
Processing Content-And-Structure Queries
for XML Retrieval

Börkur Sigurbjörnsson
borkur@science.uva.nl

Jaap Kamps
∗

kamps@science.uva.nl
Maarten de Rijke

mdr@science.uva.nl
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098SJ Amsterdam, The Netherlands

ABSTRACT
Document-centric XML collections contain text-rich docu-
ments, marked up with XML tags. The tags add lightweight
semantics to the text. Querying such collections calls for a
hybrid query language: the text-rich nature of the docu-
ments suggest a content-oriented (IR) approach, while the
mark-up allows users to add structural constraints to their
IR queries. We propose an approach to such hybrid content-
and-structure queries that decomposes a query into multi-
ple content-only queries whose results are then combined in
ways determined by the structural constraints of the original
query. We report on ongoing work and present preliminary
evaluation results, based on the INEX 2003 test set.

1. INTRODUCTION
Document-centric XML documents contain text, marked

up with XML tags, enriching the text with lightweight se-
mantics. The markup can be exploited in several ways.
Retrieval engines can use specific tags to try to boost re-
trieval effectiveness, as illustrated by the effectiveness of us-
ing anchor text in web retrieval [1]. Alternatively, if users
are aware of the structure they can query the collection
by means of so-called content-and-structure (CAS) queries.
CAS queries allow users to express their information need
very precisely, through constraints on both the content and
the structure of desired XML elements. The queries provide
constraints both on the granularity of results (i.e., the re-
quested unit of retrieval), and on the content of the results.
Furthermore, they constrain the environment in which the
results appear.

The Initiative for the Evaluation of XML Retrieval (INEX)
provides a test-bed for evaluating XML retrieval using content-
and-structure queries. Whereas currently emerging stan-
dards for querying XML, such as XPath and XQuery, can be
very effective for querying structure, another approach may
be needed for querying content. At INEX, a free text search
functionality is added to XPath. Unlike XPath, queries in
the INEX query language do not have a definite semantics.
Evaluating the quality of a system’s response to such queries
follows standard information retrieval methodology and is
based on human made assessments of relevance.

∗Currently at Archives and Information Studies, Faculty of
Humanities, University of Amsterdam.

TDM’04, the first Twente Data Management Workshop on XML Databases
and Information Retrieval, Enschede, The Netherlands
c© 2004 the author/owner

In this paper we focus only on elements fulfilling the gran-
ularity constraint, and investigate ways of ranking them
w.r.t. how well they answer the information need expressed
in the query. To answer content-and-structure queries we
use existing information retrieval technology. However, ex-
isting retrieval systems are not directly applicable since they
are usually not equipped with tools for handling structural
constraints. We will outline how we are working on extend-
ing our information retrieval system to handle content and
structure queries. We break the process up into three steps.

• We decompose a content and structure query into a
number of IR queries, each of which constrains differ-
ent parts of the document. We look at these document
parts as different sources of evidence.

• We use our information retrieval system to process the
IR queries independently. Here we are collecting evi-
dence from different parts of the document.

• We mix the evidence from the multiple sources.

This paper describes work in progress. Partly based on our
top scoring runs at INEX 2003 [11], we decided to investigate
in detail all the sources of evidence that we can obtain from
hybrid content-and-structure queries. In this paper we will
report on some preliminary results of using our system to
answer such CAS queries.

The paper is organised as follows. Section 2 introduces
document-centric XML collections and the information re-
trieval challenges for such collections. Furthermore, we dis-
cuss content-oriented XPath, the query format used at INEX
to formulate content-and-structure queries. We will also
sketch how a retrieval engine could answer such queries. In
Section 3 we explain in more detail how we have extended
our own retrieval engine to handle content-oriented XPath
queries. Section 4 describes a set of preliminary experiments
where we compare several retrieval strategies. The results
of those experiments are also discussed. We discuss future
work in Section 5. In Section 6 we conclude..

2. CONTENT AND STRUCTURE
XML can be used to mark up content in various ways.

Based on the content, XML documents are often broken
down into two categories: data-centric and document-centric.
Document-centric documents are loosely structured docu-
ments (often text), marked-up with XML. An example of
document-centric XML is an electronic journal in XML.

article

front_matter body

... abstract section ...

... theorem ... theorem ...

Figure 1: Example XML document

Document-centric XML is sometimes referred to as narra-
tive XML, reflecting the importance of the order in which
XML elements occur.

For our experiments we use the document-centric XML
collection that comes with the INEX test-suite [7]. It con-
tains over 12,000 computer science articles from 21 IEEE
Computer Society journals. The documents are marked up
with XML tags. On average a document contains 1532 el-
ements and the average element depth is 6.9. The markup
has around 170 tag names, such as articles 〈article〉, sections
〈sec〉, author names 〈au〉, affiliations 〈aff〉, etc. Figure 1
shows an example of the structure of an XML document,
similar to those present in the INEX collection. The tag-
names mostly explain the layout of the articles but give little
information about their content.

To query document-centric XML documents we can use
a hybrid query language, in which content and structural
requirements can be expressed and mixed. At INEX, an
XPath-like query language has been introduced which is
appropriate for XML information retrieval. The syntax of
the language looks like XPath, but does not have the same
strict semantics. It can be seen as an extension of a subset
of XPath. The subset used at INEX 2003 was simple, yet
INEX participants had great difficulty in formulating correct
queries in this language (see [10] for details). Only the child-
and descendant-axis were used and the maximum number of
predicates allowed was two. Based on user studies, a smaller
subset has been chosen for INEX 2004 [12].

At INEX, XPath is extended with the about function,
aimed at facilitating free-text search. Although about func-
tion has the same syntax as the XPath function contains,
their semantics are radically different. Because of its strict,
boolean character, the contains function is not suitable for
querying text rich documents. The semantics of the about

function is meant to be very liberal. It is meant to be used
to rank elements according to their relevance for a given
content requirement. Consider the XML element

<affiliation>Stanford University</affiliation>.

A human assessor is likely to decide that the function

about(.//affiliation,’California’)

should return true on this string; in contrast, an XPath pro-
cessor equipped only with contains would have difficulties
trying to do the same.

The content-and-structure query language allows users to
describe their desired results more precisely. The structural
requirements used in queries are of course limited by the
structural properties of the collection. The query format
working group at INEX 2003 expressed some concerns that
the structure of the INEX collection did not give many nat-
ural opportunities to exploit structure [12]. The working
group did however identify some natural structural require-
ments, such as the co-occurrence of concepts in an element,
and references to author names or affiliations.

Example.Suppose a user is interested in information about
the safety of collision detection algorithms of flight traffic
control systems. She formulates her information need in a
mixture of structural and content constraints:

//article[about(.//abstract, flight traffic control

system)]//section[about(., collision detection

algorithm) and about(.//theorem, safety)]

She believes that articles that are really focused on “flight
traffic control systems” do say so in their abstract. Note
that the abstract itself is not supposed to be returned as an
answer to this query. This is a constraint on the environment
of the answer. Since she is interested in a certain aspect
of traffic control systems, namely the “collision detection
algorithm”, she specifies that she wants to zoom in on a
section about that particular aspect. Finally, she assumes
that a good collision detection algorithm should be proved
to be safe. Hence she adds the last about function, which
says that it is desirable that the sections returned contain a
theorem about safety.

From a user perspective the query above should not be
taken literally, but interpreted using vague semantics. A
user is likely to judge a section relevant, even if it is in an
article which has no abstract, as long as it addresses the
information need of the user. Since the retrieval engine is
made to serve the user, it should try to approach the problem
from a user perspective. The search engine should thus look

at the query as a hint about the content and environment
of desired results.

We will now sketch how we extended an information re-
trieval engine to handle the example content-oriented XPath
query above. A more detailed description of the extension
is in Section 3. The task of the retrieval engine is to rank
elements, in this case sections, according to their relevance
for the query. We divide this process up into three steps:

• decomposition, where we break the query into a num-
ber of IR queries, together with sources against which
these queries need to asked;

• retrieval, where we collect evidence about relevant el-
ements from each source; and

• mixture, where we mix the evidence from the multiple
sources to provide a ranked list of elements to return
to the user.

Decomposition.We start by decomposing the query into
a set of about functions. Each about function is further
split into a pair (location path, content description),
which consists of, indeed, a location path and a content
description. For our running example, we get

• (//article//abstract, flight traffic control system)

• (//article//section, collision detection algorithm)

• (//article//section//theorem, safety)

Each pair represents a potential source of evidence, where
the location path is used to locate the source and the content
description is used to collect evidence from the source.

Retrieval. For each about function, we use an informa-
tion retrieval engine to assign scores to elements, that are
in the node-set of the location path, reflecting how relevant
they are to the content description. Let’s take the first of
the about functions listed above as an example. We first
look at the node-set returned by the XPath location path
//article//abstract, which returns all abstracts of all ar-
ticles in the collection. We use a retrieval engine to assign
a retrieval score to each of the abstracts, reflecting how rel-
evant they are to the query “flight traffic control system”.
We do the same for the other about functions. Hence we
have a ranked list of abstracts, a ranked list of sections, and
a ranked list of theorems.

Mixture. Now we must decide which elements to return to
the user, and in which order to return them. First, we need
to locate the appropriate elements that can be returned. We
use the XPath location path //article//section to this
end; its node-set contains all sections of all articles in the
collection. We refer to those elements as target elements.
Next, we assign a score to each of the sections. This is
done based on the three about functions. Let’s start with
the middle about. The sections get a score reflecting to
which extent they themselves are relevant to the query “col-
lision detection algorithm”. Now let’s look at the first about
function. The score of the sections is increased if they are
contained in articles that have an abstract which is relevant
to the query “flight traffic control system”. The increase in
score depends on how relevant the abstract was to the query.

Finally, we look at the third about function. The score of a
section is increased if it contains a theorem which is relevant
to the query “safety”.

Although the retrieval approach has been sketched, there
are still some technical issues to be resolved. Should we
normalise scores from the different sources? If so, how? We
seem to have three different types of sources of evidence:
from the target itself, from “above”, and from “below”.
Should those sources have equal weight in the combination?
What if there are multiple relevant theorems inside a sec-
tion? Should they all contribute? While we don’t have final
answers, we will address those issues in the next section.

3. PROCESSING CONTENT AND STRUC-
TURE QUERIES

3.1 Decomposition
We will now describe, in a more formal manner, how we

decompose a given content and structure query into a num-
ber of pairs consisting of a location path and content-only
query.

For each XPath query qxpath we define a set of about func-
tions A(qxpath). Each about function, a, is a pair consisting
of a location path pa and a natural language query qa. We
denote by E(pa) the node-set that can be located via the
location path. We think of this node-set as our source of
relevance for that particular about function. We will then
use the natural language query qa to collect actual evidence
of relevance from that source. More precisely, we will use a
traditional IR system to rank the elements of the node-set,
w.r.t. how well they fulfill the information need expressed
in the natural language query.

3.2 Retrieval
Each of the pairs defined above can be used to locate

sources of relevancy and to collect evidence from those sources,
using an information retrieval system. In this paragraph we
describe the retrieval system used in the latter step and dis-
cuss which parameters might influence our results.

Indexing. Since we are interested in information needs that
combine structural and content aspects, we index both the
text and the XML structure of the full INEX collection.

Inverted indexes are efficient for testing whether a term
occurs in a document or element [14]. We build an inverted
element index, a mapping from words to the elements con-
taining the word. Each XML element is indexed separately.
That is, for each element, all text nested inside it is in-
dexed. Hence, the indexing units overlap. Text appearing
in a nested XML element is not only indexed as part of
that element, but also as part of all its ancestor elements.
To index the XML trees we use pre-order and post-order
information of the nodes in the XML trees [4].

Retrieval model.For the ranking of elements, our retrieval
engine uses a multinomial language model with Jelinek-Mer-
cer smoothing [5]. We estimate a language model for each
of the elements. The elements are then ranked according
to the likelihood of the query, given the estimated language
model for the element. That is, we want to estimate the
probability

(1) P (e, q) = P (e) · P (q|e).

The two main tasks are thus to estimate the probability of
the query, given the element, P (q|e), and the prior probabil-
ity of the element, P (e). Note that since we use our retrieval
engine to rank each about function separately, our queries
are natural language strings or a list of query terms.

Probability of the query.Elements contain a relatively
small amount of text, too small to be the sole basis of our
element language model estimation. To account for this data
sparseness we estimate the element language model by a lin-
ear interpolation of two language models, one based on the
element data and another based on collection data. Further-
more, we assume that query terms are independent. That is,
we estimate the probability of the query, given the element
language model, using the equation

(2) P (q|e) =

kY
i=1

(λ · Pmle(ti|e) + (1 − λ) · Pmle(ti|c)) ,

where q is a query made out of the terms t1, . . . , tk; e is an
element; and c represents the collection. The parameter λ
is the interpolation factor (often called the smoothing pa-
rameter). We estimate the language models, Pmle(·|·) using
maximum likelihood estimation. For the collection model
we use element frequencies (i.e., in how many elements does
a given term occur). The estimation of this probability can
be reduced to the scoring function, s(q, e), for an element e
and a query Q = (t1, . . . , tk) ,

(3) s(e, q) =

kX
i=1

log

1 +

λ · tf(ti, e) ·
`P

t df(t)
´

(1 − λ) · df(ti) ·
`P

t tf(t, e)
´! .

Here, tf(t, e) is the frequency of term t in element e. The
df(t) is the element frequency of term t, that is, the number
of indexed elements in which t occurs. The λ is the smooth-
ing parameter. In the experiments in this paper we keep the
smoothing parameter fixed at a value 0.2.

Prior probabilities. The second major task is to estimate
the prior probability of an element. Basing the prior prob-
ability of a retrieval component on its length, has proved
useful for several retrieval tasks [6, 13]. It is most common
to have the prior probability of a component proportional
to its length. That is, we calculate a so-called length prior:

(4) lp(e) = log

 X
t

tf(t, e)

!
.

With this length prior, the actual scoring formula becomes
the sum of the length prior (Equation 4) and the score for
the query probability (Equation 3),

(5) slp(e, q) = lp(e) + s(e, q).

3.3 Mixture
At this stage, we have decomposed the query and identi-

fied potential sources of relevance. We have used an informa-
tion retrieval engine to collect evidence from those sources.
Now it is time to put things together.

We look at the target elements, i.e., the elements returned
by the target location path. For each target element e, we
need to estimate how relevant it is to the content-oriented
XPath query qxpath.

We have a set of about functions, A(qxpath), from Sec-
tion 3.1. In Section 3.2, we calculate scores for each about

function separately. First, we take an about function a ∈
A(qxpath) and a target element e and we need to calculate
the score of e for that particular about function. Let us now
define E(pa) to be the node-set of the location path of a.
We now define a function χa which connects the elements e′

of node set E(a) to our target elements e:

(6) χ(e, e′) =


1 if e and e′ are connected by qxpath

0 otherwise

The notion of connection between two elements will not be
explained further here but we refer to the W3C XPath se-
mantics [15]. In our running query example we would say
that for the about function for theorems, a target section el-
ement is only connected to its descendant theorem elements.
Similarly, for the about function for abstracts, a target sec-
tion is connected to all abstracts that are contained within
the same article. Finally, for the remaining about function,
a target section is only connected to itself.

Now we can use the function χa to define the score of a
target element e w.r.t. an about function a:

(7) sabout(e, a) = max
e′∈E(a)

χa(e, e′) · sabout(e
′, qa)

where qa is the content description of a. We can calcu-
late s(e′, qa) using Equation 3 since qa is a natural language
query. Alternatively, we could incorporate a length prior in
the score by using Equation 5. Perhaps some other prior is
more helpful.

When there are multiple elements e′ that are related to the
target element e we choose to let only the highest ranking
element e′ contribute to the score of e (the max function).
In terms of the example before, if a section has multiple
relevant theorems, only the most relevant one contributes
to the scoring of the section. Alternatively, we could have
used an average or a sum instead of the maximum.

Now that we have for each target element, a score for each
about function, we need to combine it into one final score
which measures the relevance of the target element to the
XPath query qxpath. We simply assign a score to an element
by summing up its scores for each about function:

(8) sxpath(e, qxpath) =
X

a∈A(qxpath)

αa · s(e, a),

where αa is a parameter for fixing the weight that the about
function a has in the total score of target element e. In its
simplest form the scoring formula would use the value 1 for
all about functions.

What this means in terms of the example topic and the
Figure 1 is that the section is assigned a score according to
its own relevancy, according to the relevancy of the article
abstract, and the relevancy of its most relevant theorem.

In the actual queries, about functions could in principle be
connected in a predicate using the logical operators ‘AND’
and ‘OR’. We do not use these additional requirements in
our computation. Our approach works with a set of about

functions. We are liberal in the sense that we score elements
even if only one of the functions returns a score. We can thus
say that we treat all the queries as if they only used ‘OR’.
However, we do sum scores over all functions. Thus, the
more functions that return a positive score, the higher the
total score. Thus, we can say that we have a bias toward
treating the queries as if they only used ‘AND’. This will,

however, not result in coordination level matching for the
set of about functions.

4. EXPERIMENTS AND RESULTS
The extension of our information retrieval system, as sug-

gested in Section 3, is quite involved. If we want to convince
ourselves that this extension is worth the effort, a minimal
requirement is that it outperforms some simpler extensions.

We create runs using the 30 INEX 2003 CAS queries. We
evaluate our runs against version 2.5 of the INEX assess-
ments. We will only look at a strict interpretation of the
assessments. That is, an element in relevant if, and only if,
it is highly exhaustive and highly specific (see [3, page 204]).
We will discuss our results w.r.t. two evaluation measures.
We will look at mean average precision (MAP), which mea-
sures how well systems return only relevant elements. We
also look at recall, which measures how many of the relevant
elements are found by systems. The measures are applied
on the top 1000 elements returned by our system.

4.1 Baseline runs
The minimal requirement for a system that claims to use

structural requirements effectively, is that it outperforms a
system that does not use the structural requirements at all.
We will compare our extended system to two simple base-
lines, both created using the non-extended version of our
system and content-only queries. As queries we use the con-
catenation of terms appearing in the about-functions of the
content and structure queries. For our running example we
would use the query:

flight traffic control system collision detection

algorithm safety

The only structural requirement we use is the granularity
constraint. That is, for our running example we would only
rank elements appearing in the node-set of the XPath ex-
pression //article//section.

Here we take into account the sets of equivalent tag names
as defined in [3, page 197]. These sets define, for example,
the set of tagnames used to mark up sections in the INEX
collection. In earlier work, such as the related set of runs
reported in [9], we did not consider these tag name equiva-
lences, resulting in lower scores than those reported here.

Document-based run.For our first baseline run, we use
a document retrieval system to rank the elements. That
is, from the top ranking documents, we collect all elements
that match the granularity constraint. One can view this as
answering the query

//article[about(., query)]//section

This is probably the simplest extension of a traditional re-
trieval system to answer content and structure queries.

Element-based run.Our second baseline run uses our el-
ement based retrieval system. We rank the elements using
the score they get when retrieving from the element index.
One can view this as answering the query

//article//section[about(., query)]

This is probably the simplest element-based extension of an
information retrieval system.

Run MAP Recall
Document-based run 0.2465 0.7268
Element-based run 0.3209 +30.2%* 0.7153

Table 1: Results for the baseline runs. The improve-
ment of the element-based run is calculated relative
to the document-based run.

Run MAP Recall
Environment-based run 0.3219 +0.3% 0.7067
combSUM-doc-ele-env 0.3627 +13.0% 0.7854

Table 2: Results when using structure, improve-
ment is measured over the element-based run

The results of our baseline runs can be seen in Table 1.
Not surprisingly, the element-based run has higher mean
average precision than the document based one. It is in-
teresting to note, however, that the two runs have similar
recall scores. A first glance at these results suggests that
the baselines perform quite well and will be hard to beat.

4.2 Using structure
In our baseline runs, the granularity constraint was the

only structural constraint we considered. We will now look
at how well our extended system works.

Environment-based run.We now create a run using the
system we described in Section 3. That is, we do consider
the structural constraints expressed by the users. Through
the structural constraints the user implicitly adds content
constraints both on the target element itself, and on the sur-
rounding elements (the environment in which the target ele-
ments reside). We will refer to this run as the environment-
based run since it scores elements not only by looking at
their own content but also the content of their environment
(surrounding elements) as far as these are spelled out in the
query. The result can be seen in the first row of Table 2. In
terms of the mean average precision, there is only a slight
improvement over the element-based run. If we look at the
precision-recall plots (Figure 2) we see that the environment-
based run does result in better initial precision.

combSUM-doc-el-env.The environment-based run does
not improve significantly over the element-based run, in
terms of mean average precision. It does, however, improve
initial precision, indicating that considering the structure
has some positive effect. Earlier, it was shown that the com-
bination of element score and article score can lead to im-
proved retrieval performance [11], both for content-only and
for content-and-structure queries. This prompts us to com-
bine the three runs: the document-based run, the element-
based run and the environment-based run. For the combina-
tion we use the combSUM algorithm [2]. Results can be seen
in the second row of Table 2. There is quite an improvement
over the underlying runs.

4.3 Discussion
Figure 2 plots the precision-recall graph for the two base-

line runs, and the two structure runs.
The fact that our environment-based run has higher initial

precision than the baselines, seems to indicate that users can
indeed express their information need more precisely using

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on
Document based run
Element based run
Environment based run
combSUM−doc−ele−env

Figure 2: Precision-recall graphs for the baseline
and structure runs

a mixture of content and structural requirements.
The improved initial precision of the environment-based

run and the success of the three-way combination of runs
seem to indicate that the mixing of evidence from multiple
sources can improve retrieval effectiveness. Further investi-
gation is needed to discover the importance of the contribu-
tion of the individual runs.

We need a larger set of topics to be able to properly test
our method. The 30 INEX 2003 topics are not sufficiently
many to get a reliable comparison of methods. The struc-
tural requirements add a new dimension to the topics. There
is thus a possibility of more diversity in topics and hence it
will be more difficult to find one silver bullet that works for
all topics. We look forward to expanding our test set with
the queries of INEX 2004. We believe that both users and
systems need time to understand the possibilities that can
be exploited using this query language.

5. FUTURE WORK
Since we have only recently started experimenting with

our method, we have quite a bit of future work to do. In
this section we will list a few questions we would like to
answer for each of our three steps.

Decomposition.We have seen that it is useful to calculate
scores of articles and elements using queries which consist
of all terms in all about functions. We would like to inves-
tigate how useful this is precisely. Furthermore, we would
like to investigate whether, instead of using all terms, we
should only use terms that appear in about functions which
are applied on a descendant-or-self node-set. In our run-
ning example we would then have used the query “collision
detection algorithm safety” for our element-based run.

Retrieval. Our overlapping textual element index contains
large amounts of redundant information. This data redun-
dancy was extremely useful in our initial extensions of our
content-based retrieval system. Now, when we have ex-
tended our system with support for both content and struc-
ture, we can, and plan to, move to a non-overlapping el-

ement index for content. This move will reduce the disk
usage and disk access, but will increase the on-line compu-
tation needed. We believe that the savings in disk access
can outweigh the additional cost of run-time computation.

We plan to play with the parameters in our language
model. The value for the smoothing parameter is known
to affect initial precision, and also the size of the returned
elements [16, 8]. Both effects are usually measured w.r.t.
the quality of the retrieved elements. We are, however, us-
ing language models to rank answers to each about function
separately. It is not clear whether all about functions should
use the same value for the smoothing parameter. It is plau-
sible that about functions used to rank target elements need
different values than about functions used to rank other re-
lated elements. While it is probably useful to go for recall
when scoring target elements, it might be useful to go for
high precision when scoring other elements.

A similar argument might hold for the length prior. Length
priors, and extreme values for them, have been shown to be
particularly important for XML retrieval [8]. The main con-
tribution of the length prior has been for the content-only
XML retrieval task, where the granularity of the result el-
ements is unknown. For that task the main challenge is to
bridge the length gap between an average element and an
average relevant element. For the task we are evaluating in
this paper, the granularity of the result elements is usually
specified in the query. We are thus not faced with the same
length problem as for the content-only task. Hence, we did
not apply any extreme length priors for the CAS task, but
use the normal length prior described in Equation 4. We
conjecture that the length prior is more useful when scor-
ing target elements than when scoring other elements. It is
also plausible that the application of length priors depends
on the granularity constraint: retrieval of articles might de-
pend less on length prior settings than, for example, retrieval
of paragraphs.

Mixture. The mixture is sensitive to the actual retrieval
status values calculated, be it proper probabilities, logs of
probabilities, or other scores. The normalization of similar-
ity scores may be essential if the different probability estima-
tions are incompatible. We plan to experiment with various
rank-equivalent estimates, and specific normalization proce-
dures. This will also allow us to narrow down how different
about functions contribute to a successful retrieval result.

There are several methods we could use to choose between
multiple relevant elements. Currently we have only used
the max function, but we could also use all the elements by
averaging or summing over max functions.

Vague content-and-structure.INEX 2003 offered evalua-
tion of retrieval using content-and-structure queries without
strict interpretation of the granularity constraint. We have
yet to investigate how our methods perform on that task.

6. CONCLUSIONS
Document-centric XML collections contain text-rich doc-

uments, marked up with XML tags. Querying such collec-
tions calls for a hybrid query language: the text-rich na-
ture of the documents suggests a content-oriented (IR) ap-
proach, while the mark-up allows users to add structural
constraints to their IR queries. This paper introduced an

architecture for dealing with hybrid content-and-structure
queries on top of an existing retrieval engine. We propose
a three-way strategy that (i) decomposes a query into mul-
tiple content-only queries, (ii) which are issued against a
retrieval engine treating each XML element as a document,
and (iii) the results are then combined in ways determined
by the structural constraints of the original query.

We have shown that ignoring the structure is suprizingly
effective; for example, the element-based run outperforms
our official runs at INEX 2003 (which ranked 1 and 2). As
a result, the baseline for using structure is set quite high.
Still, our initial experiments using the extension showed
some promising results. Taking structure into account re-
sults in higher initial precision for the environment-based
run. Moreover, in combination with the document-based
and element-based runs, it leads to further improvements of
retrieval effectiveness.

7. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organi-

zation for Scientific Research (NWO) under project number
612.066.302. Maarten de Rijke was supported by grants
from NWO, under project numbers 612-13-001, 365-20-005,
612.069.006, 612.000.106, 220-80-001, 612.000.207, and 612.-
066.302.

8. REFERENCES
[1] N. Craswell, D. Hawking, and S. Robertson. Effective

site finding using link anchor information. In
Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 250–257. ACM Press,
2001.

[2] E. Fox and J. Shaw. Combination of multiple searches.
In Proceedings TREC-2, pages 243–252, 1994.

[3] N. Fuhr, M. Lalmas, and S. Malik, editors. INEX 2003
Workshop Proceedings, 2004.

[4] T. Grust. Accelerating XPath location steps. In Proc.
SIGMOD, pages 109–120. ACM Press, 2002.

[5] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[6] D. Hiemstra and W. Kraaij. Twenty-One at TREC-7:
Ad-hoc and cross-language track. In E. Voorhees and
D. Harman, editors, The Seventh Text REtrieval
Conference (TREC-7), pages 227–238. National
Institute for Standards and Technology. NIST Special
Publication 500-242, 1999.

[7] INitiative for the Evaluation of XML Retrieval, 2003.
http://inex.is.informatik.uni-duisburg.de:2003/.

[8] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length
normalization in XML retrieval. In Proceedings of the
27th Annual International ACM SIGIR Conference,
2004.

[9] J. Kamps, M. Marx, M. de Rijke, and
B. Sigurbjörnsson. Best-match querying for
document-centric XML. In Proceedings Seventh
International Workshop on the Web and Databases
(WebDB 2004), pages 55–60, 2004.

[10] R. A. O’Keefe and A. Trotman. The simplest query
language that could possibly work. In INEX 2003
Workshop Proceedings, pages 167–174, 2004.

[11] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An
element-based approch to XML retrieval. In INEX
2003 Workshop Proceedings, pages 19–26, 2004.

[12] B. Sigurbjörnsson and A. Trotman. Queries, INEX
2003 working group report. In INEX 2003 Workshop
Proceedings, pages 167–170, 2004.

[13] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. In Proceedings of the
19th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 21–29. ACM Press, 1996.

[14] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

[15] XML Path Language (XPath), 1999.
http://www.w3.org/TR/xpath.

[16] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th
Annual ACM SIGIR Conference, pages 334–342, 2001.

http://inex.is.informatik.uni-duisburg.de:2003/
http://www.w3.org/TR/xpath

	1 Introduction
	2 Content and Structure
	3 Processing Content and Structure Queries
	3.1 Decomposition
	3.2 Retrieval
	3.3 Mixture

	4 Experiments and Results
	4.1 Baseline runs
	4.2 Using structure
	4.3 Discussion

	5 Future work
	6 Conclusions
	7 Acknowledgments
	8 REFERENCES -9pt

