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Abstract. In this paper we describe the University of Amsterdam’s
participation in the INEX 2005 adhoc track. Our main research questions
for this round of INEX were to investigate selective indexing strategies
and different methods for using structural constraints in queries. As a side
question, we did experiment with the automatic creation of structured
queries.

1 Introduction

In this paper we describe the University of Amsterdam’s participation in the
INEX 2005 adhoc track. In previous years we have made our runs based on an
index of all overlapping XML elements. Our main objective this year was to
experiment with different methods of creating a more selective index. The aim
is to create a more efficient retrieval system without sacrificing much of retrieval
effectiveness. In our experiments with structured queries in the previous years we
have found that structural constraints lead to improvements in initial precision.
This year we wanted to explore whether different types of structural constraints
contribute differently to this gain.

For the CO.Focussed task we experiment with different non-overlapping runs.
First of all, we retrieve from our full overlapping element index and perform
result list based overlap removal as a post processing step. Second, we retrieve
from a non-overlapping element index. In our case, we used an index of all
<sec> elements. Last, and perhaps least, we retrieve from an article index. For
the CO.Thorough task we experiment with two pruning methods. One based on
previous relevance assessments and the other based on the length of the XML
elements. We compare the selective indexes to our full overlapping element index.
For the CO.FetchBrowse task we use our CO.Focussed runs as a basis and simply
group results for each article.

For the different CO+S tasks we experiment with different extents to use the
structural constraints. First of all, we only use the target constraint. Second we
use only the field constraints. Third we use both target and field constraints. For
the CO queries which do not have a structural version, we introduce structured
constraints using pseudo relevance feedback. For efficiency reasons, our system
is restricted to handle a limited set of structural constraints. The appropriate
set of structural constraints is chosen by studying content-and-structure queries
of previous years..



This paper is further organized as follows. In Section 2 we introduce our
indexing schemes. We describe our CO and CO+S runs in Sections 3 and 4
respectively. Section 5 gives a summary of our results. Finally we provide some
discussion and conclusions in Section 6.

2 Indexing

For effective and efficient XML retrieval indexing plays an important role. Any
element can, in theory, be retrieved. It has been shown, however, that not all
elements are equally likely to be appreciated as satisfactory answers to an infor-
mation need [2]. In particular, retrieval of the very many, very small elements
is not likely to be rewarded by users. Furthermore, users (and hence metrics)
may be willing to partially reward near misses. This prompts us to investigate
whether we can reduce our indexing size, both in terms of retrievable units and
storage size. We believe that this gives us more efficient retrieval without loosing
any, or at least little, of retrieval effectiveness.

Element Indexes For retrieving elements we build four indexes.

– Element index We build the “traditional” overlapping element index in the
same way as we’ve done in the previous years (see further [4, 5]).

– Length based index : It has been shown that very short elements are not likely
to be regarded as relevant. We analyze the average length of elements bearing
different tag-names. We then index only element types having an average
length above a certain threshold. For INEX 2005 we set the threshold to be
25 terms. The term count was applied before stop-words were removed.

– Qrel based index : It has been shown that elements with certain tag-names
are more likely than others to be regarded as relevant. We analyze the assess-
ments and look at which elements are assessed more frequently than other.
We index only elements that have appeared relatively frequently in previ-
ously assessment sets (i.e., they should constitute at least 2% of the total
assessments). We index article, bdy, sec, ss1, ss2, p, ip1, and fig.

– Section index : Retrieval of non-overlapping elements is a hot topic in XML
retrieval. We want to investigate how simple you can make your non-overlap-
ping retrieval. We build an index based on non-overlapping passages, where
the passage boundaries are determined by the structure. The simplest solu-
tion is to index only sections (<sec>). We believe that this simple strategy
is effective, despite (due to) the fact that the sections do not provide a full
coverage of the collection.

Article Indexes For retrieving articles we build two indexes.

– Article index : the “normal” article index
– Query fields: An article index containing both content and a selection of

fields. The fields are chosen based on structure of previous structured queries.
The fields chosen for INEX 2005 were: abs, fm//au, fm//atl, kwd, st,



Table 1. Properties of the the different indexes. Unit stands for the number of retriev-
able units. Storage stands for the size occupied in physical storage. Query time stands
for the time needed to retrieve 1000 retrieval units from the index for each of the INEX
2005 topics. All retrieval times are relative to the maximum retrieval time. (This table
will be completed in the proceedings version of this paper.)

Index Units Storage Query time

Element index 10,629,617 1.9G 1.0
Length based 1,502,277 1.3G t.b.a.
Qrel based 1,581,031 1.1G t.b.a.
Sections 96,600 223M t.b.a.

Articles 16,819 204M t.b.a.
Query fields 16,819 275M t.b.a.

bb//au, bb//atl, and ip1. The fields were chosen from a set of fields that
were used in the INEX 2003 and INEX 2004 content-and-structure queries.

For all indexes, stop-words were removed, but no morphological normaliza-
tion such as stemming was applied. Table 1 shows some statistics of the different
indexes.

3 Content-Only Runs

For all our runs we use multinomial language model [1]. We use the same mixture
model implementation as we used in INEX 2004 [5]. We assume query terms to
be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters
λe and λd are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e|

, (3)

where |e| is the size of an element e.



3.1 CO.Focused

In our focused task we experiment with two different ways of choosing focused
elements to retrieve. First, based on the hierarchical segmentation of the collec-
tion. Second, based on a linear segmentation of the collection. We also wanted to
compare these two approaches with a non-focused baseline, namely a document
retrieval system. We submitted three runs:

– Article run (UAmsCOFocArticle) A baseline run created using our article
index. We used a λ = 0.15 and a normal length prior.

– Element run (UAmsCOFocElements) A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Overlap was removed in
a list-based fashion, i.e. we traversed the list from the most relevant to the
least relevant and threw out elements overlapping with an element appearing
previously in the list.

– Section run (UAmsCOFocSections) A run created using a mixture model of
the section index and the article index. We set λe = 0.05 and λd = 0.1. A
normal length prior was used.

3.2 CO.Thorough

The main research question is to see if we can get away with indexing only
a relatively small number of elements. In our runs we compare three element
indexes. The “normal” element index, the qrel-based element selection and the
length-based element selection. We submitted three runs:

– Full element run (UAmsCOTElementIndex) A run using a mixture model
of the full element index and the article index. We set λe = 0.05, λd = 0.1,
and used a normal length prior.

– Qrel-based run (UAmsCOTQrelbasedIndex) A run using a mixture model
of the qrel-based element index and the article index. We set λe = 0.05,
λd = 0.1, and used a normal length prior.

– Length-based run (UAmsCOTLengthbasedIndex) A run using a mixture
model of the length-based element index and the article index. We set
λe = 0.05, λd = 0.1, and used a normal length prior.

3.3 CO.FetchBrowse

For the fetch and browse we mirror the focused task submissions, but cluster the
results so that elements within the same article appear together.

– Article run (UAmsCOFBArticle) This run is exactly the same as the article
run we submitted for the focused task.

– Element run (UAmsCOFBElements) We took the focused element run and
reordered the results in such a way that elements from the same document
are clustered together. The document clusters are ordered by the highest
scoring element within each document. We returned a maximum of 10 most
relevant elements from each article.



– Section run (UAmsCOFBSections) We took the focused section run and
reordered the result set in such a way that the elements from the same
document are clustered together. The document clusters are ordered by the
highest scoring section within each document.

4 Content-Only with Structure Runs

For the CO+S task we experiment with three ways of using structural con-
straints.

Target-only For queries that have a CAS title we only return elements which
satisfy the target constraint of the CAS title. For queries that ask for sections, we
accept the equivalent tags as listed in the topic development guidelines. NB! We
use the terms in the title field of the queries because we want a direct comparison
to CO runs. Retrieval is performed using a mixture model using the overlapping
element index and the normal document index.

Fields-only Here we use the document index with query fields. We process
the queries in three different ways, depending on their format. First, for the the
<castitle> queries with field constraints that match our fielded article index,
we rewrite the query such that it fits our index. For example, the query:

//article[about(.//abs, ipv6)]//sec[about(., ipv6 deployment) or
about(., ipv6 support)]

becomes

abs:ipv6 ipv6 deployment ipv6 support.

For the queries that only partly match our indexing scheme, we do additional
processing, i.e.

//*[about(.//au, moldovan) and about(., semantic networks)]

becomes

fm//au:moldovan bb//au:moldovan semantic networks

since our index makes distinction between article authors and referenced authors.
Second, for <castitle> queries that do not have fields that fit our index, we use
the simply extract the query terms. I.e.

//article[about (.//bdy, synthesizers) and about (.//bdy, music)]

becomes

synthesizers music.



Third, for queries that do not have a <castitle>, we add structured query fields
using pseudo relevance feedback on the fielded article index [3]. We look at the
top 20 feedback terms and we add up to n fielded terms where n is the length
of the original query. For example,

computer assisted composing music notes midi

becomes

bb//atl:music bb//atl:musical st:music ip1:musical ip1:music
fm//au:university computer assisted composing music notes midi

We use those queries to create an article run using the fielded article index. Now
we do the following:

– We take an existing run and for each element in that run, we replace it’s score
with the score of it’s article (using the fielded index and fielded queries).

– We do a combSUM of the original element run and the “article score” element
run.

Target and Fields Constraints Here we process both the target and fields
constraints in the same ways as discussed above.

4.1 Runs

The ways of processing structural constraints discussed above, are applied to
each of the structured retrieval tasks.

+S.Focused

– Strict on target (UAmsCOpSFocStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set λe = 0.4
and λd = 0.4. No length prior was used for this run. Target restriction was
implemented for queries that had one. Overlap was removed in a list-based
fashion

– Using constraints (UAmsCOpSFocConstr) We apply the fields-only approach,
described above, on the focused CO element run (UAmsCOFocElements).

– Using constraints and strict on target (UAmsCOpSFocConstrStrTarg) We
apply the fields-only approach on the strict on target run (UAmsCOpSFoc-
StrictTarget).

+S.Thorough

– Strict on target (UAmsCOpSTStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set λe =
0.05 and λd = 0.1. We apply a normal length prior. Target constraints are
respected for queries that have one.



– Using constraints (UAmsCOpSTConstr) We apply the fields-only approach,
described above, on the thorough CO element run (UAmsCOTElementIn-
dex).

– Using constraints and strict on target (UAmsCOpSTConstrStrTarg) We ap-
ply the fields-only approach on the strict on target run (UAmsCOpSTStrict-
Target).

+S.FetchBrowse

– Strict on target (UAmsCOpSFBStrictTarget) We reorder the focused strict
on target run (UAmsCOpSFocStrictTarget) such that results from the same
article are clustered together. Only the 10 most relevant elements are con-
sidered for each article.

– Using constraints (UAmsCOpSFBConstr) We reorder the focused run using
constraints (UAmsCOpSFocConstr) such that results from the same article
are clustered together. Only the 10 most relevant elements are considered
for each article.

– Using constraints (UAmsCOpSFBConstrStrTarg) We reorder the focused
run using constraints and strict targets (UAmsCOpSFocConstrStrTarg) such
that results from the same article are clustered together. Only the 10 most
relevant elements are considered for each article.

5 Results

In this section we will present and discuss our preliminary results. The results for
the Focussed and Thorough tasks are based on results from the INEX (lip6) web-
site as they appeared on November 6th, 2005. The results for the FetchBrowse
were taken from the website in November 10th, 2005.

5.1 The Focussed Task

Table 2 shows the results for both the CO.Focussed and CO+S.Focussed runs.

CO.Focussed The aim of the CO.Focussed submission was to compare 3 non-
overlapping retrieval strategies: element retrieval, section retrieval and article
retrieval. As we see in Table 2 the element based retrieval outperforms the other
two for almost all metrics. There are, however, some notable exceptions. Inter-
estingly, the article run outperforms the other two when we look at extremely
early precision of the generalized nxCG metric. For the generalized extended Q
and R metric the section run gives the best performance, followed by the article
run. This suggests that the element retrieval approach is a good approach when
considering the full recall base. However, for early precision, section retrieval
(and to some extent article retrieval) is a better alternative.



Table 2. Results for the CO.Focussed and COS.Focussed runs using various metrics

(a) nxCG (overlap=on, generalized)

Run MAnxCG @1 @2 @3 @4 @5 @10 @50 @100

Elements .269 .195 .191 .221 .204 .209 .200 .165 .181
Sections .204 .213 .209 .190 .194 .178 .176 .158 .153
Articles .098 .248 .250 .205 .191 .184 .170 .102 .089

StrTarg .225 .236 .230 .246 .236 .230 .224 .168 .168
Constr .300 .161 .215 .224 .232 .215 .203 .170 .190
ConStrTar .237 .289 .272 .257 .250 .231 .224 .182 .175

(b) EP/GR (overlap=on, generalized) and Extended Q and R (generalized)

EP/GR Ext. Q and R
Run iMAep MAep Q R

Elements .056 .071 .115 .159
Sections .030 .064 .145 .215
Articles .020 .048 .133 .195

StrTarg .049 .072 .135 .202
Constr .059 .074 .123 .166
ConStrTar .057 .078 .144 .208

CO+S.Focussed The aim of the CO+S.Focussed submission was to compare dif-
ferent extents to which the structural constraints can be used. For the averaged
metrics the run using only the fields-only approach (Constr) outperforms both
the other runs using structured queries, as well as outperforming the runs using
no structure at all. For the early precision metrics, the runs using strict-target in-
terpretation (StrTarg and ConStrTarg) outperform the fields-only approach. The
run using both field-constraints and target-constraints generally outperforms the
run using target-constraints only. It seem thus that the field-constraints are gen-
erally useful for improving retrieval effectiveness, while the target constraints
are particularly useful for achieving high early precision.

5.2 The Thorough Task

Table 3 shows the results for the CO.Thorough and CO+S.Thorough runs.

CO.Thorough The aim of the CO.Thorough submission was to experiment with
two selective indexing approaches compared to a full element retrieval approach.
Table 3 shows that for the averaged metrics, the selective indexing approaches
to not have substantially worse performance than the full element retrieval ap-
proach. Furthermore, for the early precision metrics, the selective indexing ap-
proaches outperform the full element retrieval approach.

CO+S.Thorough The aims and the results for the CO+S.Thorough task are the
same as for the CO+S.Focussed task. Field-constraints are useful over-all, but
target constraints improve initial precision.



Table 3. Results for the CO.Thorough and CO+S.Thorough runs using various metrics

(a) nxCG (overlap=off, generalized)

Run MAnxCG @1 @2 @3 @4 @5 @10 @50 @100

Element .309 .239 .191 .256 .265 .275 .265 .230 .218
Qrel .301 .266 .227 .293 .287 .289 .275 .245 .231
Length .302 .281 .247 .281 .272 .276 .264 .240 .218

StrTarg .192 .322 .260 .263 .245 .246 .225 .186 .168
Constr .334 .242 .244 .249 .250 .254 .261 .234 .246
ConStrTar .206 .311 .264 .246 .242 .235 .216 .198 .180

(b) EP/GR (overlap=off, generalized) and Extended Q and R (generalized)

EP/GR Extended Q and R
Run iMAep MAep Q R

Element .072 .085 .162 .269
Qrel .074 .089 .168 .275
Length .070 .085 .166 .272

StrTarg .046 .053 .098 .193
Constr .078 .089 .166 .270
ConStrTar .049 .056 .101 .193

Table 4. Results for the CO.FetchBrowse and CO+S.FetchBrowse runs using various
metrics

(a) ERPRUM (ideal: GK-SOG, quant: Exh, behaviour: Hierarchic)

Run Average @1 @5 @10 @20 @100

Elements .091 .089 .039 .025 .016 .005
Sections .114 .123 .056 .031 .019 .005
Articles .027 .072 .033 .021 .012 .003

StrTarg .107 .098 .039 .026 .016 .005
Constr .064 .106 .047 .029 .019 .006
ConStrTar .070 .116 .044 .027 .017 .005

5.3 The Fetch-and-Browse Task

FetchBrowse Table 4 shows the results for our FetchBrowse submissions. At
the time of writing, none of the FetchBrowse tasks have been evaluated with
an official INEX metrics which handled overlap. Since we submitted only non-
overlapping runs for this task, we report the EPRUM metric which takes over-
lap into consideration. Our section retrieval run outperforms the full element
retrieval run both w.r.t. average precision and initial precision. It is interesting
to note that for the Focussed task, the element run outperformed the section run
for the averaged metric. Note, however, that there are several crucial differences
between the results for the two tasks. First of all, the task is of course different.
Second, the tasks are evaluated with different metrics. Third, for articles where
more than 10 results were found, results 11 and above were removed from the
FetchBrowse runs.



Table 5. Results for the CO.FetchBrowse-D and CO+S.FetchBrowse-D runs using
various metrics

(a) inex eval

generalized
Run MAP @1 @5 @10 @20 @100

Element .186 .261 .207 .183 .154 .064
Sections .264 .359 .289 .216 .163 .064
Article .282 .424 .285 .260 .202 .069

StrTarg .186 .293 .189 .171 .128 .057
Constr .242 .315 .239 .216 .175 .068
ConStrTar .250 .326 .265 .225 .178 .066

FetchBrowse-D Table 5 shows the document-run evaluation of our FetchBrowse
submissions. The results seem to indicate that element retrieval is not an effective
strategy for improving document retrieval. These results will be analyzed further
in the proceedings version of this paper.

6 Conclusions

In INEX 2005 we set out to investigate several research questions.

– Does retrieval using the XML tree hierarchy improve significantly over using
a simpler linear segmentation of the documents?

– How do different types of structural constraints contribute to improved re-
trieval effectiveness?

– Can we prune our overlapping element index to gain efficiency without loos-
ing effectiveness?

– Can we create structured queries automatically using pseudo relevance feed-
back?

Our results show that retrieving from the full hierarchy of element outper-
forms retrieval from a linear segmentation. The segmentation based retrieval is
however competitive when we look at initial precision. Article retrieval is inter-
estingly effective at P@1 and P@2 for the CO.Focused task.

We showed that fielded constraints are helpful for improving average retrieval
performance. Interpreting target constraints in a strict manner does hurt average
performance. The target constraints do however improve retrieval when we look
at early precision.

For the thorough task we experimented with two different pruning of the full
overlapping element index. Neither of the pruning strategies lead to a consid-
erably lower average performance. Both pruning strategies did however lead to
improved initial precision. The length based pruning lead to greater improvement
than the qrel based pruning.

For the FetchBrowse task the linear segmentation performed considerably
better than the hierarchical segmentation. This result is different from the Fo-



cussed task. It is however not clear whether this difference lies in different task
performed or in the different metric used to evaluate the two tasks.

For the document ranking part of the FetchBrowse task, ranking documents
based on their own retrieval score outperformed the document retrieval based
on the highest scoring element/section.

At this point we have not evaluated the effect of automatically creating struc-
tured queries through pseudo relevance feedback. This analysis remains as future
work and will be carried out before publication of the proceedings version of this
paper.

Future work includes looking at different granularities for the linear segmen-
tation. Instead of looking at section level, we could look at using subsections,
when available. Also we should include elements such as front-matter so that the
linear segmentation has a full coverage of the collection.

Our processing of the CO+S queries is a bit ad-hoc. Future research should
include a cleaner way of processing and retrieving using structural queries.
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