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Chapter 1

Introduction

Search engines play an important role in our daily lives. We use search engines
to access a wide range of information sources: the web, our email, our desktop
computers, library catalogs, etc. Most popular Internet search engines work via
simple interfaces. Figure 1.1 shows a simplified view of the interaction between
a user and a search engine. The user describes her information need by entering
a few keywords into the so-called “search box.” The search engine locates the
documents that are likely to fulfill her information need, and then returns to the
user a list of relevant documents, ranked by the likelihood that they satisfy her
need. The search engine presents each relevant document by displaying its title
and a short query based summary of the document’s content—a text snippet. By
clicking on the document title the user is brought to the corresponding document.
This simple interface of search engines is very powerful since it can be applied to
almost any document collection and can be used by almost any user.

When a user is presented with a ranked list of relevant documents her search
task is usually not over. The next step for her is to dive into the documents
themselves in search for the precise piece of information she was looking for. If
the documents are long, this can be a tedious task. As an example, suppose a user
is interested in hiking routes in northern Europe and the search engine locates
a 50 page travel guide about Sweden. Then the user might have to do quite a
bit of “scrolling” within the document before she has collected all information
about hiking routes in Sweden. Can we give a better kind of support for the user
in this scenario? Can we give her a more focused type of access to the relevant
information?

Focused Information Access

The notion of “focused information access” can be used as a label for a wide range
of applications. E.g., a medical search engine can be considered as “focused”
since it focuses on a particular type of corpora [Tang et al., 2005]; a factoid

1



2 Chapter 1. Introduction

User

result list

search box

engine

document
retrieval

Search engineInterface Collection

Figure 1.1: Simplified picture of the interaction taking place when a user posts
a query to a search engine.

question answering engine can be considered as “focused” since it gives very
focused answers [Green et al., 1963]; a passage retrieval system can be considered
“focused” if it gives access to the most relevant passages of a document, rather
than to the document as a whole [Salton et al., 1993].

In this thesis we explore the task of giving the user direct access to the relevant
information, rather than merely the relevant documents. Our task can be seen
as a special case of passage retrieval where the passages are defined in terms
of document structure. More precisely, we study the XML element retrieval
task [Kazai et al., 2004b]. Before we describe the XML element retrieval task, let
us introduce semi-structured documents, and in particular XML documents.

Semi-structured Documents

All text has structure, and structure comes in different kinds such as linguistic
structure, document structure, and layout structure. Some structure is implicit,
such as a chain of arguments that the author uses to tell her story. In this thesis
we focus on explicit text structure, such as paragraph segmentation, or assigned
metadata. The form of explicit structure differs between documents and docu-
ment collections. In its simplest form, flat-text documents have little explicitly
marked-up structure, limited to sentence boundaries determined by a full-stop
and perhaps paragraph boundaries determined by an empty line. Today, how-
ever, electronic documents are commonly marked-up with additional structure.
Especially if documents are long and discuss multiple facets, it is necessary to
make the text more accessible to the reader by adding structure such as section
headings etc. This type of structure is usually added manually by the document
author either directly using some sort of markup language, or by using advanced
text editing tools.

The markup of text documents serves different purposes. Markup can be
used to represent different levels of granularity of text objects. As an example, a
text document may be divided into sections; and the sections into sub-sections
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<travel_guide>
<title>Guide to Sweden</title>
<p>In this guide you will get all information you need for...</p>
...
<section>
<title>Smaland</title>
<section>
<title>Hotels in Smaland</title>
<p>The Smaland area offers great variety in accommodation ... </p>
...

</section>
<section>
<title>Hiking in Smaland</title>
<p>Lake-side strolls are a popular means to explore the ... </p>
...

</secction>
</section>
<section>
<title>Lapland</title>
<section>
<title>Hotels in Lapland</title>
<p>Have you ever stayed in an ice hotel? The Ice hotel ... </p>
...

</section>
<section>
<title>Hiking in Lapland</title>
<p>Mount Kebnekaise is the highest mountain in Sweden ... </p>
...

</section>
</section>

</travel_guide>

Figure 1.2: Example of an XML document.

and paragraphs, etc. Markup can also be used to give special “semantics” to a
certain piece of text. As an example, one might define section titles, document
title, author names, etc. Finally, markup is often used to describe the layout of
the text. As an example, the author can indicate that some words should be
displayed in italics, other should be in boldface, etc.

Document structure can be marked-up using a number of different markup
formats, such as, Microsoft-Word format [MS-Word], Portable Document For-
mat [PDF], a scientific document preparation style [LATEX], HyperText Markup
Language (HTML) [Raggett et al., 1999], etc. In this thesis we will work with a
general markup language, namely the eXtensible Markup Language (XML) [Bray
et al., 1998]. XML is a flexible markup language which serves as a representa-
tive example of modern semi-structured markup languages. Figure 1.2 shows an
example of an XML document. The example document can be seen as an XML
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version of the travel guide mentioned earlier in this chapter.
Semi-structured text documents—and document-centric XML documents in

particular—provide an ideal framework for the type of focused information access
that we want to address in this thesis. The structural markup provides good
handles on the text units to which we want to give focused access. The tags can
be used as segment boundaries when giving access to the relevant sub-parts of
document.

XML Element Retrieval

Using XML element retrieval to give focused information access has several advan-
tages. First, as mentioned before, XML document collections are a representative
example of modern semi-structured document collections; and the XML language
is a “de facto” standard language for semi-structured documents. Second, in re-
cent years, much attention has been given to the evaluation of XML element
retrieval within the INitiative for the Evaluation of XML retrieval (INEX) [Kazai
et al., 2004b].

In XML element retrieval, each element is considered as a retrievable unit.
E.g., considering Figure 1.2 again, the root element (<travel guide>), each sec-
tion (<section>), each paragraph (<p>), each section title (<title>), etc. is a
potential unit to retrieve. The INEX initiative has built an evaluation collection
for evaluating the XML element retrieval task—which can be defined as follows:

XML element retrieval For each element in the collection estimate how rele-
vant it is for the user’s information need. This process is approximated by
creating a ranked list of XML elements for each user query. The elements
are ranked by decreasing likelihood of being relevant for the user’s informa-
tion need. More precisely, the XML retrieval engine should retrieve “the
most specific relevant document components, which are exhaustive to the
topic of request” [Gövert and Kazai, 2003, page 2].

Hence, the goal of the XML element retrieval task is to produce a ranked list of
XML elements as a response to a query. If we return to our example document in
Figure 1.2, we would expect the two sections—labeled “Hiking in Smaland” and
“Hiking in Lapland”—to be ranked highly for the query hiking northern europe.

The main bulk of this thesis is about the XML element retrieval task. We show
how this task can be modeled by adapting and extending existing retrieval models
and we implement an XML element retrieval engine based on those models. We
provide a rigorous evaluation of the retrieval engine using the INEX test collection.

Focused Information Access using XML Element Retrieval

Let us now briefly explain how our XML element retrieval engine can be used to
give focused access to information. To this end, we return to our example scenario
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Figure 1.3: Example of how a single document is summarized in a state-of-
the-art result-list. Suppose we have the query “hiking northern europe” and the
grey shaded areas represent the text-snippets generated for the query. Left: the
original document. Right: Document summary of state-of-the-art search engines.

where our user was looking for hiking routes in northern Europe. Figure 1.3 shows
a simplified view of how state-of-the-art search engines would present the Swedish
travel guide to the user as a search result for the query “hiking northern europe.”
Although the interface of state-of-the-art search engines is in general a powerful
approach, it has several drawbacks in the case of our example scenario—i.e., the
scenario where the information need is specific and can be answered by a relatively
small portion of a longer document.

• First, the text snippet only gives evidence that the information exists some-
where in the document, but does not relate it to the overall discourse struc-
ture of the document. E.g., the result in Figure 1.3 does not state that the
text snippet is composed of text from two distinct sections.

• Second, access is only given to the beginning of the relevant document and it
is left to the user to search within the document for the desired information.
In terms of the example in Figure 1.3, when clicking on the document title
in the result-list, the user is given access to the beginning of the document
and has to “scroll around” herself in order to find the two sections that are
of interest.

The main proposal of this thesis is to use an XML element retrieval engine—that
ranks individual parts of the document—to address these two shortcomings of
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Figure 1.4: Simplified picture of the interaction taking place when a user posts
a query to our focused search engine.

state-of-the-art search engines. Figure 1.4 shows a simplified picture of how we
can put the XML element retrieval engine in to action. The figure is an extension
of Figure 1.1 where we have replaced the document retrieval engine with an XML
element retrieval engine, and added a result handler which implements focused
information access by extending the state-of-the-art search engine approach with
two new features:

Structured result lists Our result list uses XML element retrieval results to
give a clear indication about the relation between the user’s query and the
“discourse structure” of the document. I.e., instead of showing only one
text snippet for each document we show a text snippet for each relevant
element, together with a partial “table of contents.” E.g., in Figure 1.5 the
result indicates that the relevant text can be found in two separate sections.
The structured result list helps users to assess whether or not the retrieved
documents are likely to answer their information need. Hence, they can
make better judgments about which documents they should explore further.

Direct linking Direct access is given to relevant portions—relevant elements—
of documents. Following these links, users get to the relevant information
with less effort and less time. Additionally, if the users need to skim over
a long document they are more likely to miss relevant information than if
they are explicitly pointed to the part they should read. In terms of the
example in Figure 1.5, by clicking on each of the section titles, “Hiking in
. . . ”, the user is brought directly to the corresponding section.

Focused information access is a good example of how XML element retrieval can
be used in an operational setting. However, XML element retrieval may be used
in a broader range of applications, e.g., document summarization for handheld
devices [Buyukkokten et al., 2000], predictive annotations [Prager et al., 2000],
the exploration of linguistically annotated corpora [Bird et al., 2005], and question
answering using XML-based strategies [Ahn et al., 2006].



1.1. Research Questions and Contributions 7

Hotels in Lapland

����������

���������� ��������

...

Guide to Sweden

Hiking in Lapland

Hiking in Smaland

Structured result list

...

... ......����������
��������

����������

Document

Smaland
Hotels in Smaland

Hiking in Smaland

Guide to Sweden

Lapland

Hiking in Lapland

Figure 1.5: Example of how a single document is summarized in a structured
result-list. Suppose we have the query “hiking northern europe” and the grey
shaded areas represent the text-snippets generated for the query. Left: the origi-
nal document. Right: Document summary as used in a structured result-list.

1.1 Research Questions and Contributions

The overall research question that we will address in this thesis is:

How can we give focused information access to semi-structured docu-
ments using XML element retrieval techniques?

This question is composed of two sub-questions. A system-oriented question:

How do we rank individual XML elements?

and a user-oriented question:

How do we design an appropriate interface for providing focused in-
formation access?

Before we describe our more detailed research questions we give a short overview
of the setup of this thesis. In Chapters 3–7 we address the system-oriented sub-
question—we model, implement, and evaluate an XML element retrieval engine.
In Chapter 8 we address the user-oriented sub-question—we implement and eval-
uate an interface for focused information access using our XML element retrieval
engine as back-end. In Chapter 2 we situate the focused information access task
and the XML element retrieval task in the broader context of information re-
trieval research; and in Chapter 9 we conclude. Now, let us look at the more
detailed questions that we address in this thesis.
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Elements vs. documents Given the long tradition in document retrieval
research our first specific research question is about how the relative newcomer—
XML element retrieval—compares to the well established document retrieval task:

How is XML element retrieval different from document retrieval?

We apply a document retrieval model to the XML element retrieval task and
observe differences in retrieval settings and performance. This analysis gives us
insights into the difference between the two retrieval tasks.

Length normalization Our baseline experiments identify length normaliza-
tion as being one of the core differences between element and document retrieval.
We study this further and ask ourselves:

What is the impact of length normalization for XML retrieval?

We show that one of the major differences between document retrieval and XML
element retrieval is the length distribution of retrieval units. The length of doc-
uments usually follow a normal distribution, but the length of XML elements is
a very skewed distribution—most elements are very short while a few ones are
long. The distribution of the length of both relevant elements and relevant doc-
uments is, however, close to being a normal distribution. We show that length
normalization—while useful for document retrieval—is essential for XML element
retrieval.

Unit-of-retrieval The notion of unit of retrieval is a core notion in XML el-
ement retrieval. Our next research question is about whether all units are the
same:

Are all element types equally important retrieval units?

We analyze the INEX assessments and see that sections and paragraphs are the
most common type of elements considered as relevant, followed by very long
elements such as whole articles, but shorter element types appear infrequently in
the assessments. We experiment with selective indexing where we remove either
the shortest or the longest elements from our index. Our main finding is that
leaving out the short elements does not degrade retrieval performance. The long
elements—whole articles and article bodies—are, however, essential for achieving
good retrieval performance.

Context In XML element retrieval, elements are considered to be atomic re-
trieval units. However, elements exist in the context of their surrounding XML
document. Our next research question considers this context:

Can we improve XML element ranking by incorporating element’s
context into the retrieval model?
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We show that a mixture model, where we rank the elements using a mixture of
element-, document-, and collection-models, leads to significant improvements in
retrieval effectiveness.

Evaluation As mentioned above, one of the main differences between document
retrieval and XML element retrieval is the unit of retrieval. This difference does
not only have an effect on the way we model our retrieval process, but also on
the way we evaluate retrieval performance. XML element retrieval evaluation
methodology is still an active research area, but evaluation methodology in itself
is not a research issue in this thesis. However, this thesis relies heavily on being
able to evaluate XML element retrieval, and thus we cannot ignore the issue
altogether. Hence, we have a “passive” research question about evaluation:

How does our system’s performance change when we use a different
evaluation setup?

For the main evaluation in this thesis we choose a single evaluation framework—
the “official” system-oriented framework as defined by the INEX initiative. We
also look at some “unofficial” ways to evaluate our system. We look at system
performance over different topic classes; we look at how the hierarchical nature
of the documents—a.k.a. overlap—affects our evaluation; and we look at how
element results can be used for ranking documents. The main outcome of this
analysis provides insights into the factors that play a role in XML element retrieval
evaluation.

Focused Information Access In our final research question we go back to the
example scenario which we drew up in the beginning of this chapter—i.e., where
the user needed focused access to information within the relevant documents. We
ask ourselves how XML retrieval can be of use in this case:

How can we put XML retrieval into action as a part of an operational
system for giving focused information access?

We implement the two focused information access features—structured result lists
and direct linking—using our XML element retrieval engine as a back-end. We
discuss the main challenges that need to be faced when XML element retrieval
is put into action. We evaluate the system in two interactive experiments. The
main outcome of the evaluation is that users do appreciate the structured result
list and the reduced search effort provided by direct linking.

1.2 Thesis outline

In this section we give a chapter-by-chapter outline of the remainder this thesis.
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Chapter 2: Retrieval Tasks and Evaluation We provide a general overview
picture of search tasks; and locate our focused information access task and our
XML retrieval task within the overall picture. We give an overview of information
retrieval evaluation; and introduce the INEX XML retrieval test collection which
serves as the major evaluation framework for the methods described in this thesis.

Chapter 3 : A Baseline XML Element Retrieval System We introduce
the main building blocks of our XML element retrieval system. We take an ex-
isting document retrieval system and adapt it to the element retrieval task. We
explore the effect of changing the most basic parameter of our baseline element
retrieval system, the smoothing parameter, and compare our findings to similar
exploration for the document retrieval task. Our main finding is that, surpris-
ingly, the smoothing parameter serves as a tool for controlling length of retrieved
elements. The work in this chapter is partially based on work published in [Sig-
urbjörnsson et al., 2004a, Kamps et al., 2003a].

Chapter 4: Length Normalization We take an in-depth look at the role
of the length normalization in XML element retrieval. We analyze the INEX
relevance assessments and show that there is a considerable difference between
the length distribution in the set of retrievable elements and the set of relevant
elements. We show that effectiveness XML element retrieval can be improved sig-
nificantly by using so-called length priors which bridge the length gap between the
collection and assessments. The work in this chapter is based on work published
in [Kamps et al., 2003b, 2004a, 2005a]

Chapter 5: Unit of Retrieval We take a closer look at the role of unit of
retrieval in the XML element retrieval task. We analyze the tag-names of the
relevant elements and explore if selective indexing strategies can improve retrieval
performance. Our findings main findings are that we can safely remove the short-
est elements from our index without harming retrieval effectiveness. However,
removing the longest element from our index—and hence our retrieval runs—has
a significant negative effect on the retrieval performance. The work in this chap-
ter is partially based on work published in [Kamps et al., 2005a, Sigurbjörnsson
and Kamps, 2006].

Chapter 6: Mixture Models In the previous chapters we have considered ele-
ments as atomic units. In this chapter we consider the context in which elements
reside, and look at the elements in relation to their containing document. We
look at how term statistics from the surrounding document can be incorporated
into the calculation of element relevance. We implement this by using so-called
mixture models which lead to a significant improvement of retrieval effectiveness.
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The work in this chapter is based on work published in [Sigurbjörnsson et al.,
2004a, 2005]

Chapter 7: Topic Classes, Overlap and Document Ranking We look
at the evaluation of the XML element retrieval task from three different angles.
First, we look at performance over a number of different classes of topics. Second,
we evaluate our system without rewarding retrieval of overlapping text. Third,
we evaluate how we can use our element retrieval results to rank documents. The
main value of the work in this chapter is to gain insight into the factors that play
a role in XML element retrieval. The work in this chapter is partially based on
work published in [Sigurbjörnsson et al., 2005].

Chapter 8: Element Retrieval in Action We show how we can put our
XML element retrieval system in action through a user interface which implements
the two focused information access features described in the introduction chapter.
We highlight the main issues that need to be taken into consideration in the
interface design. Our evaluation results indicate that users do indeed appreciate
to be given focused access to information. The work in this chapter is based on
work published in [Kamps and Sigurbjörnsson, 2006, Sigurbjörnsson et al., 2006].

Chapter 9: Discussion and Conclusions We end the thesis by discussing
the main conclusions that can be drawn from the research presented in this the-
sis. We also look ahead and discuss how this work might be extended in future
research.

In this thesis we have decided to focus on XML retrieval using content-
only queries. This means that we do not report here on our extensive work
on content-and-structure queries [Sigurbjörnsson and Trotman, 2004, Trotman
and Sigurbjörnsson, 2005a,b, Kamps et al., 2004b, Sigurbjörnsson et al., 2004b,
Sigurbjörnsson et al., 2004, Kamps et al., 2005b, 2006].





Chapter 2

Retrieval Tasks and Evaluation

In this chapter we provide background material on information retrieval and intro-
duce the evaluation framework used in this thesis. First we review the literature
on search tasks and user-oriented models of search behavior. We explain how
information retrieval systems are evaluated, both using laboratory experiments
and interactive experiments, and we introduce the INEX evaluation framework
that will serve as the main evaluation framework for our experiments. Before we
go into details, we give a high level discussion of each section in this chapter.

Section 2.1, gives an overview of literature on information search behavior.
We address the issue from a user perspective. We review three types of work:
behavioral models of information seeking, interactive studies, and query-log anal-
ysis. The main contribution of this section is to locate our focused information
access task relative to the ‘big picture’ of the interaction between users and in-
formation. In Section 2.2 we give an overview of information retrieval evaluation.
We introduce both laboratory experiments—using re-usable test collections—and
interactive evaluations. In Section 2.3 we give an overview of the INEX laboratory
test collection. In Section 2.4 we give an overview of the INEX interactive track
(iTrack). In Section 2.5 we describe the experimental setup of our evaluation in
this thesis. Finally, in Section 2.6 we conclude the chapter.

In this chapter, we will not give an overview of related work on XML element
retrieval systems. This we do in each of the more technical chapters 3–8 below.

2.1 Information Search Behavior

In this section we locate our work within the ‘big picture’ of information behav-
ior [Wilson, 1999]. We start by looking at information behavior models which
describe, on a broad level, users’ interaction with information. We narrow our
attention to information seeking behavior and look at both theoretical models
and empirical studies. We then zoom in further on information search behavior,

13
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Information behavior

behavior
Information−search

behavior
Information−seeking

Figure 2.1: Wilson’s nested model of the information seeking and information
searching areas [Wilson, 1999, page 263].

and in particular on the role of our focused retrieval approach in the information
search process.

2.1.1 Theoretical Models of Search Behavior

As outlined in Chapter 1 we motivate our application of focused information
access by a specific scenario—a user and her rather specific information need. In
this section we will first give a literature overview on the more general theme
of “searchers and their context”, then we will relate our focused information
application to the key conceptualizations from the literature.

We discuss the theoretical models of search behavior in terms of Wilson’s
nested model of information seeking and information searching research areas
(Figure 2.1).

Information Behavior Models of information behavior describe very generally
a framework for the interplay between people and information.

Wilson and Walsh [1996] describe how a ‘person-in-context’ interacts with
information. The model covers a wide range of research areas, including infor-
mation science, decision making, psychology, and consumer research. The model
attempts to describe aspects of user-information interaction, the origin of infor-
mation needs, the choice of information source, active search and the use of search
results. The work presented in this thesis is confined to the stage that Wilson
refers to as ‘active search,’ i.e., the users’ interaction with the search engine. The
other stages—choice of information sources and use of search results—are beyond
the scope of this thesis.

Dervin [1983] introduced the ‘sense-making’ framework which can be used
to model how users make sense of reality. The model has four components: a
situation which describes the context where an information problem arises; a gap
which describes the difference between the contextual situation and the desired
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situation; an outcome which describes the result of the sense-making process; and
a bridge which is some sort of mechanism for closing the gap between the situation
and the outcome. The set-up of this thesis can be described in the terminology of
Dervin’s model. We motivate our work by a situation where a user has a specific
information need which is satisfied by a relatively small portion of a relevant
document. The main content of this thesis is to build and evaluate tools that
can bridge the gap to the desired outcome—namely, direct access to the relevant
information.

Information Seeking Behavior Models of information seeking model the va-
riety of methods users apply to discover and gain access to information resources.

Ellis et al. [Ellis et al., 1993, Ellis and Haugan, 1997] model the activities
involved in information seeking. They identify six information seeking activities:
starting, chaining, browsing, differentiating, monitoring and extracting. Several
of these stages involve some sort of “focusing” where the user moves toward a
more focused view of the whole information space. In this thesis we will mainly
look at what Ellis referred to as extracting and verifying, i.e., identifying relevant
material in an information source and checking the accuracy of the information.

Information Searching Models Information searching is a sub-set of infor-
mation seeking, where the main focus is on the interaction between users and
computer based information retrieval systems.

Ingwersen [1996] discusses a cognitive theory for information retrieval interac-
tion. He stresses the importance of the work task when modeling search behavior.
He argues that in the evaluation of information retrieval systems the notion of
information need should not only consider topicality but also the cognitive state
and work task of the searcher. I.e., the relevance of information depends on the
user’s cognitive state and work task. This may impact the focused information
access task explored in this thesis since the appropriate focused access may de-
pend on the work task or background knowledge of the searcher. E.g., a novice
reader may require considerable context around a topically relevant text unit,
while for a domain expert the topically relevant text unit might be sufficient—
her background knowledge gives enough context. Similarly, a different type of
focused access may be desired for a user searching for the query ‘earthquakes in
Turkey’, depending on whether her task is to compile a list of earthquakes in
Turkey or if she is writing a general overview paper on earthquakes in Turkey.

We will provide more background on related work on searching behavior when
we discuss empirical work below (Section 2.1.2).

Focused Information Behavior

Let us sum up how our focused information access problem relates to the different
conceptualizations in literature. The retrieval system is the central point of our
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work. The bulk of our work does therefore fall with in the ‘active search’ part
of Wilson’s model. Wilson’s notions of ‘person-in-context’ and ‘context of infor-
mation need’—together with Dervin’s notion of ‘situation’ and Ingwersen’s work
tasks—are also important for focused information retrieval. In our introduction
of focused information access—as we address it in this thesis—we motivated our
approach by the context of the user and her information need. Our motivation
for the usefulness of our focused retrieval system is based on the presence of the
following context scenario:

Nested information The information that fulfills the user’s need appears lo-
cally nested within a longer document in the collection. I.e., full documents
are too long to be considered the appropriate units of retrieval.

Our focused retrieval approach depends on a number of “context variables,” such
as the data being searched, the person searching, and the task underlying the
search.

Data What is being searched? Does the data support focused access? What
sort of documents are being searched? Long? Short? Technical? etc.

Searcher Who is searching? Can the searcher make use of the focused access?
Is the searcher an expert or novice? How well is the user acquainted with
the collection? etc.

Task Which task is the user performing? Is focused access a suitable tool for
the particular task? Is the user looking for a specific answer? Is the user
looking for articles to be included in a survey of related work? Is the user
looking for articles to learn about a new field? etc.

When we answer the question whether our system is suitable for satisfying a par-
ticular information need, we must look at a combination of the variables above.
Some document collections are organized as a mixture of long and short docu-
ments where a specific information need might be answered either by a part of a
longer document or as a full short document. As an example, suppose we need to
find information on the ‘National Convention era of the French Revolution.’ In
the World Book [World Book] the National Convention era is covered in one chap-
ter nested inside a long article on the French Revolution. If we search the World
Book, our information need is likely to be answered by a part of a longer docu-
ment. In Wikipedia [Wikipedia], however, there is a whole page devoted to the
National Convention era. Consequently, if we search Wikipedia, our information
need is likely to be satisfied with a complete document. Hence, the usefulness of
our focused approach is not solely dependent on some sort of “focused information
needs,” but the combination of the need and the collection.
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2.1.2 Empirical Studies of Search Behavior

Let us now turn our attention to empirical studies of search behavior. We start
by surveying several empirical studies and then we stop and relate the main
observations to our own task of providing focused information access. The goal
of the survey is to review related work on three aspects of our focused information
access application: target audience of our application, search tasks for which the
application is likely to be useful, and desired functionality of our application.

Choo et al. [2000] extend Ellis’ model in a model of information seeking on the
web. They define four modes of information seeking on the web and relate those
to Ellis’ information seeking activities. The four modes are: undirected viewing,
where “the individual is exposed to information with no specific information need
in mind;” conditioned viewing, where “the individual directs viewing to informa-
tion about selected topics or to certain types of information;” informal search,
where “the individual actively looks for information to deepen the knowledge
and understanding of a specific issue;” and formal search, where “the individual
makes a deliberate or planned effort to obtain specific information or types of in-
formation about a particular issue.” The research in this thesis can be considered
as addressing a subset of the informal and formal search modes—in particular
we conjecture that our focused information access system is useful for the formal
search tasks since “[t]he granularity of information is fine, as search is relatively
focused to find detailed information.” Choo et al. study the information seek-
ing behavior of a group of “technically proficient Web users” via questionnaires,
browser logs and personal interviews. Most information seeking episodes were
informal searches (37.7%), followed by conditional viewing (29.5%), undirected
viewing (19.7%), and formal search (13%).

Navarro-Prieto et al. [1999] investigate search strategies of web users in an
interactive study. The test persons are computer science and psychology students.
The researchers analyze three factors of how users interact with hyper-media:
user experience, the type of search task, and information presentation. They
explore two different types of tasks, fact finding and general exploration. The
main observations are that experienced users apply different search strategies
when solving the two different tasks, while there is not a clear distinction for the
inexperienced users. For the fact finding task, the experienced users applied a
bottom-up approach where they go from keywords to pages via search engines. In
solving the task, the users did not browse within sites. For the general exploration
task, the experienced users more often tried to narrow down their search by
following links from pages the search engine brought them to.

Broder [2002] lays out the well-known taxonomy of web searches. He defined
three classes of searches: Navigational : The user needs to locate a particular web-
site. Informational : The user needs to acquire information which she assumes to
exist on one or more web sites. Transactional : The user needs to locate a web site
where she can perform a particular transaction. Through a user survey and query
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log analysis Broder estimates that 40–50% of Internet searches are informational,
30–35% are transactional, and 20–25% are navigational.

Rose and Levinson [2004] try to understand the goals in Web search. Their
classification of goals is an extension of Broder’s taxonomy. They devise a hier-
archical taxonomy where Broder’s classes form the top level, except the trans-
actional class has been replaced by a more general resource-finding class. The
informational class was further divided into 5 subclasses: directed (specific), undi-
rected (general), advice, locate (where to find a real world service/product), and
list. An AltaVista query log (and following user interaction) was analyzed and
queries were classified. About 61% of the queries were classified as informational.
Of the informational queries, about 40% were undirected, about 40% were loca-
tion, and only about 8% were directed.

Slone [2003] looks at the effect of age, search goals and experience on web
search performed by visitors of a public library. It is difficult to generalize any-
thing from this study due to its small population of users. The main observation
to be read from this paper is that there is an “expected” correlation between age,
experience and the search approach. The youngest group and the oldest group
had, in general, the least Internet experience. The more experienced users applied
more sophisticated search approaches.

Toms et al. [2003] look at the effect of task domain on search. Specifically, they
look at four task domains: consumer health, general research, shopping and travel.
They found significant difference between search approach used for solving tasks
in different domains. When searching in shopping and travel, searchers spent more
time browsing within a site. When searching in research and health, searchers
spent more time exploring hit-lists. Importantly, they conclude that one-interface-
fits-all is not a suitable approach. Based on their analysis they come up with
design requirements of interfaces for each of the task domains. In the health
domain, the information level (professional vs. lay), scope (brief vs. detailed), and
source (academic vs. commercial) should be incorporated in the hit-list. In the
research domain, the information level (overview, detailed, scientific) and format
(journal article, newspaper, statistics) should be integrated into the hit-list. Users
need “a quicker and more effective way to evaluate the content of a website
from the hit-list” [Toms et al., 2003, page 8]. In the shopping domain, strong
queries were required to “pre-determine functional versus informational needs”
and “queries must be processed so that product type, brands, product names, and
stores are distinguished” [Toms et al., 2003, page 8]. In the travel domain, the hit-
list should differentiate between general information (e.g., culture and climate),
and specific travel services (e.g., tour and ticket bookings). Interfaces should
indicate the relative weight of information about the destination vs. activity.

People can have very specific information needs, which can be formulated as
a question whose answer is merely a factoid [Voorhees, 2005]. Factoid question
answering is widely supported in state of the art search engines. The most fa-
mous example is probably [Ask Jeeves]. Question answering is also provided by
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the major search engines such as [MSN Search] which uses the [MSN Encarta]
encyclopedia as a corpus for their question answering service.

When answering a factoid question the role of context is very important when
it comes to displaying results to the user. Lin et al. [2003a,b] explore the role of
context in question answering systems. In an interactive study they discovered
that users prefer a chunk of text to merely the exact answer phrase or a sentence
containing the answer. Regardless of the reliability of the information source,
users generally prefer to have answers displayed in context. When users are
researching several aspects of the same topic, increased amounts of context leads
to a significant decrease in the number of questions the user asks the system. I.e.,
users seem to read the additional “context-text” provided by the system and use
it for answering related questions.

Focused Information Access

We will now look at our focused information access task in the light of the above
studies. We look at three aspects: the target audience for focused retrieval; the
tasks for which focused retrieval could potentially be useful; and the potential
functionality of our focused system.

Target audience The results of Navarro-Prieto et al. [1999] and Slone [2003]
show that different user groups utilize search tools in different ways. Since our fo-
cused information access approach is a departure from the “traditional” document
retrieval scenario we should—at least in the beginning—target it at experienced
searchers. Experienced searchers are more likely to be able to understand and
utilize the new—and presumably more powerful—search approach.

Tasks In terms of the web search taxonomies introduced by Broder [2002] and
Rose and Levinson [2004] our focused information retrieval system is most likely to
be useful for informational tasks. In particular, it is likely to be useful for directed
searches, advice, and list compilation—where the information needs may require
direct access to the most appropriate part of a relatively long document. I.e., our
focused information access task is most closely related to the formal search task
defined by Choo et al. [2000] and hence it targets only a relatively small portion
of the whole range of search tasks.

Functionality Toms et al. [2003] conclude that in the research domain users
need a quicker and more effective way to evaluate the content of retrieved docu-
ments. For our focused retrieval system this suggests that a structured overview
of individual search results is potentially useful. To this end, a focused system
could be useful by giving an overview of the content of different sub-parts of the
documents. The results of Lin et al. [2003a,b] stress the importance of showing
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relevant information in context. In our focused system we should be careful not
to take the sub-document-level retrieval results out of their document context.

2.2 Information Retrieval Evaluation

In her guide to information retrieval experimentation Tague-Sutcliffe [1992] dis-
cussed two types of information retrieval evaluation frameworks, laboratory tests
and operational tests. A laboratory test is one where many environmental vari-
ables are controlled, while an operational test is one where none is controlled.
Laboratory tests are useful for comparing systems or individual aspects of a sin-
gle system—and are thus often referred to as systems-oriented evaluation. The
operational tests, on the other hand, tell us something about the usefulness of a
system as a whole—and are often referred to as user-oriented evaluation.

Recall from our introductory chapter that our main research question has both
a system-oriented aspect and a user oriented-aspect. Hence, in order to address
our main research question we need to perform system-oriented and user-oriented
evaluation. In the remainder of this section we give an introduction to each of
the two types of evaluation framework.

2.2.1 Laboratory Evaluation

Information retrieval test collections provide a means to compare the effectiveness
of different retrieval strategies in a laboratory setting. The most common test
collections are based on the concept behind the Cranfield experiments [Clever-
don, 1967]. The Cranfield paradigm has been applied in many settings, such
as, TREC [Voorhees and Harman, 2005], CLEF [Peters and Braschler, 2001],
NTCIR [Kando et al., 1998], and INEX [Kazai et al., 2004b].

Ad-hoc information retrieval collections usually consist of three parts. Docu-
ments : A collection of documents, over which search is performed. Topics : De-
scription of an information need. The information need is expressed in different
formats—ranging from a short list of keywords to a verbose narrative. Assess-
ments : A mapping between topics and documents indicating which documents
satisfy the information need in the topic.

The Cranfield paradigm relies on a number of assumptions [Voorhees, 2002].
First, that relevance can be captured by topical similarity. Second, a single set
of judgment is representative for the whole user population. Third, the relevance
mapping between the topics and documents is complete.

A system is evaluated based on the ranked list of documents it produces.
Effectiveness of a system can be measured in several terms of several criteria.
The most basic criteria are recall and precision:

Recall measures the number of relevant documents retrieved as a portion of the
total number of relevant documents.
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Precision measures the number of relevant documents retrieved as a portion of
the total number of documents retrieved.

Recall and precision are used to define frequently used measures:

Precision-Recall curve Precision is plotted at various recall points. The most
common curve is the 11-point interpolated precision-recall average curve.
The interpolated precision at recall level n is the maximum precision at any
recall level ≥ n.

Average Precision (AP) Precision is calculated for every relevant document
retrieved and then averaged to get a single number for the query.

Precision@N Precision is measured at the point when N results have been re-
trieved. This measure is mostly used for reporting early precision, i.e.,
precision when 5, 10, or 20 results have been retrieved.

R-Precision Precision@R where R is the total number of relevant results for a
particular query.

Bpref The number of judged non-relevant results found before a judged relevant
result is found.

In order to get a stable measurement of retrieval performance the above measures
are commonly averaged over a number of queries. As an example, the well known
mean average precision (MAP) measure is—as the name indicates—the mean of
the average precision (AP) for a number of topics.

The assumptions of the Cranfield paradigm are simplifications that are not
true in practice. First, the assessments are not complete since for reasonably large
collections it is practically impossible to judge each document against each query.
Second, the notion of relevance is subjective and people are likely to disagree
when judging relevance. It has, however, been shown that these two limitations
do have a negligible impact when the test collections are used to measure the
comparative performance of two systems using a single test collection [Voorhees,
2002]. The key to overcoming the limitations is to use many topics and to consider
systems to be different only if the performance difference is reasonably large.

For XML element retrieval, relevance may not be captured completely by
topical similarity alone. Specificity—or information granularity—is an important
part of the relevance notion for XML retrieval and in the previous section we
argued that the appropriate granularity of XML element retrieval results may
not only rely on topical similarity, but also on the user’s background knowledge
or work task. It is still an open research question to determine how these issues
affects the ad-hoc XML element retrieval evaluation framework (See e.g., [Kamps
and Larsen, 2006, Kamps et al., 2006]).
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2.2.2 Interactive Evaluation

The laboratory evaluation framework has been criticized for its failure to account
for user interaction. Interactive information retrieval evaluation studies the inter-
action between searchers and retrieval systems and compliments the laboratory
evaluation framework [Beaulieu et al., 1996, Borlund, 2003].

Interactive retrieval has been a part of TREC from its early days [Beaulieu
et al., 1996, Dumais and Belkin, 2005]. Over [2001] gives an overview of interactive
retrieval at TREC 1–8. The interactive track has developed four focal points (from
[Over, 2001, page 369]):

• “the searcher in interaction with the system,

• behavioral details, the process, and interim results not just summary mea-
sures of final result,

• isolation of the effects of system, topic, searcher, and their interactions,

• evaluation of the evaluation methodology.”

In the first TREC years, interactive systems were compared against automatic
systems, but later the focus changed to comparing interactive systems among
themselves. The track collects data both on user satisfaction and the search pro-
cess, including video, think-aloud audio, and system interaction logs. In TREC
1–8 the data was collected by assigning subjects a description of an information
need and asking them to find as many relevant documents as possible within a
given time period. The interactive track did not address any central research
questions, but served as an experimental framework where participants could
address their own questions. The participants did however share tasks, topics,
documents, and assessments.

The interactive track at TREC-9 explored fact-finding tasks [Hersh and Over,
2001]. Users were asked to answer a series of questions. Each question called
for very short answers. The questions either called for a list of answers—e.g.,
name four films in which Orson Wells appeared—or to compare two facts—e.g., is
Denmark larger or smaller in population than Norway? There was no centralized
research agenda for the track and each participating group used their own system
and followed their own research agenda.

One of the issues investigated by Belkin et al. [2001]—at the TREC-9 inter-
active track—was to investigate whether users preferred the document display to
either begin at the beginning of a document or at the best passage. They did not
find a significant difference between the two approaches. The comparison was,
however, not direct due to a lack of resources. This result should therefore not
discourage further sub-document-level approaches.

The interactive track at TREC 2001 and TREC 2002 explored interactive Web
search in one two-year cycle [Hersh and Over, 2002, Hersh, 2003]. The paper by
Toms et al. [2003] discussed in the previous section is based on this two-year cycle.
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Table 2.1: Key figures of the INEX 2002–2005 collections

Articles Elements Avg. depth Size
INEX 2002 12,107 8,222,075 5.96 513 MB
INEX 2005 16,819 11,411,134 5.97 764 MB

The INEX initiative also includes an interactive track, which we will discuss
in Section 2.4.

2.3 The INEX Ad-hoc Test Collection

XML element retrieval is the core task addressed as part of the INEX initia-
tive [Kazai et al., 2004b]. The main aim of the exercise is to find focused pieces
of text which satisfy users’ information needs. The task is to find elements which
are exhaustive in the sense that they fully discuss the user’s information need,
but at the same time they must be specific in the sense that they discuss little
other than the user’s information need. From the systems perspective the task is
to provide a ranked list of XML elements. I.e.,

“instead of retrieving whole documents, systems aim at retrieving
document components (e.g., XML elements of varying granularity)
that fulfill the user’s query” [Kazai et al., 2004b]

In this section we introduce the building blocks of the INEX XML retrieval test
collection. We discuss the INEX document collection (2.3.1), the tasks (2.3.2), the
topics (2.3.3), the relevance assessments (2.3.4), and, finally, the metrics (2.3.5).

2.3.1 Document Collection

INEX 2002–2005 used a collection of full-text computer science articles donated
by the IEEE Computer Society. The articles are marked up in XML format and
originate from over 20 IEEE magazines and transactions.

The original document collection—used at INEX 2002–2004—contains 12,107
articles from the period 1995–2002. In 2005 the collection was extended with
additional 4,712 IEEE Computer Society articles from the period 2002–2005.
Table 2.1 shows some statistics of the IEEE collections. The experiments in this
thesis are exclusively based on the INEX 2002 document collection. Consequently
the assessments of the INEX 2005 test collection have been modified by removing
the assessments of documents outside the INEX 2002 document collection. The
results for the 2005 test collection—reported in this thesis—are thus not directly
comparable with results that use the full 2005 document collection.
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Figure 2.2: Simplified figure of the structure of a typical IEEE document. All
documents have a root called article. At the next level, all documents are divided
into front matter (fm) and body (bdy). In addition, 83% of the documents have a
back matter (bm) part. In the front matter part, all documents have a title (ti),
87% have an author (au), and 61% have an abstract (abs). In the body part,
almost all documents are divided into a number of sections (sec) and paragraphs
(p). In the back matter, 62% have a bibliography (bibl) and 63% have a vitae (vt).

The collection is based on fairly complex markup using 176 different tag-names
(in total the DTD contains 192 content types). Figure 2.2 shows a simplified
structure of a part of a “typical” document.

2.3.2 Tasks

The main task of INEX from 2002 to 2005 is adhoc XML element retrieval:

XML element retrieval For each query, produce a ranked list of document
components (a.k.a. elements) which satisfy the user’s information need.

In 2002 to 2004 this task was divided into two sub-tasks based on the types of
queries used. Each sub-task used a different set of queries.

Content-Only (CO) queries Plain keyword queries.

Content-And-Structure (CAS) queries Queries which are a mixture of con-
tent and structural constraints. The structure is used in two ways. First, it
can be used to constrain the type of the target elements (target constraints).
Second, it can be used to constrain the context in which the target element
reside (context constraints).

The experiments in this thesis are exclusively based on the content-only queries.
In 2005 three types of element retrieval tasks were introduced. The tasks were

defined as follows (from [Malik et al., 2006, pp. 8–9]).
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Table 2.2: Statistics on the CO topics sets used in the experiments. The table
shows the number of topics, average length of queries (no. of terms), standard
deviation (in brackets), and median query length. Aggregation is done over three
query formats: title-only, description-only and combination of title and descrip-
tion fields.

Title Description Title+Description
Avg. len. Median Avg. len. Median Avg. len. Median

2002 4.4 (2.2) 4.0 16.1 (10.4) 14.0 20.5 (10.8) 18.5
2003 4.8 (2.8) 4.0 13.3 (7.8) 10.5 18.0 (9.5) 16.0
2004 5.3 (2.4) 5.0 23.2 (17.9) 17.0 28.5 (19.1) 22.0
2005 4.6 (2.3) 4.0 17.5 (7.2) 16.5 22.1 (8.2) 21.0

Thorough “The aim here was for systems to find all relevant elements within
the collection.”

Focused “The aim was for systems to find the most exhaustive and specific
element on a path ... and return to the user only this most appropriate unit
of retrieval.”

FetchBrowse “The aim of the fetch and browse retrieval strategy was to first
identify relevant articles (the fetching phase), and then to identify the most
exhaustive and specific elements within the fetched articles.”

The thorough task can be seen as as the continuation of the main task of the
previous years. In the experiments in this thesis we will mainly look at the
thorough task. Our view of XML retrieval in this thesis is systems-oriented. I.e.,
we want to use an XML retrieval as a back-end retrieval engine. We believe the
thorough task is best suited of evaluating such a system since it is not based on
any specific end-usage assumptions. Our main evaluation in this thesis will thus
be based on the focused task using “official” INEX metrics (see Section 2.3.5).
However, in Chapter 7 we will evaluate the thorough task with respect to the two
issues which the focused and FetchBrowse tasks address, namely, overlap and
document ranking.

2.3.3 Topics

In the experiments in this thesis we will only use the so-called content-only (CO)
topics of the INEX collection. The INEX topics contain three versions of the
underlying information needs (a.k.a. fields)—using different amounts of verbosity.
In our experiments we use two of those fields to create three different query-types.
First, we use only the title field. The title field describes the information need of
the topic as a list of content keywords. The query format is meant to resemble
searches using state-of-the-art Internet search engines. Second, we use only the
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="104" query_type="CO" ct_no="52">

<title>Toy Story</title>
<description>Find information on the making of the animated movie

Toy Story, discussing the used techniques, software, or hardware
platforms. </description>

<narrative>To be relevant, a document/component must discuss some
detail of the techniques or computer infrastructure used in the
creation of the first entirely computer-animated feature-length
movie, "Toy Story." </narrative>

<keywords>Pixar, Disney, Buzz Lightyear, 3D-rendering, Sun,
SGI</keywords>

</inex_topic>

(a) INEX topic 104

Toy Story

(b) Title query

Find information on the making of the animated movie Toy Story
discussing the used techniques software or hardware platforms

(c) Description query

Toy Story Find information on the making of the animated movie Toy
Story discussing the used techniques software or hardware platforms

(d) Title+description query

Figure 2.3: Example of an INEX topic (topic 104).

description field. The description field is a one or two sentence description of the
information need, written in natural language. Third, we use a combination of the
title and description fields. Figure 2.3 shows an example of an INEX topic (part
(a)) and shows how we use it to create different query formats (parts (b)–(d)).

Table 2.2 shows some statistics about the length of the INEX content-only
topic sets. The table shows the number of topics and the mean and median
length of the queries. We report statistics for each of the query formats. We see
that the length of the topic titles does not change much from one year to another.
The length of the descriptions is, however, more varied.
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2.3.4 Assessments

INEX relevance assessments have always been done using a two dimensional,
graded scale. The scale has changed slightly from one year to another. More
importantly, though, the assessment interface also changed between years.

INEX 2002

In 2002 the two dimensions were named topical relevance and component coverage.
The dimensions are defined as follows (from [Gövert and Kazai, 2003, pp. 8–9]):

“Topical relevance, which reflects the extent to which the information con-
tained in a document component satisfies the information need.”

“Component coverage, which reflects the extent to which a document compo-
nent is focused on the information need, while being an informative unit.”

Topical relevance was assessed using a 4-point scale:

“Irrelevant (0): The document component does not contain any
information about the topic of request. Marginally relevant (1):
The document component mentions the topic of request, but only in
passing. Fairly relevant (2): The document component contains
more information than the topic description, but this information is
not exhaustive. In the case of multi-faceted topics, only some of the
sub-themes or viewpoints are discussed. Highly relevant (3): The
document component discusses the topic of request exhaustively. In
the case of multi-faceted topics, all or most sub-themes or viewpoints
are discussed.”

Component coverage was assessed using a 4-point scale:

“No coverage (N): The topic or an aspect of the topic is not a theme
of the document component. Too large (L): The topic or an aspect
of the topic is only a minor theme of the document component. Too
small (S): The topic or an aspect of the topic is the main or only
theme of the document component, but the component is too small
to act as a meaningful unit of information. Exact coverage (E):
The topic or an aspect of the topic is the main or only theme of the
document component, and the component acts as a meaningful unit
of information.”

The assessment interface displayed each document in XML format and for each
element there was a text-box where the assessor would assign relevance labels
(e.g. 3E, 3L, 2S, etc.). We refer to [Gövert and Kazai, 2003] for more detailed in-
formation on the assessment system and screen-shots of the assessment interface.
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INEX 2003 and 2004

In 2003 and 2004 the two relevance dimensions were renamed exhaustivity and
specificity. The dimensions are defined as follows (from [Malik et al., 2005, pp.
8–9]).

“Exhaustivity (e), which describes the extent to which the document compo-
nent discusses the topic of request.”

“Specificity (s), which describes the extent to which the document component
focuses on the topic of request.”

Exhaustivity was assessed using a 4-point graded scale:

“Not exhaustive (e0): the document component does not discuss
the topic of request at all; Marginally exhaustive (e1): the doc-
ument component discusses only few aspects of the topic of request;
Fairly exhaustive (e2): the document component discusses many
aspects of the topic of request; and Highly exhaustive (e3): the
document component discusses most of all aspects of the topic of re-
quest.”

Specificity was assessed using a 4-point graded scale:

“Not specific (s0): the topic of request is not a theme of the docu-
ment component; Marginally specific (s1): the topic of request is a
minor theme of the document component [. . . ]; Fairly specific (s2):
the topic of request is a major theme of the document component
[. . . ]; Highly specific (s3): the topic of request is the only theme of
the document component.”

In 2003 the assessment interface was changed to make the assessment procedure
easier. The text was not shown in raw XML format. The articles were made
more “eye-friendly” using style-sheets. The tag-names were, however, shown
for assessment purposes. Assessors assigned relevance labels to elements using
a graphical interface. In 2004 the interface went through a minor modification.
The most noteworthy difference in 2004 was that assessors could assess a group of
elements simultaneously. In both years the interface used inference mechanisms
to ensure the consistency of assessments [Piwowarski and Lalmas, 2004]. The
inference was based on a set of rules that could not be violated—e.g., “An XML
element cannot be more exhaustive than its parent element,” “specificity cannot
increase when going from (all) children to parent elements,” etc.
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Table 2.3: Number of assessed CO topics for each year of INEX. The table shows
the total number of topics, total number of assessed topics, and the number of
topics having a strictly assessed element.

Year Topics Assessed Strict
2002 30 24 23
2003 36 32 27
2004 40 34 25
2005 40 29 26

INEX 2005

In 2005 the definition and naming of the two dimensions was unchanged. The
assessment procedure did however undergo a fundamental change. Assessors no
longer needed to assign to each element a two-dimensional relevance label. In-
stead, the assessor assessed each article in a two step process. First, she high-
lighted all text fragments which contained only relevant information. In the
second step she assigned a exhaustiveness value to each element which contained
some highlighted parts (see further in [Malik et al., 2006, page 11]). Exhaustive-
ness was assessed on a 3(+1)-point graded scale (from [Malik et al., 2006, page
10]):

“highly exhaustive (e = 2), somewhat exhaustive (e = 1), not exhaus-
tive (e = 0) and “too small” (e = ?).”

The specificity values of elements were derived from the highlighting (s ∈ [0, 1]).
Fully highlighted elements are considered fully specific (s = 1). The specificity
values for other elements are determined using a function based on the ratio
between relevant content and all content.

2.3.5 Metrics

We now turn our attention to the INEX metrics. We will not review the plethora
of metrics which have been proposed within the INEX community [Kazai et al.,
2004a, de Vries et al., 2004, Piwowarski and Dupret, 2006, Kazai and Lalmas,
2006]. Instead, we limit ourselves to the metrics that will be used for evaluation
in this thesis. For a more complete metrics discussion we refer to an overview of
the INEX 2005 metrics by Kazai and Lalmas [2006].

Over the past few years the INEX initiative has made considerable progress
toward the building of a reliable XML element retrieval evaluation collection.
However, XML element retrieval evaluation is not yet considered to be a solved
problem. This has some implications for this thesis. We cannot simply apply
the evaluation framework to evaluate our system. Instead we choose a couple of
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(3,2)
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(2,2)
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Figure 2.4: Example of three assessment scenarios. Each element is marked
with an assessment value of the form (e,s) where e stands for exhaustiveness and
s stands for specificity. The values are assigned according to the INEX 2003–2004
assessment scheme (See Section 2.3).

plausible frameworks and evaluate our system for each of them. In this section
we motivate our choice.

We use a number of metrics to evaluate our experimental results. We use both
“traditional” information retrieval metrics from the trec eval package [trec eval]
and metrics from the EvalJ package [EvalJ] which are specially tailored at the
INEX tasks. Before we describe the metrics we use, let us recall the task we want
to evaluate.

XML element retrieval For each element in the collection estimate how rele-
vant it is for the user’s information need. This process is approximated by
creating a ranked list of XML element for each user query. The elements are
ranked by decreasing likelihood of being relevant for the user’s information
need.

In terms of the INEX assessments, XML element retrieval is defined as the task
of creating a list of elements, ranked by decreasing likelihood of the element
being highly exhaustive and highly specific. The straightforward evaluation of
this task is to consider as relevant precisely those elements that are assessed both
highly exhaustive and highly specific (this mapping is referred to as the strict
quantization and is defined below). For each topic and each element we have a
boolean judgment whether the element is highly exhaustive and highly specific.
Using the boolean judgments we can use the trec eval program to report scores
using a number of metrics.

Using the strict quantization has some drawbacks. The main one being that
it is too strict. I.e., it neither rewards near-misses, nor handles the case when no
highly exhaustive and highly specific element exists. Consider the assessments
in Figure 2.4. For the left-most example, one can argue that strict evaluation
is sufficient, i.e., a system gets a perfect score if and only if it returns the two
highly exhaustive and highly specific elements. Others may argue that a more
lenient evaluation is desired, i.e., a system that returns the parent element should
be rewarded with a partial score. For the middle example (in Figure 2.4), the
strict evaluation would not reward the return of any of the elements, even if
the information need is sufficiently answered by the parent element, i.e., that
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element is highly exhaustive. One might thus argue that a partial score should
be rewarded for the retrieval of the three partially relevant elements. For the right-
most example (in Figure 2.4), one may apply similar arguments for justifying the
reward of partial scores. The reward may, however, be challenged by the fact
that the information contained in the elements does not fully satisfy the user’s
information need.

The drawback of the strict assessments has been addressed within the INEX
initiative by introducing so-called generalized quantizations (defined below). The
generalized quantizations map the two-dimensional relevance scale to a one-
dimensional graded graded relevance scale. There are two types of general-
ized quantizations used, exhaustiveness-oriented and specificity-oriented quanti-
zations. The two types favor, respectively, the retrieval of exhaustive and specific
elements.

Just as the strict quantization can be criticized for being too strict, the gen-
eralized quantizations can be criticized for being too lenient. The generalized
quantizations, do reward partially relevant elements, independent of whether they
contribute to a highly exhaustive ancestor element. E.g., in terms of Figure 2.4,
the retrieval of the two (2, 3) elements in the middle example would be rewarded
equally as the retrieval of the two (2, 3) elements in the rightmost example. How-
ever, the combination of the elements from the middle example are highly ex-
haustive, while the combination of the elements form the rightmost example is
not.

Below we introduce the metrics we will use for evaluation in this thesis. First,
we review the quantization functions—functions for mapping multi-dimensional
relevance assessments to a single number.

Quantization

Quantization is a mapping from the relevance assessments to a single number:

fquant : Assessment → [0, 1] (2.1)

In INEX 2002 two quantization functions were defined.

fstrict :=

{
1 if (rel, cov) = 3E
0 otherwise

(2.2)

fgeneralized :=



1.00 if (rel, cov) = 3E,
0.75 if (rel, cov) ∈ {2E, 3L},
0.50 if (rel, cov) ∈ {1E, 2L, 2S},
0.25 if (rel, cov) ∈ {1S, 1L},
0.00 if (rel, cov) = 0N

(2.3)
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In INEX 2003 the quantization functions were updated to reflect the changed
assessment framework:

fstrict :=

{
1 if (e, s) = (3, 3)
0 otherwise

(2.4)

fgeneralized :=



1.00 if (e, s) = (3, 3),
0.75 if (e, s) ∈ {(2, 3), (3, {2, 1})},
0.50 if (e, s) ∈ {(1, 3), (2, {2, 1})},
0.25 if (e, s) ∈ {(1, {2, 1})},
0.00 if (e, s) = (0, 0)

(2.5)

The generalized quantization function was questioned for preferring exhaustive-
ness over specificity [Kazai et al., 2004a]. In INEX 2004 a new generalized quan-
tization function was introduced. This function preferred specificity over exhaus-
tiveness:

fsog :=



1.00 if (e, s) = (3, 3),
0.90 if (e, s) = (2, 3),
0.75 if (e, s) ∈ {(1, 3), (3, 2)},
0.50 if (e, s) = (2, 2)
0.25 if (e, s) ∈ {(1, 2), (3, 1)},
0.10 if (e, s) ∈ {(2, 1), (1, 1)},
0.00 if (e, s) = (0, 0)

(2.6)

In 2005 the quantization functions were again updated to reflect the changes in
the assessment format:

fstrict :=

{
1 if e = 2 and s = 1,
0 otherwise.

(2.7)

fgen(e, s) := e · s. (2.8)

Note that the number of topics used in the evaluation depends on the quantization
being used. Not all topics have a strictly relevant element. These topics will thus
be considered as having no relevant result when the strict quantization is used
and will thus not contribute to the evaluation. Table 2.3 shows some statistics
on the number of assessed topics for the different vintage of the INEX collection.

In this thesis we will devote special attention to the strict assessments. Ta-
ble 2.4 shows the number of elements assessed strictly relevant for the different
vintages of the INEX test collection. We see that the mean and the median num-
ber of articles having a strict assessment has decreased as time goes by. This is
also true for the median number of elements assessed strictly relevant. The av-
erage number of elements assessed strictly relevant also decreases over the years,
except in 2004 where we had a single outlier topic with 848 elements assessed
strictly relevant.
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Table 2.4: Statistics on the number of strict assessments in the INEX collections.
The table shows aggregated results over different topics. (Left): min, max, mean
and median number of strictly assessed elements per topic. (Right): min, max,
mean, and median number of articles containing a strictly assessed element.

Elements Articles
topics min max mean median min max mean median

2002 23 2 210 60.7 36 1 108 27.4 17
2003 27 3 175 55.1 34 1 75 14.1 9
2004 25 2 848 103.6 18 1 51 11.2 6
2005 26 1 163 34.0 9 1 70 10.0 3.5
Total 101 1 848 62.9 28 1 108 15.33 9

Metrics

The INEX metric we will use in this thesis is the mean average effort-precision
(MAep) metric [Kazai and Lalmas, 2006]—a systems-oriented retrieval metric
which belongs to the family of metrics called eXtended Cumulative Gain (XCG).
The MAep measure is similar to the mean average precision (MAP) metric de-
scribed in Section 2.2.1, the main difference being that the MAep can handle
graded relevance—i.e., the non-boolean output of the quantization functions. For
metric details we refer to [Kazai and Lalmas, 2006].

XML retrieval evaluation is subject to the so-called “overlap problem” [Kazai
et al., 2004a]. I.e., since the elements assessments may be overlapping, the re-
trieval of same information is rewarded multiple times. Depending on how element
results are presented to users overlap may indeed be a problem [Tombros et al.,
2005b], or be considered a feature [Kamps and Sigurbjörnsson, 2006, Betsi et al.,
2006]. It is thus debatable whether or not retrieval of overlapping information
should be rewarded by the evaluation metric. The XCG metrics come in two
flavors—rewarding or not-rewarding the retrieval of overlapping information. In
this thesis we are looking at the element retrieval task from a systems’ perspective
and are therefore not concerned with the “overlap problem.” We will thus use—
for the main evaluation in this thesis—the metric which does reward retrieval of
overlapping relevant information. However, we will discuss the effect of overlap
in Section 7.2 where we evaluate our system using the metric which does not
reward overlap; and in Chapter 8 where we put element retrieval into action in
an interface for giving focused information access.

2.4 INEX iTrack

Interactive XML retrieval has been studied at INEX since 2004 [Tombros et al.,
2005a, Larsen et al., 2006a]. The main aim of the task has been to study the
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behavior of searchers when interacting with components of XML documents. The
main focus of the two years has been on observing users interacting with an XML
element retrieval system.

In 2004, element retrieval results were presented to the user as a ranked list
of elements. The main outcome of the evaluation was that users were frustrated
by elements from the same document appearing at different rank in the result
list [Tombros et al., 2005b].

In 2005, element retrieval results were presented to the user as a ranked list
of documents, with additional links to relevant elements within the documents.
Initial results show that users predominantly access the relevant documents at
the beginning of the document [Larsen et al., 2006b].

A further discussion of the INEX interactive track results will be postponed
until Chapter 8 where we discuss how element retrieval can be put into action as
part of an operational system.

2.5 Experimental Setup of this Thesis

The evaluation in this thesis will be of two sorts:

Laboratory evaluation We evaluate different retrieval approaches for perform-
ing the INEX systems-oriented—thorough—XML element retrieval task
(Chapters 3–7).

Interactive evaluation In two interactive experiments we evaluate a system
which gives focused information access using XML element retrieval engine
as a back-end (Chapter 8).

Below is a summary of important choices we made in our evaluation framework
in this thesis.

Metrics We choose to evaluate our system using three different quantizations,
strict, generalized, and specificity-oriented generalized. For each quantization we
choose a mean-average-precision-like metric

• Mean Average Precision (MAP) for the strict quantization, and

• Mean Average effort-precision (MAep) for the generalized quantizations.

Document collection We choose to use the same document collection for all
experiments in the thesis—i.e., the INEX 2002 document collection. This means
that for the 2005 topics there are assessments which fall outside the document
collection used in this thesis. Consequently, we have pruned the 2005 assessments
by removing all assessments that fall outside the INEX 2002 document collection.
This means that our results for the 2005 topics are not directly comparable with
the official INEX results.
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Document Retrieval Comparison A comparison between element retrieval
and document retrieval is an important part of the experiments in Chapter 3.
For this purpose we perform some document retrieval experiments on the INEX
collection. For this evaluation we need a document-level relevance assessments.
There are several ways in which such assessments can be derived from the INEX
element-level assessments. For document retrieval, exhaustiveness is the most
important criteria and specificity does not play an important role in the task.
Hence we define document relevance as follows:

• A document is relevant if and only if it has an element which is assessed as
highly exhaustive.

Note that we evaluate only over topics having at least one element assessed highly
exhaustive. This means that the topic set over which article retrieval is evaluated
may differ slightly from the topic set used for strict and generalized element
evaluation. The relation is as follows:

Tstrict ⊆ Texhaustive ⊆ Tassessed

where Tstrict denotes the set of topics having an highly exhaustive and highly
specific element; Texhaustive denotes the set of topics having a highly exhaustive
element; and Tassessed denotes the set of assessed topics. For document retrieval
we measures effectiveness using trec eval metrics.

Significance Testing We test statistical significance of our results by using
the two-tailed t-test for paired data. I.e., we calculate the probability that the
actual mean difference between the pairs is zero. If this probability is low we can
claim that the difference between the pairs is significant. We distinguish between
three levels of significance: P < .05 is marked with *, P < .01 is marked with **
and P < .001 is marked with ***. Our choice of significance test is based on the
work of Sanderson and Zobel [2005], who found the t-test to be highly reliable
for document retrieval. They also found the t-test to be more reliable than the
sign-test and the Wilcoxon test. In this thesis, we assume that this finding also
holds for the element retrieval task.

2.6 Conclusions

In this chapter we have provided background material on information search be-
havior literature and we have located our focused information access task relative
to the literature. We also gave some background on information retrieval eval-
uation methodology and introduced the INEX evaluation collection which will
be the main means of evaluation for the retrieval methods studied in this thesis.
Finally, we have outlined the experimental setup used in this thesis.
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In the following five chapters—Chapters 3–7—we model, implement, and eval-
uate an XML element retrieval engine. In Chapter 8 we build an interface for
giving focused information access, using our XML element retrieval engine as a
back-end. Finally, in Chapter 9 we conclude.



Chapter 3

A Baseline Element Retrieval System

Before we dive into the development of an advanced element retrieval system we
should take stock of the document retrieval tools we already have. We can use
these tools to build a simple baseline system on which we can later base our more
advanced element retrieval system. In this chapter we discuss such a baseline
element retrieval system. We take a document retrieval system, modify it slightly
and apply it to the task of retrieving elements. The main question we want to
answer in this chapter is:

How is element retrieval different from document retrieval?

We apply our baseline system to both the element retrieval and document retrieval
task and study the difference in retrieval performance when we alter the parameter
settings. The differences give us “hints” about the differences between the two
tasks and indicate which aspects of the document retrieval system we need to
change to make it more applicable to the element retrieval task. Additionally,
by applying a document retrieval system to the element retrieval task we get a
milestone against which we can compare our more specialized element retrieval
methods developed later in this thesis.

In addition to compare document retrieval and element retrieval we explain
our baseline retrieval approach and discuss related work. We start by introducing
related work on retrieval systems in Section 3.1. In particular we discuss sub-
document-level retrieval system, both developed to solve passage retrieval tasks
and XML element retrieval tasks.

In Section 3.2 we discuss the indexing of both text and XML structure. We
discuss the indexing schemes that are relevant for our baseline system. This
indexing scheme serves as a starting point for specialized indexing approaches
introduced in Chapter 5.

Our retrieval model is discussed in Section 3.3. In this thesis we will focus
on the application of language models to focused retrieval. We introduce our
baseline language model framework. This baseline system will serve as a starting
point for further extensions in Chapters 4 and 6.

37
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In Section 3.4 we show the results of applying our baseline language model
framework to the element retrieval task. We tune the main model parameter, the
smoothing parameter, and compare the optimal settings for the element retrieval
task to optimal settings for the task of retrieving documents. The results of the
parameter tuning gives us valuable information on crucial differences between the
two tasks. We discuss our evaluation results further in Section 3.5 and conclude
in Section 3.6.

3.1 Related Work on XML Retrieval Systems

In this section we review related work on XML retrieval systems. We do not give
a detailed background on retrieval systems; for a general background we refer to
textbooks by Grossman and Frieder [2004] and Witten et al. [1999]. Instead, our
discussion of focused retrieval is divided up into three parts. First, we look at
earlier work on passage retrieval systems. Second, we look at focused retrieval in
the context of semi-structured documents. Third, we review recent developments
in XML element retrieval systems. Our XML retrieval discussion will be centered
mainly around systems developed by the INEX community.

3.1.1 Passage Retrieval

Salton et al. [1993] investigate approaches to sentence similarity and passage
retrieval. The approaches considered are motivated by two types of benefits: first,
efficiency, “users are no longer faced with large masses of retrieved materials;” and
second, effectiveness, “relevant short texts are generally more easily retrievable
than longer ones.” They provide experiments on an encyclopedia which show
that section and paragraph retrieval can improve retrieval performance. Their
conclusion is that the local match (sentence similarity) acts as a precision device,
and that the passage retrieval acts as a recall device.

Callan [1994] investigates two types of passage retrieval approaches. The ap-
proaches differ in the way passages are defined. One approach uses paragraphs
as passage units, and the other uses variable-length text windows. Passages
are ranked using either passages alone, or in combination with document-level
evidence. Callan evaluates the passage retrieval approaches using a document re-
trieval test collection. I.e., passage retrieval results are used to rank documents.
The main outcome of the evaluation is that the variable-length text windows
outperformed the paragraph-level approach. Callan suggests that the poor per-
formance of the paragraph-level approach may be due to inconsistent paragraph
division of different authors, or due to the passage size—i.e., paragraphs being
too small units. Another outcome of the evaluation is that the combination of
passage- and document-level evidence proved to be more effective than using
passage-level evidence alone.
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Kaszkiel and Zobel [1997] experiment with several passage retrieval approaches:
using fixed-length passages, variable-length passages, discourse structures (e.g.,
sections and paragraphs), and text tiles [Hearst and Plaunt, 1993]. The passage
retrieval approaches were evaluated using a document retrieval collection. I.e., the
task is to use passage-level evidence to retrieve documents. The main conclusion
is that fixed-length passages proved the most robust approach. Using discourse
structures to determine passage boundaries did not prove to be effective.

Liu and Croft [2002] apply several language models on the problem of using
passage retrieval to improve document retrieval. They compare generative lan-
guage models and relevance models. The main conclusion is that passage retrieval
can significantly outperform document retrieval on collections where documents
are long and can span several topics, such as the Federal Register (TREC discs 1
and 2).

In sum, passage retrieval has proven a useful method for ranking documents—in
particular when the documents are long. Fixed-length passages seem to be more
effective than discourse structures.

3.1.2 Semi-structured Retrieval

Wilkinson [1994] explores ways to retrieve from structured documents. He uses
the structured features of a subset of the TREC 1994 collection. He does both
document retrieval and “XML” retrieval proper, where relevance was judged at
the element level (in-house assessment process). Wilkinson raises four research
questions

1. Can element retrieval help document retrieval?

2. Can we combine document and element retrieval to boost document re-
trieval?

3. Can document retrieval serves as a basis for element retrieval?

4. Can we combine document and element retrieval to boost element retrieval?

He shows that element retrieval can indeed help document retrieval. He also shows
that the other way around is not effective, that is, scoring documents and then
picking out elements is not a good strategy. The most important lesson learned
is that the mixture of local and global evidence is the most effective strategy for
both document and element retrieval.

Myaeng et al. [1998] introduce a flexible model for the retrieval of SGML
documents. Their model goes below the document level and retrieves parts of
SGML documents. The choice of appropriate unit of retrieval is left to the user as
a structural requirement. Furthermore, the model caters for the use of additional
structural constraints. Their retrieval model is based on inference networks. In
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their experiments they try to answer three questions. First of all, they test
whether the system can handle a variety of structural queries. Second, they test
if element-based passage retrieval can help document retrieval. Third, they test
whether appropriate element bias can help document retrieval. The reason they
chose to evaluate document retrieval is the fact that there was no element retrieval
test-collection available at the time. They use the TREC patent collection. Their
results are positive: both element-based passage retrieval and careful assignment
of element-type bias (weight) can help document retrieval

3.1.3 XML Retrieval

Prior to the INEX initiative there were two SIGIR workshops on XML and infor-
mation retrieval [Carmel et al., 2000, Baeza-Yates et al., 2002]. Both workshops
focused mostly on processing structured queries and are thus beyond the main
scope of this thesis. We will however review two noteworthy contributions.

Fuhr et al. [Fuhr and Großjohann, 2001, Fuhr et al., 2003b] introduced a
query language for information retrieval from semi-structured documents. They
took the exact-match query language XQL and extended it with features from
information retrieval such as term weighting, relevance ordered search, and vague
predicates. The language allowed both for vague interpretation of content and
structural constraints.

Carmel et al. [2002, 2003] suggested querying XML documents with XML
fragments. The intuition behind XML fragments is to introduce a query language
where users can easily express their information needs both in terms of content
and structure constraints. The main difference between XML fragments and other
XML query languages is that XML fragments are end-user oriented while most
other XML query languages are a kind of “programming languages” to be used
by XML retrieval application developers.

Since the advent of the INEX initiative a range of different approaches have
been applied to the element retrieval task. Mass and Mandelbrod [2004, 2005]
extend the vector space model [Salton et al., 1975] so that it can be applied to
retrieving XML elements; Clarke and Tilker [2005] and Lu et al. [2006] apply the
Okapi BM25 algorithm; and Geva [2005] uses a simple tf-idf heuristics. In the
remainder of this section we will concentrate on approaches that are most related
to our own—i.e., the application of language models to the XML retrieval task.

Within the INEX initiative there are three main groups which apply language
models to the XML element retrieval task [Sigurbjörnsson et al., 2004a, List
et al., 2004, Ogilvie and Callan, 2004]. Although the groups obviously have a
lot in common they complement each other by addressing the task from different
angles, respectively, an empirical angle, a database angle, and a modeling angle.

The TIJAH system is an XML retrieval system built on top of a relational
database system [List et al., 2004, Mihajlović et al., 2005, List et al., 2005]. The
system adheres to the three-level database architecture consisting of a conceptual
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level, logical level, and a physical level. Language models are implemented at
the conceptual level, they are translated into probabilistic region algebra expres-
sions in the logical level, and executed in the physical level using the MonetDB
database kernel. This layered approach allows for the exploration of a wide range
of research issues ranging from the modeling of relevance at the conceptual level
to the optimized query execution plans at the physical level.

Ogilvie and Callan [2004, 2005, 2006] introduce hierarchical language models
for ranking XML elements. In their basic approach, the language model of leaf
elements are estimated using the leafs’ text. The language models of internal
elements is estimated using a linear combination of elements’ own text and the
language models of the elements’ children [Ogilvie and Callan, 2004]. In their
extended approach, they bring element context into the ranking by adding a
language model for the elements’ parent into the linear interpolation [Ogilvie
and Callan, 2005]. Interpolation parameters are estimated using a generalized
expectation maximization algorithm [Ogilvie and Callan, 2006].

Our own application of language models to XML element retrieval has been
driven by empirical analysis [Sigurbjörnsson et al., 2004a, 2005, Sigurbjörnsson
and Kamps, 2006]. We gradually build our approach up from a simple baseline
system to a system which gradually takes more of the document structure into
account. Our approach will be discussed rigorously in the remainder of this
thesis.

3.2 Indexing

We start describing our baseline XML retrieval system by describing our indexing
structures. Figure 3.1 shows an overview of our system architecture. We build two
types of indices: text indices and a structure index. The text is indexed using an
in-house extension [ILPS-Lucene] of the Lucene retrieval engine [Lucene] and the
structure is indexed using a relational database. Separating text indexing from
the structure index has two main benefits. First, it gives a flexible experimental
framework for testing different text indexing strategies. We can plug in different
text indices without having to rebuild our structural index. Second, we can use
our existing document retrieval system on our various text indices.

The indexing is managed by the document pre-processor (bottom of Fig-
ure 3.1). The pre-processor parses each document using an XML parser and
extracts both information of the structure and text. The document structure is
stored in the structure index, and the text is passed to the Lucene indexer. Tok-
enization, stop-word removal, and stemming is left to Lucene. Although we sep-
arate text and structure in the preprocessor, we use the same element/document
identifiers in both the text indices and the structure index. We can thus easily
join the two indices in our retrieval module.

In our baseline system, we build two types of inverted text indices, one for
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Figure 3.1: Overview of our XML retrieval system architecture. This figure can
be seen as a zoom in on the “element retrieval engine” in Figure 1.4.

individual XML elements and another for complete XML documents—in our case
each XML document corresponds to one journal article. In our baseline system
in this chapter, the document index will be used to compare the performance of
retrieving elements to retrieving articles. In later chapters, the document index
will also function as a tool for adjusting for data sparseness in the element index
(see Chapter 6). In the remainder of this thesis we will interchangeably use the
terms “document index” and “article index,” depending on which terminology
better fits the context. Alongside our two text indices, we build a single index of
the collection structure.

3.2.1 Indexing Structure

The structure of the collection is indexed using a relational database. To index the
XML trees we use pre-order and post-order information of the nodes in the XML
trees [Grust, 2002]. This indexing scheme gives us the opportunity to efficiently
calculate relations between elements.

Table 3.1 describes the format of our structured index. We store the data
in two database tables: one for XML documents (xmlfile) and one for XML
elements (element). In the element table, the pre- and post-order provide efficient
support for descendant and ancestor relation calculation. In addition, the level
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<article>

<sec>Animals eat food</sec>

<sec>

<st>Dogs</st>

Dogs eat food

</sec>

</article>

<article>

<sec>

Dogs <it>chase</it> cats

</sec>

<sec>Cats are animals</sec>

</article>

(a) Two example XML documents: doc1.xml (left) and doc2.xml (right)

elementID fileID tagName preOrder postOrder xpos level
1 1 article 1 4 1 1
2 1 sec 2 1 1 2
3 1 sec 3 3 2 2
4 1 st 4 2 1 3
5 2 article 1 4 1 1
6 2 sec 2 2 1 2
7 2 it 3 1 1 3
8 2 sec 4 3 2 2

(b) Structure index (element table)

term (fileID,tf)+
animals (1,1), (2,1)
cats (2,2)
chase (2,1)
dogs (1,2), (2,1)
eat (1,2)
food (1,2)

(c) Document index (terms have been case-folded and stopwords removed)

term (elementID,tf)+
animals (1,1), (2,1), (5,1), (8,1)
cats (5,2), (6,1), (8,1)
chase (5,1), (6,1), (7,1)
dogs (1,2), (3,2), (4,1), (5,1), (6,1)
eat (1,2), (2,1), (3,1)
food (1,2), (2,1), (3,1)

(d) Element index (terms have been case-folded and stopwords removed)

Figure 3.2: Example of a structure index (b), document index (c), and element
index (d) for a collection of two documents (a).
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Table 3.1: Descriptions of tables in our structural index.

(a) Table: xmlfile

Field Type Description
fileID smallint(5) unsigned Unique file identifier
name varchar(15) File name, relative to collection root

(b) Table: element

Field Type Description
elementID int(10) unsigned Unique element identifier
fileID smallint(5) unsigned Unique file identifier
tagName varchar(15) Tag-name of the element
preOrder smallint(5) unsigned Pre order of the element
postOrder smallint(5) unsigned Post order of the element
xpos smallint(5) unsigned Sibling order
level smallint(5) unsigned Level in the XML hierarchy

sec (4.3)sec (2,1) sec (3.3)

st (4,2)

article (1,4)

it (3,1)

sec (2,2)

article (1,4)

Figure 3.3: Tree representation of the two example documents from Fig-
ure 3.2 (a). Alongside each tag-name we show the (pre-order,post-order) tuple of
the corresponding element.

information is useful for calculating child and parent relations. The xpos field
records that the element is the xpos-th child of the type tagName. The xpos field
is used mainly when writing out location XPaths.

We will further explain our structured index by means of an example. Fig-
ure 3.2 (b) shows the element table for two example documents shown in Fig-
ure 3.2 (a). The preOrder field of the table holds information about the order in
which elements are “opened” (appearance of <tag-name>). The postOrder field
holds information about the order in which the elements are “closed” (appearance
of </tag-name>). As an example, the section title (<st>) of doc1.xml is the 4th
element to be opened and the 2nd to be closed. Similarly for the italicized text
(<it>) of doc2.xml, it is the 3rd element to opened and the 1st one to close. A
tree-view of the example documents and the pre/post order information is shown
in Figure 3.3.

The preOrder and postOrder plane has useful properties when calculating
ancestor and descendent relationships. Figure 3.4 shows the two example docu-
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Figure 3.4: The two example XML documents from Figure 3.2 (a), when plotted
in the preOrder-postOrder plane. Left: doc1.xml, with the 2nd section shaded
with grey. Right: doc2.xml, with 1st section shaded with grey.

Table 3.2: Properties of the indices built using the INEX IEEE 2002 collection.
Unit stands for the number of retrievable units. Storage stands for the size
occupied in physical storage. % of collection stands for the size of the index,
compared to the size of the collection. Note that we calculate collection size
using the uncompressed collection, but the Lucene indices are compressed.

Units Storage % of collection
Overlapping element index 6,157,742 1.5G 299%
Article index (document index) 12,107 147M 29%

ments from Figure 3.2 (a) plotted in the preOrder-postOrder plane. On the left,
doc1.xml is plotted and the 2nd section is shaded with grey. We can use the
plane to easily derive relationships between elements. For each element we can
divide the plane into four parts by drawing horizontal and vertical lines through
the point of the corresponding element. All the elements in the top-left part of
the plane are ancestors, and all elements in the bottom-right part of the plane
are descendants. The bottom-left part, consists of preceding elements, and the
top-right part consists of following elements. In Figure 3.4 we can see that the
2nd section of doc1.xml has one ancestor (the article), one descendant (the sec-
tion title) and one preceding element (the 1st section). Similarly the 1st section
of doc2.xml has one ancestor (the article), one descendant (the italicized text),
and one following element (the 2nd section).

3.2.2 Indexing Documents

For our document index we ignore the structure of the XML documents and index
the text content of the documents. Hence, this is a standard inverted index as used
for traditional document retrieval (see e.g., [Witten et al., 1999]). Figure 3.2 (c)
shows the document index for our example documents. Each term is associated
with a list of pairs of the form (fileID, tf) where fileID is the document identifier
and the tf is the frequency of the term in the document. In the figure, all terms
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have been case-folded and stopwords have been removed.

In the experiments in this thesis stopwords are removed using the English stop-
word list accompanying the Snowball text processing package [Snowball]. We do
not apply any stemming algorithm to normalize the collection.1 Table 3.2 (bot-
tom) shows some statistics of our baseline document index. We see that the size
of the document index is about 28% of the size of the original collection (See
Table 2.1 for collection size).

3.2.3 Indexing Elements

Since individual XML elements are our units of retrieval, any XML element is a
separate indexing unit. Hence the indexing unit can range from short elements
such as words in italics (<it>) to full blown articles (<article>). For each
element, all text nested inside it is indexed. Hence, the indexing units overlap.
Text appearing in a particular nested XML element is not only indexed as part
of that element, but also as part of all its ancestor elements. Figure 3.2 (d) shows
the overlapping element index for our example documents in Figure 3.2 (a). As
for the documents, each term is associated with a list of pairs (elementID, tf)
where elementID is the element identifier and tf is the term frequency of the
term in the element. For example, the term “dogs” appears twice in element
1 (doc1.xml:/article[1]), twice in element 3 (doc1.xml:/article[1]/sec[1]), once in
element 4 (doc1.xml:/article[1]/sec[1]/st[1]), etc. In the figure, all terms have
been case-folded and stopwords have been removed.

We use the same text processing for our element index as we used for the
document index. I.e., we remove stopwords using the English stopword list that
comes with Snowball, but do not apply any stemming algorithm. Table 3.2 shows
some statistics of our element index. We see that the overlapping element index
requires 3 times more storage than the original collection (See Table 2.1 for col-
lection size). Although the blow-up in disk storage is a concern, we will not
address it in our baseline system. We will discuss how we can reduce the size of
the element indices in Chapter 5.

3.3 Retrieval Model

Our retrieval approach used in this thesis is based on the application of language
models to information retrieval [Ponte and Croft, 1998, Berger and Lafferty, 1999,
Miller et al., 1999, Song and Croft, 1999, Hiemstra, 2001]. We choose to apply
language model for two reasons. First, language models provide an intuitive
framework for combining evidence from multiple levels of document hierarchy

1Some preliminary experiments using the English stemmer that comes with Snowball did
not give improvement in retrieval performance for the INEX collection.
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(see further 6.1). Second, non-content features can be incorporated in the ranking
formula in a principled manner (see further 4.2).

In the language model setting, documents are sorted by the probability P (Q|D)
of a query Q being randomly generated from a language model for a document
D. Ponte and Croft [1998] model this probability as

P (Q|MD) =
∏

w∈Q

P (w|MD) ·
∏

w/∈Q

(1− P (w|MD)) (3.1)

Hiemstra [2001], Miller et al. [1999], and Song and Croft [1999] model this prob-
ability as

P (Q|MD) =
∏
w

P (w|MD)qw (3.2)

where qw is the number of occurrences of term w in query Q.
All the experiments in this thesis are performed using a multinomial language

model with Jelinek-Mercer smoothing [Hiemstra, 2001]. For the implementation
we use our in-house language model extension [ILPS-Lucene] of the Lucene search
engine [Lucene]. We estimate a language model for each of the elements. The
elements are then ranked according to their prior probability of being relevant and
the likelihood of the query, given the estimated language model for the element:

P (e|q) ∝ P (e) · P (q|e). (3.3)

We assume query terms to be independent, and rank elements according to

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (3.4)

where q is a query made out of the terms t1, . . . , tk. To account for data sparseness
we estimate the element language model by taking a linear interpolation of two
models one for the element itself, and one for the collection. That is, P (ti|e) is
calculated as

λ · Pmle(ti|e) + (1− λ) · Pmle(ti), (3.5)

where Pmle(·|e) is a language model for element e; and Pmle(·) is a language model
of the collection. The parameter λ is called an interpolation factor (smoothing
parameter). We estimate the language models Pmle(·|e) and Pmle(·) using max-
imum likelihood estimation. For the element model we use statistics from the
element index. For the collection model there are several options we can use.
The straightforward one would be to use statistics from the element index, either
collection frequencies or element frequencies. However, one can argue that the
overlapping element index as a whole does not represent a natural language—
i.e., the terms are indexed in an overlapping manner and their frequency in the
index does thus not reflect their frequency in the original text (written in natu-
ral language). To account for this one can use a document index to estimate the
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collection model. The term frequencies in the article index do reflect the term fre-
quencies in the original collection. As for the element index, we can either choose
collection frequencies or document frequencies from the document index. Despite
the un-naturalness of the language, in our baseline experiments we will use—as
our collection model—the overlapping element index and element frequencies.

For ease of implementation purposes, the probability measure (equation 3.5)
is rewritten into a different format [Hiemstra, 2001, pages 75–76]. I.e., we use
a presence weighting scheme [Robertson and Spark Jones, 1976]; we divide the
formula with the collection model; and use a sum of logarithm weights instead of
a product of weights. The rewriting results in a scoring function s(q, e), for an
element e and a query q made of the terms t1, . . . , tk,

s(e, q) =
k∑

i=1

log

(
1 +

λ · tf(ti, e) · (
∑

t df(t))

(1− λ) · df(ti) · (
∑

t tf(t, e))

)
, (3.6)

where tf(t, e) is the frequency of term t in element e, df(t) is the element frequency
of term t, and λ is the smoothing parameter.

The language modeling framework allows us to easily model non-content
features—using the prior probability P (e). Prior probabilities have proven to
be useful for various retrieval tasks [Kraaij et al., 2002]. In our baseline system,
however, we will use a uniform prior, i.e., each element has the same prior proba-
bility. Later—in Section 4.2—we will look at how we can use the prior to enhance
our retrieval.

3.4 The Effect of Smoothing

Most retrieval models have a set of parameters that need to be tuned to get op-
timal performance out of the retrieval system. The tuning is important to adjust
the system to factors that are outside the model itself, such as the collection, the
retrieval task, etc. [Greiff and Morgan, 2003]. In the language model framework it
has been shown that the retrieval performance is generally sensitive to the value
given to smoothing parameters [Zhai and Lafferty, 2004]. Smoothing is applied
to account for data-sparseness and is therefore considered more useful for short
text units than longer ones. The data-sparseness problem is particularly evident
in a collection of very short texts, such as our collection of XML elements. In this
section we will look at tuning the smoothing parameter of the language model.
The smoothing parameter determines the ratio between the emphasis put on the
model of the retrieved element and the model of the whole collection. We will
look at how the tuning is affected by different query formats.

Query formats We tune the parameters for the three query formats introduced
in Section 2.3.3. First, we look at the title field; then, we look at the description
field; and finally, we look at the combination of the title and description fields.
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Table 3.3: Element retrieval: Optimal value for the smoothing parameter λ.
We report three quantizations: strict, generalized (gen), and specificity-oriented
generalized (sog2). Improvement is calculated relative to our baseline “vanilla”
system where λ = 0.15.

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

Title .95 .0530 39%*** .95 .0707 60%*** .95 .0536 50%***
Desc. .95 .0434 15% .80 .0593 41%*** .75 .0457 32%*
T+D .90 .0609 49%*** .90 .0801 61%*** .85 .0600 49%***

Quantizations The tuning of parameters requires that we have a known goal
function. As mentioned in Section 2.3.5, the appropriate goal function in XML
element retrieval is still an open research area. We will tune our system using
the three different quantizations discussed in Section 2.3.5. For each quantiza-
tion we will use an appropriate metric (see Section 2.5 for more information on
the experimental setup). Our aim is not to evaluate the appropriateness of one
quantization over another. Rather, we will look at the three quantizations inde-
pendently and look at the effect of assuming that a particular quantization is the
appropriate one.

Vintage As we pointed out in Section 2.3, the INEX evaluation framework has
changed from one year to another. For instance, the definition of the relevance
dimensions has changed slightly over the years. More importantly, the assessment
tool has changed substantially from one year to another. These changes may
have an impact on the effectiveness of our system. We will thus report separately
results for each vintage of the INEX collection.

3.4.1 Evaluation

We evaluate the effect of the smoothing parameter by exploring values between
0.05 and 0.95—using increments of 0.05. We report the optimal values for different
quantization methods, different query formats, and different vintages of the INEX
collection. We compare the performance of the optimal settings to a “vanilla”
baseline run, where λ is given the value 0.15. The value for the baseline is
chosen based on previous experiments which suggest that a low value should be
used for the smoothing parameter when we do ad-hoc retrieval using verbose
queries [Hiemstra, 2001, Zhai and Lafferty, 2004]. In the experiments by Zhai
and Lafferty [2004], the optimal value of the smoothing parameter was, however,
higher when short query formats were used. In advance, we would thus expect
our baseline to be close to the optimal settings for the verbose query formats, but
not for the title-only query format.
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Table 3.4: Element retrieval: Optimal value for the smoothing parameter λ,
for each vintage of the INEX collection. We report three quantizations: strict,
generalized (gen), and specificity-oriented generalized (sog2). Improvement is
calculated relative to our baseline “vanilla” system where λ = 0.15.

(a) Using the title field

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .95 .0385 133%* .95 .0591 108%*** .95 .0357 96%**
2003 .95 .0571 61%*** .95 .0595 72%*** .95 .0481 64%***
2004 .95 .0662 46%*** .95 .1068 57%*** .90 .0628 47%***
2005 .20 .0535 0.2% .90 .0643 32% .90 .0643 32%

(b) Using the description field

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .95 .0410 99%* .95 .0655 76%*** .95 .0393 55%
2003 .80 .0567 36%** .95 .0592 61%*** .90 .0457 49%*
2004 .95 .0739 90%* .75 .0716 44%*** .60 .0513 34%**
2005 .20 .0473 0.4% .50 .0490 15% .50 .0490 15%

(c) Using both the title and description fields

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .95 .0528 108%*** .95 .0907 103%*** .95 .0545 83%***
2003 .90 .0775 78%*** .95 .0768 90%*** .95 .0607 79%***
2004 .95 .0749 72% .80 .0983 56%*** .75 .0664 44%***
2005 .25 .0497 0.8% .70 .0626 27% .70 .0626 27%

Query formats Let us first look at the optimal smoothing settings for differ-
ent query formats, calculated over all available topics. The optimal values for
the smoothing parameter are shown in Table 3.3.2 The results are somewhat
unexpected. The optimal value for the smoothing parameter is high for all query
formats and all quantization methods. I.e., little smoothing is required and thus
a high weight is given to the element model. These results are not in-line with
the results of Zhai and Lafferty [2004], which showed that verbose queries needed
very aggressive smoothing settings. Figure 3.5 shows in more detail the effect
of changing the smoothing parameter. For all query formats the mean average

2Note that the MAP and MAep scores in Table 3.3 are considerably lower than what people
might be used to from document retrieval. However, evaluation scores are generally much lower
for XML element retrieval than document retrieval, partly, due to the large recall-base—the
large number of relevant elements (see Table 2.4).
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Figure 3.5: Element retrieval: Mean average (effort) precision of retrieval runs
using different query format and different values of the smoothing parameter.
Top: strict quantization. Middle: generalized quantization (gen). Bottom:
specificity-oriented generalized quantization (sog2).
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precision is low when a low value is used for λ. As λ increases, the mean aver-
age precision increases. For all query formats and all quantizations the optimal
smoothing improves over our “vanilla” baseline. The improvement is statistically
significant in all cases except one. This is indeed surprising since we expected our
vanilla baseline to be close to optimal settings for the two verbose topic formats.

If we compare the performance of different topic formats, we see that the title-
only format performs consistently better than the description-only format for all
quantizations. Combined, the two topic fields give better performance than the
title-only format for all quantizations.

Vintage Let us now look at the difference in performance between different
vintages of the INEX test collection. Table 3.4 shows the optimal value for the
smoothing parameter for the different vintages.

In terms of the strict quantization and mean average precision, the optimal
value of the smoothing parameter λ is high for all query formats in the 2002
to 2004 collection. In the 2005 collection, however, the optimal value for the
smoothing parameter λ is in the lower range for all the topic formats.

Let us now look at the retrieval performance in terms of generalized quanti-
zation and mean average effort precision. Table 3.4 shows that the optimal value
for the smoothing parameter is high for all years. I.e., the optimal value for the
2005 topics is now in the high end, and hence in sync with the previous years.

For the 2002–2004 collections, the optimal smoothing parameter settings give
significant improvements over the “vanilla” baseline settings. This holds generally
for all query formats and all quantizations. For the 2005 collection, the optimal
smoothing parameter settings do not give a significant improvement over the
baseline settings.

Overfitting When parameters of statistical models are evaluated it is common
practice to divide the evaluation collection into two parts: a training set and
a testing set. The training set is used to tune the system parameters and the
testing set is used to validate that the parameter settings were not “overfitted”
to the training data [Kearns et al., 1997]. Overfitting refers to the case where a
model performs well on the training data, but does not generalize to the process
which generates the data and thus does not perform as well on the testing data.

In our evaluation so-far we have not addressed the issue of overfitting. We have
found the optimal setting for the overall collection and for individual vintages
of the collection. From Table 3.4 we see that although the optimal values for
different vintages tend to be similar, they are not the same. We are thus running
the risk of overfitting the smoothing parameter to each vintage. We address the
overfitting issue by looking at the retrieval performance for each vintage using the
overall optimal parameter settings. Hence, we test whether our overall parameter
settings carry over to individual vintages.
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Table 3.5: Element retrieval: Performance for each vintage of the INEX col-
lection, using the overall optimal parameter settings. Improvement is calculated
relative to our baseline “vanilla” system where λ = 0.15.

(a) Using the title field

strict (λ = 0.95) gen (λ = 0.95) sog2 (λ = 0.95)
MAP Impr. MAep Impr. MAep Impr.

2002 .0385 133%* .0591 108%*** .0357 96%**
2003 .0571 61%*** .0595 72%*** .0481 64%***
2004 .0662 46%*** .1068 57%*** .0624 46%***
2005 .0491 -8.1% .0640 31% .0640 31%

(b) Using the description field

strict (λ = 0.95) gen (λ = 0.80) sog2 (λ = 0.75)
MAP Impr. MAep Impr. MAep Impr.

2002 .0410 99%* .0605 62%*** .0368 45%*
2003 .0529 27% .0574 56%*** .0448 46%**
2004 .0739 90%* .0708 43%*** .0510 34%*
2005 .0062 -87% .0469 10% .0479 12%

(c) Using both the title and description fields

strict (λ = 0.90) gen (λ = 0.90) sog2 (λ = 0.85)
MAP Impr. MAep Impr. MAep Impr.

2002 .0511 101%** .0871 95%*** .0516 73%***
2003 .0775 78%*** .0751 86%*** .0585 73%***
2004 .0649 55% .0963 53%*** .0656 42%**
2005 .0460 -6.7% .0610 24% .0622 26%

Table 3.5 shows the results of using the overall optimal parameter settings. We
see that using the overall optimal settings instead of per-vintage optimal settings
we generally get a significant improvement over our “vanilla” baseline. This means
that our overall optimal parameter settings are not particularly fitted to a single
vintage, but give reasonable results for all vintages. The notable exception is the
2005 collection using the strict quantization. There is a decrease in performance,
but not significant. The -87% decrease for the 2005 vintage using the description-
only field can be to a large extent be explained by the performance of a single
topic—topic 230—which has only 2 elements that are assessed highly exhaustive
and highly specific (a single list-item and its enclosed paragraph). The MAP of
the “vanilla” baseline run for that topic is 1.0, but the MAP of the optimized run
is 0.0091 for the topic.
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Table 3.6: Document retrieval: Optimal value for the smoothing parameter
λ when evaluated in terms of MAP. Improvement is calculated relative to our
baseline “vanilla” system where λ = 0.15.

λ MAP Impr.
Title-only .55 .3617 3.6%
Description-only .10 .3028 0.6%
Title+description .15 .3556 –

Summary Let us now summarize our observations on the effect of the smooth-
ing parameter:

High λ: The optimal value for the smoothing parameter is very high, about 0.95.
This holds generally for all query formats and quantizations.

2005: The 2005 topics are a striking exception. The optimal value for the λ is low
when measured in terms of mean average precision using strict quantization.

We will analyze these results in more detail in Section 3.5. First, we compare our
element retrieval settings to the optimal settings for document retrieval.

3.4.2 Document Retrieval

One of the aims of this chapter was to contrast two tasks: element retrieval and
document retrieval. In this sub-section we will look at the document retrieval
task (see Section 2.5 for the details on the setup of the document retrieval task).
Table 3.6 shows the optimal value for the smoothing parameter for the different
topic formats; and Figure 3.6 shows the mean average precision for the document
retrieval task, over different values of the smoothing parameter λ. The optimal
values for the smoothing parameter λ are in-line with the results of Zhai and
Lafferty [2004]. The verbose topics need aggressive smoothing (low λ), but the
title-only topics need less smoothing (a higher λ). Note that we are using the
same topics as we did for the element retrieval experiments. These results do thus
indicate that the unexpected values we saw for the element retrieval task are the
result of the task rather than the topics.

Vintage Table 3.6 shows the document retrieval evaluation for individual vin-
tages of the INEX collection. The results for the individual vintages are similar
to the overall results, with a few notable exceptions. The optimal values for the
2004 topic set are lower than for the remaining topic sets. This is, in particular,
visible for the query formats using the title field. This may be caused by the fact
that the 2004 queries were relatively long and may thus require more smoothing
(see Table 2.2 on page 25). The 2005 query formats which include the descrip-
tion field require less smoothing that their counterparts in the previous years.
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Figure 3.6: Document retrieval: Mean average precision for different values of
the smoothing parameter λ.

Table 3.7: Document retrieval: Optimal parameter settings of each “vintage” of
the INEX collection. Improvement is calculated relative to our baseline “vanilla”
system where λ = 0.15.

(a) Title-only (b) Desc.-only (c) Title+desc.

λ MAP Impr.
2002 .45 .2920 3.1%
2003 .55 .3380 5.8%
2004 .15 .4132 –
2005 .55 .4269 17%*

λ MAP Impr.
2002 .10 .2437 0.4%
2003 .15 .3060 0.0%
2004 .05 .3846 4.5%
2005 .40 .2888 5.1%

λ MAP Impr.
2002 .35 .3104 1.5%
2003 .45 .3516 1.9%
2004 .10 .4174 1.9%
2005 .70 .3791 8.0%

The reason for this is not clear, as many factors may play a role in causing this
difference. We conjecture that the difference may be explained by a change in
the role of the description field in 2005. In that year a structured version of the
query was added to many of the topics and the text in the description field was
changed—from being a more verbose description of the content of the desired
results—to being a description of the syntactic form of the structured query.

3.5 Discussion

We have found that the optimal smoothing parameter settings differ considerably
between element retrieval and document retrieval. While aggressive smoothing is
useful for document retrieval, smoothing did not prove useful for element retrieval.
In order to try to explain this difference we look at the fundamental difference
between element retrieval and document retrieval—namely, the unit of retrieval.
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Figure 3.7: Element retrieval: Average length of the top-10 results of runs using
different values for the smoothing parameter λ.

3.5.1 Length

Let us first look at the length of retrieved units. Figure 3.7 shows the average
length of the top-10 elements retrieved using different values of the smoothing
parameter λ. The figure shows results for the three query formats. From the figure
we can see a clear length-bias effect. As we apply less smoothing—assign higher
value to λ—the average length of the results increases. The effect is greater for
the verbose query formats than for the title-only queries. This length effect can be
explained by the connection between the smoothing parameter and coordination
level ranking [Hiemstra, 2001, Appendix B]. Coordination level ranking is a partial
ranking of results such that all results containing k query terms are ranked above
results containing k− 1 query terms. As the smoothing parameter approaches 1,
the ranking approaches coordination level ranking. I.e., as we increase λ we put
more emphasis on results containing all query terms. Obviously, short elements
are less likely to contain all query terms than longer ones. Hence, the average
length of elements increases when we increase λ. This effect is greater for verbose
queries, simply because they contain more terms and hence the presence of more
terms is required in the result elements.

Let us now do the same analysis for the document retrieval task. Figure 3.8
shows the average length of the top-10 retrieved documents for different values of
the smoothing parameter. We see the same length-bias effect for documents as
we saw for the elements. The effect is, however, not as dramatic as in the element
retrieval case. In sum, decreasing the amount of smoothing—i.e., increasing the
value for the smoothing parameter—has a length-bias effect for both the element
retrieval and document retrieval tasks. The effect is, however, more dramatic for
the element retrieval task.
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Figure 3.8: Document retrieval: Average length of the top-10 results of runs
using different values for the smoothing parameter λ.

3.5.2 Unit of Retrieval

Let us now take a closer look at the element retrieval task and analyze the tag-
names of the retrieved elements. Table 3.8 shows the frequency of different tag-
names in the top-10 results for the INEX 2002–2005 topics. The table shows
the average number or elements appearing in the top-10 results, averaged over
all topics. The tables on the left hand side show the results of using “normal”
smoothing settings (λ = 0.15); and for contrast the tables on the right hand side
show the results of using the value 0.95 for the smoothing parameter. For the
title-only query format, paragraphs (<p>) are the most frequent tag-name in the
list of top-10 results for both runs. For the baseline run short element types such
as titles (<atl>, <ti>, <st>), emphasized text (<it>, <b>), and headings (<h>)
are frequent in the top-10. The short elements are less frequent in the run using
λ = 0.95, but the frequency of sections (<sec>, <ss1>) has increased. We also
see that the two types of very long elements—articles (<article>) and bodies
(<bdy>)—appear in the list for the high λ, but are absent in the list for our
baseline. For the verbose query formats, the baseline run is similar to that for
the title-only query. If we use a high value for λ we see an increase in frequency
of longer element types.

3.5.3 Why is the 2005 Vintage Different?

In this chapter we have seen that the 2005 vintage of the INEX test collection
is considerably different from the 2002–2004 vintages. There are several factors
that can play a role in the difference. First, characteristics of the topics can be
different from one year to another—it is well-known that the topics can vary con-
siderably between yearly cycles of evaluation initiatives [Harman, 2005]. Second,
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Table 3.8: Most frequent tag-names appearing in the top-10 results. The
Avg.freq. is the number of results in the top-10 that have the corresponding
tag, averaged over all topics. Standard deviation is shown in brackets.

(a) Title-only queries

λ = 0.15
Tag Avg. freq.
p 2.39 (2.07)
atl 1.65 (2.51)
it 1.19 (1.85)
h 0.51 (1.22)
st 0.45 (0.88)
ip1 0.42 (0.77)
ti 0.41 (1.22)
b 0.38 (0.90)
sec 0.26 (0.62)
bb 0.23 (0.70)

λ = 0.95
Tag Avg. freq.
p 2.27 (1.88)
sec 1.03 (1.21)
atl 0.94 (2.04)
ip1 0.60 (0.77)
it 0.55 (1.42)
ss1 0.53 (0.80)
article 0.50 (1.03)
bdy 0.44 (0.87)
bb 0.27 (0.99)
ti 0.26 (0.99)

(b) Description-only queries

λ = 0.15
Tag Avg. freq.
p 3.23 (2.07)
atl 1.24 (2.06)
it 0.71 (1.39)
ip1 0.66 (0.83)
sec 0.44 (0.74)
ti 0.40 (1.10)
st 0.40 (0.81)
b 0.30 (0.90)
ss1 0.29 (0.60)
bb 0.26 (0.98)

λ = 0.95
Tag Avg. freq.
article 1.93 (1.68)
sec 1.68 (1.36)
bdy 1.63 (1.54)
p 1.62 (1.88)
ss1 0.49 (0.82)
ip1 0.41 (0.75)
bm 0.32 (0.72)
atl 0.30 (1.28)
app 0.21 (0.48)
list 0.13 (0.38)

(c) Title+description queries

λ = 0.15
Tag Avg. freq.
p 2.55 (2.04)
atl 1.55 (2.34)
it 0.94 (1.67)
ip1 0.59 (0.83)
st 0.40 (0.83)
ti 0.40 (1.21)
sec 0.38 (0.70)
h 0.34 (0.94)
b 0.33 (0.93)
bb 0.29 (0.96)

λ = 0.95
Tag Avg. freq.
article 1.68 (1.59)
p 1.55 (1.65)
sec 1.53 (1.25)
bdy 1.36 (1.39)
ss1 0.52 (0.72)
atl 0.48 (1.51)
ip1 0.42 (0.73)
bm 0.41 (0.81)
bb 0.21 (0.83)
it 0.21 (0.77)
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the assessors’ understanding of the notions of relevance can change between years.
This effect may be introduced by a change in the assessment guidelines, the in-
creased experience of veteran assessors, and the ratio between veteran and novice
assessors. Third, the changes in the assessment interface can affect the relevance
assessments. In 2005, the interface for assessing specificity changed fundamen-
tally. Instead of assigning an explicit specificity value for each element, specificity
values were derived from “yellow-marking” of relevant text (see Section 2.3.4 for
more details on the change in assessment interface).

Without further analysis we cannot explain the reason for the different be-
havior of the 2005 vintage. We will return to this issue when we analyze the
element length of the INEX assessments in Chapter 4; and when we analyze the
concept of unit of retrieval and the INEX assessments in the Chapter 5. The dif-
ferent behavior of the 2005 vintage will also feature in our evaluation of retrieval
effectiveness in Chapters 4, 5, 6, and 7.

3.6 Conclusions

In this chapter we have applied our “off the shelf” document retrieval system to
both the XML element retrieval task and XML document retrieval task. The
research question we wanted to address in this chapter was:

How is element retrieval different from document retrieval?

First, let us compare element and document retrieval in terms of the optimal
value for the smoothing parameter.

• Element retrieval performance is more sensitive to the value of the smooth-
ing parameter.

• For the element retrieval task, applying little smoothing gave the best re-
trieval performance.

• For the document retrieval task, aggressive smoothing gave the best retrieval
performance.

The values for the document retrieval case are in line with results in the litera-
ture [Zhai and Lafferty, 2004, Hiemstra, 2001].

We analyzed the average length of retrieved elements and retrieved documents
and made the following observation:

• For both tasks, decreased smoothing leads to the retrieval of longer retrieval
units.

• The length-bias effect is, however, more dramatic for the element retrieval
task.
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Combining the observations for the optimal smoothing parameter values and the
length-bias effect leads us to conjecture that an important difference between
the element retrieval task and the document retrieval task lies in the effect of
length normalization. In the next chapter (Chapter 4) we will look at length
normalization in more detail.

We analyzed the tag-names of elements returned by the optimal smoothing
parameter settings and compared it to the tag-names of elements returned by our
“vanilla” baseline. There is a relation between the smoothing parameter settings
and the units of retrieval. I.e., changing the smoothing parameter results in a
difference in the type of elements retrieved. In Chapter 5 we take a closer look
at the relation between retrieval performance and unit of retrieval.



Chapter 4

Length Normalization

In the previous chapter we studied a baseline system for XML element retrieval.
Based on our study of the effects of the language model smoothing parameter we
made two main observations:

• The length of retrieved elements is sensitive to the parameter settings of
the retrieval model.

• Retrieval performance is also sensitive to the parameter settings.

In this chapter we look closely at the relation between length and retrieval per-
formance. Our main question is:

What is the impact of length normalization for XML retrieval?

We take a look at length of relevant elements, and we extend our baseline retrieval
formula with so-called length-priors. Before going into details, we provide a high
level overview of these three main themes of the chapter.

In Section 4.1 we look at the length of the INEX assessments. We have two
main research questions:

• What are the characteristics of element assessments in terms of length?

• How is the length distribution of relevant elements different from the dis-
tribution of relevant documents?

Our main finding is that there is a clear length bias in the INEX element as-
sessments. We see that this bias is much grater for element retrieval than for
document retrieval.

Prior probabilities have proven useful technique for other retrieval tasks [Kraaij
et al., 2002]. In Section 4.2 we investigate the following research question:

• Can we improve the effectiveness of element retrieval by using length priors?
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We find that length priors give significant improvements in retrieval performance.
We also show that their effect depends on the query format; they are more effective
for verbose queries than for short queries.

After the two sections outlined above, we provide a brief conclusion.

The work in this chapter is a considerably extended version of previously pub-
lished work [Kamps et al., 2003b, 2004a, 2005a].

4.1 Length in the Assessments

A major challenge of the XML element retrieval task is to identify the appropriate
unit of retrieval. In principle, any element can be retrieved. However, it is not
likely that all elements are equally suited as a retrieval unit. To better understand
the element retrieval task we need to get some idea about the kind of elements we
are dealing with. Thus, we look at the characteristics of the elements in the INEX
document collection. In particular we investigate whether the characteristics of
relevant elements are different from the overall element characteristics. More
precisely, we compare two sets of elements. On the one hand, the set of all
elements in the collection. On the other hand, the set of elements assessed strictly
relevant in the INEX relevance assessment process—i.e., elements assessed as both
highly exhaustive and highly specific. We compare these two sets in terms of two
types of characteristics. First, in Section 4.1.2 we look at the distribution of
element lengths in the two sets. Later, in Section 5.1 in the next chapter we look
at the frequency of certain tag-names in the two sets.

4.1.1 Experimental Setup

Our analysis of element characteristics is based on our overlapping element index
(see Section 3.2). We look at the characteristics of elements that are retrievable
by our system. Hence, we only count elements that contain at least one term
in our element index. Out of the 8,222,075 elements in the INEX collection
6,157,724 elements are in our element index. The remaining 2,064,351 elements
do not contain any terms and are thus not indexed. There are two distinct types
of “empty elements” that do not enter our element indices.

• Elements that are empty in the collection. There are 269,239 elements
of this type. The most frequent tag-names of empty elements are point-
ers to external images (<art> 81,544), table entries (<entry> 61,580), ta-
ble column specifications (<colspec> 32,527), and table span specifications
(<spanspec> 29,402).

• Elements that contain only stopwords and are thus empty after the text has
gone through a pre-processing stage. There are 1,795,112 elements of this
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Table 4.1: Exponential-sized bins.

Bin 1 2 3 4 5 6 7 8 9 10
Log max length 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Max length 1 3 5 10 17 31 56 100 177 316
Bin 11 12 13 14 15 16 17 18 19 20
Log max length 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
Max length 562 1000 1778 3162 5623 10000 17782 31622 56234 100000

type. The most frequent tag-names of elements containing only stopwords
are italicized text (<it> 904,352), first names (<fnm> 190,460), mathematics
in text (<tmath> 170,549) and subscripts (<sub> 154,477).

The number of elements indexed is rather sensitive to the type of text pre-
processing that is being used. In a previous publication [Kamps et al., 2005a]
we report statistics using a different pre-processor than is used in this thesis. Our
previous approach resulted in 6,779,686 elements being indexed. There are two
main differences between the previous and current approach. First, math ele-
ments were not indexed in the previous approach. Second, single character words
are considered as stopwords in our current approach, but were included in our
index in the previous analysis. The large number of <it> elements that contain
only stopwords is mainly due to the use of the <it> tag to present single charac-
ter variable-names in mathematical texts, e.g., “... let <it>N</it> denote

a natural number ...”. The differences do result in noticeable difference in
index statistics. However, the differences do not cause significant differences in
retrieval performance, since the differences do not affect terms that are frequently
used in queries. This can be verified empirically by comparing the results pre-
sented in this thesis and the results presented in the previous publication.

4.1.2 Length of Relevant Elements

To better understand the importance of element length for XML retrieval, we
analyze the length of XML elements versus the length of relevant XML elements.
We do this by ordering the elements in the INEX collection by length, and group-
ing them into several “bins” [Singhal et al., 1996b]. As before, we calculate length
as the number of term occurrences in an element. Following Kraaij et al. [2002],
we use exponential-sized bins. Specifically, we use 20 bins on an exponential scale
ranging from 100 (=1) to 105 (=100,000). Table 4.1 gives the length of the longest
element for each of the bins.

Figure 4.1 (a) shows the number of XML elements for each of the bins. The
distribution of elements is heavily skewed toward short elements. The average
XML element is short—with a length of 28 terms—while the median length of
elements is only 2 terms.
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(b) Length distribution of the INEX 2002-2005 strict assessments

Figure 4.1: Top: Length distribution of XML elements in the INEX IEEE Com-
puter Society Collection. Bottom: Length distribution of the strict assessments
in INEX 2002–2005. Micro: the fraction of elements in each bin. Macro: the
fraction of elements in each bin, averaged over topics.

We also investigate the length of relevant XML elements, by using the strict
assessments of INEX 2002–2005 CO topics. Figure 4.1 (b) shows the distribution
of relevant XML elements over the 20 bins described above. We show both the
absolute fraction of elements in each bin (micro), and the fraction normalized
by the total number of strict relevant assessments for each topic (macro). In
the micro distribution frequencies are not normalized for individual topics. This
means that a topic with many relevant elements will have a greater impact on
the distribution than a topic with few relevant elements. In the macro distribu-
tion the normalization means that all topics have the same weight in the overall
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Table 4.2: Average and median length of elements in each assessment set and
in the collection as whole. For the assessments we calculate mean average length
(macro average) and mean median length (macro median) over different topics.

Average Median
micro macro micro macro

Collection 28 2
All assessments 730 921 79 661
2002 assessments 1294 1515 189 1119
2003 assessments 876 1101 190 830
2004 assessments 333 782 43 472
2005 assessments 110 220 35 181

distribution. This means that a topic with few relevant elements has the same
impact as a topic with many relevant elements.

From Figure 4.1 we see that there is a radical difference between the length
distributions of relevant XML elements and the distribution of all XML elements
in the collection. Most of the elements in the collection are very short, having
three or fewer terms (bins 1–2). The relevant elements do have a more even
distribution, with a peak around elements having 32–100 terms (bins 7–8). There
is another small peak around elements containing 1,778–5,623 terms (bins 14–15).
Table 4.2 shows the average and median length of the assessments, compared
to the collection. We see that the length of the “average relevant element” is
considerably greater than the length of the “average element.” I.e., the average
length of the elements in the collection is 28 terms but the average length of
relevant elements is 730 terms (921 terms if we use macro average).

Figure 4.2 shows the length distribution of strict assessments, separately for
each year of the INEX test collection. If we compare the assessments from one
year to another we see that there is a clear trend toward shorter elements each
year. Table 4.2 reveals that the average length of relevant elements has changed
from 1,294 terms in 2002 (1,515 terms if we use macro average) to 110 terms in
2005 (220 terms if we use macro average). However, even if the length of the
“average relevant element” is getting smaller, it is still considerably longer than
the length of the “average element” in the collection—which is only 28 terms.

The differences we see in the length of assessments from one year to another
may be influenced by a number of factors.

• First, the topics are different from one year to another. The topic authors
(and INEX organizers responsible for selecting topics) may have gone for
more specific information needs—as opposed to general information needs—
as years went by.

• Second, the assessors are not the same from one year to another. The
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Figure 4.2: Length distribution of elements assessed strictly relevant in the
INEX 2002–2005 test collections. Micro: the fraction of elements in each bin.
Macro: the fraction of elements in each bin, averaged over topics.

understanding of the assessment process may differ between veteran and
novice assessors.

• Third, the assessment interface has changed from one year to another.

From Figure 4.2 we see that the 2005 assessments are strikingly different from the
remaining years in the sense that the longest elements have disappeared from the
assessments. The bins 13 and above are populated in the 2002–2004 assessments,
but hardly in the 2005 assessments. I.e., the longest elements in the collection
are no longer considered as being both highly exhaustive and highly specific. The
strikingly different assessments of 2005 coincide with a fundamental change in
the assessment interface. The introduction of the “yellow marker” in 2005 is
a clear example of how changes in the assessment interface may influence the
assessments. Users seem not to be likely to highlight a long piece of text, whereas
before they had no problem with assessing a long piece of text as highly specific.

The comparison of length distributions that we present here is intended to
give insight into general trends in assessment characteristics between years. A
more principled statistical analysis of the distributions is left as future work.

Let us now summarize our observations of our length analysis:

• The length distribution of the collection is very different from the length
distribution of relevant elements.
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Table 4.3: Average and median length of documents in each assessment set and
in the collection as a whole. We calculate mean average length (macro average)
and mean median length (macro median) over different topics.

Average Median
micro macro micro macro

Collection 2,839 2,378
All assessments 3,372 3,602 2,850 3,383
2002 assessments 3,503 3,744 2,875 3,550
2003 assessments 3,403 3,500 2,984 3,327
2004 assessments 3,413 3,503 2,852 3,266
2005 assessments 3,081 3,687 2,637 3,423

• The average element is very short.

• The average relevant element is substantially longer.

• The “very long” elements (in bins 13–18) that appeared in the 2002–2004
assessments are not present in the 2005 assessments.

4.1.3 Length of Relevant Documents

For comparison, we repeat the analysis that we have just conducted, but now
with documents instead of elements. I.e., we look at the length distribution of the
documents in the INEX IEEE document collection. The aim of this analysis is to
stress further the fundamental difference between element retrieval and document
retrieval.

Figure 4.3 (top) shows the number of documents for each of the bins. Com-
pared to the element length distribution, the document length distribution is
more even. There is no single bin that is completely dominating and there is
less difference between the mean and the median. For the documents, the mean
length is 2,839 terms and the median length is 2,378 terms. Let us now look at
the distribution of relevant documents. As mentioned in Section 2.5, we define as
relevant a document which contains a highly exhaustive element. The distribu-
tion of relevant documents over the length bins is shown in Figure 4.3 (bottom).
(See Figure 4.4 for individual topic sets). The distribution of relevant documents
is quite similar to the overall length distribution of documents. There is some
length bias in the assessment set, but not as extreme as we saw in the element
case (Figure 4.1).

Table 4.3 shows in more detail the statistics of the relevant documents. We
see that the length of the “average relevant document” is close to the length of
the “average document.” This is quite different from the element retrieval case
(Table 4.2).
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Figure 4.3: Top: Length distribution of documents in the INEX IEEE Computer
Society Collection. Bottom: Length distribution of articles containing a highly
exhaustive element in the INEX 2002–2005 assessments. Micro: the fraction of
elements in each bin. Macro: the fraction of elements in each bin, averaged over
topics.

The main lesson we can draw from this section is that one of the main differ-
ences between element retrieval and document retrieval is the relation between
the length distribution of retrievable items and relevant items.

• For document retrieval the distributions are similar, with a small bias to-
wards longer documents in the set of relevant items.

• For element retrieval the distributions are completely different, with a great
length bias in the set of relevant items.

In the following section we will look at how we can incorporate this length bias
into our element retrieval framework.
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Figure 4.4: Length distribution of documents having an element assessed highly
exhaustive in the INEX 2002–2005 collections. Micro: the fraction of elements in
each bin. Macro: the fraction of elements in each bin, averaged over topics.

4.2 Length Priors

We have seen in Section 4.1.2 that there is a length bias in the assessments,
in favor of longer elements. Furthermore, we have seen in Section 3.5 that the
smoothing parameter can work as a length-bias generator. In this section we will
see what happens if we introduce this length-bias explicitly using length priors.
This sort of length normalization has proved to be effective for collections where
there is a length bias in the assessments [Singhal et al., 1996a]. In the language-
model framework, length priors—and other prior probabilities—have been used
successfully in other retrieval tasks, such as entry page search [Kraaij et al., 2002].

In our implementation of length priors, we follow Kraaij et al. [2002] and
assign a prior probability to an element e using a linear function of the element
length:

P (e) = C · |e|, (4.1)

where |e| is the number of terms in e and C is a constant that can be ignored in the
ranking formula. We update our scoring formula (Equation 3.6) to incorporate
the length prior,

sprior(e, q) = log(|e|) + s(e, q). (4.2)

We refer to this length prior as the baseline length prior.
In addition to the baseline length prior, we introduce another prior which
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Table 4.4: Baseline length prior : Optimal value for the smoothing parameter
λ, based on both MAP and MAep. Improvement is calculated relative to the
corresponding results for the uniform element prior (Table 3.3 on page 49 ).

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

Title .15 .0882 66%*** .25 .0957 35%*** .20 .0729 36%***
Desc. .15 .0819 89%** .15 .0793 34%*** .15 .0623 36%***
T+D .80 .0699 15%*** .70 .0890 11%*** .55 .0671 12%***

we refer to as the flexible length prior. The flexible length prior is a non-linear
function of the element length:

P (e) = C · |e|β. (4.3)

We implement this length prior by introducing a parameter β into our scoring
formula (Equation 4.2). Our new scoring formula then becomes:

sprior(e, q) = β · log(|e|) + s(e, q). (4.4)

We refer to β as the length prior parameter. The goal of the introduction of the
baseline length prior and the flexible length prior is to demonstrate the importance
of length normalization for XML element retrieval. Experiments with other types
of length priors—and more generally other types of priors—is left as future work.

4.2.1 Experiments

Baseline length prior

First we look at the effect of the baseline length prior where we set β = 1.0.
We look at the effect of the length prior for different values of the smoothing
parameter λ. Optimal values for the smoothing parameter can be seen in Ta-
ble 4.4. We compare our baseline length prior settings to the optimal settings
of the smoothing parameter when a uniform prior was used (Section 3.4). When
a length prior is used, the optimal value of the smoothing parameter moves to
the lower range for both title-only and description-only query formats. For the
combined title and description format the optimal settings stay at the higher end.
The optimal value for the smoothing parameter has moved to the expected range
for the title-only and the description-only queries, but the combined title and
description query format still gives unexpected results—the λ is still high.

As for the effectiveness of the baseline length prior, we see from the table
that for all query formats and all quantizations the baseline length prior runs
significantly outperform the runs where a uniform element prior was used. The
improvement is far greater for the title-only and description-only query formats,
than for the combined query format.
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Figure 4.5: Baseline length prior : Mean average (effort) precision for different
values of the smoothing parameter.
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Table 4.5: Baseline length prior : Optimal value for the smoothing parameter
λ, for each “vintage” of the INEX collection, based on both MAP and MAep.
We report three quantizations: strict, generalized (gen), and specificity-oriented
generalized (sog2). Improvements are calculated relative to the corresponding
results for the uniform element prior (Table 3.4 on page 50).

(a) Using the title field

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .20 .0709 84%** .95 .0932 58%*** .80 .0540 51%***
2003 .15 .1215 113%* .30 .0834 40%** .25 .0672 40%**
2004 .05 .1062 60% .20 .1242 31%*** .15 .0851 36%***
2005 .05 .0539 0.7% .15 .0817 27%* .15 .0817 27%*

(b) Using the description field

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .05 .0573 40% .25 .0834 21% .05 .0505 28%
2003 .10 .1196 111%* .25 .0834 41%*** .15 .0679 48%**
2004 .05 .0999 35% .15 .0928 30%*** .15 .0680 33%***
2005 .15 .0483 2.1% .10 .0608 24%* .10 .0608 24%*

(c) Using both the title and description fields

strict gen sog2
λ MAP Impr. λ MAep Impr. λ MAep Impr.

2002 .95 .0606 15% .90 .0995 10%*** .85 .0598 10%***
2003 .80 .0909 17%** .85 .0870 13%*** .85 .0691 14%***
2004 .95 .0859 15%* .50 .1091 11%*** .35 .0756 14%***
2005 .10 .0503 1.1% .35 .0693 11%*** .35 .0693 11%***

Figure 4.5 shows in more detail the effect of changing the smoothing param-
eter. From the figure we clearly see the difference between the effect on the
title-only and description-only query formats—which peak with λ in the lower
range—and the effect on the title+description query format—which peaks with λ
in the upper range. The form of the curve for the title+description query format
is similar to the curves we saw in the previous chapter when we studied the uni-
form element prior (Figure 3.5). This might indicate that the title+description
query format requires more length bias than the shorter query formats. We will
look at this when we study the flexible length prior experiments below.

If we compare the performance of different topic formats we see that the title-
only query format outperforms the other two. This is different from the case
where a uniform prior was used where the combined query format outperformed
the others.
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Vintage Table 4.5 shows the optimal settings for the smoothing parameter for
our runs using the baseline length prior. We see that the baseline length prior
generally improves performance compared to the case where an uniform prior
was used. The 2005 vintage is again different from the other years. For the 2005
collection there is hardly any improvement of using the length prior if we measure
performance in terms of strict quantization and mean average precision. For the
generalized quantizations there is, however, a considerable improvement. For the
strict quantization the improvements for individual topic sets are seldom statisti-
cally significant. For the generalized quantizations significant improvements are
more frequent. There are at least two factors that may play a role here. First of
all, there may be more variance in the strict quantization of the assessment than
the generalized quantization. The strict quantization considers only a fraction of
the assessment values while the generalized quantizations consider all assessment
values. The strict quantization might thus be more sensitive to the variance in
“assessment style” of different assessors. The other factor that may play a role
here is the number of assessed topics. For the strict quantization there are on
average 25 topics in each vintage while for the generalized quantizations there
are on average 30 topics in each vintage. The difference between the quantiza-
tions lies in the topics which do not contain any element which is both highly
exhaustive and highly specific (see Table 2.3 for more details on per-vintage topic
counts).

Overfitting As for the experiments in the previous chapter we address the risk
of overfitting by looking at the performance of using the overall optimal parameter
settings for each vintage of the INEX collection. The evaluation results are shown
in Table 4.6. We see that the improvements continue to be significant for a
majority of the topic sets, even if we use the overall optimal parameter settings.

Summary We can summarize the effect of the baseline length prior in several
observations:

• Using the baseline length prior gives a significant improvement in terms of
all quantizations using mean average (effort) precision

• The optimal value for the smoothing parameter, λ, is usually in the lower
range when the baseline length prior is used.

• The title-only and description-only query formats profited much more from
the baseline length prior than the combined title and description query
format

• Again, the 2005 topics are an exception, as there is only a negligible im-
provement of using the baseline length prior when measured in terms of the
strict quantization and mean average precision
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Table 4.6: Baseline length prior : Performance for each vintage of the INEX col-
lection, using the overall optimal parameter settings. Improvement is calculated
relative to the corresponding results for the uniform element prior (Table 3.5 on
page 53).

(a) Using the title field

strict (λ = 0.15) gen (λ = 0.25) sog2 (λ = 0.20)
MAP Impr. MAep Impr. MAep Impr.

2002 .0699 82%** .0895 51%*** .0525 47%***
2003 .1215 113%* .0833 40%** .0672 40%**
2004 .1056 60%* .1237 30%*** .0851 36%***
2005 .0531 8.1% .0814 27%** .0817 27%**

(b) Using the description field

strict (λ = 0.15) gen (λ = 0.15) sog2 (λ = 0.15)
MAP Impr. MAep Impr. MAep Impr.

2002 .0488 19% .0785 30%** .0494 34%*
2003 .1191 125%* .0828 44%*** .0679 52%**
2004 .0941 27% .0928 31%*** .0680 33%***
2005 .0483 679% .0601 28%* .0601 26%*

(c) Using both the title and description fields

strict (λ = 0.80) gen (λ = 0.70) sog2 (λ = 0.55)
MAP Impr. MAep Impr. MAep Impr.

2002 .0596 17%** .0960 10%*** .0564 9.3%**
2003 .0909 16%** .0758 13%*** .0664 14%**
2004 .0807 20% .1071 11%*** .0745 14%***
2005 .0465 1.1% .0666 9.3%*** .0681 10%***
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Table 4.7: Flexible length prior : Optimal values for the smoothing parameter
λ and the length-prior parameter β. Improvement is calculated relative to the
corresponding results for the baseline length prior (β = 1.0) (Table 4.4 on page 70)

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

Title .20 1.5 .1000 13% .45 1.5 .0965 0.9% .20 1.0 .0729 –
Desc. .25 2.0 .0827 1.0% .15 1.0 .0793 – .15 1.0 .0623 –
T+D .15 3.0 .1031 47%** .25 2.0 .1011 14%*** .15 2.0 .0775 15%***

Before we discuss the effect of length priors in more detail, let us look at the effect
of the flexible length prior.

Flexible length prior

Let us now turn our attention to the effect of changing the length prior param-
eter β. Table 4.7 shows the optimal settings for both the smoothing parameter
and our length-prior parameter. The optimal values for the smoothing parameter
differ slightly for different topic formats, but are all quite low. I.e., considerable
smoothing is required. The value is slightly higher for the title-only query format
than for the verbose formats. These results are in sync with results from Zhai
and Lafferty [2004]. The optimal values for the length-prior parameter also differ
between the topic formats. Using the strict quantization the title-only queries
require the lowest value and the combination of title and description require the
highest value. That is, the longer query formats require a higher value for the
length prior parameter than the shorter query formats. The performance im-
provement is, however, only significant in the case of the combined query format.
Using the generalized quantization (gen) the flexible length-priors did not im-
prove over the baseline length prior for the description-only query format. One
can say that the same hold for the title-only query format as well, since the
improvement of using the flexible length prior is very small. For the combined
query format the improvement of using the flexible length prior is again signifi-
cant. Using the specificity-oriented quantization (sog2) the flexible length prior
does not give improvements for the title-only and description-only query formats.
For the combined query format the flexible length-prior again gives a significant
improvement when compared to the baseline length-prior.

Figure 4.6 shows in more detail the effect of changing the smoothing param-
eter, using the optimal length-prior settings. The main difference between the
curves in Figure 4.6 and the corresponding curves for the baseline length prior
(Figure 4.5) is that when using the flexible length prior the title and description
runs “catch-up” with the title only runs and their optimal smoothing parameter
settings move to the lower range—i.e., less smoothing is required.

Let us compare the optimal length prior parameter settings between different
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Figure 4.6: Flexible length prior : Mean average precision for different values of
the smoothing parameter λ. Note that there are different values of β for different
topic formats.
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Table 4.8: Flexible length prior : Optimal values for the smoothing parameter
λ and the length-prior parameter β. Improvements are calculated relative to
the corresponding results for the baseline length prior (β = 1.0) (Table 4.5 on
page 72)

(a) Using the title field

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .25 1.5 .0881 24% .85 1.5 .1085 16% .75 1.5 .0618 14%
2003 .30 1.5 .1277 5% .65 1.5 .0934 12% .35 1.5 .0736 9.5%
2004 .10 2.0 .1434 35% .20 1.0 .1242 – .15 1.0 .0851 –
2005 .05 0.5 .0556 3% .15 1.0 .0817 – .15 1.0 .0817 –

(b) Using the description field

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .15 2.0 .0697 22% .25 1.5 .0816 3.0% .05 1.0 .0505 –
2003 .20 1.5 .1201 0.4% .25 1.5 .0867 3.9% .25 1.5 .0700 3.0%
2004 .15 2.0 .1602 60% .15 1.0 .0928 – .15 1.0 .0680 –
2005 .15 1.0 .0583 – .10 1.0 .0608 – .10 1.0 .0608 –

(b) Using both the title and the description field

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .15 3.0 .0894 48%* .40 2.5 .1098 10% .20 2.5 .0658 10%
2003 .15 2.0 .1461 61% .40 2.5 .1048 20%** .35 2.5 .0838 21%*
2004 .10 3.5 .1642 91%* .20 2.0 .1213 11%** .15 2.0 .0850 12%*
2005 .10 2.5 .0542 8% .10 2.0 .0776 12% .10 2.0 .0776 12%

query formats. The verbose query format requires a higher value for the length
prior parameter than the two less verbose query formats. We conjecture that
this is an artifact of the simplification assumptions made in Sections 3.3 and 4.2
when we derived our retrieval formula (see e.g. [Cooper, 1995] for a discussion on
inconsistencies and misidentified modeling assumptions in probabilistic informa-
tion retrieval). In particular, the “score mass” that is accumulated in equation 3.6
increases as we add more terms to the query. Consequently, the “score mass” of
the length-prior factor in equation 4.4 has more effect on the short query formats
than on the verbose query format. Hence—in order to get the same length-bias
effect—a higher length prior parameter value is needed for the verbose query
format than for the shorter query formats.

Vintage Table 4.8 shows the optimal values for the smoothing parameter and
the length-prior parameter for each vintage of the INEX collection.
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Table 4.9: Flexible length prior : Performance for each vintage of the INEX
collection, using the overall optimal parameter settings. Improvements are calcu-
lated relative to the corresponding results for the baseline length prior (β = 1.0)
(Table 4.6 on page 74)

(a) Using the title field

strict (λ = 0.20, β = 1.5) gen (λ = 0.45, β = 1.5) sog2 (λ = 0.20, β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0873 25% .1030 15% – –
2003 .1261 3.8% .0915 9.8% – –
2004 .1311 24% .1139 -7.9%** – –
2005 .0541 -1.5% .0750 -7.9%* – –

(b) Using the description field

strict (λ = 0.25 β = 2.0) gen (λ = 0.15 β = 1.0) sog2 (λ = 0.15 β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0677 37% – – – –
2003 .1012 -15% – – – –
2004 .1556 65% – – – –
2005 .0066 -86% – – – –

(b) Using both the title and the description field

strict (λ = 0.15 β = 3.0) gen (λ = 0.25 β = 2.0) sog2 (λ = 0.15 β = 2.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0894 50%* .1077 12%** .0651 15%
2003 .1304 43% .0983 30%** .0789 19%*
2004 .1456 80%* .1211 13%*** .0850 14%*
2005 .0460 -1.1% .0754 13%*** .0773 14%**

For the title-only query format a moderate value of the length-prior parameter
(β = 1.5) results in improvements for the earlier vintages (2002 and 2003). This
observation holds for all quantizations. Using the generalized quantizations we
see that the baseline length prior is optimal for the 2004 and 2005 topics.

For the description-only query format the per-vintage results are similar to
the ones for the the topic-only query format.

For the combined query-format we see that the flexible length-prior improves
performance compared to the baseline length-prior. This holds for all quanti-
zations and all vintages. Our observation above—that the verbose topic format
needs higher value for the length prior parameter—carries over to individual vin-
tages and quantizations.

Overfitting Table 4.9 shows the effect of using the overall optimal parameter
settings on the individual vintages of the INEX collection.
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For the title-only and description-only query formats, the results of using
the optimal parameter settings are mixed, ranging from significant decrease in
performance to a large percentage-wise—yet non-significant—improvement. The
optimal settings do not carry over to individual vintages. In particular, when
we find the value of β = 1.5 to be optimal for the generalized quantization we
are overfitting to the 2002 and 2003 vintages where we improve the performance.
The cost of this overfitting is a significant decrease in performance for the 2004
and 2005 vintages.

For the combined topic format the results do, however, carry over to individual
vintages. The flexible length prior give significant improvement for most of the
vintage-quantization pairs. An exception—as so often before—is the 2005 vintage
using the strict quantization. See Section 3.5 for a discussion of this phenomena.

Summary Let us now summarize our main observations from the experiments
with the flexible length prior.

• Shorter query formats do not gain significantly from the use of a flexible
length prior, compared to the baseline length prior.

• The most verbose query formats do gain significantly from the use of a
flexible length prior, compared to the baseline length prior.

4.2.2 Discussion

Let us first summarize the results of using length priors.

• Baseline length priors give significant improvements, compared to the case
where an uniform prior is used.

• Flexible length prior give significant improvements only for the most verbose
query format.

Figure 4.7 shows the average length of the top-10 retrieved elements when we
use the baseline length prior; different query formats and different values for the
smoothing parameter λ. Additionally, the figure shows the average length for
using the square length prior (β = 2.0) and the title+description query format.
The figure shows that for small values of the smoothing parameter the baseline
length prior has more length-bias effect on the title-only query format than on
the more verbose query formats. The figure also shows that, for low values of
the smoothing parameter, a value β = 2.0 for the length prior parameter in our
title+description runs has a similar length bias effect as the baseline length prior
has in our title-only runs. These observations support our conjecture from the
previous section that the effect of the length prior parameter depends on the
verboseness of the query format. We refer back to Section 3.5 for more discussion
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Table 4.10: Most frequent tag-names appearing in the top 10 results. The Avg.
freq. is the number of elements in the top-10 that have the corresponding tag,
averaged over all topics. Standard deviation is shown in brackets. The table in
boldface shows the results for the optimal length-prior parameter settings for the
corresponding query format (using the sog2 quantization).

(a) Title-only queries

λ = 0.15, β = 1.0
Tag Avg. freq.
article 1.76 (1.67)
p 1.66 (1.69)
bdy 1.14 (1.13)
sec 1.10 (0.98)
atl 0.84 (1.90)
ss1 0.46 (0.73)
ip1 0.38 (0.62)
it 0.38 (1.25)
bm 0.24 (0.50)
ti 0.21 (0.82)

λ = 0.15, β = 2.0
Tag Avg. freq.
article 5.32 (1.83)
bdy 2.72 (1.07)
sec 0.76 (0.98)
bm 0.25 (0.53)
ss1 0.18 (0.47)
p 0.16 (0.53)
atl 0.10 (0.79)
bib 0.08 (0.38)
bibl 0.08 (0.35)
app 0.07 (0.25)

(b) Description-only queries

λ = 0.15, β = 1.0
Tag Avg. freq.
p 2.38 (1.71)
sec 1.47 (1.25)
article 1.16 (1.33)
bdy 0.85 (0.96)
ss1 0.68 (0.89)
ip1 0.62 (0.78)
atl 0.51 (1.50)
it 0.20 (0.68)
bm 0.18 (0.42)
ti 0.17 (0.64)

λ = 0.15, β = 2.0
Tag Avg. freq.
article 4.42 (1.94)
bdy 2.64 (1.25)
sec 1.10 (1.16)
p 0.47 (0.87)
bm 0.32 (0.58)
ss1 0.31 (0.59)
ip1 0.12 (0.34)
atl 0.08 (0.64)
bib 0.08 (0.36)
app 0.08 (0.29)

(c) Title+description queries

λ = 0.15, β = 1.0
Tag Avg. freq.
p 2.57 (1.88)
atl 1.15 (2.04)
sec 0.92 (1.02)
it 0.64 (1.37)
ip1 0.61 (0.81)
ss1 0.49 (0.74)
bdy 0.32 (0.66)
bb 0.31 (0.96)
article 0.29 (0.62)
st 0.29 (0.70)

λ = 0.15, β = 2.0
Tag Avg. freq.
article 1.86 (1.50)
p 1.63 (1.64)
sec 1.44 (1.09)
bdy 1.32 (1.12)
ss1 0.60 (0.80)
atl 0.49 (1.50)
ip1 0.43 (0.63)
bm 0.29 (0.58)
it 0.20 (0.68)
bb 0.15 (0.60)
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Figure 4.7: Average length of the top-10 results of runs using different value for
the smoothing parameter λ

about the relation between verboseness of query format and length of retrieved
elements.

Table 4.10 shows the most frequent tag-names among the top-10 retrieved
elements of a selection of retrieval runs. We choose to show the result when using
the value λ = 0.15 for the smoothing parameter and the values β = 1.0 and
β = 2.0 for the length-prior parameter. The table gives a different view on our
conjecture that the baseline length-prior parameter has a stronger length-bias
effect on the title-only query format than on the more verbose query formats—
articles and bodies are more prominent in the title-only run than for the other
topic format. The table also shows that the square length prior (β = 2.0) has
a similar length bias effect on the title+description query format as the baseline
length prior has on the title-only query format.

Let us now compare our results to previously published results. The length prior
experiments in this chapter are an extension of previously published work [Kamps
et al., 2004a, 2005a]. Those publications were based on the 2002 and 2003 vintages
of the INEX test collection. It used only the strict quantization and the combined
query format of the title and description fields. Based on this setup we found the
flexible length-prior (called “extreme length-prior” in the above publications) to
be very effective. How do our results carry over to later vintages of the INEX
test collection, to different quantizations, and to different topic formats?

Quantization First we look at the case where we keep the topic format and
vintage fixed and look at the performance for different quantizations. We see that
the flexible length prior continues to be effective when evaluated using different
quantizations.



82 Chapter 4. Length Normalization

Vintages Now, let us see what happens if we keep the topic format and quan-
tization fixed, but look at different vintages. We see that if we use the strict
quantization our results carry over to the 2004 collection, but not to the 2005 col-
lection. If we use the generalized quantizations (gen and sog2) our results carry
over to both 2004 and 2005 collections.

Query-format Finally we look at the effect of changing the query format. As
mentioned before, the flexible length prior does not prove to be effective for the
title-only or the description-only query formats. More precisely, the length bias
effect of the flexible length-prior is dependent on query verboseness—the more
verbose the query is, the less is the length bias effect. Effectively, this means that
the baseline length-prior provides sufficient length bias for the title-only query
format, but more length bias is needed for the title+description query format.

In sum, our results from [Kamps et al., 2004a, 2005a] do thus—to a large
degree—carry over to new topic/assessment sets and different quantizations. The
results do, however, not carry over to different query formats.

4.3 Conclusions

In this chapter we have looked at length normalization for XML element retrieval.
We have studied the length of relevant elements, and the effect of length-priors.
We will now summarize our main conclusions and look at the road ahead.

In the introduction we asked ourselves:

What are the characteristics of element assessments in terms of length?

We have seen that the length distribution of relevant elements is radically different
from the length distribution of elements in the collection as whole—the relevant
elements are on average longer than elements in general. We also asked ourselves
about the difference between element retrieval and document retrieval.

How is the length distribution of relevant elements different from the
distribution of relevant documents?

We have seen that the overall distribution of document lengths is close to being
a normal distribution, while the distribution of element lengths is a very skewed
distribution—where most elements are very short. The distribution of both rel-
evant elements and relevant documents resembles a normal distribution. The
difference between elements in general and relevant elements is thus greater than
the difference between general documents and relevant documents.

Additionally, we have shown that the 2005 strict assessments are very different
from the assessments of the previous years. The main difference is that the longest
elements in the collection are no-longer considered as being both highly exhaustive
and highly specific.
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In our introduction we also asked ourselves about the effect of length-priors:

Can we improve the effectiveness of element retrieval by using length
priors?

We have shown that our baseline length-prior gives significant improvements for
all three query formats and three quantizations. For short queries, flexible length
priors are not significantly better than baseline length priors.

Recall the main research question of this chapter:

What is the impact of length normalization for XML retrieval?

In short, length normalization is important for XML retrieval. Compared to doc-
ument retrieval—where length normalization is also important—the significance
of length is of greater importance for XML retrieval.

Let us now take a peek at some of the things that await us in the following
chapters. We have seen that length normalization is very important for achieving
good retrieval performance. In the next chapter we take a closer look at the
notion of “unit of retrieval” and ask ourselves:

Are all element types equally important retrieval units?

In this chapter we have looked at elements as atomic units. We have not looked
at element context.

Can we make use of element context to improve retrieval effectiveness?

We study this question in Chapter 6 where we introduce a mixture model that
estimates element relevance by combining term statistics from three sources, the
element itself, its surrounding document, and the collection as a whole.

So-far we have evaluated element retrieval as an abstract task. We have not
discussed how to put it into action to serve users. We will address this issue in
Chapter 8, where our main research question is:

How do we put element retrieval into action as part of an operational
system?





Chapter 5

The Unit of Retrieval

In the previous chapter (Chapter 4) we have seen that there is a length bias in the
assessments—the “average relevant” element is longer than the “average element”
in the collection as a whole. Furthermore, we have seen in Section 4.2 that element
length priors are useful for introducing a bias toward the “appropriate” unit of
retrieval. The length priors are effective for moving the retrieval bias from shorter
elements to longer ones. In this chapter we take a closer look at the relation
between element characteristics and retrieval performance. Our main research
question is:

Are all element types equally important retrieval units?

We address this question both by analyzing the INEX assessments and by doing
retrieval experiments.

In Section 5.1 we follow-up on our assessment analysis from the previous
chapter and ask ourselves:

What are the characteristics of the element assessments in terms of
tag-names?

We find that mid-sized elements—such as sections and paragraphs—are the ele-
ments most frequently assessed as both highly exhaustive and highly specific.

In Section 5.2 we introduce selective indexing strategies for building element
indices [Sigurbjörnsson and Kamps, 2006]. That is, we choose to index—and
hence retrieve—only certain types of elements. In our index building we address
two sub-questions of our main question:

What is the effect of excluding short elements from our index?

and

What is the effect of excluding long elements from our index?

85
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Table 5.1: The 20 longest element types in the INEX collection. The statistics
are based on the overlapping element index.

Mean Collection Document
Tag Description length frequency frequency
article article 2839.04 12,107 12,107
index journal index 2572.29 117 53
bdy document body 2331.57 12,107 12,107
bm back-matter 517.86 10,058 10,058
sec section 406.35 69,728 11,961
dialog dialog 396.15 194 61
bib bibliography 311.21 8,543 7,489
bibl bibliography 310.99 8,551 7,492
ss1 (sub)section 224.75 61,454 7,647
app appendix 220.44 5,856 3,792
ss3 (sub)section 153.05 127 27
ss2 (sub)section 151.89 16,276 2,702
proof proof 105.10 3,765 587
numeric-list list 79.89 54 25
fm front-matter 77.83 12,107 12,107
dl definition list 77.56 353 266
numeric-rbrace 66.68 114 37
tgroup table 62.80 5,816 1,964
l4 list 62.49 115 56
tbody table body 60.82 5,810 1,960

We also want to know how far we can go in our selective indexing strategies. We
look at an index containing only “top-level sections”—i.e., sections at the top-
level of the section hierarchy. In XML terminology, top-level sections are sections
that do not have any section ancestors. We then ask ourselves the question:

What is the effect of retrieving only top-level sections?

In short, our experiments—in Section 5.3—reveal that we can safely exclude
the short elements from our index, but excluding the longest ones significantly
degrades our retrieval performance. Retrieving only top-level sections is not a
successful retrieval strategy.

Finally, we close the chapter with discussion and conclusions. In Section 5.4
we provide an in-depth discussion of our results and in Section 5.5 we conclude.
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Table 5.2: The 20 most frequent tags in the INEX collection. The statistics are
based on the overlapping element index.

Collection Document Mean
Tag Description frequency frequency length
p paragraph 736,112 11,934 27.88
tmath math 403,872 4,935 2.43
ref reference 391,519 8,943 1.32
it italicized text 388,511 11,077 2.65
au author name 317,346 10,537 1.61
snm surname 311,326 10,355 1.05
entry table entry 233,775 1,961 1.48
ip1 paragraph 175,233 10,270 26.79
obi other bib info 157,905 11,702 3.53
ti title 155,681 12,105 4.29
pdt publication date 154,978 12,107 1.46
yr year 154,943 12,107 1.00
bb bibliography item 149,167 7,494 17.77
sub subscript 145,962 3,195 1.01
atl article title 134,068 11,924 5.79
fnm first name 125,493 10,491 1.03
b boldface text 120,112 9,674 2.73
st section title 113,382 10,733 2.92
pp pages (in bibliography) 108,134 12,105 2.06
scp smallcaps 107,429 4,433 1.03

5.1 Tag-names of Relevant Elements

In this section we take a look at the characteristics of the INEX element assess-
ments in terms of tag-names being assessed as both highly exhaustive and highly
specific. This section is a follow-up on Section 4.1 where we looked at the charac-
teristics of the INEX element assessments in terms of length. For the analysis in
this section we will use the same experimental setup as described in Section 4.1.

What sort of tag-names are used in the collection? Let us look at the frequency
of different tag-names. In total, there are 176 tag-names used in the collection.
Looking at all those tag-names in detail is too complex for our purpose. Instead
we choose two smaller sets of tag-names which we will study in more detail. On
the one hand, we study the tag-names of the longest elements in the collection. We
consider this to be a representative sample of the “shallow” part of the document
trees, i.e., the neighborhood of the root. On the other hand, we study the tag-
names that appear most frequently in the collection. We consider this to be a
representative sample of the “deeper” part of the collection, i.e., the neighborhood
of the leaves. Table 5.1 shows the 20 longest element-types in the collection, and
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Table 5.2 the 20 most frequently occurring element-types in the collection. The
tables list the tag-name of the element-type, a description of the element content,
the frequency of the element-type in the collection, the document frequency of the
element-type in the collection (i.e., the number of different documents in which
the tag-name appears), and the average length of elements bearing the tag-name.
We calculate our statistics from the viewpoint of the retrieval system, as explained
in Section 4.1. That is, we use the statistics as they appear in our indices. This
means that we only look at elements that are non-empty after text-processing.

From Table 5.1 we see that the largest building blocks of the collections are ar-
ticles (<article>), bodies (<bdy>), back matter (<bm>), sections (<sec>, <ss1>,
etc.), and bibliography (<bib>, <bibl>). Additionally, there are some less fre-
quent elements such as indices of journals (<index>) and dialogs (<dialog>).

From Table 5.2 we see that many of the most frequent element-types do not
contain much text. Out of the top-20 most frequent elements, only three can be
considered as text containers, i.e., the paragraphs (<p> and <ip1>), and bibliog-
raphy items (<bb>). The other frequently occurring element-types are unlikely to
contain enough text to be considered—on their own—as a satisfying fulfillment
of an information need. But, what do the assessments say?

Table 5.3 shows the 20 most frequent tag-names of elements assessed both
highly exhaustive and highly specific in INEX 2002–2005. The table shows statis-
tics over all 101 topics that have a strict assessment. We calculate statistics over
all assessed elements, independent of whether or not they can be retrieved (some
of the relevant elements do not contain any text and can thus not be retrieved
by our system). We report the fraction of topics having a relevant element with
the corresponding tag-name (Topics), the frequency as a percentage of all strict
assessments (Micro), and the frequency as a percentage normalized by the total
number of strict relevant assessments for each topic (Macro). In the micro dis-
tribution frequencies are not normalized for individual topics. This means that
a topic with many relevant elements will have greater impact on the distribution
than a topic with few relevant elements. In the macro distribution the normal-
ization means that all topics have the same weight in the overall distribution.
This means that a topic with few relevant elements has the same impact as a
topic with many relevant elements (See Table 2.4 for more information about the
number of relevant elements per topic).

From Table 5.3 we see that the assessors seem to prefer the text-rich tag-types
such as articles (<article>); bodies (<bdy>); sections (<sec>, <ss1>, <ss2>); and
paragraphs (<p>, <ip1>). Together, those tag-names cover 73% of the assessments
(macro: 85%). Some of the short elements were also judged relevant, but less
frequently than the longer elements. These short elements include section titles
(<st>); article titles (<atl>); italicized words (<it>); and boldface words (<b>).

Table 5.4 shows the 15 most frequent tag-names of elements assessed both
highly exhaustive and highly specific for individual years of the INEX test collec-
tion. When we compare the assessments between years, we see that the weight of
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Table 5.3: 20 most frequent elements in the INEX 2002–2005 strict assessments.
Topics : is the fraction of topics for which the tag-name is assessed strictly rele-
vant. Micro: is the fraction of the tag-name in the total assessment set. Macro:
is the fraction of the tag-name in the total assessment set, normalized by the
number of relevant element for each topic.

Tag Description Topics Micro Macro
p paragraph 72.3% 27.0% 25.6%
sec section 83.2% 15.0% 19.5%
article article 57.4% 9.3% 13.1%
ss1 section 69.3% 8.6% 12.3%
ip1 paragraph 48.5% 5.8% 4.3%
it italicized text 16.8% 5.8% 1.4%
bdy body 55.4% 5.5% 8.7%
ref reference 11.9% 1.6% 0.5%
ss2 section 29.7% 1.6% 1.5%
sub subscript 2.0% 1.4% 0.2%
fig figure 21.8% 1.3% 1.4%
bb bibliography item 11.9% 1.3% 0.5%
atl article title 14.9% 1.2% 0.6%
b boldface text 7.9% 1.1% 0.2%
st section title 25.7% 1.1% 1.1%
tmath mathematics text 2.0% 1.1% 0.1%
art external image 11.9% 1.1% 0.9%
abs abstract 23.8% 1.0% 0.9%
item list item 15.8% 0.9% 0.8%
li list 19.8% 0.8% 0.5%

articles in the assessments set has decreased dramatically over the years. In 2002,
19 out of 21 assessed topics had a highly exhaustive and highly specific article. In
2005, there was only 1 out of 27 topics for which an article was considered both
highly exhaustive and highly specific. The weight of the other text-rich elements
(sections, and paragraphs) has increased over the years. The sudden jump of the
italics tag (<it>) in the 2004 assessments looks interesting. However, 288 of the
297 strictly relevant italics tags were for the same topic.

As mentioned before (Section 4.1.2), the differences in the assessments from
one year to another may be explained by a combination of several factors. Let us
recall the factors:

• First, the topics are different from one year to another.

• Second, the assessors’ understanding of the notions of exhaustiveness and
specificity can change between years.
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Table 5.4: Most frequent tag-names in the 2002–2005 content-only strict as-
sessment sets. Topics : the fraction of topics for which the tag-name is assessed
strictly relevant. Micro: the fraction of the tag-name in the total assessment set.
Macro: the fraction of the tag-name in the total assessment set, averaged over
topic averages.

2002 assessments
Topics Micro Macro

p 73.9% 27.4% 22.2%
article 82.6% 22.1% 22.7%
sec 91.3% 20.8% 26.6%
ss1 73.9% 8.2% 7.2%
bdy 60.9% 6.4% 8.7%
ip1 47.8% 4.4% 2.9%
ss2 34.8% 1.8% 0.9%
abs 30.4% 1.6% 1.0%
fm 26.1% 0.9% 1.2%
st 30.4% 0.8% 0.8%
item 21.7% 0.6% 0.3%
app 26.1% 0.5% 1.5%
it 17.4% 0.4% 0.3%
li 17.4% 0.4% 0.2%
b 13.0% 0.4% 0.4%

2003 assessments
Topics Micro Macro

sec 92.6% 20.9% 23.4%
p 77.8% 20.7% 19.4%
article 81.5% 11.8% 15.8%
bdy 85.2% 11.5% 14.1%
ss1 77.8% 10.1% 8.2%
ip1 48.1% 4.7% 3.9%
ss2 37.0% 2.4% 1.7%
fig 25.9% 2.2% 2.1%
bb 14.8% 1.5% 1.0%
app 25.9% 1.3% 0.8%
atl 18.5% 1.3% 1.0%
bm 22.2% 1.2% 0.7%
art 3.7% 1.2% 0.4%
fm 22.2% 0.9% 0.5%
li 18.5% 0.9% 0.8%

2004 assessments
Topics Micro Macro

p 64.0% 26.7% 18.4%
it 24.0% 11.5% 1.7%
sec 92.0% 10.2% 16.8%
ss1 76.0% 7.5% 16.3%
ip1 52.0% 4.6% 3.6%
article 64.0% 3.8% 10.8%
bdy 72.0% 3.4% 11.4%
sub 4.0% 3.4% 0.4%
ref 24.0% 3.2% 0.8%
tmath 4.0% 2.6% 0.3%
b 8.0% 2.1% 0.3%
bb 20.0% 2.1% 0.7%
atl 24.0% 2.0% 0.9%
st 36.0% 1.7% 2.7%
art 28.0% 1.4% 2.3%

2005 assessments
Topics Micro Macro

p 73.1% 37.8% 42.1%
ip1 46.2% 13.8% 6.7%
ss1 50.0% 9.8% 17.3%
sec 57.7% 9.6% 11.9%
it 19.2% 7.0% 3.2%
item 19.2% 2.7% 2.6%
ariel 3.8% 2.6% 0.8%
ref 15.4% 1.8% 1.0%
fig 23.1% 1.6% 1.2%
art 15.4% 1.5% 0.7%
b 11.5% 1.2% 0.3%
url 7.7% 1.2% 0.7%
abs 23.1% 1.0% 1.8%
article 3.8% 1.0% 3.8%
ss2 2.7% 0.9% 0.5%
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• Third, and most importantly, the assessment interface has changed from
one year to another.

In Section 4.1.2 we observed that the length distribution of the 2005 assessments
is radically different from the assessments in previous years—the longest elements
in the collection are no longer considered as both highly exhaustive and highly
specific. In the present section we see the same phenomena from a different
angle. In the 2005 assessments the fraction of paragraphs amongst the relevant
elements has increased, the fraction of (sub)sections has stayed somewhat the
same, and the fraction of articles and bodies has decreased dramatically. I.e.,
as opposed to earlier years articles and bodies are no longer considered as both
highly exhaustive and highly specific. As before, we conjecture that the change in
assessments characteristics is related to the introduction of the “yellow marker”
interface in 2005. Assessing specificity with a yellow marker is a considerably
different (and, no doubt, easier) cognitive process than assigning to each element
a specificity value. In the case of articles (and bodies), it is indeed harder to
imagine an assessor “marking a full article as yellow” than it is to imagine that
an assessor would assign a specificity value 3 to an article. And indeed the
numbers in Table 5.4 bear witness to this.

The number of topics for which a particular element-type is considered strictly
relevant tells us something about the consensus of how suitable this element
type is as a retrieval unit. Let us look at the set of tag-names which appear in
the assessments for at least half of the topics. Three tag-names appear in the
assessments for more than two-thirds of the topics. Sections (<sec>) have the
greatest topic coverage, followed by paragraphs (<p>) and sub-sections (<ss1>).
Additionally, two tag-names appear in the assessments for more than half of
the topics: articles (<article>) and bodies (<bdy>). All the elements with the
greatest consensus are text-rich elements.

There are three tag-names which appear in this consensus set over all four
years: sections (<sec>), subsections (<ss1>), and paragraphs (<p>). It is inter-
esting to note that two of the three tag-names with the largest consensus, sections
and subsections, appeared in the table of top-20 longest element types (Table 5.1)
and the third, paragraphs, was the element with the greatest mean length in the
table of top-20 most frequent element-types (Table 5.2).

Let us now summarize the main observations of the analysis of tag-name
distribution.

• On average, the most frequent tag-names in the collection contain quite
short texts.

• On average, the most frequent tag-names in the assessments contain longer
texts.

• Sections, sub-sections, and paragraphs appeared in the strict assessments
of more topics than did any other element. One can thus say there is some
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sort of consensus about those element types being “appropriate” units of
retrieval.

• The strict assessments in 2005 were very different from the assessments of
previous years. The most noticeable difference was that complete articles
and bodies were no longer considered as being both highly exhaustive and
highly specific.

5.2 Selective Indices

In Sections 4.1 and 5.1 we observed that there is a gap between the “average
element” in the collection and the “average relevant element” in the collection.
We have seen that some element types are more likely to be assessed relevant
than others. We have also seen that the “average relevant element” is longer
than the “average element” in the collection. These two observations lead quite
naturally to the question whether we can use these facts to create more economic
text indices where we only index elements that have a reasonable likelihood of
being relevant. Indexing only only a subset of the elements has two potential
advances:

• Improved effectiveness, since we reduce the “noise” caused by elements that
have little change of being judged as both highly exhaustive and highly
specific.

• Improved efficiency, since our posting-lists get shorter as we remove elements
this can help to speed up our retrieval system, and we make more efficient
use of disk storage.

In this section we will build several selective indices where we index only a subset
of the total number of elements in the collection. We base our selection based on
two criteria, length and tag-name.

• Length based selection: only elements whose length is above a certain
threshold are indexed.

• Tag-name based selection: only elements bearing certain tag-names are
indexed.

Various types of selective indexing schemes have been used in INEX participa-
tions. Index reduction based on eliminating the very many very short elements
has been used by several teams at INEX (E.g., [Sigurbjörnsson et al., 2004a, Sig-
urbjörnsson and Kamps, 2006, Fujimoto et al., 2006]). Gövert et al. [2003] used
a predefined list of tag-names which was compiled after careful analysis of tag
name semantics. Mass and Mandelbrod [2004] and Clarke and Tilker [2005] used
existing relevance assessments to define the appropriate units for their index.
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We build one index where we apply a length based selection. I.e., we build an
index where the shortest elements are excluded.

len An index of elements whose length is above a certain threshold. The length
of an element is determined by the number of terms contained in the ele-
ment. The term count is applied before stopwords were removed. For the
experiments reported in this thesis we use a threshold of 20. We experi-
mented with a few different values for the threshold and found 20 to be the
best performing one.

We use this index to answer the question how the removal of short elements affects
retrieval performance.

In Section 5.1 we have shown that elements with certain tag-names are more
likely than others to be regarded as relevant. Based on this analysis we can
decide to index only tag-names that are reasonably likely to be judged relevant.
In Section 5.1 we argued that sections and paragraphs are element-types that are
frequently assessed as highly relevant and highly specific. These element-types
also appear in the strict assessment set of a large number of topics. With this
information in mind, sections and paragraphs will be the main building blocks of
our indices. We build three indices where tag-name is used as a selection criteria.

sec An index of top-level sections. I.e., we index only elements of the type <sec>.
This is a non-overlapping index of the collection.

sp An index of sections and paragraphs. We use the DTD to choose the appro-
priate elements. I.e., we index the elements that are referred to in the DTD
as sections (sec, ss1, ss2, ss3) and paragraphs (ilrj, ip1, ip2, ip3, ip4,
ip5, item-none, p, p1, p2, p3).

absp Articles and bodies were also frequent in the strict assessments (at least
for the first few years of INEX). We build an index containing the section
and paragraph elements listed above, with the addition of article elements
(article) and body elements (bdy).

These indices have several roles. First, the section index (sec) is an attempt to see
how far we can go in the simplification of our indices. The section index is also
interesting for the sake that our indexing units do not overlap. Second, the sec-
tion and paragraph index (sp) shows the effect of indexing the popular elements
(sections and paragraphs). One would expect to get reasonable performance by
retrieving the most popular elements. Third, the index of articles, bodies, sec-
tions, and paragraphs (absp) shows the role of article and body elements in the
evaluation. We have seen that the occurrence of those elements has varied con-
siderably between different vintages of the INEX strict assessments (See further
Table 5.4). Comparing the results of the absp index and the sp index we can
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Table 5.5: Properties of the the different indices. This table is based on the
INEX 2002 IEEE collection. Stopwords were removed, but no stemming was
applied. Unit stands for the number of retrievable units. Storage stands for the
size occupied in physical storage.

Units Storage % of coll.
Overlapping elements 6,157,724 1.5G 299%
Length based (len) 1,086,549 971M 189%
Articles etc. (absp) 1,146,639 798M 156%
Sections & paragraphs (sp) 1,122,425 538M 105%
Sections (sec) 69,728 163M 32%

answer the question how the retrieval performance is affected by excluding the
longest elements from the index.

Note that we use the relevance assessments to motivate the choices of elements
to include in our indices. Since we later evaluate the selective indices based on
the same assessments, we are to some extent running the risk of overfitting to
the assessments. The experiments in this chapter should be read with this issue
in mind. The experiments show the general relation between retrieval units and
performance, but do not provide a description of “how to choose elements”.

Table 5.5 shows statistics of our selective indices. We report the number
of retrievable units (Units), the amount of storage space needed for the index
(Storage), and the size of the index as a percentage of the size of the original
collection (% of coll.). The table shows that each of our indexing strategies
considerably reduced the total number of indexed elements. Our full overlapping
element index contained roughly six million elements; our overlapping selective
indices contain roughly one million elements; and our non-overlapping section
index contains within a hundred thousand elements. In terms of storage space
the full overlapping index requires triple the size of the collection; the selective
indices containing the long elements require space roughly equal to double the
size of the collection; the section and paragraph index requires space which is
roughly equal to the collection size; and the section index space requirements are
only one third of the space needed to store the collection.

We do not explore the efficiency issues of selective indexing, but refer to
our INEX 2005 proceedings paper for some preliminary efficiency results [Sig-
urbjörnsson and Kamps, 2006]. Efficiency of selective indices has also been stud-
ied by Fujimoto et al. [2006].

5.3 Experiments

In this section we will report results of using the selective indexing strategies We
present our results in terms of the research questions presented in the introduction
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Table 5.6: Selective indexing : Optimal values for the smoothing parameter λ
and the length-prior parameter β for our selective indexing strategies. Results
are for title-only topics. Improvements are calculated relative to corresponding
results on the full index (Table 4.7 on page 75).

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

len .20 1.5 .1013 1.3% .20 1.0 .1041 7.9%*** .20 1.0 .0805 10%***
absp .20 1.5 .0996 -0.4% .20 1.0 .1022 5.9%* .20 1.0 .0802 10%**
sp .30 1.5 .0582 -42%*** .15 1.0 .0659 -32%*** .15 1.0 .0548 -25%***
sec .20 1.5 .0349 -65%*** .15 1.0 .0292 -70%*** .15 1.0 .0233 -68%***

to this chapter. First we consider:

What is the effect of excluding short elements from our index?

In order to answer this question we take a look at the retrieval performance on
the length-based selective index (len).

Table 5.6 (top line) shows the optimal parameter settings and retrieval per-
formance for our length-based selective index. For the generalized quantizations
we get a significant improvement in retrieval performance, compared to the opti-
mal length-prior settings for the full overlapping element index (see Table 4.7 for
comparison). For the strict quantization we do, however, not get a significant im-
provement. It is quite remarkable that we can remove five million elements—82%
of the total number of elements—from our index without reducing our retrieval
performance. Better yet, we even get a significant improvement in retrieval perfor-
mance when using the generalized quantizations. Note, however, that the average
length of a plain English sentence is about 20 words. Hence, the elements we ex-
cluded from our index were all shorter than an average English sentence. It is
thus not surprising that those elements can be safely excluded from our ranked
lists since they are unlikely to give a highly exhaustive answer to fulfill the user’s
information need.

Note that the optimal parameter settings for the length-prior parameter do
not change even if we exclude the shortest elements from our index. The baseline
length prior is needed for the generalized quantizations and a value of β = 1.5 is
the optimal when we use the strict quantization. These results indicate that even
if we have excluded the shortest elements there is still a length gap between the
index and assessments that needs to be bridged.

In our experiments we have only shown that short elements can be safely
ignored in a final ranked list of elements. However, we have not addressed the
question whether the short elements can be useful in intermediate stages of the
retrieval. Short elements have been shown to improve the retrieval of web doc-
uments [Cutler et al., 1997, Robertson et al., 2004]. A recent study has shown
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Table 5.7: Selective indexing : Optimal values for the smoothing parameter λ
and the length-prior parameter β for our selective indexing strategies. Results
are for title-only topics. Improvements are calculated relative to corresponding
results on the full index (Table 4.8 on page 77).

(a) Length-based indexing (len)

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .25 1.5 .0908 3.1% .85 1.5 .1105 1.8%* .75 1.5 .0630 1.9%
2003 .15 1.0 .1404 9.9% .65 1.5 .1020 9.2% .20 1.0 .0808 9.8%
2004 .10 2.0 .1438 0.3% .20 1.0 .1284 3.4% .20 1.0 .0891 4.7%*
2005 .10 0.0 .0597 7.4% .15 1.0 .0895 9.5%** .15 1.0 .0895 9.5%**

(b) Tag-name index: Articles, bodies, sections and paragraphs (absp)

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .30 1.5 .0939 6.6% .85 1.5 .1111 2.4% .85 1.5 .0643 4.0%
2003 .45 1.5 .1293 1.3% .65 1.5 .1009 8.0% .55 1.5 .0801 8.8%
2004 .05 1.5 .1589 11% .20 1.0 .1208 -2.7% .20 1.0 .0912 7.2%
2005 .10 0.0 .0431 -22% .20 1.0 .0912 12% .20 1.0 .0912 12%

(c) Tag-name index: Sections and paragraphs (sp)

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .10 1.0 .0557 -37% .80 1.5 .0452 -58%*** .70 1.5 .0291 -53%***
2003 .25 1.5 .0743 -42%* .20 1.0 .0612 -34%** .20 1.0 .0517 -30%*
2004 .25 2.0 .0687 -52% .15 1.0 .0832 -33%*** .15 1.0 .0634 -25%***
2005 .15 1.5 .0445 -20% .10 1.0 .0701 -14%* .10 1.0 .0701 -14%*

(d) Tag-name index: Top-level sections (sec)

strict gen sog2
λ β MAP Impr. λ β MAep Impr. λ β MAep Impr.

2002 .10 0.5 .0423 -52%* .45 1.0 .0295 -73%*** .45 1.0 .0180 -71%***
2003 .20 1.5 .0579 -55%** .20 1.0 .0325 -65%*** .20 1.0 .0288 -61%***
2004 .20 2.0 .0374 -74%** .10 0.5 .0333 -73%*** .05 0.5 .0246 -71%***
2005 .15 1.5 .0122 -78% .05 0.5 .0225 -72%*** .05 0.5 .0225 -72%***

that the short elements can also be useful for improving the ranking of longer
elements [Ramirez et al., 2006].

Vintage Let us now look at individual vintages. Table 5.7 (a) shows the per-
formance of our length-based selective indexing strategy for individual vintage of
the INEX collection. We see that excluding the short elements from our index—
and retrieval runs—does not lead to reduced performance for any of the INEX
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Table 5.8: Selective indexing : Performance for each vintage of the INEX col-
lection, using the overall optimal parameter settings. Results are for title-only
topics. Improvements are calculated relative to corresponding results on the full
index (Table 4.9 on page 78).

(a) Length-based indexing (len)

strict (λ = 0.20 β = 1.5) gen (λ = 0.20 β = 1.0) sog2 (λ = 0.20 β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0895 2.5% .0968 -6.0% .0574 9.3%*
2003 .1291 2.4% .0991 8.3% .0808 20%*
2004 .1316 0.4% .1284 13%*** .0891 4.7%*
2005 .0540 -0.2% .0894 19%** .0894 9.4%**

(b) Tag-name index: Articles, bodies, sections and paragraphs (absp)

strict (λ = 0.20 β = 1.5) gen (λ = 0.20 β = 1.0) sog2 (λ = 0.20 β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0928 6.3% .0961 -6.7% .0578 10%
2003 .1245 -1.3% .0971 6.1% .0795 18%*
2004 .1445 10% .1208 6.1% .0912 7.2%
2005 .0366 -32% .0912 22%** .0912 12%

(c) Tag-name index: Sections and paragraphs (sp)

strict (λ = 0.30 β = 1.5) gen (λ = 0.15 β = 1.0) sog2 (λ = 0.15 β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0545 -38% .0432 -58%*** .0285 -46%***
2003 .0740 -41%* .0611 -33%** .0517 -23%*
2004 .0595 -55%* .0832 -27%*** .0634 -25%***
2005 .0440 -19% .0699 -6.8% .0699 -14%*

(d) Tag-name index: Top-level sections (sec)

strict (λ = 0.20 β = 1.5) gen (λ = 0.15 β = 1.0) sog2 (λ = 0.15 β = 1.0)
MAP Impr. MAep Impr. MAep Impr.

2002 .0366 -58%* .0284 -72%*** .0170 -68%***
2003 .0579 -54%** .0324 -65%*** .0288 -57%**
2004 .0325 -75%** .0330 -71%*** .0239 -72%***
2005 .0116 -79% .0218 -71%*** .0218 -73%***

vintages. This holds for all three quantizations. For the generalized quantiza-
tions (gen and sog2) we see that the exclusion of the short elements even leads
to significant improvements in performance for some vintages.

Overfitting As before, we look at whether we are running the risk of overfitting
to a single vintage. Table 5.8 (a) shows the performance of using the overall
optimal settings for individual vintages. We see that the overall settings carry
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over reasonably well to individual vintages. The only notable exception is for the
2002 vintage using the generalized quantization. We conjecture that the reason
for this is the decrease in the optimal value for the length prior parameter. But as
we saw in Section 4.1.2, the elements assessed as relevant in 2002 were on average
longer than for the remaining years.

We now turn our attention to the second subquestion we raised in the intro-
duction of this chapter.

What is the effect of excluding long elements from our index?

We explore this question by comparing the retrieval performance of two of our
tag-name-based selective indices: the index of articles, bodies, sections and para-
graphs (absp); and the index of sections and paragraph (sp). The only difference
between the two indices is the inclusion of whole articles and of article bodies in
the first index.

Lines 2 and 3 in Table 5.6 show the optimal parameter settings and retrieval
performance for the two indices. We see that the performance of the absp index
is similar to the length-based index described above. For the strict quantiza-
tion there is hardly any difference compared to the full element index. For the
generalized quantizations there is, however, a small but significant improvement.
The performance of the index of sections and paragraphs only is quite different.
For all quantizations there is a big and significant decrease in performance. The
performance decrease is largest for the strict quantization, but smallest for the
specificity-oriented quantization.

Based on the above results, including articles and bodies in our retrieval runs
seems essential for good retrieval performance. This seems quite counter-intuitive
since our main motivation for XML retrieval was to retrieve elements nested
below the article level. Before we discuss this finding further let us look at the
performance of our two indices for different vintages of the INEX test collection.

Table 5.7 (b) and (c) shows the optimal settings and retrieval performance for
individual vintages. We see that the absp index generally gives improvement—
yet non significant—when compared to the full element index. The large decrease
in performance for the 2005 vintage and strict quantization can be explained by
the performance of topic 230, whose performance drops from 1.0 to 0.5. For the
section and paragraph index (sp) there is a significant decrease in performance for
each vintage when evaluated using either of the generalized quantizations. The
decrease is the largest for the 2002 vintage, but the least for the 2005 vintage.
Using the strict quantization, the sp index also gives considerably worse perfor-
mance, but the decrease is rarely significant. The decrease is the least for the
2005 vintage.

It is interesting to note that the baseline length prior continues to be useful
for the section and paragraph index. The flexible length prior is even useful if we
evaluate using the strict quantization. This means that even if we exclude both
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the shortest and the longest elements from our index, the length prior continues
to be useful to bridge the length gap between the index and the assessments.

In sum, excluding the long elements from our index leads to a significant
decrease in retrieval performance. We discuss this finding further in Section 5.4.

In our analysis in Section 5.1 we saw that top-level sections (sec) was the ele-
ment type that appeared in the strict recall base of the most number of topics—
i.e., sections are frequently considered as both highly exhaustive and highly spe-
cific. Sections are also interesting retrieval units in the sense that they cover
almost all the textual content of the collection and do not overlap each other.
Our next research question is thus about section retrieval.

What is the effect of retrieving only top-level sections?

Table 5.6 (line 4) shows the optimal parameter settings and performance of our
system when we exclusively retrieve sections. The performance is quite poor.
The mean average (effort) precision is 65–70% lower than when we retrieve using
the full overlapping element index. From Table 5.7 we see that the decrease in
performance holds for each of the vintages of the INEX test collection. We will
return to the top-level section retrieval task in Section 7.2 when we evaluate our
system using a metric which does not reward overlap.

5.4 Discussion

We have seen that for all vintages of the INEX test collection whole articles
and article bodies seem to be essential for achieving good retrieval performance.
When using the generalized metrics, this observation even holds for the 2005
vintage where there were hardly any articles or bodies assessed as both highly
exhaustive and highly specific. These results are quite counter-intuitive since one
of the main motivations for the INEX test collection was to look below the article
level for relevant information. There are several factors that may play a role in
this article-retrieval bias. First of all, there are factors related to the topics:

• The information need behind the topics can be very general and hence
satisfied by full-articles.

• The documents in the collection may have too narrow scope such that they
are—in their entirety—highly specific to many topics.

Second, there are factors related to “unjustified” bias in the evaluation framework,
i.e., the evaluation framework may introduce a bias toward the article-level, even
if the topic author/assessor did not intend for such bias:

• The assessments may have an “unjustified” bias toward complete articles—
e.g., this may be due to assessors lack of understanding of the highly complex
assessment scheme.
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• The evaluation metrics may have “unjustified” bias toward retrieval of com-
plete articles—e.g., the metrics may be biased toward rewarding exhaustive-
ness over specificity.

Third, there are factors that have to do with the system’s ability to model rele-
vance:

• The variance in the way assessors assess specificity may be high and thus
difficult for systems to “learn” the right way estimate specificity. However,
independent of how specificity is assessed, exhaustiveness always accumu-
lates up the XML tree—i.e., all ancestors of a highly exhaustive element
are also highly exhaustive. As a result, the systems may give up on trying
to learn how to estimate specificity and “back-off” to learning a much eas-
ier task with lower variance—namely, to estimate exhaustiveness of whole
articles.

• Due to the relatively large amount of text contained in whole articles—
compared to e.g., sections—the language models for articles are based on
richer statistics than the language models for smaller elements. The retrieval
model may be having more problems with estimating relevance of sections
than the relevance of articles. Hence, our system gives better performance
when articles are among the retrieved elements retrieved.

We believe that the article-retrieval bias is a combination of the above factors.
The test collection does include very general topics—e.g., topic 53 which has the
description “Information retrieval on XML repositories.” One can easily imagine
whole articles—or even PhD theses—being highly exhaustive and highly specific
for that topic. The test collection also includes specific topics—e.g., topic 101
which has the description “Use of the t-test in information retrieval.” One can
imagine that this information need is implicitly answered by looking at the “ex-
perimental setup” sections of information retrieval articles. We have not done a
thorough analysis of the overall distribution of general vs. specific topics in the
INEX topic set. This is a very difficult task to perform since for most topics it
is very difficult for a non-expert to judge whether an information need is likely
to be answered by an entire article or a smaller portion of text. Instead, we
refer to ongoing work at INEX 2006 where this issue is being addressed [Kamps
and Larsen, 2006]. For further analysis on the role of assessments and evaluation
framework we refer to Chapter 7 where we look at alternative ways to evaluate
our retrieval. For a closer look at how data sparseness affects our retrieval perfor-
mance we refer to Chapter 6 where we use an element’s context to improve the
relevance estimation.
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5.5 Conclusions

In this chapter we have looked at the importance of the notion of “unit of re-
trieval” in XML retrieval. We have analyzed the characteristics of relevant ele-
ments and compared them to the statistics of the full collection. Our research
question was:

What are the characteristics of element assessments in terms of tag-
names?

We have seen that sections and paragraphs are the most frequent tag-names that
are assessed both highly exhaustive and highly specific. Very long elements, such
as articles and bodies, are also quite frequent.

We have looked at the use of selective indexing for XML element retrieval.
First, we explored the effect of excluding the very many short elements from our
index.

What is the effect of excluding short elements from our index?

Excluding the shortest elements from our index did not lead to a decrease in
performance. On the contrary it leads to significant improvement in performance
when using the generalized quantizations.

We looked at the effect of excluding the long elements (articles and bodies)
from our index.

What is the effect of excluding long elements from our index?

Excluding the longest elements from our index did lead to a significant decrease in
performance. It turns out that whole articles and article bodies are essential for
achieving good retrieval performance. We have conjectured that the reason for
this somewhat surprising finding may lie in a combination of factors—including,
the test collection topics; the evaluation framework; and the system’s modeling of
relevance. The topics issue is being addressed within the INEX initiative [Kamps
and Larsen, 2006]; we will take a closer look at the evaluation issue in Chapter 7;
and we explore the system’s modeling issue in Chapter 6.

We also looked at indexing only the top-level sections.

What is the effect of retrieving only top-level sections?

Indexing and retrieving only the top-level sections leads to very poor performance.
We will look at the section retrieval approach again in Section 7.2 when we
evaluate our approaches using a metric which does not reward overlap.

Let us now return to the main research question in this chapter:

Are there some element types that are more important than other for
achieving good retrieval performance?



102 Chapter 5. The Unit of Retrieval

In our assessment analysis we found out that sections and paragraphs are the
element types which are the most often considered to be both highly exhaustive
and highly specific. In our evaluation we found whole articles and article bodies
to be essential to achieve good retrieval performance.

Let us now briefly look forward to see how and where we follow-up on the
observations in the present chapter. In the next chapter (Chapter 6) we look at
how we can take the context of element into account when estimating relevance.
We look at estimating an element’s relevance based both on its own text and
on the text of the surrounding article. In Chapter 7 we take a closer look at the
evaluation framework in order to try to better understand our evaluation results.



Chapter 6

Mixture Models

Compared to full-text documents, elements are in general small. When we base
our relevance calculation on the element text alone, we are working with relatively
sparse statistics. In the previous chapters we account for this data sparseness
by smoothing our element model with a collection model. In this chapter we
incorporate document-level evidence into our ranking model in order to provide
a more localized type of smoothing. Our main research question is:

Can we improve XML element ranking by incorporating element’s
context into the retrieval model?

To answer this question we introduce a mixture model where we rank elements
based on a mixture of three language models: element model, document model,
and a collection model. In Section 6.1 we describe our mixture model and its
implementation. We review related work on mixture models—both simple mod-
els which combine document and element score; and more complex models that
combine evidence from various levels of the hierarchy.

We divide the main research question into three sub-questions. First, we ask
ourselves what the overall effectiveness is:

Does the mixture model improve retrieval effectiveness?

In Section 6.2 we present the results of applying our mixture model to our two
best performing indices, the full element index and the length-based selective
index. Our main finding is that the mixture model improves retrieval performance
significantly.

In our second research question we ask ourselves further about the effect of
our model:

How does the mixture model affect the type of retrieved elements?

Our initial intuition is that the mixture model would be particularly helpful for
medium-size elements such as sections and paragraphs. In Section 6.3 we take
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a look at the distribution of elements retrieved by our mixture model and find
that it leads to further accumulation of whole articles and bodies among our top
retrieved elements.

In our third research question we take a look at the mixture model’s robust-
ness:

How robust is our mixture model w.r.t. different indices?

In Section 6.4 we look at the effect of using the mixture model to retrieve sections
and paragraphs only—using our section paragraph index (sp). Our main finding is
that for the task of retrieving sections and paragraphs the mixture model improves
performance significantly, compared to the baseline model with optimized length-
priors. This result suggests that our mixture model is a robust technique that is
effective for different indexing strategies.

Finally, in Section 6.5 we conclude the mixture model experiments.

6.1 Mixture Models

Individual elements—and even individual documents—contain too short text to
be used on their own to estimate relevance. Hence, in the previous chapters
we have accounted for this data sparseness by smoothing the element statis-
tics using a model of the whole collection (see Section 3.3). In this section
we introduce a localized smoothing method which takes element context into
account—more precisely, we look at elements in the context of their surrounding
document. Combining evidence from the document level has proven useful for
passage retrieval [Callan, 1994] and semi-structured retrieval [Wilkinson, 1994].
The approach has also been applied successfully to the XML element retrieval
task [Sigurbjörnsson et al., 2004a, 2005, Mass and Mandelbrod, 2005].

We implement our mixture model as an extension of our baseline retrieval
system, introduced in Section 3.3. In our new model we estimate the element
language model as a linear interpolation of three language models: one for the
element itself, one for the document that contains the element, and a third one
for the collection. That is, P (ti|e) is calculated as

λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1− λe − λd) · Pmle(ti), (6.1)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for the document d in which e is contained; and Pmle(·) is a language model of
the collection. The parameters λe and λd are interpolation factors (smoothing
parameters). We estimate the language models, Pmle(·|·) and Pmle(·), using max-
imum likelihood estimation. For the element model we use statistics from the
element index; for the document model we use statistics from the article index;
and for the collection model we use document frequencies from the article index.
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Note that in our mixture model approach we do not use the same collection model
as we did in our baseline system. I.e., in our mixture model we use document
frequencies from the article index, but in the baseline system we used element
frequencies from the overlapping element index.

As we did in the baseline retrieval model we rewrite the mixture model into
a scoring function that is easier to implement. Our rewriting steps are the same
as used by [Hiemstra, 2001, pages 75–76]. I.e., we use a presence weighting
scheme [Robertson and Spark Jones, 1976], dividing the formula with the collec-
tion model, and using a sum of logarithm weights instead of product of weights.
This rewriting steps result in the following mixture-model scoring formula.

smm(e, q)

=
k∑

i=1

log

(
1 +

λd · tf(ti, d) · (∑t df(t))

(1− λe − λd) · df(ti) · |d|
+

λe · tf(ti, e) · (
∑

t df(t))

(1− λe − λd) · df(ti) · |e|

)
,(6.2)

where |d| is the length of document d (|d| =
∑

t tf(t, d)); and |e| is the length of
element e (|e| = ∑

t tf(t, e)). We add a length prior to our mixture model scoring
formula in the same manner as discussed in Section 4.2.

Our mixture model is fairly simple—we add only one additional local smooth-
ing layer, namely the surrounding document. The INEX document collection—
and XML documents in general—allows for more advanced smoothing layers,
both between the element and document layer and beyond the document layer.
Our simple mixture model is sufficient for answering the main research question
of this chapter: Can we improve XML element ranking by incorporating element’s
context into the retrieval model? We leave it as future work to implement more
elaborate mixture models. In the remainder of this section we give an overview
of related work where more—or at least other—layers of the document hierarchy
are used.

Ogilvie and Callan [2005] use a hierarchical language model for XML element
retrieval. Relevance of an element is estimated using its own content together with
the relevance scores of both children and parent elements. Arvola et al. [2005]
look at incorporating various “amounts of context” into their element retrieval
ranking. They look at parent-context, root-context, and tower-context—where
the last approach uses all context levels from parent to root. All contextualization
approaches significantly outperformed their baseline, but using root-context gave
the overall best performance. Ramirez et al. [2005] go beyond the document layer
and investigate the effectiveness of integrating journal-level evidence into the re-
trieval process. They show that journal-level evidence can significantly improve
performance. Ramirez et al. [2006] use relevance scores of small elements (section
titles and italicized terms) to adjust relevance scores of the their parent/ancestor
elements. Finally, one can consider the content-and-structure queries to be de-
scriptions of query dependent mixture of relevance scores [Lalmas and Rölleke,
2004, Sigurbjörnsson et al., 2004b].
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Table 6.1: Mixture model : Optimal values for the mixture model parameters
λe and λd. We report results for all three quantizations: strict, generalized, and
specificity-oriented generalized. Improvement is calculated relative corresponding
results for the element+collection model ((a) Table 4.7 on page 75; (b) Table 5.6
on page 95)

(a) Full element index (b) Length based index (cutoff20)

λe λd β MAP Impr.
strict .05 .10 1.0 .1125 13%*
gen .05 .40 0.5 .1112 15%***
sog2 .05 .25 0.5 .0850 17%***

λe λd β MAP Impr.
strict .05 .05 1.0 .1177 16%***
gen .05 .20 0.5 .1196 15%***
sog2 .05 .20 0.5 .0932 16%***

6.2 Experiments

In this section we evaluate the effectiveness of our mixture model. Table 6.1 shows
the optimal parameter settings for our mixture model when applied to two types
of indices: the full element index (See Section 3.2), and a length based index with
cutoff at 20 terms (See Section 5.2). We see that our mixture model approach
gives significant improvements relative to the optimal settings presented in the
previous chapters (Chapters 4 and 5). This holds true for both the full element
index and the length-based selective index. The significance of the results also
holds true for all three quantizations. It is interesting to note that the optimal
value for the length prior parameter, β, is lower for the mixture model than for
the model presented in the previous chapters. This holds for both index types
and for all three quantization methods. We will return to this observation in the
next section, after we have looked at the results for different vintage of the INEX
text collection.

Vintage Table 6.2 shows the optimal parameter settings and performance of
our mixture model for each vintage of the INEX collection. We see that the
mixture model performs well for all vintages. The improvement is, however, only
significant for the 2003 and 2004 topic sets. It is interesting to note that the
decrease in the optimal value for the length prior parameter, β, carries over to
individual vintages of the INEX test collection. I.e., the optimal value for the
length prior parameter, β, is about 0.5 lower for the mixture model than for the
model presented in the previous chapters. As mentioned before, we will return to
this issue in the next section. First, we look at whether we are running the risk
of overfitting.

Overfitting Table 6.3 shows the results of using the overall optimal parameter
settings for each vintage of the INEX collection. We see that the overall settings
carry well over to individual vintages. I.e., we get the similar significance results
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Table 6.2: Mixture model : Optimal values for the mixture model parameters λe

and λd for each vintage of the INEX collection. Improvement is calculated relative
corresponding results for the element+collection model (Table 4.8 on page 77; and
Table 5.7 on page 96)

(a) Full element index (strict) (d) Length based index (strict)

λe λd β MAP Impr.
2002 .05 .10 1.0 .0913 3.5%
2003 .05 .25 1.0 .1658 30%**
2004 .05 .05 1.5 .1574 9.8%*
2005 .10 .10 1.0 .0581 4.5%

λe λd β MAP Impr.
2002 .10 .20 1.0 .0945 4.1%
2003 .05 .25 0.5 .1752 25%**
2004 .05 .05 1.5 .1575 10%**
2005 .05 .05 0.0 .0611 2.3%*

(b) Full element index (gen) (e) Length based index (gen)

λe λd β MAP Impr.
2002 .15 .40 1.0 .1134 4.5%
2003 .05 .40 1.0 .1081 16%*
2004 .05 .25 0.5 .1492 20%***
2005 .05 .25 0.5 .0884 8.1%

λe λd β MAP Impr.
2002 .20 .40 1.0 .1156 4.6%
2003 .05 .30 0.5 .1183 16%
2004 .05 .15 0.5 .1545 20%***
2005 .05 .10 0.5 .0991 11%*

(c) Full element index (sog2) (f) Length based index (sog2)

λe λd β MAP Impr.
2002 .15 .40 1.0 .0656 6.1%
2003 .05 .40 1.0 .0874 19%*
2004 .05 .20 0.5 .1052 24%***
2005 .05 .25 0.5 .0884 8.1%

λe λd β MAP Impr.
2002 .20 .40 1.0 .0670 6.4%
2003 .05 .30 0.5 .0965 19%**
2004 .05 .15 0.5 .1107 24%***
2005 .05 .10 0.5 .0991 11%*

if we use the overall optimal settings instead of the optimal settings for individual
vintage. The usual exception of the 2005 vintage using the strict quantization.
As discussed several times in the course of this thesis the 2005 vintage seems to
be very unstable. A single topic can cause large shifts in average performance.

6.3 Retrieved Units

The results of using the mixture model showed that the optimal value for the
length prior parameter, β, was systematically lower than for the model used in
the previous chapters. At first glance, one could imagine that the result of this is
that there is less bias toward long elements in our mixture model runs. This would
fit well with our original intuition that the mixture model is good for promoting
relatively short elements.

But does the mixture model return shorter elements? Table 6.4 shows the
most frequent tag-names in the top-10 results. We see that the mixture model
does indeed not return shorter elements than our model used in the previous
chapters. On the contrary, the mixture model retrieves considerably more articles
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Table 6.3: Mixture models: Performance for each vintage of the INEX collection,
using the overall optimal parameter settings. Improvement is calculated relative
corresponding results for the element+collection model (Table 4.9 on page 78;
and Table 5.8 on page 97)

(a) Full element index (strict) (d) Length based index (strict)

λe = 0.05, λd = 0.10, β = 1.0
MAP Impr.

2002 0.0913 4.6%
2003 0.1592 26%**
2004 0.1566 20%*
2005 0.0403 -26%

λe = 0.05, λd = 0.05, β = 1.0
MAP Impr.

2002 .0930 3.9%
2003 .1624 26%***
2004 .1544 17%*
2005 .0580 7.4%

(b) Full element index (gen) (e) Length based index (gen)

λe = 0.05, λd = 0.40, β = 0.5
MAP Impr.

2002 .1040 0.9%
2003 .1050 15%
2004 .1452 28%***
2005 .0851 14%

λe = 0.05, λd = 0.20, β = 0.5
MAP Impr.

2002 .1033 6.7%
2003 .1167 18%**
2004 .1537 20%***
2005 .0975 9.1%*

(c) Full element index (sog2) (f) Length based index (sog2)

λe = 0.05, λd = 0.25, β = 0.5
MAP Impr.

2002 .0599 14%
2003 .0803 20%**
2004 .1048 23%***
2005 .0884 8.1%

λe = 0.05, λd = 0.20, β = 0.5
MAP Impr.

2002 .0623 8.5%
2003 .0959 19%**
2004 .1092 23%***
2005 .0975 9.1%*

and bodies than our baseline model (See Table 4.10 for comparison). Thus, the
mixture model itself seems to introduce a considerable bias toward long elements.
This is contrary to our motivation of using the mixture model, where we argued
that localized smoothing would help estimating the relevance of relatively short
elements (such as sections and paragraphs).

In our chapter on selective indexing (Chapter 5) we observed that whole ar-
ticles and bodies were essential for achieving good evaluation results. In this
chapter we have witnessed further evidence of this behavior. I.e., we have ob-
served a correlation between significantly improved retrieval performance and
increased presence of articles and bodies in the top ranks of our retrieval results.
The evaluation framework seems to have a bias toward the retrieval of whole ar-
ticles and bodies—even for the INEX 2005 vintage where negligible a number of
articles and bodies were assessed as both highly exhaustive and highly specific.

As mentioned in our discussion in Section 5.3 there can be several factors that
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Table 6.4: Most frequent tag-names appearing in the top 10 results. The Avg.
freq. is the number of results in the top-10 that have the corresponding tag,
averaged over all topics. Standard deviation is shown in brackets.

(a) Full element index

λe = 0.05, λd = 0.25, β = 0.5
Tag Avg. freq.
article 2.71 (1.43)
bdy 1.99 (1.08)
sec 1.51 (1.06)
p 0.82 (0.97)
bm 0.40 (0.56)
atl 0.35 (1.12)
ss1 0.34 (0.62)
it 0.24 (0.98)
ip1 0.21 (0.50)
bibl 0.15 (0.40)

λe = 0.05, λd = 0.10, β = 1.0
Tag-name Avg. freq.
article 4.05 (1.76)
bdy 2.52 (1.20)
sec 1.17 (1.13)
p 0.39 (0.77)
bm 0.38 (0.59)
atl 0.25 (0.96)
ss1 0.22 (0.52)
ip1 0.14 (0.42)
bibl 0.12 (0.39)
app 0.10 (0.33)

(a) Length-based element index

λe = 0.05, λd = 0.20, β = 0.5
Tag-name Avg. freq.
article 2.86 (1.34)
bdy 2.09 (1.02)
sec 1.76 (1.08)
p 1.08 (1.15)
ss1 0.42 (0.69)
bm 0.39 (0.53)
ip1 0.33 (0.61)
bibl 0.18 (0.42)
bb 0.16 (0.67)
bib 0.16 (0.40)

λe = 0.05, λd = 0.05, β = 1.0
Tag-name Avg. freq.
article 3.88 (1.88)
bdy 2.41 (1.25)
sec 1.24 (1.10)
p 0.75 (1.13)
bm 0.34 (0.60)
ss1 0.29 (0.60)
ip1 0.26 (0.55)
app 0.13 (0.38)
bibl 0.13 (0.41)
bib 0.12 (0.40)

play a role in the apparent article/body bias in the evaluation. First, many of the
topics may be general effectively asking for full articles about a subject. Second,
the scope of the documents in the collection may be narrow and thus making
them natural retrieval units. Third, there may be an “unjustified” article bias in
the assessments due to misunderstandings of the assessment framework. Fourth,
there may be an “unjustified” article bias in the evaluation metrics. As mentioned
before, we will study some of these issues further—in Chapter 7—by looking at
alternative ways to evaluate the systems-oriented element retrieval task.
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Table 6.5: Mixture model for sections and paragraphs : Optimal values for the
mixture model parameters λe and λd. We report results for all three quantiza-
tions: strict, generalized, and specificity-oriented generalized. Improvement is
calculated relative corresponding results for the element+collection model (Ta-
ble 5.6 (sp) on page 95).

λe λd β MAP Impr.
strict .05 .10 1.0 .0700 20%*
gen .05 .20 0.5 .0767 16%***
sog2 .05 .20 0.5 .0644 17%***

6.4 Experiments for Sections and Paragraphs

In Section 6.2 we have seen that our mixture model significantly improves retrieval
effectiveness. In Section 6.3 we have seen that the mixture model runs have a
considerable bias toward the retrieval of whole articles and article bodies. In this
section we study the robustness of our mixture model by investigating its effect
on a retrieval task that is not affected by an article/body bias. We apply our
mixture model to the task of retrieving sections and paragraphs. I.e., we use our
index of sections and paragraphs (see Section 5.2) to estimate the element model
(see Section 6.1).

Table 6.5 shows the results of applying the mixture model on our index of
sections and paragraphs. We see that the mixture model gives significantly better
performance, compared to applying our baseline model (with length priors) to
the same index (see Section 5.2). It is interesting to note that as we saw in
the previous section the optimal value for the length-prior parameter is lower,
compared to our baseline model. This seems to indicate that there is some length
bias effect in the mixture model.

Vintage Table 6.2 shows the optimal mixture model parameter settings for
each vintage of the INEX test collection. The mixture model gives improvements
for all vintages and all quantization methods. For the strict quantization the
improvement is significant only for the 2004 vintage. For the two generalized
quantizations the improvement is significant for the 2002, 2003, and 2004 vintages.

Overfitting Table 6.7 shows the results of applying the overall optimal settings
to individual vintage of the collection. The performance of the overall optimal
parameter settings is quite similar to the results of optimizing for each vintage
separately. The main difference is that the overall settings do not result in sig-
nificant improvement for the 2002 vintage.
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Table 6.6: Mixture model for sections and paragraphs : Optimal values for the
mixture model parameters λe and λd for each vintage of the INEX collection. Im-
provement is calculated relative corresponding results for the element+collection
model (Table 5.7 (sp) on page 96)

(a) Strict quantization

λe λd β MAP Impr.
2002 .05 .05 1.0 .0586 5.2%
2003 .05 .15 1.0 .0916 23%
2004 .05 .10 1.0 .0876 28%**
2005 .10 .05 0.0 .0453 1.8%

(b) Generalized quantization (gen)

λe λd β MAP Impr.
2002 .20 .40 1.0 .0489 8.1%*
2003 .05 .35 0.5 .0726 19%**
2004 .05 .20 0.5 .1048 26%***
2005 .05 .15 0.5 .0754 7.5%

(c) Specificity-oriented generalized quantization (sog2)

λe λd β MAP Impr.
2002 .20 .30 1.0 .0314 8.0%*
2003 .05 .30 0.5 .0623 21%**
2004 .05 .20 0.5 .0824 30%***
2005 .05 .15 0.5 .0754 7.5%

6.5 Conclusions

Let us conclude our mixture model experiments by looking at the research ques-
tions we laid out in the introduction to this chapter. First, we asked ourselves
about the effectiveness of our mixture model approach:

Does the mixture model improve retrieval effectiveness?

We have seen that the mixture model significantly improves the retrieval perfor-
mance. We have also seen that the optimal value for the length-prior parameter
is consistently smaller than for our baseline model. There seems thus to be some
length-bias effect in our meaning that a smaller value for the length prior is
needed.

Next we asked ourselves how the mixture model affected the unit of retrieval :

How does the mixture model affect the type of retrieved elements?

For our mixture model runs based on our full element index and the length-based
selective index, whole articles and bodies are more prominent among the top
ranked results. This is yet another sign of an article-body bias in our evaluation.
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Table 6.7: Mixture models for sections and paragraphs: Performance for each
vintage of the INEX collection, using the overall optimal parameter settings. Im-
provement is calculated relative corresponding results for the element+collection
model (Table 5.8 (sp) on page 97)

(a) Strict quantization (strict)

λe = 0.05, λd = 0.10, β = 1.0
MAP Impr.

2002 0.0555 1.8%
2003 0.0914 24%
2004 0.0876 47%**
2005 0.0453 -0.9%

(b) Generalized quantization (gen)

λe = 0.05, λd = 0.20, β = 0.5
MAP Impr.

2002 .0453 4.9%
2003 .0719 18%**
2004 .1048 26%***
2005 .0750 7.3%

(c) Specificity-oriented generalized quantization (sog2)

λe = 0.05, λd = 0.20, β = 0.5
MAP Impr.

2002 .0296 3.7%
2003 .0616 19%**
2004 .0824 30%***
2005 .0750 7.3%

Finally, we asked ourselves about the robustness of our mixture model:

How robust is our mixture model w.r.t. different indices?

We applied the mixture model to three types of element indices: our full element
index, length-based selective index, and an index of sections and paragraphs only.
We got the same results across the tree indices. I.e., retrieval effectiveness im-
proved significantly and there seems to be a length-bias effect in the mixture
model which results in a lower value needed for the optimal smoothing parame-
ter. These observations lead us to conclude that the mixture model is a robust
approach to improve element retrieval effectiveness.

As for our main research question:

Can we improve XML element ranking by incorporating an element’s
context into the retrieval model?
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We have seen that taking an element’s context into account does indeed improve
the element ranking. For the indices where full articles and article bodies were
included the mixture-model has a strong bias toward retrieving those element
types. We will take a closer look at this issue and more evaluation-related issues
in the next chapter.





Chapter 7

Topic Classes, Overlap and Document
Ranking

In the previous chapters we have implemented and evaluated an XML element
retrieval system. Our evaluation has been base on the so-called “thorough” re-
trieval task which is a systems-oriented retrieval of—possibly overlapping—highly
exhaustive and highly specific XML elements. We have performed a rigorous
evaluation of the task using official INEX evaluation measures. In this section we
look at alternative evaluations of the thorough task. I.e., we continue evaluating
the same task as before, but using different evaluation settings or metrics. This
chapter is further divided into three main sections.

Retrieval performance is known to differ from one topic to another. This
prompts us to ask whether there is a class of topics for which our system performs
better than for other classes:

What is the impact of different topic classes on retrieval performance?

In Section 7.1 we classify the INEX topics based on their characteristics. We
look at our system’s retrieval performance on these classes in order to see if our
system performs better on one class rather than another. Our main finding is
that the generalized quantizations give rather stable performance over different
topic classes, but the strict quantization is more unstable. Furthermore, we show
how these findings may be used to gain insight into the—somewhat surprising—
importance of articles and bodies in the evaluation (see Section 5.4). This section
is a continuation of work initiated in our INEX 2004 publication [Sigurbjörnsson
et al., 2005].

An XML document is a hierarchy of elements nested within one another—the
XML elements overlap.

What is the impact of overlap on our evaluation?

In Section 7.2 we take a look at how the nesting nature of XML elements affects
the evaluation. We look at overlapping elements in the so-called strict recall-
base—i.e., the set of elements assessed as both highly exhaustive and highly
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specific,—we look at the overlapping elements in our runs, and finally we evaluate
our overlapping runs using a metric which does not reward retrieval of overlapping
content. We will see that there is indeed overlap in the strict recall base and
in our runs. Our experiments with evaluating without rewarding overlap are
inconclusive. An overall outcome of this work is that the appropriate evaluation
setup depends on the end-usage of the element retrieval.

In Chapters 1 and 2 we motivated our XML retrieval effort by its usefulness to
produce a ranked list of documents, augmented with direct linking and structured
result lists. We ask ourselves if elements can provide a document ranking:

How can element relevance be used to rank documents?

In Section 7.3 we look at the effectiveness of using element retrieval to rank
documents. Our main finding is that our element retrieval runs can serve as a
reasonable—but not optimal—basis for ranking documents.

In Section 7.4 we will draw conclusions from our alternative evaluation.

7.1 Evaluation over Topic Classes

In this section we classify the INEX topics based their characteristics and look at
the performance of our system over the different topic classes. It is well known
that system performance differs from one topic to another [Harman, 2005]. Perfor-
mance of a system is usually reported using a single number—the average perfor-
mance over all topics. The average performance gives us good means to compare
the quality of one retrieval approach to another. However, when averaging over
many topics we loose information about performance for individual topic or topic
classes. The purpose of this section is to take a closer look at individual classes
of topics. The main goal of this section is to answer the following question: What
is the impact of different topic classes on retrieval performance? This section is
a continuation of work initiated in our INEX 2004 publication [Sigurbjörnsson
et al., 2005], where we analyzed our best performing run and concluded that our
system performed best on topics with the following characteristics: there are few
relevant elements; the relevant elements contain long text; and there is consider-
able overlap among the relevant elements. In this section we extend this analysis.
We look at the performance of a selection of our runs over different classifications
of the topics. More precisely, we look at the following retrieval approaches (runs):

• “Vanilla” baseline: using uniform element prior and λ = 0.15.

• Optimal smoothing : using uniform element prior and optimal parameter
settings from Table 3.3.

• Baseline length-prior : we use the value β = 1.0 for our length-prior param-
eter and use optimal parameter settings form Table 4.4.
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Table 7.1: Classification of topics based on the average length of elements as-
sessed highly exhaustive and highly specific. Class boundaries are based on bin
boundaries from Table 4.1 (Bins). The Tagnames column list tagnames for which
the average element length is within the class boundaries.

Topic count
Class Bins 2002 2003 2004 2005 Total Tagnames
I 4–6 0 0 1 6 7 p, ip1, bb
II 7–9 3 3 5 13 24 ss2
III 10–12 7 15 13 6 41 sec, ss1, bm, bib
IV 13–16 13 9 6 1 29 article, bdy

• Flexible length-prior : using optimal parameter settings from Table 4.7.

• Mixture-model : using optimal parameter settings from Table 6.1

All our experiments in this section are done using the title-only topics. We use
three different classification criteria to classify the topics:

• Average length of relevant elements (Section 7.1.1)

• Total number of relevant elements (Section 7.1.2)

• Set-based overlap among relevant elements (Section 7.1.3)

We use the strict assessments for our classification. I.e., an element is considered
relevant if and only if it is assessed as highly exhaustive and highly specific.

7.1.1 The Length of Relevant Elements

In this section we classify the topics based on the average length of elements as-
sessed highly exhaustive and highly specific. We define four classes whose bound-
aries are defined using the bins in Table 4.1. Table 7.1 shows how we define the
classes and the number of topics that fall in each class. I.e., class I consists of
bins 4–6 and contains 7 topics; class II of bins 7–9 and contains 24 topics; etc.
The table also lists a selection of tag-names for which the average element length
is within the particular class. E.g., the average length of paragraph elements (p)
is 28 terms and falls within class I; the average length of section elements (sec)
is 406 terms and falls within class III; etc.

Table 7.2 shows the performance of different retrieval approaches for the dif-
ferent topic classes and different quantizations. For each approach we use the
optimal settings for the corresponding quantization. We will now look at the
different approaches and analyze if the performance is different from one topic
class to another.
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Table 7.2: Performance (MAP/MAep) of various retrieval approaches for dif-
ferent assessment-length classes. For each retrieval approach we use the overall
optimal parameter settings. Improvements are calculated relative to the previous
line.

(a) Strict quantization (strict)

Run I II III IV
“Vanilla” baseline .1518 – .0388 – .0366 – .0125 –
Optimal smooth. .1497 -1.4% .0410 5.7% .0510 39%*** .0425 240%***
Baseline length-pr. .1508 0.7% .0416 1.5% .0695 36%*** .1381 225%**
Flexible length-pr. .1458 -3.3% .0230 -45%* .0749 7.8% .1881 36%*
Mixture model .0892 -39% .0270 17% .0865 15%* .2256 20%**

(b) Generalized quantization (gen)

Run I II III IV
“Vanilla” baseline .0272 – .0439 – .0514 – .0239 –
Optimal smooth. .0408 50% .0668 52%*** .0804 56%*** .0524 119%***
Baseline length-pr. .0473 16% .0920 38%** .1021 27%*** .0881 68%***
Flexible length-pr. .0349 -26% .0865 -6.0% .0989 -3.1% .1075 22%**
Mixture model .0519 49% .1004 16% .1170 18%** .1173 9.1%

(c) Specificity-oriented generalized quantization (sog2)

Run I II III IV
“Vanilla” baseline .0269 – .0355 – .0446 – .0185 –
Optimal smooth. .0400 49% .0510 44%*** .0651 46%*** .0375 103%***
Baseline length-pr. .0448 12% .0707 39%** .0825 27%*** .0664 77%***
Flexible length-pr. – – – –
Mixture model .0548 22% .0797 13% .0932 13%*** .0859 29%***

Optimal smoothing The optimal smoothing run refers to the case where we
used an uniform element prior and looked at the effect of changing the smoothing
parameter λ. Recall—from Section 3.4—that for all quantizations the optimal
value for the smoothing parameter was λ = 0.95, i.e., little smoothing was per-
formed. We see that these smoothing settings generally improve for most topic
classes and quantizations. The improvement is greatest—and significant—for
topics where the average length of relevant elements is the greatest (classes III
and IV).

Baseline length prior If we apply the baseline length prior we get improve-
ment in performance for all topic classes and quantizations. Again, the improve-
ment is greatest—and significant—for topics where the average length of relevant
elements is the greatest (classes III and IV).
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Table 7.3: Classification of topics based on the total number of elements assessed
highly exhaustive and highly specific.

Assessment Topic count
Class count 2002 2003 2004 2005 Total
I x ≤ 5 2 3 5 9 19
II 5 < x ≤ 25 4 8 8 8 28
III 25 < x ≤ 75 11 8 6 5 30
IV 75 < x 6 8 6 4 24

Flexible length prior The flexible length prior does not lead to improve-
ment over all topic classes and quantizations. Recall—from Section 4.2—that
for the specificity-oriented quantization the flexible length prior did not improve
the overall performance. Hence there is no results for the flexible length prior in
Table 7.2 (c). The topics with the greatest average length of relevant elements
(class IV) is the only class to significantly benefit from the flexible length prior.

Mixture model Applying the mixture model generally improves performance
over all quantizations and topic classes. The improvement is, however, not al-
ways significant. Note that the result for class I using the strict quantization
is an exception: there is a large—but non-significant—decrease in performance.
However, class I is quite small and the performance is dominated by a single
topic—topic 230 which has a MAP of 1.0 for all approaches except the mixture
model where its performance drops to 0.6.

Classes Let us now compare the performance of our system across the different
topic classes. We look at our best performing run—the mixture model run. If
we use the strict quantization to optimize our performance we seem to be tuning
our system to the class of topics where the average length of relevant elements
is the greatest (class IV). I.e., our MAP on that class is far greater than for the
remaining classes. If we use either of the other two quantizations, we get a more
even performance over the different topic classes. However, the performance for
class I is worse than the performance over the remaining classes when we use the
generalized quantizations.

7.1.2 The Number of Relevant Elements

In this section we classify the topics based on the number of elements assessed
highly exhaustive and highly specific. Table 7.3 shows our class definition. Class I
contains all topics having 5 or fewer (strictly) relevant elements; class II contains
all topics having between 5 and 25 relevant elements; etc.

Table 7.4 shows the performance of different retrieval approaches for our four
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Table 7.4: Performance (MAP/MAep) of various retrieval approaches for dif-
ferent assessment-count classes. For each retrieval approach we use the overall
optimal parameter settings. Improvements are calculated relative to the previous
line.

(a) Strict quantization (strict)

Run I II III IV
“Vanilla” baseline .0785 – .0307 – .0240 – .0328 –
Optimal smooth. .0864 10% .0491 60%* .0404 68%** .0471 44%**
Baseline length-pr. .1644 90% .0626 27%** .0849 110%** .0619 31%
Flexible length-pr. .1690 2.8% .0955 53%** .1008 19% .0495 -20%
Mixture model .1660 -1.8% .1052 10% .1195 19%* .0699 41%**

(b) Generalized quantization (gen)

Run I II III IV
“Vanilla” baseline .0462 – .0503 – .0344 – .0303 –
Optimal smooth. .0674 46%*** .0799 59%*** .0657 91%*** .0508 68%***
Baseline length-pr. .0996 48%** .0928 16%** .0995 51%*** .0752 48%**
Flexible length-pr. .0988 -0.8% .0980 5.6% .1087 9.2% .0672 -11%
Mixture model .1138 15% .1100 12%** .1144 5.2% .0958 43%*

(c) Specificity-oriented generalized quantization (sog2)

Run I II III IV
“Vanilla” baseline .0341 – .0447 – .0282 – .0275 –
Optimal smooth. .0493 45%** .0638 43%*** .0501 78%*** .0432 57%***
Baseline length-pr. .0725 47%** .0761 19%*** .0775 55%*** .0620 44%**
Flexible length-pr. – – – –
Mixture model .0865 19% .0881 16%* .0864 11%** .0795 28%**

assessment-count classes. We will now look at each approach and analyze its
effect on different classes.

Optimal smoothing For all topic classes and all quantizations, the optimal
smoothing settings give considerable improvement compared to our “vanilla”
baseline. The improvements are nearly always significant (class I using strict
quantization is an exception).

Baseline length prior Our baseline length prior also gives consistent improve-
ments for all topic classes and quantizations. The improvements are nearly always
significant (classes I and IV using strict quantization are exceptions).

Flexible length prior For the flexible length prior, results are mixed. For
topics having very few relevant elements (class I) the flexible length prior has
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little effect on performance. For topics having very many relevant elements (class
IV) the flexible length prior degrades performance—however, not significantly.
For the two middle classes (classes II and III) the flexible length prior improves
performance—however, usually not significantly.

Mixture model The mixture model gives consistent performance improve-
ments over all the topic classes. The improvement is the largest—and always
significant—for topics having very many highly exhaustive and highly specific
elements (class IV). For the strict quantization the effect of the mixture model
seems to be dependent on the number of relevant elements. I.e., there is a small
decrease in performance for the class containing very few relevant element (class
I). For the remaining classes the mixture model improves performance and the
performance increase grows as the number of relevant elements grows.

Classes Let us now look at the performance of our best performing run—the
mixture model run—over different assessment count classes. If we optimize our
system using the strict quantization we seem to be tuning our system for the
class of topics having very few relevant elements (class I). If we use either of
the generalized quantizations the scoring is more even over the topic classes.
However, the performance for class IV topics is somewhat lower than for the
remaining classes when the generalized quantization is used.

7.1.3 Overlap among Relevant Elements

In this section we classify topics based on the overlap among their strictly relevant
elements.1 We look at the overlap in the strict recall-base—i.e., the set of elements
which were assessed as highly exhaustive and highly specific. We look at the so-
called set-based overlap—i.e., the number of elements in the strict recall-base that
overlap with some other element in the same recall-base. We define four classes—
described in Table 7.5. Class I contains topics with no overlap at all; class II
contains topics where the overlap is less 50%—less than half of the elements in
the strict recall base overlaps with another element in the same recall base; class
III contains topics with overlap between 50% and 90%; and class IV contains
topics where set-based overlap is greater than 90%.

Table 7.6 shows the performance of different retrieval approaches for different
topic classes and quantizations. We will now look at the effect of different retrieval
approaches for each of the topic classes.

Optimal smoothing The optimal smoothing run gives a consistent improve-
ment over the “vanilla” baseline. For the strict quantization there is, however, a
considerable—but not significant—decrease in performance which can to a large

1Two elements are said to overlap if one is contained within the other
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Table 7.5: Classification of topics based on the set-based overlap in the strict
recall-base.

Assessment Topic count
Class count 2002 2003 2004 2005 Total
I x = 0% 3 1 0 9 13
II 0% < x ≤ 50% 8 5 4 9 26
III 50% < x ≤ 90% 9 12 6 5 32
IV 90% < x ≤ 100% 3 9 15 3 30

Table 7.6: Performance (MAP/MAep) of various retrieval approaches for dif-
ferent assessment-overlap classes. For each retrieval approach we use the overall
optimal parameter settings. Improvements are calculated relative to the previous
line.

(a) Strict quantization (strict)

Run I II III IV
“Vanilla” baseline .0104 – .0173 – .0190 – .0888 –
Optimal smooth. .0068 -35% .0283 64% .0313 65%*** .1177 33%***
Baseline length-pr. .0151 123% .0481 70% .0759 143% .1679 43%**
Flexible length-pr. .0231 53% .0527 10% .0879 16% .1871 11%
Mixture model .0286 23% .0504 -4.4% .1065 21% .2091 12%

(b) Generalized quantization (gen)

Run I II III IV
“Vanilla” baseline .0142 – .0313 – .0527 – .0453 –
Optimal smooth. .0307 116%* .0527 69%*** .0813 54%*** .0778 72%***
Baseline length-pr. .0624 103%* .0717 36%*** .1008 24%** .1127 45%***
Flexible length-pr. .0806 29% .0725 1.1% .1044 3.7% .1073 -4.7%
Mixture model .0676 -16% .0833 15% .1207 16%* .1356 26%**

(c) Specificity-oriented generalized quantization (sog2)

Run I II III IV
“Vanilla” baseline .0139 – .0281 – .0444 – .0359 –
Optimal smooth. .0284 105%* .0431 54%*** .0629 42%*** .0586 63%***
Baseline length-pr. .0501 76%* .0582 35%*** .0781 24%* .0886 51%***
Flexible length-pr. – – – – – – – –
Mixture model .0544 8.7% .0664 14%* .0906 16%** .1093 23%***

extent be explained by a single topic—topic 227—whose performance drops from
0.1111 to 0.0417.

Baseline length prior The baseline length prior gives a consistent improve-
ment over the optimal smoothing run. This holds for all overlap classes and all
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quantizations. The improvements are always significant for the two generalized
quantizations, but the improvements for the strict quantization are only signifi-
cant for class IV—the class of topics where there is the most overlap among the
relevant elements.

Flexible length prior The results for the flexible length prior are mixed. The
greatest improvement is for the class of topics having no overlap at all. None of
the improvements of the flexible length prior are, however, significant.

Mixture model For the two classes where overlap is the most (class III and
IV) the mixture model gives a consistent improvement—the improvement is sig-
nificant for the generalized quantizations. For the classes where overlap is the
least (class I and II) the results are mixed. The results for those classes are,
however, not significant.

Classes Let us now look at the performance of out best performing run—the
mixture model—over the four overlap classes. Our system performs best on the
class of topics where overlap is the most (class IV); we get second best perfor-
mance for the class of topics where overlap is the second most (class III); etc.
These results hold independently of which quantization we use to optimize our
system. However, the difference is greater for the strict quantization than for the
generalized quantizations.

7.1.4 Summary

Let us now summarize our evaluation of system performance over different topic
classes. We classified the topic based on three different criteria: the average
length of relevant elements, the total number of relevant elements, and the set-
based overlap among the relevant elements. In our classification we used the strict
assessments. I.e., we considered an element to be relevant if and only if it was
assessed as highly exhaustive and highly specific.

When we use the strict quantization to optimize the parameters of our system
we seem to optimize our system to perform well for topics with the following
characteristics:

• The average relevant element is long (in length-class IV);

• There are few elements assessed relevant (in count-class I);

• The set based overlap among the relevant elements is high (in overlap-class
IV).

For each classification there is a single class for which the performance is clearly
better than for the remaining classes. When we use either of the generalized
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quantizations to optimize the parameters we get a more even performance over
different classes. We can summarize the characteristics of our well performing
topics—using the generalized quantizations—as follows:

• The average relevant element is not very short (not in length-class I);

• There are not very many elements assessed relevant (not in count-class IV);

• The set based overlap among relevant elements is fairly high (in overlap-
class III or IV).

For each classification there is a single class (or two) for which the performance is
clearly worse than for the remaining classes. In sum, the generalized quantizations
seem to be more stable than the strict quantization. This is most likely due to
the fact that more assessment data-points are used in the evaluation.

In the past few chapters we have seen that there is a correlation between
good retrieval performance and long elements—e.g., whole articles and article
bodies—being prominent at early ranks (see the discussion in Section 5.4). In the
present section we have seen that for the strict quantization these long-element
retrieval strategies—i.e., strategies that have a considerable bias toward retrieval
of whole articles and bodies—seem to be rewarded only for topics where the
long elements are frequently assessed as highly exhaustive and highly specific.
However, for the generalized quantizations these long-element retrieval strategies
seem to be rewarded even if the long elements are not frequently assessed as both
highly exhaustive and highly specific. In this sense, the generalized quantizations
may be too lenient. That is, there is too high payoff for the “safe” strategy of
concentrating on the retrieval of the highly exhaustive articles (see the discussion
in Section 5.4).

In this section we have not tried to classify the topics based on their underlying
information need. This sort of classification would be more meaningful than the
classifications we have provided in this section. However, it is difficult to classify
the existing topics based on characteristics of their underlying information needs
without additional information from the original topic authors. This issue is
currently being addressed in the ongoing INEX cycle (INEX 2006) [Kamps and
Larsen, 2006].

7.2 Nested Structures (a.k.a. overlap)

The hierarchical nature of XML documents means that all elements—except root
elements—are nested within some other element(s). Text contained within an
element is thus also contained within all ancestors of that element. Hence, any
element in an XML document will overlap some other element in that document—
as long as the document contains more than one element. This overlap behavior
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makes XML element retrieval evaluation more complicated than the evaluation
of retrieval tasks where retrieval units are non-overlapping.

One of the—at least implicit—assumptions of traditional document retrieval
evaluation is that the ranked lists of documents that are being evaluated is the
same ranked list of documents that would be presented to the user if it was put
into action as part of an operational system. This assumption sounds fairly rea-
sonable in the case where the retrieval units are full documents. This assumption
does, however, not sound as well if it is carried over to the XML element re-
trieval task. Presenting a list of overlapping XML element retrieval results to a
user is not a reasonable thing to do [Kazai et al., 2004a]. Empirical evaluation
has shown that users are irritated by receiving a ranked list of overlapping ele-
ments [Tombros et al., 2005a,b]. Hence, at a first glance, one may argue that the
retrieval of overlapping elements should not be rewarded—or even that it should
be punished—in XML element retrieval evaluation.

On the other hand, studies have shown that users appreciate it when a re-
trieval system exploits the hierarchical structure of XML documents by using
XML element retrieval results to provide a structured overview of relevant doc-
uments [Kamps and Sigurbjörnsson, 2006, Larsen et al., 2006a, Sigurbjörnsson
et al., 2006]. Technology savvy users even expect retrieval systems to show the
relationship between hierarchically related elements [Betsi et al., 2006]. Hence,
at second glance, one may argue that overlap should not be punished—or even
that it should be rewarded—in XML element retrieval evaluation.

In this section we take a look at the role of overlap in our evaluation in
this thesis. The goal of this section is not to settle the long-standing “overlap
issue”—since active research on evaluation framework is beyond the scope of this
thesis. Instead, the main goal is twofold: to determine various basic statistics
on overlap, and speculate how that might affect evaluation. In this section we
evaluate the same task as before. Our task is a system-oriented retrieval of—
possibly overlapping—highly exhaustive and highly specific XML elements. This
section is further organized as follows.

Overlap in the Recall-base In Section 7.2.1 we look at the overlap in the
strict recall-base, i.e., the recall-base consisting of all elements assessed highly
exhaustive and highly specific. We ask ourselves simple questions like:

• How much overlap is there in the strict recall-base?

We answer it by reporting overlap numbers for different vintages of the INEX
collection. We also ask ourselves more involved questions, like:

• What sort of element types overlap?

As a partial answer to this question, we provide a typology of “different types
of overlap” which occurs in the strict recall-base. In the manner, we provide the
first detailed description of overlap in the INEX collection.
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Table 7.7: Set-based overlap in the strict recall-base. Left: the fraction of
elements in the strict recall-base that overlap with at least one other element from
the strict recall-base. Right: the fraction of articles which contain overlapping
elements in the strict recall-base. Mean and median are calculated over all topics
having at least one element assessed strictly relevant.

Elements Articles
mean stdev median mean stdev median

2002 0.4914 0.3166 0.5161 0.3815 0.2682 0.3333
2003 0.7358 0.2705 0.8294 0.6330 0.2869 0.6000
2004 0.8351 0.2163 0.9273 0.7187 0.2580 0.8182
2005 0.3493 0.3563 0.2956 0.3096 0.3583 0.2313
Total 0.6052 0.3491 0.7222 0.5137 0.3384 0.5000

Overlap in Runs In Section 7.2.2 we look at the amount of overlap in the runs
produced by our system.

Evaluation without rewarding overlap In Section 7.2.3 we evaluate our
system using metrics which do not reward overlap.

Finally, we discuss our main findings in Section 7.2.4.

7.2.1 Overlap in the Strict Recall-base

In this subsection we will look at the overlap which is present in the strict recall
base. I.e., the overlap among elements that are assessed as both highly exhaustive
and highly specific for a given topic.

Intuitively, one would not expect much overlap in the strict recall-base. Given
a highly exhaustive and highly specific element, one would expect most of its an-
cestors to be equally exhaustive, but less specific. Similarly, one would expect its
descendents to be equally specific, but less exhaustive. But what do the assess-
ments say? Table 7.7 shows the fraction of elements in the strict recall base that
overlap with another element in the the strict recall base (left); and the fraction of
articles containing overlapping strict assessments compared to the total number
of articles containing a strict assessment (right). The mean and the median are
calculated over all topics having a strict assessment. We see that the overlap in
the strict recall-base has changed from one year to another. In 2002 about half of
the strictly relevant elements overlapped with another strictly relevant element.
In 2003 and 2004, this ratio increases considerably and about tree quarters or
more of the relevant elements overlap with another relevant element. In 2005 the
overlap decreases again and only about a third of the relevant elements overlap
with another relevant element. The fraction of articles containing overlapping
strictly relevant elements follows a similar pattern from one year to another. On
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Table 7.8: Frequency of the “type” of overlap in the strict recall-base. For each
overlap-type we report the total frequency of such a type (#); the fraction of
documents in which such a type occurs in the strict recall base (Documents);
and the fraction of topics for which such a type occurs in the strict recall-base
(Topics).

Overlap-type # Documents Topics
long 303 20% 51%
long/medium 2,853 18% 49%
medium 2,556 28% 74%
medium/short 1,570 9.4% 36%
short 154 2.2% 13%
long/short 602 3.8% 23%

average over the four years, half of the articles—containing a strict assessment—
contained overlapping strict assessments. The fraction is lower in 2002 and 2005,
but higher in 2003 and 2004.

These high overlap numbers are quite surprising, given the expectation that
the ancestors and descendents of highly exhaustive and highly specific elements
would either be less specific or less exhaustive. Let us take a closer look at the
overlap among the assessments, and consider the following question:

• What sort of ancestor-descendant pairs appear in the strict recall-base?

We classify the tag-names into three classes, based on the length of its content.

Long: Whole articles and bodies (e.g., article, bdy)

Medium: Sections, paragraphs, etc. (e.g., sec, ss1, p, fm, bm, etc.)

Short: Emphasis, titles, etc. (e.g., atl, it, ref, etc.)

Intuitively, we would not expect much overlap between elements of different
classes. However, in some situations one could expect to see overlap within the
same class. Say, in the case of a one-paragraph abstract that is highly exhaustive
and highly specific, the abstract and the paragraph should both be assessed as
strictly relevant.

Table 7.8 shows the type of overlap which occurs in the strict recall-base for the
INEX 2002–2005 collections. In terms of absolute frequency of overlap-pairs we
see that most overlap occurs among the medium-sized elements and between long
and medium-sized elements. However, if we look at document frequency and topic
frequency, overlap among the medium-sized elements is the most common form of
overlap. As mentioned before, it is not so surprising to see overlap among elements
in the same class. E.g., given a complete article which is highly exhaustive and
highly specific, it is quite reasonable that its entire body is also highly exhaustive
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Figure 7.1: Overlap between tag-classes for each vintage of the INEX collection.
The y-axis shows the fraction of documents in which such an overlap occurs.

and highly specific. It is, however, more surprising that 18% of the documents—
which contain a highly exhaustive element—contain both a long element which
is highly exhaustive and highly specific; and a medium-sized element which is
highly exhaustive and highly specific. Before we discuss overlap in more detail,
let us look at the overlap within each vintage of the INEX test collection.

Figure 7.1 shows the type of overlap that occurs in the strict recall-base for
individual vintage of the INEX test collection. The figure shows the number of
documents containing an overlap-pair of the particular type, as a percentage of
the total number of documents containing strict assessments. In 2002 and 2003
the total overlap is distributed over three overlap classes, within long, between
long and medium-sized, and within medium sized elements. In 2004 there is a
big increase in overlap among medium-sized elements; and also in overlap among
medium-sized and short elements. As so often before, the 2005 vintage is different
from the previous vintages. As we saw in Section 5.1 the long elements disap-
peared almost altogether from the strict recall-base. Consequently, there is no
overlap either among long elements or between long and medium-sized elements.

For readers who are interested in overlap, a more detailed analysis of the most
frequently overlapping elements can be found in Appendix A.1.

7.2.2 Overlap in Runs

We have seen that there is considerable overlap in the strict recall-base of the
INEX assessments. The strict recall-base is the basis of the evaluation of our runs
in the previous chapters—both when using strict and generalized quantizations.
It is thus interesting to see how the overlap also appears in our runs.

There are several different ways one can measure overlap in a ranked list of
elements. We will look at two:
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Table 7.9: Overlap in the retrieval runs presented in the previous chapters. The
calculation is based on the top 20 retrieved elements for each topic.

Optimized using strict Optimized using sog2
List-based Set-based List-based Set-based

“Vanilla” baseline 4.7% 34% 4.7% 34%
Optimal smoothing 11% 53% 11% 53%
Baseline length pr. 30% 69% 29% 69%
Flexible length pr. 39% 79% – –
Selective (len) 41% 80% 34% 77%
Selective (absp) 37% 75% 31% 71%
Selective (sp) 18% 49% 18% 51%
Selective (sec) 0% 0% 0% 0%
Mixture model 52% 85% 54% 85%
Mixture model (len) 49% 85% 59% 91%
Mixture model (sp) 24% 51% 27% 61%

• Set-based overlap For each element in the ranked list we check if it overlaps
with an element appearing at any location within the ranked list. We
report the portion of overlapping elements, as a ratio of the total number
of elements.

• List-based overlap For each element in the ranked list we check if it overlaps
with an element appearing earlier in the ranked list. We report the portion
of overlapping elements, as a ratio of all elements.

Each of the overlap measures can be applied to ranked lists at various lengths. In
our experiments we look at a ranked list of 20 elements. We choose this number
because we are mostly interested in the top-part of the ranking. We report the
mean overlap over all topics. The set-based overlap measure is the “official”
overlap measure used at INEX [Kazai et al., 2005].2 We also report the list-based
overlap to show that that the absolute overlap numbers can vary, depending on
how overlap is defined.

Table 7.9 shows the overlap in the runs presented in the previous chapters.
We report results for runs based on the optimal settings for two quantizations, the
strict and the specificity-oriented generalized (sog2). We see that our “vanilla”
baseline, where λ = 0.15 and β = 0.0, has a low amount of overlap among the top-
20 retrieved elements. When we improve our retrieval performance, using optimal
smoothing and length priors settings, the overlap of our ranked list increases.
For our most aggressive selective indexing strategies (sp and sec) the overlap
decreases again—but so did our retrieval performance. This stresses further the

2The official overlap numbers at INEX are calculated over the whole ranked list—i.e., as
much as 1500 top ranked elements.
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Table 7.10: Type of overlap present among the top-20 elements of our ranked
lists of elements. For each overlap type we report the number of documents
containing the overlap type. We average over the 146 available CO topics. The
highest overlap number for each run is boldface.

(a) Optimizing using strict

long lon/med medium med/sho short lon/sho
“Vanilla” baseline 0.08 0.12 1.88 0.66 0.19 0.02
Baseline length pr. 2.19 1.79 2.24 0.49 0.08 0.32
Flexible length pr. 4.18 2.27 1.58 0.26 0.04 0.21
Mixture model 4.85 2.38 1.23 0.27 0.05 0.28

(b) Optimizing using sog2

long lon/med medium med/sho short lon/sho
“Vanilla” baseline 0.08 0.12 1.88 0.66 0.19 0.02
Baseline length pr. 2.12 1.81 2.31 0.49 0.08 0.31
Flexible length pr. – – – – – –
Mixture model 3.55 2.64 1.72 0.39 0.04 0.43

relationship between performance and overlap that we saw in the previous section
(Section 7.1). I.e., the better the performance of our runs, the more overlapping
elements they contain.

Table 7.10 shows statistics of the type of overlap present among the top-
20 elements of our result lists. We see that for our “vanilla” baseline, most
of the overlap is among the medium-sized elements. As we apply the baseline
length prior the overlap among the medium-sized elements increases slightly—but
overlap among the long elements; and between long and medium-sized elements
increases considerably. When we apply the mixture model, the overlap among
long elements; and between long and medium-size elements increases again—
but the overlap among middle-sized decreases slightly. Thus, there seems to
be a correlation between good retrieval performance and overlap among the long
elements; and between long and medium-sized elements. This does not necessarily
mean that the good performance is a result of the overlap, but it does raise
some questions about the evaluation framework. Note that for the generalized
quantizations, the mixture model also gave an improvement for the 2005 vintage
where the strict recall-base did not contain any overlap among the long elements;
or between long and medium-sized elements. This indicates that if the evaluation
framework is causing an “unwanted” bias toward long and overlapping elements,
the problem is probably not only due to overlap in the strict recall base, but
also due to how the metrics handles overlapping—strictly or partly—relevant
elements. In the next section we will look at the effect of evaluating our runs
using a metric which does not reward overlap.
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Table 7.11: Optimal values for the smoothing parameter λ and the length-prior
parameter β, when overlapping results are not rewarded (overlap=on).

λ β MAep Diff. Overlap Diff.
Full index .15 1.5 .0525 21%** 78% 12%
absp .15 1.5 .0605 11% 75% 5.6%
sp .30 1.5 .0650 4.4% 49% -3.9%
sec .15 1.0 .0797 – 0% –

7.2.3 Evaluation Without Rewarding Overlap

Previously in this chapter we have seen evidence that our evaluation framework
prefers runs with a high degree of overlap. Now we look at evaluating our retrieval
system using metrics which do not reward overlap. We use the specificity-oriented
generalized (sog2) quantization and evaluate our runs using a mean average ef-
fort precision (MAep) metric where overlap is not rewarded (in the EvalJ lingo,
overlap=on [EvalJ]). We do not change the retrieval task we are addressing, i.e.,
we use the same runs as in the previous chapters, but we evaluate them with a
different metric. Our main question is:

• How does it effect the evaluation of our retrieval approaches if we do not
reward overlapping results?

We analyze this effect by comparing the optimal parameter settings learned in
the previous chapters—where overlap was rewarded—and the optimal parameter
settings for metrics which do not reward overlap. We look at two types of effect:
the effect on optimal parameter settings for individual retrieval approaches, and
the effect on the relative ranking of retrieval approaches.

Effect on optimal parameter settings Table 7.11 shows the results of op-
timizing our system using the MAep metric which does not reward overlap. In
the table we only report results using the specificity-oriented quantization. The
table shows results for a selection of indices used in Chapter 4 and Chapter 5.
From the table we can read what happens if we optimize our system using a
metric which does not reward overlap, compared to optimizing our system using
a metric which does reward overlap. We can make two interesting observations:

• the overlap in the runs generally increases ; and

• the optimal value for the length prior parameter increases.

This is surprising since one the motivation for the ideal recall-base and the metrics
which do not reward overlap was to decrease overlap in runs and discourage the
retrieval of long texts [Kazai et al., 2004a, p.75]:
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Table 7.12: Relation between the length-prior parameter and overlap in runs.
The table shows type of overlap, list-based overlap, and set-based overlap. All
runs use λ = 0.15 and we look at the top-20 elements retrieved.

β long lon/med medium med/sho short lon/sho List Set
0.0 0.08 0.12 1.88 0.66 0.19 0.02 4.7% 34%
0.5 0.36 0.44 2.31 0.71 0.14 0.12 11% 46%
1.0 2.19 1.79 2.24 0.49 0.08 0.32 30% 69%
1.5 4.31 2.12 1.47 0.25 0.05 0.21 39% 78%
2.0 5.50 1.79 0.88 0.09 0.00 0.08 40% 77%
2.5 5.84 1.34 0.49 0.03 0.00 0.01 38% 73%
3.0 5.94 1.03 0.32 0.03 0.00 0.01 36% 69%
3.5 5.97 0.82 0.18 0.01 0.00 0.01 35% 67%

“The aim of returning XML fragments instead of whole documents is
to reduce the user effort required in viewing large texts by allowing
users to focus only on the parts relevant to their query”

What has gone wrong? Why does the ideal recall-base and the metrics which
does not reward overlap encourage the retrieval of large and overlapping texts?

In order to try to explain this surprising result let us look at Table 7.13 which
shows for each vintage the results of evaluating our runs using the metric which
does not reward overlap. The metric which does not reward overlap generally
suggests an increased length bias for the 2002–2004 vintages; but a decreased
length bias for the 2005 vintage. Recall from Table 5.4—in Section 5.1—that full
articles were quite prominent in the 2002–2004 strict assessments. Recall also
that in the definition of the ideal recall-base parent elements are preferred over
children—when a choice needs to be made between equally relevant parent-child
elements the parent is chosen [Kazai et al., 2004a]. This means that for the 2002–
2004 collection, whole articles become quite prominent in the ideal recall-base.
Hence it is not so surprising that a considerable length bias is needed to get
optimal performance. Note, that the increased length bias reduces overlap for
the 2002 and 2003 optimal settings. This is most likely the effect of the increased
number of article elements among the top-20 retrieved elements—from Table 7.12
we see that there is a peak in overlap around β = 1.5.

For the 2005 collection we get the “expected” effect of optimizing using a
metric which does not reward overlap. I.e., both the length bias and the over-
lap decreases. This suggests that the 2005 assessments are a good fit to the
assumptions that are underlying the definition of the ideal recall-base—but the
assumptions seem to be less suitable for the 2002–2004 assessments.

Let us now look at the difference in performance between optimizing using,
on the one hand, the metric which rewards overlap, and on the other hand, the
metric with does not reward overlap. Since our final evaluation does not reward
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Table 7.13: MAep without rewarding overlap. Optimal values for the smoothing
parameter λ and the length-prior parameter β for different vintages of the INEX
collection.

(a) Using the full element index

λ β MAep Diff. Overlap Diff.
2002 .85 3.0 .0639 44% 76% -6.2%
2003 .65 2.5 .0556 12% 78% -2.5%
2004 .10 1.5 .0642 6.3% 77% 12%
2005 .75 0.5 .0488 3.4% 56% -19%

(b) Using the absp tag-name based element index

λ β MAep Diff. Overlap Diff.
2002 .65 2.5 .0677 25% 74% -3.8%
2003 .65 1.5 .0673 5.7% 78% 0%
2004 .10 1.5 .0671 11% 74% 4.2%
2005 .10 0.0 .0768 19% 20% -72%

(c) Using the sp tag-name based element index

λ β MAep Diff. Overlap Diff.
2002 .90 1.5 .0407 0.2% 49% -2.0%
2003 .20 1.5 .0774 22%* 47% -7.8%
2004 .25 1.0 .0648 1.3% 50% -2.0%
2005 .15 0.5 .0857 5.0% 35% -30%

(d) Using the sec tag-name based element index

λ β MAep Diff. Overlap Diff.
2002 .45 1.0 .0600 – 0%
2003 .20 1.0 .0994 – 0%
2004 .05 0.5 .0841 – 0%
2005 .05 0.5 .0749 – 0%

overlap—of course—we get better results if we use that metric as well in our
optimization. Note, however, that the improvement is rarely significant.

Effect on relative performance We have seen that evaluating without re-
warding overlapping results suggests different optimal parameter settings, com-
pared to the case where we did reward overlapping results in our evaluation—yet
rarely with a significant difference in retrieval performance. But what about the
relative performance of different types of runs? Is it sensitive to the different
evaluation methods?

Table 7.14 shows the relative performance of different indexing strategies. We
report the mean average effort precision for a run using the overall optimal param-
eter settings for each index. We report the results using the specificity-oriented
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Table 7.14: MAep of runs with (off) and without (on) rewarding overlapping
results. Improvement is calculated relative to the run at successive rank.

Overlap rewarded Overlap not rewarded
MAep Rank Impr. MAep Rank Impr.

Full index .0729 2 33%*** .0525 4 –
absp .0802 1 10%** .0605 3 15%***
sp .0548 3 135%*** .0650 2 7%
sec .0233 4 – .0797 1 23%***

generalized quantization (sog2), and using metrics which do and do not reward
retrieval of overlapping relevant elements. We rank the different runs according
to their performance for each of the metrics. We see that the ranking is very
sensitive to the metric used. If overlap is rewarded, the indices containing the
longest elements (full index, and absp) outperform the indices that only con-
tain medium-size elements (sp and sec). If overlap is not rewarded, the tables
turn. The indices of medium-size elements outperform the others. The perfor-
mance difference between runs at associative ranks is usually significant—with
the exception that the sp-run is not significantly better than the absp-run. Note,
however, as we saw before in this section we must be careful about averaging over
all vintages for the metric which does not reward overlap—since its effect is very
different between vintages.

Let us thus look at different vintages separately. In Table 7.15 we break the
relative performance results over different vintage of the INEX test collection. For
the metric which does reward overlap the results are the same over all vintages.
The absp-run outperforms the full-index-run—non significantly; the full-index-
run significantly outperforms the sp-run; and the sp-run significantly outperforms
the sec-run. For the metric which does not reward overlap the results change from
one year to another. For the 2002 collection, absp-run gives the best performance
and is significantly better than the next run, the full-index run. For the 2003
collection, the sec-run is the best and significantly outperforms the next run, the
sp-run. There is no significant difference between the runs for the 2004 collection.
For the 2005 collection, the sp-run is the best and significantly outperforms the
next run, the absp run. We will expand on these results in the discussion below.

7.2.4 Discussion

Let us first summarize our main results from this section.

Overlap in the strict recall-base Even in the strict recall-base, there is a
considerable amount of overlapping elements (35%–84%, depending on vintage).
The most common type of overlap is among medium-sized elements. In the first
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Table 7.15: MAep of runs with (off) and without (on) rewarding overlapping
results, for different vintages of the INEX collection. Improvement is calculated
relative to the run at successive rank.

(a) The 2002 vintage

Overlap rewarded Overlap not rewarded
MAep Rank Impr. MAep Rank Impr.

Full index .0618 2 112%*** .0639 2 7%
absp .0643 1 4% .0677 1 6%*
sp .0291 3 62%*** .0407 4 –
sec .0180 4 – .0600 3 47%***

(b) The 2003 vintage

Overlap rewarded Overlap not rewarded
MAep Rank Impr. MAep Rank Impr.

Full index .0736 2 42%* .0556 4 –
absp .0801 1 9% .0673 3 21%
sp .0517 3 80%** .0774 2 15%
sec .0288 4 – .0994 1 28%**

(c) The 2004 vintage

Overlap rewarded Overlap not rewarded
MAep Rank Impr. MAep Rank Impr.

Full index .0851 2 34%*** .0642 4 –
absp .0912 1 7% .0671 2 4%
sp .0634 3 158%*** .0648 3 1%
sec .0246 4 – .0841 1 25%

(d) The 2005 vintage

Overlap rewarded Overlap not rewarded
MAep Rank Impr. MAep Rank Impr.

Full index .0817 2 17%* .0488 4 –
absp .0912 1 12% .0768 2 3%
sp .0701 3 212%*** .0857 1 12%*
sec .0225 4 – .0749 3 53%
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three years overlap among large elements; and between large and medium-sized
elements was prominent.

Overlap in runs We look at the overlap percentages for a number of our runs.
Our well performing runs have a higher overlap than the less performing runs. In
our best run—the mixture model—overlap is mainly among large elements; and
between large and medium-sized elements.

Evaluation without rewarding overlap We evaluate our—overlapping—
runs using metrics that do not reward overlap. We compare the optimal parameter
settings of those metrics to the optimal parameter settings for the metrics that
do reward overlap. The surprising result is that for the metrics that do no re-
ward overlap, more length bias is needed to get optimal performance. This result
carries over to the first three years of INEX, where whole articles were commonly
judged as highly exhaustive and highly specific. The tables turn for the 2005
collection and less length bias gives optimal performance.

Overlap is a challenging issue for XML retrieval evaluation. One of the most
challenging factors is that there is no “obvious” mapping from a ranked list of
elements to an operational usage. We have seen that if we display overlapping el-
ements as a ranked list of elements, overlap is a problem [Tombros et al., 2005b].
We have also seen that if we display overlapping elements in context of their
surrounding article, overlap is a feature [Kamps and Sigurbjörnsson, 2006, Sig-
urbjörnsson et al., 2006]. What should we do when we evaluate ranked lists of
elements? Should we reward overlap? Should we punish overlap? Or should we
neither punish it nor reward it? The answer to these questions is most likely
application specific.

When evaluating a ranked list of elements for a specific interface—or opera-
tional application—we should consider specific evaluation framework. First, the
application designer must ask herself whether she is going to exploit nesting in-
formation in her application. If not, she should not retrieve overlapping elements
and evaluate her element list using a metric which does not reward overlap. If
the application does exploit nesting, the designer should ask herself what type
of nesting her application exploits—and choose a metric which rewards the cor-
responding type of overlap. As an example, if you want to use XML element
retrieval to highlight relevant text in a long text document, you may consider
retrieval of non-overlapping elements and evaluate using a metric which does not
reward overlap. However, if you want to use XML element retrieval to create
structured result lists—defined in Chapter 1—you may consider a metric which
rewards overlap, at least among the elements you are going to display in your
result list.

On the other hand, if we want to evaluate a “general” ranked list of elements—
to be used as raw material by an unspecified application—we should probably
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ignore the overlap question altogether and use a metric which does not punish
overlap—and, hence, implicitly rewards it.

In sum, the choice of evaluation framework for XML element retrieval depends
on the intended application. For evaluating “general purpose” XML element
retrieval one should choose a simple metric which makes weak assumptions about
the end task. However, for a specific application of XML element retrieval one
needs to be more selective about the retrieval task and choose a metric which is
suitable for that particular task.

7.3 Ranking Documents

Recall from Chapter 1 that we defined a specific end goal for the element retrieval
task. We wanted to use the element retrieval results to give a more focused access
to relevant documents. More precisely, the end product is a document retrieval
system which uses the element retrieval system to implement direct linking and
structured result list (See further Chapter 1). In such a system two rankings are
needed. First of all, we need to produce a ranked list of elements. Second, we
need to produce a ranked list of documents. Hence we need to ask ourselves:

How can element retrieval be used to rank documents?

The task of creating a ranked list of elements has been studied thoroughly in the
past chapters. In this Section we will briefly turn our attention to the task of
producing a ranked list of documents.

We define three algorithms for using element retrieval results to produce a
document ranking. We compare the performance of those algorithms to a base-
line document retrieval run—i.e., a run created by using our language model
(Section 3.3) on a document index (Section 3.2) using a baseline length prior
(Section 4.2). Our goal of this section is not, per-se, to use element retrieval
to create document ranking that outperforms a document retrieval system. Our
main aim is to show that we can use our ranked list of elements to create a
document ranking of similar quality as we would get using a document retrieval
system.

We implement the following document ranking algorithms. The algorithms
take a ranked list of elements as input (in this thesis we use element lists con-
taining up to 1000 elements per topic). The algorithms return a ranked list of
documents as output:

Best element Documents are assigned the score of their highest scoring element.

Sum elements The score of a document is the sum of scores of all retrieved
elements from that document.

Sum top-n elements The score of a document is the sum of the scores of the
top-n retrieved elements from that document.
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Table 7.16: Performance of our four document ranking algorithms when applied
on a selection of element retrieval runs. The best performing algorithm for each
run is in boldface. We make a comparison between the best performing algo-
rithm and a baseline document retrieval run (λ = 0.35, β = 1.0, MAP=0.4155,
P@10=0.3869).

(a) Mean average precision (MAP)

Algorithm
Best Sum Top 5 Rank Comparison

Length prior 0.3328 0.3669 0.3900 0.3943 -5.1%
Mixture model 0.3692 0.3347 0.3954 0.3851 -4.8%
Mixt. model (sp) 0.3401 0.3026 0.3708 0.3496 -11%**

(b) Precision at 10 retrieved documents (P@10)

Algorithm
Best Sum Top 5 rank Comparison

Length prior 0.3000 0.3477 0.3598 0.3850 -0.5%
Mixture model 0.3486 0.3402 0.3757 0.3710 -2.9%
Mixt. model (sp) 0.3252 0.3009 0.3607 0.3449 -6.8%*

Rank-based The score of a document is

score(d) :=
∑
e∈d

1

ne

· score(e), (7.1)

where ne is the rank of element e among elements contained in document d.
I.e., a document d is assigned the full score of its highest scoring element,
plus half the score of its 2nd highest scoring element, etc.

7.3.1 Experiments

Table 7.16 shows the performance of the document ranking algorithms when
applied on three of our retrieval approaches, the baseline length prior, mixture
model, and the mixture model when applied to the task of retrieving sections
and paragraphs (sp). For each approach we take the optimal performing param-
eter settings when evaluated using MAep and the specificity-oriented generalized
quantization (sog2).

For the baseline length-prior run the rank-based ranking algorithm performed
the best. For the two mixture model approaches the best approach was to take
the sum of 5 highest ranking elements for each document.

The performance of our best document ranking algorithms is always below
the document retrieval baseline. For the runs using the full element index the
performance difference is not significant. However, for the run which only retrieves
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sections and paragraphs the performance is significantly worse than the document
retrieval baseline.

Discussion

The results in this section may seem out of line with past research on the effective-
ness of passage retrieval for ranking documents [Callan, 1994, Kaszkiel and Zobel,
1997]—where passage retrieval gave significant improvements over document re-
trieval. Note, however, the passage retrieval in those experiments was optimized
for the document retrieval task, while the element retrieval in this thesis was
optimized for finding highly exhaustive and highly specific elements.

Let us now recall the question we wanted to address in this section:

How can element retrieval be used to rank documents?

In short, our element retrieval runs based on the full element inex can serve as a
reasonable—but not optimal—basis for ranking documents.

7.4 Conclusions

In this chapter we have addressed three research questions. First, we looked at
different topic classes:

What is the impact of different topic classes on retrieval performance?

In Section 7.1 we have evaluated a selection of our runs over different topic classes.
Our main findings were that when we optimize our system using the strict quan-
tization we are likely to overfit our system to a single class of topics. However,
if we use either of the generalized quantizations to optimize our system we get a
more even performance over topic classes. We have used this findings to argue
that the—somewhat counter-intuitive—importance of articles and bodies in the
evaluation may—to some extent—be explained by the high payoff for the “safe”
strategy of concentrating on retrieving the most exhaustive elements.

Next, we looked at the impact of hierarchical structures on the evaluation of
XML element retrieval:

What is the impact of overlap on our evaluation?

In Section 7.2 we explored how nested structured (a.k.a. overlap) affected our
evaluation. We have seen that overlap does affect our evaluation, but is difficult
to argue what that really means for our evaluation of XML element retrieval. The
“appropriate” evaluation framework is namely dependent on the intended usage
of the retrieved elements.

Finally, we looked at document ranking:
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How can element relevance be used to rank documents?

In Section 7.3 we have evaluated our element retrieval approaches with respect to
how good they are as a basis for several document ranking algorithms. Our main
finding was that our element retrieval approaches serve as a reasonable—yet not
optimal—basis for document ranking. This finding is useful for the application
in the next chapter where we use element retrieval to give focused information
access to full documents.

This chapter marks the end of our system-oriented evaluation of XML element
retrieval. In the next chapter we look at how XML element retrieval can be put
into action by building an interface for giving focused information access.



Chapter 8

Element Retrieval in Action

In the previous chapters we have evaluated XML element retrieval using an off-
line test collection. We have studied the question of optimizing the system for
solving the task of finding highly exhaustive and highly specific XML elements.
In this thesis we do not consider this systems-oriented element retrieval task as
an end goal, but rather as a means to solve a user-oriented task. It is now time
to put element retrieval into action and how XML element retrieval can be put to
work as a part of an operational system which gives focused information access.

Recall the scenario in Chapter 1 where a user was searching for specific in-
formation in a collection of long documents. We asked ourselves how we could
assist the user by giving her focused access to the relevant information within the
relevant documents. In this chapter we build a user interface that uses our XML
element retrieval system to give users focused access to the relevant information.
Our aim is to show, by proof-of-concept, that XML element retrieval can be used
for this purpose. Our main research question in this chapter is thus:

How can XML element retrieval be put into action as part of an
operational system for giving focused access to relevant documents?

XML element retrieval can potentially be used in a much wider range of appli-
cations than the one addressed in this chapter. In this thesis, we do not give a
complete survey of all these possible applications, but limit ourselves to giving
one example of such an application.

The straightforward implementation of “elements in action” would be to dis-
play a ranked list of elements in a similar way as ranked lists of documents are
displayed by popular search engines, say, [Google] or [Yahoo!]. There are, how-
ever, certain properties of ranked lists of elements that may make things more
involved:

Scattered-relevance: Results from the same documents may appear at different
locations in the result list.

141
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Reading order: The relevance ordering of elements from the same document
within the ranked list may be very different from the natural reading order
of the document.

Overlap: Elements at different ranks in the result list may overlap.

An interactive evaluation of such a straightforward implementation did indeed
show that these properties need to be taken into consideration [Tombros et al.,
2005a,b]. In particular, scattered relevance and overlap proved to cause confusion
and frustration among users.

These three issues naturally translate into three sub-questions about how to
design element retrieval interfaces:

• How do we handle scattered relevance?

• How do we present the two different orderings of elements within a single
document, relevance order and reading order?

• How do we handle overlapping elements?

In short, we address these issues by clustering together element results from
the same document and sort them in a reading order. We show the relative
ranking of elements within a single document using a “relevance heat-map” of
each document. Finally, we explicitly show how relevant elements overlap by
displaying each document as a partial tree of relevant elements. These design
questions are addressed in Section 8.2.

The next set of sub-questions we address is about the portability of our inter-
face:

• How do we give focused access to third-party collections where we do not
control how documents are displayed?

• Does our system generalize to other semi-structured document collections
which are not necessarily in XML format?

In Section 8.3 we show how our interface can be applied to several different
collections—both “our own” collection and third-party collections. The format
of the collections ranges from high quality XML markup to loosely marked-up
structure.

Our final set of sub-questions address the evaluation of our interface:

• How satisfied are users with our system?

• How do users interact with our system?
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In Section 8.4 we present an evaluation of our interface, using two interactive
studies. In Section 8.4.1 we evaluate an application of our interface to the INEX-
IEEE Computer Society collection. In Section 8.4.2 we evaluate an application
of our interface to the Wikipedia Encyclopedia. For each study the research
questions will be addressed by analyzing, respectively, questionnaires that we
asked our users to fill in, and logs of user-system interaction.

In addition to the three sections outlined above this chapter is organized as
follows. In Section 8.1 we give background on information retrieval interfaces—in
particular, interfaces that give sub-document-level access to relevant documents.
Finally, in Section 8.5 discuss the lessons learned from our efforts of putting
element retrieval into action.

8.1 Information Retrieval Interfaces

In this section we give an overview of related work on information retrieval inter-
faces. The overview is geared toward related work on focused interfaces, or more
precisely, interfaces that use sub-document-level retrieval results. For a more
comprehensive overview of different information retrieval interfaces we refer to an
overview by Hearst [1999].

Today, probably the most familiar information retrieval interfaces are the
simple—and yet powerful—interfaces provided by the popular web search engines
such as Google. In a response to a query a ranked list of web documents is
presented using few bells or whistles. Each web document is presented using a
document title, query dependent summary—a text snippet.

The SuperBook [Remde et al., 1987] is an example of an early search inter-
faces for hypertext. It was designed to improve the way people obtain and use
information from books—in particular, books used for learning and reference.
The key feature in the document rendering part was a Table of Contents with
hyperlinks to the appropriate locations within the book. Search results were pre-
sented by associating search-term counts to the entries of the Table of Contents.
Hence, the user could see how the search terms were distributed throughout the
book—giving information about which sections are likely to be of interests.

Hearst [1995] introduced a visualization paradigm, called TileBars, which
takes document structure into account when visualizing retrieval results. The
TileBars indicate relative document length, query term frequency and distribution
of query terms w.r.t. each other and the document as a whole. The TileBars are
based on automatic segmentation of documents into, so called, TextTiles [Hearst,
1997]. Each TextTile is a multi-paragraph segment which discusses one sub-topic
of the overall document topic. The interface indicates the frequency of each
query term within each tile and allows users either to enter each document at its
beginning, or jump directly to the beginning of a desired tile.

Großjohann et al. [Großjohann et al., 2002, Fuhr et al., 2003b] introduce
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Figure 8.1: Simplified image of the interaction taking place when a user interacts
with our focused retrieval system via our interface.

an interface for displaying XML element retrieval results. The interface uses
so-called Partial Treemaps to present document structure and TextBars—an ex-
tension of Hearst’s TileBars—to present the relative relevance of elements within
a document.

Harper et al. [2004] introduced result visualization based on so-called relevance
profiles. The relevance profiles are used to calculate retrieval status values (RSVs)
over a tiling of the results. A single result is visualized as a bar-graph where each
bar represents the RSV of the corresponding tile. The interface can be viewed
as a simplification of the TileBar interface introduced by Hearst [1995]. The
tiling used in the relevance profiling interface uses a linear segmentation of each
document.

The interface we present in this chapter can be seen as cross-breed between
the interface of popular search engines and the interface proposed by Großjo-
hann et al. Our interface brings the tree structure into the result list, while at
the same time trying to preserve the simplicity of popular search engines.

8.2 Focused Retrieval Interface

The task of an information retrieval interface is to use an information retrieval
engine to give users access to documents that answer the users’ information needs.
Figure 8.1 shows a simplified image of of the interaction between the user and an
interface. The figure extends Figure 1.4 to include the interaction between the
user and the “online” version of the collection. We make a distinction between
two forms of the collection. First, the online form of the collection refers to
the form of the collection that can be accessed by users. In the examples we
present in this thesis, the online form of the collection is an HTML view of each
document. Second, the index form of the collection refers to the document and
element indices described in Section 3.2.

The figure shows the actors with which the interface interacts, i.e., the user,
the retrieval engine, and the collection in its online form. The main role of the
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interface is to give access to the online collection using the results provided by
the retrieval engine. The interface is thus dependent on the access methods (or
“ingredients”) made available by the two components:

Retrieval engine: provides a ranked list of elements. I.e., it returns a list of
elements together with a retrieval status value for each element.

Online collection: provides a user-friendly view of the collection together with
anchors in the text that can be used as possible entry points.

We have seen in Chapter 5 that we can adjust the efficiency and effectiveness of our
retrieval engine by carefully selecting the granularity of the retrieval results. This
means that the retrieval engine returns as results only a limited set of element-
types. Granularity does also play a role on the online collection side. It can
vary from one content provider to another what sort of entry-points are offered
into the collection. As an example, the IEEE Computer Society provides access
to their digital library1 at the article and section level only. I.e., the only entry
points offered are at the beginning of each journal article and at the beginning of
each top-level section (<sec>). Hence, even if the retrieval engine provides results
at a very fine granularity, say individual paragraphs, the interface can only give
access to individual sections of the IEEE Computer Society digital library.

The interface has thus some core ingredients that can be used to present the
result to the user:

• A ranked list of elements, provided by the retrieval system;

• Entry-points into the online collection, provided by the information provider;

• The source of each document in the collection, provided by the information
provider.

These ingredients can be mixed and presented in a number of different ways. In
the remainder of this section we will present and motivate how we chose to mix
the ingredients to make an information retrieval interface which gives focused
access to the relevant documents.

8.2.1 Design Principles

In her overview chapter on user interfaces and visualization Hearst [1999] identifies
three design principles that are important for information retrieval interfaces.

Offer informative feedback Interfaces should offer “users with feedback about
the relationship between their query specification and documents retrieved,

1http://www.computer.org/portal/pages/csdl/content/index.html

http://www.computer.org/portal/pages/csdl/content/index.html
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about relationships among the retrieved documents, and about about rela-
tionships between retrieved documents and metadata describing collections.”
(page 259). In our interface we focus on the first type of feedback, i.e., the
relationship between the query specification and the elements retrieved. We
address the second type of feedback by displaying the relationships among
elements retrieved from the same document. The only feedback we give on
the inter-document relations is to provide a ranking of the documents ac-
cording to relevance. Feedback on collection metadata is beyond the scope
of this thesis.

Reduce working memory load “One key way information access interfaces
can help with memory load is to provide mechanisms for keeping track of
choices made during the search process, allowing users to return to tem-
porarily abandoned strategies, ...” (page 259). Reduction of memory load—
other than the default functionality of back/forward buttons of standard
web browsers—is beyond the scope of this thesis.

Provide alternative interface for novice and expert users “An important
tradeoff in all user interface design is that of simplicity versus power. Sim-
ple interfaces are easy to learn, at the expense of less flexibility ... Powerful
interfaces allow knowledgeable users to do more and have more control over
the operation of the interface, but can be time consuming to learn...” (page
259). In our interface we opted for simplicity rather than power. We try to
make use of element level relevance in a simple and intuitive manner to make
an interface which is easy to use for novice users, or at least users who are
familiar with the simple interface provided by common online search engines
such as Google and Yahoo!.

The design of the interface was based on an evaluation of the—then state-of-the-
art—XML element retrieval system HyREX2 which was used in the INEX 2004
interactive track [Tombros et al., 2005a,b]. The interface to HyREX, used in the
interactive experiment, displayed results as a ranked list of XML elements, with-
out taking the internal document structure into account.3 The HyREX system
served also as a content provider. This means that the system could tightly inte-
grate the result list and the collection. I.e., the interface was not limited by the
access points provided by an external content provider. When the user clicked on
an element result, she was brought to a window where the text of that element
was shown, together with a table of contents for the whole article. Further details
can be found in [Tombros et al., 2005a].

One of the major problems identified in the INEX 2004 interactive track was
how the HyREX interface handled overlapping elements. I.e., the users were

2http://www.is.informatik.uni-duisburg.de/projects/hyrex/
3A graphical interface to HyREX did also exist, but was not used in the main interactive

track.

http://www.is.informatik.uni-duisburg.de/projects/hyrex/
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irritated by overlapping elements appearing at different locations in the result
list [Tombros et al., 2005b, p.48]:

Overlapping components, i.e., components from the same document at
different ranks in the hit list, frustrated many users but might instead
be exploited to achieve a better and more comprehensible presentation
of results, e.g., by hierarchical hit lists or for highlighting parts of
documents. An issue to be investigated is how to present components
in the hit list, so that users get a good impression of whether the
component might be worth examining further or not.

One of our major goals was to develop an interface which handled more gracefully
multiple relevant elements—overlapping or not—coming from the same docu-
ment. We opted for displaying elements in document context. I.e., group together
all element results from the same document and display as a single document re-
sult. This design decision can be motivated by the outcome of the INEX 2004
interactive track [Tombros et al., 2005b, p.47]:

The presence of the logical structure of the documents alongside the
contents of the accessed components was a feature that searchers com-
mented positively on. The Table of Contents of each document [...]
seemed to provide sufficient context to searchers in order to decide on
the usefulness of the document or not.

In a sense our result list gives a structured overview of each document. Our
intuition was that, this way, overlap could be a feature of the interface rather
than a problem. In addition to giving a structured overview, we give a summary
of the content of the relevant elements using element based snippets. This can,
again, be motivated by the outcome of the INEX interactive experiment [Tombros
et al., 2005b, p.47]:

The hit list presentation in the system used in this study did not
include any kind of XML document, or element, summarization; only
the title and authors of the document were displayed in addition to the
XPath of the component and its similarity to the query. This implied
that searchers had little clues available to decide on the usefulness or
not of retrieved elements.

Our interface is web-based and can in principle be used with any element retrieval
system. In our experiments we use our own in-house XML retrieval extension of
Lucene as its retrieval back-end. The interface accepts queries from the user
and displays a ranked list of relevant documents. The interface uses a ranked
list of elements to decorate documents in the result list with element relevance
information.
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8.2.2 Interface Functionality

The two main features of web search engines, such as Google and Yahoo! are:

• Document links : A link is given to the beginning of each relevant document.

• Document snippets : A query dependent summary of the document content.

These two features can be naturally extended to element retrieval:

• Element links : The user is given the option to jump directly to the relevant
portions of the document via links to the beginning of each relevant element.

• Element snippets : query dependent text snippets are generated for individ-
ual relevant elements.

Each document in our result list contains a hierarchy of element link-snippet
pairs—one pair for each relevant element. For each document its relevant elements
are sorted in document order—i.e., reading order. We also show the relevance
ordering of elements by introducing a “heat map:”

• Heat map: The relative relevance of elements within a single document is
displayed with a colored heat-map where elements with high retrieval status
values (RSVs) are displayed as “hotter” than elements with a lower RSV.
This feature is similar to the TextBars used by Fuhr et al. [2003b] and
relevance profiles used by Harper et al. [2004].

We will further explain the functionality of our interface in terms of an example.
Suppose a user is interested in software licensing. In particular she wants to know
more about the GNU and GPL software licenses. She uses our focused search
engine to satisfy her information need. Let us follow the search process through
the different stages shown in Figure 8.1. The user types the query GNU GPL in
to the search box. The query is sent to the XML element retrieval engine which
produces the ranked list of elements shown in Figure 8.2. The result handler
takes the ranked list of elements as input, clusters them by document, and within
each document cluster the elements are sorted in document order. The document
clusters are then ordered using some of the methods introduced in Section 7.3.
The result—a new ranked list of elements—is shown in Figure 8.3. The ranked
list in Figure 8.3 is then visualized as shown in Figure 8.4 (on page 152). Each
document result presented in the interface has the following features:

Document entry-point: At the top, the title of the document is shown. In
Figure 8.4, “Open Source Software Development: An Overview” is the title
of the first document. Clicking on the title gives the user access to the
beginning of the document.
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Document Element Rank RSV

co/2001/r6033 /article[1]/bdy[1] 1 8.203884

so/1999/s1020 /article[1]/bdy[1]/sec[4] 2 8.191401

co/2001/r6033 /article[1] 3 8.128398

...

so/1999/s1020 /article[1]/bdy[1]/sec[4]/p[5] 9 7.998796

...

so/1999/s1020 /article[1]/bdy[1] 16 7.616654

co/2001/r6033 /article[1]/bdy[1]/sec[2] 17 7.612980

...

so/1999/s1020 /article[1] 24 7.518584

...

co/2001/r6033 /article[1]/bdy[1]/sec[5] 56 6.643469

...

co/2001/r6033 /article[1]/bdy[1]/sec[4] 77 6.136657

...

co/2001/r6033 /article[1]/bdy[1]/sec[4]/p[6] 94 5.534552

co/2001/r6033 /article[1]/bdy[1]/sec[4]/p[5] 95 5.534548

Figure 8.2: A selection of element retrieval results for the query GNU GPL.

Document Element Rank RSV

co/2001/r6033 /article[1] 3 8.128398

co/2001/r6033 /article[1]/bdy[1] 1 8.203884

co/2001/r6033 /article[1]/bdy[1]/sec[2] 17 7.612980

co/2001/r6033 /article[1]/bdy[1]/sec[4] 77 6.136657

co/2001/r6033 /article[1]/bdy[1]/sec[4]/p[5] 95 5.534548

co/2001/r6033 /article[1]/bdy[1]/sec[4]/p[6] 94 5.534552

co/2001/r6033 /article[1]/bdy[1]/sec[5] 56 6.643469

so/1999/s1020 /article[1] 24 7.518584

so/1999/s1020 /article[1]/bdy[1] 16 7.616654

so/1999/s1020 /article[1]/bdy[1]/sec[4] 2 8.191401

so/1999/s1020 /article[1]/bdy[1]/sec[4]/p[5] 9 7.998796

...

Figure 8.3: A selection of element retrieval results for the query GNU GPL,
clustered by document, and ranked in document order.
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Element entry-points: Below the document title is a hierarchical view of the
relevant portion of the document. For the top-ranked document in Fig-
ure 8.4, seven elements are shown: the root element (article[1]), the body of
the article (bdy[1]), sections 2, 4, and 5 from the body (sec[2], sec[4], sec[5]),
and two paragraphs from Section 4 (p[5] and p[6]). For each element a link
is provided which gives the user access to the beginning of that element.
I.e., the user enters the relevant document at the beginning of the element
she clicked on. As an example, Figure 8.5 (on page 153) shows the situation
if the user chose “/sec[4] (LICENSING MODELS)” as her entry-point into
the document.

Element snippets: For elements that do not have a relevant descendant, an
element snippet is shown. For the top-ranked document in Figure 8.4, four
element snippets are shown: for Section 2 (sec[2]), for the two paragraphs
from Section 4 (p[5] and p[6]), and for Section 5 (sec[5]).

Heat-map: To the left of the hierarchical document view in Figure 8.4 is the
heat-map—which shows the relative relevance ranking of the elements within
a single document. The heat-map consists of a set of tiles—one tile for each
element. The tiles are colored in a shade of red. The more relevant the
element is, the darker the color of the tile.

In this section we will not go into more details of the actual system implementa-
tion. Instead, we refer to a technical report describing the implementation of the
first version of the system [Bakker et al., 2005].

Let us now briefly re-cap how this interface tackles the three main outcomes
of the INEX 2004 interactive track [Tombros et al., 2005b]. Our interface handles
the “overlap problem” by clustering together elements from the same document
and explicitly show the user how the elements overlap. We keep the “Table of
Contents feature” by displaying the relevant elements as a partial tree. Finally,
we solve the “lack of summary problem” by including element snippets.

8.3 Adaption to Different Collections

When applying the interface to different collections one needs to consider various
aspects of the collection at hand. In this section we look at two aspects.

Entry-points How is our interface limited by the access methods available for
the collection? The access methods of the collection should determine the
access methods provided by the interface. The output of the retrieval engine
should, in turn, be adapted to the access methods used by the interface. As
an example, if individual sections are the only access points provided by the
online collection then it is of little use if our system retrieves elements with
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finer granularity—e.g., paragraphs—since the interface cannot give access
to those elements.

Format Can we apply our interface and element retrieval engine to semi-structured
collections even if they are not in XML format?

We look at three different adaptations of our interface to different collections.
First, we look at the INEX-IEEE corpus where we, as search interface providers,
have full control over the online document access. Second, we look at the case
when we do not have control over the online access to the collection. For this
we use the INEX-IEEE corpus to give access to the actual online IEEE Digital
Library. We include this application to stress the dependence relation between
entry-points and retrieval units. Third, we look at how out interface can be
applied to a completely different semi-structured (but not XML) collection. For
this purpose we use Wikipedia, the free online encyclopedia [Wikipedia].

8.3.1 The INEX-IEEE Collection

In our first adaptation of the interface we use the INEX-IEEE collection. We
look at three steps that need to be taken when the interface is adapted to a new
collection.

Online Collection Access Methods

We consider the case where we have full control over the access methods for the
online collection. The INEX-IEEE collection is distributed in an XML format
which is not an accessible reading format for humans (as opposed to computers).
Thus, the collection is rendered using an XSLT style-sheet. Figure 8.5 shows
a rendering of an example document. The screen is split horizontally into two
parts: document meta-data (top), and the article body (below). The article
body is further divided into two parts: table of contents (left) and the article
text (right). The article text rendering part of the interface is designed in such a
way that the screen can be positioned at the beginning of any arbitrary element.
I.e., the document can be “entered” at the beginning of any arbitrary element.
As an example, the screenshot in Figure 8.5 is taken after a user has followed
an element-link from the result screen to the beginning of the 4th section of the
article. Thus, the user is given direct access to the relevant information, but the
relevant element is displayed in the context of the full article and the user can
freely investigate other parts of the article, either by using the table of contents
or by scrolling.

Retrieval Settings

The interface allows us to give access to any arbitrary element. In principle, we
can thus use our full element index as a basis for our element retrieval. However,
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Figure 8.4: Screenshot for the INEX-IEEE search interface. The interface
presents a list of relevant documents, with additional links to relevant portions
within the documents.
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Figure 8.5: Screenshot of the document rendering part of our interface.

the use of selective indexing improves retrieval efficiency considerably, without
decreasing retrieval effectiveness. Since speed is an important aspect of inter-
active systems we use a selective index rather than the full element index. For
this particular application of the interface we use a selective index which is based
on available INEX relevance assessments, i.e., we used available relevance as-
sessments to choose which element-types to include in our index (see further
information of the index in [Sigurbjörnsson and Kamps, 2006]).

Interface Functionality

In this adaption of the interface we made use of three element retrieval features:
element entry-points, element snippets, and the heat-map. Figure 8.4 shows a
screenshot of our INEX-IEEE application of the interface.

8.3.2 The IEEE Digital Library

Search engines are commonly used to search third party collections. This means
that the access methods provided by the search engine interface depend on the
access methods provided by the third party content owners. We look at this issue
in the context of the IEEE Digital Library.
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Figure 8.6: A screenshot of a single relevant document, using an interface where
access is given only to beginning of articles and top-level sections.

Online Collection Access Methods

The IEEE Digital Library renders its articles in HTML format. The HTML code
allows access being given to the beginning of each article and to the beginning of
each (top-level) section of the article. The HTML code does not allow access to
nested sections or other elements. The implication for our interface is that the
element entry-points can only be at article- or section-level.

Retrieval Settings

Since we can only give access to sections we adapt our selective indexing strategy
in such a way that the retrieval units match the access granularity of the online
collection. Hence, sections are our units of retrieval, i.e., we only index and
retrieve sections.

Interface Features

As with our previous adaption we use three element features: element entry-
points, element snippets, and the heat-map. Figure 8.6 shows a screenshot of a
single document result from our application of the interface to the IEEE Digital
Library. The search result corresponds to the same document as the result shown
in Figure 8.4.

8.3.3 Wikipedia

Our third and final adaption of the interface is to the Wikipedia encyclopedia.4

As for the IEEE Digital Library, Wikipedia is a third party collection where
the search engine does not have control over the access method available for the
documents in the collection. Although the content of the Wikipedia pages is not in
XML format, it is semi-structured and can easily be interpreted as a hierarchy of
text objects. In particular, the wiki syntax for nested section captions can be used

4http://wikipedia.org

http://wikipedia.org
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to identify section boundaries and nesting levels. In the adaption described in this
section we use the “dumped” version of Wikipedia5 to give access to the online
version6, but not on the INEX 2006 XMLified version of Wikipedia [Denoyer and
Gallinari, 2006].

Online Collection Access Methods

Wikipedia pages are displayed in HTML format. Each page is either a single
text object or a hierarchy of sections and sub-sections. The HTML code provides
entry-points at the beginning of each section of the page. Access can be given to
sections at any nesting level. I.e., to sections, sub-sections, sub-sub-sections, etc.

Retrieval Settings

Since the content of Wikipedia pages is not marked up in XML, we have created
a simple parser for the Wikipedia syntax which allowed us to index the collection
as if the pages were in XML format. Our indexing units are either (sub)-sections
(if present) or complete pages (in the absence of section structure). Our index is
non-overlapping, where each text token is only indexed as part of its most deeply
nested ancestor.

Interface Features

Our Wikipedia interface uses two element features: element-entry points and
element snippets. A screen-shot of the interface can be seen in Figure 8.7. Clicking
on a link will bring the user to the on-line version of Wikipedia. Figure 8.8 shows
the result of clicking the ‘Demographics’ link in Figure 8.7.

8.4 Interface Evaluation

We evaluate our interface in two interactive experiments. We ask a group of users
to use our system to perform simulated work tasks [Borlund and Ingwersen, 1997].
In the first interactive experiment we use the INEX-IEEE interface application
described in Section 8.3.1. In the second we use our Wikipedia application of
the interface described in Section 8.3.3. The goal of the evaluation is to provide
a proof-of-concept that element retrieval can be used to give focused access to
semi-structured documents.

In our evaluation we explicitly address two main questions:

• How satisfied are the users with our focused interface?

• How do users interact with our focused interface?

5http://download.wikimedia.org/
6http://wikipedia.org/

http://download.wikimedia.org/
http://wikipedia.org/
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Figure 8.7: Screenshot of Wikipedia search interface

We address the first question by analyzing data collected via questionnaires where
we asked the users how satisfied they were with using our system. We address the
second question by analyzing logs of the interaction between the users and the
system. The questions will be addressed with the aim of evaluating the interface.
I.e., our aim is to evaluate how the system was of use to its users, rather than
building models of information seeking behavior of users. Such modeling is beyond
the scope of this thesis.

8.4.1 Case study: The INEX-IEEE Collection

In this section we discuss the results of evaluating the application of our interface
to the INEX-IEEE collection (see Section 8.3.1). Our experiments were per-
formed within the framework of the INEX interactive track [Larsen et al., 2006a].
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Figure 8.8: Wikipedia page which has been accessed by clicking on the ’Demo-
graphics’ link in Figure 8.7

In short, the experiment involved users solving simulated work tasks using our
system. We refer to Appendix B.1.1 for details on the experimental setup. The
results of our interactive experiment are organized in two sets. First, we evaluate
the interface by looking at how satisfied users were with the system. Second, we
list some observations of how users interacted with the system.

User Satisfaction

Our post-task questionnaire included 5 questions asking the user to which extent
the system was useful in solving their task:

Q3.9 How well did the system support you in this task?

Q3.10 On average, how relevant to the search task was the information presented
to you?

Q3.11 Did you in general find the presentation in the result list useful?

Q3.12 Did you find the parts of the documents in the result list useful?

Q3.13 Did you find the Table of Contents in the Full Text view useful?



158 Chapter 8. Element Retrieval in Action

Table 8.1: Results of how users rated the usefulness of our system, based on
answers to questions Q3.9–Q3.13.

Q3.9 Q3.10 Q3.11 Q3.12 Q3.13
Mean 3.5 3.3 3.5 3.5 3.6
Stdev 1.4 1.2 1.0 1.2 0.8

Table 8.2: A selection of answers to question Q3.15. (In what ways (if any) did
you find the system interface useful in this task?)

• Title display of the article helped. Splitting the article helps.
• You can see how the page is build. The structure is good.
• very clear; simple but effective search field.
• That I did not have to read the whole articles.
• Overview of the table of contents.
• The highlighted paragraphs can be useful, but the best thing were the search

results. The top article had all the information necessary. But it can be nice
when searching for long and boring articles.

• It showed the right information in a high-lighted paragraph.
• Its so simple. Just one input box and a search button. The results are listed

so good, just like an XML tree model. This is what a search engine must look
like in my opinion.

All questions had to be answered on a scale of 1 to 5 where 1 stood for ‘Not at
all’, 3 for ‘Somewhat’ and 5 for ‘Extremely.’ Table 8.1 shows how users rated
the usability of our system. We show average ratings over all tasks (each user
performed multiple tasks).

In the post-task questionnaire we included open questions where users could
express their opinion about the system:

Q3.15 In what ways (if any) did you find the system interface useful in this task?

Table 8.2 shows a selection of the answers to question Q3.15 (a full list of answers
can be seen in Table B.2 on page 187). Out of 14 users, 8 mentioned the use of
structure as a useful feature. It was not always clear, however, to which structural
aspect they were referring. Some seem to be referring to the result list and
others to the table of contents in the collection rendering interface. Three users
mentioned ‘quality of ranking’ and two users praised the interface’s simplicity.

We also asked users to list things they found not useful:

Q3.16 In what ways (if any) did you find the system interface not useful in this
task?

Table 8.3 shows a selection of the the answers to question Q3.16 (the full list of
answers can be seen in Table B.3 on page 188). The most common comment,
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Table 8.3: A selection of answers to question Q3.16. (In what ways (if any) did
you find the system interface not useful in this task?)

• Showing much not useful information.
• Parts that is not important, such as <blabla> <p> <article> <p><blabla>

• Relevance indication often confusing.
• I don’t think its useful that it shows where in the article the words are (in

which body, section, etc.).
• A bit unclear after you click on ‘search’: a lot of text at once, unorganized in

front of you, causing confusion.
• The description of the relevant part of the article is too short.
• It could be nice if it was possible to remove the shown paragraphs in the search

results so more results fit on a screen.
• It also gives the XML layout. That isn’t important for someone who doesn’t

understand XML-code.

mentioned by 7 users, was that for some of the documents too much information
was shown, making the result-list rather complex.

The main take home message from the evaluation of our user interface is that
users do indeed appreciate the fact that the interface takes structure into account
(Q3.11 and Q3.15). In particular, many of the users appreciated that the result
list showed a structured overview of the relevant documents. However, there is a
trade-off between showing a useful amount of structure and making the interface
too complicated (Q3.16). While the structured overview is helpful we should be
more selective about the number of elements we use for each document.

User Interaction

We will now list a number of observations we can obtain from our system-user
interaction logs. We will exclusively look at how users accessed the returned
documents.

Articles vs. elements How do users access the relevant documents? We
start by looking at the distribution between access via article-links and access via
element-links. Out of a total of 172 result visits, 95 were via article-links (55%)
and 77 via element-links (45%). The popularity of article-clicks is surprising and
perhaps disappointing from the perspective of XML element retrieval. However,
if we take a closer look at individual search sessions we see that 14 search sessions
(61%) had more visits via element-links than article-links. This means that in
the majority of the search sessions element access was preferred over access via
article-links. Figure 8.9 shows the distribution of article- and element-clicks for
each each session (i.e., for a single user solving a single task).
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Table 8.4: Distribution of element clicks over different element characteristics.
Left: Distribution over the tag names. Middle: Distribution over depth of ele-
ments in the XML tree. Right: Distribution over “hotness” of elements.

Tag-name Clicks (%)
article 4 5.2%
bdy 3 3.9%
sec 27 35.1%
ss1 16 20.8%
ss2 2 2.6%
ip1 4 5.2%
p 21 27.3%

Depth
level Clicks (%)
0 4 5.2%
1 3 3.9%
2 25 32.5%
3 35 45.5%
4 7 9.1%
5 3 3.9%

Hotness Clicks (%)
HOT 36 47%
Hot 5 6%
hot 17 22%
WARM 12 16%
Warm 2 3%
warm 5 6%
cold 0 0%
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Figure 8.9: Total number of result visits for each search session. One column
stands for one search session (i.e., user-and-task-type combination). Each column
shows the distribution between clicks on article-links and element-links; the labels
on the x-axis stand for the task type: challenging (c), general (g), own (o).
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Tag-names What sort of elements are visited? First, we consider the tag name
of the XML elements that users visit. Table 8.4 (left) shows the distribution of
visits over different tag names. Sections are the most popular (35%), followed
by paragraphs (32%) and sub-sections (21%).7 When users decide to follow a
link deep into an article, their granularity choice ranges quite widely from whole
sections to individual paragraphs. In particular, users do not consider paragraphs
to be too small to be worth a click. However, we do not know if users consciously
choose a certain element type. We could be observing effects of other variables,
such as the presence of snippets (see Figure 8.4 on page 152).

Depth Next, we focus on the depth of XML elements that users visit. Ta-
ble 8.4 (middle) shows the distribution of visits over different depth levels. We
see that most of the visited elements reside at depth 2–3 (78%). Both shallower
(levels 0–1) and deeper levels (levels 3–5) are less commonly visited: 9% and 13%
respectively. In short, users who go for elements, select reasonably deep ones.

Hotness Now, we look at the “hotness” of the elements that users visit. Recall
that a heat-map was used to present the relative relevance of elements. In our
interface there are 6 heat levels, based on the ratio between the retrieval status
value (RSV) of an element and the highest RSV of any element in the same
article. Hotness of elements is expressed in terms of different shades of red.
Table 8.4 (right) shows the distribution of element clicks over different hotness-
levels. Half of the clicks were on the hottest elements. The remaining clicks were
on somewhat ‘cooler’ results. Other features than the heat-map may, however,
have contributed to the users’ decision to follow a link. Likely suspects are titles
of sections and the snippets.

Multiple entry-points We have seen that users visit multiple results in each
session. We also know that users were given multiple entry-points into each
relevant document. Do the they make use of this facility? Do they visit the
same article multiple times in the same search session? Despite the fact that
users have element-level access to articles, we did not observe a “enter through
one element”, zoom out, “enter through another element” behavior—the vast
majority of the articles are only visited once during a search session (82%), while
15% of the articles were visited twice. Thus, users choose a single entry-point
into documents, even if they are offered more. This does not mean, however, that
there should not be more than one entry-point offered.

7Note that the table only shows element-clicks, and ‘article’ in this table means a click on
the element called ‘article’—the root element.



162 Chapter 8. Element Retrieval in Action

Summary

In the evaluation of the interface, the test persons showed appreciation of the
interface. In particular they appreciated that the document structure was used
when presenting results, but often remarked that in some cases this resulted in a
too complicated result. Overlapping elements did not surface as a problem in the
evaluation. This indicates that when displaying elements from the same article
in one cluster, overlap is not considered a problem.

From the logs of user-system interaction there are two observations that are
worth special emphasis. First, the majority of users makes use of direct access to
individual XML elements as their entry-points. Second, even if presented with a
choice of entry-points, users predominantly access document via a single entry-
point.

8.4.2 Case study: Wikipedia

In this section we will look at the results of evaluating the application of our
interface to the Wikipedia Encyclopedia. In short, the experiment involved users
performing simulated work tasks using our focused retrieval system (Figure 8.7).
For comparison, users also performed tasks using a baseline document retrieval
system which did not have element links nor element snippets (Figure 8.10).
The details of the experimental setup can be found in Appendix B.2.1 and [Sig-
urbjörnsson et al., 2006]. As for the previous evaluation we will look at two
aspects: user satisfaction and user interaction.

User Satisfaction

In the post-task questionnaires there were two questions which addressed how
the user experienced using the system for solving the task. One question asked
about the user’s satisfaction and the other about the user’s effort.

Satisfaction: How satisfied are you with the answers given by this system?

The answers were given on a scale with range 1 to 5, where 1 stood for “very
dissatisfied” and 5 for “very satisfied”. The results for this question can be found
in Table 8.5 (a). The system satisfaction is mixed between the two tasks. Overall,
there is little difference between the two systems.

Effort: The answers to the task-questions were in this system difficult/easy to
find.

The answers were given on a scale with range 1 to 5, where 1 stood for “very
difficult to find” and 5 stood for “very easy to find”. The results for this question
are reported in Table 8.5 (b). Overall, there is very little difference between the
two systems.
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Figure 8.10: Screenshot of the baseline Wikipedia search interface

In the post-task questionnaire users were also asked how suitable they thought
that the particular system was for answering respectively two types of questions,
namely specific questions and general questions.

Specific: How well do you find this system suitable for specific questions?

Table 8.5 (c) shows how users rated the system’s suitability for answering specific
questions. The users found the focused system more suitable for specific tasks
than the baseline system. Note, however, that the mean rating of the focused
system is only slightly better than “neutral”.

General: How well do you find this system suitable for general questions?

Table 8.5 (d) shows how suitable the users rated the system’s suitability for an-
swering general questions. Now, both systems get a rating better than “neutral”.
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Table 8.5: Responses on user experience. Mean rating and standard deviation
(in brackets). Answers were on a 5-point scale, ranging from 1 to 5.

(a) How satisfied are you with the answers given by this system?
Answers ranged from 1 (“very dissatisfied”) to 5 (“very satisfied”)

Task I Task II Overall
Baseline 4.17 (0.75) 3.00 (1.26) 3.58 (1.16)
Focused 3.67 (1.41) 3.67 (0.52) 3.67 (0.65)

(b) The answers to the task-questions were in this system difficult/easy to find.
Answers ranged from 1 (“very difficult”) to 5 (“very easy”).

Task I Task II Overall
Baseline 3.17 (0.75) 2.83 (0.75) 3.00 (0.74)
Focused 2.67 (1.05) 3.50 (1.05) 3.08 (1.16)

(c) How well do you find this system suitable for specific questions?
Answers ranged from 1 (“very unsuitable”) to 5 (“very suitable”).

Task I Task II Overall
Baseline 2.50 (0.48) 2.50 (1.05) 2.50 (0.90)
Focused 3.00 (1.03) 3.17 (0.75) 3.08 (1.08)

(d) How well do you find this system suitable for general questions?
Answers ranged from 1 (“very unsuitable”) to 5 (“very suitable”).

Task I Task II Overall
Baseline 3.83 (0.75) 3.67 (1.03) 3.75 (0.87)
Focused 3.33 (1.21) 3.33 (1.03) 3.33 (0.98)

The baseline system is rated above the focused system.

The notions of “specific questions” and “general questions” were not linked
directly to the simulated work tasks performed, and may have been interpreted
differently by each of the test persons. Still, the answers given do correspond to
the expectation that focused search is particularly useful for specific information
needs that could be answered with a relatively short amount of text [Reid et al.,
2006a].

In the post-experiment questionnaire we asked the users which of the two
systems they preferred. Most users chose the focused system. In their justification
they argued that using the focused system their answers were found more quickly.
They also complained that while using the baseline system too much text had to
be read before the right answer was found. There were, however, several users
that noted that there was little difference between the two systems.
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Table 8.6: Time spent per search task (minutes): mean time and standard
deviation (in brackets). Each search task was divided into three distinct search
assignments.

Task I Task II Overall
Baseline 31.2 (13.8) 27.0 (15.6) 29.1 (13.7)
Focused 23.3 (7.8) 22.5 (9.2) 22.9 (8.1)

Table 8.7: Page-link clicks vs. focused-link clicks in the focused interface: mean
number of clicks and standard deviation (in brackets). Each search task contained
three distinct search assignments.

Task I Task II Overall
Page-links 5.67 (5.85) 5.67 (4.59) 5.67 (5.02)
Focused-links 2.67 (1.03) 6.67 (4.63) 4.67 (3.82)

User Interaction

We explore the user-system interaction by mining the interaction logs provided
by the systems.

Time First, we look at the time users spent solving their tasks. Table 8.6 shows
the average number of minutes needed to complete each search task. We see that
the users of the focused system finish their tasks quicker than the users of the
baseline system. The difference is not significant, however.

Page-links vs. focused links Let us zoom in now on the interaction with the
focused interface. Recall from Figure 8.7 (on page 156) that there are two types
of links in the focused interface: page-links that bring you to the beginning of
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Table 8.8: Analysis of focused-clicks in the focused interface. Left : Type of
element clicked (hierarchical depth). Right : Section number (in the Wikipedia
source) of the of the sections clicked (linear depth).

Level Clicks
Root 17 30%
Section 31 55%
Subsection 8 15%

Section nr. Clicks
Section 1 16 52%
Section 2 5 16%
Section 3 5 16%
Section 4 4 13%
Section 9 1 3%

the page, and focused-links that take you to the relevant sections within a page.
Let us look at whether users rather click on page-links or focused-links. Table 8.7
shows the average number of page-link and focused-link clicks for each search
task. Overall, there is little difference between the popularity of the two access
methods. If we look at each task separately, results are mixed. Users who used
the focused system in in their first task preferred page-links over focused-links.
Users who used the focused system for their second task had a slight preference
for focused links. Figure 8.11 shows the ratio between page-link and focused-link
clicks for each user. We see that the click-behavior is very user dependent.

Depth Let us now take a closer look at the focused-links that were clicked.
How deep into the documents do users dive? Table 8.8 shows both hierarchical
and linear depth of user visits. The left part of the table shows where in the
hierarchy the clicks are. No less than 70% of all clicks on focused links give access
to sections or subsections, and the remaining 30% of the clicks are on the root
element. The right part of the table shows a closer look at the section clicks.
Specifically, it shows how far into the document the section clicks go. About half
of the links go to the first section of the Wikipedia article, while the other half
goes deeper. This may seem a bit shallow access, but the collection itself is also
rather shallow. About 560,000 pages—out of c.a. million pages—are divided up
into sections. Of these pages 224,000 have only one section, and 140,000 have two
sections.

Summary

The majority of the users preferred the focused system over the baseline system.
Their main justification was the ability to more quickly answer their information
need. From the user-system interaction logs, one of our main findings is that when
using the focused system users were indeed able to find their answers quicker than
with the baseline system.
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8.5 Conclusions

In this chapter we have seen that XML element retrieval can be put into action
as a part of an operational retrieval system. Namely, XML element retrieval can
be used to provide focused access to semi-structured document collections. The
main difference between our system and popular commercial search engines—such
as Google and Yahoo!—is the introduction of direct-linking into the documents
and element level snippets.

Let us now recall our research questions from the introduction to this chapter.
Our first set of questions addressed the design choices that need to be taken when
element retrieval is put into action. We have shown that scattered relevance and
overlap can be handled gracefully by presenting the element results for a single
document clustered together as a partial tree. We have also shown how the
relevance ordering among elements within a single document can be displayed
using a heat-map.

Our second set of questions addressed the portability of our interface. We
have identified some of the issues that need to be addressed when providing ac-
cess to different document collections. We have seen that the search application
is dependent on the access methods provided by the information providers. Fur-
thermore, we have seen that methods developed for XML element retrieval can
be applied to more generally to semi-structured collections even if they are not
in XML format.

Our third set of questions addressed the evaluation of our interface. Based
on our questionnaire and interaction log data there are two aspects that deserve
special attention: structured overview of relevant documents and quick access to
relevant information.

Structured overview of relevant documents In the evaluation of the INEX-
IEEE collection the users were very positive toward the structured overview
of the relevant documents provided by the element retrieval results. The
evaluation revealed that there is an important trade-off between the detailed
structural overview and simplicity of the interface. While the users found
the structured overview useful they found it in some cases too detailed. The
lesson we can draw from this is that we should keep the structured overview,
but put a limit on the number of elements shown for each document.

Access to relevant information In both interactive experiments users men-
tioned the reduced effort and time needed to access the relevant information
as one of the main advantages of our focused retrieval interface. The time
aspect effect was particularly clear for the Wikipedia experiment. Note that
the task of that experiment was to find very specific information. The lesson
we can draw from this is that, at least in the case of a specific information
need, element retrieval can provide quick access to relevant information.
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Our main research question in this chapter was:

How can XML element retrieval be put into action as part of an
operational system for giving focused access to relevant documents?

Our evaluation presented in this chapter—focusing on a specific application of
XML retrieval to give focused access to relevant documents—already suggests a
promising future for the XML element retrieval task. In our INEX–IEEE evalu-
ation we asked our users to comment on the more general applicability of XML
element retrieval. In addition to specific questions on the interface, the tasks, and
the search engine, we also gathered data on the general opinions on the usefulness
of the focused XML element retrieval engines. In the post-experiment question-
naire there were two reflective questions which addressed the ‘use of structure’
and ‘element links.’

Q4.13 Did you like the idea that the search engine takes into account the struc-
ture of the documents? Why?

Q4.14 Do you find it useful to be pointed to relevant parts of long articles?

Table 8.9 shows the responses, where each row represents the same test person.
The answers to both of these questions was unanimously positive. In response
to the first question 5 users mentioned the good overview of each document, 4
users mentioned that it saves time, 4 users mentioned a decrease in search effort,
and 1 user mentioned better navigation. In response to the second question 3
users again mentioned the good overview of documents, 5 users mentioned that it
saved time, and 5 users mentioned a decrease in search effort. Although one may
expect some test persons to give a socially desirable answer, the overwhelming
appreciation is striking, and the responses highlight many of the hoped advantages
of an XML element retrieval system.

This chapter marks the end of the evaluation performed in this thesis. In the
next and final chapter we will conclude our work.
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Table 8.9: User attitude toward the ’use of structure’ and ’element links’.

Q4.13. Did you like the idea that the
search engine takes into account the
structure of the documents? Why?

Q4.14. Do you find it useful to be
pointed to relevant parts of long arti-
cles? Why?

Yes, you will have a good overview of
the total article/document.

Yes, because you are able to see which
articles are worth reading and which
are not.

Yes, for specific information this is very
useful.

Yes, gives the user an idea about the
article in question.

Yes, easier to see how long the article
is.

You don’t need to see other parts.

Yes, its easier to see the contents of the
document, better navigation.

Yes, you don’t have to dig into the ar-
ticle yourself.

Yes, it didn’t bother me. Yes, it’s more easy to find what you’re
looking for.

Yes, less reading time, clear overview. Yes, saves time.
Yes, it shortens search time. Yes, because if scan-read long articles,

you easily miss some relevant parts.
Yes, saves work. Yes, works faster.
Yes, because its much faster. Yes, its faster.
Yes, this way of finding information
takes less time.

Yes, now you don’t have to read the
whole article. You can get straight to
the part where the information is.

Yes, its easier to see where relevant in-
formation is located.

Yes, it takes less time to find the rele-
vant parts.

Yes, it makes it easier to find specific
paragraphs.

Yes, if programmed right it can save
time.

Yes, it makes it a lot easier to find what
you are looking for.

Yes, it is lots more easier.

Yes, because makes me have to search
less.

Yes, to search less.





Chapter 9

Conclusions

In this chapter we list the main conclusions and contributions of this thesis.
Recall from Chapter 1 the scenario where a user had an information need that
was answered by a relatively short part of a longer document—the user wanted to
know about hiking in Northern Europe, and the search engine returned a rather
long travel guide with short isolated sections about hiking. We asked ourselves
if we could help the user satisfying her information need by giving her focused
access to the relevant information, instead of merely giving her access to the
relevant documents. We turned this question into the main research question of
this thesis, where we restricted our attention to semi-structured documents and
the XML retrieval task:

How can we give focused information access to semi-structured docu-
ments using XML element retrieval techniques?

We further broke this question up into two sub-questions. A system-oriented
question:

How do we rank individual XML elements?

and a user-oriented question:

How do we design an appropriate interface for providing focused in-
formation access?

In the bulk of this thesis we have addressed the system-oriented question. In
Chapters 3–7 we modeled the XML retrieval task using language models, and
used the modeling to implement an XML retrieval engine which we evaluated
using the INEX test collection. In Chapter 8 we addressed the user-oriented
question.

This chapter is further organized as follows. In Section 9.1 we discuss our con-
clusions and contributions regarding the system-oriented question. In Section 9.2
we do the same for the user-oriented question. Our conclusions relating to this
central research question are discussed in Section 9.3. Finally, in Section 9.4 we
discuss how the work in this thesis can be extended in future work.
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9.1 XML Element Retrieval

In this section we will go through the XML retrieval research questions that we
introduced in Chapter 1 and list our findings and conclusions. Our first question
asked how XML retrieval compared to a better known task:

How is XML element retrieval different from document retrieval?

The obvious first attempt to address this question was to simply take a document
retrieval system and adapt it to the XML element retrieval task and look at the
outcome. In Chapter 3 we have taken our “off-the-shelf” language model-based
document retrieval engine and looked at how sensitive our retrieval performance
is to changes in the most basic parameter of our retrieval model—the smooth-
ing parameter. Our main finding was that in our baseline system the smoothing
parameter serves—unexpectedly—as a means to control the length of retrieved
elements. Recall that the purpose of smoothing is to account for data sparseness
of—in our case—the element model. Intuitively, one would expect elements to
benefit substantially from smoothing since elements contain very sparse data, i.e.,
we expected similar results as for document retrieval. Our results showed, how-
ever, that best element retrieval results were achieved using very little smoothing.
A further analysis revealed the relation between the smoothing parameter and
length of retrieved elements, i.e., applying less smoothing leads to retrieval of
longer elements. These findings prompted us to take a closer look at the relation
between element length and retrieval performance.

Length Normalization As a follow-up on our baseline experiments, we asked
ourselves:

What is the impact of length normalization for XML retrieval?

In Chapter 4 we have analyzed the strict recall-base of the INEX assessments,
i.e., the set of elements assessed highly exhaustive and highly specific. We have
seen that the average element in the strict recall-base is much longer than the
average element in the collection as whole. This length-bias is variable between
different vintages of the INEX test collection. Through the years the average
length of the elements in the strict recall-base has decreased considerably, but it
is still far greater than the collection average.

We have compared the distribution of document lengths and element lengths
and seen that the distribution of document lengths is close to being a normal
distribution while the distribution of element length is a very skewed distribu-
tion, where most of the elements are very short. If we restrict our analysis to
relevant documents/elements we have seen that the length distribution of both
relevant documents and relevant elements resembles a normal distribution. In
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sum, relevant documents have a similar length distribution as the whole docu-
ment collection. However, relevant elements have a radically different distribution
when compared to the whole element collection.

We have experimented with the effect of using so-called length priors for bridg-
ing the length gap between the element collection as a whole and the relevant ele-
ments. We have seen that our baseline length prior gives significant improvement
for all vintages and query formats. A flexible implementation of the length priors
gives significant improvement only for the most verbose query format—a combina-
tion of titles and descriptions. An overall conclusion is that length normalization
is important for XML element retrieval. Compared to document retrieval—where
length normalization is also important—the significance of length normalization
is greater for XML element retrieval.

We have also seen in Chapter 5 that length priors continue to be useful even
if we decrease the “skewed-ness” of the element collection by removing the short-
est elements from the index (len); by removing the shortest and the longest
elements—section and paragraph index (sp); or by indexing and retrieving only
top-level sections (sec).

The Unit of Retrieval In our next research question we addressed more ex-
plicitly the notion of unit of retrieval.

Are all element types equally important retrieval units?

In Chapter 5 we have analyzed the tag-names of elements assessed highly exhaus-
tive and highly specific—a.k.a. the strict recall-base. Our main finding is that
sections and paragraphs appear consistently in the strict recall base. Their abso-
lute frequency in the strict recall-base is high and they appear in the recall-base
of most of the topics. Whole articles and article bodies are also quite frequent
in the strict recall-base for the 2002–2004 vintages. In 2005 those element types
disappear almost completely from the strict recall-base.

In Chapter 5 we have also experimented with using selective indices as a basis
for our retrieval. We based our selection both on element length and tag-names.
We have seen that we can improve the effectiveness of our retrieval system by
excluding the smallest elements from our index—and hence from our retrieval
runs. Removing the very long element from our index—whole articles and and
article bodies—results in a significant decrease in performance.

Whole articles and bodies thus seem to be essential for achieving good re-
trieval scores. We conjecture that this—somewhat counter-intuitive—finding may
be explained by a combination of factors. First, there may be topic factors : the
information need behind many topics may be general and hence answered well
by a complete article. Second, there may be evaluation framework factors : the
assessors may have difficulty with understanding how to assess specificity; and/or
the evaluation—even together with specificity-oriented quantization—may favor
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exhaustivity over specificity. Third, there may be system factors : there may be
considerable variance in the specificity assessments, meaning that the retrieval
engine gets best results by going for the “safe” option—namely, go for exhaustiv-
ity.

Context Our next research question addressed the use of element context to
improve XML element retrieval performance:

Can we improve XML element ranking by incorporating element’s
context into the retrieval model?

In Chapter 6 we have used document language models to provide localized smooth-
ing in addition to the standard collection model smoothing. Our experiments have
shown that the mixture model gives significant improvements in retrieval perfor-
mance. We have verified that this result holds for a range of indices, including
both our full element index and our index of only sections and paragraphs.

Evaluation Evaluation frameworks for XML element retrieval have been and
continue to be an active research area. Research on the evaluation framework
is beyond the scope of this thesis, but we cannot ignore it altogether since our
empirical work in this thesis relies on an evaluation framework being present. We
did thus state a “passive” research question about evaluation.

How does our system’s performance change when we use a different
evaluation setup?

In Chapters 5 and 6 we have seen the effect of changing the retrieval task from
retrieving arbitrary elements to retrieving sections and paragraphs. Our main
findings are that our length-priors and our mixture model continue to be impor-
tant for achieving good retrieval performance.

In Chapter 7 we tried to dig deeper and tried to find explanations for the
successes and failures of earlier chapters. To this end we examined whether our
retrieval approach is tailored more toward certain class of topics. Our main find-
ings are that using the strict quantization to optimize our system can lead to
uneven performance over topic classes. Optimizing using the generalized quanti-
zations does, however, lead to more even performance over different topic classes.

In Chapter 7 we have also looked at how overlap affects our evaluation. We
have seen that considerable overlap exists both in the strict recall-base and in our
retrieval runs. There is still further research needed on how this overlap should
be handled by the evaluation framework—depending on whether or not we intend
to exploit overlap when we turn the ranked list of elements into a user-oriented
application. We have evaluated our system using a metric which does not reward
retrieval of overlapping elements. That metric seems to be less stable than the
metric which does reward overlap. Further research is needed to investigate if the
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evaluation can be made more stable by rewarding some—but not all—overlap.
This issue ties in with the question of whether we intend to exploit some kind of
overlap in our end-usage of element retrieval results.

9.2 An Interface for Focused Information Ac-

cess

In this thesis, the study of XML retrieval has been performed with a specific goal
in mind, namely to use it as a back-end engine for an operational system which
gives focused access to information. In our introductory chapter we formulated
this in a research question:

How can we put XML retrieval into action as a part of an operational
system for giving focused information access?

In Chapter 8 we have explored how XML element retrieval can be put to action
to give focused access to relevant information. We presented an interface where
we use XML element retrieval to provide structured result lists and direct linking
to relevant portions of relevant documents.

We have shown that there are many important design choices that need to
be addressed when element retrieval is put into action. We have shown that
the overlapping nature of XML elements can be exploited by presenting relevant
documents as a partial tree. The partial tree preserved the reading order—a.k.a.
document order—of the relevant elements. We have shown how the relevance
ordering of elements can be displayed using a heat-map of the partial tree.

We have argued that portability is an important aspect of interfaces for focused
information access. In case of a third-party document collection, the access points
of the interface need to be in sync with the access points provided by the document
collection. In turn, the retrieval units of the retrieval engine need to be in sync
with the access points provided by the interface.

9.3 Focused Information Access using XML El-

ement Retrieval

In the previous two sections we have listed our main conclusions and contributions
for the two sub-questions of the main research question of this thesis. In this
section we will reflect on how we can combine the answers to the two sub-questions
to provide an answer to our main question:

How can we give focused information access to semi-structured docu-
ments using XML element retrieval techniques?
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This question was based on a scenario where we had a user who had a rather
specific information need which was answered by a relatively small portion of
a relevant document. We have built an effective XML element retrieval engine
which retrieves the most relevant portions of documents and we have built an
interface which uses the engine’s results to provide users with structured result
lists and direct links to the relevant information. A preliminary evaluation of our
interface has shown that users find the structured result lists useful since it gives
them a good overview of the retrieved documents. The users also appreciate the
direct linking since it reduces the effort needed to access the relevant information.
In sum, we have successfully utilized XML element retrieval to give focused access
to information.

In this thesis we have addressed a rather specific application of XML element
retrieval. We have directly addressed frequent concerns about the usefulness of
XML element retrieval—see e.g., [Baeza-Yates et al., 2002, panel discussion] and
[Trotman, 2005]. Our evaluation of the core XML element retrieval task has,
however, been more general and our results do thus apply to a greater variety of
applications.

9.4 Future Work

In this section we will discuss several directions in which our work in this the-
sis can be extended. We discuss the following issues: XML retrieval modeling
and implementation, the transition from XML element retrieval to focused infor-
mation access, the Cranfield assumptions, the definition of the notion of specific
information need, and finally the operationalization of focused information access.

XML retrieval modeling and implementation In Section 3.3 we justified
our choice of language modeling framework in terms of two benefits: first, lan-
guage models offer an intuitive framework for mixture of evidence from various
levels of the XML hierarchy, and second, language models offer flexible framework
for incorporating non-content features into the retrieval using various priors. In
this thesis we have made use of those benefits to stress the importance of two
issues: length normalization using length priors and the use of document context
in our mixture model. However, our usage has been simple and we have not ex-
ploited the full flexibility of the language modeling framework. There is plenty of
room to extend XML element retrieval within the language modeling framework.
For instance, the length-prior usage can be extended and other non-content priors
can be introduced. Furthermore, one can extend the mixture modeling by taking
into account more levels of the document hierarchy.

From XML element retrieval to focused information access In this the-
sis we have focused on a specific application of XML element retrieval, and eval-
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uated a more general XML element retrieval task. However, in Chapter 7 we
argued that if we have a specific application in mind we should adapt our re-
trieval task and evaluation framework to the specific application. Thus, we ask
ourselves:

How much of our XML general element retrieval evaluation results are
useful when we put XML element retrieval it into action?

In Chapter 8 we have argued that we need to sync the unit of retrieval with
the access points of the collection. We have seen in the experimental part of
this thesis that the main retrieval features—the length priors and the mixture
model—are useful for a variety of different indices—and hence different ranges of
retrieval granularities. In that sense, we can say that some of the basic findings
in Chapters 3–6 can be carried over to the operational setting.

However, there are some aspects that require further research. Our implemen-
tation of focused information access depends on the assumption that the notion
of relevance coincides with the notion of (best) entry points [Reid et al., 2006a,b].
Based on the available data, we cannot judge whether this assumption is realis-
tic. This issue is, however, currently being addressed as part of the INEX 2006
evaluation cycle [INEX].

In our evaluation of the XML element retrieval task we evaluated ranked lists
of elements. In our interface, however, we gave focused access to documents. We
only briefly addressed this transition between elements and documents by our
evaluation in Section 7.3—where we evaluated the task of ranking documents
based on element results. It remains as future work to evaluate this transition
more thoroughly using for example the so-called Fetch-And-Browse task of INEX
2005 [Malik et al., 2006] or the so-called All-in-Context task of INEX 2006 [INEX].

Cranfield assumptions In Section 2.2.1 we introduced the Cranfield paradigm
for laboratory evaluation of information retrieval. It is thus natural to ask:

Are the Cranfield assumptions consistent with XML element retrieval?

The usual disclaimers—that the Cranfield assumptions are not true in prac-
tice [Voorhees, 2002]—hold for XML retrieval as well as other retrieval tasks.
However, XML element retrieval brings some additional issues that may affect
the assumptions. First, let us look at the assumption that assessment of one
document is independent from the assessment of other documents. When as-
sessing topical relevance of documents, the validity of this assumption can be
enforced fairly easily—although one can may always expect some learning effect
when assessors are performing assessments. However, for the assessments of XML
elements the topical relevance of one element is clearly not independent from the
relevance of all other elements—e.g., if an element is topically relevant then all
its ancestors are topically relevant as well.
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The discussion about topical relevance brings us to another Cranfield assump-
tion, namely, that relevance assessments can be captured by topical similarity.
The notion of specificity in XML element retrieval evaluation is dependent on the
notion of topical similarity—i.e., topical similarity is a necessary, but not suffi-
cient, requirement for an element to be considered as specific. Surely, there is
something more to specificity.

This brings us to the next issue, namely, the relation between specificity and
the assessor’s background knowledge. One of the Cranfield assumptions says that
a single set of assessments should be representative for the whole user population.
For document retrieval this assumption is rarely true since background knowledge
influences the assessment of topical similarity. For XML element retrieval back-
ground knowledge does not only influence the assessment of topical similarity, but
may also influence the assessment of specificity. The more background knowledge
the user has about the topic at hand, the less context—less text—she may need
in order to judge a topical similarity. Hence, the assessment of specificity may
also be influenced by her background knowledge.

We have thus seen that the same disclaimers hold for document retrieval and
XML element retrieval—but their extent is different. Despite the disclaimers,
the Cranfield paradigm is still considered as a valid method for comparing the
performance of document retrieval systems. There is still further research needed
to verify that—despite the additional “violations” of assumptions—the Cranfield
is a valid framework for evaluating XML element retrieval.

Apart from assessment issues there are also questions about the overall setup
of the experiment, in particular, the role of the ranked list. For many of the
document retrieval evaluation metrics there is an assumption that the ranking
of documents corresponds to the order in which the documents are utilized by
a user. In our application of XML element retrieval this assumption is not true
since we re-order the elements when we make the transition from XML element
retrieval to focused information access. However, as mentioned above, it remains
as future work to see if we can overcome this problem by considering a more
appropriate element retrieval task.

Specific information needs Throughout this thesis we have used the notion
of a specific information need without defining precisely what that notion means.
We usually use the notion to refer to the scenario where the users’ information
need is answered by a relatively small portion of a longer document. Hence—in
our terminology—a specific information need is a combination of three things:
user’s information need, the document collection, and the user’s background
knowledge—and perhaps also user’s work task. It remains as future work to
define this notion more precisely—or at least define precisely the types of (spe-
cific) information needs for which XML retrieval and focused information access
are potentially useful.
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The issue of specific-ness of information needs is being addressed within the
2006 cycle of the INEX initiative [Kamps and Larsen, 2006]. During the INEX
2006 topic development phase the topic author’s view on the specific-ness of her
information need was recorded. Preliminary results show that there is a relation
between user’s knowledge of the subject matter and the specific-ness of their
search requests. Further analysis of this data is promising for providing insight
into the notion of specific information need, and its relation to focused information
access and XML element retrieval.

For additional inspiration—when defining the notion of specific information
need—it might be useful to look to other tasks where relatively short textual
answers are required—such as the “other questions”-task at TREC [Voorhees,
2005] and the CLEF 2006 WiQA task [WiQA].

Operationalizing focused information access We have motivated our ap-
proach as an extension of the state-of-the-art search engines. It is therefore nat-
ural to ask

Will state-of-the-art search engines adopt our extension?

In principle, our XML retrieval techniques can be applied in the more general
web setting where state-of-the-art search engines operate. However, there are
some issues that need to be addressed before this can happen. One is the fact
that document authors generally do not give multiple entry-points into their
documents. Hence, with the current browser technology search engines can only
give focused access to a small portion of the set of documents out there.





Appendix A

Additional Assessment Analysis

A.1 Overlap in the Strict Recall-base

In this section we show additional analysis of overlap in the strict recall base.
This analysis is a follow up on the analysis performed in Section 7.2.1

Table A.1 shows the most frequent element types that overlap each other in
the strict recall-base. The table shows the absolute number of cases in which the
element types overlap (#); the fraction of topic-document pairs for which such
an overlap pair exists (Documents); and the fraction of the topics for which such
an overlap pair exists (Topics). The table is sorted by the number of documents
containing the overlap pair. We see that for 20% of the documents which contain
a strictly relevant element, both the complete article and the complete body have
been assessed as highly exhaustive and highly specific. Furthermore, over half
of the topics contain a document for which such an assessment pair exists. In
terms of document frequency, this is the most frequent form of overlap in the
strict recall-base. In terms of total frequency, sections (sec) and paragraphs (p)
make up the element type pair to overlap. Sections and paragraphs overlap in
12% of the documents and this overlapping pair occurs in the strict recall-base
for almost half of the topics.

Table A.2 shows the most frequent overlap pairs, broken up for each vin-
tage of the INEX test collection. We see that the article-bdy overlap pair is
frequent in the recall-base for the 2002-2004 topics. Is occurs in the recall-base
of over 60% of the topics in each of those years. In 2003 and 2004 the pair is
present in the recall base of roughly 30% of the documents which contain a strict
assessment. The section-paragraph (sec-p) overlap pair is also frequent in the
2002–2004 collections. It occurs in the recall-base of over half of the topics each
year. Its document frequency is, however, considerably lower than for the article-
body pair. In 2005 the overlap picture is quite different from previous years. No
overlap pair appears in the recall-base of a great number of topics, nor is there
any pair with a high document frequency. In Section 5.1 we saw that articles
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Table A.1: Most frequent element types which overlap in the INEX strict recall-
base. For each ancestor-descendant pair we report the total frequency of such a
pair (#); the fraction of documents in which such a pair occurs in the strict recall
base (Documents); and the fraction of topics for which such a pair occurs in the
strict recall-base (Topics).

Ancestor Descendant # Documents Topics
article bdy 303 20% 52%
article sec 448 15% 44%
bdy sec 416 13% 45%
sec p 697 12% 48%
sec ss1 314 8.9% 46%
article p 531 7.8% 29%
ss1 p 347 6.5% 40%
bdy p 462 6.4% 30%
article ss1 184 5.5% 33%
bdy ss1 191 5.4% 30%
sec ip1 120 5.1% 32%
abs p 61 3.9% 21%
article ip1 104 3.6% 23%
bdy ip1 87 3.0% 21%
ss1 ip1 77 2.9% 22%
ss1 ss2 69 2.4% 23%
fig art 52 2.4% 11%
bb atl 53 1.8% 7.9%
sec ss2 57 1.8% 19%
article abs 27 1.7% 12%
article fm 26 1.7% 14%
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Table A.2: The most common overlapping element types in the strict recall-base
for each vintage of the INEX test collection.

(a) 2002 assessments (b) 2003 assessments

Anc. Dec. # Docs Topics
article bdy 88 14% 61%
article sec 135 12% 48%
sec p 71 7.5% 52%
bdy sec 97 7.2% 35%
article p 60 5.2% 26%
sec ss1 46 4.6% 48%
ss1 p 39 3.5% 44%
abs p 20 3.2% 22%
bdy p 36 3.0% 22%
article ss1 23 2.9% 35%
bdy ss1 17 2.1% 22%
sec ip1 13 1.7% 26%
ss1 ip1 12 1.6% 22%
article fm 9 1.4% 17%
article ip1 13 1.3% 22%

Anc. Dec. # Docs Topics
article bdy 134 35% 82%
bdy sec 172 24% 82%
article sec 168 23% 78%
sec ss1 89 13% 67%
sec p 167 13% 63%
bdy ss1 68 10% 52%
article ss1 67 9.7% 52%
article p 137 8.9% 48%
bdy p 117 8.7% 56%
sec ip1 47 6.1% 37%
ss1 p 48 6.1% 41%
article ip1 47 5.8% 33%
bdy ip1 38 5.0% 33%
ss1 ss2 23 3.7% 30%
ss1 ip1 25 3.7% 30%

(c) 2004 assessments (d) 2005 assessments

Anc. Dec. # Docs Topics
sec p 444 30% 56%
article bdy 81 29% 64%
bdy sec 147 22% 60%
article sec 145 21% 48%
article p 334 19% 40%
sec ss1 142 17% 56%
bdy p 309 17% 40%
ss1 p 228 17% 48%
sec ip1 55 15% 48%
bdy ss1 106 12% 44%
article ss1 94 11% 44%
article ip1 44 9.3% 36%
bdy ip1 42 8.2% 36%
abs p 23 8.2% 20%
bb atl 39 7.5% 16%

Anc. Dec. # Docs Topics
sec ss1 37 3.8% 12%
abs p 9 3.5% 23%
ss1 p 32 3.5% 27%
p it 56 3.1% 15%
p ref 12 3.1% 15%
fig art 8 2.7% 15%
item p 12 1.9% 19%
sec p 15 1.9% 19%
ss1 ss2 7 1.9% 3.8%
fig fgc 6 1.9% 15%
p url 8 1.5% 7.7%
sec ip1 5 1.5% 15%
li p 6 1.5% 12%
ip1 ref 3 1.2% 7.7%
app sec 2 0.8% 3.8%
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and bodies disappeared from the strict recall-base in 2005. Consequentially, the
overlap pair article-body also disappeared.



Appendix B

Additional Interface Evaluation Data

In this appendix we provide additional evaluation data for our two interactive
evaluation studies. In Section B.1 we provide data on the INEX-IEEE case study.
In Section B.2 we provide data on the Wikipedia case study.

B.1 Case study: INEX-IEEE Collection

In this section we provide additional data for the INEX-IEEE interactive study.
The Section contains two types of additional data. The experimental setup of
the interactive study is described in Section B.1.1 and additional results on users’
answers to open questions are presented in Section B.1.2.

B.1.1 Experimental Setup

Our experiments were performed within the framework of the INEX interactive
track [Larsen et al., 2006a]. The results presented in this study are derived from
data gathered as part of the ‘Task B’ of the track. The purpose of the task was to
compare the iTrack baseline system, Daffodil1, to a home-grown system—in our
case the adaption of our interface to the INEX-IEEE collection (see Section 8.3.1).
Our test persons were 14 first year computer science students. Each test person
searched for two simulated work tasks (a ‘general’ task and a ‘challenging’ task)
[Borlund, 2003]. Additionally, all test persons were asked to think up search topic
of their own. For details of the simulated tasks, we refer to [Larsen et al., 2006a].
The experimental matrix is shown in Table B.1. First, every test person searches
for two simulated tasks, each one with a different system. Next, the test persons
search for their own topic with a system of their choice.

The test persons filled in a pre-experiment questionnaire, as well as pre-task
and post-task questionnaires before and after each task, and a post-experiment

1http://www.is.informatik.uni-duisburg.de/projects/daffodil/index.html.en
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Table B.1: Experimental matrix for the comparative experiment. Tasks are
general (g1, g2, or g3), challenging (c1, c2, or c3), or own (o); systems are Daffodil
(D), our system (X), or a choice of system (?).

Test-person
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rotation 1 2 3 4 1 2 3 4 1 2 3 4 1 2
Task 1 g1 c1 g1 c1 g2 c2 g2 c2 g3 c3 g3 c3 g1 c1
System 1 D D X X D D X X D D X X D D
Task 2 c1 g1 c1 g1 c2 g2 c2 g2 c3 g3 c3 g3 c1 g1
System 2 X X D D X X D D X X D D X X
Task 3 o o o o o o o o o o o o o o
System 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

questionnaire after the whole experiment. In addition to the questionnaires, a
wealth of system-user interaction was logged by the system. Specifically, we
logged all links clicked on in the result window. Notably, we make a distinction
between article-links and element-links. In terms of our example result (Figure 8.4
on page 152), we refer to the link on top (article title) as article-link and all
the links below (XML element names) as element-links. For the element-links
we logged various information such as the rank of the article, the RSV of the
element, the highest RSV of the article, depth, etc. For all articles in which an
element was viewed in detail, we also asked test persons to assess whether the
whole article was regarded as relevant, or whether only parts of the article were
relevant, or whether the whole article was non-relevant. The assessments were
collected via a simple assessment interface (see the top right-hand side corner of
the screenshot in Figure 8.5 on page 153). Although our experiment was set up
as a comparative experiment, we focus on the data collected for our system only.2

Out of 14 test persons, 10 chose to use our system for their ‘own task.’ Hence, in
total we have 24 search sessions of 14 users.

B.1.2 Experimental Results

In this section we present the full answers to the open questions asked in our
interactive evaluation of the INEX-IEEE collection.

First, we consider the question about which aspects of the system the users
found useful:

In what ways (if any) did you find the system interface useful in this
task?

2The test persons appreciated both systems: on a 5-point scale Daffodil scored on average
2.8 and our system 3.5. There were external factors (system slow-down and reboot) that may
have affected the data collected on Daffodil. Hence, the value of the comparison is unclear.
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Table B.2: Answers to question Q3.15. (In what ways (if any) did you find the
system interface useful in this task?)

• Title display of the article helped. Splitting the article helps.
• Best articles listed first.
• Best articles listed on top.
• You can see how the page is build. The structure is good.
• On the left side it has a relevance indication; It says what parts of the article

the relevant information is located, and you can click on it; Nice overview of
the document.

• very clear; simple but effective search field.
• very clear; simple but effective search field.
• It got me where I wanted eventually.
• That I did not have to read the whole articles.
• Overview of the table of contents.
• I only needed to type ‘wifi’ and the first two hits gave already the answer.
• It is very nicely ordered.
• I like the pop-up screen so that the desired result isn’t displayed in the same

window.
• The highlighted paragraphs can be useful, but the best thing were the search

results. The top article had all the information necessary. But it can be nice
when searching for long and boring articles.

• It showed the right information in a high-lighted paragraph.
• Its so simple. Just one input box and a search button. The results are listed

so good, just like an XML tree model. This is what a search engine must look
like in my opinion.

• Its perfect, same as task 2.
• The navigation was easy because of the text on the left.
• It gives the names of different paragraphs.

Table B.2 shows the full list of answers that the users gave to the question. Note
that the 19 answers are collected using post-task questionnaire for all 24 search
sessions of the 14 users who took part in the experiments. Hence, some of the
answers that look quite similar may have originated from the same user.

Next, we consider the question about which aspects of the system the users
found not useful:

In what ways (if any) did you find the system interface not useful in
this task?

Table B.3 shows the full list of answers that the users gave to this question. The
table contains 11 answers are collected using post-task questionnaires for all 24
search sessions of the 14 users who took part in the experiments. Some users may
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Table B.3: Answers to question Q3.16. (In what ways (if any) did you find the
system interface not useful in this task?)

• The scroll function in the article is not working.
• Not.
• Showing much not useful information.
• Only had articles, no pictures, or comparison tables between the videocards.
• Parts that is not important, such as <blabla> <p> <article> <p><blabla>

• Relevance indication often confusing.
• I don’t think its useful that it shows where in the article the words are (in

which body, section, etc.).
• I don’t think its useful that it shows where in the article the words are (in

which body, section, etc.).
• Took me a very long time to find a good article.
• It still takes a long time to find something useful, hard to define good searching

terms.
• A bit unclear after you click on ‘search’: a lot of text at once, unorganized in

front of you, causing confusion.
• The description of the relevant part of the article is too short.
• It could be nice if it was possible to remove the shown paragraphs in the search

results so more results fit on a screen.
• In xmlfind you can’t find for just a title, but it is still much better than Daffodil.
• It also gives the XML layout. That isn’t important for someone who doesn’t

understand XML-code.

be responsible for two answers—one from each post-task questionnaire—while
others did not answer the question at all.

B.2 Case study: Wikipedia

B.2.1 Experimental Setup

This section describes the experimental setup for the interactive evaluation of
the application of our interface to Wikipedia [Sigurbjörnsson et al., 2006].

In order to answer our research questions we set up an interactive experiment
where we asked people to perform simulated work tasks [Borlund and Ingwersen,
1997]. An example of a simulated work task can be seen in Figure B.1. The actual
work tasks that were used in the experiment can be found in Figures B.2 and B.3.
Each of the actual work tasks consisted of three related search assignments. Each
search assignment resembled a factoid question or a list question.

We have created two interfaces to our Wikipedia search engine. One is a
simple baseline interface which gives access to the start of Wikipedia pages only,
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Motivation Suppose you have just seen a report on the news about the recent
earthquake in Pakistan. The report makes you want to get a better understanding
of the Pakistan earthquake region.
Task Please use the Wikipedia search engine to find the answer to the following
questions:

• Where is Pakistan precisely?

• In which parts of Pakistan is there a great risk of earthquakes?

• What causes the earthquakes in Pakistan?

• Is there a difference between the cause of earthquakes in Pakistan, compared
to other earthquake areas, such as California, Japan, or Iceland?

Figure B.1: Example of a possible simulated work task.

while the other is a focused interface which gives access to individual sections of
Wikipedia pages (see Section 8.3.3 for more information on the focused interface).
Our baseline search interface is a Google-like one where each result is presented
as a pair: a link to the relevant page, and a short query dependent summary
of the page in the form of a snippet. A screen-shot of the interface is shown in
Figure 8.10 on page 163.

The element entry-points and element snippets are the only difference between
the two wikipedia interfaces. They use the same underlying ranking scheme which
means that documents are ranked precisely in the same order. The ranking of
the documents is based on aggregated score of the relevant sections. The snippet
used in the baseline system is created by concatenating the snippets of relevant
sections. This means that both interfaces present precisely the same text to the
user.

Each test subject performed two simulated work tasks, but using different
system each time. The experiment matrix is shown in Table B.4. Our analysis is
based on 12 test persons, evenly distributed between the two rotations.3

The rotation removes the bias which is introduced by using one system before
the other. The order of the simulated work tasks is always the same, leading to
a potential interaction between the results for task I and task II.

In the beginning of the experiment the test person was asked to fill in a
pre-experiment questionnaire on her background. After each task the user was
asked to fill in a post-task questionnaire on her search experience during the task.
Finally, the user was asked to fill in an post-experiment questionnaire after both
task had been completed. The experiment, hence, involved the following steps:

3In the original experiment there we 16 test cases, but from the system logs we found out
that 4 of them did not fully follow the experiment guidelines.
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Stel je bereidt je voor op het komende WK voetbal dat dit jaar in Duitsland
wordt gehouden. Om in de juiste stemming te komen wil je wat meer weten over
het volgende. . .

1. Wie heeft het eerste WK voetbal gewonnen en heeft dat land daarna ooit
nog eens het kampioenschap gewonnen? Zo ja wanneer?

Stel je voor dat je naar een basketbalwedstrijd kijkt, die wordt gehouden tijdens
de olympische spelen. Je vraagt je ineens af of basketbal altijd al een olympische
sport is geweest. Dit blijkt wel het geval te zijn. Vervolgens stel je jezelf de
volgende vraag. . .

2. Wie heeft de basketbal wedstrijd gewonnen tijdens de eerste olympische
spelen?

Stel je voor dat je een vrouw bent en voetbal speelt. Je wilt wel eens weten wat
er nou zo bijzonder is aan voetbal spelen op topniveau voor zowel mannen als
vrouwen. Je stelt jezelf de volgende vraag. . .

3. Noem drie verschillen tussen het WK voetbal voor mannen en het WK
voetbal voor vrouwen.

Figure B.2: Task I: Simulated work task

Table B.4: Experimental matrix for the interactive experiment.

Rotation Task I Task II
1 Baseline Focused
2 Focused Baseline

1. Pre-experiment questionnaire

2. Simulated work task I

3. Post-task questionnaire

4. Simulated work task II

5. Post-task questionnaire

6. Post-experiment questionnaire

Our system logs various interactions between the user and the system. This
data can be used to better understand how users interact with our system.

• Queries : All queries posted by users are logged.
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Je probeert voor ’t eerst mee te doen met de traditionele superbowl weddenschap-
pen. Maar voor je je inzet kunt bepalen vraag je je af:

1. Welk football team heeft de eerste superbowl gewonnen, En heeft dit team
daarna nog eens gewonnen? Zo ja, hoe vaak?

Je staat in de snowboard winkel, en vraagt je opeens af wanneer voor ’t eerst
snowboarden als olympische sport werd erkend. . . En je denkt:

2. Wie heeft de eerste olympische snowboard competitie gewonnen? [cat.
Men’s giant slalom]

Terwijl je op de bank zit te zappen, kom je bij eurosport opeens een sumo wed-
strijd tegen. Waarop je je eigenlijk afvraagt hoe dat eigenlijk zit in de Verenigde
Staten, bij football. Dus wil je weten:

3. Noem 3 verschillen tussen de Woman’s professional football league [WPFL]
en de [heren] football league [NFL].

Of

3. Noem 3 verschillen tussen [amateur, IFBB] body building competities
tussen heren & dames.

Figure B.3: Task II: Simulated work task

• Visited Results : The system stores information about which links on the
result pages are clicked on by the user.

• Site Navigation: All internal navigation between Wikipedia pages is logged.
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V. Mihajlović, H. E. Blok, D. Hiemstra, and P. M. G. Apers. Score region algebra:
building a transparent XML-IR database. In CIKM ’05: Proceedings of the 14th
ACM International Conference on Information and Knowledge Management,
pages 12–19, New York, NY, USA, 2005. ACM Press.

D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden markov model informa-
tion retrieval system. In SIGIR ’99: Proceedings of the 22nd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 214–221. ACM Press, 1999.

MS-Word. http://office.microsoft.com/word/. Accessed in 2006.

MSN Encarta. http://encarta.msn.com. Accessed in 2006.

MSN Search. http://search.msn.com. Accessed in 2006.

S. H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C. Zhoo. A flexible model for
retrieval of SGML documents. In SIGIR ’98: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 138–145. ACM Press, 1998.

R. Navarro-Prieto, M. Scaife, and Y. Rogers. Cognitive strategies in web
searching. In Proceedings of the 5th Conference on Human Factors &
the Web, 1999. URL http://zing.ncsl.nist.gov/hfweb/proceedings/

navarro-prieto/index.html.

P. Ogilvie and J. Callan. Using language models for flat text queries in XML
retrieval. In Fuhr et al. [2004], pages 12–18.

P. Ogilvie and J. Callan. Hierarchical language models for XML component
retrieval. In Fuhr et al. [2005], pages 224–237.

P. Ogilvie and J. Callan. Parameter estimation for a simple hierarchical generative
model for XML retrieval. In Fuhr et al. [2006], pages 211–224.

P. Over. The TREC interactive track: an annotated bibliography. Information
Processing and Management, 37(3):369–381, 2001.

PDF. Portable document format. http://www.adobe.com/products/acrobat/

adobepdf.html. Accessed 2006.

C. Peters and M. Braschler. Cross-language system evaluation: the CLEF cam-
paigns. Journal of the American Society for Information Science and Technol-
ogy, 52(12):1067–1072, 2001.

http://office.microsoft.com/word/
http://encarta.msn.com
http://search.msn.com
http://zing.ncsl.nist.gov/hfweb/proceedings/navarro-prieto/index.html
http://zing.ncsl.nist.gov/hfweb/proceedings/navarro-prieto/index.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html


202 BIBLIOGRAPHY

B. Piwowarski and G. Dupret. Evaluation in (XML) information retrieval: ex-
pected precision-recall with user modelling (EPRUM). In SIGIR ’06: Proceed-
ings of the 29th annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 260–267, New York, NY, USA,
2006. ACM Press.

B. Piwowarski and M. Lalmas. Providing consistent and exhaustive relevance as-
sessments for XML retrieval evaluation. In CIKM ’04: Proceedings of the Thir-
teenth ACM International Conference on Information and Knowledge Manage-
ment, pages 361–370, New York, NY, USA, 2004. ACM Press.

J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In SIGIR ’98: Proceedings of the 21st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, pages
275–281. ACM Press, 1998.

J. Prager, E. Brown, A. Coden, and D. Radev. Question-answering by predic-
tive annotation. In SIGIR ’00: Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 184–191, New York, NY, USA, 2000. ACM Press.

D. Raggett, A. L. Hors, and I. Jacobs, editors. HTML 4.01 Specification. W3C,
1999. http://www.w3.org/TR/html4/.

G. Ramirez, T. Westerveld, and A. P. de Vries. Structural features in content
oriented XML retrieval. In CIKM ’05: Proceedings of the 14th ACM Interna-
tional Conference on Information and Knowledge Management, pages 291–292,
New York, NY, USA, 2005. ACM Press.

G. Ramirez, T. Westerveld, and A. de Vries. Using small XML elements to
support relevance. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 693–
694, 2006.

J. Reid, M. Lalmas, K. Finesilver, and M. Hertzum. Best entry points for struc-
tured document retrieval – part I: Characteristics. Information Processing and
Management, 42:74–88, 2006a.

J. Reid, M. Lalmas, K. Finesilver, and M. Hertzum. Best entry points for struc-
tured document retrieval – part II: Types, usage and effectiveness. Information
Processing and Management, 42:89–105, 2006b.

J. R. Remde, L. M. Gomez, and T. K. Landauer. Superbook: an automatic tool
for information exploration — hypertext? In HYPERTEXT ’87: Proceeding of
the ACM conference on Hypertext, pages 175–188, New York, NY, USA, 1987.
ACM Press.

http://www.w3.org/TR/html4/


BIBLIOGRAPHY 203

S. Robertson and K. Spark Jones. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27:129–146, 1976.

S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. In CIKM ’04: Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management, pages 42–49, New
York, NY, USA, 2004. ACM Press.

D. E. Rose and D. Levinson. Understanding user goals in web search. In Pro-
ceedings of WWW 2004, pages 13–19, 2004.

G. Salton, C. Yang, and A. Wong. A vector-space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text
information systems. In SIGIR ’93: Proceedings of the 16th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 49–58. ACM Press, 1993.

M. Sanderson and J. Zobel. Information retrieval system evaluation: effort, sen-
sitivity, and reliability. In SIGIR ’05: Proceedings of the 28th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 162–169, New York, NY, USA, 2005. ACM Press.

B. Sigurbjörnsson and J. Kamps. The effect of structured queries and selective
indexing on XML retrieval. In Fuhr et al. [2006], pages 104–118.

B. Sigurbjörnsson and A. Trotman. Queries, INEX 2003 working group report.
In Proceedings of the 2nd INEX Workshop, pages 167–170, 2004.

B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An element-based approach to
XML retrieval. In N. Fuhr, S. Malik, and M. Lalmas, editors, INEX 2003
Workshop Proceedings, pages 19–26, 2004a.

B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Processing content-oriented XPath
queries. In Proceedings of the Thirteenth ACM Conference on Information and
Knowledge Management (CIKM 2004), pages 371–380, 2004b.

B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Multiple sources of evidence
for XML retrieval. In SIGIR ’04: Proceedings of the 27th Annual International
Conference on Research and Development in Information Retrieval, pages 554–
555. ACM Press, 2004.

B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Mixture-models, overlap, and
structural hints in XML element retrieval. In Fuhr et al. [2005], pages 196–210.



204 BIBLIOGRAPHY

B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Focused access to Wikipedia. In
F. de Jong and W. Kraaij, editors, 6th Dutch-Belgian Information Retrieval
Workshop (DIR 2006), pages 73–80, 2006.

A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization.
In Proceedings of the 19th Annual International ACM SIGIR Conference, pages
21–29. ACM Press, 1996a.

A. Singhal, G. Salton, M. Mitra, and C. Buckley. Document length normalization.
Information Processing & Management, 32:619–633, 1996b.

D. J. Slone. Internet search approaches: The influence of age, search goals, and
experience. Library & Information Science Research, 25(4):403–418, 2003.

Snowball. http://snowball.tartarus.org/. Accessed in 2006.

F. Song and W. B. Croft. A general language model for information retrieval. In
CIKM ’99: Proceedings of the eighth International Conference on Information
and Knowledge Management, pages 316–321. ACM Press, 1999.

J. Tague-Sutcliffe. The pragmatics of information retrieval experimentation, re-
visited. Information Processing and Management, 28(4):467–490, 1992.

T. T. Tang, D. Hawking, N. Craswell, and K. Griffiths. Focused crawling for both
topical relevance and quality of medical information. In CIKM ’05: Proceed-
ings of the 14th ACM International Conference on Information and Knowledge
Management, pages 147–154, New York, NY, USA, 2005. ACM Press.

A. Tombros, B. Larsen, and S. Malik. The interactive track at INEX 2004. In
Fuhr et al. [2005], pages 410–423.

A. Tombros, B. Larsen, and S. Malik. Report on the INEX 2004 interactive track.
SIGIR Forum, 39:43–49, 2005b.

E. Toms, L. Freund, R. Kopak, and J. Bartlett. The effect of task domain on
search. In Proceedings of CASCON 2003, pages 1–9, 2003.

trec eval. Text retrieval conference evaluation software (trec eval). http://trec.
nist.gov/trec eval. Accessed in 2006.

A. Trotman. Wanted: Element retrieval users. In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, pages 63–69. University of Otago,
Dunedin New Zealand, 2005.

A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In
Fuhr et al. [2005], pages 219–236.

http://snowball.tartarus.org/
http://trec.nist.gov/trec_eval
http://trec.nist.gov/trec_eval


BIBLIOGRAPHY 205

A. Trotman and B. Sigurbjörnsson. NEXI, now and next. In Fuhr et al. [2005],
pages 41–53.

E. Voorhees. The philosophy of information retrieval evaluation. In C. Peters,
M. Braschler, J. Gonzalo, and M. Kluck, editors, Evaluation of Cross-Language
Information Retrieval Systems: Second Workshop of the Cross-Language Eval-
uation Forum, CLEF 2001, volume 2406 of Lecture Notes in Computer Science,
pages 355–370. Springer-Verlag, 2002.

E. M. Voorhees. Question answering in TREC. In E. M. Voorhees and D. K.
Harman, editors, TREC: Experiment and Evaluation in Information Retrieval,
pages 123–152. MIT Press, 2005.

E. M. Voorhees and D. K. Harman, editors. TREC: Experiment and Evaluation
in Information Retrieval. The MIT Press, 2005.

Wikipedia. http://wikipedia.org/. Accessed in 2006.

R. Wilkinson. Effective retrieval of structured documents. In SIGIR ’94: Proceed-
ings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 311–317. Springer-Verlag New
York, Inc., 1994.

T. Wilson. Models in information behaviour research. Journal of Documentation,
55(3):249–2700, 1999.

T. Wilson and C. Walsh. Information behaviour: an interdisciplinary perspec-
tive. The British Library Board, 1996. http://informationr.net/tdw/publ/
infbehav/.

WiQA. WiQA: Question answering using Wikipedia. http://ilps.science.

uva.nl/WiQA/. Accessed in 2006.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann, 1999.

World Book. http://www.mackiev.com/world book.html. Accessed in 2006.

Yahoo! http://yahoo.com. Accessed in 2006.

C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. Transactions on Information Systems, 22(2):
179–214, 2004.

http://wikipedia.org/
http://informationr.net/tdw/publ/infbehav/
http://informationr.net/tdw/publ/infbehav/
http://ilps.science.uva.nl/WiQA/
http://ilps.science.uva.nl/WiQA/
http://www.mackiev.com/world_book.html
http://yahoo.com




Summary

Search engines play an important role in our daily lives. Most of us use search
engines every day in search of information or services. State-of-the-art Inter-
net search engines use a simple—yet powerful—interface. The user describes her
information need by a few keywords and the search engine returns a list of docu-
ments that are likely to answer her information need. Each document is presented
using its title and a short summary of the document’s content—a.k.a. snippet.
By clicking on a document title the user is routed to the corresponding document.

When a user is presented with a ranked list of relevant documents her search
task is usually not over. The next step for her is to dive into the documents
themselves in search for the precise piece of information she is looking for. When
searching long documents this can be a tedious and time consuming task. Thus
we ask ourselves: can we give the user a more focused type of access to the
relevant information in this scenario?

In this thesis we study this question in the context of semi-structured doc-
ument collections—more precisely, XML documents. Using the XML language,
various document structure can be encoded—such as sections, sub-sections, para-
graphs, section titles, author names, italicized text, etc. The XML markup divides
the document text into a hierarchy of text objects—a.k.a. elements. In the thesis
we ask ourselves whether we can exploit the hierarchical structure to give users
a more focused access to the relevant information?

Our approach is twofold. First, we build a search engine that returns relevant
XML elements as a response to the user’s query. Second, we build an interface that
uses the list of relevant elements to give focused access to the relevant documents.
We evaluate the XML search engine using the so-called INEX test collection and
evaluate the interface in an interactive experiment.

The main contribution of this thesis is to provide extensive evaluation of
various methods for retrieving XML elements. We also show how the search
engine can be put into action via a simple interface.
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Samenvatting

Zoekmachines spelen een belangrijke rol in ons dagelijks leven. Velen van ons
gebruiken ze dagelijks om informatie en diensten te vinden. De meest populaire
Internet zoekmachines gebruiken een eenvoudig—maar effectieve—interface. De
gebruiker beschrijft haar informatiebehoefte door middel van een aantal trefwoor-
den en de zoekmachine geeft een lijst van documenten weer die de informatiebe-
hoefte beantwoorden. Elk relevant document wordt gepresenteerd met de titel
van het document en een korte samenvatting van de inhoud—een zogenaamde
“snippet.” Door te klikken op de titel van een document wordt de gebruiker naar
het corresponderende document gestuurd.

Nadat de zoekmachine de resultaten heeft weergegeven is de gebruiker echter
nog niet klaar met haar zoekopdracht. Zij moet de relevante documenten vervol-
gens bekijken om er de juiste informatie uit te halen. Als de documenten lang zijn
kan deze taak langdradig zijn. We stellen daarom de vraag: Kunnen we gefocuste
toegang tot de relevante informatie geven?

In dit proefschrift bestuderen wij deze vraag in de context van semi-gestructur-
eerde documenten—om precies te zijn, XML documenten. XML is een taal waarin
de structuur van tekstuele documenten beschreven kan worden—bijvoorbeeld sec-
ties, sub-secties, paragrafen, titels, namen van auteur, cursieve tekst, enz. De
XML-markup verdeelt de tekst in een hiërarchie van tekst-objecten—zogenaamde
XML-elementen. In dit proefschrift stellen wij de vraag of we gebruik kunnen
maken van deze hiërarchische structuur om voor gebruikers gefocuste toegang tot
de relevante informatie te geven.

Onze methode bestaat uit twee delen. Eerst bouwen we een zoekmachine
die XML-elementen weergeeft. Vervolgens bouwen we een interface die deze ele-
menten gebruikt om gefocuste toegang tot de relevante informatie te geven. Wij
evalueren de XML-zoekmachine met behulp van de zogenaamde INEX-testcollectie
en we beoordelen de interface in een interactief experiment.

De belangrijkste bijdrage van dit proefschrift is een uitgebreide evaluatie van
verschillende XML-zoekmethodes. Wij tonen tevens aan hoe de zoekmachine aan
het werk kan worden gezet via een simpele interface.
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