concepts and
relationships that are defined over the schema.

Formally, an explanation for why a tuple a is not among the results of a query q(I),
in our framework, is a tuple of concepts from the ontology whose extension includes
the missing tuple a and, at the same time, does not include any tuples from q(I). For
example, a query may ask for all products that each store has in stock, in the form of
(product ID, store ID) pairs, from the database of a large retail company. A user may
then ask why is the pair (P0034, S012) not among the result of the query. Suppose
P0034 refers to a bluetooth headset product and S012 refers to a particular store in San
Francisco. If P0034 is an instance of a concept bluetooth headsets and S012 is an instance
of a concept stores in San Francisco, and suppose that no pair (x, y), where x is an
instance of bluetooth headset and y is an instance of stores in San Francisco, belongs to
the query result. Then the pair of concepts (bluetooth headset, stores in San Francisco) is
an explanation for the given why-not question. Intuitively, it signifies the fact that “none
of the stores in San Francisco has any bluetooth headsets on stock”.

There may be multiple explanations for a given why-not question. In the above exam-
ple, this would be the case if, for instance, S012 belongs also to a more general concept
stores in California, and that none of the stores in California have bluetooth headsets on
stock. Our goal is to compute a most-general explanation, that is, an explanation that is
not strictly subsumed by any other explanation. We study the complexity of computing a
most-general explanation to a why-not question. Formally, we define a why-not instance
(or, why-not question) to be a quintuple (S, I, q,Ans, a) where S is a schema, which may
include integrity constraints; I is an instance of S; q is a query over S; Ans = q(I); and
a 6∈ q(I).

As mentioned earlier, a particular scenario where why-not questions easily arise is
when querying schemas that include a large collection of views, and where each view

105

6. High-Level Why-Not Explanations using Ontologies

may be nested, that is, defined in terms of other views. Our framework captures this
setting, since view definitions can be expressed by means of constraints.

Our framework supports a very general notion of an ontology, which we call S-
ontologies. For a given relational schema S, an S-ontology is a triple (C,v, ext) that
defines the set of concepts, the subsumption relationship between concepts, and respec-
tively, the extension of each concept w.r.t. an instance of the schema S. We use this
general notion of an S-ontology to formalize the key notions of explanation and most-
general explanation, and we show that S-ontologies capture two different types of on-
tologies.

The first type of ontologies we consider are those that are defined externally, pro-
vided that there is a way to associate the concepts in the externally defined ontology to
the instance at hand. For example, the ontology may be represented in the form of an
Ontology-Based Data Access (OBDA) specification (Poggi et al., 2008). More precisely,
an OBDA specification consists of a set of concepts and subsumption relation specified
by means of a description logic terminology, and a set of mapping assertions that relates
the concepts to a relational database schema at hand. Every OBDA specification induces
a corresponding S-ontology. If the concepts and subsumption relation are defined by
a TBox in a tractable description logic such as DL-LiteR, and the mapping assertions
are Global-As-View (GAV) assertions, the induced S-ontology can in fact be computed
from the OBDA specification in polynomial time. We present an algorithm for com-
puting most-general explanations to a why-not question, given an external S-ontology.
The algorithm runs in polynomial time when the arity of the query is bounded, and it
executes in exponential time in general. We show that the exponential running time is
unavoidable, unless P=NP, because the problem of deciding whether or not there exists
an explanation to a why-not question given an external S-ontology is NP-complete in
general.

The second type of ontologies that we consider are ontologies that are derived either
(a) from a schema S, or (b) from an instance of the schema. In both cases, the concepts
of the ontology are defined through concept expressions in a suitable language LS that
we develop. Specifically, our concepts are obtained from the relations in the schema,
through selections, projections, and intersections. The difference between the two cases
(a) and (b) lies in the way the subsumption relationv is defined. In the former, a concept
C is considered to be subsumed by another concept C ′ if the extension of C is contained
in the extension of C ′ over all instances of the schema. For the latter, subsumption is
considered to hold if the extension of C is contained in the extension of C ′ with re-
spect to the given instance of the schema. The S-ontology induced by a schema S, or
instance I , denoted OS or OI , respectively, is typically infinite, and is not intended to
be materialized. Instead, we present an algorithm for directly computing a most-general
explanation with respect toOI . The algorithm runs in exponential time in general. How-
ever, if the schema is of bounded arity, the algorithm runs in polynomial time. As for
computing most-general explanations with respect to OS, we identify restrictions on the
integrity constraints under which the problem is decidable, and we present complexity
upper bounds for these cases.

106

6.2. Preliminaries

More related work

The use of ontologies to facilitate access to databases is not new. A prominent example is
OBDA, where queries are either posed directly against an ontology, or an ontology is used
to enrich a data schema against which queries are posed with additional relations (namely,
the concepts from the ontology) (Bienvenu et al., 2013; Poggi et al., 2008). Answers are
computed based on an open-world assumption and using the mapping assertions and
ontology provided by the OBDA specification. As we described above, we make use
of OBDA specifications as a means to specify an external ontology and with a database
instance through mapping assertions. However, unlike in OBDA, we consider queries
posed against a database instance under the traditional closed-world semantics, and the
ontology is used only to derive why-not explanations.

The problems of providing why explanations and why-not explanations have also
been investigated in the context of OBDA in (Borgida et al., 2008) and (Calvanese et al.,
2013), respectively. The why-not explanations of (Calvanese et al., 2013) follow the
data-centric approach to why-not provenance as we discussed earlier where their goal is
to modify the assertions that describe the extensions of concepts in the ontology so that
the missing tuple will appear in the query result.

There has also been prior work on extracting ontologies from data. For example, in
(Lubyte and Tessaris, 2009), the authors considered heuristics to automatically generate
an ontology from a relational database by defining project-join queries over the data.
Other examples on ontology extraction from data include publishing relational data as
RDF graphs or statements (e.g., D2RQ (Bizer and Seaborne, 2004), Triplify (Auer et al.,
2009)). We emphasize that our goal is not to extract and materialize ontologies, but
rather, to use an ontology that is derived from data to compute why-not explanations.

Organization

After the preliminaries, in Section 6.3 we present our framework for why-not explana-
tions. In Section 6.4 we discuss in detail the two ways of obtaining an S-ontology. In
Section 6.5 we present our main algorithmic results. Finally, in Section 6.6, we study
variatations of our framework, including the problem of producing short most-general
explanations, and alternative notions of explanation, and of what it means to be most
general.

6.2 Preliminaries

A schema is a pair (S,Σ), where S is a set {R1, . . . , Rn} of relation names, where
each relation name has an associated arity, and Σ is a set of first-order sentences over S,
which we will refer to as integrity constraints. Abusing the notation, we will write S for
the schema (S,Σ). A fact is an expression of the form R(b1, . . . , bk), where R ∈ S is a
relation of arity k, and for 1 ≤ i ≤ k, we have bi ∈ Const, where Const is a countably
infinite set of constants. We assume a dense linear order < on Const. An attribute A of
an k-ary relation name R ∈ S is a number i such that 1 ≤ i ≤ k. For a fact R(b) where
b = b1, . . . , bk, we sometimes write πA1,...,Ak(b) to mean the tuple (bA1

, . . . , bAk). An

107

6. High-Level Why-Not Explanations using Ontologies

atom over S is an expression R(x1, . . . , xn), where R ∈ S and every xi, i ∈ {1, . . . , n}
is a variable or a constant.

A database instance, or simply an instance, I over S is a set of facts over S satisfying
the integrity constraints Σ. Equivalently, an instance I is a map that assigns to each k-ary
relation nameR ∈ S a finite set of k-tuples over Const such that the integrity constraints
are satisfied. By RI we denote the set of these tuples. We write Inst(S) to denote the set
of all database instances over S, and adom(I) to denote the active domain of I , i.e., the
set of all constants occurring in facts of I .

Queries A conjunctive query (CQ) over S is a query of the form ∃y.ϕ(x, y) where ϕ is
a conjunction of atoms over S. Given an instance I and a CQ q, we write q(I) to denote
the set of answers of q over I . We allow conjunctive queries containing comparisons to
constants, that is, comparisons of the form x op c, where op ∈ {=, <,>,≤,≥} and c ∈
Const. We show that all upper bounds hold for the case of CQs with such comparisons,
and all lower bounds hold without the use of comparisons (unless explicitly specified
otherwise). We do not allow comparisons between variables.

Integrity constraints We consider different classes of integrity constraints, including
functional dependencies and inclusion dependencies. We also consider UCQ-view def-
initions and nested UCQ-view definitions, which can be expressed using integrity con-
straints as well.

A functional dependency (FD) on a relation R ∈ S is an expression of the form
R : X → Y where X and Y are subsets of the set of attributes of R. We say that an
instance I over S satisfies the FD if for every a1 and a2 from RI if πA(a1) = πA(a2)
for every A ∈ X , then πB(a1) = πB(a2) for every B ∈ Y .

An inclusion dependency (ID) is an expression of the form

R[A1, . . . , An] ⊆ S[B1, . . . , Bn],

where R,S ∈ S, each Ai and Bj is an attribute of R and S respectively. We say that an
instance I over S satisfies the ID if

{πA1,...,An(a) | a ∈ RI} ⊆ {πB1,...,Bn(b) | b ∈ SI}.

Note that functional and integrity constraints can equivalently be written as first-order
sentences (Abiteboul et al., 1995).

View Definitions To simplify our presentation, we treat view defintions as a special case
of integrity constraints.

A set of integrity constraints Σ over S is said to be a collection of UCQ-view defini-
tions if there exists a partition S = D∪V such that for every P ∈ V, Σ contains exactly
one first-order sentence of the form:

P (x̄)↔
k∨
i=1

ϕi(x̄), (∗)

where each ϕi is a conjunctive query (with comparisons to constants) over D.
Similarly, a set of integrity constraints Σ over S is said to be a collection of nested

UCQ-view definitions if there exists a partition S = D∪V such that for every P ∈ V, Σ

108

6.3. Why-not explanations

Data schema D :

{Cities(name, population, country, continent),
Train-Connections(city from, city to)}

View schema V :

{BigCity(name), EuropeanCountry(name),
Reachable(city from, city to)}

UCQ-view definitions:

BigCity(x) ↔ Cities(x,y,z,w) ∧ y ≥ 5000000
EuropeanCountry(z) ↔ Cities(x,y,z,w) ∧ w = Europe
Reachable(x,y) ↔ Train-Connections(x,y) ∨

(Train-Connections(x,z) ∧ Train-Connections (z,y))

Functional and inclusion dependencies:

country → continent
BigCity[name] ⊆ Train-Connections[city from]
Train-Connections[city from] ⊆ Cities[name]
Train-Connections[city to] ⊆ Cities[name]

Figure 6.1: Example of a schema S.

contains exactly one first-order sentence of the form (*), where each ϕi is now allowed
to be a conjunctive query over D ∪V, but subject to the following acyclicity condition.
Let us say that P ∈ V depends on R ∈ V, if R occurs in the view definition of P , that
is, in the sentence of Σ that is of the form (*) for P . We require that the “depends on”
relation is acyclic. If, in the view definition of every P ∈ V, each disjunct ϕi contains at
most one atom over V, then we say that Σ is a collection of linearly nested UCQ-view
definitions.

Note that a collection of nested UCQ-view definitions (in the absence of comparisons)
can be equivalently viewed as a non-recursive Datalog program and vice versa (Benedikt
and Gottlob, 2010). In particular, a collection of linearly nested UCQ-view definitions
corresponds to a linear non-recursive Datalog program.

Example 6.2.1. As an example of a schema, consider S = D ∪ V with the integrity
constraints in Figure 6.1. An instance I of the schema S is given in Figure 6.2. �

6.3 Why-not explanations

Next, we introduce our ontology-based framework for explaining why a tuple is not in
the output of a query. Our framework is based on a general notion of an ontology. As we
shall describe in Section 6.4, the ontology that is used may be an external ontology (for
example, an existing ontology specified in a description logic), or it may be an ontology
that is derived from a schema. Both are a special case of our general definition of an
S-ontology.

Definition 6.3.1 (S-ontology). An S-ontology over a relational schema S is a triple
O = (C,v, ext), where

• C is a possibly infinite set, whose elements are called concepts,

109

6. High-Level Why-Not Explanations using Ontologies

Cities Train-Connections

name population country continent
Amsterdam 779,808 Netherlands Europe
Berlin 3,502,000 Germany Europe
Rome 2,753,000 Italy Europe
New York 8,337,000 USA N.America
San Francisco 837,442 USA N.America
Santa Cruz 59,946 USA N.America
Tokyo 13,185, 000 Japan Asia
Kyoto 1,400,000 Japan Asia

city from city to
Amsterdam Berlin
Berlin Rome
Berlin Amsterdam
New York San Francisco
San Francisco Santa Cruz
Tokyo Kyoto

BigCity EuropeanCountry Reachable

name
New York
Tokyo

name
Netherlands
Germany
Italy

city from city to
Amsterdam Berlin
Berlin Rome
Berlin Amsterdam
New York San Francisco
San Francisco Santa Cruz
Tokyo Kyoto
Amsterdam Rome
Amsterdam Amsterdam
Berlin Berlin
New York Santa Cruz

Figure 6.2: Example of an instance I of S.

• v is a pre-order (i.e., a reflexive and transitive binary relation) on C, called the
subsumption relation, and

• ext : C×Inst(S)→ ℘(Const) is a polynomial-time computable function that will
be used to identify instances of a concept in a given database instance (℘(Const)
denotes the powerset of Const).

More precisely, we assume that ext is specified by a Turing machine that, given C ∈ C,
I ∈ Inst(S) and c ∈ Const, decides in polynomial time if c ∈ ext(C, I).

A database instance I ∈ Inst(S) is consistent with O if, for all C1, C2 ∈ C with
C1 v C2, we have ext(C1, I) ⊆ ext(C2, I).

An example of an S-ontology O = (C,v, ext) is shown in Figure 6.3, where the
concept subsumption relation v is depicted by means of a Hasse diagram. Note that, in
this example, ext(C, I) is independent of the database instance I (and, as a consequence,
every S-instance is consistent with O). In general, this is not the case (for example, the
extension of a concept may be determined through mapping assertions, cf. Section 6.4.1).

We define our notion of an ontology-based explanation next.

Definition 6.3.2 (Explanation). Let O = (C,v, ext) be an S-ontology, I an S-instance
consistent with O. Let q be an m-ary query over S, and a = 〈a1, . . . , am〉 a tuple of
constants such that a 6∈ q(I). Then a tuple of concepts (C1, . . . , Cm) from Cm is called
an explanation for a 6∈ q(I) with respect to O (or an explanation in short) if:

• for every 1 ≤ i ≤ m, ai ∈ ext(Ci, I), and

• (ext(C1, I)× . . .× ext(Cm, I)) ∩ q(I) = ∅.

110

6.3. Why-not explanations

In other words, an explanation is a tuple of concepts whose extension includes the
missing tuple a (and thus explains a) but, at the same time, it does not include any tuple
in q(I) (and thus does not explain any tuple in q(I)). Intuitively, the tuple of concepts
is an explanation that is orthogonal to existing tuples in q(I) but relevant for the missing
tuple a, and thus forms an explanation for why a is not in q(I). There can be multiple
explanations in general and the “best” explanations are the ones that are the most general.

Definition 6.3.3 (Most-general explanation). LetO = (C,v, ext) be an S-ontology, and
let E = (C1, . . . , Cm) and E′ = (C ′1, . . . , C

′
m) be two tuples of concepts from Cm.

• We say that E is less general than E′ with respect to O, denoted as E ≤O E′, if
Ci v C ′i for every i, 1 ≤ i ≤ m.

• We say that E is strictly less general than E′ with respect to O, denoted as E <O
E′, if E ≤O E′, and E′ 6≤O E.

• We say that E is a most-general explanation for a 6∈ q(I) if E is an explanation
for a 6∈ q(I), and there is no explanation E′ for a 6∈ q(I) such that E′ >O E.

As we will formally define in Section 6.5, a why-not problem asks the question:
“why is the tuple 〈a1, . . . , am〉 not in the output of a query q over an instance I of
schema S?” The following example illustrates the notions of explanations and most-
general explanations in the context of a why-not problem.

Example 6.3.1. Consider the instance ID of the relational schema S = {Cities(name,
population, country, continent), Train-Connections(city from, city to)} shown in Fig-
ure 6.2.

Suppose q is the query ∃z. Train-Connections(x, z) ∧ Train-Connections(z, y). That
is, the query asks for all pairs of cities that are connected via a city. Then q(I) returns
tuples

{〈Amsterdam, Rome〉, 〈Amsterdam, Amsterdam〉,
〈Berlin, Berlin〉, 〈New York, Santa Cruz〉}.

A user may ask why is the tuple 〈Amsterdam, New York〉 not in the result of q(I) (i.e.,
why is 〈Amsterdam, New York〉 6∈ q(I)?). Based on the S-ontology defined in Fig-
ure 6.3, we can derive the following explanations for 〈Amsterdam, New York〉 /∈ q(I):

E1 = 〈Dutch-City, East-Coast-City〉
E2 = 〈Dutch-City, US-City〉
E3 = 〈European-City, East-Coast-City〉
E4 = 〈European-City, US-City〉

E1 is the simplest explanation, i.e., the one we can build by looking at the lower level
of the hierarchy in our S-ontology. Each subsequent explanation is more general than at
least one of the prior explanations w.r.t. the S-ontology. In particular, we have E4 >O
E2 >O E1, and E4 >O E3 >O E1. Thus, the most-general explanation for why
〈Amsterdam, New York〉 6∈ q(I) w.r.t. our S-ontology is E4, which intuitively informs
that the reason is because Amsterdam is a city in Europe while New York is a city in
the US (and hence, they are not connected by train). Note that all the other possible
combinations of concepts are not explanations because they intersect with q(I). �

111

6. High-Level Why-Not Explanations using Ontologies

City

US-City

West-Coast-CityEast-Coast-City

European-City

Dutch-City

ext(City, I) = {Amsterdam, Berlin, Rome, New York,
San Francisco, Santa Cruz, Tokyo, Kyoto}

ext(European-City, I) = {Amsterdam, Berlin, Rome}
ext(Dutch-City, I) = {Amsterdam}
ext(US-City, I) = {New York, San Francisco, Santa Cruz}
ext(East-Coast-City, I) = {New York}
ext(West-Coast-City, I) = {Santa Cruz, San Francisco}

Figure 6.3: Example ontology.

As we will see in Example 6.4.3, there may be more than one most-general explana-
tions in general.

Generalizing the above example, we can informally define the problem of explain-
ing why-not questions via ontologies as follows: given an instance I of schema S, a
query q over S, an S-ontology O (consistent with I) and a tuple a 6∈ q(I), compute a
most-general explanation for a 6∈ q(I), if one exists, w.r.t. O. As we shall describe in
Section 6.5, in addition to the above problem of computing one most-general explana-
tion, we will also investigate the corresponding decision problem that asks whether or
not an explanation for a why-not problem exists, and whether or not a given tuple of
concepts is a most-general explanation for a why-not problem. In our framework, the S-
ontologyO may be given explicitly as part of the input, or it may be derived from a given
database instance or a given schema. We will introduce the different scenarios by which
an ontology may be obtained in the next section, before we describe our algorithms for
computing most-general explanations in Section 6.5.

6.4 Obtaining ontologies

In this section we discuss two approaches by which S-ontologies may be obtained. The
first approach allows one to leverage an external ontology, provided that there is a way to
relate a concept in the ontology to a database instance. In this case, the set C of concepts
is specified through a description logic such as ALC or DL-Lite; v is a partial order on
the concepts defined in the ontology, and the function ext may be given through mapping
assertions. The second approach considers an S-ontology that is derived from a specific
database instance, or from a schema. This approach is useful as it allows one to define
an ontology to be used for explaining why-not questions in the absence of an external
ontology.

In either case, we study the complexity of deriving such S-ontologies based on the
language on which concepts are defined, the subsumption between concepts, and the

112

6.4. Obtaining ontologies

function ext, which is defined according to the semantics of the concept language.

6.4.1 Leveraging an external ontology

We first consider the case where we are given an external ontology that models the do-
main of the database instance, and a relationship between the ontology and the instance.
We will illustrate in particular how description logic ontologies are captured as a special
case of our framework.

In what follows, our exposition borrows notions from the Ontology-Based Data Ac-
cess (OBDA) framework. Specifically, we will make crucial use of the notion of an
OBDA specification (Di Pinto et al., 2013), which consists of a description logic ontol-
ogy, a relational schema, and a collection of mapping assertions. To keep the exposition
simple, we restrict our discussion to one particular description logic, called DL-LiteR,
which is a representative member of the DL-Lite family of description logics (Calvanese
et al., 2007). DL-LiteR is the basis for the OWL 2 QL2 profile of OWL 2, which is a
standard ontology language for Semantic Web adopted by W3C. As the other languages
in the DL-Lite family, DL-LiteR exhibits a good trade off between expressivity and com-
plexity bounds for important reasoning tasks such as subsumption checking, instance
checking and query answering.

TBox and Mapping Assertions. In the description logic literature, an ontology is typ-
ically formalized as a TBox (Terminology Box), which consists of finitely many TBox
axioms, where each TBox axiom expresses a relationship between concepts. Alongside
TBoxes, ABoxes (Assertion Boxes) are sometimes used to describe the extension of con-
cepts. To simplify the presentation, we do not consider ABoxes here.

Definition 6.4.1 (DL-LiteR). Fix a finite set ΦC of “atomic concepts” and a finite set
ΦR of “atomic roles”.

• The concept expressions and role expressions of DL-LiteR are defined as follows:

Basic concept expression: B ::= A | ∃R
Basic role expression: R ::= P | P−
Concept expressions: C ::= B | ¬B
Role expressions E ::= R | ¬R

where A ∈ ΦC and P ∈ ΦR. Formally, a (ΦC ,ΦR)-interpretation I is a map that
assigns to every atomic concept in ΦC a unary relation over Const and to every
atomic role in ΦR a binary relation over Const. The map I naturally extends to
arbitrary concept expressions and role expressions:

I(P−) = {(x, y) | (y, x) ∈ I(P)} I(∃P) = π1(I(P))
I(¬P) = Const2 \ I(P) I(¬A) = Const \ I(A)

Observe that I(∃P−) = π2(I(P)).

2http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

113

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

6. High-Level Why-Not Explanations using Ontologies

DL-Lite TBox axiom (first-order translation)

EU-Cityv City ∀x EU-City(x)→ City(x)
Dutch-Cityv EU-City ∀x Dutch-City(x)→ EU-City(x)
N.A.-Cityv City ∀x N.A.-City(x)→ City(x)
EU-Cityv ¬ N.A.-City ∀x EU-City(x)→ ¬N.A.-City(x)
US-Cityv N.A.-City ∀x US-City(x)→ N.A.-City(x)
Cityv ∃ hasCountry ∀x City(x)→ ∃y hasCountry(x, y)
Countryv ∃ hasContinent ∀x Country(x)→ ∃y hasContinent(x, y)

∃hasCountry− v Country ∀x (∃y hasCountry(y, x))→ Country(x)

∃hasContinent− v Continent ∀x (∃y hasContinent(y, x))→ Continent(x)
∃connectedv City ∀x (∃y connected(x, y))→ City(x)

∃connected− v City ∀x (∃y connected(y, x))→ City(x)

GAV mapping assertions (universal quantifiers omitted for readability):

Cities(x, z, w, “Europe”) → EU-City(x)
Cities(x, z, “Netherlands”, w) → Dutch-City(x)
Cities(x, z, w, “N.America”) → N.A.-City(x)
Cities(x, z, “USA”, w) → US-City(x)
Cities(x, y, z, w) → Continent(w)
Cities(x, k, y, w) → hasCountry(x,y)
Cities(x, k, w, y) → hasContinent(x,y)
Train-Connection(x, y),
Cities(x, x1, x2, x3),Cities(y, y1, y2, y3) → connected(x,y)

Figure 6.4: Example DL-Lite ontology with mapping assertions.

• A TBox (Terminology Box) is a finite set of TBox axioms where each TBox axiom
is an inclusion assertion of the formB v C orR v E, whereB is a basic concept
expression, C is a concept expression, R is a basic role expression and E is a
role expression. An (ΦC ,ΦR)-interpretation I satisfies a TBox if for each axiom
X v Y , it holds I(X) ⊆ I(Y).

• For concept expressions C1, C2 and a TBox T , we say that C1 is subsumed by C2

relative to T (notation: T |= C1 v C2) if, for all interpretations I satisfying T ,
we have that I(C1) ⊆ I(C2).

An example of a DL-LiteR TBox is given at the top of Figure 6.4. For convenience,
we have listed next to each TBox axiom, its equivalent semantics in first-order notation.

Next we describe what mapping assertions are. Given an ontology and a relational
schema, we can specify mapping assertions to relate the ontology language to the rela-
tional schema, which is similar to how mappings are used in OBDA (Poggi et al., 2008).
In general, mapping assertions are first order sentences over the schema S ∪ ΦC ∪ ΦR
that express relationships between the symbols in S and those in ΦC and ΦR. Among
the different schema mapping languages that can be used, we restrict our attention, for
simplicity, to the class of Global-As-View (GAV) mapping assertions (GAV mapping as-
sertions or GAV constraints or GAV source-to-target tgds).

Definition 6.4.2 (GAV mapping assertions). A GAV mapping assertion over (S, (ΦC ∪
ΦR)) is a first-order sentence ψ of the form

∀~x (ϕ1(~x1), . . . , ϕn(~xn))→ ψ(~x),

where ~x ⊆ ~x1∪ . . .∪ ~xn, ϕ1, . . . , ϕn are atoms over S and ψ is an atomic formula of the
form A(xi) (for A ∈ ΦC) or P (xi, xj) (for P ∈ ΦR). Let I be an S-instance and I an

114

6.4. Obtaining ontologies

(ΦC ,ΦR)-interpretation. We say that the pair (I, I) satisfies the GAV mapping assertion
(notation: (I, I) |= ψ) if it holds that for any tuple of elements ā from adom(I), with
ā =

⋃
1≤k≤n āk, if I |= ϕ1(ā1), . . . , ϕn(ān), then ai ∈ I(A), with ai ∈ ā (if ψ =

A(xi)) or (ai, aj) ∈ I(P), with ai, aj ∈ ā (if ψ = P (xi, xj)).

Intuitively, a GAV mapping assertion associates a conjunctive query over S to an
element (concept or atomic role) of the ontology. A set of GAV mapping assertions asso-
ciates, in general, a union of conjunctive queries to an element of the ontology. Examples
of GAV mapping assertions are given at the bottom of Figure 6.4.

OBDA induced ontologies

Definition 6.4.3 (OBDA specification). Let T be a TBox, S a relational schema, and
M a set of mapping assertions from S to the concepts of T . We call the triple B =
(T ,S,M) an OBDA specification.

An (ΦC ,ΦR)-interpretation I is said to be a solution for an S-instance I with respect
to the OBDA specification B if the pair (I, I) satisfies all mapping assertions inM and
I satisfies T .

Note that our notion of an OBDA specification is a special case of the one given in
(Di Pinto et al., 2013), where we do not consider view inclusion dependencies. Also,
as mentioned earlier, our OBDA specifications assume that T is a DL-LiteR TBox and
M is a set of GAV mappings. These restrictions allow us to achieve good complexity
bounds for explaining why-not questions with ontologies. In particular, it is not hard to
see that, for the OBDA specifications we consider, every S-instance I has a solution.
Theorem 6.4.1. [Calvanese et al. (2007); Poggi et al. (2008)] Let T be a DL-LiteR TBox.

(i) There is a PTIME-algorithm for deciding subsumption. That is, given T and two
concepts C1, C2, decide if T |= C1 v C2.

(ii) There is an algorithm that, given an OBDA specification B, an instance I over S
and a concept C, computes certain(C, I,B) =

⋂{I(C) | I is a solution for I
w.r.t. B}. For a fixed OBDA specification, the algorithm runs in PTIME (AC0 in
data complexity).

Every OBDA specification induces an S-ontology as follows.

Definition 6.4.4. Every OBDA specification B = (T ,S,M), where T is a DL-LiteR
TBox andM is a set of GAV mappings gives rise to an S-ontology where:

• COB is the set of all basic concept expressions occurring in T ;

• vOB= {(C1, C2) | T |= C1 v C2};

• extOB is the polynomial-time computable function given by extOB(C, I) =⋂{I(C) | I is a solution for I w.r.t. B}
Note that the fact that extOB is polynomial-time computable follows from Theo-

rem 6.4.1.
We remarked earlier that, for the ODBA specifications B that we consider, it holds

that every input instance has a solution. It follows that every input instance I is consistent
with the corresponding S-ontology OB.

115

6. High-Level Why-Not Explanations using Ontologies

Theorem 6.4.2. The S-ontology OB = (COB ,vOB , extOB) can be computed from a
given OBDA specification B = (T ,S,M) in PTIME if T is a DL-LiteR TBox andM is
a set of GAV mappings.

We are now ready to illustrate an example where a why-not question is explained via
an external ontology.

Example 6.4.1. Consider the OBDA specification B = (T ,S,M) where T is the TBox
consisting of the DL-LiteR axioms given in Figure 6.4, S is the schema from Exam-
ple 6.3.1, and M is the set of mapping assertions given in Figure 6.4. These together
induce an S-ontology OB = (COB ,vOB , extOB). The set COB consists of the following
basic concept expressions:

City, EU-City, N.A.-City, Dutch-City,
US-City, Country, Continent,
∃ hasCountry, ∃ hasCountry−, ∃ hasContinent,
∃ hasContinent−, ∃ connected, ∃ connected−.

The set vOB includes the pairs of concepts of the TBox T given in Figure 6.4. We use
the mappings to compute the extension of each concept in COB using the instance I on
the left of Figure 6.2. We list a few extensions here:

extOB (City, I) = {Amsterdam, Berlin, Rome, New York,
San Francisco, Santa Cruz, Tokyo, Kyoto}

extOB (EU-City, I) = {Amsterdam, Berlin, Rome}
extOB (N.A.-City, I) = {New York, San Francisco, Santa Cruz}
extOB (∃hasCountry−, I) = {Netherlands, Germany, Italy, USA, Japan}
extOB (∃connected, I) = {Amsterdam, Berlin, New York}

Now consider the query q(x, y) = ∃z. Train-Connections(x, z)∧ Train-Connections(z, y),
and q(I) as in Example 6.3.1. As before, we would like to explain why is 〈Amsterdam,
New York〉 6∈ q(I). This time, we use the induced S-ontology OB described above to
derive explanations for 〈Amsterdam, New York〉 /∈ q(I):

E1 = 〈EU-City, N.A.-City〉 E2 = 〈Dutch-City,N.A.-City〉
E3 = 〈EU-City, US-City〉 E4 = 〈Dutch-City,US-City〉.

Among the four explanations above, E1 is a most general one. �

6.4.2 Ontologies derived from a schema
We now move to the second approach where an ontology is derived from an instance or
a schema. The ability to derive an ontology through an instance or a schema is useful in
the context where an external ontology is unavailable. To this purpose we first introduce
a simple but suitable concept language that can be defined over the schema S.

Specifically, our concept language, denoted as LS, makes use of two relational al-
gebra operations, projection (π) and selection (σ). We first introduce and motivate the
language. We will then describe our complexity results for testing whether one concept
is subsumed by another, and for obtaining an ontology from a given instance or a schema.
We will make use of these results later on in Sections 6.5.2 and 6.5.3.

Definition 6.4.5 (The Concept Language LS). Let S be a schema. A concept in LS is an
expression C defined by the following grammar.

116

6.4. Obtaining ontologies

D ::= R | σA1op c1,...,Anop cn(R)
C := > | {c} | πA(D) | C u C

In the above, R is a predicate name from S, A,A1, . . . , An are attributes in R, not
necessarily distinct, c, c1, . . . , cn ∈ Const, and each occurrence of op is a comparison
operator belonging to {=, <,>,≤,≥}. For C = {C1, . . . , Ck} a finite set of concepts,
we denote by uC the conjunction C1 u . . . u Ck. If C is empty, we take uC to be >.

Given a finite set of constantsK ⊂ Const, we define LS[K] as the concept language
LS whose concept expressions only use constants fromK. By selection-free LS, we mean
the language LS where σ is not allowed. Similarly, by intersection-free LS, we mean
the language LS where u is not allowed, and by Lmin

S , we mean the minimal concept
language LS where both σ and u are not allowed.

Observe that the LS grammar defines a concept in the form C1u . . .uCn where each
Ci is > or {c} or πA(R) or πA(σA1op c1,...,Anop cn(R)). A concept of the form {c} is
called a nominal. A nominal {c} is the “most specific” concept for the constant c. Given
a tuple a that is not in the output, the corresponding tuple of nominal concepts forms a
default, albeit trivial, explanation for why not a.

As our next example illustrates, even though our concept language LS appears sim-
ple, it is able to naturally capture many intuitive concepts over the domain of the database.

Example 6.4.2. We refer back to our schema S in Figure 6.1. Suppose we do not have
access to an external ontology such as the one given in Example 6.3.1. We show that
even so, we can still construct meaningful concepts directly from the database schema
using the concept language described above. We list a few semantic concepts that can be
specified with LS in Figure 6.5, where we also show the corresponding SELECT-FROM-
WHERE style expressions and intuitive meaning. �

Example 6.4.2 shows that, even though LS is a simple language where concepts
are essentially intersections of unary projections of relations and nominals, it is already
sufficiently expressive to capture natural concepts that can be used to build meaningful
explanations. It is worth noting that, for minor extensions of the language LS, such as
with 6=-comparisons and disjunction, the notion of a most-general explanation becomes
trivial, in the sense that, for each why-not question, there is a most-general explanation
that essentially enumerates all tuples in the query answer.

By using LS, we are able to define an ontology whose atomic concepts are derived
from the schema itself. This approach allows us to provide explanations using a vocabu-
lary that is already familiar to the user. We believe that this leads to intuitive and useful
why-not explanations.

If we view each expression πA(D) as an atomic concept, then the language LS corre-
sponds to a very simple concept language, whose concepts are built from atomic concepts
and nominals using only intersection. In this sense, LS can be considered to be a frag-
ment of DL-Litecore,u with nominals (also known as DL-Litehorn (Artale et al., 2009)),
i.e., the description logic obtained by enriching DL-Litecore (the simplest language in the
DL-Lite family) with conjunction.

The precise semantics of LS is as follows. Given a concept C that is defined in LS

and an instance I over S, the extension of C in I , denoted by [[C]]I , is inductively defined

117

6. High-Level Why-Not Explanations using Ontologies

LS concept expression SELECT-FROM-WHERE formulation Intuitive meaning

πname(Cities) name from Cities City
πname(σcontinent=“Europe”(Cities)) name from Cities where continent=“Europe” European City
πname(σcontinent=“N.America”(Cities)) name from Cities where continent=“N.America” N.American City
πname(σpopulation>1000000(Cities)) name from Cities where population> 1000000 Large City
π1(BigCity) name from BigCity name of BigCity
{“Santa Cruz”} “Santa Cruz” Santa Cruz
πname(σpopulation<1000000(Cities))u
πcity to(σcity from=“Amsterdam”(Reachable))

name from Cities where population< 1000000
AND city from from Reachable where city to=“Amsterdam” Small City that is reachable from Amsterdam.

Figure 6.5: Example of concepts specified in LS.

below. Intuitively, the extension of C in I is the result of evaluating the query associated
with C over I .

[[R]]I = RI

[[σA1op1c1,...,Anopncn(R)]]I = {b̄ ∈ RI | πAi(b̄)opici, 1 ≤ i ≤ n}
[[>]]I = Const

[[{c}]]I = {c}
[[πA(D)]]I = πA([[D]]I)

[[C1 u C2]]I = [[C1]]I ∩ [[C2]]I

The notion of when one concept is subsumed by another is defined according to the
extensions of the concepts. There are two notions, corresponding to concept subsumption
w.r.t. an instance or subsumption w.r.t. a schema. More precisely, given two concepts
C1, C2,

• we say that C2 subsumes C1 w.r.t. an instance I (notation: C1 vI C2) if [[C1]]I ⊆
[[C2]]I .

• we say that C2 subsumes C1 w.r.t. a schema S (notation: C1 vS C2), if for every
instance I of S, we have that C1 vI C2.

Note that the latter item is precisely the definition of containment of the query corre-
sponding to C1 in the query corresponding to C2.

We are now ready to define the two types of ontologies, which are based on the two
notions of concept subsumption described above, that can be derived from an instance or
a schema.

Definition 6.4.6 (Ontologies derived from a schema). Let S be a schema, and let I be
an instance of S. Then the ontologies derived from S and I are defined respectively as

• OS = (LS,vS, ext) and

• OI = (LS,vI , ext),

where ext is the function given by ext(C, I ′) = [[C]]I
′

for all instances I ′ over S. By
OS[K] we denote the ontology (LS[K],vS, ext), and by OI [K] we denote the ontology
(LS[K],vI , ext).

It is easy to verify that the subsumption relations vS and vI are indeed pre-orders
(i.e., reflexive and transitive relations), and that, for every fixed schemas S, the function
[[C]]I

′
is polynomial-time computable. Hence, the above definition is well-defined even

118

6.4. Obtaining ontologies

Constraints Complexity of subsumption for LS

UCQ-view def. (no comparisons) NP-complete
UCQ-view def. ΠP

2 -complete
linearly nested UCQ-view def. ΠP

2 -complete
nested UCQ-view def. CONEXPTIME-complete
Functional Dependencies (FDs) in PTIME

Inclusion Dependencies (IDs) ? (in PTIME for selection-free LS)
IDs + FDs Undecidable

All stated lower bounds already hold for Lmin
S concept expressions.

Table 6.1: Complexity of concept subsumption.

though the ontologies obtained in this way are typically infinite. From the definition, it
is easy to verify that if C1 vS C2, then C1 vI C2.

The following result about deciding vI is immediate, as one can always execute the
queries that are associated with the concepts and then test for subsumption, which can be
done in polynomial time.

Proposition 6.4.1. The problem of deciding, given an instance I of a schema S and given
two LS concept expressions C1, C2, whether C1 vI C2, is in PTIME.

On the other hand, the complexity of deciding vS depends on the type of integrity
constraints that are used in the specification of S. Table 6.1 provides a summary of
relevant complexity results.

Theorem 6.4.3. Let W be one of the different classes of schemas with integrity con-
straints listed in Table 6.1. The complexity of the problem to decide, given a schema S
inW and two LS concept expressions C1, C2, whether C1 vS C2, is as indicated in the
second column of the corresponding row in Table 6.1.

For example, given two conceptsC1,C2, and a schema (S,Σ) where Σ is a collection
of nested UCQ-view definitions, the complexity of decidingC1 vS C2 is CONEXPTIME-
complete. The lower bound already holds for concepts specified in Lmin

S . We conclude
this section with an analysis of the number of distinct concepts that can be formulated in a
given concept language and an example that illustrates explanations that can be computed
from such derived ontologies.

Proposition 6.4.2. Given a schema S and a finite set of constants K ⊂ Const, the
number of unique concepts (modulo logical equivalence)

• in Lmin
S [K] is polynomial in the size of S and K,

• in selection-free or intersection-free LS[K] is single exponential in the size of S
and K.

• in LS[K] is double exponential in the size of S and K.

Example 6.4.3. Let S and I be the schema and instance from Figure 6.1 and Figure 6.2.
Suppose the concept language LS is used to define among others the concepts from
Figure 6.5. The following concept subsumptions can be derived from S. Note that sub-

119

6. High-Level Why-Not Explanations using Ontologies

sumption vS implies vI .

πname(σcontinent=“Europe”(Cities)) vS πname(Cities)
πname(σpopulation>7000000(Cities)) vS πname(BigCity)
πname(BigCity) vS πname(Cities)
πname(BigCity) vS πcity from(Train-Connections)

The first and second subsumptions follow from definitions. The third one holds because
according to Π, a BigCity is a city with population more than 5 million. The fourth
subsumption follows from the inclusion dependency that each BigCity must have a train
departing from it. There are subsumptions that hold in OI but not in OS. For instance,

πcity to(σcity from=Amsterdam(Reachable)) vI
πcity to(σcity from=Berlin(Reachable)),

holds w.r.t. OI , where I is the instance given in Figure 6.2, but does not hold w.r.t.
OS, since one can construct an instance where not all cities that are reachable from
Amsterdam are reachable from Berlin.

We now give examples of most-general explanations w.r.t. OS andOI . As before, let
q(x, y) = ∃z. Train-Connections(x, z) ∧ Train-Connections(z, y) be a query with q(I) =
{〈Amsterdam, Rome〉, 〈Amsterdam, Amsterdam〉, 〈Berlin, Berlin〉, 〈New York, Santa Cruz 〉}.
We would like to explain why 〈Amsterdam, New York〉 6∈ q(I) using the derived ontolo-
gies OS and OI . Note that if E is an explanation w.r.t. OS, then it is also an explanation
w.r.t. OI and vice versa. Some possible explanations are:

E1 = 〈πname(σcontinent=Europe(Cities)),
πcity from(σcity to = San Francisco(Train-Connections))〉

E2 = 〈πname(σcontinent=Europe(Cities)),
πname(σcontinent=N.America(Cities))〉

E3 = 〈πcity to(σcity from = Berlin(Reachable)),
πcity from(σcity to = Santa Cruz(Reachable))〉

E4 = 〈{Amsterdam}, πname(σpopulation>7000000(Cities))〉
E5 = 〈πname(σcountry=Netherlands(Cities)),

πname(BigCity) u πname(σcontinent=N.America(Cities))〉
E6 = 〈{Amsterdam}, {New York}〉
E7 = 〈πname(σcontinent=Europe(Cities)), πname(BigCity)}〉
E8 = 〈πname(σcontinent=Europe(Cities)),

πname(σpopulation>7000000(Cities))}〉

For example, E1 states the reason is that Amsterdam is a European city and New York
is a city that has a train connection to San Francisco, and there is no train connection
between such cities via a city. The trivial explanation E6 is less general than any other
explanation w.r.t. OS (and OI too). It can be verified that E2 and E7 are most-general
explanations w.r.t. both OS and OI . In particular, E2 >OI E5 and E2 ≥OI E3, but
E2 6>OS

E5 and E2 6>OS
E3 since there might be an instance of S where Netherlands is

not in Europe or where Berlin is reachable from a non-European city. �

In general, if E is an explanation w.r.t. OI then E is also an explanation w.r.t. OS,
and vice versa. The following proposition also describes the relationship between most-
general explanations w.r.t OS and OI .

120

6.5. Algorithms for computing most-general explanations

Proposition 6.4.3. Let S be a schema, and let I be an instance of S.

(i) Every explanation w.r.t. OS is an explanation w.r.t. OI and vice versa.

(ii) A most-general explanation w.r.tOS is not necessarily a most-general explanation
w.r.t. OI , and likewise vice versa.

Proof. Statement (i) follows from Definition 6.3.2 and the definition of ext for OS and
OI . That is, ext is the same on the input instance I for both OS and OI , and the condi-
tions of Definition 6.3.2 use only the value of ext on I . Going back to Example 6.4.3,
E1 is a most-general explanation w.r.t. OS, but it is not a most-general explanation w.r.t.
OI (since E3 is a strictly more general explanation than E1 w.r.t. OI). Thus, the first di-
rection of (ii) holds. For the other direction of (ii), consider E8 which is a most-general
explanation w.r.t. OI . But it holds that E7 >OS

E8 and E7 is an explanation. Note that
E7 and E8 are equivalent w.r.t. OI .

6.5 Algorithms for computing most-general explanations

Next, we formally introduce the ontology-based why-not problem, which was informally
described in Section 6.3, and we define algorithms for computing most-general explana-
tions. We start by defining the notion of a why-not instance (or why-not question).

Definition 6.5.1 (Why-not instance). Let S be a schema, I an instance of S, q an m-ary
query over I and a = 〈a1, . . . , am〉 a tuple of constants such that a /∈ q(I). We call
the quintuple (S, I, q, Ans, a), where Ans = q(I), a why-not instance or a why-not
question.

In a why-not instance, the answer set Ans of q over I is assumed to have been com-
puted already. This corresponds closely to the scenario under which why-not questions
are posed where the user requests explanations for why a certain tuple is missing in the
output of a query, which is computed a priori. Note that since Ans = q(I) is part of a
why-not instance, the complexity of evaluating q over I does not affect the complexity
analysis of the problems we study in this chapter. In addition, observe that although a
query q is part of a why-not instance, the query is not directly used in our derivation of
explanations for why-not questions with ontologies. However, the general setup accom-
modates the possibility to consider q directly in the derivation of explanations and this is
part of our future work.

We will study the following algorithmic problems concerning most-general explana-
tions for a why-not instance.

Definition 6.5.2. The EXISTENCE-OF-EXPLANATION problem is the following decision
problem: given a why-not instance (S, I, q, Ans, a) and an S-ontologyO consistent with
I , does there exist an explanation for a 6∈ Ans w.r.t. O?

Definition 6.5.3. The CHECK-MGE problem is the following decision problem: given
a why-not instance (S, I, q, Ans, a), an S-ontology O consistent with I , and a tuple of
concepts (C1, . . . , Cn), is the given tuple of concepts a most-general explanation w.r.t.
O for a 6∈ Ans?

121

6. High-Level Why-Not Explanations using Ontologies

Definition 6.5.4. The COMPUTE-ONE-MGE problem is the following computational
problem: given a why-not instance (S, I, q, Ans, a) and an S-ontology O consistent
with I , find a most-general explanation w.r.t. O for a 6∈ Ans, if one exists.

Note that deciding the existence of an explanation w.r.t. a finite S-ontology is equiv-
alent to deciding existence of a most-general explanation w.r.t. the same S-ontology.

Thus, our approach to the why-not problem makes use of S-ontologies. In particu-
lar, our notion of a “best explanation” is a most-general explanation, which is defined
with respect to an S-ontology. We study the problem in three flavors: one in which
the S-ontology is obtained from an external source (Section 6.5.1), and thus it is part
of the input, and two in which the S-ontology is not part of the input, and is derived,
respectively, from the instance I (Section 6.5.2), or from the schema S (Section 6.5.3).

6.5.1 Case 1: External ontology
We start by studying the case of computing ontology-based why-not explanations w.r.t.
an external S-ontology. We first study the complexity of deciding whether or not there
exists an explanation w.r.t. an external S-ontology.
Theorem 6.5.1.

(i) The problem CHECK-MGE is solvable in PTIME.

(ii) The problem EXISTENCE-OF-EXPLANATION is NP-complete. It remains NP-
complete even for bounded schema arity.

Intuitively, to check if a tuple of concepts is a most-general explanation, we can first
check in PTIME if it is an explanation. Then, for each concept in the explanation, we
can check in PTIME if it is subsumed by some other concept in O such that by replacing
it with this more general concept, the tuple of concepts remains an explanation. The
membership in NP is due to the fact that we can guess a tuple of concepts of polynomial
size and verify in PTIME that it is an explanation. The lower bound is by a reduction
from the SET COVER problem. Our reduction uses a query of unbounded arity and a
schema of bounded arity. As we will show in Theorem 6.5.2, the problem is in PTIME if
the arity of the query is fixed.

In light of the above result, we define an algorithm, called the
EXHAUSTIVE SEARCH ALGORITHM, which is an EXPTIME algorithm for solving the
COMPUTE-ONE-MGE problem.

This algorithm first generates the set of all possible explanations, and then iteratively
reduces the set by removing the tuples of concepts that are less general than some tuple
of concepts in the set. In the end, only most-general explanations are returned. At first, in
line 1, for each element of the tuple a = 〈a1, . . . , am〉, we build the set C(ai) containing
all the concepts in C whose extension contains ai. Then, in line 2, we build the set of
all possible explanations by picking a concept in C(ai) for each position in a, and by
discarding the ones that have a non empty intersection with the answer set Ans. Finally,
in lines 3–5, we remove from the set those explanations that have a strictly more general
explanation in the set.

We now show that EXHAUSTIVE SEARCH ALGORITHM is correct (i.e., it outputs
the set of all most-general explanations for the given why-not instance w.r.t. the given
S-ontology), and runs in exponential time in the size of the input.

122

6.5. Algorithms for computing most-general explanations

Algorithm 1: EXHAUSTIVE SEARCH ALGORITHM

Input: a why-not instance (S, I, q, Ans, a), where a = (a1, . . . , am), a finite
S-ontology O = (C,v, ext)

Output: the set of most-general explanations for a 6∈ Ans wrt O
1 Let C(ai) = {C ∈ C | ai ∈ ext(C, I)} for all i, 1 ≤ i ≤ m
2 Let
X = {(C1, . . . , Cm) | Ci ∈ C(ai) and (ext(C1, I)×. . .×ext(Cm, I))∩Ans = ∅}

3 foreach pair of explanations E1,E2 ∈ X , E1 6= E2 do
4 if E1 >O E2 then
5 remove E2 from X

6 return X

Theorem 6.5.2. Let a why-not instance (S, I, q, Ans, a) and an S-ontology O be an
input to EXHAUSTIVE SEARCH ALGORITHM and let X be the corresponding output.
The following hold:

(i) X is the set of all most-general explanations for a 6∈ Ans (modulo equivalence);

(ii) EXHAUSTIVE SEARCH ALGORITHM runs in EXPTIME in the size of the input (in
PTIME if we fix the arity of the input query).

Theorem 6.5.2, together with Theorem 6.4.2, yields the following corollary (recall
that, by construction of OB, it holds that every input instance I is consistent with OB).

Corollary 6.5.1. There is an algorithm that takes as input a why-not instance
(S, I, q, Ans, a) and an OBDA specification B = (T ,S,M), where T is a DL-LiteR
TBox andM is a set of GAV mappings, and computes all the most-general explanations
for a /∈ Ans w.r.t. the S-ontology OB in EXPTIME in the size of the input (in PTIME if
the arity of q is fixed) .

6.5.2 Case 2: Ontologies from an instance
We now study the why-not problem w.r.t. an S-ontology OI that is derived from an in-
stance. First, note that the presence of nominals in the concept language guarantees a
trivial answer for the EXISTENCE-OF-EXPLANATION W.R.T. OI problem. An explana-
tion always exists, namely the explanation with nominals corresponding to the constants
of the tuple a. In fact, a most-general explanation always exists, as follows from the
results below.

Definition 6.5.5. The COMPUTE-ONE-MGE W.R.T. OI is the following computational
problem: given a why-not instance (S, I, q, Ans, a), find a most-general explanation
w.r.t. OI for a 6∈ Ans, where OI is the S-ontology that is derived from I , as defined in
Section 6.4.2.

First, we state an important proposition, that underlies the correctness of the algo-
rithms that we will present. The following proposition shows that, when we search for
explanations w.r.t. OI , we can always restrict our attention to a particular finite restriction
of this ontology.

123

6. High-Level Why-Not Explanations using Ontologies

Proposition 6.5.1. Let (S, I, q, Ans, a) be a why-not instance. If E is an explanation for
a 6∈ Ans w.r.t. OI (resp. OS), then there exists an explanation E′ for a 6∈ Ans such
that E <OI [K] E

′ (resp. E <OS[K] E
′), where K = adom(I) ∪ {a1, . . . , am} and each

constant in E′ belongs to K.

In our proof, we iteratively reduce the number of constants occurring in the expla-
nation. That is, for every explanation E with concepts containing constants outside of
adom(I) ∪ {a1, . . . , am}, we produce a new explanation E′ which is more general than
E and which contains less constants outside of adom(I) ∪ {a1, . . . , am}.

Notice that since, in principle, it is possible to materialize the ontology OI [K] (i.e.,
to explicitly compute all the concepts C in the ontology, the subsumption relation vI ,
and the extension ext), the EXHAUSTIVE SEARCH ALGORITHM, together with Propo-
sition 6.5.1, give us a method for solving COMPUTE-ONE-MGE W.R.T. OI . In particu-
lar, given a schema, EXHAUSTIVE SEARCH ALGORITHM solves COMPUTE-ONE-MGE
W.R.T. OI in 2EXPTIME (in EXPTIME if the arity of q is fixed). This is because to find
a most-general explanation w.r.t OI , it is sufficient to restrict to the concept language
LS[K] and its fragments, where K = adom(I) ∪ {a1, . . . , am}. Then COMPUTE-ONE-
MGE W.R.T. OI is solvable in 2EXPTIME follows from the fact that the S-ontology
OI [K] is computable in at most 2EXPTIME.

We now present a more effective algorithm for solving
COMPUTE-ONE-MGE W.R.T.OI . (See Algorithm 2.) We start by introducing the notion
of a least upper bound of a set of constants X w.r.t. an instance I , denoted by lubI(X).
This, intuitively, corresponds to the most-specific concept whose extension contains all
constants ofX . We first consider the case in which lubI(X) is expressed using selection-
free LS concepts. The following lemma states two important properties of lubI(X) that
are crucial for the correctness of Algorithm 2.

Lemma 6.5.1. Given an instance I of schema S and a set of constantsX , we can compute
in polynomial time a selection-free LS concept, denoted lubI(X), that is the smallest
concept whose extension contains all the elements in X definable in the language. In
particular, the following hold:

(i) X ⊆ ext(lubI(X), I),

(ii) there is no concept C ′ in selection-free LS such that C ′ @I lubI(X) and X ⊆
ext(C ′, I).

We are now ready to introduce Algorithm 2. We will start with a high-level descrip-
tion of the idea behind it. The algorithm navigates through the search space of possible
explanations using an incremental search strategy and makes use of the above defined
notion of lub. We start with an explanation that has, in each position, the lub of the con-
stant (i.e., nominal) that occurs in that position. Then, we try to construct a more general
explanation by expanding the set of constants considered by each lub.

Notice that INCREMENTAL SEARCH ALGORITHM produces explanations which are
tuples of conjunctions of concepts. Therefore it produces an explanation whose concepts
are concept expressions in the language LS or selection-free LS. We will study the
behavior of the algorithm for each of these languages separately.

First, we focus on the case in which INCREMENTAL SEARCH ALGORITHM produces
most-general explanations using selection-free LS concepts. We show that the algorithm

124

6.5. Algorithms for computing most-general explanations

Algorithm 2: INCREMENTAL SEARCH ALGORITHM

Input: a why-not instance (S, I, q, Ans, a)
Output: a most-general explanation for a /∈ Ans wrt OI

1 Let K = adom(I) ∪ {a1, . . . , am}
2 Let X = (X1, . . . , Xm) s.t. each Xj = {aj}. // support set

3 Let E = (C1, . . . , Cm) s.t. each Cj = lubI(Xj). // first candidate explanation

4 foreach 1 ≤ j ≤ m do
5 foreach b ∈ K \ ext(Ej , I) do
6 X ′j = Xj ∪ {b}
7 Let C ′j = lubI(X ′j) // a more general concept in position j

8 Let E′ := (C1, . . . , C
′
j , . . . Cm) // a more general explanation

9 if E′ ∩Ans = ∅ then
10 E := E′

11 X := (X1, . . . , X
′
j , . . . Xm)

12 return E

is correct, i.e., that it outputs an explanation for a /∈ Ans w.r.t. OI , and that it runs in
polynomial time with selection-free LS.

Theorem 6.5.3 (Correctness and running time of INCREMENTAL SEARCH ALGORITHM).
Let the why-not instance (S, I, q, Ans, a) be an input to INCREMENTAL SEARCH AL-
GORITHM and E the corresponding output. The following holds:

(i) E is a most-general explanation for a 6∈ Ans w.r.t. OI = (C,vI , ext), where C is
selection-free LS;

(ii) INCREMENTAL SEARCH ALGORITHM runs in PTIME in the size of the input.

Now we extend our analysis of INCREMENTAL SEARCH ALGORITHM to the general
case in which it works with LS. First, we state an analogue of Lemma 6.5.1 for LS.

Lemma 6.5.2. Given an instance I of S and a set of constants X , we can compute in
exponential time a LS concept, denoted lubσI (X), that is the smallest concept whose
extension contains all the elements in X definable in the language. Such a concept is
polynomial-time computable for bounded schema arity. In particular, the following hold:

(i) X ⊆ ext(lubσI (X), I),

(ii) there is no concept C ′ in LS such that C ′ @I lubσI (X) and X ⊆ ext(C ′, I).

By INCREMENTAL SEARCH ALGORITHM WITH SELECTIONS we will refer to the
algorithm obtained from INCREMENTAL SEARCH ALGORITHM by replacing lubI(X)
with lubσI (X) in line 3 and line 7.

The following theorem shows that INCREMENTAL SEARCH ALGORITHM WITH SE-
LECTIONS is correct, i.e., that it outputs an explanation for a /∈ Answ.r.t. the S-ontology
OI , and that it runs in exponential time (in polynomial time for bounded schema arity).

Theorem 6.5.4 (Correctness and running time of INCREMENTAL SEARCH ALGORITHM
WITH SELECTIONS). Let the why-not instance (S, I, q, Ans, a) be an input to INCRE-

125

6. High-Level Why-Not Explanations using Ontologies

MENTAL SEARCH ALGORITHM WITH SELECTIONS and E the corresponding output.
The following hold:

(i) E is a most-general explanation for a 6∈ Ans w.r.t. OI = (C,vI , ext), where C is
LS;

(ii) INCREMENTAL SEARCH ALGORITHM runs in EXPTIME in the size of the input
(in PTIME for bounded schema arity).

We close this section with the study of the following problem.

Definition 6.5.6. The CHECK-MGE W.R.T. OI problem is the following decision prob-
lem: given a why-not instance (S, I, q, Ans, a) and a tuple of conceptsE = (C1, . . . , Cn),
is E a most-general explanation w.r.t. OI for a 6∈ Ans?

Our next proposition states the running time of our algorithm for the CHECK-MGE
W.R.T. OI for various fragments of our concept language. The algorithm operates very
similarly to lines 4–11 of INCREMENTAL SEARCH ALGORITHM. Given a tuple of con-
cepts, we check whether that tuple of concepts can be extended to a more general tuple of
concepts through ideas similar to lines 4–11 of INCREMENTAL SEARCH ALGORITHM.
If the answer is “no”, then we return “yes”. Otherwise, we return “no”.
Proposition 6.5.2. There is an algorithm that solves CHECK-MGE W.R.T. OI in:

• PTIME for selection-free LS, or for LS with bounded schema arity;

• EXPTIME for LS in the general case.

6.5.3 Case 3: Ontologies from schema
We now study the case of solving the why-not problem w.r.t. to an S-ontology OS that
is derived from a schema. As in the previous case, the presence of nominals in the
concept language guarantees that the trivial explanation always exists. Therefore we do
not consider the decision problem EXISTENCE-OF-EXPLANATION W.R.T. OS.

Definition 6.5.7 (COMPUTE-ONE-MGE W.R.T.OS). COMPUTE-ONE-MGE W.R.T.OS

is the following computational problem: given a why-not instance (S, I, q, Ans, a), find
a most-general explanation w.r.t. OS for a 6∈ Ans, where OS is the S-ontology that is
derived from S, as defined in Section 6.4.2.

The complexity of COMPUTE-ONE-MGE W.R.T. OS depends on the complexity of
subsumption checking for LS. As can be seen in Table 6.1, subsumption checking with
respect to arbitrary integrity constraints is undecidable. Therefore, for the general case
in which no restriction is imposed on the integrity constraints, COMPUTE-ONE-MGE
W.R.T. OS is unlikely to be decidable. The restrictions on the integrity constraints of S
allow for the definition of several variants of the problem that, under some restrictions,
are decidable.

We restrict now to the cases in which we are able to materialize the S-ontology
OS[K], withK = adom(I)∪{a1, . . . , am}. EXHAUSTIVE SEARCH ALGORITHM gives
us a method for solving COMPUTE-ONE-MGE W.R.T. OS. The following proposition
gives us a double exponential upper bound for COMPUTE-ONE-MGE W.R.T. OS in the
general case, and a polynomial case under specific assumptions (cf. Table 6.1).

126

6.6. Variations of the framework

Proposition 6.5.3. There is an algorithm that solves COMPUTE-ONE-MGE W.R.T. OS

• in 2EXPTIME for LS, provided that the input schema S is from a class for which
concept subsumption can be checked in EXPTIME,

• in EXPTIME for selection-free LS, and projection-free LS, provided that the in-
put schema S is from a class for which concept subsumption can be checked in
EXPTIME,

• in PTIME for Lmin
S , if the arity of q is fixed and provided that the input schema S

is from a class for which concept subsumption can be checked in PTIME.

We end with the definition of CHECK-MGE W.R.T. OS.

Definition 6.5.8. The CHECK-MGE W.R.T. OS problem is the following decision prob-
lem: given a why-not instance (S, I, q, Ans, a) and a tuple of conceptsE = (C1, . . . , Cn),
is E a most-general explanation w.r.t. OS for a 6∈ Ans?

As for COMPUTE-ONE-MGE W.R.T. OS, the undecidability of concept subsumption
in the general case suggests that it is unlikely for CHECK-MGE W.R.T. OS to be decid-
able without imposing any restriction on Π and Σ. However, also this problem allows for
the characterization of several decidable variants.

In particular, since CHECK-MGE is solvable in PTIME (see Theorem 6.5.1), by ma-
terializing OS[K] we can derive some upper bounds for CHECK-MGE W.R.T. OS too.
Proposition 6.5.4. There is an algorithm that solves CHECK-MGE W.R.T. OS

• in 2EXPTIME for LS concepts, provided that the input schema S is from a class
for which concept subsumption can be checked in EXPTIME,

• in EXPTIME for selection-free LS, and projection-free LS, provided that the in-
put schema S is from a class for which concept subsumption can be checked in
EXPTIME,

• in PTIME for Lmin
S , provided that the input schema S is from a class for which

concept subsumption can be checked in PTIME.

The proof is analogous to the one for Proposition 6.5.3.
We expect that the upper bounds for COMPUTE-ONE-MGE W.R.T. OS and CHECK-

MGE W.R.T. OS can be improved. Pinpointing the complexity of these problems is left
for future work.

6.6 Variations of the framework

We consider several refinements and variations to our framework involving finding short
explanations, and providing alternative definitions of explanations and of what it means
to be most general.
Producing a Short Explanation. A most general explanation may contain redundant
concepts as conjuncts. An explanation that is equivalent but shorter may be more help-
ful to the user. To simplify our discussion, we restrict our attention to ontologies that

127

6. High-Level Why-Not Explanations using Ontologies

are derived from an instance and show that the problem of finding a most-general ex-
planation of minimal length is NP-hard in general, where the length of an explanation
E = (C1, . . . , Ck) is measured by the total number of symbols needed to write out C1,
. . . , Ck.

Proposition 6.6.1. Given a why-not instance (S, I, q, Ans, a), the problem of finding a
most-general explanation to ā 6∈ Ans of minimal length is NP-hard.

Given that computing a shortest most-general explanation is intractable in general, we
may consider the task of shortening a given most-general explanation. The INCREMEN-
TAL SEARCH ALGORITHM produces concepts that may contain superfluous conjuncts.
It is thus natural to ask whether the algorithm can be modified to produce a most-general
explanation of a shorter length. This question can be formalized in at least two ways.

Let I be an instance of a schema S, and let C = u{C1, . . . , Cn} be any LS concept
expression. We may assume that each Ci is intersection-free. We say that C is irredun-
dant if there is a no strict subset X ({C1, . . . , Cn} such that C ≡OI uX . We say that
an explanation (with respect to OI) is irredundant if it consists of irredundant concept
expressions. We say that explanations E1 and E2 are equivalent w.r.t. an ontology O,
denoted as E1 ≡O E2, if E1 ≤O E2 and E2 ≤O E1.

Proposition 6.6.2. There is a polynomial-time algorithm that takes as input an instance
I of a schema S, as well as an LS concept expression C, and produces an irredundant
concept expression C ′ such that C ≡OI C ′.

Hence, by combining Proposition 6.6.2 with INCREMENTAL SEARCH ALGORITHM,
we can compute an irredundant most-general explanation w.r.t. OI in polynomial time.

We say that an explanation E = (C1, . . . , Ck) is minimized w.r.t. OI if there does
not exist an explanation E′ = (C1, . . . , Ck) such that E ≡OI E′ and E′ is shorter than
E. Every minimized explanation is irredundant, but the converse may not be true. For
instance, let O be an ontology with three atomic concepts C1, C2, C3 such that C1 vO
C2 u C3 and C2 u C3 vO C1. Then the concept C2 u C3 is irredundant with respect to
O. However, C1 is an equivalent concept of strictly shorter length.

Proposition 6.6.3. Given a why-not instance (S, I, q, Ans, a) and an explanation E to
why ā 6∈ Ans, the problem of finding a minimized explanation equivalent to E is NP-
hard.

Cardinality based preference. We have currently defined a most-general explanation
to be an explanation E such that there is no explanation E′ with E′ >O E. A natural
alternative is to define “most general” in terms of the cardinality of the extensions of the
concepts in an explanation. Formally, let O = (C,v, ext) be an S-ontology, and I an
instance. We define the degree of generality of an explanation E = (C1, . . . , Cm) with
respect to O and I to be the (possibly infinite) sum |ext(C1, I)| + · · · + |ext(Cm, I)|.
For two explanations, E1, E2, we write E1 >

card
O,I E2, if E1 has a strictly higher degree

of generality than E2 with respect to O and I . We say that an explanation E is >card-
maximal (with respect to O and I) if there is no explanation E′ such that E′ >cardO,I E.

Proposition 6.6.4. Assuming P 6=NP, there is no PTIME algorithm that takes as input a
why-not instance (S, I, q, Ans, a) and an S-ontologyO, and produces a >card-maximal
explanation for a 6∈ Ans. This holds even for unary queries.

128

6.7. Conclusion

In particular, this shows (assuming P 6=NP) that computing >card-maximal explana-
tions is harder than computing most-general explanations. The proof of Proposition 6.6.4
goes by reduction from a suitable variant of SET COVER. Our reduction is in fact an L-
reduction, which implies that there is no PTIME constant-factor approximation algorithm
for the problem of finding a >card-maximal explanation.

Strong explanations. We now examine an alternative notion of an explanation that is
essentially independent to the instance of a why-not question. Recall that the second
condition of our current definition of an explanation E = (C1, . . . , Cm) requires that
ext(C1, I)×· · ·×ext(C1, I) does not intersect with Ans, where I is the given instance.
We could replace this condition by a stronger condition, namely that ext(C1, I

′)× · · · ×
ext(C1, I

′) does not intersect with q(I ′), for any instance I ′ of the given schema that is
consistent with the ontology O. If this holds, we say that E is a strong explanation.

A strong explanation is also an explanation but not necessarily the other way round.
When a strong explanationE for a 6∈ Ans exists, then, intuitively, the reason why a does
not belong to Ans, is essentially independent from the specific instance I , and has to do
with the ontology O and the query q. In the case where the ontology O is derived from
a schema S, a strong explanation may help one discover possible errors in the integrity
constraints of S, or in the query q. We leave the study of strong why-not explanations for
future work.

6.7 Conclusion

We have presented a new framework for why-not explanations, which leverages concepts
from an ontology to provide high-level and meaningful reasons for why a tuple is missing
from the result of a query. Our focus in this chapter was on developing a principled
framework, and on identifying the key algorithmic problems. The exact complexity of
some problems raised in this chapter remains open. In addition, there are several direc-
tions for future work.

Recall that, in general, there may be multiple most-general explanations for a 6∈ q(I).
While we have presented a polynomial time algorithm for computing a most-general
explanation to a why-not question w.r.t. OI for the case of selection-free LS, the most-
general explanation that is returned by the algorithm may not always be the most helpful
explanation. In future work, we plan to investigate whether there is a polynomial delay
algorithm for enumerating all most-general explanations.

Although we only looked at why-not explanations, it will be natural to consider why
explanations in the context of an ontology, and in particular, understand whether the
notion of most-general explanations, suitably adapted, applies in this setting. In addition,
Roy and Suciu (2014) recently initiated the study of what one could call “why so high”
and “why so low” explanations for numerical queries (such as aggregate queries). Again,
it would be interesting to see if our approach can help in identifying high-level such
explanations.

We have focused on providing why-not explanations to missing tuples of queries that
are posed against a database schema. However, our framework for answering the why-
not question is general and could, in principle, be applied also to queries posed against
the ontology in an OBDA setting.

129

6. High-Level Why-Not Explanations using Ontologies

Finally, we plan to explore ways whereby our high-level explanations can be used
to complement and enhance existing data-centric and/or query-centric approaches. We
illustrate this with an example. Suppose a certain publication X is missing from the an-
swers to query over some publication database. A most-general explanation may be that
X was published by Springer (supposing all Springer publications are missing from the
answers to the query). This explanation provides insight on potential high-level issues
that may exist in the database and/or query. For example, it may be that all Springer pub-
lications are missing from the database (perhaps due to errors in the integration/curation
process) or the query has inadvertently omitted the retrieval of all Springer publications.
This is in contrast with existing data-centric (resp. query-centric) approaches, which
only suggest fixes to the database instance (resp. query) so that the specific publication
X appears in the query result.

130

6.A. Missing proofs for Section 4

6.A Missing proofs for Section 4

6.A.1 Proofs for Section 6.4.1

Theorem 6.4.1. [Calvanese et al. (2007); Poggi et al. (2008)] Let T be a DL-LiteR TBox.
(i) There is a PTIME-algorithm for deciding subsumption. That is, given T and two

concepts C1, C2, decide if T |= C1 v C2.

(ii) There is an algorithm that, given an OBDA specification B, an instance I over S
and a concept C, computes certain(C, I,B) =

⋂{I(C) | I is a solution for I
w.r.t. B}. For a fixed OBDA specification, the algorithm runs in PTIME (AC0 in
data complexity).

Proof. Item (i). The subsumption problem in DL-LiteR is known to be in PTIME in the
size of the TBox (Calvanese et al., 2007).

Item (ii). First, observe that DL-LiteR is FO-rewritable (Calvanese et al., 2007), i.e.,
given a TBox T and an Abox A, for every CQ q asked against T ∪ A, there exists a
query q′ such that certain(q, I, T ∪ A) = q′(A), where q′ is a UCQ called the perfect
rewriting of q w.r.t. T . Such q′ is PTIME computable.

Then, let B be an OBDA specification. If we replace the ABox withM∪ I , we have
that for every query CQ q asked against B, there exists a query q′ such that
certain(q, I,B) = q′(M ∪ I), where q′ is as defined above. Then, let us denote by
unfM(q′) the unfolding of q′ w.r.t.M, i.e., the UCQ query obtained from q′ by substitut-
ing each atom from ΦC∪ΦR with the union of bodies of the mappings fromM that have
the atom as the head. Unfolding is also PTIME computable (Poggi et al., 2008). Then,
computing certain(q, I,B) amounts to evaluate unfM(q′) on I , which is in PTIME.

Finally, notice that computing ext(C, I) requires one to evaluate the unary query
q(x) = C(x) over B. This task, also known as instance retrieval, takes polynomial time
in light of the above results.

Theorem 6.4.2. The S-ontology OB = (COB ,vOB , extOB) can be computed from a
given OBDA specification B = (T ,S,M) in PTIME if T is a DL-LiteR TBox andM is
a set of GAV mappings.

Proof. The size of COB is polynomial in the size of T . From Theorem 6.4.1, it follows
that concept subsumption can be decided in PTIME for DL-LiteR TBoxes, and also that
computing the extension ext(C, I) of each concept C ∈ COB requires PTIME (AC0 in
data complexity).

6.A.2 Proof of Theorem 6.4.3

In this section we give proofs for the results stated in Table 6.1.
Before turning to the proofs, we note that we only consider the subsumption problem

for input concepts that do not contain nominals. Indeed, we can show that in this case
the problem can be easily solved. First, however, we prove the following

131

6. High-Level Why-Not Explanations using Ontologies

Proposition 6.A.1. Let S be a schema, C1 a concept in LS and Ci2, 1 ≤ i ≤ n concepts
in intersection-free LS. Then

C1 vS C
1
2 u . . . u Cn2 iff C1 vS C

i
2 for every i ≤ n.

Proof. (⇐). Let I be an instance of S, and a ∈ [[C1]]I . Then for every i, 1 ≤ i ≤ n it
holds a ∈ [[Ci2]]I . This means that a ∈ [[C1

2 u . . . u Cn2]]I , as required.
(⇒). Let I be an instance of S, and a ∈ [[C1]]I . Then it holds a ∈ [[C1

2 u . . . uCn2]]I ,
which means a ∈ [[Ci2]]I for every i, 1 ≤ i ≤ n.

Henceforth, this proposition allows restrict ourselves to the case of subsumption in an
intersection-free concept LS. Let C1 vS C2 be an instance of a subsumption problem,
where C1 ∈ LS and C2 is from intersection-free LS and C1 or C2 contain a nominal.
First, if C1 contains a nominal as a conjunct, then in fact C1 is equivalent to this nominal
or inconsistent. In the latter case subsumption trivially holds. The following proposition
shows how we deal with the remaining cases.

Proposition 6.A.2. Let S be a schema. Then for every a, b ∈ Const the following hold

(i) {a} 6vS {b}, {a} vS {a},

(ii) {a} 6vS πA(σθ(R)),

(iii) uni=1πAi(σθi(Ri)) vS {a} iff for every i, 1 ≤ i ≤ n it holds θi |= Ai = a.

Proof. (i) follows from the definitions. For (ii), we can pick the empty instance in
which RI = ∅, thus giving a counter example for subsumption. We show (iii). From the
definition it follows that uni=1πAi(σθi(Ri)) vS {a} if and only if [[πAi(σθi(Ri))]]

I = a
for every i ∈ {1, . . . , n} and every instance I of S. For every i ∈ {1, . . . , n}, if it holds
that θi |= Ai = a, then clearly [[πAi(σθi(Ri))]]

I = a for every instance I of S. For the
opposite direction, suppose there is a j such that θj 6|= Aj = a. Then let J be an instance
of S such that b̄ ∈ RJj , b̄ satisfies θj and πAj (b̄) 6= a. Then [[πAj (σθj (Rj))]]

J contains
πAj (b̄) which is not equal to a, a contradiction.

Thus from now on, we only deal with the subsumption problem for concepts that do
not contain nominals.

Schema with UCQ-view definitions
In this section we assume a schema (S,Σ), where Σ is a collection of (nested) UCQ-view
definitions. We first consider the simplest fragments of LS.

Selection-free fragments of LS

The complexity results for subsumption come from the known results for the containment
problem of Datalog queries. For the semantics of Datalog we refer to Chapter 2. Let Π1

and Π2 be Datalog queries defined over the same set of extensional predicatesEDB. We
say that a Datalog query Π1 is contained in a Datalog query Π2, denoted as Π1 ⊆ Π2, if
it holdsGΠ1(I)

1 ⊆ GΠ2(I)
2 for every instance I overEDB, whereGi is the goal predicate

of Πi.

132

6.A. Missing proofs for Section 4

Claim 6.A.1. The containment problem for Datalog and the subsumption problem in
Lmin
S or selection-free LS with respect to S are PTIME-equivalent.

Proof. (sketch) Let Σ be a collection of nested UCQ-view definitions without compar-
isons. We may see it as a non-recursive Datalog program as was noted in Preliminaries.

• Reduction from the subsumption problem to the containment problem. We show
the case of selection-freeLS, then the case ofLmin

S follow. LetC1 = un1
i=1πA1

i
(R1

i)

and C2 = un2
j=1πA2

j
(R2

j) be from selection-free LS, and C1 vS C2 an instance
of the subsumption problem. We then define the Datalog query Πi, i = 1, 2, as
the program Σ together with the additional rule Ci(x) :- Ri1(x̄1), . . . , Rini(x̄ni),
where x is in the attribute Aij of x̄j , and Ci as the goal predicate. Then it can be
shown C1 vS C2 if and only if Π1 ⊆ Π2.

• Reduction from the containment problem to the subsumption problem. We show
the reduction for the case Lmin

S , then the case of selection-free LS would follow.
Let Π1 ⊆ Π2 be an instance of Datalog containment problem, and EDB the
common set of extensional predicates. Let G1 and G2 be the corresponding goal
predicates. W.l.o.g. we can assume that both G1 and G2 are unary. Indeed, it can
be shown that an n-ary (n ≥ 2) containment can be reduced to a unary containment
of Datalog queries. We define Ci := π1(Gi) = Gi and a schema (S,Σ), where
S = EDB ∪ IDB(Π1) ∪ IDB(Π2) and Σ = Π1 ∪ Π2 (written as nested UCQ-
view definitions). Then it holds Π1 ⊆ Π2 if and only if C1 vS C2.

We make use of the following results that can be found in (Benedikt and Gottlob,
2010; Nutt, 2013; Shmueli, 1993).

Theorem 6.A.1. The containment problem Π1 ⊆ Π2, where Π1 and Π2 are Datalog
queries, is undecidable. It is decidable and CONEXPTIME-complete if both Π1 and Π2

are non-recursive. The hardness result holds even for a fixed input schema. Additionally
it is

1. ΠP
2 -complete if both Π1 and Π2 linear,

2. NP-complete if Π1 and Π2 are collections of UCQ-view definitions, and

3. ΠP
2 -complete if Π1 and Π2 are collections of UCQ-view definitions with compar-

isons.

In particular, item 3. follows from the results on containment of CQs with compar-
isons. In (Nutt, 2013) a ΠP

2 lower bound was shown where CQs have comparisons of
type xop c, op ∈ {≤, >}. Then using the reduction in Claim 6.A.1 and Theorem 6.A.1
we have the following.

Corollary 6.A.1. Let S be a schema with a collection of view definitions Σ as integrity
constraints. The subsumption problem C1 vS C2, where C1 and C2 are from Lmin

S or
selection-free LS, is

a) CONEXPTIME-complete if Σ is a collection of nested UCQ-view definitions with-
out comparisons,

133

6. High-Level Why-Not Explanations using Ontologies

b) ΠP
2 -complete if Σ is a collection of linearly nested UCQ-view definitions without

comparisons,

c) ΠP
2 -complete if Σ is a collection of UCQ-view definitions.

d) NP-complete if Σ is a collection of UCQ-view definitions without comparisons.

In the next section we show that the upper bounds still hold even for the case of nested
UCQ-view definitions with comparisons.

Full LS

In this section we consider the subsumption problem for the concept language LS w.r.t.
a schema with a collection of view definitions. For an upper bound, we reduce the sub-
sumption problem to Datalog containment. Let C1 vS C2 be an instance of the sub-
sumption problem for LS.

We prove the following.

Proposition 6.A.3. Let (S,Σ) be a schema with Σ a collection of nested UCQ-view def-
initions, C1 and C2 concepts in LS. Then there exist PTIME computable non-recursive
Datalog queries Π1 and Π2 such that

C1 vS C2 iff Π1 ⊆ Π2.

Moreover, if Σ is linearly nested, then Π1 and Π2 are linear non-recursive Datalog
queries.

Proof. Let S,C1 andC2 be as in the statement. It is convenient to representC1 andC2 as
conjunctive queries. This is done via the standard translation of relational algebra expres-
sions to first order logic. Assume that C1(x) and C2(x) are (unary) conjunctive queries
with arithmetic comparisons corresponding to C1 and C2 respectively. First we note that
the subsumption problem C1 vS C2 is equivalent to the containment problem of two
Datalog queries where the goal predicates are defined as C1(x) and C2(x) respectively.
The latter containment can be reduced to Boolean containment of Datalog queries (in
PTIME). Thus assume we have reduced our problem to Datalog containment Π′1 ⊆ Π′2,
where Π′i has the form Π ∪ {Gi:-Qi} with the Boolean goal predicates Gi. Note this
reduction preserves the syntactic restrictions (i.e., non-recursiveness and linearity) on the
datalog programs. Let D denote EDB predicates.

Let K ⊆ Const be the set of constants appearing in Π′1 or Π′2. For every constant
c ∈ K we introduce new unary EDB predicates Pop c, op ∈ {<,=, >}. Additionally, we
introduce a new unary EDB predicate Dom(·). Let Dop be the set of the newly intro-
duced unary predicates. Let Π̃′i, i = 1, 2, denote the result of the following operations on
Π′i:

(i) Replace each occurrence of xop cwith Pop c(x), op ∈ {=,≤,≥, <,>}. The pred-
icates P≤c and P≥c are IDB predicates defined below.

(ii) For every rule of Π′i and every variable x in the rule, addDom(x) to the antecedent
of the rule.

134

6.A. Missing proofs for Section 4

Then we define Πi as follows.
Π1 = Π̃′1 ∪ Π≤,≥ ∪ ΠDom and Π2 = Π̃′2 ∪ Π≤,≥ ∪ ΠDom ∪ {G2 :- Bad} ∪ ΠBad.

The program Π≤,≥ is defined by the following rules, for every c ∈ C:

P≤c(x) :- P<c(x),

P≤c(x) :- P=c(x),

P≥c(x) :- P>c(x),

P≥c(x) :- P=c(x).

The program ΠDom is defined by the following rules, for every c ∈ C:

Dom(x) :- P=c(x),

Dom(x) :- P<c(x),

Dom(x) :- P>c(x).

Bad is a 0-ary IDB predicate defined by the program ΠBad, which lists all possible
inconsistencies that we try to avoid. For every c, c1, c2 ∈ K such that c1 < c2 and
op1, op2 ∈ {<,=, >} with op1 6= op2, ΠBad contains:

Bad :- Pop1c(x), Pop2c(x),

Bad :- P=c1(x), P=c2(x),

Bad :- P<c1(x), P>c2(x),

Bad :- P=c1(x), P>c2(x),

Bad :- P<c1(x), P=c2(x).

Additionally, if (Const, <) has the left endpoint cl and/or the right end point cr , then
ΠBad also contains the rules

Bad :- P<cl(x),

Bad :- P>cr (x).

Moreover, for every c1 and c2 from K such that c1 < c2 and there is no c′ ∈ Const with
c1 < c′ < c2, ΠBad contains:

Bad :- P>c1(x), P<c2(x).

Clearly Π1 and Π2 are PTIME computable and satisfy the syntactic restrictions (i.e.,
non-recursiveness and linearity). We claim that Π′1 ⊆ Π′2 iff Π1 ⊆ Π2.

(⇐). Suppose there is an instance I ′ over D such that Π′1(I ′) |= G1 and Π′2(I ′) 6|=
G2. We then define an instance I over D ∪ Dop as the instance with the same active
domain as I . Moreover, the interpretation of EDB predicates is defined as follows.

• R(ā) ∈ I iff R(ā) ∈ I ′, for every R ∈ D,

• Pop c(a) ∈ I iff a ∈ adom(I) and (Const, <) |= aop c, where op ∈ {=, <,>},

• Dom(a) ∈ I iff a ∈ adom(I).

135

6. High-Level Why-Not Explanations using Ontologies

It is straightforward to show that Π1(I) |= G1 and Π2(I) 6|= G2. In particular, to
show the latter we use the fact that Bad is not satisfied in Π2(I) by definition of the
interpretations of the predicates Popc. Thus, we have provided a counterexample for
Π1 ⊆ Π2.

(⇒). Suppose there exists an instance Ĩ over D ∪Dop such that Π1(Ĩ) |= G1 and
Π2(Ĩ) 6|= G2. We define a new instance I as the restriction of Ĩ to Dom, i.e., the domain
is defined as adom(I) = {a | Dom(a) ∈ Ĩ}. Note that the extension of Dom in Π1(I)
and Π2(I) are the same and not empty. Note also that I is still a counterexample for the
containment Π1 ⊆ Π2, i.e., Π1(I) |= G1 and Π2(I) 6|= G2. We prove the following.

Claim 6.A.2. For every a ∈ adom(I) there exists c ∈ Const such that for every c′ ∈ K
and op ∈ {<,=, >} it holds

I |= Pop c′(a) iff (Const, <) |= cop c′.

Proof. By definition of I , it holds Dom(a) ∈ I for every a ∈ adom(I). This means
that either P=c(a) or P>c(a) or P<c(a) holds in I for every c ∈ K. In case P=c(a)
holds in I , there is no other fact P=c′(a) in I for some c′ 6= c because of Bad. Then
using Bad we can show that I |= Pop c′(a) iff (Const, <) |= cop c′. Thus, c is as
needed. Suppose there is no c such that I |= P=c(a). Let c1 be the maximal element
of K such that P>c1(a) ∈ I and c2 the minimal element of K such that P<c2(a) ∈ I .
In case (Const, <) has endpoints, we have that cl ≤ c1 and c2 ≤ cr due to Bad.
Furthermore, we have that c2 is not the immediate successor of c1 by Bad. Thus there
exists c ∈ Const \ K such that c1 < c < c2. Moreover, by the choice of c for every
c′ ∈ K it holds I |= Pop c′(a) iff (Const, <) |= cop c′.

We then define an instance I ′ as the homomorphc image f(I), where f is such that
for every a ∈ adom(I) we define f(a) = c, where c is from Claim 6.A.2.

We need to show that (A) Π′1(I ′) |= G1 and (B) Π′2(I ′) 6|= G2.
This follows from the next claim. For a CQ with arithmetic comparisons Q(x), by

Q̃(x) we denote the result of replacing each comparison xop c with the atom Pop c(x)
and adding the conjunct Dom(x).

Claim 6.A.3. Let Q(x) be a CQ with arithmetic comparisons over D ∪ IDB(Π). Then

Π̃ ∪Π≤,≥ ∪ΠDom(I) |= Q̃(ā) iff Π(I ′) |= Q(f(a)).

Proof. The proof is by the induction on the depth of the datalog program. Base of induc-
tion: EDB predicates and arithmetic comparisons.

• Let Q(x) = xop c. Then Π̃ ∪ Π≤,≥ ∪ ΠDom(I) |= Pop c(a) ∧ Dom(a) iff
I |= Pop c(a) iff (by definition of I ′) I ′ |= f(a)op c iff Π(I ′) |= f(a)op c. The
cases op ∈ {≤,≥} can be treated similarly, though the predicates P≤c and P≥c
are IDBs.

• Q(x) = R(x) for an EDB predicate R. Then Π̃ ∪ Π≤,≥ ∪ ΠDom(I) |= R(a) ∧
Dom(a) iff I |= R(a) iff (by definition of I ′) I ′ |= R(f(a)) iff Π(I ′) |= R(f(a)).

136

6.A. Missing proofs for Section 4

Step of induction. Let R(x) :- Ri1(x, y), . . . , Rik(x, y), Dom(x̄, ȳ) be the rules in Π̃

defining R(x), where each Ri is a predicate over D∪Dop ∪ IDB(Π). Then Π̃∪Π≤,≥ ∪
ΠDom(I) |= R(a) iff Π̃∪Π≤,≥ ∪ΠDom(I) |= Ri1(a, b)∧ . . .∧Rik(a, b) for some i and
tuple b from adom(I). By the induction hypothesis, the latter is equivalent to Π(I ′) |=
Ri1(f(a), f(b)) ∧ . . . ∧ Rik(f(a), f(b)) (note if Rij was from Dop, then it is replaced by
the corresponding arithmetic comparison), which is equivalent to Π(I ′) |= R(f(a)).

We show how (A) and (B) follow from this claim. Recall Π1(I) |= G1, which is the
same as Π̃ ∪Π≤,≥ ∪ΠDom(I) |= Q̃1 for Q1 being the body of the rule defining G1. By
Claim 6.A.3 it follows Π(I ′) |= Q1, and thus Π′1(I ′) |= G1. Similarly we can show (B).
Indeed, suppose the opposite, i.e. Π′2(I ′) |= G2. This is equivalent to Π(I ′) |= Q2 forQ2

being the definition of G2. By Claim 6.A.3 it follows that Π̃ ∪Π≤,≥ ∪ΠDom(I) |= Q̃2.
This implies that Π̃′2 ∪ Π≤,≥ ∪ ΠDom(I) |= G2, which in turn implies Π2(I) |= G2,
which is a contradiction.

Thus from Theorem 6.A.1 and Proposition 6.A.3 we obtain:

Corollary 6.A.2. Let S be a schema with a collection of view definitions Σ as integrity
constraints. The subsumption problem C1 vS C2, where C1 and C2 are from LS, is

a) In CONEXPTIME if Σ is a collection of nested UCQ-view definitions,

b) In ΠP
2 if Σ is a collection of linearly nested UCQ-view definitions.

Schema with functional and inclusion dependencies
In this section we assume that the schema S has functional and inclusion dependencies as
integrity constraints. We first show that the subsumption problem w.r.t. S is undecidable.
We prove it by reduction from the implication problem for constraints.

Definition 6.A.2. Let IMPL(C,D) be the following problem: given a set of constraints
Σ belonging to the class C and a single constraint σ belonging to the class D, decide
whether Σ |= σ.

Theorem 6.A.3 (Mitchell (1983), Chandra and Vardi (1985)). IMPL(FDs+ IDs, IDs)
is undecidable.

Note that the undecidability result already holds in case the implied constraint σ is
unary inclusion dependency. We show the following.

Claim 6.A.4. The concept subsumption problem for Lmin
S w.r.t. S is a special case of

IMPL(C, UIDs) under the same set of constraints Σ (where the set Σ belongs to the class
C).

Proof. Since C1, C2 ∈ Lmin
S , they are of the form πA(R), i.e., unary projections over the

relations of S. Let C1 = πA(R) and C2 = πB(S), where R,S are two relation names
and A and B are, respectively, attributes defined over R and S in S. Let σC be the unary
inclusion dependency (UID) R[A] ⊆ S[B]. Then C1 vS C2 iff Σ |= σc.

Corollary 6.A.3. The concept subsumption problem for Lmin
S w.r.t. (S,Σ), where Σ is a

set of inclusion and functional dependencies is undecidable.

137

6. High-Level Why-Not Explanations using Ontologies

Subsumption for Σ a set of Inclusion Dependencies

We begin with the concept subsumption problem for Lmin
S w.r.t. schema with a set of

inclusion dependencies Σ . We assume familiarity with the chase procedure for inclusion
dependencies (Abiteboul et al., 1995).

Let Σ be a set of inclusion dependencies. We define a position graph GΣ as follows.

Definition 6.A.4. Let Σ be a set of inclusion dependencies. The position graph GΣ

of Σ is a tuple (V,E) such that V = {R[i] | R ∈ S, i an attribute of R} and E =
{〈R[i], Q[j]〉 | (R[. . . , i, . . .] ⊆ Q[. . . , j, . . .]) ∈ Σ}.
Proposition 6.A.4. Let Σ be a set of inclusion dependencies, σ a unary inclusion depen-
dency R[i] ⊆ Q[j]. Then

Σ |= σ iff Q[j] is reachable from R[i] in GΣ.

Proof. (⇐). Suppose there is a path fromR[i] toQ[j] inGΣ. Each edge 〈R1[A], R2[B]〉
of the path corresponds to the inclusion dependency R1[. . . , A, . . .] ⊆ R2[. . . , B, . . .] in
Σ. Thus, there is a sequence of inclusion dependencies in Σ which derives σ.

(⇒). Suppose Σ |= R[i] ⊆ Q[j]. Let R(a) be a fact. Then it must hold that a fact
Q(b) with bj = ai is contained in the result of chasing {R(a)} with Σ. By induction on
the length L of the chase on R(a) we show that ai is passed to reachable nodes only, i.e.
if Q(. . . , ai, . . .) ∈ chaseΣ({R(a)}), then there is a path from R[i] to Q[j], where j is
the position in Q where the value ai is.

L = 0. Trivially true since R[i] is reachable from itself.
L = k + 1. Assume Q(b̄), where bl = ai for some l, is obtained by application

of α = (P [A] ⊆ Q[B]) to chasekΣ(R(a)). This means that there is a fact P (c̄) in
chasekΣ(R(a)) such that cj = ai for some j ∈ A. Hence, P [j] is reachable from R[i],
by the induction hypothesis. Since also there is an edge from P [j] to Q[l], there is a path
from R[i] to Q[l] as required.

Thus we can reduce the subsumption problem for Lmin
S w.r.t. (S,Σ), where Σ is a set

of IDs, to graph reachability. Recall that graph reachability can be decided in PTIME.

Corollary 6.A.4. The concept subsumption problem for Lmin
S with respect to (S,Σ),

where Σ is a set of IDs, can be solved in PTIME.

We then show that the subsumption problem for selection-freeLS w.r.t. (S,Σ), where
Σ is a set of IDs, can be reduced (in PTIME) to the one for Lmin

S . This follows from the
next two lemmas.

Lemma 6.A.1. Let S be a schema,C1 a concept in selection-freeLS,Cj2 , j ≤ n concepts
in Lmin

S . Then

C1 vS C
1
2 u . . . u Cn2 iff C1 vS C

j
2 for every j ≤ n.

Proof. (⇒). Let I be an instance over S and a ∈ [[C1]]I . Then by the assumption
a ∈ [[C1

2 u . . . u Cn2]]I . The latter means that a ∈ [[Cj2]]I for every j, 1 ≤ j ≤ n, as
needed.

(⇐). Let I be an instance over S and a ∈ [[C1]]I . By the assumption, a ∈ [[Cj2]]I for
every j, 1 ≤ j ≤ n, i.e., a ∈ [[C1

2 u . . . u Cn2]]I , as needed.

138

6.A. Missing proofs for Section 4

Lemma 6.A.2. Let Σ be a set of IDs, and (S,Σ) a schema. Then for concepts C,
C1, . . . , Cn ∈ Lmin

S it holds,

C1 u . . . u Cn vS C iff Ci vS C for some i ≤ n.

Proof. One direction (⇐) is trivial. We show (⇒). Suppose Ci 6vS C for every i ≤ n.
There exist instances Ii, i ≤ n over S such that each of Ii is a counter-example for sub-
sumption Ci 6vS C. We can assume that a constant a witnesses every non-subsumption,
i.e., a ∈ [[Ci]]

Ii and a 6∈ [[C]]Ii . Let I be the union of instances Ii. Note that I satisfies
Σ. Indeed, let σ = (R1[Ā] ⊆ R2[B̄]) be an inclusion dependency from Σ. Let for ā it
holds R1(ā) ∈ I . This means that this fact holds in one of Ii. Since each Ii satisfies σ,
the fact R2(b̄) with ā|Ā = b̄|B̄ holds in Ii. But this also means that this fact holds in the
union I . Thus, σ is satisfied in I . Moreover, I is a counter-example for the subsumption
C1 u . . . u Cn vS C, since a ∈ [[C1 u . . . u Cn]]I and a 6∈ [[C]]I .

Subsumption for Σ a set of Functional Dependencies

We now consider the concept subsumption problem w.r.t. a schema (S,Σ), where Σ is a
set of function dependencies.

We show that the subsumption problem is in PTIME.

Proposition 6.A.5. The concept subsumption problem for LS w.r.t (S,Σ), where Σ is a
set of functional dependencies, is solvable in PTIME.

Proof. Recall that an order (V,<) is dense if for every x and y in V with x < y, there
exists z ∈ V such that x < z and z < y.

Let C1 and C2 be LS concepts. It is convenient to consider them as unary CQ queries
with comparisons. For a CQ Q by V ar(Q) we denote the set of variables of Q.

Without loss of generality we may assume that CQs with comparisons are in normal
form. We say that a CQ with a set of comparisons θ is in normal form if for every variable
x it holds that

• Either θ contains at most one equality of x with a constant. Moreover, if such an
equality occurs in θ, then θ contains no other comparisons of x.

• Or θ contains at most one interval or semi-interval for x. That is, a semi-interval
x ≤ c, x ≥ c, x < c, or x > c, or (open or closed) interval c1op1 x op2 c2,
where op1, op2 ∈ {<,≤}. In case (Const, <) contains a left endpoint, then θ
contains at most one right semi-interval x ≥ c or x > c, or an interval for x.
Similarly, if (Const, <) contains a right endpoint, then θ contains at most one left
semi-interval x ≥ c or x > c, or an interval for x.

Note that each CQ with comparisons can be converted (in PTIME) into an equivalent
CQ with comparisons in normal form.

A generalized instance over S and a set of variables V ar (V ar ∩ Const = ∅) is
a set of relational facts of the form R(x1, . . . , xn) and comparisons xopc, where R ∈
S, x1, . . . , xn, x ∈ V ar, op ∈ {=, <,>,≤,≥} and c ∈ Const, with the condition
that x must occur in some relational fact of I . We may assume that every consistent
generalized instance is in normal form, as defined above for queries with comparisons.

139

6. High-Level Why-Not Explanations using Ontologies

For a generalized instance I and a conjunctive query Q, by I |= Q we denote the
fact that there is a homomorphism h from V ar(Q), variables ofQ, to V ar that preserves
relational facts and arithmetic comparisons, that is, for a variable x ∈ V ar(Q), the com-
parisons of h(x) must imply the comparisons θ(x) of x. By the canonical generalized
instance IQ of Q we mean the generalized instance consisting of the facts of Q, i.e.,
the set {R(x̄) | R(x̄) is a conjunct of Q} ∪ {xopc | xopc is a conjunct of Q}. We may
assume without loss of generality that relational facts do not contain constants since we
can replace each constant by a fresh variable and equating it with the constant. For the
algorithm, we use the chase technique adapted to deal with comparisons. Without loss of
generality we may assume that every FD has one attribute as the consequent.
Chase step. Let I be a generalized instance over V ar. We assume there is a total order
≤v on V ar. Let σ be an FD R : X → B. Let R(x̄) and R(ȳ) be facts in I such that
πA(x̄) = πA(ȳ) for every A ∈ X and πB(x̄) 6= πB(ȳ). By x and y we denote the
variables πB(x̄) and πB(ȳ), respectively. Let θ(x) and θ(y) be the comparisons of x
and y in I . Then the result of applying the FD to I is defined as follows, depending on
the type of comparisons of x and y. We consider all the possible cases for the shape of
comparisons of x and y and depending on the cases either obtain “failure” or a variable z
and the constraint θ(z). Here z is min≤v{x, y} and w = max≤v{x, y}. Then the result
of applying FD is the instance I ′ obtained from I by substituting every occurrence of w
with z. Additionally, the constraint θ(z) is added to I ′ and the old comparisons θ(x) and
θ(y) are discarded.

• θ(x) is x = c1 and θ(y) is y = c2. Then “failure”.

• θ(x) is x = c1 and θ(y) is constraints involving inequality only. If c1 does not
satisfy θ(y), then “failure”. Otherwise, let θ(z) be z = c1.

• θ(x) is c1x ≤ x ≤ c2x and θ(y) is c1y ≤ y ≤ c2y . If [c1x, c
2
x] ∩ [c1y, c

2
y] = ∅, then

“failure”. Otherwise, let θ(z) be c1 ≤ z ≤ c2, where c1 = max{cx1 , cy1} and
c2 = min{cx2 , cy2}.

• θ(x) is c1x ≤ x < c2x and θ(y) is c1y < y ≤ c2y . If [c1x, c
2
x) ∩ (c1y, c

2
y] = ∅, then the

result is “failure”. Otherwise, let θ(z) be c1op1 zop2 c2, where c1 = max{cx1 , cy1},
c2 = min{cx2 , cy2}, and op1 is ”≤” if c1 is cx1 and “<” otherwise, and op2 is “<” if
c2 is cx2 and “≤” otherwise.

• θ(x) is xop1c
x
2 , where op1 ∈ {≤, <} and θ(y) is yop2c

y
1 , where op2 ∈ {≥, >}. If

cx2 < cy1 , then “failure”. Otherwise, let θ(z) be cy1op
−1
2 zop1 c

x
2 .

• Other cases are similar.

By I →σ I
′ we denote a chase step, where I ′ is the result of applying σ to I .

Chase sequence. Let Σ be a set of FDs, and let I be a generalized instance over V ar.
A chase sequence of I with Σ is a sequence of chase steps Ii →σ Ii+1, with I0 = I
and σ ∈ Σ. A finite chase of I with Σ is a finite chase sequence of length m with the
requirement that either Im = “failure” or there is no σ ∈ Σ that can be applied to Im.
Then Im is the result of the finite chase of I with Σ, denoted as chaseΣ(I). The following
facts can be proved similarly as for the classical chase for FDs.

140

6.A. Missing proofs for Section 4

Lemma 6.A.3. Let I be a generalized instance and Σ a set of FDs. Then every chase
sequence of I with Σ is a finite chase of I with Σ. Moreover, the length of the sequence
is bounded by a polynomial in the size of I and Σ.

Lemma 6.A.4. Let I be a generalized instance and Σ a set of FDs. Let Im be the result
of a finite chase of I with Σ such that Im 6= “failure”. Then Im satisfies Σ. If there exists
a finite chase of I with Σ with the result “failure”, then there is no instance that satisfies
Σ.

Lemma 6.A.5. Let I1 →σ I2 be a chase step, where I2 6= “failure”. Let I be a general-
ized instance such that (i) I satisfies σ and (ii) there exists a homomorphism h1 : I1 → I .
Then there exists a homomorphism h2 : I2 → I .

Our algorithm would proceed as follows. Let Qi be the CQ with comparisons corre-
sponding to Ci. Clearly, C1 vS C2 iff Q1 is contained in Q2 w.r.t. Σ. The latter can be
reduced to containment of Boolean queries and thus w.l.o.g. we can assume that Q1 and
Q2 are Boolean. Note if Q1 or Q2 are inconsistent (which can be checked in PTIME),
then the subsumption problem is trivial. Let IQ1

be the canonical generalized instance
of Q1. Let chaseΣ(IQ1

) be the result of the finite chase of IQ1
with Σ. It is computable

in PTIME by Lemma 6.A.3. Then we claim that Q1 is contained in Q2 if and only if
chaseΣ(IQ1) |= Q2.

Claim 6.A.5. LetQ1 andQ2 be CQs with comparisons, Σ a set of FDs. Let chaseΣ(IQ1
)

be the result of the finite chase of IQ1
with Σ. Then Q1 ⊆Σ Q2 iff chaseΣ(IQ1

) |= Q2.

Proof. (⇐). Assume chaseΣ(IQ1) |= Q2. If chaseΣ(IQ1) = “failure”, then by Lemma
6.A.4 there is no instance that satisfies Σ. Thus the containment is vacuously true.

Assume chaseΣ(IQ1
) 6=“failure”. Let I be an arbitrary instance such that I |= Σ and

I |= Q1. This means there exists a homomorphism h : Q1 → I , which can be considered
as a homomorphism from IQ1

to I . Applying Lemma 6.A.5 to each chase step, we obtain
that there exists a homomorphism h′ : chaseΣ(IQ1) → I . Since chaseΣ(IQ1) |= Q2,
there exists a homomorphism g : Q2 → chaseΣ(IQ1). Then it can be verified that
h′ ◦ g : Q1 → I is a homomorphism, thus I |= Q2 as needed.

(⇒). Assume Q1 ⊆Σ Q2. We have that chaseΣ(IQ1
) |= Q1 and chaseΣ(IQ1

)
satisfies Σ by Lemma 6.A.4. Since Q1, and thus IQ1

, is consistent, and the chase step
preserves consistency, we have that chaseΣ(IQ1

) is consistent too. Since (Const, <)
is an infinite dense order, for every variable in chaseΣ(IQ1) we can assign a distinct
constant such that every comparison in chaseΣ(IQ1) is satisfied. Let I be the instance
obtained from chaseΣ(IQ1

) by this assignment. We have that I |= Q1 and I satisfies
Σ. By assumption, it holds that I |= Q2, i.e., there is a homomorphism h : Q2 → I .
Since the assignment of the variables in chaseΣ(IQ1

) is 1-1, we have that there is a
homomorphism g : Q2 → chaseΣ(IQ1

), i.e., chaseΣ(IQ1
) |= Q2, as needed.

Note that the conditions of Claim 6.A.5 can be checked in PTIME according to
Lemma 6.A.6 below.

Note that for a concept from LS, the corresponding translation to first order logic
is a CQ with comparisons of the form Φ(x, y), θ(x), θ′(ȳ), where Φ is a conjunction of
atoms Ri such that for i 6= j it holds V ar(Ri) ∩ V ar(Rj) = {x}, θ(x), and θ′(ȳ)

141

6. High-Level Why-Not Explanations using Ontologies

are comparisons. In the above proof we reduced the containment of such queries to
Boolean containment. The corresponding Boolean CQ with comparisons has the form
P (z, x), Φ(x, y), θ(x), θ′(ȳ), where P is a fresh relational symbol. We show that such
queries can be evaluated over a generalized instance in PTIME.

Lemma 6.A.6. Let I be a generalized instance over S and V ar, Q the Boolean CQ with
comparisons corresponding to a LS concept. Then deciding if I |= Q can be done in
PTIME.

Proof. Checking I |= Q amounts to checking existence of a homomorphism
h : V ar(Q)→ V ar such that

• if R(x̄) ∈ Q then R(h(x̄)) ∈ I ,

• the comparisons of h(x) must imply the comparisons of x.

From the above discussion we have that Q has the form Φ(x, y), θ(x), θ′(ȳ), where Φ is
a conjunction of atoms such that for Ri, Rj ∈ Φ, i 6= j, it holds V ar(Ri) ∩ V ar(Rj) =
{x}, θ(x) and θ′(ȳ) are comparisons. We provide the following algorithm. For each
atom Ri(x, ȳ

i) (w.l.o.g. we can assume that x is in the first attribute) in Q, we compute
the set V ari = {z ∈ V ar | Ri(z, w̄i) ∈ I, θ(z) |= θ(x), θ′(w̄i) |= θ′(ȳi)}. Such set can
be computed in PTIME. Then I |= Q if and only if ∩iV ari 6= ∅.

6.B Missing proofs of Section 5

6.B.1 Proofs for Section 6.5.1
Theorem 6.5.1.

(i) The problem CHECK-MGE is solvable in PTIME.

(ii) The problem EXISTENCE-OF-EXPLANATION is NP-complete. It remains NP-
complete even for bounded schema arity.

Proof. (i) First, given a tuple of conceptsE = (C1, . . . , Cm), we can check in PTIME
if E is an explanation. Then, to check if E is a most-general explanation, we need
to check if for each i, the concept Ci cannot be replaced by a concept C ′i such that
Ci vO C ′i by keeping an empty intersection with Ans. Thus, for each position i
in E, we try to replace Ci with all the possible concepts in C \ {Ci}, which can be
done in PTIME.

(ii) First, for membership in NP, we can guess a tuple of concepts of polynomial size,
and check in PTIME if it is an explanation.

Secondly, we prove hardness via a reduction from SET COVER. Let us first recall
the problem: given a triple (S,X, k), where S is a set,X is a set containing subsets
of S, and k is an integer, SET COVER is the problem of deciding if there exists a
subset of X of size k such that the union of the elements in the subset covers S.
Given an instance (S,X, k) of SET COVER, we build an instance of EXISTENCE-
OF-EXPLANATION with bounded schema arity.

142

6.B. Missing proofs of Section 5

Let the why-not instance (S, I, q, Ans, a) be defined as:

S = {R(A)}
I = {R(s) | s ∈ S}
q(x, . . . , x) :- R(x) where the arity of q is k
a = (a, . . . , a) for some arbitrary a /∈ S

Let O = (C,v, ext) be the S-ontology defined as:

C = {CY |Y ∈ X}
v= {(CY , CK) | K ⊆ Y }
ext(CY , I) = S ∪ {a} \ Y , for each Y ∈ X

Note that I is consistent withO. Indeed, CY v CK is equivalent to K ⊆ Y which
in turn implies S ∪ {a} \ Y ⊆ S ∪ {a} \K, i.e., ext(CY , I) ⊆ ext(CK , I). Then
we show that there exists a set cover of size k for S iff the answer for EXISTENCE-
OF-EXPLANATION is “yes”.

(⇒). Let Y1, . . . , Yk be a solution for SET COVER. We show that
E = (C1, . . . , Ck), where Ci = CYi , is an explanation for a /∈ Ans.
Assume, towards a contradiction, that E is not an explanation for a /∈ Ans.
Then one of the following conditions must hold: (i) there exists Ci such that
a /∈ ext(Ci, I); (ii) ext(C1, I)× . . .× ext(Ck, I) ∩ Ans 6= ∅. Both these condi-
tions lead to contradiction. In particular, by construction, for each i, a ∈ Ci, which
refutes (i). Suppose that (ii) holds. Then there exists an element s ∈ S such that
for each i, s ∈ ext(Ci, I) and thus s /∈ Yi (since ext(Ci, I) is the complement
of Yi w.r.t. S ∪ {a}). But this contradicts the assumption that Y1, . . . , Yk is a set
cover.

(⇐). Let E = (C1, . . . , Ck), where Ci = CYi , be an explanation for a /∈ Ans.
We show that Y1, . . . , Yk is a solution for SET COVER.

Suppose, towards a contradiction, that Y1, . . . , Yk is not a set cover. Thus there
exists at least one element s ∈ S such that s /∈ Yi for each i, which, in turn, implies
that s ∈ ext(Ci, I) for each i. But then ext(C1, I)× . . .× ext(Ck, I)∩Ans 6= ∅,
which contradicts the assumption that E is an explanation.

Theorem 6.5.2. Let a why-not instance (S, I, q, Ans, a) and an S-ontology O be an
input to EXHAUSTIVE SEARCH ALGORITHM and let X be the corresponding output.
The following hold:

(i) X is the set of all most-general explanations for a 6∈ Ans (modulo equivalence);

(ii) EXHAUSTIVE SEARCH ALGORITHM runs in EXPTIME in the size of the input (in
PTIME if we fix the arity of the input query).

Proof. (i) (Correctness) We show the correctness of EXHAUSTIVE SEARCH ALGO-
RITHM by proving the following claims: (a) every most-general explanation be-
longs to X ; (b) every E ∈ X is a most-general explanation.

143

6. High-Level Why-Not Explanations using Ontologies

Suppose E is a most-general explanation for a 6∈ Ans. Since E is an explanation,
by definition its extension contains a and does not intersect Ans, thus it is part of
X at the beginning (line 2). Moreover, since it is a most-general explanation, there
is no explanation E′ ∈ X such that E′ >O E, thus the test in line 4 fails and E
is never removed from X . This proves claim (a). Suppose there exists an element
E ∈ X that is not a most-general explanation for a 6∈ Ans. First, observe that E
must be an explanation, otherwise it could not be in X , according to line 2. Then it
must be the case that there exists an explanation E′ such that E′ >O E. We may
assume w.l.o.g. thatE′ is a most-general explanation. Then, as proved in point (a),
E′ ∈ X , therefore the pair E,E′ would have been considered for the comparison
in line 4, and E would have been removed from X , which leads to a contradiction
and proves point (b).

(ii) (Running time) First, notice that the extension ext(C, I) of a concept is polynomial-
time computable by definition. Let us call p(k + |adom(I)|) this polynomial,
where k be the maximal size of concepts from C. Then, building each set C(ai)
at line 1 requires O(|C| · |p(k + |adom(I)|)|). Building the set X at line 2 re-
quires O((m · |C| · |p(k + |adom(I)|)|)m · |Ans|), where m is the arity of q.
Finally, the steps from line 3 to 5 require O(|C|2m) since the size of X is bounded
by |C|m. Therefore EXHAUSTIVE SEARCH ALGORITHM runs in O(|C| · |p(k +
|adom(I)|)|+(m·|C|·|p(k+|adom(I)|)|)m ·|Ans|+|C|2m), which is exponential
in the size of the input. For a fixed m, the size of the query, the algorithm becomes
polynomial.

6.B.2 Proofs for Section 6.5.2
Proposition 6.5.1. Let (S, I, q, Ans, a) be a why-not instance. If E is an explanation for
a 6∈ Ans w.r.t. OI (resp. OS), then there exists an explanation E′ for a 6∈ Ans such
that E <OI [K] E

′ (resp. E <OS[K] E
′), where K = adom(I) ∪ {a1, . . . , am} and each

constant in E′ belongs to K.

Proof. Before turning to the proof we note that each (consistent) selection expression is
equivalent to a selection expression of the form σC(R), where C is a list of comparisons
such that for every attribute name A, C has at most one occurrence of A < c1 or A ≤ c1
for arbitrary c1 ∈ Const, and at most one occurrence of A > c2 or A ≥ c2 for arbitrary
c2 ∈ Const. Additionally, if C contains an expression A = c, then it is the only
expression in C mentioning the name A. From now on we assume that the selection
expressions have this normalized form.

Let I be an instance, a = (a1, . . . , am) a tuple of elements from Const, and q a
query such that a 6∈ Ans. By K we denote the set adom(I) ∪ {a1, . . . , am}. Let E be
of the form (E1, . . . , En), where each Ei is a conjunction Ei1 u . . . u Eil(i) of atomic
concepts of the form πA(σC(R)) or nominals {c}. If E contains only concepts that use
values from K then there is nothing to prove. Suppose otherwise. First we note that
all the nominal concepts in the conjunction Ei must be exactly {ai}, since otherwise
ai 6∈ [[Ei]]I which is a contradiction. Thus we only consider the case when a constant
outside ofK appears in a selection expression. For this, we iteratively apply the following
procedure producing a more general explanation containing less concepts which contain

144

6.B. Missing proofs of Section 5

values outside of K. Suppose there are indices i and j such that Eij is a conjunct of Ei
of the form πA(σC(R)) and C contains an expression Bopc where c 6∈ K. We show that
we can replace C with C ′ that does not contain the expression anymore, resulting in an
explanation E′ that is more general than E.

We distinguish the following cases.

• op ∈ {=}. This case is impossible. Since ai ∈ ext(Eij , I), there is a tuple b ∈ RI
such that πA(b) = ai and πB(b) = c. But πB(b) ∈ K and c 6∈ K, a contradiction.

• op ∈ {≤, <}. Note C contains only one expression of the form Bopc. We distin-
guish two cases: when there exists or not c′′ ∈ K such that c < c′′

– There exists c′′ ∈ K such that c < c′′. Let c′ be an element of K which is
closest to c from above, i.e. c′ = min{c1 | c < c1 and c1 ∈ K}. Note such c′

exists due to the assumption c′′ ∈ K. LetE′ be the tuple of concepts obtained
fromE by replacingEij = πA(σC(R)) with the conceptE′ij = πA(σC′(R)),
where C ′ = (C \ {Bopc}) ∪ {B < c′}. We claim that E′ is an explanation
that is more general than E. First, it is easy to see that for every k ≤ m it
holds ak ∈ ext(Ek, I). Indeed, we only need to check that ai ∈ ext(E′ij , I).
Since ai ∈ ext(Eij , I), there is a tuple b ∈ RI such that πA(b) = ai and
πB(b)opc. By the choice of c′, we also have πB(b) < c′. Thus, the tuple b is
a witness for ai ∈ ext(E′ij , I).
Now we show the extension of E′ does not intersect with the query answer.
Suppose the opposite, there exists a tuple b ∈ (ext(E1, I)×. . .×ext(E′i, I)×
. . .× ext(En, I))∩Ans. This implies bi ∈ ext(E′ij , I) and thus there exists
a tuple d ∈ RI such that πA(d) = bi and πB(d) < c′ Note that each element
of b is inK. Note also that by construction, for every tuple e with πA(e) = bi
and πB(e) < c′ it holds πB(e) > c. Indeed, otherwise b ∈ (ext(E1, I) ×
. . .× ext(Ei, I)× . . .× ext(En, I)) ∩Ans, which is a contradiction. Thus
we have that c < πB(d) < c′ and πB(d) ∈ K, which is a contradiction with
the choice of c′.
We show that E′ is more general than E w.r.t. OS (w.r.t. OI would then
follow). To this purpose, it is enough to show that Eij vS E

′i
j . Let I ′ be an

arbitrary instance of S, and b ∈ ext(Eij , I ′). This means there exists a tuple d
such that πA(d) = b and πB(d) < c. Since c < c′, we also have πB(d) < c′

and thus b ∈ ext(E′ij , I ′) as needed.

– There is no c′′ ∈ K with c < c′′. In this case let E′ be obtained from E
by replacing Eij = πA(σC(R)) with the concept E′ij = πA(σC′(R)), where
C ′ = C\{Bopc}. IfC ′ is empty, we takeE′ij = πA(R). Similarly to the pre-
vious case, it is easy to show that for every k ≤ m, it holds ai ∈ ext(Ek, I).
Suppose that there exists a tuple b ∈ (ext(E1, I)× . . .× ext(E′i, I)× . . .×
ext(En, I)) ∩ Ans. This implies bi ∈ ext(E′ij , I) and thus there exists a tu-
ple d ∈ RI such that πA(d) = bi and d satisfies the constraints C ′. Note that
πB(d) < c since πB(d) ∈ K, c 6∈ K and there is no c′′ ∈ K with c < c′′. But

145

6. High-Level Why-Not Explanations using Ontologies

this implies that b ∈ (ext(E1, I)×. . .×ext(Ei, I)×. . .×ext(En, I))∩Ans
which is a contradiction.
Similarly to the previous case we can show that E′ is more general than E
w.r.t. OS. This holds essentially because we make the selection expression
weaker, thus making E′ more general than E.

• op ∈ {≥, >}. The argument is similar to the previous case. We either take the
closest c′ from K with c′ < c or remove the constraint Bopc.

Lemma 6.5.1. Given an instance I of schema S and a set of constantsX , we can compute
in polynomial time a selection-free LS concept, denoted lubI(X), that is the smallest
concept whose extension contains all the elements in X definable in the language. In
particular, the following hold:

(i) X ⊆ ext(lubI(X), I),

(ii) there is no concept C ′ in selection-free LS such that C ′ @I lubI(X) and X ⊆
ext(C ′, I).

Proof. Let lubI(X) =
d{C | C ∈ Lmin

S [K] and X ⊆ ext(C, I)}.
The first item holds by construction: for each conjunct C of lubI(X), ext(C, I)

contains X . For the second item, suppose there exists a concept C ′ such that C ′ @I
lubI(X) and X ⊆ ext(C ′, I). But since X ⊆ ext(C ′, I), C ′ must be in the conjunction
defining lubI(X), which contradicts the fact that C ′ @I lubI(X).

Theorem 6.5.3 (Correctness and running time of INCREMENTAL SEARCH ALGORITHM).
Let the why-not instance (S, I, q, Ans, a) be an input to INCREMENTAL SEARCH AL-
GORITHM and E the corresponding output. The following holds:

(i) E is a most-general explanation for a 6∈ Ans w.r.t. OI = (C,vI , ext), where C is
selection-free LS;

(ii) INCREMENTAL SEARCH ALGORITHM runs in PTIME in the size of the input.

Proof. (i) (Correctness) First, observe that E is an explanation. In particular, in the
worst case E is the trivial explanation that has in each position j the nominal
corresponding to the constant aj in the input tuple ~a. Then, the proof builds on
Lemma 6.5.1.

Now suppose that E = (C1, . . . , Cm) is not a most-general explanation for a /∈
Ans. That is, there exists an explanation E′ = (C ′1, . . . , Cm) for a /∈ Ans that is
strictly more general than E, i.e., E′ >OI E. Thus, by definition, Cj v C ′j for
every j, 1 ≤ j ≤ m. Let X = (X1, . . . , Xm) the support set used by the algorithm
for computing E. Since E′ >OI E, there exists a position j for which Cj @
C ′j , implying that ext(Cj , I) ⊂ ext(C ′j , I). Let b be an element in ext(C ′j , I) \
ext(Cj , I). Then, since b would have been considered in line 5, if it is not in Xj

it must be the case that adding it would cause the resulting explanation to intersect
Ans. But b ∈ ext(C ′j , I), thus E′ ∩ Ans 6= ∅, i.e., E′ is not an explanation,
which contradicts our assumption. Finally, observe that INCREMENTAL SEARCH
ALGORITHM outputs a most-general explanation for a /∈ Ans w.r.t. OI [K], but
Proposition 6.5.1 guarantees that we can restrict to OI [K], with K = adom(I) ∪
{a1, . . . , am}, without losing any most-general explanation.

146

6.B. Missing proofs of Section 5

(ii) (Running time) Let |Lmin
S | the number of distinct concept expressions, up to log-

ical equivalence, that can be defined in Lmin
S and let m be the arity of q. First,

observe that initializing the support set (line 2) takes m steps, and that building the
first candidate explanation (line 3) takes O(m · |Lmin

S | · p(|adom(I)|), since each
lubI(Xj) takes |Lmin

S | · p(|adom(I)|) steps. Moreover, the nested for-loop (lines
4–11) takes O(m · |adom(I)| · |Lmin

S | · p(|adom(I)|). Thus the running time of
the algorithm is O(m+ (m · |Lmin

S | · p(|adom(I)|)) · (1 + |adom(I)|)), and since
|Lmin

S | is polynomial in the size of S (see Proposition 6.4.2), we can conclude that
INCREMENTAL SEARCH ALGORITHM runs in PTIME.

Lemma 6.5.2. Given an instance I of S and a set of constants X , we can compute in
exponential time a LS concept, denoted lubσI (X), that is the smallest concept whose
extension contains all the elements in X definable in the language. Such a concept is
polynomial-time computable for bounded schema arity. In particular, the following hold:

(i) X ⊆ ext(lubσI (X), I),

(ii) there is no concept C ′ in LS such that C ′ @I lubσI (X) and X ⊆ ext(C ′, I).

Proof. Let lubσI (X) =
d{C | C = intersection-free LS and X ⊆ ext(C, I)}.

The proof is analogous to the proof of Lemma 6.5.1. In this case, however, the bound
on the number of distinct concept definable via intersection-free LS is single exponential
(see Proposition 6.4.2), therefore the set can be computed in EXPTIME. If we bound
the arity of the schema, the bound on the number of concepts in intersection-free LS

becomes polynomial, thus in this case lubσI (X) can be computed in PTIME.

Theorem 6.5.4 (Correctness and running time of INCREMENTAL SEARCH ALGORITHM
WITH SELECTIONS). Let the why-not instance (S, I, q, Ans, a) be an input to INCRE-
MENTAL SEARCH ALGORITHM WITH SELECTIONS and E the corresponding output.
The following hold:

(i) E is a most-general explanation for a 6∈ Ans w.r.t. OI = (C,vI , ext), where C is
LS;

(ii) INCREMENTAL SEARCH ALGORITHM runs in EXPTIME in the size of the input
(in PTIME for bounded schema arity).

Proof. Both correctness (1) and running time (2) follow from the analysis in Theo-
rem 6.5.3, and from the fact that in this case Lemma 6.5.2 guarantee that there is no
explanation E′ using concepts from LS such that E′ >O E, and also that lubσI (X)
is exponential-time computable (polynomial-time computable for bounded schema ar-
ity).

6.B.3 Proofs for Section 6.5.3

Proposition 6.5.3. There is an algorithm that solves COMPUTE-ONE-MGE W.R.T. OS

• in 2EXPTIME for LS, provided that the input schema S is from a class for which
concept subsumption can be checked in EXPTIME,

147

6. High-Level Why-Not Explanations using Ontologies

• in EXPTIME for selection-free LS, and projection-free LS, provided that the in-
put schema S is from a class for which concept subsumption can be checked in
EXPTIME,

• in PTIME for Lmin
S , if the arity of q is fixed and provided that the input schema S

is from a class for which concept subsumption can be checked in PTIME.

Proof. First, from Proposition 6.4.2, it follows that the number of distinct concept ex-
pressions that one can build up to logical equivalence is at most single exponential for
selection-free or intersection-free LS[K], and double exponential for LS[K]. Next, the
computation of vS would require testing concept subsumption for exponentially many
pairs of concepts. Moreover, since the ext function is polynomial-time computable, we
can therefore buildOS[K] in EXPTIME for selection-free or intersection-free LS[K], and
in 2EXPTIME for the concept language LS[K].

This gives us bounds on materializing OS[K] depending on the concept language.
Then we can use OS[K] as input for EXHAUSTIVE SEARCH ALGORITHM, and solve
COMPUTE-ONE-MGE W.R.T. OS.

We know, from Theorem 6.5.2, that EXHAUSTIVE SEARCH ALGORITHM runs in
EXPTIME in the size of the input (PTIME for bounded query arity). Moreover, the size
of the materialized OS[K] is in the order of 22|S| . Therefore the main factor in solving
COMPUTE-ONE-MGE W.R.T. OS is O(|OS|2

m

), which is double exponential for LS,
and single exponential for the other languages, even for bounded query arity, if concept
subsumption can be checked in EXPTIME. Moreover, solving COMPUTE-ONE-MGE
W.R.T. OS is in PTIME for Lmin

S with bounded query arity, if concept subsumption can
be checked in PTIME.

6.C Missing proofs for Section 6

Proposition 6.6.2. There is a polynomial-time algorithm that takes as input an instance
I of a schema S, as well as an LS concept expression C, and produces an irredundant
concept expression C ′ such that C ≡OI C ′.

Proof. We provide an easy algorithm.

Algorithm 3: Irredundant concept
Input: a concept C = uC, an instance I
Output: an equivalent irredundant concept

1 foreach Ci ∈ C do
2 if ∃Cj ∈ C s.t. Cj 6= Ci and Ci vI Cj then
3 C = C \ Cj
4 return uC

The algorithm consists of one for-loops of length of C. The inner if-statement can
be checked in PTIME since the subsumption C vI C ′ can be checked in PTIME. Thus
overall, Irredundant concept runs in PTIME.

148

6.C. Missing proofs for Section 6

We now prove that the algorithm produces an OI -equivalent concept. For this it is
enough to make sure that the step on line 3 preserves equivalence. Suppose C ′ was
obtained from C by removing the concept Cj which satisfied the if-condition on line 2.
Since C ′ ⊂ C, it holds C vI C ′. Conversely, since C = C ′ u Cj and C ′′ vI Cj for
some C ′′ ∈ C, it holds C ′ vI C.

There is no proper irredundant subset since we exhaustively remove concepts that are
implied by other concepts in the conjunction.

Proposition 6.6.1. Given a why-not instance (S, I, q, Ans, a), the problem of finding a
most-general explanation to ā 6∈ Ans of minimal length is NP-hard.

Proof. We reduce from set cover problem. Recall, given a triple (U, S), where U is a set,
S is a set containing subsets of U , SET COVER is the problem of finding a minimal size
subset of S such that the union of the elements in the subset covers U . Given an instance
(U, S) of SET COVER, we build a why-not instance (S, I, q, Ans, a) as follows.

S = {RC(A) | C ∈ S}
I = {RC(c) | C ∈ S, c 6∈ C} ∪ {RC(a), RC(b) | C ∈ S},

where a, b /∈ U are fresh elements
q(x) :- ∪C∈S RC(x)
Ans = U
a = (a)

LetOI = (C,vI , ext), where C is selection-free LS, be the S-ontology derived from
I . Without loss of generality we can assume that the length of each atomic concept
π1(RC) is equal 1 (since each of the atomic concept is of the same size). Note that
there are finitely many concepts in C and the extension of each atomic concept πA(RC)
is equal to (U \ C) ∪ {a, b}. Thus, in order for a concept C in selection-free LS to
be an explanation, its extension must be equivalent to either {a} or {a, b}. Indeed,
ext(C, I) must contain a and not intersect with Ans = U , which is only possible when
ext(C, I) = {a} or ext(C, I) = {a, b}. Thus, in order for a concept C to be a most-
general explanation w.r.t. OI , its extension must be equivalent to {a, b}. We prove that
ext(u{π1(RC1), . . . , π1(RCn)}, I) = {a, b} if and only if

⋃n
i=1 Ci = U , i.e., it covers

U . Indeed, ext(u{π1(RC1), . . . , π1(RCn)}, I) =
⋂n
i=1(U \ Ci) ∪ {a, b} and it is equal

{a, b} iff
⋂n
i=1(U \ Ci) = ∅, i.e., U =

⋃n
i=1 Ci. Note that the length of a most-general

explanation precisely corresponds to the size of a set cover. Thus, finding a cover of U
of minimal is equivalent to finding a most-general explanation for ā 6∈ Ans of minimal
length.

Proposition 6.6.3. Given a why-not instance (S, I, q, Ans, a) and an explanation E to
why ā 6∈ Ans, the problem of finding a minimized explanation equivalent to E is NP-
hard.

Proof. (Sketch) Again we reduce from SET COVER. The construction is exactly the same
as in the previous proposition. Now as the input explanation E we take u{π1(RC) | C ∈
S}. The extension of this concept in I is equal to {a, b}. Thus arguing as in the previous
Proposition, finding a minimal size explanation equivalent to E amounts to finding a
minimal size set cover for U .

149

6. High-Level Why-Not Explanations using Ontologies

6.C.1 Cardinality based preference

Proposition 6.6.4. Assuming P 6=NP, there is no PTIME algorithm that takes as input a
why-not instance (S, I, q, Ans, a) and an S-ontologyO, and produces a >card-maximal
explanation for a 6∈ Ans. This holds even for unary queries.

To show hardness we reduce from the following modified version of set cover prob-
lem.

Problem 6.C.1. (Subset cover problem)

• Given: a universe U , its proper subset U1 and a class of sets S such that ∪S ⊆ U
and which covers U1, i.e. U1 ⊆ ∪S.

• Find: a class of sets C ⊆ S such that it covers U1 and | ∪ C \ U1| is minimal.

We prove the following.

Proposition 6.C.1. The subset cover problem is NP-hard.

Proof. We first recall the definition of L-reduction.

Definition 6.C.1. Let A and B be optimization problems and cA and cB their respective
cost functions. A pair of functions f and g is an L-reduction of A to B if all of the
following conditions are met:

• functions f and g are computable in polynomial time,

• if x is an instance of problem A, then f(x) is an instance of problem B,

• if y is a solution to f(x), then g(y) is a solution to x,

• there exists a positive constant α such that OPTB(f(x)) ≤ αOPTA(x),

• there exists a positive constant β such that for every solution y to f(x) |OPTA(x)−
cA(g(y))| ≤ β|OPTB(f(x))− cB(y)|.

In our case the cost functions are the following:

• Set cover problem: |C| for a solution C,

• Subset cover problem: | ∪ C \ U1| for a solution C.

We L-reduce the set cover problem to the subset cover problem. To this purpose we
provide the functions f and g such that all the requirements are met. Let (U,S) be an
arbitrary instance of set cover problem. Then we define f(U,S) = (U ′, U ′1,S ′), where

• U ′ = U ∪ {a1, . . . , am}, where m = |S| and each ai is a fresh element,

• U ′1 = U ,

• S ′ = {Ci ∪ {ai} | Ci ∈ S}.

150

6.C. Missing proofs for Section 6

For a family of sets C′ ⊆ S ′ we define g(C′) = {C \ {a1, . . . , am} | C ∈ C′}. It is
clear from the definitions that both f and g are computable in PTIME. Next it can also
be seen that if C′ ⊆ S ′ is a subset cover for f(U,S) = (U ′, U ′1,S ′), then g(C′) is a set
cover for U . The needed constants α and β are equal to 1.

Proof. (of Proposition 6.6.4) We construct an L-reduction from the subset cover problem
to the problem of finding a <card-maximal explanation.

Let A be the subset cover problem and B the problem of finding a <card-maximal
explanation. As before, the cost function for A for the input x = (U,U1,S) and the
solution s = C is defined as cA(x, s) = | ∪ C \ U1|. For the problem B, the cost
function is defined as follows: let x = (S, I, q, Ans, a,O) be an instance of B and
s = (C1, . . . , Ck) an explanation to ā 6∈ Ans = (q1(I), . . . , qk(I)), then cB(x, s) =
|I| − Σki=1|ext(Ci, I)| − Σki=1|qi(I)|.

For an instance x = (U,U1,S) of the subset cover problem we define f(x) :=
(S, I, q, Ans, a,O), where

• S = {RC(A) | C ∈ S},

• ā = (a), where a 6∈ U is a fresh element,

• I = {RC(c) | C ∈ S, c ∈ C} ∪ {RC(a) | C ∈ C} is an instance, which means
that adom(I) = U ∪ {a},

• q is such that q(I) = Ans = U1.

• O = (Ĉ,v, ext) such that Ĉ consists of atomic concepts Ĉ for each set C ∈ S ,
their extensions in I are defined as ext((Ĉ, I) = (U \ C) ∪ {a}, and Ĉ1 v Ĉ2 iff
C2 ⊆ C1,

Next, let Ĉ = Ĉ1 u . . . u Ĉk be a concept with Ĉi ∈ Ĉ for the input f(U,U1,S) =
(S, I, q, Ans, a,O). We define g(Ĉ) := {C1, . . . , Ck} ⊆ S. It is clear that both f and g
are computable in PTIME. Also

• If (U,U1,S) is an instance of the subset cover problem, then f(U,U1,S) is an
instance of t the problem of finding a <card-maximal explanation.

• Let Ĉ = Ĉ1u . . .u Ĉk be an explanation to a 6∈ Ans with the input f(U,U1,S) =
(S, I, q, Ans, a,O). Then we claim that g(Ĉ) is a subset cover for (U,U1,S).
First, it holds that (ext(Ĉ1 u . . . u Ĉk, I)) ∩ Ans = ∅ . By definition we have
Ans = U1 and ext(Ĉ1u . . .u Ĉk, I) =

⋂k
i ((U \Ci)∪{a}) = (U \⋃ki Ci)∪{a}.

Since the intersection of those two sets is empty and also U1 ⊂ U , we have that
U1 ⊆

⋃k
i Ci, i.e. g(Ĉ) = {C1, . . . , Ck} covers U1.

• Let C be an optimal subset cover for (U,U1,S). Then the cost | ∪ C \ U1| is
minimal. Let also Ĉ = Ĉ1u . . .u Ĉk be a<card-maximal explanation to a 6∈ Ans
for the input f(U,U1,S) = (S, I, q, Ans, a,O). The cost of this explanation is
|I| − |ext(Ĉ, I)| − |Ans| = | ∪ki Ci| − |U1| which is minimal. Then it holds
| ∪ C \ U1| ≤ α(| ∪ki Ci| − |U1|) for α = 1.

151

6. High-Level Why-Not Explanations using Ontologies

• Let C be an optimal subset cover for x = (U,U1,S) and Ĉ = Ĉ1 u . . . u Ĉk a
<card-maximal explanation to a 6∈ Ans for the input f(x) = (S, I, q, Ans, a,O).
Let also y = Ĉ ′ = Ĉ ′1u . . . Ĉ ′l be an arbitrary explanation to a 6∈ Ans for the input
f(x), and g(y) = {C ′1, . . . , C ′l} the corresponding subset cover for (U,U1,S).
Then |OPTA(x) − cA(g(y))| = || ∪ C \ U1| − | ∪li C ′i \ U1||. This is equal to
|| ∪ki Ci \U1| − | ∪li C ′i \U1||, which is equal to |OPTB(f(x))− cB(y)|. Thus we
can take β = 1.

152

7
Conclusion

In this thesis we contributed to the study of the containment problem for various query
languages over trees and relational databases (Part I), and introduced a new framework
for why-not explanations (Part II). Next we summarize the obtained results and end with
future work.

7.1 Main findings

The first part of the thesis is devoted to the containment problem for expansions of XPath
and conjunctive queries over trees, and conjunctive queries over relational databases.
Firstly, we considered query languages over unranked trees and tried to answer the fol-
lowing question for a given query language L.

RQ 1 What is the complexity of the containment problem for L over unranked trees?

Concretely, L was one of the following query languages over unranked trees.

• Positive XPath with attibute value comparisons (Chapter 3),

• Conjunctive Queries with attribute value comparisons (Chapter 3),

• Conditional Tree Patterns (Chapter 5)

Table 7.1 summarizes the results of Chapter 3, together with previously known results.
We can see that adding attribute value comparisons of the form @aop c does not increase
the complexity of containment. Moreover, when the underlying ordered domain for at-
tributes is restricted to be either finite, discrete, or with endpoints, the complexity of

PosXPath@ CQ@

no attributes CONP (Björklund et al., 2011) ΠP
2 (Björklund et al., 2011)

optional attributes CONP (Thm. 3.3.2) ΠP
2 (Thm. 3.3.2)

required attributes PSPACE-hard (Thm. 3.3.3) PSPACE-hard (Thm. 3.3.3)

Table 7.1: Complexity results for containment over trees for Positive XPath and CQ with
attribute value comparisons (Chapter 3).

153

7. Conclusion

containment remains the same as well. However, when trees are required to have at least
one attribute defined in every node, the containment becomes harder (PSPACE-hard).
The latter hardness result is rather strong: it already holds for tree patterns with attribute
value comparisons.

In Chapter 5 we expanded tree patterns with the conditional descendant axis, result-
ing in Conditional Tree Patterns (CTP). The conditional axis is a natural expansion
for XPath, providing expressive completeness for first-order logic on ordered unranked
trees (Marx, 2005). In Chapter 5 we proved that the containment problem for CTP is
PSPACE-complete. Interestingly, the lower bound is proved via establishing the fact that
containment is PSPACE-hard for tree patterns expanded with unrestricted label negation.
The lower bound in case of CTP then follows from the fact that CTP is able to express
this type of negation, as far as the containment problem is concerned. More precisely,
there is a polynomial reduction from the containment problem for tree patterns with la-
bel negation to the containment problem for conditional tree patterns. Notably, when
negation in tree patterns is restricted to be safe (that is, a negated label in a node must
co-occur with a positive label), then containment drops to CONP, as Table 7.1 shows.

Each CTP formula can be conveniently represented as a tree in which each descen-
dant edge is (recursively) labeled with the tree corresponding to a CTP subformula. Thus,
tree patterns form a particular case when each descendant edge is labeled with>. In fact,
this edge labeling is the only topological addition to tree patterns offered by conditional
tree patterns. The lower bound in Chapter 5 is quite strong: the PSPACE lower bound
already holds for CTP with such nested edge labelling of depth 1 (or in other words, the
edge labels are tree patterns).

In Chapter 4 we considered acyclic conjunctive queries with atomic negation and
arithmetic comparisons, interpreted over relational databases. It is known that the acyclic-
ity restriction on conjunctive queries allows for tractable containment (Gottlob et al.,
2001). We considered the following

RQ 2 Does acyclicity make the complexity of containment for conjuctive queries ex-
panded with atomic negation or arithmetic comparison tractable? If not, what
additional restrictions need to be imposed to make it tractable?

Table 7.2 summarizes the results of Chapter 4. According to Theorem 4.3.3, even the
most restrictive notion of acyclicity – Berge-acyclicity – is not enough to make contain-
ment for conjunctive queries with atomic negation or arithmetic comparisons tractable.
To address the second part of the research question, we have defined a special class of
queries, called pointed Berge-acyclic queries with guarded atomic negation (arithmetic
comparisons). This is the class of conjunctive queries with guarded atomic negation (or
arithmetic comparisons) where each query

(i) is connected (that is, its hypergraph is connected),

(ii) every query in the class contains a fixed constant r (“pointness”),

(iii) Berge-acyclic.

Theorem 4.3.3 implies that if at least one of these conditions is omitted, containment
becomes CONP-hard. It is however not known whether containment for pointed Berge-
acyclic queries with negation (comparisons) is solvable in PTIME. On a positive side, we

154

7.1. Main findings

Class Complexity
CQ with atomic ¬ ΠP

2 -c (Ullman, 2000),
(Wei and Lausen, 2003)

CQ with comparisons ΠP
2 -c (Klug, 1988),

(van der Meyden, 1997)
ACQ(¬g) , ACQ with comparisons CONP-c (Thm. 4.3.2, Thm. 4.3.3)
pointed Berge-ACQs with ¬g or comparisons in CONP
child-only Tree patterns with ¬g PTIME (Cor. 4.4.1)
desc.-only Tree patterns with ¬g PTIME (Cor. 4.4.2)
child-only Tree patterns with comparisons PTIME (Cor. 4.4.2)
desc.-only Tree patterns with comparisons PTIME (Cor. 4.4.2)

Table 7.2: Known results and the results of Chapter 4. Here ¬g denotes guarded atomic
negation.

proved that containment for child-only tree patterns with guarded negation, a subclass
of pointed Berge-acyclic queries, is solvable in PTIME using the homomorphism tech-
nique. Unfortunately, this technique is not extensible for pointed Berge-acylic queries
with guarded atomic negation (arithmetic comparisons) involving relations of high arity.

In the second part of the thesis we have introduced a new framework for why-not ex-
planations. This framework makes use of ontologies to provide high-level explanations
to why certain data is missing from query results. An ontology is a hierarchy of concepts,
or a set of subsumption relations between concepts, which formalizes the domain knowl-
edge. In Chapter 6 we have considered two cases how to obtain an ontology: either it
is already provided externally (e.g., as a description logic ontology) or it is derived from
the database instance or schema with integrity constraints. The latter was formalized in
the following research question.

RQ 3 How to extract an ontology from a database instance or a schema?

To answer this question, we first introduced an appropriate concept language LS

comprising nominals (that is, an element of the domain), projections of relation, projec-
tions of relations with selections, and conjunctions thereof. Having fixed this language,
extracting an ontology from an instance or a schema amounts to decide which subsump-
tions hold with respect to the instance or schema. Thus we were interested in the follow-
ing decision problems: given a database schema S (resp. instance I), two LS concepts
C1 and C2, decide whether C1 is subsumed by C2 with respect to S (resp. I), denoted as
C1 vS C2 (C1 vI C2). While subsumption with respect to an instance can be trivially
solved in PTIME, the complexity of subsumption w.r.t. a schema S depends on the type
of integrity constraints in S.

Table 7.3 summarizes the complexity results for subsumption w.r.t. the database
schema S, where Lmin

S is the language consisting of only the top concept, nominals and
projections of relations. In Chapter 6 we were interested in “good” explanations, where
by “good” we mean most general explanations (w.r.t. the ontology). Intuitively, these are
concepts that cover the maximal number of missing answers and thus are high-level. We
asked the following

155

7. Conclusion

Constraints Complexity of subsumption for LS

UCQ-view def. (no comparisons) NP-complete
UCQ-view def. ΠP

2 -complete
linearly nested UCQ-view def. ΠP

2 -complete
nested UCQ-view def. CONEXPTIME-complete
Functional Dependencies (FDs) in PTIME

Inclusion Dependencies (IDs) ? (in PTIME for selection-free LS)
IDs + FDs Undecidable

All stated lower bounds already hold for Lmin
S concept expressions.

Table 7.3: Complexity of concept subsumption w.r.t schema S.

RQ 4 How to produce “good” explanations?

Related to this research question, we considered three algorithmic problems: check if
an explanation exists, check if a given concept is a most general explanation, and compute
one most general explanation. These problems largely depend on how the ontology is
obtained. If an ontology is provided externally, then we can check in PTIME if a concept
is a most general explanation. However, checking existence of an explanation is an NP-
complete problem. In light of this result we provide an algorithm for computing one most
general explanation, which runs in exponential time.

When the ontology is derived from the instance or schema, existence of an explana-
tion is trivial, because of the presence of nominals in the concept language. We have
provided algorithms for checking if a concept is a most general explanation, whose run-
ning times depend on the complexity of the subsumption problem (w.r.t. a schema they
are provided in Table 7.3). As for computing a most general explanation, we have pro-
vided an algorithm for the case of an ontology derived from the instance, which runs
in PTIME. We have also provided a naive algorithm (running in exponential time) for
computing a most general explanation in case the ontology is derived from the schema.
Devising an optimal algorithm for this case is left for future work.

7.2 Future work

We list concrete open questions that stem from the work presented in this thesis.
In Chapter 3 we saw that for the CONP hardness proof of containment for tree pat-

terns without the wildcard and with attribute value comparisons, both types of compar-
isons @a = c and @a 6= c are needed. Moreover, if we only allow attribute value
comparisons of type @a = c, then containment becomes solvable in PTIME. It is an
open problem what the exact complexity of containment is for tree patterns without the
wildcard and with comparisons of the form @a 6= c only.

In Chapter 4 we showed a number of CONP hardness proofs that led us to define a
class of pointed Berge-acyclic conjunctive queries with guarded negation. We showed
that for a particular subclass of it, namely child-only tree patterns with label negation,
containment is tractable. However, it is an open question what the precise complexity
of the containment problem for pointed Berge-acyclic queries with guarded negation is.
Also in that chapter we showed that containment for α-acyclic queries with guarded

156

7.2. Future work

negation where the arity of negated atoms is bounded by a constant, is in CONP. It is an
open question whether containment is still in CONP or ΠP

2 -hard if there is no bound on
arity of negated atoms.

In Chapter 5 we studied conditional tree patterns, which is the positive downward
fragment of Conditional XPath without disjunction and union (Marx, 2005). We can
also consider more expressive tree patterns – the positive downward fragment of Regular
XPath without disjunction and union (ten Cate, 2006). Pictorially, these tree patterns can
have regular expressions as the labels for descendant edges. The conditional descendant
that is labeled with Q and ending with P can be expressed with regular tree patterns as
/(child :: Q)∗/child :: P. The complexity of containment for regular tree patterns thus
must be between PSPACE and EXPTIME. It is open what the precise complexity is.

Expressivity characterization with respect to some yardstick logics (such as FO) is
important. Such a characterization allows us to compare different fragments and derive
properties from the known ones in the yardstick logics. In Chapter 5 we gave an ex-
pressivity characterization for unions of CTP with disjunction, similar to the one for the
union of tree patterns in (Benedikt et al., 2005). It is interesting to determine what the
exact FO fragment corresponding to Conditional Tree Patterns is.

In Chapter 6 we have introduced a new why-not framework, which is neither query-
centric nor data-centric, in the sense that it does not suggest fixes for the query or the
underlying data. It would be interesting to explore ways how high-level explanations
produced by our framework can complement and enhance the existing approaches. Ulti-
mately, it would be interesting to see usefulness of high-level explanations in practice. A
concrete tool for generating these explanations should then be built.

An algorithm for generating all most general explanations (MGEs) provided in Chap-
ter 6 is an exhaustive search algorithm and rather inefficient. It would be interesting to
develop efficient algorithms for enumeration of all most general explanations. Typically,
in such a setting with exponential number of output solutions, one is interested in al-
gorithms with polynomial delay. That is, the time needed to produce the first solution,
and, thereafter, the time delay between two consecutive solutions is bounded by a poly-
nomial in the size of the input. In future work, we plan to investigate whether there is a
polynomial delay algorithm for enumerating all most-general explanations.

157

Bibliography

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases, volume 8. Addison-Wesley, 1995. (Cited on
pages 4, 10, 15, 108, and 138.)

F. N. Afrati, C. Li, and P. Mitra. On containment of conjunctive queries with arithmetic comparisons. In EDBT,
pages 459–476, 2004. (Cited on page 14.)

F. N. Afrati, S. Cohen, and G. M. Kuper. On the complexity of tree pattern containment with arithmetic
comparisons. Inf. Process. Lett., 111(15):754–760, 2011. (Cited on pages 19 and 28.)

A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions. SIAM J. Comput., 8(2):
218–246, 1979. (Cited on page 15.)

S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Tree pattern query minimization. The VLDB Jour-
nal, 11:315–331, 2002. ISSN 1066-8888. URL http://dx.doi.org/10.1007/s00778-
002-0076-7. (Cited on pages 3, 19, 50, 73, 75, 77, 82, and 83.)

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Washburn.
Design and implementation of the logicblox system. In SIGMOD ’15, 2015. (Cited on page 104.)

T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D. Srivastava. Explaining program execution in
deductive systems. In DOOD, pages 101–119, 1993. (Cited on page 104.)

A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. Artif.
Intell. Res. (JAIR), 36:1–69, 2009. (Cited on page 117.)

S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller. Triplify: Light-weight linked data publica-
tion from relational databases. In WWW, pages 621–630, 2009. (Cited on page 107.)

A. Baid, W. Wu, C. Sun, A. Doan, and J. F. Naughton. On debugging non-answers in keyword search systems.
In EDBT, 2015. (Cited on page 104.)

V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In L. Aceto, M. Henzinger, and J. Sgall, editors,
ICALP (2), volume 6756 of Lecture Notes in Computer Science, pages 356–367. Springer, 2011. ISBN
978-3-642-22011-1. (Cited on pages 52 and 75.)

M. Benedikt and G. Gottlob. The impact of virtual views on containment. PVLDB, 3(1):297–308, 2010. (Cited
on pages 12, 109, and 133.)

M. Benedikt and C. Koch. Xpath leashed. ACM Comput. Surv., 41(1), 2009. (Cited on pages 3 and 19.)
M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments. Theor. Comput. Sci., 336(1):

3–31, 2005. (Cited on pages 14, 73, 75, 84, and 157.)
M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. J. ACM, 55(2), 2008. (Cited

on pages 3 and 19.)
C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., Oxford, UK, UK, 1985. ISBN 0720404797. (Cited

on page 55.)
D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation management system for relational

databases. VLDB J., 14(4):373–396, 2005. (Cited on page 22.)
N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based why-not provenance with nedexplain. In EDBT,

pages 145–156, 2014a. (Cited on pages 22 and 104.)
N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably answering why-not questions for equivalent conjunc-

tive queries. In TaPP’14, 2014b. (Cited on page 22.)
M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A study through disjunctive

datalog, CSP, and MMSNP. In PODS, pages 213–224, 2013. (Cited on pages 23 and 107.)
C. Bizer and A. Seaborne. D2rq - treating non-rdf databases as virtual rdf graphs. In ISWC2004 (posters),

2004. (Cited on page 107.)
H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive queries over trees using schema infor-

mation. In MFCS, pages 132–143, 2008. (Cited on page 20.)
H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment over trees. J. Comput. Syst.

Sci., 77(3):450–472, 2011. (Cited on pages 4, 6, 20, 27, 29, 33, 34, 46, 98, and 153.)
P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001. (Cited on

page 82.)
A. Borgida, D. Calvanese, and M. Rodriguez-Muro. Explanation in the DL-Lite family of description logics.

In On the Move to Meaningful Internet Systems, pages 1440–1457, 2008. (Cited on page 107.)
P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of data provenance. In In ICDT,

2001. (Cited on pages 21 and 22.)
P. Buneman, S. Khanna, and W. C. Tan. On propagation of deletions and annotations through views. In PODS,

pages 150–158, 2002. (Cited on page 22.)
D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of conjunctive regular path queries

159

http://dx.doi.org/10.1007/s00778-002-0076-7
http://dx.doi.org/10.1007/s00778-002-0076-7

Bibliography

with inverse. In KR, pages 176–185, 2000. (Cited on pages 77 and 98.)
D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query

answering in description logics: The dl-lite family. J. of Automated reasoning, 39(3):385–429, 2007. (Cited
on pages 113, 115, and 131.)

D. Calvanese, G. D. Giacomo, and M. Lenzerini. Conjunctive query containment and answering under de-
scription logic constraints. ACM Transactions on Computational Logic (TOCL), 9(3):22, 2008. (Cited on
page 15.)

D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni. Reasoning about explanations for negative query answers
in DL-Lite. J. Artif. Intell. Res., 48:635–669, 2013. (Cited on pages 23 and 107.)

A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases.
In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977, Boulder,
Colorado, USA, pages 77–90, 1977a. (Cited on pages 1, 3, 4, and 51.)

A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In
STOC, pages 77–90, 1977b. (Cited on pages 4, 10, and 12.)

A. K. Chandra and M. Y. Vardi. The implication problem for functional and inclusion dependencies is unde-
cidable. SIAM J. on Computing, 14(3):671–677, 1985. (Cited on page 137.)

A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534, 2009. (Cited on pages 22 and 104.)
S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecursive datalog programs. J. Comput.

Syst. Sci., 54(1):61–78, 1997. (Cited on page 14.)
C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theor. Comput. Sci., 239(2):211–229,

2000. (Cited on pages 1 and 13.)
J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and where. Foundations and

Trends in Databases, 1(4):379–474, 2009. (Cited on pages 20, 22, and 104.)
B. Chin, D. von Dincklage, V. Ercegovak, P. Hawkins, M. S. Miller, F. Och, C. Olston, and F. Pereira. Yedalog:

Exploring knowledge at scale. In SNAPL, 2015. (Cited on page 104.)
B. S. Chlebus. Domino-tiling games. J. Comput. Syst. Sci., 32(3):374–392, 1986. (Cited on pages 48 and 92.)
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using

temporal logic specifications. ACM Trans. Prog. Lang. Syst., 8:244–263, 1986. (Cited on page 77.)
E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):

377–387, 1970. (Cited on page 9.)
S. Cosmadakis and P. Kanellakis. Parallel evaluation of recursive rule queries. PODS ’86, 1986. (Cited on

page 14.)
Y. Cui and J. Widom. Lineage tracing in a data warehousing system. In ICDE, pages 683–684, 2000. (Cited

on page 22.)
Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment. ACM

Trans. Database Syst., 2000. (Cited on pages 20 and 22.)
W. Czerwinski, W. Martens, P. Parys, and M. Przybylko. The (almost) complete guide to tree pattern contain-

ment. In PODS, pages 117–130, 2015. (Cited on page 19.)
A. Deutsch and V. Tannen. Containment and integrity constraints for XPath. In M. Lenzerini, D. Nardi, W. Nutt,

and D. Suciu, editors, KRDB, volume 45 of CEUR Workshop Proceedings. CEUR-WS.org, 2001. (Cited on
page 19.)

A. Deutsch and V. Tannen. XML queries and constraints, containment and reformulation. Theor. Comput. Sci.,
336(1):57–87, 2005. (Cited on page 19.)

F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo. Optimizing
query rewriting in ontology-based data access. In EDBT, pages 561–572, 2013. (Cited on pages 113
and 115.)

G. Dong and J. Su. Conjunctive query containment with respect to views and constraints. Inf. Process. Lett.,
57(2), Jan. 1996. (Cited on page 15.)

A. Facchini, Y. Hirai, M. Marx, and E. Sherkhonov. Containment for conditional tree patterns. Logical Methods
in Computer Science, 11(2), 2015. (Cited on pages 8 and 48.)

R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM, 30(3):514–550,
1983. (Cited on pages 13, 52, and 55.)

C. Farré, W. Nutt, E. Teniente, and T. Urpı́. Containment of conjunctive queries over databases with null values.
In Database Theory - ICDT 2007, 11th International Conference, Barcelona, Spain, January 10-12, 2007,
Proceedings, pages 389–403, 2007. (Cited on page 14.)

G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J. ACM, 48(3):431–498,
2001. (Cited on pages 1, 3, 5, 13, 51, 52, 54, 59, and 154.)

G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. J. Comput. Syst. Sci.,

160

Bibliography

64(3):579–627, 2002. (Cited on page 13.)
G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM Trans. Database

Syst., 30(2):444–491, 2005a. (Cited on pages 16, 27, 39, and 80.)
G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query evaluation and XML typing.

J. ACM, 52(2), Mar. 2005b. (Cited on page 3.)
G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. J. ACM, 53(2):238–272, 2006. (Cited

on pages 20 and 31.)
T. J. Green. Logiql: a declarative language for enterprise applications. In PODS ’15, 2015. (Cited on page 104.)
T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with mappings and provenance. In

VLDB, pages 675–686, 2007a. (Cited on page 22.)
T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, pages 31–40, 2007b. (Cited

on pages 21, 22, and 104.)
T. J. Green, M. Aref, and G. Karvounarakis. Logicblox, platform and language: A tutorial. In Proceedings

of the Second International Conference on Datalog in Academia and Industry, pages 1–8, 2012. (Cited on
page 104.)

M. Götz, C. Koch, and W. Martens. Efficient algorithms for the tree homeomorphism problem. In In DBPL,
pages 17–31, 2007. (Cited on page 69.)

A. Y. Halevy. Theory of answering queries using views. SIGMOD Rec., 29(4), Dec. 2000. (Cited on page 1.)
T. Halpin and S. Rugaber. LogiQL: A Query Language for Smart Databases. CRC Press, 2014. (Cited on

page 104.)
Z. He and E. Lo. Answering why-not questions on top-k queries. ICDE ’12, 2012. (Cited on page 22.)
P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford University Press, 2004. (Cited on page 4.)
M. Herschel and M. A. Hernández. Explaining missing answers to SPJUA queries. PVLDB, 3(1):185–196,

2010. (Cited on page 23.)
M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A system for analyzing missing answers. PVLDB, 2

(2):1550–1553, 2009. (Cited on page 104.)
J. Hidders. Satisfiability of XPath expressions. In G. Lausen and D. Suciu, editors, DBPL, volume 2921 of

Lecture Notes in Computer Science, pages 21–36. Springer, 2003. (Cited on pages 3 and 19.)
J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over extracted

data. PVLDB, 1(1):736–747, 2008a. (Cited on page 104.)
J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over extracted

data. PVLDB, 1(1):736–747, 2008b. (Cited on page 23.)
M. S. Islam, R. Zhou, and C. Liu. On answering why-not questions in reverse skyline queries. In ICDE 2013,

2013. (Cited on page 22.)
D. Johnson and A. Klug. Testing containment of conjunctive queries under functional and inclusion dependen-

cies. Journal of computer and system sciences, 28(1):167–189, 1984. (Cited on page 15.)
H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, 1968. (Cited on page 4.)
B. Kimelfeld and Y. Sagiv. Revisiting redundancy and minimization in an XPath fragment. In EDBT’08, pages

61–72, 2008. (Cited on page 86.)
A. C. Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–160, 1988. (Cited on pages 14,

51, 53, 57, and 155.)
P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst.

Sci., 61(2):302–332, 2000. (Cited on page 4.)
E. V. Kostylev, J. L. Reutter, and D. Vrgoc. Containment of data graph queries. In ICDT’2014, pages 131–142,

2014. (Cited on page 1.)
O. Kupferman and M. Y. Vardi. An automata-theoretic approach to modular model checking. ACM Trans.

Prog. Lang. Syst., 22(1):87–128, 2000. (Cited on pages 75, 77, 80, and 94.)
A. Y. Levy, A. O. Mendelzon, and Y. Sagiv. Answering queries using views. PODS ’95, 1995. (Cited on

page 1.)
L. Libkin and C. Sirangelo. Reasoning about XML with temporal logics and automata. J. Applied Logic, 8(2):

210–232, 2010. (Cited on page 74.)
L. Lubyte and S. Tessaris. Automatic extraction of ontologies wrapping relational data sources. In DEXA,

pages 128–142, 2009. (Cited on page 107.)
M. Marx. Conditional XPath. ACM Trans. Database Syst., 30(4):929–959, 2005. (Cited on pages 17, 18, 49,

74, 77, 80, 154, and 157.)
M. Marx and E. Sherkhonov. Containment for queries over trees with attribute value comparisons. Information

Systems, Forthcoming, 2015. (Cited on pages 8 and 97.)
A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsibility for

161

Bibliography

query answers and non-answers. PVLDB, 4(1):34–45, 2010. (Cited on page 104.)
G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM, 51(1):2–45, 2004.

(Cited on pages 1, 3, 18, 19, 20, 27, 46, 50, 55, 60, 64, 66, 73, 75, 76, 77, 78, 81, 82, 83, 87, 88, 97, and 98.)
J. C. Mitchell. The implication problem for functional and inclusion dependencies. Information and Control,

56(3):154 – 173, 1983. (Cited on page 137.)
F. Neven and T. Schwentick. On the complexity of XPath containment in the presence of disjunction, DTDs,

and variables. Logical Methods in Computer Science, 2(3), 2006. (Cited on pages 19, 48, 75, 76, 77, 81,
and 92.)

W. Nutt. Ontology and database systems: Foundations of database systems. 2013. Teaching ma-
terial. http://www.inf.unibz.it/˜nutt/Teaching/ODBS1314/ODBSSlides/
3-conjQueries.pdf. (Cited on pages 14, 57, and 133.)

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data to ontologies.
J. on Data Semantics X, pages 133–173, 2008. (Cited on pages 23, 106, 107, 114, 115, and 131.)

S. Roy and D. Suciu. A formal approach to finding explanations for database queries. SIGMOD ’14, 2014.
(Cited on page 129.)

Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union and difference opera-
tors. JACM, 27(4):633–655, 1980. (Cited on page 11.)

E. Sherkhonov and M. Marx. Containment for tree patterns with attribute value comparisons. In Proceedings of
the 16th International Workshop on the Web and Databases 2013, WebDB 2013., pages 7–12, 2013. (Cited
on page 8.)

E. Sherkhonov and M. Marx. Containment of acyclic conjunctive queries with atomic negation and arithmetic
comparisons. Submitted to a journal, 2015. (Cited on page 8.)

O. Shmueli. Equivalence of DATALOG queries is undecidable. J. Log. Program., 15(3):231–241, 1993. (Cited
on pages 14 and 133.)

O. Shmueli and S. Tsur. Logical diagnosis of ldl programs. In Int’l Conf. on Logic Programming, 1990. (Cited
on pages 104 and 105.)

B. ten Cate. The expressivity of XPath with transitive closure. In PODS, pages 328–337, 2006. (Cited on
pages 17, 78, 86, 98, and 157.)

B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments of XPath 2.0. J. ACM,
56(6), 2009. (Cited on page 49.)

B. ten Cate, C. Civili, E. Sherkhonov, and W. Tan. High-level why-not explanations using ontologies. In
Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 31–43, 2015. (Cited on pages 2 and 8.)

Q. T. Tran and C. Chan. How to conquer why-not questions. In SIGMOD, pages 15–26, 2010. (Cited on
pages 22 and 104.)

J. D. Ullman. Information integration using logical views. Theor. Comput. Sci., 239(2):189–210, 2000. (Cited
on pages 5, 6, 14, 51, 53, and 155.)

R. van der Meyden. The complexity of querying indefinite data about linearly ordered domains. J. Comput.
Syst. Sci., 54(1):113–135, 1997. (Cited on pages 5, 14, 51, 53, 57, and 155.)

P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic and Recursion Theory,
volume 187 of Lecture notes in pure and applied mathematics, pages 331–363. Marcel Dekker Inc., 1997.
(Cited on page 92.)

W3C. XML Schema recommendation. http://www.w3.org/XML/Schema. (Cited on page 3.)
W3C. XML path language (XPath) recommendation. http://www.w3c.org/TR/xpath/, 1999a.

(Cited on page 3.)
W3C. XSL transformations (XSLT) recommendation. http://www.w3.org/TR/xslt, 1999b.

(Cited on page 3.)
W3C. XQuery 1.0: An XML Query Language recommendation. http://www.w3.org/TR/
xquery/, 2010. (Cited on page 3.)

F. Wei and G. Lausen. Containment of conjunctive queries with safe negation. In Database Theory - ICDT
2003, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings, pages 343–357, 2003.
(Cited on pages 6, 14, 51, 53, 57, and 155.)

P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT’2003, pages 297–311, 2003.
(Cited on pages 1 and 19.)

M. Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th International Con-
ference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94, 1981. (Cited on pages 13, 51,
and 59.)

162

http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.w3.org/XML/Schema
http://www.w3c.org/ TR/xpath/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

Samenvatting

Het eerste deel van dit proefschrift gaat over het beslissen of de ene databank-vraag
(query) een logisch gevolg is van een andere vraag. De analyse van de complexiteit
van dit probleem voor verschilende famillies van vraagtalen vormt één van de centrale
problemen binnen de theorie van databanken. De ene vraag volgt logisch uit de andere
als voor elke mogelijke databank, alle antwoorden op de eerste vraag ook antwoorden op
de tweede vraag zijn. Dit probleem vindt onder meer zijn toepassing in het optimaliseren
van databankvragen, het beantwoorden van vragen aan een databank met behulp van
zogenaamde views en het beantwoorden van vragen onder constraints op de databank.
Omdat dit probleem zo centraal staat, is het in het verleden uitgebreid bestudeerd voor
meerdere querytalen en datamodellen.

In dit proefschrift vervolgen wij dit onderzoek voor diverse acyclische vraagtalen
geı̈nterpreteerd op bomen en relationele databanken. Specifiek bekijken wij de volgende
drie talen:

1) Conjunctieve en positieve XPath queries uitgebreid met negatie en met attribuut-
waarde vergelijkingen, geı̈nterpreteerd op bomen;

2) Tree patterns uitgebreid met een conditionele descendant modaliteit , geı̈nterpreteerd
op bomen; en

3) Acyclische conjunctieve queries uitgebreid met atomaire negatie en rekenkundige
vergelijkingen geı̈nterpreteerd op relationele structuren.

We bewijzen de precieze complexiteit voor het beslissen van de logisch gevolg relatie
voor deze talen.

Het tweede deel van dit proefschrift stelt een nieuw formeel raamwerk rondom zo-
geheten “waarom-niet verklaringen” voor. Onze waarom-niet verklaringen maken ge-
bruik van concepten uit een ontologie om op hoog niveau en betekenisvol verklaringen
te geven voor het feit dat bepaalde feiten ontbreken in de antwoorden op een query. In
dit raamwerk zijn we geı̈nteresseerd in het vinden van de meest algemene verklaring in
relatie tot een ontologie. Eerst richten we ons op het probleem van het extraheren van
een ontologie uit een databaseinstantie of databaseschema. Wij tonen aan dat dit prob-
leem gezien kan worden als het eerder genoemde probleem van logisch gevolg en ver-
schaffen een complexiteitsanalyze. Daarna richten we ons op het probleem om de meest
algemene verklaring te berekenen. We bestuderen de complexiteit van dit probleem en
van vergelijkbare problemen. We geven tenslotte een algorithme voor het berekenen van
waarom-niet verklaringen.

163

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS — An Active,
Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguis-
tic Analysis of Business Conversations within the
Language/Action Perspective

4 Dennis Breuker (UM) Memory versus Search in
Games

5 Eduard W. Oskamp (RUL) Computerondersteun-
ing bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change
Modelling; Automated Modelling of Quality
Change of Agricultural Products

2 Rob Potharst (EUR) Classification using Decision
Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax Search
4 Jacques Penders (UM) The Practical Art of Mov-

ing Physical Objects
5 Aldo de Moor (KUB) Empowering Communities:

A Method for the Legitimate User-Driven Specifi-
cation of Network Information Systems

6 Niek J.E. Wijngaards (VU) Re-Design of Compo-
sitional Systems

7 David Spelt (UT) Verification Support for Object
Database Design

8 Jacques H.J. Lenting (UM) Informed Gambling:
Conception and Analysis of a Multi-Agent Mech-
anism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Improving
Software Maintenance

2 Koen Holtman (TU/e) Prototyping of CMS Stor-
age Management

3 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistechnolo-
gie; een Procesbenadering en Actorperspectief

4 Geert de Haan (VU) ETAG, A Formal Model of
Competence Knowledge for User Interface De-
sign

5 Ruud van der Pol (UM) Knowledge-Based Query
Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages
for Agent Communication

7 Niels Peek (UU) Decision-Theoretic Planning of
Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analysis of
Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic
Query Optimization

10 Niels Nes (CWI) Image Database Management
System Design Considerations, Algorithms and
Architecture

11 Jonas Karlsson (CWI) Scalable Distributed Data
Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to
Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-
guages: Programming with Mental Models

3 Maarten van Someren (UvA) Learning as Prob-
lem Solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunc-
tive Version Spaces with Instance-Based Bound-
ary Sets

5 Jacco van Ossenbruggen (VU) Processing Struc-
tured Hypermedia: A Matter of Style

6 Martijn van Welie (VU) Task-Based User Inter-
face Design

7 Bastiaan Schonhage (VU) Diva: Architectural
Perspectives on Information Visualization

8 Pascal van Eck (VU) A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed
Development of Large Object-Oriented Models,
Views of Packages as Classes

10 Maarten Sierhuis (UvA) Modeling and Simulat-
ing Work Practice BRAHMS: a Multiagent Mod-
eling and Simulation Language for Work Practice
Analysis and Design

11 Tom M. van Engers (VU) Knowledge Manage-
ment: The Role of Mental Models in Business Sys-
tems Design

2002

1 Nico Lassing (VU) Architecture-Level Modifia-
bility Analysis

2 Roelof van Zwol (UT) Modelling and Searching
Web-based Document Collections

3 Henk Ernst Blok (UT) Database Optimization As-
pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Dis-
crete Acyclic Digraph Markov Model in Data
Mining

5 Radu Serban (VU) The Private Cyberspace
Modeling Electronic Environments Inhabited by
Privacy-Concerned Agents

6 Laurens Mommers (UL) Applied Legal Episte-
mology; Building a Knowledge-based Ontology
of the Legal Domain

165

SIKS Dissertation Series

7 Peter Boncz (CWI) Monet: A Next-Generation
DBMS Kernel For Query-Intensive Applications

8 Jaap Gordijn (VU) Value Based Requirements
Engineering: Exploring Innovative E-Commerce
Ideas

9 Willem-Jan van den Heuvel (KUB) Integrating
Modern Business Applications with Objectified
Legacy Systems

10 Brian Sheppard (UM) Towards Perfect Play of
Scrabble

11 Wouter C.A. Wijngaards (VU) Agent Based Mod-
elling of Dynamics: Biological and Organisa-
tional Applications

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TU/e) A Reference Architecture for
Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract
Approaches to Modelling, Programming and Ver-
ifying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of
UML Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VU) The Anatomy of Design:
Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding, Model-
ing, and Improving Main-Memory Database Per-
formance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based In-
formation Sharing in Weakly Structured Environ-
ments

2 Jan Broersen (VU) Modal Action Logics for Rea-
soning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer In-
teraction and Presence in Virtual Reality Expo-
sure Therapy

4 Milan Petkovic (UT) Content-Based Video Re-
trieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intel-
ligence and Law – A Modelling Approach

6 Boris van Schooten (UT) Development and Spec-
ification of Virtual Environments

7 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

8 Yong-Ping Ran (UM) Repair-Based Scheduling
9 Rens Kortmann (UM) The Resolution of Visually

Guided Behaviour
10 Andreas Lincke (UT) Electronic Business Nego-

tiation: Some Experimental Studies on the Inter-
action between Medium, Innovation Context and
Cult

11 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian
Networks

12 Roeland Ordelman (UT) Dutch Speech Recogni-
tion in Multimedia Information Retrieval

13 Jeroen Donkers (UM) Nosce Hostem – Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-
guage: Conceptualisation Processes across ICT-
Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar
Systems — Incremental Maintenance of Indexes
to Digital Media Warehouse

17 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organiza-
tional Interaction: Based on Agents, Founded in
Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts
for E-business

3 Perry Groot (VU) A Theoretical and Empirical
Analysis of Approximation in Symbolic Problem
Solving

4 Chris van Aart (UvA) Organizational Principles
for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge Discovery and
Monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Busi-
ness Process Modeling Techniques

7 Elise Boltjes (UM) VoorbeeldIG Onderwijs;
Voorbeeldgestuurd Onderwijs, een Opstap naar
Abstract Denken, vooral voor Meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensregionale Politiële
Gegevensuitwisseling en Digitale Expertise

9 Martin Caminada (VU) For the Sake of the Argu-
ment; Explorations into Argument-based Reason-
ing

10 Suzanne Kabel (UvA) Knowledge-rich Indexing
of Learning-objects

11 Michel Klein (VU) Change Management for Dis-
tributed Ontologies

12 The Duy Bui (UT) Creating Emotions and Facial
Expressions for Embodied Agents

13 Wojciech Jamroga (UT) Using Multiple Models of
Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical
Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Min-
ing

16 Federico Divina (VU) Hybrid Genetic Relational
Search for Inductive Learning

17 Mark Winands (UM) Informed Search in Com-
plex Games

166

SIKS Dissertation Series

18 Vania Bessa Machado (UvA) Supporting the Con-
struction of Qualitative Knowledge Models

19 Thijs Westerveld (UT) Using generative proba-
bilistic models for multimedia retrieval

20 Madelon Evers (Nyenrode) Learning from De-
sign: facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA) Methodological Aspects
of Designing Induction-Based Applications

2 Erik van der Werf (UM) AI techniques for the
game of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to
the Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database Sup-
port for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level Proba-
bilistic Grammars for Natural Language Parsing

6 Pieter Spronck (UM) Adaptive Game AI
7 Flavius Frasincar (TU/e) Hypermedia Presenta-

tion Generation for Semantic Web Information
Systems

8 Richard Vdovjak (TU/e) A Model-driven Ap-
proach for Building Distributed Ontology-based
Web Applications

9 Jeen Broekstra (VU) Storage, Querying and In-
ferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour:
Using Qualitative Simulation in Interactive
Learning Environments

11 Elth Ogston (VU) Agent Based Matchmaking
and Clustering — A Decentralized Approach to
Search

12 Csaba Boer (EUR) Distributed Simulation in In-
dustry

13 Fred Hamburg (UL) Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VU) Web-Service configura-
tion on the Semantic Web; Exploring how seman-
tics meets pragmatics

15 Tibor Bosse (VU) Analysis of the Dynamics of
Cognitive Processes

16 Joris Graaumans (UU) Usability of XML Query
Languages

17 Boris Shishkov (TUD) Software Specification
Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law,

State of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Ap-
plication Semantics

2006

1 Samuil Angelov (TU/e) Foundations of B2B Elec-
tronic Contracting

2 Cristina Chisalita (VU) Contextual issues in the
design and use of information technology in or-
ganizations

3 Noor Christoph (UvA) The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VU) Building Web Service Ontolo-
gies

5 Cees Pierik (UU) Validation Techniques for
Object-Oriented Proof Outlines

6 Ziv Baida (VU) Software-aided Service Bundling
— Intelligent Methods & Tools for Graphical Ser-
vice Modeling

7 Marko Smiljanic (UT) XML schema matching –
balancing efficiency and effectiveness by means of
clustering

8 Eelco Herder (UT) Forward, Back and Home
Again — Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation
of the Auditor’s Opinion

10 Ronny Siebes (VU) Semantic Routing in Peer-to-
Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VU) Interactivation — Towards
an e-cology of people, our technological environ-
ment, and the arts

13 Henk-Jan Lebbink (UU) Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VU) Software Requirements: Up-
date, Upgrade, Redesign — towards a Theory of
Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multi-
tasking with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA) Graph transformation
for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for pre-
diction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive

Personalisation
23 Ion Juvina (UU) Development of Cognitive Model

for Navigating on the Web
24 Laura Hollink (VU) Semantic Annotation for Re-

trieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-

likelihood MDL and Evolutionary MCMC

167

SIKS Dissertation Series

26 Vojkan Mihajlovic (UT) Score Region Algebra:
A Flexible Framework for Structured Information
Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generating
video documentaries from semantically annotated
media repositories

28 Borkur Sigurbjornsson (UvA) Focused Informa-
tion Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information
Exchange and Confidentiality: A Formal Ap-
proach

3 Peter Mika (VU) Social Networks and the Seman-
tic Web

4 Jurriaan van Diggelen (UU) Achieving Seman-
tic Interoperability in Multi-agent Systems: a
dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveil-
lance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for
Blogs

7 Natasa Jovanovic’ (UT) To Whom It May Concern
- Addressee Identification in Face-to-Face Meet-
ings

8 Mark Hoogendoorn (VU) Modeling of Change in
Multi-Agent Organizations

9 David Mobach (VU) Agent-Based Mediated Ser-
vice Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Confor-
mity: an Institutional Perspective on Norms and
Protocols

11 Natalia Stash (TU/e) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adap-
tive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks for
Clinical Decision Support: A Rational Approach
to Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Environ-
ments; Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Anal-
ysis

15 Joyca Lacroix (UM) NIM: a Situated Computa-
tional Memory Model

16 Davide Grossi (UU) Designing Invisible Hand-
cuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dy-
namic Networks in Practice

18 Bart Orriens (UvT) On the development and man-
agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with ar-
tificial partners

20 Slinger Jansen (UU) Customer Configuration Up-
dating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and broad-
ening use: A research on residential adoption and
usage of broadband internet in the Netherlands
between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

23 Peter Barna (TU/e) Specification of Application
Logic in Web Information Systems

24 Georgina Ramı́rez Camps (CWI) Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VU) Empirical Investigations in
Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based Sim-
ulation of Financial Markets: A modular,
continuous-time approach

2 Alexei Sharpanskykh (VU) On Computer-Aided
Methods for Modeling and Analysis of Organiza-
tions

3 Vera Hollink (UvA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain
Data — towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware informa-
tion systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Artifi-
cial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects
of Approximate Inference

9 Christof van Nimwegen (UU) The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented Summa-
rization

11 Vera Kartseva (VU) Designing Controls for Net-
work Organizations: a Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically oriented
Cognitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA) Topic Driven Access
to Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware
Querying; Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive
Behavior: Knowledge Representation and Algo-
rithms for the Markov Decision Process Frame-
work in First-Order Domains

16 Henriette van Vugt (VU) Embodied Agents from a
User’s Perspective

168

SIKS Dissertation Series

17 Martin Op’t Land (TUD) Applying Architecture
and Ontology to the Splitting and Allying of En-
terprises

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From document to entity re-

trieval: improving precision and performance of
focused text search

20 Rex Arendsen (UvA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met een over-
heid op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA) People search in the enter-
prise

22 Henk Koning (UU) Communication of IT-
architecture

23 Stefan Visscher (UU) Bayesian network mod-
els for the management of ventilator-associated
pneumonia

24 Zharko Aleksovski (VU) Using background
knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable ex-
change in air traffic management plan repair us-
ing spender-signed currency

26 Marijn Huijbregts (UT) Segmentation, diarization
and speech transcription: surprise data unrav-
eled

27 Hubert Vogten (OU) Design and implementation
strategies for IMS learning design

28 Ildiko Flesh (RUN) On the use of independence
relations in Bayesian networks

29 Dennis Reidsma (UT) Annotations and subjective
machines- Of annotators, embodied agents, users,
and other humans

30 Wouter van Atteveldt (VU) Semantic network
analysis: techniques for extracting, representing
and querying media content

31 Loes Braun (UM) Pro-active medical information
retrieval

32 Trung B. Hui (UT) Toward affective dialogue
management using partially observable markov
decision processes

33 Frank Terpstra (UvA) Scientific workflow design;
theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree
Mining

35 Benjamin Torben-Nielsen (UvT) Dendritic mor-
phology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-
pendence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making using
Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks — Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Clas-
sification

7 Ronald Poppe (UT) Discriminative Vision-Based
Recovery and Recognition of Human Motion

8 Volker Nannen (VU) Evolutionary Agent-Based
Policy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery
and Construction of Service-oriented Systems

10 Jan Wielemaker (UvA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UvA) Legal Theory, Sources of
Law & the Semantic Web

12 Peter Massuthe (TU/e, Humboldt-Universtät zu
Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent
Systems

14 Maksym Korotkiy (VU) From ontology-enabled
services to service-enabled ontologies (making
ontologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representation
— Design Patterns and Ontologies that Make
Sense

16 Fritz Reul (UvT) New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT) Feature Extrac-
tion from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable
Classification

22 Pavel Serdyukov (UT) Search For Expertise: Go-
ing beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Usage in a
Changing Environment

24 Annerieke Heuvelink (VU) Cognitive Models for
Training Simulations

25 Alex van Ballegooij (CWI) “RAM: Array
Database Management through Relational Map-
ping”

26 Fernando Koch (UU) An Agent-Based Model for
the Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of so-
cial Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management
with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic
Integration of Service-Oriented Applications

169

SIKS Dissertation Series

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized stor-
age

31 Sofiya Katrenko (UvA) A Closer Look at Learn-
ing Relations from Text

32 Rik Farenhorst and Remco de Boer (VU) Archi-
tectural Knowledge Management: Supporting Ar-
chitects and Auditors

33 Khiet Truong (UT) How Does Real Affect Affect
Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method
Engineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for Learn-
ers in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support for
Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-organisation:
a metadata ecology for learning resources in a
multilingual context

39 Christian Stahl (TUE, Humboldt-Universität zu
Berlin) Service Substitution – A Behavioral Ap-
proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-
guage Learning: Investigations into the Geometry
of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paint-
ings

42 Toine Bogers (UvT) Recommender Systems for
Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing Business-
IT Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Use-
ful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter
2 Ingo Wassink (UT) Work flows in Life Science
3 Joost Geurts (CWI) A Document Engineering

Model and Processing Framework for Multime-
dia documents

4 Olga Kulyk (UT) Do You Know What I Know?
Situational Awareness of Co-located Teams in
Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effectiveness
of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video
Game AI

7 Wim Fikkert (UT) Gesture interaction at a Dis-
tance

8 Krzysztof Siewicz (UL) Towards an Improved
Regulatory Framework of Free Software. Protect-
ing user freedoms in a world of software commu-
nities and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensverwerk-
ing en Privacy, Naar een effectieve waarborging

10 Rebecca Ong (UL) Mobile Communication and
Protection of Children

11 Adriaan Ter Mors (TUD) The world according to
MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software
for crime analysis

13 Gianluigi Folino (RUN) High Performance Data
Mining using Bio-inspired techniques

14 Sander van Splunter (VU) Automated Web Service
Reconfiguration

15 Lianne Bodenstaff (UT) Managing Dependency
Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of
Timed Automata, theory and practice

17 Spyros Kotoulas (VU) Scalable Discovery of Net-
worked Resources: Algorithms, Infrastructure,
Applications

18 Charlotte Gerritsen (VU) Caught in the Act: In-
vestigating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA) People’s Responses to
Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway?
How Improv Informs Agency and Authorship of
Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware data
management by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support for
Access to Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of
Emotions

24 Dmytro Tykhonov (TUD) Designing Generic and
Efficient Negotiation Strategies

25 Zulfiqar Ali Memon (VU) Modelling Human-
Awareness for Ambient Agents: A Human Min-
dreading Perspective

26 Ying Zhang (CWI) XRPC: Efficient Distributed
Query Processing on Heterogeneous XQuery En-
gines

27 Marten Voulon (UL) Automatisch contracteren
28 Arne Koopman (UU) Characteristic Relational

Patterns
29 Stratos Idreos (CWI) Database Cracking: To-

wards Auto-tuning Database Kernels
30 Marieke van Erp (UvT) Accessing Natural His-

tory — Discoveries in data cleaning, structuring,
and retrieval

31 Victor de Boer (UvA) Ontology Enrichment from
Heterogeneous Sources on the Web

170

SIKS Dissertation Series

32 Marcel Hiel (UvT) An Adaptive Service Oriented
Architecture: Automatically solving Interoper-
ability Problems

33 Robin Aly (UT) Modeling Representation Uncer-
tainty in Concept-Based Multimedia Retrieval

34 Teduh Dirgahayu (UT) Interaction Design in Ser-
vice Compositions

35 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Retrieval

36 Jose Janssen (OU) Paving the Way for Lifelong
Learning; Facilitating competence development
through a learning path specification

37 Niels Lohmann (TUE) Correctness of services
and their composition

38 Dirk Fahland (TUE) From Scenarios to compo-
nents

39 Ghazanfar Farooq Siddiqui (VU) Integrative
modeling of emotions in virtual agents

40 Mark van Assem (VU) Converting and Integrat-
ing Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

42 Sybren de Kinderen (VU) Needs-driven service
bundling in a multi-supplier setting — the com-
putational e3-service approach

43 Peter van Kranenburg (UU) A Computational Ap-
proach to Content-Based Retrieval of Folk Song
Melodies

44 Pieter Bellekens (TUE) An Approach towards
Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the
Television Domain

45 Vasilios Andrikopoulos (UvT) A theory and
model for the evolution of software services

46 Vincent Pijpers (VU) e3alignment: Exploring
Inter-Organizational Business-ICT Alignment

47 Chen Li (UT) Mining Process Model Variants:
Challenges, Techniques, Examples

48 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

49 Jahn-Takeshi Saito (UM) Solving difficult game
positions

50 Bouke Huurnink (UvA) Search in Audiovisual
Broadcast Archives

51 Alia Khairia Amin (CWI) Understanding and
supporting information seeking tasks in multiple
sources

52 Peter-Paul van Maanen (VU) Adaptive Support
for Human-Computer Teams: Exploring the Use
of Cognitive Models of Trust and Attention

53 Edgar J. Meij (UvA) Combining Concepts and
Language Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms for
Bayesian Inference in Latent Gaussian Models

2 Nick Tinnemeier (UU) Work flows in Life Science
3 Jan Martijn van der Werf (TUE) Compositional

Design and Verification of Component-Based In-
formation Systems

4 Hado van Hasselt (UU) Insights in Reinforcement
Learning; Formal analysis and empirical evalua-
tion of temporal-difference learning algorithms

5 Base van der Raadt (VU) Enterprise Architecture
Coming of Age — Increasing the Performance of
an Emerging Discipline

6 Yiwen Wang (TUE) Semantically-Enhanced Rec-
ommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information Presen-
tation for High Load Human Computer Interac-
tion

8 Nieske Vergunst (UU) BDI-based Generation of
Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Media
for Learning

10 Bart Bogaert (UvT) Cloud Content Contention
11 Dhaval Vyas (UT) Designing for Awareness: An

Experience-focused HCI Perspective
12 Carmen Bratosin (TUE) Grid Architecture for

Distributed Process Mining
13 Xiaoyu Mao (UvT) Airport under Control. Multi-

agent Scheduling for Airport Ground Handling
14 Milan Lovric (EUR) Behavioral Finance and

Agent-Based Artificial Markets
15 Marijn Koolen (UvA) The Meaning of Structure:

the Value of Link Evidence for Information Re-
trieval

16 Maarten Schadd (UM) Selective Search in Games
of Different Complexity

17 Jiyin He (UvA) Exploring Topic Structure: Co-
herence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-Making in
complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on Personal
Profiles

20 Qing Gu (VU) Guiding service-oriented software
engineering — A view-based approach

21 Linda Terlouw (TUD) Modularization and Speci-
fication of Service-Oriented System

22 Junte Zhang (UvA) System Evaluation of Archival
Description and Access

23 Wouter Weerkamp (UvA) Finding People and
their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Genera-
tion for Interpersonal Coordination with Virtual
Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU) Analysis and
Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VU) Virtual Agents for
Human Communication — Emotion Regulation
and Involvement-Distance Trade-Offs in Embod-
ied Conversational Agents and Robots

171

SIKS Dissertation Series

27 Aniel Bhulai (VU) Dynamic website optimization
through autonomous management of design pat-
terns

28 Rianne Kaptein (UvA) Effective Focused Re-
trieval by Exploiting Query Context and Docu-
ment Structure

29 Faisal Kamiran (TUE) Discrimination-aware
Classification

30 Egon van den Broek (UT) Affective Signal Pro-
cessing (ASP): Unraveling the mystery of emo-
tions

31 Ludo Waltman (EUR) Computational and Game-
Theoretic Approaches for Modeling Bounded Ra-
tionality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate De-
cisions

34 Paolo Turrini (UU) Strategic Reasoning in Inter-
dependence: Logical and Game-theoretical In-
vestigations

35 Maaike Harbers (UU) Explaining Agent Behavior
in Virtual Training

36 Erik van der Spek (UU) Experiments in serious
game design: a cognitive approach

37 Adriana Burlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed
Optimization

39 Joost Westra (UU) Organizing Adaptation using
Agents in Serious Games

40 Viktor Clerc (VU) Architectural Knowledge Man-
agement in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced
Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improvement
through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer
Interfaces

45 Herman Stehouwer (UvT) Statistical Language
Models for Alternative Sequence Selection

46 Beibei Hu (TUD) Towards Contextualized Infor-
mation Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VU) Exploring Computa-
tional Models for Intelligent Support of Persons
with Depression

48 Mark Ter Maat (UT) Response Selection and
Turn-taking for a Sensitive Artificial Listening
Agent

49 Andreea Niculescu (UT) Conversational inter-
faces for task-oriented spoken dialogues: design
aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing for
SMEs in Uganda

2 Muhammad Umair (VU) Adaptivity, emotion, and
Rationality in Human and Ambient Agent Models

3 Adam Vanya (VU) Supporting Architecture Evo-
lution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content
Management System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisational
Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support for
Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VU) When the Going
Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Condi-
tions

8 Gerben de Vries (UvA) Kernel Methods for Vessel
Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Man-
agement Support for Context-Aware Service Plat-
forms

10 David Smits (TUE) Towards a Generic Dis-
tributed Adaptive Hypermedia Environment

11 J.C.B. Rantham Prabhakara (TUE) Process Min-
ing in the Large: Preprocessing, Discovery, and
Diagnostics

12 Kees van der Sluijs (TUE) Model Driven Design
and Data Integration in Semantic Web Informa-
tion Systems

13 Suleman Shahid (UvT) Fun and Face: Exploring
non-verbal expressions of emotion during playful
interactions

14 Evgeny Knutov (TUE) Generic Adaptation
Framework for Unifying Adaptive Web-based Sys-
tems

15 Natalie van der Wal (VU) Social Agents. Agent-
Based Modelling of Integrated Internal and So-
cial Dynamics of Cognitive and Affective Pro-
cesses

16 Fiemke Both (VU) Helping people by under-
standing them — Ambient Agents supporting task
execution and depression treatment

17 Amal Elgammal (UvT) Towards a Comprehen-
sive Framework for Business Process Compliance

18 Eltjo Poort (VU) Improving Solution Architecting
Practices

19 Helen Schonenberg (TUE) What’s Next? Opera-
tional Support for Business Process Execution

20 Ali Bahramisharif (RUN) Covert Visual Spa-
tial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse Ma-
trices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en veilighei-
dsdienst: verenigbare grootheden?

172

SIKS Dissertation Series

23 Christian Muehl (UT) Toward Affective Brain-
Computer Interfaces: Exploring the Neurophys-
iology of Affect during Human Media Interaction

24 Laurens van der Werff (UT) Evaluation of Noisy
Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT) Managing the Business Case
Development in Inter-Organizational IT Projects:
A Methodology and its Application

26 Emile de Maat (UvA) Making Sense of Legal Text
27 Hayrettin Gurkok (UT) Mind the Sheep! User Ex-

perience Evaluation & Brain-Computer Interface
Games

28 Nancy Pascall (UvT) Engendering Technology
Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information
Retrieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision Making

31 Emily Bagarukayo (RUN) A Learning by Con-
struction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD) Qualitative multi-criteria
preference representation and reasoning

33 Rory Sie (OUN) Coalitions in Cooperation Net-
works (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis in
PPI networks and applications

35 Evert Haasdijk (VU) Never Too Old To Learn –
On-line Evolution of Controllers in Swarm- and
Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Evalua-
tion of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Pro-
cess for Enterprise Architecture Creation

38 Selmar Smit (VU) Parameter Tuning and Scien-
tific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of value
and coordination networks

40 Agus Gunawan (UvT) Information Access for
SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns for
Learning

42 Dominique Verpoorten (OU) Reflection Ampli-
fiers in self-regulated Learning

43 (Withdrawn)
44 Anna Tordai (VU) On Combining Alignment

Techniques
45 Benedikt Kratz (UvT) A Model and Language for

Business-aware Transactions
46 Simon Carter (UvA) Exploration and Exploita-

tion of Multilingual Data for Statistical Machine
Translation

47 Manos Tsagkias (UvA) Mining Social Media:
Tracking Content and Predicting Behavior

48 Jorn Bakker (TUE) Handling Abrupt Changes in
Evolving Time-series Data

49 Michael Kaisers (UM) Learning against Learning
— Evolutionary dynamics of reinforcement learn-
ing algorithms in strategic interactions

50 Steven van Kervel (TUD) Ontologogy driven En-
terprise Information Systems Engineering

51 Jeroen de Jong (TUD) Heuristics in Dynamic
Sceduling; a practical framework with a case
study in elevator dispatching

2013
1 Viorel Milea (EUR) News Analytics for Financial

Decision Support
2 Erietta Liarou (CWI) MonetDB/DataCell: Lever-

aging the Column-store Database Technology for
Efficient and Scalable Stream Processing

3 Szymon Klarman (VU) Reasoning with Contexts
in Description Logics

4 Chetan Yadati (TUD) Coordinating autonomous
planning and scheduling

5 Dulce Pumareja (UT) Groupware Requirements
Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cyclotron:
Juggling Data and Queries for a Data Warehouse
Audience

7 Giel van Lankveld (UT) Quantifying Individual
Player Differences

8 Robbert-Jan Merk (VU) Making enemies: cogni-
tive modeling for opponent agents in fighter pilot
simulators

9 Fabio Gori (RUN) Metagenomic Data Analysis:
Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT) A Unified
Modeling Framework for Service Design

11 Evangelos Pournaras (TUD) Multi-level Recon-
figurable Self-organization in Overlay Services

12 Maryam Razavian (VU) Knowledge-driven Mi-
gration to Services

13 Mohammad Zafiri (UT) Service Tailoring: User-
centric creation of integrated IT-based homecare

14 Jafar Tanha (UvA) Ensemble Approaches to Semi-
Supervised Learning

15 Daniel Hennes (UM) Multiagent Learning — Dy-
namic Games and Applications

16 Eric Kok (UU) Exploring the practical benefits of
argumentation in multi-agent deliberation

17 Koen Kok (VU) The PowerMatcher: Smart Coor-
dination for the Smart Electricity Grid

18 Jeroen Janssens (UvT) Outlier Selection and One-
Class Classification

19 Renze Steenhuizen (TUD) Coordinated Multi-
Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable Online
Learning to Rank for Information Retrieval

21 Sander Wubben (UvT) Text-to-text generation by
monolingual machine translation

173

SIKS Dissertation Series

22 Tom Claassen (RUN) Causal Discovery and
Logic

23 Patricio de Alencar Silva (UvT) Value Activity
Monitoring

24 Haitham Bou Ammar (UM) Automated Transfer
in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new way
of representing and implementing clinical guide-
lines in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support for
Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based Frame-
work Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity be-
comes Interesting: An Inquiry into the Informa-
tion eXperience

29 Iwan de Kok (UT) Listening Heads
30 Joyce Nakatumba (TUE) Resource-Aware Busi-

ness Process Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN) Networking For

Learning; The role of Networking in a Lifelong
Learner’s Professional Development

33 Qi Gao (TUD) User Modeling and Personaliza-
tion in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web
Search

35 Abdallah El Ali (UvA) Minimal Mobile Human
Computer Interaction

36 Than Lam Hoang (TUE) Pattern Mining in Data
Streams

37 Dirk Börner (OUN) Ambient Learning Displays
38 Eelco den Heijer (VU) Autonomous Evolutionary

Art
39 Joop de Jong (TUD) A Method for Enterprise

Ontology based Design of Enterprise Information
Systems

40 Pim Nijssen (UM) Monte-Carlo Tree Search for
Multi-Player Games

41 Jochem Liem (UvA) Supporting the Conceptual
Modelling of Dynamic Systems: A Knowledge En-
gineering Perspective on Qualitative Reasoning

42 Léon Planken (TUD) Algorithms for Simple Tem-
poral Reasoning

43 Marc Bron (UvA) Exploration and Contextual-
ization through Interaction and Concepts

2014

1 Nicola Barile (UU) Studies in Learning Monotone
Models from Data

2 Fiona Tuliyano (RUN) Combining System Dy-
namics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information Re-
trieval for Children: Search Behavior and Solu-
tions

4 Hanna Jochmann-Mannak (UT) Websites for chil-
dren: search strategies and interface design -
Three studies on children’s search performance
and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Perspec-
tives on Advancing Dynamic Capability

6 Damian Tamburri (VU) Supporting Networked
Software Development

7 Arya Adriansyah (TUE) Aligning Observed and
Modeled Behavior

8 Samur Araujo (TUD) Data Integration over Dis-
tributed and Heterogeneous Data Endpoints

9 Philip Jackson (UvT) Toward Human-Level Arti-
ficial Intelligence: Representation and Computa-
tion of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VU) Service Value
Networks

11 Janneke van der Zwaan (TUD) An Empathic Vir-
tual Buddy for Social Support

12 Willem van Willigen (VU) Look Ma, No Hands:
Aspects of Autonomous Vehicle Control

13 Arlette van Wissen (VU) Agent-Based Support for
Behavior Change: Models and Applications in
Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With
Meta-information

15 Natalya Mogles (VU) Agent-Based Analysis and
Support of Human Functioning in Complex Socio-
Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VU) Supporting trial recruit-
ment and design by automatically interpreting el-
igibility criteria

17 Kathrin Dentler (VU) Computing healthcare
quality indicators automatically: Secondary Use
of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (VU) Methods and Models for the
Design and Study of Dynamic Agent Organiza-
tions

19 Vincius Ramos (TUE) Adaptive Hypermedia
Courses: Qualitative and Quantitative Evalua-
tion and Tool Support

20 Mena Habib (UT) Named Entity Extraction and
Disambiguation for Informal Text: The Missing
Link

21 Kassidy Clark (TUD) Negotiation and Monitor-
ing in Open Environments

22 Marieke Peeters (UU) Personalized Educational
Games - Developing agent-supported scenario-
based training

23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-
cient Indexes for the Big Data Era

174

SIKS Dissertation Series

24 Davide Ceolin (VU) Trusting Semi-structured
Web Data

25 Martijn Lappenschaar (RUN) New network mod-
els for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When to
Stop

27 Rui Jorge Almeida (EUR) Conditional Density
Models Integrating Fuzzy and Probabilistic Rep-
resentations of Uncertainty

28 Anna Chmielowiec (VU) Decentralized k-Clique
Matching

29 Jaap Kabbedijk (UU) Variability in Multi-Tenant
Enterprise Software

30 Peter de Cock (UvT) Anticipating Criminal Be-
haviour

31 Leo van Moergestel (UU) Agent Technology in
Agile Multiparallel Manufacturing and Product
Support

32 Naser Ayat (UvA) On Entity Resolution in Prob-
abilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

34 Christina Manteli (VU) The Effect of Gover-
nance in Global Software Development: Analyz-
ing Transactive Memory Systems

35 Joost van Ooijen (UU) Cognitive Agents in Virtual
Worlds: A Middleware Design Approach

36 Joos Buijs (TUE) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

37 Maral Dadvar (UT) Experts and Machines United
Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usability
through post-processing

39 Jasmina Maric (UvT) Web Communities, Immi-
gration, and Social Capital

40 Walter Omona (RUN) A Framework for Knowl-
edge Management Using ICT in Higher Educa-
tion

41 Frederic Hogenboom (EUR) Automated Detec-
tion of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual Multi-
dimensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process Im-
provement using Method Increments

44 Paulien Meesters (UvT) Intelligent Blauw. Met
als ondertitel: Intelligence-gestuurde politiezorg
in gebiedsgebonden eenheden

45 Birgit Schmitz (OUN) Mobile Games for Learn-
ing: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics: Rele-
vance, Redundancy, Diversity

47 Shangsong Liang (UVA) Fusion and Diversifica-
tion in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning for Rele-
vance of Information in Crisis Response

2 Faiza Bukhsh (UvT) Smart auditing: Innovative
Compliance Checking in Customs Controls

3 Twan van Laarhoven (RUN) Machine learning for
network data

4 Howard Spoelstra (OUN) Collaborations in Open
Learning Environments

5 Christoph Bösch (UT) Cryptographically En-
forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process Qual-
ity Computation - Computing Non-Functional Re-
quirements to Improve Business Processes

7 Maria-Hendrike Peetz (UvA) Time-Aware Online
Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance: An
agent-based model for designing and evaluating
organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on Be-
havior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of an in-
tegrated system to support lifelong learning

11 Yongming Luo (TUE) Designing algorithms for
big graph datasets: A study of computing bisimu-
lation and joins

12 Julie M. Birkholz (VU) Modi Operandi of Social
Network Dynamics: The Effect of Context on Sci-
entific Collaboration Networks

13 Giuseppe Procaccianti (VU) Energy-Efficient
Software

14 Bart van Straalen (UT) A cognitive approach to
modeling bad news conversations

15 Klaas Andries de Graaf (VU) Ontology-based
Software Architecture Documentation

16 Changyun Wei (UT) Cognitive Coordination for
Cooperative Multi-Robot Teamwork

17 André van Cleeff (UT) Physical and Digital Secu-
rity Mechanisms: Properties, Combinations and
Trade-offs

18 Holger Pirk (CWI) Waste Not, Want Not! - Man-
aging Relational Data in Asymmetric Memories

19 Bernardo Tabuenca (OUN) Ubiquitous Technol-
ogy for Lifelong Learners

20 Loı̈s Vanhée (UU) Using Culture and Values to
Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support to Ex-
pand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Networks
23 Luit Gazendam (VU) Cataloguer Support in Cul-

tural Heritage
24 Richard Berendsen (UVA) Finding People, Pa-

pers, and Posts: Vertical Search Algorithms and
Evaluation

25 Steven Woudenberg (UU) Bayesian Tools for
Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment Analy-
sis of Text Guided by Semantics and Structure

175

SIKS Dissertation Series

27 Sándor Héman (CWI) Updating compressed
column-stores

28 Janet Bagorogoza (TiU) Knowledge Management
and High Performance; The Uganda Financial
Institutions Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree Search
Enhancements for One-Player and Two-Player
Domains

30 Kiavash Bahreini (OUN) Real-time Multimodal
Emotion Recognition in E-Learning

31 Yakup Koç (TUD) On Robustness of Power Grids
32 Jerome Gard (UL) Corporate Venture Manage-

ment in SMEs
33 Frederik Schadd (UM) Ontology Mapping with

Auxiliary Resources
34 Victor de Graaff (UT) Geosocial Recommender

Systems

35 Junchao Xu (TUD) Affective Body Language of
Humanoid Robots: Perception and Effects in Hu-
man Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of Shapes
by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Optimiz-
ing medication reviews through decision support:
prescribing a better pill to swallow

3 Maya Sappelli (RUN) Knowledge Work in Con-
text: User Centered Knowledge Worker Support

4 Laurens Rietveld (VU) Publishing and Consum-
ing Linked Data

5 Evgeny Sherkhonov (UVA) Expanded Acyclic
Queries: Containment and an Application in Ex-
plaining Missing Answers

176

	Introduction
	Research outline and goals
	Main contributions and overview
	Origins

	Background and Preliminaries
	Containment for queries over relational data
	Containment for XPath
	XML and tree models
	XPath and its fragments
	XPath query containment
	Conjunctive queries interpreted over trees and containment

	Why and why-not explanations
	Why explanations
	Why-not explanations

	I Containment Problem for Acyclic Queries
	Containment for Queries over Trees with Attribute Value Comparisons
	Introduction
	Preliminaries
	Containment of PosXPath@ and CQ@
	Containment of Positive XPath and CQs with safe negation
	Adding attributes
	Restricting the attribute domain
	Lower bounds
	Tractable cases

	Conclusion

	Containment for ACQ with Atomic Negation and Arithmetic Comparisons
	Introduction
	Preliminaries
	Containment for ACQ with guarded atomic negation or comparisons
	Polynomial-time algorithms for containment
	Conclusion and future work
	Polynomial time algorithms for containment
	Descendant-only tree patterns with label negation
	Tree patterns with attribute value comparisons

	Containment for Conditional Tree Patterns
	Introduction
	Related work

	Preliminaries
	Trees
	XPath and Tree Patterns
	Containment

	Expressivity
	Interpreting Conditional Tree Patterns by simulations
	Expressivity characterization

	Containment
	Containment preliminaries
	Lower bounds
	Upper bounds

	Conclusion
	Translations between CTP and ctp

	II Application: Why-not Explanations
	High-Level Why-Not Explanations using Ontologies
	Introduction and results
	Preliminaries
	Why-not explanations
	Obtaining ontologies
	Leveraging an external ontology
	Ontologies derived from a schema

	Algorithms for computing most-general explanations
	Case 1: External ontology
	Case 2: Ontologies from an instance
	Case 3: Ontologies from schema

	Variations of the framework
	Conclusion
	Missing proofs for Section 4
	Proofs for Section 6.4.1
	Proof of Theorem 6.4.3

	Missing proofs of Section 5
	Proofs for Section 6.5.1
	Proofs for Section 6.5.2
	Proofs for Section 6.5.3

	Missing proofs for Section 6
	Cardinality based preference

	Conclusion
	Main findings
	Future work

	Bibliography
	Samenvatting

