
Multiple Sources of Evidence for XML Retrieval

Börkur Sigurbjörnsson
borkur@science.uva.nl

Jaap Kamps
∗

kamps@science.uva.nl
Maarten de Rijke

mdr@science.uva.nl
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098SJ Amsterdam, The Netherlands

ABSTRACT
Document-centric XML collections contain text-rich docu-
ments, marked up with XML tags. The tags add lightweight
semantics to the text. Querying such collections calls for a
hybrid query language: the text-rich nature of the docu-
ments suggest a content-oriented (IR) approach, while the
mark-up allows users to add structural constraints to their
IR queries. We will show how evidence for relevancy from
different sources helps to answer such hybrid queries. We
evaluate our methods using the INEX 2003 test set, and
show that structural hints in hybrid queries help to improve
retrieval effectiveness.

Categories and Subject Descriptors: H.2 [Database Man-
agement]: H.2.4 Query processing; H.2.8 Database Applications;
H.3 [Information Storage and Retrieval]: H.3.1 Content Analy-
sis and Indexing; H.3.3 Information Search and Retrieval; H.3.4
Systems and Software; H.3.7 Digital Libraries

General Terms: Experimentation.

Keywords: XML Retrieval, XPath, Content and structure.

1. INTRODUCTION
Document-centric XML documents contain text, marked

up with XML tags, enriching the the text with lightweight
semantics. The markup can be exploited in several ways.
Retrieval engines can use specific tags to try to boost re-
trieval effectiveness, as illustrated by the effectiveness of us-
ing anchor text in web retrieval. If the user is aware of
the structure she can try to add structural constraints to
her content-query in order to help pinpointing her informa-
tion need. The constraints can be both on the granularity
of results (i.e., the requested unit of retrieval), and on the
environment in which they appear.

We will focus only on elements fulfilling the granular-
ity constraint, and investigate ways of ranking them w.r.t.
how well they answer the information need expressed in the
query. We base our ranking of an element on evidence for
relevancy from various sources: (1) the content of the ele-
ment itself; (2) the content of the surrounding document ;
and (3) the content and structure of the environment in
which the element resides.

We evaluate our ranking methods using the INEX 2003
XML retrieval test-suite [2]. The INEX document collection

∗Currently at Archives and Information Studies, Faculty of
Humanities, University of Amsterdam.

Copyright is held by the author/owner.
SIGIR’04,July 25–29, 2004, Sheffield, South Yorkshire, UK.
ACM 1-58113-881-4/04/0007.

contains over 12,000 computer science articles from 21 IEEE
Computer Society journals, marked up with XML tags. On
average a document contains 1532 elements and the aver-
age element depth is 6.9. The markup has around 170 tag
names, such as articles 〈article〉, sections 〈sec〉, author names
〈au〉, affiliations 〈aff〉, etc. All our retrieval runs are created
using a multinomial language model [1].

2. CONTENT-AND-STRUCTURE
The INEX initiative combines database and information

retrieval approaches for querying document-centric XML doc-
uments. The INEX test suite provides two sets of topics.
Content-Only (CO) topics are like traditional IR topics.
Content-And-Structure (CAS) topics express the informa-
tion need as a combination of content and structural prop-
erties of relevant elements. The query language is a dialect
of XPath [4], extended with a function for content-oriented
search. The semantics of this query language is in the spirit
of information retrieval. A human assessor decides about
the relevancy of XML elements.

CAS topics contain the three traditional fields: title, de-
scription and narrative. The description and narrative de-
scribe the information need in natural language, while the
language of the title is the XPath-dialect. As an example,
let’s look at a topic with the description field:

(Q) Find articles where the author is affiliated in Cali-
fornia. From those articles, return sections about
weather forecasting systems.

Its title field would be something like:

//article[about(./fm/au/aff,’California’)]//sec[about(.,
’weather forecasting systems’)]

This query contains a mixture of content and structural con-
straints. The about-functions are seen as IR search func-
tions. We refer to the path //article//sec as the granu-
larity constraint . We refer to the about-functions as envi-
ronment constraint ; and to the paths //article/fm/au/aff
and //article//sec respectively as the path constraints of
the about-functions.

3. EXPERIMENTAL SETUP
In order to collect evidence from multiple sources, our

retrieval engine will break each topic up in to two types of
IR queries. The full content query merges the text from the
title and description:



(Q1) california weather forecasting systems find articles where
the author is affiliated in california from those articles
return sections about weather forecasting systems

We use the full content queries both to rank documents, and
to rank elements that fulfill the granularity constraint. For
each about-function there is a partial content query contain-
ing the content part of the function:

(Q1a) california

(Q1b) weather forecasting systems

We use the partial content queries to rank elements that
fulfill the path constraint of the respective about-function.

Since we want to use those queries to collect evidence from
both the document and element level we build two indexes.
We build a document index as used for standard document
retrieval. Additionally we build an element index , where we
index each XML element separately. For each element, all
text nested inside it is indexed. Hence the indexing units
overlap. Text appearing in a nested XML element is not
only indexed as part of that element, but also as part of all
its ancestor elements.

4. EXPERIMENTS AND DISCUSSION
As pointed out before, we look at three sources of evi-

dence for relevancy, where in all cases we will only return
elements fulfilling the granularity constraint. First, we con-
sider evidence from the surrounding document alone. We
create a document-based run, where we rank all elements us-
ing the score that the surrounding document gets when we
retrieve from the document index. Here we use the full con-
tent query. This is the obvious retrieval strategy to follow if
we only have a document retrieval system. Second, we look
at evidence from the element that is to be retrieved. We cre-
ate an element-based run, where we rank all elements using
the score they get when we retrieve from the element index.
Here we use the full content query. Third, the structural
queries allow us to look at yet another source of evidence
for relevancy, namely from the environment in which the
result elements reside. For each about-function, we rank
all elements that fulfill the respective path constraint, us-
ing the score they get when we retrieve from the element
index. Here we use the respective partial content queries.
We use these scores to measure how well elements meet the
constraints put on their environment.

Run MAP P@10
Document-based run 0.2321 0.2240
Element-based run 0.2633 +13.4% 0.2640
Environment-based run 0.3090 +33.1% 0.2760
Mix-three-levels 0.3201 +37.9% 0.3000

Table 1: MAP and precision at 10 for the runs, the
improvement is relative to the document-based run

The first three rows of Table 1 show the results of three
runs, each based on a different source of evidence for rele-
vancy. The document-based run is quite competitive, but
the element-based and the environment-based runs give sig-
nificantly better results. The environment-based run is 17.4%
better than the element-based run, but the difference is not
significant. Note that the environment-based run also con-
siders the content of the retrieved element, since the topics

usually have an about-function that is evaluated on the tar-
get element (such as the query Q1b above).

Our document-based run seems to be more competitive
than a similar method reported in [3]. Note however that
neither the collection nor the task is the same. Also, one-
third of the topics asked for articles. The improvement
comes thus only from the remaining two-thirds of the topics.

Looking at each source of evidence individually is not
likely to be an optimal strategy. Thus we create a mixed
run where we merge all the above sources of evidence. We
simply rank elements by adding up the scores from each
run. The result is shown in the last row of Table 1. The
mixed run performs between 3.6% and 37.9% better than
the underlying runs. The difference is significant over the
document-based and the element-based runs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Document−based run
Element−based run
Environment−based run
Mix−three−levels

Figure 1: Precision-recall graphs for our runs

Figure 1 shows the precision-recall curves for our runs.
The element-based and the environment-based runs have
better initial precision compared to the document-based run.
This is reasonable since the document-based run cannot dis-
tinguish between elements that appear in the same docu-
ment.

5. CONCLUSIONS
We have seen that the structure of XML collections and

queries can give natural ways to gather evidence for rele-
vancy from multiple sources. The three different sources
we explored here give different results, and are all of rea-
sonably high quality. A simple combination of the sources
gives further improvement, and outperforms the best offi-
cial run at INEX 2003. Our results show that if users can
add structural requirements to a content-based query in or-
der to make a clearer description of their information need,
a search engine should make use of those requirements to
improve search results.

6. REFERENCES
[1] D. Hiemstra. Using Language Models for Information

Retrieval. PhD thesis, University of Twente, 2001.

[2] INitiative for the Evaluation of XML Retrieval, 2003.
http://inex.is.informatik.uni-duisburg.de:2003/.

[3] R. Wilkinson. Effective retrieval of structured
documents. In SIGIR 1994, pages 311–317, 1994.

[4] XML Path Language (XPath), 1999.
http://www.w3.org/TR/xpath.

http://inex.is.informatik.uni-duisburg.de:2003/
http://www.w3.org/TR/xpath

	1 Introduction
	2 Content-and-structure
	3 Experimental setup
	4 Experiments and Discussion
	5 Conclusions
	6 REFERENCES -9pt 

