
Mixture Models, Overlap, and Structural Hints
in XML Element Retrieval

Börkur Sigurbjörnsson1, Jaap Kamps1,2, and Maarten de Rijke1

1 Informatics Institute, University of Amsterdam
2 Archives and Information Studies, Faculty of Humanities, University of Amsterdam

Abstract. We describe the INEX 2004 participation of the Informatics
Institute of the University of Amsterdam. We completely revamped our
XML retrieval system, now implemented as a mixture language model
on top of a standard search engine. To speed up structural reasoning,
we indexed the collection’s structure in a separate database. Our main
findings are as follows. First, we show that blind feedback improves re-
trieval effectiveness, but increases overlap. Second, we see that removing
overlap from the result set decreases retrieval effectiveness for all metrics
except the XML cumulative gain measure. Third, we show that ignor-
ing the structural constraints gives good results if measured in terms of
mean average precision; the structural constraints are, however, useful
for achieving high initial precision. Finally, we provide a detailed analysis
of the characteristics of one of our runs. Based on this analysis we argue
that a more explicit definition of the INEX retrieval tasks is needed.

1 Introduction

We follow an Information Retrieval (IR) approach to the Content-Only (CO)
and Vague-Content-And-Structure (VCAS) ad hoc tasks at INEX. In our par-
ticipation at INEX 2004 we built on top of our element-based approach at INEX
2003 [10], and extended our language modeling approach to XML retrieval.

Specifically, we addressed the following technological issues, mainly to obtain
a statistically more transparent approach. For our INEX 2003 experiments we
combined article and element scores outside our language modeling framework.
That is, we calculated scores separately for articles and elements, and then up-
dated the element scores by taking into account the score of the surrounding
article. This year, we implemented a proper mixture language model, incorpo-
rating evidence from both the XML elements and the article in which they occur.
Furthermore, at INEX 2003 we estimated the language model of the collection
by looking at statistics from our overlapping element index. For our INEX 2004
experiments we estimate this collection model differently, by looking at statis-
tics from our article index. The main change in our blind feedback approach,
compared to last year, is that this year we perform query expansion based on an
element run, whereas last year we performed the expansion based on an article
run. All our runs were created using the ILPS extension to the Lucene search
engine [7, 3].

Our main research questions for both tasks were twofold. First, we wanted
to investigate the effect of blind feedback on XML element retrieval. Second,
we wanted to cast light on the problem of overlapping results; in particular, we
investigate the effect of removing overlapping results top-down from a retrieval
run. A third, additional research question only concerns the VCAS task: we
investigate the difference between applying a content-only approach and a strict
content-and-structure approach.

The remainder of this paper is organized as follows. In Section 2 we de-
scribe our experimental setup, and in Section 3 we provide details on the official
INEX 2004 runs. Section 4 presents the results of our experiments, and in Sec-
tion 5 we analyze the characteristics of one of our runs. In Section 6 we conclude.

2 Experimental Setup

2.1 Index

Our approach to XML retrieval is IR-based. We calculate a retrieval score for
an element by using a mixture model which combines a language model for
the element itself, a model for the surrounding article, and a model for the
whole collection. To estimate the language models we need two types of inverted
indexes, one for the XML elements and another for the full XML articles. The
two indexes have a somewhat different purpose. The element index functions as
a traditional inverted index used to retrieve elements. The article index, on the
other hand, is used for statistical estimates only. Furthermore, we maintain a
separate index of the collection structure.

Element index We index each XML element separately. The indexing unit can
be any XML element, ranging from small elements such as words in italics (〈it〉)
to full blown articles (〈article〉). For each element, all text nested inside it is
indexed. Hence, the indexing units overlap (see Figure 1). Text appearing in a
particular nested XML element is not only indexed as part of that element, but
also as part of all its ancestor elements.

Article index Here, the indexing unit is a complete XML document containing
all the terms appearing at any nesting level within the 〈article〉 tag. Hence,
this is a standard inverted index as used for traditional document retrieval.

Both the element and the article index were word-based: we applied case-folding,
and stop-words were removed using the stop-word list that comes with the En-
glish version on the Snowball stemmer [12], but other than that words were
indexed as they occur in the text, and no stemming was applied.

Structure index The structure of the collection is indexed using a relational
database. To index the XML trees we use pre-order and post-order information
of the nodes in the XML trees [1].

Tom Waits

simple.xml /article[1]/au[1]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

Fig. 1. Figure of how XML documents are split up into overlapping indexing units.

2.2 Query Processing

For both the CO and the VCAS task we only use the 〈title〉 part of the topics.
We remove words and phrases bounded by a minus-sign from the queries; other
than that, we do not use the plus-signs, or phrase marking of the queries.

For the CAS topics we have a NEXI tokenizer which can decompose the query
into a set of about functions [11]. If there is a disjunction in a location-path, we
break it up into a disjunction of about functions. That is,

about(.//(abs|kwd), xml) (1)

becomes
about(.//abs,xml) or about(.//kwd,xml). (2)

If there are multiple about functions with the same scope we merge them into a
single one. That is,

about(., broadband) or about(., dial-up) (3)

becomes
about(., broadband dial-up). (4)

For some of the VCAS runs we ignore the structural constraints and use only a
collection of content query terms. That is, from the query

//article[about(.,sorting)]//sec[about(.,heap sort)] (5)

we collect the query terms

sorting heap sort. (6)

We will refer to these as the full content queries.

2.3 Retrieval Model

All our runs use a multinomial language model with Jelinek-Mercer smoothing
[2]. We estimate a language model for each of the elements. The elements are then
ranked according to their prior probability of being relevant and the likelihood
of the query, given the estimated language model for the element:

P (e|q) ∝ P (e) · P (q|e). (7)

We assume query terms to be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (8)

where q is a query made out of the terms t1, . . . , tk. To account for data sparseness
we estimate the element language model by taking a linear interpolation of three
language models: one for the element itself, one for the article that contains the
element, and a third one for the collection. That is, P (ti|e) is calculated as

λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (9)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters
λe and λd are interpolation factors (smoothing parameters). We estimate the
language models, Pmle(·|·) and Pmle(·), using maximum likelihood estimation.
For the element model we use statistics from the element index; for the document
model we use statistics from the article index; and for the collection model we
use document frequencies from the article index.

The language modeling framework allows us to easily model non-content
features. One of the non-content features that proved to be useful during our
experiments for INEX 2003 is document length [4]. Specifically, we assign a prior
probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e|

, (10)

where |e| is the size of an element e.

2.4 Query Expansion

We have been experimenting with blind feedback in every edition of INEX so
far, focusing on query expansion for the content-only task exclusively. Initially,
we experimented with Rocchio-style reweighting to select up to 10 terms from
the top 10 documents [9]. In INEX 2002 we observed that query expansion with
Rocchio on the article index gave intuitively useful expanded queries, leading to
the kind of improvements that are familiar from article retrieval [5]. However,
expanding queries based on the top 10 retrieved XML elements seemed not to

work due to the short and overlapping elements in the top 10 results. Hence,
we decided to expand queries on the article index, and then run the expanded
queries against the element index. This did, indeed, give us a boost for the 2002
topics, but, alas, substantially lowered our score for the 2003 topics [10].

Our analysis of the failure of article-index based feedback in INEX 2003 was
that the terms were useful, but highly unlikely to occur in the proper element.
An example is getting prominent author names from the bibliography, which are
relevant and useful retrieval cues but generally do not appear in a paragraph
(maybe in the author field, or the bibliography).3

We decided to go back to the idea of doing blind feedback on the XML element
index. This has the advantage of conservatism, the initially retrieved top 10
elements will keep their high ranking, but the problem of overlap in the initial
result set remains. In pre-submission experiments, Ponte’s language modeling
approach to feedback [8] proved more robust, and improved performance on the
2003 topics.

3 Runs

In this section we describe our runs submitted for INEX 2004. All our runs use
the language modeling framework described in the previous section. For all runs
we use a two level smoothing procedure: we smooth against both the article
and the collection. Our collection model uses the document frequencies from
the article index. For computing the likelihood of a term given an element, see
Equation 9, we use the following parameter settings for all runs: λe = 0.1 and
λd = 0.3. All runs also use the same length prior settings in Equation 10. All
the runs that use blind feedback use the language modeling approach [8], and
consider the top 15 elements as pseudo relevant, and expand the query with up
to 5 additional terms.

3.1 Content-Only Runs

Baseline (UAms-CO-T) This run uses the mixture language model approach
and parameter settings as described above.

Feedback (UAms-CO-T-FBack) This run uses the same model and parameters
as the previous run. Additionally, it uses blind feedback to expand the queries,
as described above.

No Overlap (UAms-CO-T-FBack-NoOverl) This run uses the same model, pa-
rameters and feedback approach as the previous run. Additionally, overlapping
results are filtered away. The filtering is done in a top-down manner. That is,
the result list is processed from the most relevant to the least relevant element.
3 We have been planning to incorporate context (i.e., tags in which term occurs) into

our model, but this would requires some CAS features for the CO runs that are
non-trivial to implement.

Table 1. Average scores for our submissions, with the best scoring run in italics. The
first two rows (MAP, P@10) are results of using trec eval and strict assessments. The
next three rows are results of using inex eval. Finally, we list the XCG scores that
have been released and the set-based overlap in the runs. (Left): Our CO runs. (Right):
Our VCAS runs.

CO-Runs VCAS-Runs
Measure Baseline Feedback No Overlap CO-style XPath-style No Overlap

MAP 0.1142 0.1216 0.0385 0.1377 0.0811 0.0621
P@10 0.1680 0.1600 0.1000 0.1818 0.2591 0.1121

strict 0.1013 0.1100 0.0332 0.1260 0.0735 0.0582
generalized 0.0929 0.1225 0.0198 0.1167 0.0451 0.0330
so 0.0717 0.1060 0.0149 0.0912 0.0472 0.0282

XCG – 0.2636 0.3521 – – –
Overlap 72.0% 81.8% 0.0% 77.8% 18.8% 0.0%

A result is removed from the result list if its content overlaps with the content
of an element that has been processed previously.

3.2 Vague Content-And-Structure Runs

CO-style (UAms-CAS-T-FBack) This run uses the full-content version of the
queries. The run is identical to CO-Feedback, except for the topics, of course.

No Overlap (UAms-CAS-T-FBack-NoOverl) This run uses the full-content ver-
sion of the queries. The run is identical to CO-No-Overlap.

XPath-style (UAms-CAS-T-XPath) This run is created using our system for the
INEX 2003 Strict Content and Structure task. It uses both content and structural
constraints. Target constraints are interpreted as strict. We refer to [11] for a
detailed description of the retrieval approach used. The run uses the exact same
approach and settings as the run referred to as “Full propagation run” in that
paper.

4 Results and Discussion

In this section we present the results of our retrieval efforts. Result analysis
for XML retrieval remains a difficult task: there are still many open questions
regarding how to evaluate XML element retrieval. A plethora of measures has
been proposed, but still the problem has not been resolved. We will present
results for a number of the suggested measures and try to interpret the flow of
numbers. All results are based on version 3.0 of the assessments.

4.1 Content-Only Task

For the content-only task we focus on two issues, effect of blind feedback and
overlap removal.

Table 2. Tag-name distribution of retrieved elements. We only list the most frequently
occurring elements

Tag-name Baseline Feedback No Overlap

article 27.2% 14.3% 46.1%
bdy 21.2% 12.3% 5.7%
sec 16.6% 16.9% 7.1%
p 7.8% 17.2% 12.8%

Blind feedback From Table 1 (Left) we see that the run which uses blind
feedback outperforms the normal run on all metrics except for early precision.
Note also that the overlap in the feedback run is somewhat higher than for the
baseline. Unfortunately, we do not have the XCG score for our baseline run. It
is thus not clear how the less overlapping baseline compares to the feedback run
for that measure.

The changing overlap percentage is just one of a larger set of changes brought
about by applying blind feedback. Table 2 shows the distribution of retrieved
elements over the most common elements. We see that by applying blind feed-
back, our retrieval focus changes from mostly retrieving articles and bodies, to
retrieving more sections and paragraphs. We have thought of two possible expla-
nations for this behavior. First, our retrieval model is sensitive to query length.
The effect of our normal length prior decreases as the queries get longer.4 When
we expand our queries we make them longer and consequently decrease the ef-
fect of the length prior. Second, the increased overlapping might be caused by
the fact that we use pseudo-relevant elements to calculate feedback terms. The
goal of the added feedback terms is to attract similar content as in the pseudo-
relevant elements. Obviously, the elements that overlap with the pseudo-relevant
elements have to some extent very similar content.

Overlap removal Let’s now take a look at a more striking difference in overlap.
Namely for our feedback run with and without the list-based removal of over-
lapping elements. We go from having more than 80% overlap to having none at
all. The removal of overlap is appreciated by neither of the two traditional met-
rics trec eval or inex eval. The XML Cumulative Gain (XCG) [6] measure is
however clearly sympathetic to the removal of overlap. It is interesting to note
that from Table 2 we see that almost half of the elements in our non-overlapping
run are full articles.

It is tricky to draw strong conclusions from these observations. The eval
measures on the one hand and XCG on the other, seem to evaluate different
tasks. The eval measures evaluate a “system-oriented” task where the main
goal is to find relevance and overlap is (and should be) rewarded. The XCG
measure on the other hand evaluates a “user-oriented” task where overlap is
4 Previously, we have shown that a more radical length bias is essential to achieve good

results [4]. Those experiments were performed using both the title and description
fields of the topics.

not (and should not be) rewarded. We will return to this point at the end of
Section 5.

4.2 Vague Content-And-Structure task

For the VCAS task we focus on the difference between two styles of retrieval:
CO and XPath. Table 1 (right) shows the results for our VCAS runs, using the
different metrics. We see that the CO-style run clearly outperforms the XPath-
style run with respect to all the MAP-oriented metrics. When we look at early
precision, however, we see a clear distinction in favor of the XPath-style run.
This finding is very much in-line with our intuition: the main reason behind
adding structural constraints to content queries is to make them more precise.

The CAS topics can be divided into classes based on the extent to which
structure is being used. We define 4 classes.

Restricted Search This category has topics in which structure is only used as a
granularity constraint. The topic is an ordinary content-only topic, where the
search is restricted to particular XML elements. There is a filter on the target
element having no nested path constraint. A typical example of such a topic is
to restrict the search to sections:

//sec[about(., ‘‘xxx’’)].

Contextual Content Information This category is similar to the Restricted Search
category, but now there is a (simple) filter on the path constraint. I.e., there is
a content restriction on the environment in which the requested element occurs.
A typical example of such a topic is to have a content restriction on the whole
article in which the requested sections occur, this may look like:

//article[about(., ’’xxx’’)]//sec[about(., ‘‘yyy’’)].

Search Hints This category contains topics with a complex filter in which a
nested path occurs, but the element targeted by the nested paths resides inside
the requested element. I.e., the user provides a particular retrieval cue to the
system. A typical example of such a topic may be, when interested in a whole
article on a topic, to tell the system to look for certain terms to appear in the
abstract, this may look like:

//article[about(., ‘‘xxx’’) and about(.//abs, ‘‘yyy’’)].

Twig Hints The fourth and last category deals with topics with a nested path
that targets elements that are disjoint from the requested element. This is called
a tree pattern query or a ‘twig.’ Here, the user is really exploiting her knowledge
of the structure of the documents, and conditions the retrieval of elements on
the content found along other paths in the document tree. I.e., the condition is
evaluated against parts of the text that are not being returned to the user as a
result. E.g., the similar retrieval cue on the abstract, may still make sense for a
user looking for sections, which may look like:

//article[about(.//abs, ‘‘xxx’’)]//sec[about(., ‘‘yyy’’)].

Table 3. Scores for different categories of CAS topics. Scores are calculated using
trec eval and the strict assessments. The number of assessed topics per class is stated
in brackets.

Restricted Search (5) Contextual Content (5) Search Hints (4) Twig Hints (8)
MAP P@10 MAP P@10 MAP P@10 MAP P@10

CO 0.1454 0.2000 0.1009 0.1000 0.3231 0.2250 0.0631 0.2000
XPath 0.1254 0.3000 0.0319 0.1200 0.0504 0.3500 0.0994 0.2750

Topic
162 163 164 165 166 168 169 170 174 175 176 177 178 183 186 187 188 189 190 191 192 194 196 197 198

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1

Fig. 2. Precision of our baseline for individual topics

Table 3 shows the evaluation results for different topic classes. We can see that
the XPath-style approach gives better early precision for all the topic classes.
Only for the most complex class of topics gives XPath-style a better MAP than
CO-style approach. It is interesting to note that, in terms of MAP, the two ap-
proaches are competitive for both the simplest and most complex topics. For the
two middle-classes, however, the MAP scores for the CO-style run are superior
by a margin.

5 Per-topic Analysis

In this section we look at the per-topic results for our content-only baseline.
Throughout this section, we will try to come up with necessary and sufficient
conditions for successful XML element retrieval. Our main aim is to try to un-
derstand better how our XML retrieval system works. All experiments in this
section are performed using the trec eval program and the strict version of the
assessments.

Figure 2 shows the precision scores for the individual topics. It is striking
that for most of the topics, our performance is very poor. We score reasonably
for only a handful of topics. The first questions that arise are: ‘What is going
wrong?’ and ‘What is going right?’ The answers are far from obvious, since there
are so many possibilities. We start by considering the core task of XML retrieval,
namely, finding the relevant elements. This seems to be a combination of two
problems. On the one hand we need to find relevance. On the other, we need to

Topic
162 163 164 165 166 168 169 170 174 175 176 177 178 183 186 187 188 189 190 191 192 194 196 197 198

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1

Fig. 3. Precision of document retrieval based on element score.

find the appropriate granularity of results. We will thus start with an obvious,
or at least intuitive, hypothesis

– Our difficulty is more with finding the right unit, than finding the relevance

We investigate this hypothesis by trying to take the granularity problem out of
the equation and see what happens. We create an article retrieval run, based on
our official element run. We simply assign to an article, the score of its highest
scoring element. Similarly, we define a new set of article assessments from the
strict element assessments. A document is considered relevant if, and only if, it
contains an element which is both highly exhaustive and highly specific. Figure 3
shows the precision of our new document run. In comparison to Figure 2, Figure 3
looks much more promising.

Of course, one important difference between the two evaluations is the recall
base. In the case of elements, there are millions of elements that can possibly
be retrieved. In the case of documents, however, the recall base “only” consists
of thousands of documents. While XML element retrieval is a “needle in the
haystack problem,” XML document retrieval is merely a “pencil in the drawer
problem.” Hence, the score in the two figures are not at all comparable.

What we can do, however, is to look at topics where we did not find the
appropriate elements and see if we are at least finding elements in the right
documents. If we look at the recall of our element run, retrieving up to 1,500
elements per topic, we see that we find 903 out of 2,589 relevant elements (35%).
The recall of the document run tells us that we find elements from 273 out of 279
articles which contain an element which is highly specific and highly exhaustive
(98%). This is a clear indication that, while we may not be finding the right
elements, we are at least in the neighborhood.

The differences in scoring from one topic to another may come as no great
surprise. At the INEX 2004 workshop, it was reported that assessor agreement
at the element level is extremely low for the strict assessments. This would imply
that it is difficult to get much higher retrieval scores, unless some measures are
taken to try to increase assessor agreement. The same study revealed that, even
using a liberal measure of agreement at the document level, the agreement was

Table 4. The count of topics that belongs to each class of the classification of topics
based on retrieval score

Class Interval Element-run

M0 0.0 ≤ x < 0.05 12
M1 0.05 ≤ x < 0.1 4
M2 0.1 ≤ x < 0.2 3
M3 0.2 ≤ x < 0.3 3
M5 0.4 ≤ x < 0.5 3

Table 5. Relation between retrieval score and the number of elements assessed as
relevant. (Left): Assessment statistics for different topic classes. (Right): Topics clas-
sified by the number of relevant elements (vertical). The number of topics in each
class is shown in brackets. For each class we look at the distribution over score classes
(horizontal)

assessments
avg median min max

M0 125.6 33.5 4 848
M1 212.5 128.0 13 581
M2 58.3 10.0 2 163
M3 8.3 4.0 3 18
M5 10.7 10.0 5 17

score classes (%)
rel. M0 M1 M2 M3 M5

1-10 (7) 14.3 – 28.6 28.6 28.6
11-20 (6) 50.0 16.7 – 16.7 16.7
21-40 (4) 100.0 – – – –
41-80 (2) 50.0 50.0 – – –
> 80 (6) 50.0 33.3 16.7 – –

still no more than 20%. Viewed in this light, the document retrieval scores of
Figure 3 are surprisingly high.

Let’s now look in more detail at our element retrieval run. We would like to
understand better the scoring behavior of our system. When do we succeed?
When do we fail? We try to analyze this by looking at the following hypotheses:

– Our system scores well if, and only if, few elements are assessed relevant;
– Our system scores well if, and only if, the assessor likes somewhat large

elements;
– Our system scores well if, and only if, the recall base of the topic is overlap-

ping.

In order to test these hypotheses we divide the topics into 5 classes, based on the
precision of our baseline element retrieval run for the individual topics. Table 4
shows the topic classification. Our hypotheses so-far only consider the relation
between assessments and scores. The more interesting, and more challenging,
task is to relate queries and scores: this remains as future work.

Let’s look at our first hypothesis: Our system scores well if, and only if, few
elements are assessed relevant. Table 5 shows the relation between assessment
count and retrieval score of our baseline system. The left table shows average,
median, minimum and maximum number of relevant elements for each of our
score classes. This table supports one direction of the hypothesis. That is, for

Table 6. Relation between size bias in assessments and retrieval effectiveness. (Left):
The first column defines the topic classes. Then, for each class of topics, the numbers
in columns 2–6 represent the percentage of assessed elements having the tag-name
in the column heads. (Right): We look at sets of topics having at least 10% of their
assessments of a particular tag-name (vertical). Number of topics is in brackets. For
each set we look at the distribution over score classes (horizontal)

tag-names (%)
article bdy sec ss1 Σ

M0 2.3 2.0 5.8 5.3 15
M1 4.2 3.9 15.2 9.3 33
M2 12.6 10.9 22.3 14.3 60
M3 12.0 12.0 16.0 12.0 52
M5 9.4 12.5 12.5 25.0 59

score classes (%)
≥ 10% M0 M1 M2 M3 M5

article (9) 11.1 22.2 22.2 22.2 22.2
bdy (9) 22.2 11.1 22.2 22.2 22.2
sec (17) 35.3 17.6 11.8 17.6 17.6
ss1 (11) 45.5 9.1 18.2 9.1 18.2

Σ ≥ 60% (9) 44.4 11.1 22.2 11.1 11.1

the topics where our system scores high, there are relatively few elements as-
sessed relevant, at most 18. The other direction of our hypothesis is however not
supported by the data. While low assessment count seems to be necessary for
high score, it is not sufficient. This can be seen from Table 5 (right). There are
quite a few topics that have few assessments (≤ 20), but our system does not
score well. Note, however, that we can quite safely say that if there are many
assessments then our system will score badly.

We now turn to our second hypothesis: Our system scores well if, and only if,
the assessor likes somewhat large elements. We look at the 6 most frequent tag-
names appearing in the assessments. We will define 4 of them to be “somewhat
large,” namely article, bdy, sec and ss1. We refer to the set of these tag-names as
Σ. The other two frequent tag-names, p and it, we do not regard as “somewhat
large.” First we try to see if it is true that if our system scores well then the
assessor likes somewhat large elements. Table 6 (left) shows, for each score class,
the percentage of assessments belonging to the most frequent “somewhat large”
tag-names. For the topics with the highest precision, M5, we see that almost 60%
of the relevant elements belongs to Σ. For the next two classes the percentage
is 52% and 60%, respectively. For the classes of topics where we score lower
than 0.1 the percentage is 33% and 15%, respectively. So far the data seems
to give some support for our hypothesis. Let’s now look at the other direction:
if the assessor likes somewhat large elements then our system scores well. This
direction is not supported by the data, however. We take a look at the “somewhat
large” elements and for each element-type we look at the topics for which 10%
or more of the relevant elements have the particular tag-name. Table 6 (right)
shows, for each tag-name the distribution of those topics over our score-based
classes. The bottom line of the table shows the distribution of the topics for which
more than 60% of assessments have tag-names from Σ. The topics are relatively
evenly distributed over our score-based classes and thus does not support that
direction of our hypothesis.

Now it’s time for our third hypothesis: Our system scores well if, and only
if, the recall base of the topic is overlapping. Table 7 shows the relation between

Table 7. Relation between overlapping recall base and retrieval effectiveness. (Left):
For each score class, the distribution of topics over overlap classes. (Right): For each
overlap class, the distribution of topics over score classes. The count of topics in each
overlap class is in brackets.

overlapping recall-base (%)
0-20 21-40 41-60 61-80 81-100

M0 8.3 16.7 33.3 16.7 25.0
M1 – – 25.7 – 75.0
M2 33.3 – 33.3 33.3 –
M3 – – – 66.7 33.3
M5 33.3 – – 66.7 –

score classes (%)
M0 M1 M2 M3 M5

0-20 (3) 33.3 – 33.3 – 33.3
21-40 (2) 100 – – – –
41-60 (6) 66.7 16.7 16.7 – –
61-80 (7) 28.6 – 14.3 28.6 28.6
81-100 (7) 42.9 42.9 – 14.3 –

system scoring and overlapping recall base. The left table shows for each of the
score classes, the distribution over overlapping classes. We can see that for two-
thirds of our best scoring topics, the overlap is 61–80%. We can thus say that
if we score well then there is rather high overlap in the recall base. As with our
other hypotheses the other direction is not supported by the data. High overlap
in the recall base does not lead to high scoring for our system. What we can say,
however, is that if the overlap is rather high (60–80%), we score quite well. For
the overlap classes above and below, we score poorly.

What have we learned from the analysis in this section? We have seen that
divergence in scores is very great from one topic to another. We have argued that
this might be due to lack of assessor agreement. This disagreement is possibly
an artifact of a combination of the unclear nature of the XML element retrieval
task and the complex assessment procedure. Bluntly, assessors must perform an
unclear task with machinery that is too complex to use.

We have also seen some characteristics of the topics where we score well:
there are few relevant elements, the elements are fairly long and quite over-
lapping. While we could say that the first two characteristics are, respectively,
understandable and intuitive, we might be tempted to judge the third one as
disappointing and contrary to the whole purpose or XML element retrieval. But
before we make such judgments we should recall what the task at hand was.

In the analysis above, we have made some crucial assumptions. We defined
a particular task by fixing the assessments and evaluation metric. Based on
those assumptions we have tried to analyze the performance of our system. For
most test collections, this would not raise any methodological questions. The
assessment procedure and evaluation metrics are usually not subject to debate.
In the INEX case, those issues are far from being settled. The assessments, the
metrics, and, in particular, the interplay between assessments and metrics, are
all open questions. We think, however, that the kind of analysis that we carried
here may yield valuable insights into what is happening under the hood of an
XML element retrieval engine. If we can explain why we are unhappy with the
reasons why a system scores well, we can more precisely pinpoint the flaws of

the evaluation methodology. In this case we might be unhappy about the fact
that for our high scoring topics the overlap in the recall-base is high.

This brings us to the question whether overlap in the recall base is good or
bad. The eval measures seem to say it is good, but XCG seems to disagree. It is
easy to disagree on this matter. From a user perspective overlap is bad because
it puts additional effort on the user who has to look at the same material over
and over again (depending, of course, also on the mode of presentation in the
interface). From a test collection perspective overlap may be desirable because
it is necessary to get a complete pool of relevant elements and we need to be
able to reward near misses.

The different perspectives seem to advocate two different retrieval tasks.
Currently, it is unclear where the INEX task stands relative to those two. In
some sense it seems to be trying to play both roles at the same time. Is this
actually possible? One of the urgent priorities for the INEX community is to
clearly and unambiguously define what the actual retrieval task is.

6 Conclusions

In this paper, we documented our experiments at the INEX 2004 ad hoc re-
trieval track. We used a document-element mixture model for processing content-
only queries and a more complex mixture approach for handling content-and-
structure queries. We investigated the effectiveness of element-based query ex-
pansion, and found that it improved retrieval effectiveness. Adding feedback,
however, increased overlap. Unfortunately, we do not have access to an imple-
mentation of the XCG measure to see how this affects user-oriented evaluation.
We investigated the impact of non-overlap on the runs, and found that return-
ing overlapping results leads to far superior scores on all measures, except the
recently proposed XCG measure where it was inferior by quite a margin. The
radical difference between the measures suggest that they are measuring the
quality of two radically different tasks.

We argue that a more explicit definition of the INEX element retrieval task is
needed. Our results for the VCAS task showed that, if evaluated in terms of mean
average precision, the content-oriented-based approach is clearly superior to a
more structured processing of the content-and-structure topics. From the vantage
point of a retrieval system, our experiments highlighted the great similarity
between the CO and VCAS tasks. If, on the other hand, we evaluate in terms of
early precision, the tables turn. Structural processing is superior to looking only
at content. This indicates that the great added value of structural constraints is
to improve initial precision.

Informed by an analysis of the scoring behavior of one of our runs, we have
argued that it is very important for the INEX community to use the data col-
lected to date to clarify the complete INEX process, from the retrieval task,
through assessment procedure, to evaluation.

7 Acknowledgments

Jaap Kamps was supported by the Netherlands Organization for Scientific Re-
search (NWO), under project number 612.066.302. Maarten de Rijke was sup-
ported by grants from NWO, under project numbers 365-20-005, 612.069.006,
612.000.106, 220-80-001, 612.000.207, 612.066.302, 264-70-050, and 017.001.190.

References

1. T. Grust. Accelerating XPath Location Steps. In Proc. SIGMOD, pages 109–120.
ACM Press, 2002.

2. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente, 2001.

3. ILPS. The ILPS extension of the Lucene search engine, 2004.
http://ilps.science.uva.nl/Resources/.

4. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length normalization in XML
retrieval. In Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, (SIGIR 2004), pages 80–
87, 2004.

5. J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. The importance of mor-
phological normalization for XML retrieval. In Proceedings of the First Workshop
of the INitiative for the Evaluation of XML retrieval (INEX), pages 41–48. ERCIM
Publications, 2003.

6. G. Kazai, M. Lalmas, and A. de Vries. The overlap problem in content-oriented
XML retrieval evaluation. In SIGIR ’04: Proceedings of the 27th Annual Interna-
tional Conference on Research and Development in Information Retrieval, pages
72–79. ACM Press, 2004.

7. Lucene. The Lucene search engine, 2004. http://jakarta.apache.org/lucene/.
8. J. Ponte. Language models for relevance feedback. In W. Croft, editor, Advances

in Information Retrieval, chapter 3, pages 73–96. Kluwer Academic Publishers,
Boston, 2000.

9. J. Rocchio, Jr. Relevance feedback in information retrieval. In The SMART Re-
trieval System: Experiments in Automatic Document Processing, chapter 14, pages
313–323. Prentice-Hall, Englewood Cliffs NJ, 1971.

10. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approch to
XML Retrieval. In INEX 2003 Workshop Proceedings, pages 19–26, 2004.

11. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Processing content-oriented XPath
queries. In Proceedings of the Thirteenth Conference on Information and Knowl-
edge Management (CIKM 2004), pages 371–380. ACM Press, 2004.

12. Snowball. The Snowball string processing language, 2004.
http://snowball.tartarus.org/.

